wO 20247258889 A1 | I 0000 KOO0 00 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
19 December 2024 (19.12.2024)

(10) International Publication Number

WO 2024/258889 Al

WIPO I PCT

(51) International Patent Classification:

Srikanth; Microsoft Technology Licensing, LLC, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
WEATHERS, Anthony Dwayne; Microsoft Technology
Licensing, LLC, One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US). KUMAR, Ravinder; Microsoft

Technology Licensing, LLC, One Microsoft Way, Red-

GO6F 11/10 (2006.01) mond, Washington 98052-6399 (US).
(21) International Application Number: (74) Agent: CHATTERJEE, Aaron C. et al.; Microsoft Tech-
PCT/US2024/033475 nology Licensing, LLC, One Microsoft Way, Redmond,
(22) International Filing Date: Washington 98052-6399 (US).
12 June 2024 (12.06.2024) (81) Designated States (unless otherwise indicated, for every
- . kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AO, AJ"I“, AU, AZ{)BA, BB, BG, BH, BN, BR, BW, BY, BZ,
(26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,
L. DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(30) Priority Data: HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM. JO. JP. KE. KG.,
18/336,850 16 June 2023 (16.06.2023) Us KH, KN, KP. KR. KW, KZ. LA. LC. LK. LR, LS, LU, LY.
(71) Applicant: MICROSOFT TECHNOLOGY LI- MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,
CENSING, LLC [US/US]; One Microsoft Way, Redmond, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
Washington 98052-6399 (US). RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,
. L TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
(72) Inventors: NEMATI, Majid Anaraki; Microsoft Tech- ZA. ZM. ZW.
nology Licensing, LLC, One Microsoft Way, Redmond,
Washington 98052-6399 (US). DAKSHINAMOORTHY, (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, CV,
GH, GM,KE, LR, LS, MW, MZ, NA, RW, SC, SD, SL, ST,
Sz, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,

LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,

(54) Title: SYMBOL ROTATION OF CACHE LINE CODEWORDS FOR INCREASED RELIABILITY WITH METADATA

MEMORY
CONTROLLER
312 |

MESSAGE
DaTA
ENCODER
ENGINE 316

METADATA
ENCODER
ENGINE
318

ERROR

ENCODER
EnNGINE 320

J|MS| M8 | M7 | MG | M5 M4 M3 M2 | M1 MO P1|P2
CORRECTION 1
CopE |
|

- DATA 302

METADATA 304

,,,,,,,,,,,,,,,,,,,

[Lﬂoﬂﬁﬂﬁﬁﬁﬁﬁﬁﬂl
|

|‘M8|M7‘M6‘M5‘M4 MG‘MZ‘V\M‘MO P1 PZ‘l

RoTATION | |
ENCODER
ENGINE

:I‘M7|M6‘M5‘M4‘M3 MZ‘M1‘MO‘P1 P2 MB‘|

|
2 ||
|
I

|‘MG|M5‘M4‘M3‘M2 M1‘MD‘P1‘P2 M8 M7‘ A
|

MEMOR
Y 306

(57) Abstract: Embodiments generally relate to improving reliability of pro-
cessing cache lines with metadata symbols encoded into parity symbols of
codewords. The data and metadata of a cache line are encoded into codewords
where each codeword is a number of (1) message symbols, each including mes-
sage bits from data of the cache line, and (2) parity symbols, each including
parity bits determined from the message symbols and a metadata symbol. For
each codeword of the cache line, the plurality of message and parity symbols
are rotated so that a location of each symbol of one codeword is different from
other codewords of the cache line. The codewords of the cache line are then
stored in memory as rotated. In this manner, the reliability is improved by ro-
tating symbols of the codewords of the cache line, with metadata symbols en-
coded into parity of codewords, before storage in memory.

[Continued on next page]

WO 2024/258889 A |10} 00 0000 00 A0 OO0

SL, SK, SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

SYMBOL ROTATION OF CACHE LINE CODEWORDS FOR INCREASED
RELIABILITY WITH METADATA

BACKGROUND
[0001] A cache line is a set of data that 1s stored in memorv of a computer. Memory is
small, but fast, and is used for storing frequently accessed data and/or instructions, so that a
processor (for example, a central processing unit (CPU), a graphics processing unit (GPU), and
the like) can quickly retrieve the data and/or instructions. Generally, a cache line is limited in size
and is normally made up of several bytes of data (for example, often as few as 64 bytes or 512
bits). Typically. if a processor retrieves data and/or instructions, certain processors first check if
the data and/or instructions is already in the memory to quickly retrieve the data and/or instructions
from the cache line, which generally takes less time than accessing the data and/or instructions
from storage. In this regard. metadata can be stored alongside the data of the cache line that it
describes in order for the processor to check whether certain data and/or instructions are available
in the memory. The metadata can include information about the cache line, such as validity of the
cache line, whether the cache line was modified, other system information, and the like.
SUMMARY

[0002] Various aspects of the technology described herein are generally directed to
systems, methods, and computer storage media for, among other things, improving reliability of
processing cache lines with metadata symbols encoded into parity symbols of codewords of the
cache lines by rotating symbols of the codewords of the cache line before storage in memory.
Memory is small, but fast, and is used for storing frequently accessed data and/or instructions, so
that a processor (for example, a central processing unit (CPU), a graphics processing unit (GPU),
and the like) can quickly retrieve the data and/or instructions. In certain existing approaches, the
data corresponding to a cache line that is being sent from or to a memory device includes metadata
of the cache line, data of the cache line, and parity data for error correction codes (ECC) to detect
and/or correct errors in the cache line. As access to memory is done based on the small size of
data of the cache line (for example, the cache line can be 64 bytes) and is optimized to store the
data and/or metadata consumed to execute instructions by the processor, in some existing
approaches, to store additional metadata in memory, one method is 1o store the metadala
physically in the media by replacing some bits from parity with metadata bits. The removal of
parity bits deteriorates error correction capability of the ECC in forms of either increased
uncorrectable error probability and/or increased miscorrection probability.

[0003] To resolve certain issues associated with existing error correction technology,

embodiments of the present disclosure improve reliability of cache lines with metadata symbols

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

encoded into parity symbols of codewords of the cache lines by rotating symbols of the codewords
of the cache line before storage in memory. Data stored in memory regarding a cache line is made
up of a number of codewords that are made up of a number of message symbols and parity
symbols. The symbols of the codewords are often encoded in different memory devices of the
memory. The message symbols include a number of message bits of the cache line, and the parity
symbols are determined based on the message symbols of the codeword and metadata symbol(s)
of the metadata of the cache line.
[0004] A memory controller determines the message symbols for the cache line from the
data of the cache line. The memory controller determines the metadata symbols from the metadata
of the cache line. The memory controller then determines the parity symbols for each codeword
based on the metadata symbols and message symbols of each codeword. The memory controller
then rotates the message and parity symbols of each codeword, omits the metadata symbols of
each codeword, and stores the rotated message and parity symbols of each codeword in memory.
[0005] When the data of the cache line and/or metadata for the cache line is accessed, the
memory controller accesses the rotated message and parity symbols from memory and uses an
ECC algorithm to obtain the metadata symbols and/or correct errors in the message symbols based
on parity symbols in the rotation of the message and parity symbols of the codewords. In this
regard, errors caused by a memory device will not appear on the same symbol of every codeword
and there is a higher probability of detecting and/or correcting errors caused by the memory
device. In this manner, the reliability is improved by rotating symbols of the codewords of the
cache line, with metadata bits/information encoded into parity of codewords, before storage in
memory. Accordingly, embodiments of the present disclosure improve reliability of data storage
and retrieval to avoid impacts to other systems and services in a distributed or local environment,
thereby improving a user experience and reducing computational resource consumption associated
with further remedying error correction shortcoming in the current technology landscape.
[0006] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed subject matter, nor is it intended to be
used as an aid in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] The technology described herein is described in detail below with reference to the
attached drawing figures, wherein:
[0008] FIG. 1A depicts a block diagram of an example host computing device configured
to programmatically rotate symbols of codewords of cache lines, in accordance with aspects of

the technology described herein:

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

[0009] FIG. 1B depicts a block diagram of an example of memory devices of the host
computing device of FIG. 1A, in accordance with aspects of the technology described herein;
[0010] FIG. 1C depicts another block diagram of an example of memory devices of the
host computing device of FIG. 1A, in accordance with aspects of the technology described herein;
[0011] F1G. 1D depicts a block diagram of an example of memory devices of the host
computing device of FIG. 1A when symbols of codewords of cache lines are not rotated;
[0012] FIG. 2 depicts a block diagram of an example cache line codeword rotation system
to programmatically rotate symbols of codewords of cache lines, in accordance with aspects of
the technology described herein:
[0013] FIG. 3 depicts a block diagram of an example cache line codeword rotation
encoding system to programmatically rotate symbols of codewords of cache lines, in accordance
with aspects of the technology described herein;
[0014] FIG. 4 depicts a block diagram of an example cache line codeword rotation
decoding system to programmatically decode codewords of cache lines with rotated symbols, in
accordance with aspects of the technology described herein;
[0015] FIGS. 5A-C depict block diagrams of examples of encoding metadata symbols into
cache line codewords before programmatically generating parity bits and programmatically
rotating symbols of codewords of cache lines, in accordance with aspects of the technology
described herein;
[0016] FIG. 6 depicts a first example method to programmatically rotate symbols of
codewords of cache lines, in accordance with aspects of the technology described herein;
[0017] FI1G. 7 depicts a second example method to programmatically access metadata of
a cache line within rotated symbols of codewords of the cache line, in accordance with aspects of
the technology described herein;
[0018] FI1G. 8 depicts a third example method to programmatically access data of a cache
line within rotated symbols of codewords of the cache line, in accordance with aspects of the
technology described herein;
[0019] FIG. 9 depicts a block diagram of an example distributed computing environment
suitable for use in implementing aspects of the technology described herein; and
[0020] FIG. 10 is a block diagram of an example computing device suitable for use in
implementing aspects of the technology described herein.

DETAILED DESCRIPTION OF THE INVENTION
[0021] The subject matter of aspects of the present disclosure is described with specificity
herein to meet statutory requirements. However, the description itself is not intended to limit the

scope of this patent. Rather, it is contemplated that the claimed subject matter might also be

3

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

embodied in other ways, such as to include different steps or combinations of steps similar to the
ones described in this document, in conjunction with other present or future technologies.
Moreover, although the terms “step” and/or “block™ may be used herein to connote different
elements of methods employed. the terms should not be interpreted as implying any particular
order among or between various steps herein disclosed unless and except when the order of
individual steps is explicitly described. Each method described herein may comprise a computing
process that may be performed using any combination of hardware, firmware, and/or software.
For instance, various functions may be carried out by a processor executing instructions stored in
memory. The methods may also be embodied as computer-useable instructions stored on
computer storage media. The methods may be provided by a stand-alone application, a service or
hosted service (stand-alone or in combination with another hosted service), or a plug-in to another
product, to name a few.

