
(12) United States Patent
Sharique et al.

US009262457B2

US 9,262.457 B2
Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) ON-DEMAND HASH INDEX

(71) Applicants:Muhammed Sharique, Pune (IN); Anil
Kumar Goel, Waterloo (CA); Mihnea
Andrei, Issy les Moulineaux (FR);
Rolando Blanco, Waterloo (CA);
Harshada Chavan, Pune (IN)

(72) Inventors: Muhammed Sharique, Pune (IN); Anil
Kumar Goel, Waterloo (CA); Mihnea
Andrei, Issy les Moulineaux (FR);
Rolando Blanco, Waterloo (CA);
Harshada Chavan, Pune (IN)

(73) Assignee: Sybase, Inc., Dublin, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 238 days.

(21) Appl. No.: 13/965,552

(22) Filed: Aug. 13, 2013

(65) Prior Publication Data

US 2015/OO52150 A1 Feb. 19, 2015

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC G06F 17/3033 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,404,510 A * 4/1995 Smith GO6F 17,30598
6,275,919 B1* 8/2001 Johnson GO6F 17,30949

TO7/E17.036
6,599,210 B1* 7/2003 Takamori F16H 55.30

474,152
7,672,928 B2 * 3/2010 Maloney et al. 707/715
9,059,989 B2 * 6/2015 Kurkure HO4L 63,083

2004/0010488 A1 1/2004 Chaudhuri et al. 707/3
2005, 0071331 A1* 3, 2005 Gao et al. TO7/4
2005. O187917 A1* 8, 2005 LaWande et al. ... 707 3
2006/0069672 A1* 3/2006 Maloney et al. 707/3
2009,027.1366 A1* 10, 2009 Ellison GO6F 17,30949
2010, 0169293 A1* 7, 2010 Gerber G06F 17,30864

707/7O6
2011/0029507 A1 2/2011 Au et al. 707/714
2011/0153594 A1* 6/2011 Hagenbuch et al. 707/718
2012/0197868 A1* 8, 2012 Fauser GO6F 17,30286

707/714
2013/0173590 A1* 7, 2013 Ghazal 707/714

* cited by examiner
Primary Examiner — Hung Le
(74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein
& FOX PLLC

(57) ABSTRACT
Disclosed herein are system, method, and computer program
product embodiments for populating a hash index and return
ing a handle to the hash index. An embodiment operates by
determining, by at least one processor, during query optimi
Zation that a first database query has a query execution plan
comprising a sub-query which executes N times a correlated
predicate having an operator being one of equal and not equal
to a base column. A cost of creating and probing the hash
index N times and a cost of fully scanning the base column N
times are compared based on the correlated predicate. Based
on the comparing, it is determined whether to create on
demand a hash index.