Overview of Technical Problems, Technical Solutions, and Technological Improvements

[0022] Memory (for example, including Double Data Rate 5 Synchronous Dynamic
Random-Access Memory (DDRS SDRAM), Double Data Rate Type 6 (DDR6), dynamic random
access memory (DRAM), DRAM of a solid-state drive (SSD), or any type of memory) is typically
very small and is optimized to store the data and/or metadata of cache lines necessary to execute
instructions by the processor. In certain existing approaches, the data corresponding to a cache
line that is being sent from or to a memory device includes metadata of the cache line, data of the
cache line, and parity data for error correction codes (ECC) to detect and/or correct errors in the
cache line. In this regard, the cache line is made up of a number of codewords of ECC, which
include metadata bits for the metadata of the cache line, data bits for data of the cache line, and
parity data bits for the parity generated by ECC.

[0023] In one example of ECC, a codeword is a sequence of bits that has been encoded
using an error-correcting code. The general purpose of the codeword is to allow for detection and
correction of errors that may occur during data transmission or storage. In some embodiments, the
process of generating a codeword involves adding redundancy to the original data by introducing
additional bits into the sequence (for example, parity bits). In one embodiment, these additional
bits are derived from the original data using a specific encoding algorithm that depends on the
particular ECC algorithm being utilized. When the codeword is transmilled or stored, the
codeword can be subjected to various types of errors, such as bit flips, noise, or interference. In
one embodiment, ECC algorithms are designed to detect these errors and correct them based on
the parity bits of the received codeword. The size of certain codeword depends on the specific
ECC algorithm and the number of errors that are detected and corrected. In general, the longer the

codeword (for example, the more parity bits included in the codeword), the more errors that can

4

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

be detected and corrected. However, longer codewords have extra bits, and as such, consume more
bandwidth for transmission over a network or storage space when storing the codewords in
memory. Due to the increase in size of the codewords, the codewords can also have higher
processing resource utilization than acceptable to avoid interrupting other services hosted by
similar servers.

[0024] As access to memory is done based on the small size of data of the cache line (for
example, the cache line can be 64 bytes) and is optimized to store the data and/or metadata
consumed to execute instructions by the processor, in some existing approaches, to store additional
metadata in memory, one method is to store the metadata physically in the media by replacing
some bits from parity with metadata bits. However, such modification deteriorates error correction
capability of the ECC in forms of either increased uncorrectable error probability and/or increased
miscorrection probability. For example, if the ECC identifies the wrong bit as causing the error
(for example, because the parity was replaced by metadata), the ECC may correct the wrong bit
(for example, miscorrection). In some cases, the miscorrection will lead to silent data corruption
(SDC). SDC refers to the phenomenon where corrupted data is not accompanied by identified
errors, which can lead to costly problems.

[0025] In some cases, increased uncorrectable errors, increased miscorrections, and/or
SDC may be due to a failure of a memory device (for example, as shown in FIG. 1D).
Conventional techniques are often utilized to minimize errors from failed memory devices within
the overall memory device. For example, DRAM is made up of a number of DRAM devices (for
example, chips) in various configurations (for example, 288-pin Dual In-Line Memory Module
(DIMM) for DDR5 SDRAM). In this example, when a single DRAM device fails in the DRAM,
algorithms (for example, ChipKill) can either correct errors produced by the failed DRAM device
or use a different DRAM device instead of the failed DRAM device. However, under conventional
techniques, when parity of codewords are of a cache line are replaced by metadata, the errors
produced by failed DRAM devices may be missed or miscorrected.

[0026] In this regard, embodiments of the present disclosure include improving reliability
of processing cache lines with metadata symbols encoded into parity symbols of codewords of the
cache lines by rotating symbols of the codewords of the cache line before storage in memory.
[0027] At a high level, data corresponding to a cache line stored in memory is made up of
anumber of codewords and each of the codewords are made up of a number of message symbols
and parity symbols. The message symbols are made up of a number of message bits of the cache
line and the parity symbols are determined based on the message symbols of the codeword and
metadata symbol(s) to be encoded into the codeword. As an example, and with reference to FIG.

1C, the cache line is made up of four (4) codewords (for example, codewords 160). Four (4)

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

codewords are shown as an example and any number of codewords of a cache line are
contemplated, such as one, two, three, five, eight, ten, and the like. In some embodiments, each of
the codewords include symbols made up of anumber of data pins on a number of memory devices.
In one example, a data pin is identified as a “DQ.” In some embodiments, each of the data pins
correspond to a bit of data stored on the memory device. In the example shown in FI1G. 1C, the
symbols of each codeword 160 includes 4 DQs on each device and there are N number of devices
120 (for example, memory device 0, memory device 1, memory device 2, and memory device N).
[0028] In conventional implementations, symbols of each device correspond to specific
type of symbol. For example, referring to FIG. 1C, each symbol of one or more memory devices
would correspond to message symbols made up of message bits, and each symbol of one or more
other memory devices would correspond to parity symbols made up of parity bits. However, when
parity bits in parity symbols are replaced with metadata bits, error correction capabilities are
diminished, which can lead to uncorrectable or miscorrection of errors (for example, miscorrection
180 of FIG. 1D).

[0029] Instead, embodiments of the present disclosure improve reliability of processing
cache lines with metadata symbols encoded into parity symbols of codewords of the cache lines
by rotating symbols of the codewords of the cache line before storage in memory. As an example,
and with reference to FIG. 3, data for a cache line and metadata for the cache line (for example,
data 302 and metadata 304) are accessed by a memory controller (for example, memory controller
312, a cache controller, an application in communication with a memory/cache controller, and the
like). In one embodiment, the memory controller determines the message symbols for the cache
line from the data of the cache line (for example, message data encoder engine 316). In the
example discussed with respect to FIG. 1C, each message symbol corresponds to the number of
message bits stored on each device for each codeword.

[0030] In one embodiment, the memory controller determines the metadata symbols for
the cache line from the metadata for the cache line (for example, metadata encoder engine 318).
In some embodiments, the metadata symbol is shared by some or all codewords of the cache line
bits to create dependency between the metadata symbols of each codeword. In some embodiments,
the metadata symbol is different for each codeword of the cache line. In embodiments where the
metadata symbol is different for each codeword of the cache line, the metadata symbols for some
or all of the codewords of the cache line may share one or more metadata bits to create dependency
between the metadata symbols of each codeword.

[0031] In one embodiment, the memory controller then determines the parity symbols for
each codeword based on the metadata symbols and message symbols of each codeword (for

example, error correction code encoder engine 320). An ECC algorithm can be used to generate

6

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

the parity symbols. For example, the memory controller employs Reed-Solomon (RS) codes as
the ECC algorithm. In the example shown in FIG. 3, the parity symbols can be generated by an
RS(11,9) code. Any type of ECC algorithm is within the scope of embodiments of the present
disclosure, in addition or alternative to RS codes.

[0032] In one embodiment, the memory controller then omits the metadata symbols of
each codeword, rotates the message and parity symbols of each codeword (for example, rotation
encoder engine 322), and stores the rotated message and parity symbols of each codeword in
memory (for example, memory 306). In this regard, as can be understood with reference to the
memory locations discussed with reference to FIG. 1C, the message symbols and parity symbols
of each codeword for the cache line are not stored on the same memory device in memory. For
example, with reference to FIG. 3, symbol location SO, which stores parity symbol p2 will store
parity symbol p2 for codeword 1, message symbol m8 for codeword 2, message symbol m7 for
codeword 3, and message symbol m6 for codeword 4. Although a rotation of each codeword by
an increasing number of symbols (for example, the first/top codeword of rotation encoder engine
322 is rotated by 0 symbols, the second codeword is rotated of rotation encoder engine 322 is
rotated by 1 symbol, the third codeword is rotated of rotation encoder engine 322 is rotated by 2
symbols, and the fourth/bottom codeword is rotated of rotation encoder engine 322 is rotated by
3 symbols), a rotation by any number of symbols for any number of codewords are within the
scope of embodiments of the present disclosure.

[0033] Normally, certain codewords generated by RS codes are cyclic at the symbol level
in that if symbols of a codeword are cyclically shifted, the resulting codeword is also a valid
codeword of the same RS code. As such, the rotation of any fault pattern, will be another fault
pattern with the same property, which may result in a miscorrection of an error or an uncorrectable
error. However, as the metadata symbol used to generate the codeword is omitted from the
codeword before cyclically shifting code word (for example, rotation encoder engine 322 of FIG.
3), the codeword without metadata symbols is noncyclic and less likely to be a valid codeword as
rotated. In this regard, the fault patterns causing decoding failure will have different properties
with different rotations because metadata symbol is not written in the memory, but used to
generate the ECC codeword from the same location. Therefore, the rotation of any fault pattern
on any symbol will have a different effect compared to unrotated pattern.

[0034] In some embodiments, when the data of the cache line and/or metadata for the
cache line is accessed, the memory controller accesses the rotated message and parity symbols
from memory and uses the ECC algorithm to obtain the metadata symbols and/or correct errors in
the message/metadata symbols based on parity symbols in the rotation of the message and parity

symbols of the codewords. For example, with reference to FIG. 4, the memory controller (for

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

example, memory controller 412, memory controller 312, a cache controller, an application in
communication with a memory/cache controller, and so forth) accesses the data of the cache line
as stored in memory (for example, memory 406). In one example, data corresponding to a cache
line is stored as a number of codewords with rotated symbols as discussed with reference to F1G.
3. In the example shown in FIG. 4, there are four (4) codewords, however, any number of
codewords for any number of cache lines are with the scope of embodiments of the present
disclosure. In one example, the memory controller then determines the corresponding unrotated
codewords (for example, rotation decoder engine 432). The determination of the corresponding
unrotated codewords can be based on stored relationships accessible by the memory controller.
For example, the memory controller can store the number of symbols that each codeword is rotated
by.

[0035] In some embodiments, the memory controller uses the ECC algorithm to obtain the
metadata symbols and/or correct errors in the message/metadata symbols based on parity symbols
in the rotation of the message and parity symbols of the codewords (for example, error correction
code decoder engine 430). In this regard, certain metadata bits of each metadata symbols are either
a1 or 0, such that the memory controller can use the ECC algorithm and parity symbols to
determine each metadata bit of each metadata symbol. Further, the memory controller can use the
ECC algorithm to correct errors detected in message bits of a codeword based on the parity
symbols. Even further, when there are dependencies between metadata symbols in each of the
codewords (for example, shared metadata bits and/or symbols between metadata symbols of some
or all of the codewords), the memory controller can determine the metadata symbols and/or correct
any errors based on a maximum likelihood of the metadata symbol being correct or the maximum
likelihood of error correction as determined from any errors (or lack of errors) detected in each
codewords of the cache line.

[0036] The memory controller can then access the metadata (for example, metadata 404)
based on the decoded metadata symbols (for example, metadata decoder engine 428). The memory
controller can also access the data of the cache line (for example, data 402) based on the decoded
(and possible error-corrected) message symbols (for example, message data decoder engine 426).
[0037] Advantageously, the reliability of memory is improved by rotating symbols of the
codewords of the cache line, with metadata symbols encoded into parity of codewords, beflore
storage in memory. In this manner, there 1s a higher probability of detecting and/or correcting
errors caused by a memory device due to the rotating of symbols of the codewords of the cache
line. Accordingly, embodiments of the present disclosure improve reliability of data storage and
data retrieval to avoid impacts to other systems and services in a distributed or local environment,

thereby improving a user experience and reducing computational resource consumption associated

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

with further remedying error correction shortcoming in the current technology landscape. Further,
as the capacity of memory is increased by encoding metadata symbols into codewords without
having to store the metadata symbols in memory, computing resources, such as storage space in
memory, are reduced and networking resources, such as bandwidth for transmission if the data is
transmitted over a network, is reduced.

Additional Description of Embodiments

[0038] Aspects of the technical solution can be described by way of examples and with
reference to the figures. FIG. 1A illustrates an example host computing device 100 having a
memory controller 110, memory 140 with any number of memory devices 120, processor 150,
and a storage device 130 (for example, storage device can be made up of a number of storage
devices, such as not-and (NAND) flash devices of an SSD or any type of storage device).

[0039] In some embodiments, the host computing device 100 is modular such that its
components can be replaced by other components, can be removed, and/or other components can
be added. Additionally, the host computing device 100, or components of the host computing
device, can be communicatively coupled to other host computing devices, or additional other
components of the host computing device, to scale and distribute workloads.

[0040] Embodiments of the memory controller 110 communicatively, electronically, and
programmatically couple the components of the host computing device 100, such as the illustrated
memory 140 with memory devices 120, storage device 130, and processor 150. An example host
computing device 100 includes the computing device 1000 and/or associated components of FIG.
10. In one embodiment, the memory controller 110 is an embedded processor that executes
firmware-level code to perform any number of functions. For example, the memory controller 110
performs bad block mapping, read and write caching, encryption, crypto-shredding, error
detection and correction (for example, via error correcting code [ECC] such as Bose-Chaudhuri—
Hocquenghem (BCH) code or RS code), garbage collection, read scrubbing management, read
disturb management, and wear leveling, to name a few.

[0041] In one example, memory devices 120 of memory 140 refer to a random-access
semiconductor memory that stores each bit of data in a memory cell, usually consisting of a small
capacitor and a transistor. An example memory 140 with memory devices 120 includes the
memory 1012 and/or associated components of FIG. 10. In some embodiments, memory devices
120 accesses data, generally in less than 10 microseconds, and is used to accelerate applications
that would otherwise be held back by the latency of flash SSDs or traditional hard disk drives
(HDDs). In some embodiments, memory 140 is DRAM, and memory devices 120 are DRAM
devices used as the main memory (colloquially called the random-access memory "RAM") in

certain computers and graphics cards (where the "main memory" is referred to as the graphics

9

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

memory). Memory devices 120 can also be used in many portable devices and video
game consoles. In some embodiments, memory devices 120 incorporate either an internal battery
or an external AC/DC adapter and backup storage system to ensure data persistence while no
power is being supplied to the drive from extemal sources. For example, if power is lost, the
battery provides power while all information is copied from random access memory (RAM) to
backup storage, such as storage device 130. When the power is restored, the information is copied
back to the RAM from the backup storage, and the host computing device 100 resumes normal
operation (similar to the hibernate function used in modemn operating systems).

[0042] In some embodiments. storage device 130, or storage devices of storage device
130, includes a non-volatile flash memory that can hold data even when it’s not connected to a
power source. In some embodiments, the storage device 130, or storage devices of storage device
130, includes a metal-oxide—semiconductor (MOS) integrated circuit chip that includes non-
volatile floating-gate memory cells.

[0043] With reference to FIG. 1B, FIG. 1B includes an example of memory made up of
memory devices 120, in accordance with aspects of the technology described herein. FIG. 1B
includes components that correspond to components described with reference to FIG. 1A. For
example, the memory devices 120 of FIG. 1B correspond to the memory devices 120 depicted in
FIG. 1A.

[0044] As illustrated, memory 140 is made up of the memory devices 120 of FIG. 1B,
which are accessible by memory controller 110 of FIG. 1A to perform computer operations
associated with memory storage functions, such as read and write operations. The memory 140 is
made up of a number of cache lines 150 and each of the cache lines 150 are made up of a number
codewords 160. The codewords of each cache line include a number of message symbols (for
example, m1-m8) and parity symbols (p1, p2).

[0045] With reference to FIG. 1C, FIG. 1C includes an example cache line 150 made up
of anumber of codewords 160 as stored in symbol locations of memory devices 120, in accordance
with aspects of the technology described herein. FIG. 1C includes components that correspond to
components described with reference to FIGS. 1A and 1B. For example, the memory devices 120
of FIGS. 1A and 1B correspond to the memory devices 120 depicted in FIGS. 1A and 1B.

[0046] As illustrated, data corresponding to a cache line stored in memory is made up of
a number of codewords 160 and each of the codewords are made up of a number of message
symbols and parity symbols (for example as shown in FIG. 1B). The message symbols are made
up of a number of message bits of the data of the cache line and the parity symbols are determined
based on the message symbols of the codeword and metadata symbol(s) to be encoded into the

codeword. With reference to FIG. 1C, the cache line is made up of four (4) codewords (for

10

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

example, codewords 160). Four (4) codewords are shown as an example and any number of
codewords of a cache line are contemplated. Each of the codewords include symbols made up of
anumber of DQs on a number of memory devices and each DQ corresponds to a bit of data stored
on the memory device. In the example shown in FIG. 1C, each symbol of each codeword 160
includes 4 DQs on each device and there are N number of memorv devices 120 (for example,
memory device 0, memory device 1, memory device 2 and memory device N).

[0047] With reference to FIG. 1D, FIG. 1D includes an example of a miscorrection 180 of
an error pattern 170 of cache line 150 due to unrotated codewords 160 as stored in symbol location
of memory devices 120. FIG. 1D includes components that correspond to components described
with reference to FIGS. 1A-C, except that the symbols of the codewords are not rotated (for
example, as opposed to rotated codewords 160 of FIG. 1B). For example, the memory devices
120 of FIGS. 1A-C correspond to the memory devices 120 depicted in FIGS. 1A-C, except that
the symbols of the codewords are not rotated (for example, as opposed to rotated codewords 160
of FIG. 1B).

[0048] In conventional implementations, symbols of each device correspond to specific
type of symbol. For example, referring to FIG. 1C, each symbol of memory device 1 would
correspond to message symbols made up of message bits (for example, ml of error correction
code encoder engine 320 of FIG. 3), and each symbol of memory device 2 would correspond to
parity symbols made up of parity bits (for example, pl of error correction code encoder engine
320 of FIG. 3). However. when bits in parity symbols are replaced with metadata bits, error
correction capabilities are diminished, which can lead to uncorrectable or miscorrection of errors
(for example, miscorrection 180 of FIG. 1D).

[0049] As illustrated in FIG. 1D, a faulty memory device of memory devices 120 produces
an error pattern 170 on the same symbol of all codewords as faulty memory device of memory
devices 120 corresponds to the same symbol in storage. For example, faulty memory device of
memory devices 120 may always store parity symbol pl for each codeword of the cache line.
Thus, the error pattern will appear on parity symbol pl for each codeword of the cache line. As
the error pattem is repeated for all codewords of the cache line, the probability of the cache line
being undecodable/uncorrectable or may result in a miscorrection 180 is increased.

[0050] As further illustrated in FIG. 1D, as a more specific example of a miscorrection
180, assuming (1) metadata symbols are used to encode parity symbols (for example, an example
of which is shown by error correction code encoder engine 320 in FIG. 3) and (2) the metadata
symbols are omitted before being stored in memory, but without rotating the symbols of
codewords of the cache lines, then parity symbol (for example, symbols S’y and S1) may decode

the incorrect metadata symbol (for example, symbol MS) based on the parity symbols and can

11

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

miscorrect a message bit symbol (for example, symbols S°3) due to the incorrect metadata svmbol.
However, the rotation of symbols of codewords as shown in FIG. 1B can greatly reduce the
possibility of this error. In this regard, the rotation of symbols of codewords as shown in FIG. 1B,
increases the capacity of data stored in memory for the cache line by encoding metadata into parity
symbols of codewords while increasing the reliability of error detection and correction capability.
[0051] It should be understood that many components have been omitted from FIGS. 1A-
D for the sake of simplicity and to facilitate discussion. Accordingly, embodiments of the host
computing device 100 are not limited only to those components illustrated or discussed herein.
Indeed. it should be understood that any suitable components may be employed in addition or
alternative to those components illustrated in FIGS. 1A-D, which may be replaced by any other
suitable components.

[0052] Aspects of the technical solution can be described by way of examples and with
reference to FIGS. 2 through 5C. FIG. 2 is an example cache line codeword rotation system 200
to programmatically rotate symbols of codewords of cache lines, in accordance with aspects of
the technology described herein. This example environment is further described with reference to
FIGS. 9 and 10, for example, for use in implementing embodiments of the technical solution are
shown. Generally, the technical solution environment includes a technical solution system suitable
for providing the example cache line codeword rotation system 200, which can employ methods
of the present disclosure. Embodiments of the cache line codeword rotation system 200 are
performed by the host computing device 210, the memory controller 110 (FIG. 1A), memory
controller 312 (FIG. 3), or memory controller 412 (FIG. 4).

[0053] As illustrated, the host computing device 210 includes a processor 202, memory
204, and/or an interface 208 (for example, presentation component 1016 of FIG. 10). Processor
202, memory 204, and/or an interface 208 are further described with reference to FIGS. 9 and 10,
for example, for use in implementing embodiments of the technical solution are shown. In
embodiments, memory 204 (for example, memory as shown in the example of FIGS. 1A-D or any
tvpe of memory) can be optimized in order to store the data of a cache line and/or metadata of the
cache line necessary to execute instructions by the processor 202. Memory 204 stores data
corresponding to each cache line and data corresponding to each cache line is stored as a number
of codewords. Each of the codewords of each cache line include a number of message symbols
and parity symbols. The message symbols are made up of a number of message bits of the data of
the cache line and the parity symbols are determined based on the message symbols of the
codeword and metadata symbol(s) to be encoded into the codeword. As an example, and with
reference to FIG. 1C, the cache line is made up of four (4) codewords (for example, codewords

160). Four (4) codewords are shown as an example and any number of codewords of a cache line

12

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

are contemplated). Each of the codewords include symbols stored on a number of DQs on a
number of memory devices and each DQ corresponds to a bit of data stored on the memory device.
In the example shown in FIG. 1C, each symbol of each codeword 160 includes 4 DQs on each
device and there are N number of memory devices 120 (for example, memory device 0, memory
device 1. memory device 2 and memory device N).