20 Claims, 5 Drawing Sheets

US 9,262.457 B2 Sheet 1 of 5 Feb. 16, 2016 U.S. Patent

;** • • • • •

~~~~ {}{} { 

  

  



U.S. Patent Feb. 16, 2016 Sheet 2 of 5 US 9.262.457 B2 

-- -Y. ^ 

s ls this a correlated predicate? 
r 

--- 

-- s 
- is the table RLV 

's- eabed? - 
-- --- s 

s -- 
^s- 

i. Yes 
---- 

- a. 
- Y- - 3 

^ y 
Y is f 

- 
... - is the operator involved in the is 

^ predicate equal "=" or "1="? -- No 

--- 

s 

-- r 
r a-r . . . ; 

- is Hash index more efficient is 
--- tian Fiat 7 --- No 

ls Hash Index available “s. No 
on Column? --- 

s - s al 

l 

--- - 250 

Return the handle to the Create the Hash Index 
Hash Index and return its handle 

re--------------------------rrrrrrrrrrrrrrra Srrass -------------------------------------ra 

  

  

  

  



U.S. Patent Feb. 16, 2016 Sheet 3 of 5 US 9,262.457 B2 

- 3 

i 
---...................a...aa-a-a-a-a-a-aa-. * sala.karassicals......a... 

r - 

Correlated sub s 
- - 

tery or NFC Yama YaYa YaYaax xx ava aaaaaaaa. x sciex exists f N. Yes 
S. airie versio" - i&ieties Y- - 

* - 
^ - ------------ -ce 

Reif its x 

{{seate as tasis End 

Year 

ASSCC as igiex with 
take wesii 

Populate has 
tas: 

  

  



U.S. Patent Feb. 16, 2016 Sheet 4 of 5 US 9,262.457 B2 

3egi: 

No rows to process Xolo-croc 
... r. - - f. ^ In bitmap? 

i 8 
Y N. 

8 get column 
value for rowid 

y - 442 - 444 
mim. 

- ^ Yes | Add (ptr to 
K column >ira value, rowid) to 
^ value? -- hash table 

No 
- 450 - 452 ^ 454. 

< associated to Yes | Cove it to Add rowid to : 

& * -- s 23 
value? -- y y arrara-sas a. as as 

- s M \, 

- rowid - 

^ Y. 
rowid arrays * *k 

y^ Yes - Room in Y.Yes. - associated to *" 2. ^ lue? - array? -- - value- * 
-- Ys 

No se 
8 Convert array 

into bitrag 

  

  

  

  



U.S. Patent Feb. 16, 2016 Sheet 5 of 5 

Processor 504 

aii memolysos 
-.........y S 

User trigui-Citput 
interface(s) 503 

-- 

Secondary Memory 510 

8 Hard Disk 

Communication i 512 
Infrastructure t-nor. 

506 

Removable 

514 

520 

G. 5 

Storage Drive k . -- mm - - - 

A Corfiiniinications 
interface 

US 9,262.457 B2 

ComputerSystem, 500 

s&f input/output 
Device(s). 503 

---------------- ---------- 

Removable 
-8: Storage Unit 

518 

-...-ex 
Resowale 
Storage if it 

5. 
----------- ----------------- 

- 
Remote 

sievice(s), 
etwork(s), 

entity(ies 538 

-Yr-rrrrrrrrrrrrr, 

Communications Path 526 

  

  

  

  



US 9,262.457 B2 
1. 

ON-DEMAND HASH INDEX 

BACKGROUND 

Certain types of database queries include Sub-queries 
where a column may be scanned a large number of times. In 
situations which involve these sub-queries, the associated 
database query may suffer from performance degradation. 
Conventional techniques for reducing a number of column 
scans include maintaining a plurality of secondary indexes. 
However, maintenance of these secondary indexes can result 
in a serious performance impact on write operations because 
each write operation may need to update all of the secondary 
indexes. Thus, these conventional techniques burden data 
base writing and are not feasible for use with, for example, a 
column store database having a row level versioned (RLV) 
architecture. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The accompanying drawings are incorporated herein and 
form a part of the specification. 

FIG. 1 is a block diagram of a database system, according 
to an example embodiment. 

FIG. 2 is a flowchart illustrating checks before a hash index 
is created on-demand, according to an example embodiment. 

FIG. 3 is a flowchart illustrating returning of a hash index, 
according to an example embodiment. 

FIG. 4 is a flowchart illustrating populating a hash table, 
according to an example embodiment. 

FIG. 5 is an example computer system useful for imple 
menting various embodiments. 

In the drawings, like reference numbers generally indicate 
identical or similar elements. Additionally, generally, the left 
most digit(s) of a reference number identifies the drawing in 
which the reference number first appears. 

DETAILED DESCRIPTION 

Provided herein are system, method and/or computer pro 
gram product embodiments, and/or combinations and Sub 
combinations thereof, for populating a hash index and return 
ing a handle to the hash index. 

Example Block Diagram of Database Architecture 
FIG. 1 shows a block diagram of a database system 100 

according to an example embodiment. The database system 
100 may be, but is not limited to, an in-memory database 
system. As shown in FIG.1, database system 100 may include 
a computer 102 having at least one processor 104. As an 
example, the database system 100 in FIG. 1 is shown having 
two processors, but the database system is not limited to 
having two processors and may have a single processor or 
more than two processors. Each processor 104 may include a 
plurality of cores 106 each having a private cache 108. As an 
example, CPU 0 104A and CPU 1104B in FIG. 1 are shown 
as having four cores 106 each, but the processors may include 
less than four cores or more than four cores. Each processor 
104 may include caches 108 and cache 110 that is shared 
among its cores. Each core 106 may have a plurality of hard 
ware contexts, e.g. threads 112. In addition, the computer 102 
includes random-access memory (RAM) 110 which may 
include hundreds of GB or TBs of RAM. According to 
example embodiments, the database system 114 may be an 
in-memory column-store database system stored and 
executed within RAM 116. Thus, in an embodiment, as 
opposed to conventional database systems stored on disk 
where disk access and speed presents a bottleneck, the RAM 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
116 of an in-memory database system may present a bottle 
neck for the faster caches 108 and 110. The RAM 116 having 
the database system 114 and processors 104 may communi 
cate via a bus 118. 

According to an example embodiment, the database sys 
tem 114 includes an in-memory intermediate store that is 
introduced in order to make write operations faster. An RLV 