[0054] In conventional implementations, symbols of each device correspond to specific
type of symbol. For example, referring to FIG. 1C, each symbol of memory device 1 would
correspond to message symbols made up of message bits, and each symbol of memory device 2
would correspond to parity symbols made up of parity bits. However, when bits in parity symbols
are replaced with metadata bits, error correction capabilities are diminished, which can lead to
uncorrectable or miscorrection of errors (for example, miscorrection 180 of FIG. 1D).

[0055] Instead, embodiments of the present disclosure improve capacity and reliability of
processing cache lines with metadata symbols encoded into parity symbols of codewords of the
cache lines by rotating symbols of the codewords of the cache line before storage in memory 204
example through cache line codeword rotation system 200. Data for a cache line and metadata for
the cache line are accessed by a memory controller 212. Memory controller 212, through cache
line encoder 214, determines the message symbols for the cache line from the data through
message data encoder engine 216.

[0056] Memory controller 212, through cache line encoder 214, determines the metadata
symbols for the cache line from the metadata for the cache line through metadata encoder engine
218. In some embodiments, the metadata symbol is shared by some or all codewords of the cache
line bits to create dependency between the metadata symbols of each codeword. In some
embodiments, the metadata symbol is different for each codeword of the cache line. In
embodiments where the metadata symbol is different for each codeword of the cache line, the
metadata symbols for some or all of the codewords of the cache line may share one or more
metadata bits to create dependency between the metadata symbols of each codeword.

[0057] Memory controller 212, through cache line encoder 214, then determines the parity
symbols for each codeword based on the metadata symbols and message symbols of each
codeword through error correction code encoder engine 220. An ECC algorithm can be used to
generale the parity symbols by error correction code encoder engine 220. For example, RS codes
can be used by error correction code encoder engine 220. Any type of ECC algorithm is within
the scope of embodiments of the present disclosure.

[0058] Memory controller 212, through cache line encoder 214, then omits the metadata
symbols of each codeword and rotates the message and parity symbols of each codeword through

rotation encoder engine 222. Memory controller 212 the stores the rotated message and parity

13

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

symbols of each codeword in memory 204. In this regard, in some embodiments, as can be
understood with reference to the memory locations discussed with reference to FIG. 1C, the
message symbols and parity symbols of each codeword for the cache line are not stored on the
same device in memory. For example, with reference to FIG. 3, symbol location SO, which stores
parity symbol p2 will store parity symbol p2 for codeword 1, message svmbol m8 for codeword
2, message symbol m7 for codeword 3, and message symbol mé6 for codeword 4. Although a
rotation of each codeword by an increasing number of symbols (for example, the first/top
codeword of rotation encoder engine 322 is rotated by 0 symbols, the second codeword is rotated
of rotation encoder engine 322 is rotated by 1 symbol, the third codeword is rotated of rotation
encoder engine 322 is rotated by 3 symbols, and the fourth/bottom codeword is rotated of rotation
encoder engine 322 is rotated by 4 symbols), arotation by any number of symbols for any number
of codewords are within the scope of embodiments of the present disclosure.

[0059] Tuming back to FIG. 2, when the data of the cache line and/or metadata for the
cache line is accessed through memory 204, the memory controller 212 accesses the rotated
message and parity symbols from memory 204. For example, the memory controller 212 accesses
the data of the cache line as stored in memory 204. The data of the cache line is stored as a number
of codewords with rotated symbols as discussed with reference rotation encoder engine 222. The
memory controller then determines, through cache line decoder 224, the corresponding unrotated
codewords through rotation decoder engine 232. The determination of the corresponding
unrotated codewords can be based on stored relationships accessible by the memory controller
212. For example, the memory controller 212 can store the number of symbols that each codeword
is rotated by with respect to rotation decoder engine 232.

[0060] The memory controller 212, through cache line decoder 224, uses a corresponding
ECC algorithm to obtain the metadata symbols and/or correct errors in the message symbols based
on parity symbols in the rotation of the message and parity symbols of the codewords through
error correction code decoder engine 230. In this regard, each metadata bit of each metadata
symbols is either a 1 or 0, the memory controller 212 can use the ECC algorithm and parity
symbols to determine each metadata bit of each metadata symbol through error correction code
decoder engine 230. Further, the memory controller 212, through cache line decoder 224, can use
the ECC algorithm 1o correct errors detected in message bits of a codeword based on the parity
symbols through error correction code decoder engine 230. Even further, when there are
dependencies between metadata symbols in each of the codewords (for example, shared metadata
bits and/or symbols between metadata symbols of some or all of the codewords), the memory
controller 212, through cache line decoder 224, can determine the metadata symbols and/or correct

any errors based on a maximum likelihood of the metadata symbol being correct or the maximum

14

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

likelihood of error correction as determined from any errors (or lack of errors) detected in each
codewords of the cache line through error correction code decoder engine 230.

[0061] The memory controller 212, through cache line decoder 224, can then access the
metadata based on the decoded metadata symbols (for example, metadata decoder engine 228).
The memory controller, through cache line decoder 224, can also access the data of the cache line
based on the decoded (and possible error-corrected) message symbols (for example, message data
decoder engine 226). In this regard, the capacity of data stored memory for the cache line is
increased by encoding metadata into parity symbols of codewords while increasing the reliability
of error detection and correction capability.

[0062] FIG. 3 depicts a block diagram of an example cache line codeword rotation
encoding system to programmatically rotate symbols of codewords of cache lines, in accordance
with aspects of the technology described herein. As illustrated in the example, data 302 for a cache
line and metadata 304 for the cache line are accessed by a memory controller 312. The memory
controller 312 determines the message symbols for the cache line from the data of the cache line
through message data encoder engine 316. As can be understood, in the example discussed with
respect to FIG. 1C, each message symbol corresponds to the number of message bits stored on
each device for each codeword.

[0063] The memory controller 312 determines the metadata symbols for the cache line
from the metadata for the cache line through metadata encoder engine 318. In some embodiments,
metadata encoder engine 318 encodes the metadata symbol so that the metadata symbol is shared
by some or all codewords of the cache line to create dependency between the metadata symbols
of each codeword. In some embodiments, metadata encoder engine 318 encodes the metadata
symbol so that the metadata symbol is different for each codeword of the cache line. In
embodiments when metadata encoder engine 318 encodes the metadata symbol so that the
metadata symbol is different for each codeword of the cache line, the metadata symbols for some
or all of the codewords of the cache line may share one or more metadata bits to create dependency
between the metadata symbols of some or all of the codewords.

[0064] The memory controller 312 then determines the parity symbols for each codeword
based on the metadata symbols and message symbols of each codeword through error correction
code encoder engine 320. Error correction code encoder engine 320 can use an ECC algorithm
generate the parity symbols. For example, error correction code encoder engine 320 can use RS
codes. In the example shown in FIG. 3, the parity symbols can be generated by an RS(11,9) code
through error correction code encoder engine 320. However, any type of ECC algorithm is within
the scope of embodiments of the present disclosure.

[0065] The memory controller 312 then omits the metadata symbols of each codeword

15

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

and rotates the message and parity symbols of each codeword through rotation encoder engine
322. The memory controller 312 then stores the rotated message and parity symbols of each
codeword in memory 306. In this regard, in some embodiments, as can be understood with
reference to the memory locations discussed with reference to FIG. 1C, the message symbols and
parity symbols of each codeword for the cache line are not stored on the same device in memory.
For example, with reference to FIG. 3, symbol location SO, which stores parity symbol p2 will
store parity symbol p2 for codeword 1, message symbol m8 for codeword 2, message symbol m7
for codeword 3, and message symbol m6 for codeword 4. Although a rotation of each codeword
by an increasing number of symbols (for example, the first/top codeword of rotation encoder
engine 322 is rotated by 0 symbols, the second codeword is rotated of rotation encoder engine 322
is rotated by 1 symbol, the third codeword is rotated of rotation encoder engine 322 is rotated by
3 symbols, and the fourth/bottom codeword is rotated of rotation encoder engine 322 is rotated by
4 symbols), a rotation by any number of symbols for any number of codewords are within the
scope of embodiments of the present disclosure.

[0066] Normally, codewords generated by RS codes are cyclic at the symbol level in that
if symbols of a codeword are cyclically shifted, the resulting codeword is also a valid codeword
of the same RS code. As such, the rotation of any fault pattern, will be another fault pattern with
the same property. which may result in a miscorrection of an error or an uncorrectable error.
However, as the metadata symbol used to generate the codeword is omitted from the codeword
before cyclically shifting code word through rotation encoder engine 322, the codeword is
noncyvclic and less likely to be a valid codeword as rotated. In this regard, the fault patterns causing
decoding failure will have different properties with different rotations because metadata symbol
1s not written in the memory, but used to generate the ECC codeword from the same location.
Therefore, the rotation of any fault pattern on any symbol will have a different effect compared to
unrotated pattern.

[0067] FIG. 4 depicts a block diagram of an example cache line codeword rotation
decoding system to programmatically decode codewords of cache lines with rotated symbols, in
accordance with aspects of the technology described herein. As illustrated in the example, when
the data of the cache line (for example, data 402) and/or metadata 404 for the cache line is
accessed, the memory controller 412 accesses the rotated message and parity symbols {rom
memory 406. The memory controller 412 uses the ECC algorithm of error correction code decoder
engine 430 to obtain the metadata symbols and/or correct errors in the message symbols based on
parity symbols in the rotation of the message and parity symbols of the codewords.

[0068] For example, with reference to FIG. 4, the memory controller 412 accesses the data

of the cache line as stored in memory 406. The data of the cache line is stored as a number of

16

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

codewords with rotated symbols as discussed with reference to FIG. 3. In the example shown in
FIG. 4, there are four (4) codewords, however, any number of codewords for any number of cache
lines are with the scope of embodiments of the present disclosure. The memory controller 412
then determines the corresponding unrotated codewords through rotation decoder engine 432. The
determination of the corresponding unrotated codewords through rotation decoder engine 432 can
be based on stored relationships accessible by the memory controller 412. For example, the
memory controller 412 can store the number of symbols that each codeword is rotated by with
respect to rotation decoder engine 432.

[0069] The memory controller 412 uses a corresponding ECC algorithm to obtain the
metadata symbols and/or correct errors in the message symbols based on parity symbols in the
rotation of the message and parity symbols of the codewords through error correction code
decoder engine 430. In this regard, each metadata bit of each metadata symbols is either a 1 or O,
the memory controller 412 can use the ECC algorithm and parity symbols to determine each
metadata bit of each metadata symbol. Further, the memory controller can use the ECC algorithm
of error correction code decoder engine 420 to correct errors detected in message bits of a
codeword based on the parity symbols. Even further, when there are dependencies between
metadata symbols in each of the codewords (for example, shared metadata bits and/or symbols
between metadata symbols of some or all of the codewords), the memory controller 412 can
determine the metadata symbols and/or correct any errors through error correction code decoder
engine 430 based on a maximum likelihood of the metadata symbol being correct or the maximum
likelihood of error correction as determined from any errors (or lack of errors) detected in each
codewords of the cache line.