enabled database table may include a fast projection index 
(flat FP index) on each of its columns. This flat FP index is a 
default index which is created when a table is created. All 
column values are stored in this default index. This default 
index is associated with each row in the table which enables 
certain kinds of search conditions to be evaluated. Each col 
umn may have one FP index, and each FP may be an array of 
in fixed-length entries being column values where n is the 
number of rows in the table. Each column value may then be 
stored sequentially in order. In order to keep write operations 
efficient, secondary indexes such as a hash index/btree index 
are typically not maintained or Supported in an RLV store. 
Updating a secondary index during write operations would 
degrade write performance/efficiency of the store. 

Processing Queries which Degrade Performance 
Certain types of database queries may include Sub-queries 

which involve scanning a column in a database an excessive 
number of times. According to example embodiments, if one 
of these database queries is detected, a hash index may be 
created for use with the instant query and then reused for 
Subsequent queries, if applicable. The hash index is to be 
created by a reader of the database such that readers, not 
writers, pay the price of creating the index. This is beneficial 
in an RLV enabled table as index maintenance costs are 
offloaded to the readers, rather than burdening writers to the 
database. These costs may therefore be amortized over a 
plurality of readers of a same version of a database table. 
Detection of these database queries which may degrade per 
formance may occur early in the optimization phase. 

For example, a column may be scanned a large number of 
times if a database query includes correlated Sub-queries. As 
a non-limiting example, a database query may be the follow 
1ng: 

select from Outer where outer.c1 in select inner.c1 
from inner where inner.c1 =Outer.c1) 

In this example, inner.c1 will be scanned for every value of 
outer.c1. While it is possible to only consider distinct values 
of outer.c1, if c1 is the primary key, there still may be a very 
high number of distinct values. If outer.c1 includes a million 
distinct values, then the inner query block will be executed a 
million times. For the above query, inner.c1=outer.c1 is a 
correlated predicate, where outer.c1 is an outer column, 
inner.c1 is an inner column, and '-' is an operator. 
A query engine may conduct optimization on data. Accord 

ing to an embodiment, the query engine may sort data on 
outer.c1 such that all duplicates for a given unique value may 
sit next to each other in Sorted data. Thus, for outer unique 
values, an inner query may be executed while outer duplicate 
values may use results generated by the unique value. 
As an example, we may assume that outer.c1 includes the 

following values: b. a, c, a, c. c. After these values are sorted, 
they will be: a, a, b, c, c, c. An inner query may be executed for 
the first a, and a second a will use the result generated b the 
first a. Similarly, for an inner query for the first c, the second 
and third c may use the result generated by the first c. Thus, an 
inner query may only be executed for unique outer values. 
The inner query will only be executed three times for a, b, and 
c outer values. 



US 9,262.457 B2 
3 

As a further non-limiting example, the query may include 
a nested loop push down join query (NLPDJ): 

select rvt.c1 from rvt1, rvt2 where rvt1.c1 =rwt2.c1 

In this example, the NLPDJ will likely cause an exorbitant 
number of column scans which take significant time and 
degrade performance. For the above query, rvt1.c1 is an inner 
column, and rvt2.c1 is an outer column. 

According to an example embodiment, performance deg 
radation may be alleviated by creating and utilizing a hash 
index on-demand. If the database system 114 detects one of 
the above example Sub-query scans, the database system 114 
may initiate creation of a hash index on a column in the 
database. This index may be made private to the database 
system 114 and will be unknown to a user accessing or writ 
ing to the database. The database system 114 will have own 
ership over creation and destruction of the index. 
As a result, if the database system 114 detects a perfor 

mance impairing query such as one of the examples provided 
above, and the database table is RLV enabled, the database 
system 114 may initiate creation of the index as described 
further in detail below. 

Query scenarios including NLPDJ and correlated sub-que 
ries may result in creation of the hash index when an operator 
in the correlated predicate is either equal or not-equal. After 
the index is created, it may be used for predicate evaluation. 
Once the query is completed, the index may be closed, how 
ever, once it is created the index may be used for multiple 
queries. 

If a hash index is already created on a column by a corre 
lated Sub-query, this hash index can be utilized by any query 
using/working on the same version of the table. 

According to an example embodiment, query Q1 creates a 
hash index on inner.c select from outer where outer.c1 in(se 
lect inner.c1 from inner where inner.c1=outer.c1). For query 
Q2, the hash index created by Q1 can be reused even though 
it is not a correlated Sub-query. As an example, query Q2 may 
be: select from inner where inner.c=10. 

However, there are instances where it may not be cost 
effective to create a hash index. According to an example 
embodiment, a cost model may compare the execution cost of 
the database query using the flat FP index with the cost of 
using the hash index. This cost model is described below. 
There may be situations where the cost of the creation of the 
hash index combined with the cost of probing the hash index 
may outweigh the column scans associated with use of the flat 
FP index. For example, the cost of using the hash index may 
be too high when there are very few rows in the inner and 