[0070] The memory controller 412 can then access the metadata 404 based on the decoded
metadata symbols through metadata decoder engine 428. The memory controller 412 can also
access the data of the cache line (for example, data 402) based on the decoded (and possible error-
corrected) message symbols through message data decoder engine 426). In this regard, the
capacity of data stored in memory for the cache line is increased by encoding metadata into parity
symbols of codewords while increasing the reliability of error detection and correction capability.
[0071] Turning to FIGS. 5A-C, illustrated are block diagrams of examples of encoding
metadata symbols into cache line codewords before programmatically generating parity bits and
programmatically rotating symbols of codewords of cache lines. in accordance with aspects of the
technology described herein. As illustrated in the examples of FIGS. 5A-C, the memory controller
(for example, memory controller 110 of FIG. 1A, memory controller 212 of FIG. 2, memory
controller 312 of FIG. 3, memory controller 412 of FIG. 4, and the like) determines the metadata

symbols for the cache line from the metadata for the cache line through metadata encoder engine

17

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

318. In some embodiments, as shown in the examples of FIGS. 5A and 5B, the metadata symbol
is shared by some (for example, one metadata shared by each set of two codewords in 318B of
FIG. 5B) or all codewords (for example, one metadata shared by all four codewords in 318A of
FIG. 5A) of the cache line to create dependency between the metadata symbols of each codeword.
In some embodiments, as shown in the example of 318C of FIG. 5C, the metadata symbol is
different for each codeword of the cache line. In embodiments where the metadata symbol is
different for each codeword of the cache line, the metadata symbols for some or all of the
codewords of the cache line may share one or more metadata bits to create dependency between
the metadata symbols of each codeword.

[0072] In this regard, when there are dependencies between metadata symbols in each of
the codewords (for example, shared metadata bits and/or symbols between metadata symbols of
some or all of the codewords), the memory controller 312 can determine the metadata symbols
and/or correct any errors based on a maximum likelihood of the metadata symbol being correct or
the maximum likelihood of error correction as determined from any errors (or lack of errors)
detected in each codewords of the cache line.

[0073] With reference to FIGS. 6, 7, and 8, flow diagrams are provided illustrating
methods to programmatically rotate symbols of codewords of cache lines for increased capacity
and reliability, such as shown in FIGS. 1B and 2-5C. In some embodiments, one or more
components of the host computing device 100 (FIG. 1A), memory controller 110 (FIG. 1A), the
cache line codeword rotation system 200 (FIG. 2), memory controller 312 (FIG. 3), memory
controller 412 (FIG. 4) and/or the metadata encoder engine 318 (FIG. 3 and 5A-C) perform the
methods illustrated in FIGS. 6, 7, and 8. In some embodiments, one or more computer storage
media having computer-executable or computer-useable instructions embodied thereon that, when
executed by one or more processors, cause the one or more processors to perform the methods
(for example, computer-implemented method) in the cache line codeword rotation system 200 (for
example, a computerized system or computing system).

[0074] Tuming to FIG. 6, at block 610, the process 600 of encoding data of the cache line
and metadata of the cache line into a plurality of codewords of each cache line includes, at block
610, the memory controller determines the message bits of each message symbol of the plurality
of message and parity symbols of each codeword based on the data for the cache line, for example,
through an memory controller 110 (FIG. 1A), memory controller 212 (FIG. 2), memory controller
312 (FIG. 3), memory controller 412 (FIG. 4), and the like.

[0075] At block 620, the memory controller determines at least one metadata symbol for
each codeword based on the metadata of the cache line. In some embodiments, the metadata

symbol is shared by some or all codewords of the cache line bits to create dependency between

18

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

the metadata symbols of each codeword. In some embodiments, the metadata symbol is different
for each codeword of the cache line. In embodiments where the metadata symbol is different for
each codeword of the cache line, the metadata symbols for some or all of the codewords of the
cache line may share one or more metadata bits to create dependency between the metadata
symbols of each codeword.

[0076] At block 630, the memory controller determines the parity bits of each parity
symbol of the plurality of message and parity symbols of each codeword based on the at least one
metadata symbol for each codeword and each message symbol of the plurality of message and
parity symbols of each codeword. For example, RS codes can be used by the memory controller.
Any type of ECC algorithm is within the scope of embodiments of the present disclosure.

[0077] At block 640, for each codeword of the plurality of codewords of the cache line,
the memory controller rotates the plurality of message and parity symbols so that a location of
each symbol of one codeword is different from other codewords of the plurality of codewords of
the cache line. In embodiments, the memory controller omits each metadata symbol from each
codeword each codeword before the memory controller rotates the plurality of message and parity
symbols.

[0078] At block 650, the memory controller stores, in memory, each codeword of the
plurality of codewords of each cache line as rotated. In this regard, data and metadata of the cache
line are encoded into a plurality of codewords of each cache line by the memory controller, thereby
increasing the capacity of the memory while also increasing reliability of the cache line.

[0079] Turning to FIG. 7, the process 700 includes, at block 710, receiving, by a memory
controller, a request for data of a cache line, for example, through an memory controller 110 (FIG.
1A), memory controller 212 (FIG. 2), memory controller 312 (FIG. 3), memory controller 412
(FIG. 4), or the like.

[0080] At block 720, responsive to the request for data of the cache line, the memory
controller accesses metadata of the cache line by accessing a plurality of codewords of the cache
line, each codeword of the plurality codewords being a plurality of message and parity symbols.
At block 730, the memory controller decodes at least one metadata symbol of each codeword of
the plurality of codewords of the cache line based on at least one parity symbol in each in a
corresponding rotation of the plurality of message and parity symbols in each codeword. In some
embodiments, the metadata symbol is shared by some or all codewords of the cache line to create
dependency between the metadata symbols of each codeword. In some embodiments, the metadata
symbol is different for each codeword of the cache line. In embodiments where the metadata
symbol is different for each codeword of the cache line, the metadata symbols for some or all of

the codewords of the cache line may share one or more metadata bits to create dependency

19

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

between the metadata symbols of each codeword.

[0081] At block 740, the memory controller determines the metadata of the cache line
from the at least one metadata symbol of each codeword of the plurality of codewords of the cache
line. In some embodiments, the memory controller detects and/or corrects errors in the message
symbols and/or metadata symbols of the data and/or metadata of the cache line based on the parity
symbols of the codewords. At block 750, responsive to the request for data of the cache line and
based at least on the metadata for the cache line, transmitting the data of the cache line.

[0082] Tuming to FIG. 8, the process 800 includes, at block 810, receiving, by a memory
controller, a request for data of a cache line, for example, through an memory controller 110 (FIG.
1A), memory controller 212 (FIG. 2), memory controller 312 (FIG. 3), memory controller 412
(FIG. 4), or and the like.

[0083] At block 820, the memory controller accesses a plurality of codewords of the cache
line, each codeword of the plurality codewords being a plurality of message and parity symbols.
At block 830, the memory controller accesses message symbols of each codeword of the plurality
of codewords of each cache line in a corresponding rotation of the plurality of message and parity
symbols in each codeword.

[0084] At block 840, the memory controller determines the data of the cache line from the
message bits of each message symbol of each codeword of the plurality of codewords of the cache
line. In some embodiments, the memory controller detects and/or corrects errors in the message
symbols and/or metadata symbols of the cache line based on the parity symbols of the cache line.
At block 850, the data of the cache line is transmitted in response to the request.

Other Embodiments

[0085] In some embodiments, a computerized system is provided, employing any
components of the computerized (or computer, computing, or cloud) system described in any of
the embodiments above. The computerized system comprises at least one computer processor, and
computer memory having computer-readable instructions embodied thereon, that, when executed
by the at least one computer processor, perform operations. The operations comprise encoding
data and metadata of a cache line into a plurality of codewords, each codeword of the plurality
codewords comprising a plurality of symbols, the plurality of symbols comprising (1) at least one
message symbol comprising message bits and (2) at least one parity symbol comprising parity
bits, encoding the data and the metadata of the cache line into the plurality of codewords
comprising: determining the message bits of the at least one message symbol of each codeword
based on the data of the cache line; determining at least one metadata symbol for each codeword
based on the metadata of the cache line; determining the parity bits of the at least one parity symbol

of each codeword based on (1) the at least one metadata symbol for each codeword and (2) the at

20

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

least one message symbol of each codeword; for each codeword of the plurality of codewords,
omitting the at least one metadata symbol and rotating the plurality of symbols so that a location
of each symbol of one codeword is different from other codewords of the plurality of codewords;
and storing, in memory, €ach codeword of the plurality of codewords with the corresponding
rotation of the plurality of symbols of each codeword.

[0086] Advantageously, the reliability of memory is improved by rotating symbols of the
codewords of the cache line, with metadata symbols encoded into parity of codewords, before
storage in memory. In this manner, there is a higher probability of detecting and/or correcting
errors caused by a memory device due to the rotating of symbols of the codewords of the cache
line. Accordingly, embodiments of the present disclosure improve reliability of data storage and
data retrieval to avoid impacts to other systems and services in a distributed or local environment,
thereby improving a user experience and reducing computational resource consumption associated
with further remedying error correction shortcoming in the current technology landscape. Further,
as the capacity of memory is increased by encoding metadata symbols into codewords without
having to store the metadata symbols in memory, computing resources, such as storage space in
memory, are reduced and networking resources, such as bandwidth for transmission if the data is
transmitted over a network, is reduced.

[0087] In any combination of the above embodiments of the computerized svstem, the at
least one metadata symbol determined for each codeword is shared by all codewords of the
plurality of codewords of the cache line.

[0088] In any combination of the above embodiments of the computerized system, the at
least one metadata symbol determined for each codeword is shared by a number of codewords of
the plurality of codewords of the cache line.

[0089] In any combination of the above embodiments of the computerized system, a
number of metadata bits of the at least one metadata symbol determined for each codeword is
shared by a number of codewords of the plurality of codewords of the cache line.

[0090] In any combination of the above embodiments of the computerized system, the
operations further comprise detecting an error in one codeword of the plurality of codewords based
on an expected location of the at least one parity symbol in the one codeword’s corresponding
rotation of the plurality of symbols; and correcting the error in the one codeword based on the at
least one parity symbol.

[0091] In any combination of the above embodiments of the computerized system, the
correction of the error of the one codeword is based on a maximum likelihood of error correction
as determined from errors detected in each corresponding rotation of the plurality of symbols in

each codeword of the plurality of codewords.

21

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

[0092] In any combination of the above embodiments of the computerized system, the
operations further comprise accessing metadata of the cache line by: accessing the plurality of
codewords; decoding the at least one metadata symbol of each codeword of the plurality of
codewords based on the at least one parity symbol in each corresponding rotation of the plurality
of symbols; and determining the metadata of the cache line from the at least one metadata symbol
of each codeword of the plurality of codewords.

[0093] In any combination of the above embodiments of the computerized system, the
operations further comprise accessing the data of each cache line by: accessing the plurality of
codewords; accessing the message symbols of each codeword of the plurality of codewords in
each corresponding rotation of the plurality of symbols in each codeword: and determining the
data of the cache line from the message bits of each message symbol of each codeword of the
plurality of codewords.

[0094] In any combination of the above embodiments of the computerized svstem, the at
least one parity symbol of each codeword of the plurality of codewords is determined through
Reed-Solomon (RS) codes.

[0095] In some embodiments, a computer-implemented method is provided and is
implemented using any of the embodiments described herein. The computer-implemented method
includes receiving a request for data of a cache line; responsive to the request for data. accessing
metadata of the cache line by: accessing a plurality of codewords. each codeword of the plurality
codewords comprising a plurality of symbols, the plurality of symbols comprising (1) at least one
message symbol comprising message bits and (2) at least one parity symbol comprising parity
bits; decoding at least one metadata svmbol from the plurality of codewords based on a location
of the at least one parity symbol in a corresponding rotation of the plurality of symbols of each
codeword of the plurality of codewords; and determining the metadata of the cache line from the
at least one metadata symbol of each codeword of the plurality of codewords; and based at least
on the metadata of the cache line, transmitting the data of the cache line.

[0096] Advantageously, the reliability of memory is improved by rotating symbols of the
codewords of the cache line, with metadata symbols encoded into parity of codewords, before
storage in memory. In this manner, there is a higher probability of detecting and/or correcting
errors caused by a memory device due 1o the rotating of symbols of the codewords of the cache
line. Accordingly, embodiments of the present disclosure improve reliability of data storage and
data retrieval to avoid impacts to other systems and services in a distributed or local environment,
thereby improving a user experience and reducing computational resource consumption associated
with further remedying error correction shortcoming in the current technology landscape. Further,

as the capacity of memory is increased by encoding metadata symbols into codewords without

22

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

having to store the metadata symbols in memory, computing resources, such as storage space in
memory, are reduced and networking resources, such as bandwidth for transmission if the data is
transmitted over a network, is reduced.

[0097] In any combination of the above embodiments of the computer-implemented
method, the at least one metadata symbol determined for each codeword is shared by all
codewords of the plurality of codewords of the cache line.

[0098] In any combination of the above embodiments of the computer-implemented
method, the at least one metadata symbol determined for each codeword is shared by a number of
codewords of the plurality of codewords of the cache line.

[0099] In any combination of the above embodiments of the computer-implemented
method, a number of metadata bits of the at least one metadata symbol determined for each
codeword is shared by a number of codewords of the plurality of codewords of the cache line.
[00100] In any combination of the above embodiments of the computer-implemented
method, further comprising detecting an error of a metadata symbol in one codeword of the
plurality of codewords based on an expected location of the at least one parity symbol in the one
codeword’s corresponding rotation of the plurality of symbols; and correcting the error of the
metadata symbol in the one codeword based on the at least one parity symbol.

[00101] In any combination of the above embodiments of the computer-implemented
method, the correction of the error of the metadata symbol is based on a maximum likelihood of
error correction as determined from errors detected in the corresponding rotation of symbols in
each codeword of the plurality of codewords.

[00102] In any combination of the above embodiments of the computer-implemented
method, further comprising: accessing the data of the cache line by: accessing message symbols
of each codeword of the plurality of codewords in each corresponding rotation of the plurality of
symbols in each codeword; and determining the data of the cache line from the message bits of
each message symbol of each codeword of the plurality of codewords.

[00103] In some embodiments, at least one computer-storage media is provided. The
computer-storage media has computer-executable instructions embodied thereon that, when
executed by a computing system having at least one processor and at least one memory, cause the
compuling syvstem or the al least one processor 10 perform operations comprising: receiving a
request for data of a cache line; responsive to the request for the data of the cache line, accessing
the data of the cache line by: accessing a plurality of codewords, each codeword of the plurality
codewords comprising a plurality of symbols, the plurality of symbols comprising (1) at least one
message symbol comprising message bits and (2) at least one parity symbol comprising parity

bits; accessing message symbols of each codeword of the plurality of codewords in a

23

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

corresponding rotation of the plurality of symbols of each codeword; and determining the data of
the cache line from each message symbol and each parity symbol of each codeword of the plurality
of codewords of each cache line; and transmitting the data of the cache line.
[00104] Advantageously, the reliability of memory is improved by rotating symbols of the
codewords of the cache line, with metadata symbols encoded into parity of codewords, before
storage in memory. In this manner, there is a higher probability of detecting and/or correcting
errors caused by a memory device due to the rotating of symbols of the codewords of the cache
line. Accordingly, embodiments of the present disclosure improve reliability of data storage and
data retrieval to avoid impacts to other systems and services in a distributed or local environment,
thereby improving a user experience and reducing computational resource consumption associated
with further remedying error correction shortcoming in the current technology landscape. Further,
as the capacity of memory is increased by encoding metadata symbols into codewords without
having to store the metadata symbols in memory, computing resources, such as storage space in
memorty, are reduced and networking resources, such as bandwidth for transmission if the data 1s
transmitted over a network, 1s reduced.
[00105] In any combination of the above embodiments of the at least one computer-storage
media, the operations further comprise detecting an error of a message symbol in one codeword
of the plurality of codewords of the cache line based on an expected location of at least one parity
symbol in the one codeword’s corresponding rotation of the plurality of symbols; and correcting
the error of the message symbol in the one codeword based on the at least one parity symbol.
[00106] In any combination of the above embodiments of the at least one computer-storage
media, the correction of the error of the message symbol is based on a maximum likelihood of
error correction as determined from errors detected in the corresponding rotation of the plurality
of message and parity symbols in each codeword of the plurality of codewords of the cache line.
[00107] In any combination of the above embodiments of the at least one computer-storage
media, the operations further comprise accessing metadata of the cache line by: decoding at least
one metadata symbol of each codeword of the plurality of codewords based on at least one parity
symbol in each corresponding rotation of the plurality of symbols in each codeword; and
determining the metadata of the cache line from the at least one metadata symbol of each codeword
of the plurality of codewords.

Example Computing Environment
[00108] Having described various implementations, example computing environments
suitable for implementing embodiments of the disclosure are now described, including an example
distributed computing environment and an example computing device in FIGS. 9 and 10,

respectively. Embodiments of the disclosure are described in the general context of computer code

24

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

or machine-useable instructions, including computer-useable or computer-executable instructions,
such as program modules, being executed by a computer or other machine such as a smartphone,
a tablet, personal computer (PC), or other mobile device, server, or client device. Generally,
program modules, including routines, programs, objects, components, data structures, and the like,
refer to code that performs particular tasks or implements particular abstract data tvpes.
Embodiments of the disclosure are practiced in a variety of system configurations, including
mobile devices, consumer electronics, general-purpose computers, more specialty computing
devices, or the like. Embodiments of the disclosure are also practiced in distributed computing
environments where tasks are performed by remote-processing devices that are linked through a
communications network. In a distributed computing environment, program modules may be
located in both local and remote computer storage media including memory storage devices.
[00109] Some embodiments comprise an end-to-end software-based system that can
operate within system components described herein to operate computer hardware to provide
system functionality. At a low level, hardware processors may execute instructions selected from
a machine language (also referred to as machine code or native) instruction set for a given
processor. The processor recognizes the native instructions and performs corresponding low-level
functions relating to, for example, logic, control, and memory operations. Low-level software
written in machine code can provide more complex functionality to higher levels of software.
Accordingly, in some embodiments, computer-executable instructions include any software,
including low-level software written in machine code, higher level software such as application
software, and any combination thereof. In this regard, the system components can manage
resources and provide services for system functionality. Any other variations and combinations
thereof are contemplated with the embodiments of the present disclosure.

[00110] Referring now to FIG. 9, FIG. 9 illustrates an example distributed computing
environment 900 in which implementations of the present disclosure can be employed. In
particular, FIG. 9 shows a high-level architecture of an example cloud computing platform 910
that can host a technical solution environment, or a portion thereof (for example, a data trustee
environment). It should be understood that this and other arrangements described herein are set
forth only as examples. For example, as described above, many of the elements described herein
are implemented as discrete or distributed components or in conjunction with other components,
and in any suitable combination and location. Other arrangements and elements (for example,
machines, interfaces, functions, orders, and groupings of functions) can be used in addition to or
instead of those shown.

[00111] Data centers can support distributed computing environment 900, which includes

cloud computing platform 910, rack 920, and node 930 (for example, computing devices,

25

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

processing units, or blades) in rack 920. The technical solution environment can be implemented
with cloud computing platform 910 that runs cloud services across different data centers and
geographic regions. Cloud computing platform 910 can implement fabric controller 940
component for provisioning and managing resource allocation, deployment, upgrade, and
management of cloud services. Typically, cloud computing platform 910 acts to store data or run
service applications in a distributed manner. Cloud computing platform 910 in a data center can
be configured to host and support operation of endpoints of a particular service application. Cloud
computing platform 910 may be a public cloud, a private cloud, or a dedicated cloud.

[00112] Node 930 can be provisioned with host 950 (for example, operating system or
runtime environment) running a defined software stack on node 930. Node 930 can also be
configured to perform specialized functionality (for example, compute nodes or storage nodes)
within cloud computing platform 910. Node 930 is allocated to run one or more portions of a
service application of a tenant. A tenant can refer to a customer utilizing resources of cloud
computing platform 910. Service application components of cloud computing platform 910 that
support a particular tenant can be referred to as a multi-tenant infrastructure or tenancy. The terms
service application, application, or service are used interchangeably herein and broadly refer to
any software, or portions of software, that run on top of storage, access storage, and compute
device locations within a datacenter.

[00113] When more than one separate service application is being supported by nodes 930,
nodes 930 may be partitioned into virtual machines (for example, virtual machine 952 and virtual
machine 954). Physical machines can also concurrently run separate service applications. The
virtual machines or physical machines can be configured as individualized computing
environments that are supported by resources 960 (for example, hardware resources and software
resources) in cloud computing platform 910. It is contemplated that resources can be configured
for specific service applications. Further, each service application may be divided into functional
portions such that each functional portion is able to run on a separate virtual machine. In cloud
computing platform 910, multiple servers may be used to run service applications and perform
data storage operations in a cluster. In particular, the servers may perform data operations
independently but exposed as a single device referred to as a cluster. Each server in the cluster can
be implemented as a node.