outer tables. In order to avoid creation of the index in such 
cases where the cost is too high, a cost model is used in order 
to determine whether the creation of the index may be ben 
eficial. 

Cost Model 
In an embodiment, the cost model is based upon a number 

of equations and pseudocode, non-limiting examples of 
which are provided below. 

Terms and Constants 
innerRVTableCard-Cardinality of the inner table 
innerRVColDistCard=Distinct count of the inner column 
outerTableCard-Cardinality of the outer table 
outerCollistCard=Distinct count of the outer column 
CPU factor=1.1; 
Additional Overhead=0; 
Memory Factor-1; 
Hash Insert Factor=1.01; 
// Note that the above values are based on experiments to 

verify functionality of the Cost Model 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 

Equations & Pseudocode for Cost Model 
// Compute the cost of using the Flat FP index 
if Begin equations & pseudocode 
costWithFlatfP = outerColl)istCard * (innerRVTableCard * 
(CPU Factor * Cell Size)); 
if Compute the cost of creating and probing the Hash Index 
Memory Allocated For Keys = 8* innerRVTableDistCard; 
if (TableCard? ColDistCard== 1) { 
Memory Allocated For Values =innerRVColDistCard * 

(40 bytes + 8): 
if rowid found 

else if (TableCard? ColDistCard< 128) { 
Memory Allocated For Values = innerRVColDistCard * 

(40 bytes + 8 * 128); 
// array of rowids 

else { 
Memory Allocated For 

Values = innerRVColDistCard * (40 bytes + 
(TableCard/ColDistCard/NumBitsPerChunk) * 

(52 + NumBitsPerChunk/8)); 
if bitmap of rowids 

Approximate Memory Allocated : 
Allocated For Keys -- 
Memory Allocated For Values + Additional Overhead; 
Memory Cost = Approximate Memory Allocated * 
Memory Factor; 
Column Scan Cost Of The Inner 
Table = innerRVTableCard * 
CPU Factor * Cell Size: 
Hash Creation Cost = (Column Scan Cost Of The Inner Table * 
Hash Insert Factor) + Memory Cost: 
Hash Probe Cost = outerTableDistCard * CPU Factor: 
// The hash probe cost is the cost of computing the hash value for each 
distinct outer value 
i? + cost of walking array of size 4 + the cost of one comparison 
costWithHashlindex = Hash Creation Cost + Hash Probe Cost: 
?t End equations & pseudocode 

Memory 

When determining how much memory to allocate, values 
may be accepted in order to estimate how many unique data 
values in the columnare expected. These estimates may assist 
in avoiding underallocating or overallocating memory and 
avoiding allocation cost. However, if the estimates are not 
accurate, the database system is able to dynamically reallo 
cate memory. 

In view of the above equations and pseudocode, the cost 
model may be used in order to determine whether to create the 
hash index. Therefore, the hash index may be created only if 
costWithHashindex<costWithFlatfp. However, as further 
described below; the Hash Creation Cost will be 0 as long as 
the hash index has already been created. 

Hash Index Creation 
According to an embodiment, FIG. 2 shows a flowchart 

200 illustrating a process of hash index creation. In step 210, 
during query optimization when a query is determined to be a 
query that overscans and causes performance degradation, for 
every outer reference in the query block, it is determined 
whether a correlated predicate is found to be present. If a 
correlated predicate is not present, then the process stops 
because a hash index is not needed and is not created. 

In step 220, if a correlated predicate is found, then it is 
determined whether the table is RLV enabled. If the table is 
not RLV enabled, then the process stops because a hash index 
is not needed and is not created. 

In step 230, if the table is RLV enabled, then it is deter 
mined whether the operator involved in the correlated predi 
cate is equal (“=) or not equal (“='). If the operator involved 
in the correlated predicate is not one of these operators, then 
a hash index is not needed and is not created. 

In step 240, if the operator is equal or not equal, the cost of 
creatingahash index and the cost of a flat FPScanis computed 



US 9,262.457 B2 
5 

as described above. If the cost of the hash index is determined 
to be less than the cost of the flat FP scan, thenahash index is 
not needed and is not created. 

In step 250, if creating/probing the hash index is deter 
mined to be an efficient use of resources and less than the cost 5 
of a flat FP scan, then it is determined whether a hash index 
has already been created. 

In step 260, if the hash index has already been created, a 
handle to the hash index is returned in step 270 and the 
process ends. 10 

In step 260, if the hash index has not yet been created, then 
in step 280 the hash index is created and a handle to the hash 
index is returned. 

If the index is being created and populated by another 
query, query processing waits for the index to be populated 15 
and both (or more) waiting queries may re-use the index. 
Hence, at most one hash index is created for each specific 
version of the table. A first query that finds the query index 
beneficial creates the index, and other concurrent queries get 
blocked and wait until the first query completes the creation 20 
and population of the index. 

According to an example embodiment, and as shown in 
FIG. 2, during query processing and depending upon the type 
of query being processed, if evaluation of the hash index cost 
model for the column is determined to be lower than the cost 25 
of scanning using the flat FP index; then the hash index is 
created and populated if it does not yet exist. A handle is then 
returned to the hash index. If the hash index is determined to 
be more cost effective and has already been populated, then a 
handle to the hash index is returned. 30 

Index Creation and Maintenance 
Each hash index may include a hash table that is created 

according to the process described herein. This hash table 
associates column values with rows. As an example, given a 
set of rows associated with a particular version of the table, 35 