Client device 980 may be linked to a service application in cloud computing platform 910. Client
device 980 may be any type of computing device, which may correspond to computing device
1000 described with reference to FIG. 10. For example, client device 980 is configured to issue
commands to cloud computing platform 910. In embodiments. client device 980 communicates

with service applications through a virtual Internet Protocol (IP) and load balancer or other means

26

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

that direct communication requests to designated endpoints in cloud computing platform 910. The
components of cloud computing platform 910 may communicate with each other over a network
(not shown), which may include, without limitation, one or more local area networks (LANs)
and/or wide area networks (WANSs).

[00114| With reference to FIG. 10, an example computing device is provided and referred
to generally as computing device 1000. The computing device 1000 is but one example of a
suitable computing environment and is not intended to suggest any limitation as to the scope of
use or functionality of embodiments of the disclosure, and nor should the computing device 1000
be interpreted as having any dependency or requirement relating to any one or combination of
components illustrated. Computing device 1000 includes bus 1010 that directly or indirectly
couples the following devices: memory 1012, one or more processors 1014, one or more
presentation components 1016, input/output ports 1018, input/output components 1020, and
illustrative power supply 1022. Bus 1010 represents what may be one or more buses (such as an
address bus, data bus, or combination thereof). The various blocks of FIG. 10 are shown with lines
for the sake of conceptual clarity, and other arrangements of the described components and/or
component functionality are also contemplated. A presentation component, such as a display
device, is an example of an I/O component. Also, processors have memory. It is recognized that
such is the nature of the art, and reiterated that the diagram of FIG. 10 is merely illustrative of an
example computing device that can be used in connection with one or more embodiments of the

EE N3

present invention. Distinction is not made between such categories as “workstation,” “server,”
“laptop,” “hand-held device,” and the like, as all are contemplated within the scope of FIG. 10
and with reference to “computing device.”

[00115] Computing device 1000 typically includes a variety of computer-readable media.
Computer-readable media can be any available media that can be accessed by computing device
1000 and includes both volatile and non-volatile media, removable and non-removable media. By
way of example, and not limitation, computer-readable media include computer storage media
and communication media. Computer storage media includes volatile and non-volatile, removable
and non-removable media implemented in any method or technology for the storage of
information such as computer-readable instructions, data structures, program modules or other
data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology., CD-ROM, digital versatile disks (DVDs) or other optical
disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium that can be used to store the desired information and which can be
accessed by computing device 1000. Computer storage media excludes signals per se.

Communication media typically embodies computer-readable instructions, data structures,

27

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

program modules, or other data in a modulated data signal such as a carrier wave or other transport
mechanism and includes any information delivery media. The term “modulated data signal”
indicates a signal that has one or more of its characteristics set or changed in such a manner so as
to encode information in the signal. By way of example, and not limitation, communication media
includes wired media such as a wired network or direct-wired connection, and wireless media
such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should
also be included within the scope of computer-readable media.

[00116] Memory 1012 includes computer storage media in the form of volatile and/or non-
volatile memory. The memory mav be removable, non-removable, or a combination thereof.
Example hardware devices include solid-state memory, hard drives, optical-disc drives, and the
like. Computing device 1000 includes one or more processors that read data from various entities
such as memory 1012 or I/O components 1020. As used herein, the term processor or “a
processor” may refer to more than one computer processor. In one example, the term processor
(or “a processor™) refers to at least one processor, which may be a physical or virtual processor,
such as a computer processor on a virtual machine. The term processor (or “a processor™) also
may refer to a plurality of processors, each of which may be physical or virtual, such as a
multiprocessor system, distributed processing or distributed computing architecture, cloud
computing system, or parallel processing by more than a single processor. Further, various
operations described herein as being executed or performed by a processor may be performed by
more than one processor.

[00117] Presentation component(s) 1016 present data indications to a user or other device.
Example presentation components include a display device, speaker, printing component,
vibrating component, and the like.

[00118] I/0 ports 1018 allow computing device 1000 to be logically coupled to other
devices including I/0 components 1020, some of which may be built in. Illustrative components
include a microphone, joystick, game pad., satellite dish, scanner, printer, wireless device, and the
like.

Additional Structural and Functional Features of Embodiments of the Technical Solution

[00119] Having identified various components utilized herein, it should be understood that
any number ol components and arrangements may be employed 1o achieve the desired
functionality within the scope of the present disclosure. For example, the components in the
embodiments depicted in the figures are shown with lines for the sake of conceptual clarity. Other
arrangements of these and other components may also be implemented. For example, although
some components are depicted as single components, many of the elements described herein may

be implemented as discrete or distributed components or in conjunction with other components,

28

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

and in any suitable combination and location. Some elements may be omitted altogether.
Moreover, various functions described herein as being performed by one or more entities may be
carried out by hardware, firmware, and/or software, as described below. For instance, various
functions may be carried out by a processor executing instructions stored in memory. As such,
other arrangements and elements (for example. machines. interfaces. functions, orders. and
groupings of functions) can be used in addition to or instead of those shown.

[00120] Embodiments described in the paragraphs below may be combined with one or
more of the specifically described alternatives. In particular, an embodiment that is claimed may
contain a reference, in the alternative, to more than one other embodiment. The embodiment that
is claimed may specify a further limitation of the subject matter claimed.

[00121] For purposes of this disclosure, the word “including™ has the same broad meaning
as the word “comprising,” and the word “accessing” comprises “receiving,” “referencing,” or
“retrieving.” Furthermore, the word “communicating™ has the same broad meaning as the word
“receiving,” or “transmitting”™ facilitated by software or hardware-based buses, receivers, or
transmitters using communication media described herein. In addition, words such as “a™ and
“an,” unless otherwise indicated to the contrary, include the plural as well as the singular. Thus,
for example, the constraint of “a feature™ is satisfied where one or more features are present. Also,
the term “or” includes the conjunctive, the disjunctive, and both (a or b thus includes either a or
b, as well as a and b).

[00122] As used herein, the term “set” may be employed to refer to an ordered (ie.,
sequential) or an unordered (i.e., non-sequential) collection of objects (or elements), such as
machines (for example, computer devices), physical and/or logical addresses, graph nodes, graph
edges, functionalities, and the like. As used herein, a set may include &V elements, where N is any
positive integer. That is, a set may include /, 2, 3, .. N objects and/or elements, where N is a
positive integer with no upper bound. Therefore, as used herein, a set does not include a null set
(i.e, an empty set), that includes no elements (for example, N=0 for the null set). A set may
include only a single element. In other embodiments, a set may include a number of elements that
is significantly greater than one, two, three, or billions of elements. A set may be an infinite set or
a finite set. The objects included in some sets may be discrete objects (for example, the set of
natural numbers N). The objects included in other sets may be continuous objects (for example,
the set of real numbers K). In some embodiments, “a set of objects™ that is not a null set of the
objects may be interchangeably referred to as either “one or more objects™ or “at least one object,”
where the term “object” may stand for any object or element that may be included in a set.
Accordingly, the phrases “one or more objects™ and “at least one object” may be employed

interchangeably to refer to a set of objects that is not the null or empty set of objects. A set of

29

10

15

20

25

35

WO 2024/258889 PCT/US2024/033475

objects that includes at least two of the objects may be referred to as “a plurality of objects.”
[00123] As used herein and in one example, the term “subset,” is a set that is included in
another set. A subset may be, but is not required to be, a proper or strict subset of the other set that
the subset 1s included within. That is, if set B is a subset of set A, then in some embodiments, set
B 1s a proper or strict subset of set A. In other embodiments. set B is a subset of set A, but not a
proper or a strict subset of set A. For example, set A and set B may be equal sets, and set B may
be referred to as a subset of set A. In such embodiments, set A may also be referred to as a subset
of set B. Two sets may be disjointed sets if the intersection between the two sets is the null set.
[00124] As used herein, the terms “application™ or “app” may be employed interchangeably
to refer to any software-based program, package, or product that is executable via one or more
(physical or virtual) computing machines or devices. An application may be any set of software
products that, when executed, provide an end-user one or more computational and/or data services.
In some embodiments, an application may refer to a set of applications that may be executed
together to provide the one or more computational and/or data services. The applications included
in a set of applications may be executed serially, in parallel, or any combination thereof. The
execution of multiple applications (comprising a single application) may be interleaved. For
example, an application may include a first application and a second application. An execution of
the application may include the serial execution of the first and second application or a parallel
execution of the first and second applications. In other embodiments, the execution of the first and
second application may be interleaved.

[00125] For purposes of a detailed discussion above, embodiments of the present invention
are described with reference to a computing device or a distributed computing environment;
however the computing device and distributed computing environment depicted herein are non-
limiting examples. Moreover, the terms computer system and computing system may be used
interchangeably herein, such that a computer system is not limited to a single computing device,
nor does a computing system require a plurality of computing devices. Rather various aspects of
the embodiments of this disclosure may be carried out on a single computing device or a plurality
of computing devices, as described herein. Additionally, components can be configured for
performing novel aspects of embodiments, where the term “configured for” can refer to
“programmed 10” perform particular tasks or implement particular abstract data types using code.
Further, while embodiments of the present invention may generally refer to the technical solution
environment and the schematics described herein, it is understood that the techniques described
may be extended to other implementation contexts.

[00126] Many different arrangements of the various components depicted. as well as

components not shown, are possible without departing from the scope of the claims below.

30

WO 2024/258889 PCT/US2024/033475

Embodiments of the present disclosure have been described with the intent to be illustrative rather
than restrictive. Alternative embodiments will become apparent to readers of this disclosure after
and because of reading it. Alternative means of implementing the aforementioned can be
completed without departing from the scope of the claims below. Certain features and sub-
combinations are of utility and may be emploved without reference to other features and sub-

combinations and are contemplated within the scope of the claims.