the hash index for a column of the table may include as many 
entries as different values are in the column that are being 
indexed for the set of rows. Each value in the hash table may 
be associated with a row position(s) in the table and a par 
ticular value in the column. The column store is implemented 40 
as an append-only column store, e.g., no data is deleted from 
the store. Thus, instead of copying each different value into 
the hash table, a pointeris associated with a first occurrence of 
a value in the column as determined by the rows in the table 
version. 45 

In other words, each element of the hash table includes a 
pointer to a data value, and a row specification. The row 
specification is described further herein, but may be a rowid, 
an array of rowids, or a bitmap of rowids. In other words, the 
row specification may be a rowid (e.g. a position of the row in 50 
the table) if only one row has the value, an array of rowids if 
a plurality of the rows have the value (e.g. 100 rows have the 
same value such as “M” or “F” and the array has a capacity of 
128), or a bitmap if more rows than can fit in the array have the 
value of “M” or “F” The capacity of the array provided here 55 
is merely an example, and may he a value that is higher or 
lower than 128. 

Lifetime of the Index 
Each hash index is associated to a table version that is 

assigned to the transaction that triggered hash index creation. 60 
In other words, a particular hash index is only available to 
transactions which use a same table version which the hash 
index is associated with. 

Populating a Hash Index 
According to an embodiment, FIGS. 3 and 4 show flow- 65 

charts illustrating a process of returning and populating a 
hash index if its use is determined to be cost effective. First, a 

6 
column that is being indexed is scanned by walking the values 
in the column. Rows in the column associated with the table 
version are retrieved during the scan by utilizing an existence 
bitmap that is associated with the table version. The existence 
bitmap of the table version is used to identify a sequence of 
rowids that are enumerated by position in the table. The 
enumerated rows that are included in the existence bitmap are 
rows in the table which are included in this particular table 
version. 

Therefore, using the existence bitmap, based on the col 
umn value for each row in the table version, the hash index is 
populated. When a new column value is identified during the 
scan of the column, a pointer to the value is added to the hash 
table along with the rowid of the row that contains the value. 
Later during the scan, if another row is determined to have the 
same value, then an array of rowids is associated to the value 
in the hash table. If the array becomes full during the scan of 
the column, then a bitmap may be created to refer to all rowids 
associated with a particular value. The rowids which are in the 
array are inserted into the bitmap, the bitmap is associated to 
the column value in the hash table, and the array is discarded 
(deallocated). 
Once all database transactions using the table version are 

complete, and a more recent version of the table exists, the 
hash index is discarded (deallocated) along with the table 
version. 

FIG. 3 shows a process 300 of returning a hash index 
according to an example embodiment. In step 310, the pro 
cess begins when a database query having a correlated Sub 
query or an NLPDJ is detected by the query optimizer. 

In step 320, it is determined whether an index already exists 
for a particular table version. 

In step 330, if the index already exists for the table version, 
then the index is returned and the process of populating the 
hash index ends in step 370. 

In step 340, if the index does not yet exist, a hash table is 
created. In step 350, after the hash table is created it is popu 
lated, which is described in detail below. 

In step 360, the index is associated with the particular table 
version and the index is returned in step 330. 

In step 370, the process of returning the hash index ends. 
FIG. 4 shows a process of populating the hash table in 

detail according to an example embodiment. Thus, FIG. 4 
includes the details of populating the hash table in step 350 
shown in FIG.3 and may be viewed as a loop. 

In step 410, the process of populating the hash table in step 
350 begins. 

In step 420, the process enters a loop that is executed while 
there are additional rows to process in the existence bitmap 
for the table version. 

In particular, in step 420, if it is determined that there are 
additional rows to process, then the process moves onto step 
430 where the value associated with the next rowid is 
retrieved. 

However, if there are no additional rows to process in the 
bitmap, then the process of populating the hash table ends in 
step 422. 

After the next rowid is determined using the existence 
bitmap in step 430, the column value is retrieved for the rowid 
in step 440. 

If this column value is determined to be a new value in step 
442, then in step 444 a new pair is added to the hash table 
includingapointer to the column value and the associated row 
id. 

However, if the column value is not a new value, then it is 
determined whether another rowid is already associated with 
the value in step 450. If another rowid is already associated 



US 9,262.457 B2 
7 

with the value, then in step 452, the rowid in the hash table is 
converted into an array and the rowid is inserted into the array. 
The second rowid is inserted into the array in step 454. 

If the column value is not a new value (step 442) and it is 
determined that a rowid array is already associated with the 
value (step 450), then it is determined whether there is an 
associated array in step 460. If there is an associated array, 
then in step 462, it is determined whether there is room in the 
array. If it is determined that there is additional room in the 
array, then the rowid is added to the array in step 454. How 
ever, if the array is full, then in step 464 the array is converted 
into a bitmap and all rowids in the array are added to the 
bitmap. The new rowid is added to the bitmap in step 466. 

If the column value is not a new value and it is determined 
that a rowid array is not associated with the value, then it is 
determined whether there is an associated bitmap in step 460. 
If there is an associated bitmap, then the rowid is added to the 
bitmap in step 466. 

According to an example embodiment, the hash index is an 
insert only index. Thus, since nothing can be deleted, a bitmap 
cannot be reduced to an array, and an array cannot be reduced 
to a single rowid. The hash table may be populated using 

Experiment # 

pointers to a value associated with rowids by using a variety 
of data structures. Each entry into the hash table may include 
(1) a pointer to a value/rowid, (2) a pointer to a value/array of 
rowids or (3) a pointer to a value/bitmap of rowids to address 
diversity in the data in the table. Thus, the hash table is able to 
represent data found throughout a high percentage of the 
rows, Some of the rows, or even only one of the rows. 

Analysis of On-Demand Hash Index 
The on-demand hash index was analyzed by conducting 

experiments in order to test the Veracity of the cost model and 
gain in performance using the hash index. Experiments were 
conducted using database system 114 as described above. 

According to an example embodiment, tables in the data 
base system were RLV enabled having one column (c1) with 
all data stored in main memory (RLV only data). A distinct 
count of the inner column was hard coded to be 100. Each 
experiment described herein was conducted ten times and an 
average value in milliseconds was computed for each. 

Parameter Values 
CPU Factor=1.1 
Additional Overhead=0 
Memory Factor-1 
Hash Insert Factor=1.01 
Sample Queries 
Experiment1: Select from R1OOD100 where 

R100D100.c1 in select R1KD100.c1 from R1KD100 where 
R1KD100.c1=R100D100.c1)-Gain 0.57%, No Hash Index 

Experiment2: select from R1KD100 where R1KD100.c1 
in(select R100D100.c1 from R100D100 where 
R1KD100.c1=R100D100.c1)-Gain 15.38%, Hash Index 
created 

10 

15 

40 

45 

50 

55 

60 

65 

8 
Experiment3: Select from R1OOD1OO where 

R100D100.c1 in(select R10KD100.c1 from R10KD100 
where R10KD100.c1=R100D100.c1)-Gain 32.69%, Hash 
Index created 

Experiment4: Select from R1OKD1OO where 
R1OKD100.c1 in(select R100D100.c1 from R100D100 
where R10KD100.c1=R100D100.c1)-Gain 11%, Hash 
Index created 

Experiment5: Select from R1OOD1OO where 
R100D100.c1 in(select R1MD100.c1 from R1MD100 where 
R1MD100.c1=R100D100.c1)-Gain 53.62%, Hash Index 
created 

ExperimentG: select from R5D5 where R5D5.c1 in(select 
R1MD100.c1 from R1MD1OO where 
R1MD100.c1=R5D5.c1)-Gain 21.55%, Hash Index created 

Experiment7: select from R5D5 where R5D5.c1 in(select 
R1OOD1 OO.c1 from R1OOD1 OO where 

R5D5.c1=R100D100.c1)-Gain-5.11%, No Hash Index 
Results 

Execution Hash Index 
Time with Execution Created 
Fat FP Time with (Based on 

#ROWSOuterTable * Index Hash Index CostModel 
#RowsInnerTable (msec) (msec) % Gain Decision) 

100 * 1000 245.3 243.9 0.57 No 
1000 * 100 1554.5 1315.3 15.38 Yes 
100 * 10000 363.1 244.4 32.69 Yes 

10000 * 100 14561.3 12853.9 11 Yes 
100 * 1 OOOOOO 10228.3 4743.8 53.62 Yes 

5 * 10OOOOO 765.1 592.5 22.55 Yes 
5 * 100 70.3 74.6 -6.11 No 

According to the above described experiments based on the 
example embodiments, for tables having a fewer number of 
rows, memory overhead for creation of the hash index will 
overshadow any performance benefits (e.g. as seen in Experi 
ments 1 and 7). However, as the number of rows increase, the 
performance gain resulting from use of the hash index 
increases. In conclusion, the cost model favors use of the hash 
index if it is more efficient than the that FP index when taking 
all costs into consideration. 
Example Computer System 
Various embodiments can be implemented, for example, 

using one or more web-known computer systems, such as 
computer system 500 shown in FIG.5. Computer system 500 
can be any well-known computer capable of performing the 
functions described herein, such as computers available from 
International Business Machines, Apple, Sun, HP, Dell, Sony, 
Toshiba, etc. 
Computer system 500 includes one or more processors 

(also called central processing units, or CPUs). Such as a 
processor 504. Processor 504 is connected to a communica 
tion infrastructure or bus 506. 
One or more processors 504 may each be a graphics pro 

cessing unit (GPU). In an embodiment, a GPU is a processor 
that is a specialized electronic circuit designed to rapidly 
process mathematically intensive applications on electronic 
devices. The GPU may have a highly parallel structure that is 
efficient for parallel processing of large blocks of data, Such 
as mathematically intensive data common to computer graph 
ics applications, images and videos. 
Computer system 500 also includes user input/output 

device(s) 503, such as monitors, keyboards, pointing devices, 



US 9,262.457 B2 

etc., which communicate with communication infrastructure 
506 through user input/output interface(s) 502. 

Computer system 500 also includes a main or primary 
memory 508, such as random access memory (RAM). Main 
memory 508 may include one or more levels of cache. Main 
memory 508 has stored therein control logic (i.e., computer 
Software) and/or data. 
Computer system 500 may also include one or more sec 

ondary storage devices or memory 510. Secondary memory 
510 may include, for example, a hard disk drive 512 and/or a 
removable storage device or drive 514. Removable storage 
drive 514 may be a floppy disk drive, a magnetic tape drive, a 
compact disk drive, an optical storage device, tape backup 
device, and/or any other storage device/drive. 

Removable storage drive 514 may interact with a remov 
able storage unit 518. Removable storage unit 518 includes a 
computer usable or readable storage device having stored 
thereon computer software (control logic) and/or data. 
Removable storage unit 518 may be a floppy disk, magnetic 
tape, compact disk, DVD, optical storage disk, and/any other 
computer data storage device. Removable storage drive 514 
reads from and/or writes to removable storage unit 518 in a 
well-known manner. 

According to an exemplary embodiment, secondary 
memory 510 may include other means, instrumentalities or 
other approaches for allowing computer programs and/or 
other instructions and/or data to be accessed by computer 
system 500. Such means, instrumentalities or other 
approaches may include, for example, a removable storage 
unit 522 and an interface 520. Examples of the removable 
storage unit 522 and the interface 520 may include a program 
cartridge and cartridge interface (such as that found in video 
game devices), a removable memory chip (Such as an 
EPROM or PROM) and associated socket, a memory stick 
and USB port, a memory card and associated memory card 
slot, and/or any other removable storage unit and associated 
interface. 
Computer system 500 may further include a communica 

tion or network interface 524. Communication interface 524 
enables computer system 500 to communicate and interact 
with any combination of remote devices, remote networks, 
remote entities, etc. (individually and collectively referenced 
by reference number 528). For example, communication 
interface 524 may allow computer system 500 to communi 
cate with remote devices 528 over communications path 526, 
which may be wired and/or wireless, and which may include 
any combination of LANs, WANs, the Internet, etc. Control 
logic and/or data may be transmitted to and from computer 
system 500 via communication path 526. 

In an embodiment, a tangible apparatus or article of manu 
facture comprising a tangible computer useable or readable 
medium having control logic (Software) stored thereon is also 
referred to herein as a computer program product or program 
storage device. This includes, but is not limited to, computer 
system 500, main memory 508, secondary memory 510, and 
removable storage units 518 and 522, as well as tangible 
articles of manufacture embodying any combination of the 
foregoing. Such control logic, when executed by one or more 
data processing devices (such as computer system 500), 
causes such data processing devices to operate as described 
herein. 

Based on the teachings contained in this disclosure, it will 
be apparent to persons skilled in the relevant art(s) how to 
make and use the invention using data processing devices, 
computer systems and/or computer architectures other than 
that shown in FIG. 5. In particular, embodiments may operate 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
with Software, hardware, and/or operating system implemen 
tations other than those described herein. 

CONCLUSION 

It is to be appreciated that the Detailed Description section, 
and not the Summary and Abstract sections (if any), is 
intended to be used to interpret the claims. The Summary and 
Abstract sections (if any) may set forth one or more but not all 
exemplary embodiments of the invention as contemplated by 
the inventor(s), and thus, are not intended to limit the inven 
tion or the appended claims in any way. 

While the invention has been described herein with refer 
ence to exemplary embodiments for exemplary fields and 
applications, it should be understood that the invention is not 
limited thereto. Other embodiments and modifications 
thereto are possible, and are within the scope and spirit of the 
invention. For example, and without limiting the generality of 
this paragraph, embodiments are not limited to the Software, 
hardware, firmware, and/or entities illustrated in the figures 
and/or described herein. Further, embodiments (whether or 
not explicitly described herein) have significant utility to 
fields and applications beyond the examples described herein. 

Embodiments have been described herein with the aid of 
functional building blocks illustrating the implementation of 
specified functions and relationships thereof. The boundaries 
of these functional building blocks have been arbitrarily 
defined herein for the convenience of the description. Alter 
nate boundaries can be defined as long as the specified func 
tions and relationships (or equivalents thereof) are appropri 
ately performed. Also, alternative embodiments may perform 
functional blocks, steps, operations, methods, etc. using 
orderings different than those described herein. 

References herein to “one embodiment,” “an embodi 
ment.” “an example embodiment, or similar phrases, indi 
cate that the embodiment described may include a particular 
feature, structure, or characteristic, but every embodiment 
may not necessarily include the particular feature, structure, 
or characteristic. Moreover, Such phrases are not necessarily 
referring to the same embodiment. Further, when a particular 
feature, structure, or characteristic is described in connection 
with an embodiment, it would be within the knowledge of 
persons skilled in the relevant art(s) to incorporate Such fea 
ture, structure, or characteristic into other embodiments 
whether or not explicitly mentioned or described herein. 
The breadth and scope of the invention should not be lim 

ited by any of the above-described exemplary embodiments, 
but should be defined only in accordance with the following 
claims and their equivalents. 

What is claimed is: 
1. A method for creating a hash index on-demand and 

reusing the hash index for queries in a database, comprising: 
determining, by at least one processor, during query opti 

mization that a first database query has a query execution 
plan comprising a sub-query which executes N times a 
correlated predicate having an operator being one of 
equal and not equal to a base column; 

comparing, by the at least one processor, based on the 
correlated predicate, a cost of creating a hash index and 
probing the hash index N times to a cost of fully scan 
ning the base column N times; 

creating on-demand, by the at least one processor, a hash 
index based on the comparing; and 

executing, by the at least one processor, a second database 
query using the hash index, wherein the executing elimi 
nates fully scanning the base column N times. 



US 9,262.457 B2 
11 

2. The method of claim 1, further comprising determining 
that the cost of creating the hash index and probing the hash 
index N times is less than fully scanning the base column N 
times, creating the hash index, and using the hash index 
during query execution to apply the correlated predicate. 

3. The method of claim 2, wherein the database comprises 
a row level versioned (RLV) store supporting row-level snap 
shot isolation. 

4. The method of claim 3, wherein the hash index is asso 
ciated with a version of the database in the RLV store. 

5. The method of claim 2, wherein the second database 
query is of a same Snapshot of the database, the second 
database query having a correlated predicate with an operator 
being one of equal and not equal to the base column. 

6. The method of claim 1, wherein the first database query 
comprises one of a correlated sub-query and a nested loop 
push down join query. 

7. The method of claim 1, further comprising: 
determining that the cost of creating the hash index and 

probing the hash index N. times is less than fully scan 
ning the base column N times; and 

populating the hash index, the hash index comprising a 
hash table associating values in a column with rows in a 
database table version, wherein the hash table com 
prises: 

at least one element being a pair of a pointerto a value in the 
column and a row specification. 

8. The method of claim 7, wherein the row specification 
comprises one of a rowid, an array of rowids, and a bitmap 
representing rowids. 

9. The method of claim 1, further comprising: 
discarding the hash index when it is determined that all 

database transactions using an associated table version 
are completed and that at least one version of the table 
more recent than the associated table version exists. 

10. A system for creating a hash index on-demand and 
reusing the hash index for queries in a database, comprising: 

a memory; and 
at least one processor coupled to the memory and config 

ured to: 
determine during query optimization that a first database 

query has a query execution plan comprising a sub 
query which executes N times a correlated predicate 
having an operator being one of equal and not equal to 
a base column; 

determine, based on the correlated predicate, a compari 
Son of a cost of creating a hash index and probing the 
hash index N times to a cost of fully scanning the base 
column N times; 

create on-demand a hash index based on the compari 
son; and 

execute a second database query using the hash index, 
wherein the execution eliminates fully scanning the 
base column N times. 

11. The system of claim 10, the at least one processor 
further configured to determine that the cost of creating the 
hash index and probing the hash index N times is less than 
fully scanning the base column N times, create the hash index. 
and use the hash index during query execution to apply the 
correlated predicate. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

12 
12. The system of claim 11, wherein the database com 

prises a row level versioned (RLV) store supporting row-level 
Snapshot isolation. 

13. The system of claim 12, wherein the hash index is 
associated with a version of the database in the RLV store. 

14. The system of claim 11, wherein the second database 
query is of a same Snapshot of the database, the second 
database query having a correlated predicate with an operator 
being one of equal and not equal to the base column. 

15. The system of claim 10, wherein the first database 
query comprises one of a correlated sub-query and a nested 
loop push down join query. 

16. The system of claim 10, wherein the at least one pro 
cessor is further configured to: 

determine that the cost of creating the hash index and 
probing the hash index N times is less than fully scan 
ning the base column N times; and 

populate the hash index, the hash index comprising a hash 
table associating values in a column with rows in a 
database table version, wherein the hash table com 
prises: 

at least one element being a pair of a pointer to a value in the 
column and a row specification. 

17. The system of claim 16, wherein the row specification 
comprises one of a rowid, an array of rowids, and a bitmap 
representing rowids. 

18. The system of claim 10, the at least one processor 
further configured to: 

discard the hash index when it is determined that all data 
base transactions using an associated table version are 
completed and that at least one version of the table more 
recent than the associated table version exists. 

19. A tangible computer-readable device having instruc 
tions stored thereon that, when executed by at least one com 
puting device, causes the at least one computing device to 
perform operations for creating a hash index on-demand and 
reusing the hash index for queries, the operations comprising: 

determining during query optimization that a first database 
query of a database has a query execution plan compris 
ing a sub-query which executes N times a correlated 
predicate having an operator being one of equal and not 
equal to a base column; 

comparing, based on the correlated predicate, a cost of 
creatingahash index and probing the hash index N times 
to a cost of fully scanning the base column N times; 

creating on-demand a hash index based on the comparing: 
and 

executing a second database query using the hash index, 
wherein the executing eliminates fully scanning the base 
column N times. 

20. The computer-readable device of claim 19, the opera 
tions further comprising: 

determining that the cost of creating the hash index and 
probing the hash index N times is less than fully scan 
ning the base column N times, creating the hash index, 
and using the hash index during query execution to apply 
the correlated predicate. 