31

WO 2024/258889 PCT/US2024/033475

CLAIMS
1. A computerized system (1000), comprising:
at least one processor (1014); and
computer memory (1012) storing computer-useable instructions that, when executed by
the at least one processor, cause the at least one processor to perform operations comprising:
encoding (214) data (302) and metadata (304) of a cache line (150) into a plurality
of codewords (160), each codeword of the plurality codewords comprising a plurality of
symbols, the plurality of symbols comprising (1) at least one message symbol comprising
message bits and (2) at least one parity symbol comprising parity bits, encoding the data
and the metadata of the cache line into the plurality of codewords comprising:
determining (610) the message bits of the at least one message symbol of
each codeword based on the data of the cache line;
determining (620) at least one metadata symbol for each codeword based
on the metadata of the cache line;
determining (630) the parity bits of the at least one parity symbol of each
codeword based on (1) the at least one metadata symbol for each codeword and (2)
the at least one message symbol of each codeword; and
for each codeword of the plurality of codewords, omitting (322) the at least
one metadata symbol and rotating (640) the plurality of symbols so that a location
of each symbol of one codeword is different from other codewords of the plurality
of codewords; and
storing (650) each codeword of the plurality of codewords with the corresponding
rotation of the plurality of symbols of each codeword.
2. The computerized system of claim 1, wherein the at least one metadata symbol determined
for each codeword is shared (318A) by all codewords of the plurality of codewords of the cache
line.
3. The computerized system of claim 1, wherein the at least one metadata symbol determined
for each codeword is shared (318B) by a number of codewords of the plurality of codewords of
the cache line.
4. The computerized system of claim 1, wherein a number of metadata bits of the at least one
metadata symbol determined for each codeword is shared (318C) by a number of codewords of
the plurality of codewords of the cache line.
5. The computerized system of claim 1, wherein the operations further comprise:
detecting (430) an error in one codeword of the plurality of codewords based on an

expected location of the at least one parity symbol in the one codeword’s corresponding rotation

32

WO 2024/258889 PCT/US2024/033475

of the plurality of symbols; and
correcting (430) the error in the one codeword based on the at least one parity symbol.
6. The computerized system of claim 5, wherein the correction of the error of the one
codeword is based on a maximum likelihood of error correction as determined from errors
detected in each corresponding rotation of the plurality of symbols in each codeword of the
plurality of codewords.
7. The computerized system of claim 1, wherein the operations further comprise:
accessing (428) metadata of the cache line by:
accessing the plurality of codewords;
decoding the at least one metadata symbol of each codeword of the plurality of
codewords based on the at least one parity symbol in each corresponding rotation of the
plurality of symbols; and
determining the metadata of the cache line from the at least one metadata symbol
of each codeword of the plurality of codewords.
8. The computerized system of claim 1, wherein the operations further comprise:
accessing (426) the data of each cache line by:
accessing the plurality of codewords;
accessing a message svimbol of each codeword of the plurality of codewords in
each corresponding rotation of the plurality of symbols in each codeword; and
determining the data of the cache line from the message bits of each message
symbol of each codeword of the plurality of codewords.
9. The computerized system of claim 1, wherein the at least one parity symbol of each
codeword of the plurality of codewords is determined through Reed-Solomon (RS) codes.
10. A computer-implemented method (700), comprising:
receiving (710) a request for data (402) of a cache line (150);
responsive to the request for data, accessing (428) metadata (404) of the cache line by:
accessing (720) a plurality of codewords (160), each codeword of the
plurality codewords comprising a plurality of symbols, the plurality of symbols
comprising (1) at least one message symbol comprising message bits and (2) at
least one parity symbol comprising parity bits;
decoding (730) at least one metadata symbol from the plurality of
codewords based on a location of the at least one parity symbol in a corresponding
rotation of the plurality of symbols of each codeword of the plurality of codewords;
and

determining (740) the metadata of the cache line from the at least one

33

WO 2024/258889 PCT/US2024/033475

metadata symbol of each codeword of the plurality of codewords; and
based at least on the metadata of the cache line, transmitting (750) the data of the cache
line.
11. The computer-implemented method of claim 10, wherein the at least one metadata symbol
determined for each codeword is shared (318A) by all codewords of the plurality of codewords of
the cache line.
12. The computer-implemented method of claim 10, wherein the at least one metadata symbol
determined for each codeword is shared (318B) by a number of codewords of the plurality of
codewords of the cache line.
13. The computer-implemented method of claim 10, wherein a number of metadata bits of the
at least one metadata symbol determined for each codeword is shared (318C) by a number of
codewords of the plurality of codewords of the cache line.
14. The computer-implemented method of claim 10, further comprising:
detecting (430) an error of a metadata symbol in one codeword of the plurality of
codewords based on an expected location of the at least one parity symbol in the one codeword’s
corresponding rotation of the plurality of symbols; and
correcting (430) the error of the metadata symbol in the one codeword based on the at least
one parity symbol.
15. The computer-implemented method of claim 14, wherein the correction of the error of the
metadata symbol is based on a maximum likelihood of error correction as determined from errors
detected in the corresponding rotation of symbols in each codeword of the plurality of codewords.
16. The computer-implemented method of 10, further comprising:
accessing (426) the data of the cache line by:
accessing a message syvmbol of each codeword of the plurality of codewords in
each corresponding rotation of the plurality of symbols in each codeword; and
determining the data of the cache line from the message bits of each message
symbol of each codeword of the plurality of codewords.
17. One or more computer storage media (1012) having computer-executable instructions
embodied thereon that, when executed by a computing system having at least one processor (1014)
and at least one memory (1012), cause the at least one processor to perform operations comprising:
receiving (810) a request for data (402) of a cache line (150);
responsive to the request for the data of the cache line, accessing (426) the data of the
cache line by:
accessing (820) a plurality of codewords (160), each codeword of the

plurality codewords comprising a plurality of symbols, the plurality of symbols

34

WO 2024/258889 PCT/US2024/033475

comprising (1) at least one message symbol comprising message bits and (2) at
least one parity symbol comprising parity bits;
accessing (830) a message symbol of each codeword of the plurality of
codewords in a corresponding rotation of the plurality of symbols of each
codeword; and
determining (840) the data of the cache line from each message symbol and
each parity symbol of each codeword of the plurality of codewords of each cache
line; and
transmitting (850) the data of the cache line.
18. The one or more computer storage media of claim 17, wherein the operations further
comprise:
detecting (430) an error of a message symbol in one codeword of the plurality of
codewords of the cache line based on an expected location of at least one parity svmbol in the one
codeword’s corresponding rotation of the plurality of symbols; and
correcting (430) the error of the message symbol in the one codeword based on the at least
one parity symbol.
19. The one or more computer storage media of claim 18, wherein the correction of the error
of the message symbol is based on a maximum likelihood of error correction as determined from
errors detected in the corresponding rotation of the plurality of message and parity symbols in
each codeword of the plurality of codewords of the cache line.
20. The one or more computer storage media of claim 17, wherein the operations further
comprise:
accessing (428) metadata (404) of the cache line by:
decoding at least one metadata symbol of each codeword of the plurality of
codewords based on at least one parity symbol in each corresponding rotation of the
plurality of symbols in each codeword; and
determining the metadata of the cache line from the at least one metadata symbol

of each codeword of the plurality of codewords.

35

PCT/US2024/033475

WO 2024/258889

1/13

VI Ol

30IA3Q 30IA3Q
AMOWIW | | AMOWa
- -~
30IA3Q IOVHOLS 0cl ocl
30IA3Q 30IA3Q
AMOWIW | | AMOWa
o0zl -0zl
/om_\
//ov_\
d08S3004d YITIONINOD AHOWIN
05 N
a22Ina(] bunndwon 1soH
\-001

PCT/US2024/033475

WO 2024/258889

2/13

OW | LN S e wIN [GINFOIN | ZIN 8N ed | bd N N d40oMm3ao) N 3NIT FIHOVO~

ool oa lia lon o lonlem Tomlem o [~ | [

W LN 8| ed | bd OW LN T W T eW | v | SN 7 AYOM3IA0) ANIT FHOVD—

o lan | zal 1 lon | im]zn] en | om|on | on ¢ A¥OM3Ia0) € INIT FHOVD—A7
\ Z A¥OM3ao) Z NI IHOV)— /

on | za | 1alom | m|zn | en!|om|on|on|m | A4OM3A0D ENRETE 2 o

ANIT AHOVO AJOW3N
zd | 1d low | |zw|en|pw|on|onw | zm|an

NEBRILEL.
AHOWIA

¢ 30IN3Qd

AHOWIN //

| 30IA3J \

AHOWIA

0 30IA3Qg
AHOWIA

0cl

PCT/US2024/033475

3/13

WO 2024/258889

Ol Ol

0cl 0ocl oclL 0cl

\ \ N \

N3Ionad | ... | z3onaq | 301A3Q 0 30IA3Qg
AHOWIN AHOWIN AHOWIA AHOWIN

~ ~ ~ ~
Ve Ve e Ve
pd // rd // pd // pd //

[~ [~ < N [~

091 LA

f PIOMOPOD~| /

091 R e] et
€ PIOMBPOD~ |

e | e

O@ _\ e
Z PIOMEPOD~|

09l
| pIomepod~ /

e N e

lll S

0GT | aur ayoe)

PCT/US2024/033475

WO 2024/258889

4/13

p3}08.1I00-SIN — °S 'S S €S S S D _. * mu _ H_
SN Jo uondwnsse Uoloa.Ioo-sIN
Buoum pue Joue 08l
8UO UM MD — °S 'S S S °S || S ™\— U0I}08.1I02SI\
JoJi3 (uondwnsse g\ Buoum)
JoJi3
0Zl omfr 0zl oCl
/ 321A3Q / f
N 30IA3QA | ... | Adowan | 301A3Q 0 30IA3Q
AHOWAN ALINV AHOWAN AHOWAN
\\ RN \\ AR \\ AR \\ N
7 // — // — // - //
x| _Ix ST T T o 0 N 091
X : o[t 1]l \ |- piomepo)
X X [x \ 0]1]0]0 J
X N A e A L
e e e o e e <l
X i o[t 1]l \ |-€ piomepo)
X X [X \ eee |O[L[O[O) ..o 7
X uisjed Jolig Pt T S “-ITTC Ldek ..P_i.rn ||||||| Y ~ R~ ’
X |x STt O O [T 09l
X { oOfL]L]l \ JOMBPO
X[[x[x \ o[1]o]o \T\NU Ped
X I N I e Lol } e
X X P . e L T rhﬂ*.%llrlb_\lﬁrl.%ﬂ |||||||| e e e ey e |:1/ O®_\
X oL [L][t \ | -] plomepon
x| [x[X] 0l[t[0]0 M
A Ny B g S SN KV S S S S Dy S S | !
0/l 0GT L 8ui]ayoe)

PCT/US2024/033475

WO 2024/258889

5/13

cee (444
3NIONT ¥3A003(J NOILYLOY 3NIONT ¥300ONT NOILYLOY

0EZ INIONT ¥300923Q
300D NOILOTHHOD HOHYT]

022 INIONT ¥3A0ONT
300D NOILOTHHOD HOHYT]

8ce 8lc
3NIONT ¥30003Q Y.ivavliIw 3NIONT ¥3A0ONT Y.ivaviIw

9ce olc
3NIONT ¥30003Q YLvQ 39vsSIN 3NIONT ¥3A0ONT VLV 39vsSI

¢¢ d3aoo23 J 3ANIT FHOVYD ¥1¢ ¥3A0ONT ANIT IHOVD

[Z 43 TI0HLINOD AHOWIA

0¢ JOV4Y3ILN| 70C AHOW3 20¢ J0Ss3004d

[Z 30I1A3Q ONILNANOYD LSOH

00c¢

WO 2024/258889 PCT/US2024/033475
6/13
F——————
| MEMORY ' DATA 302
| CONTROLLER | METADATA 304
! 312 !
| |
| | fm e m e :
: MESSAGE | | | I
| DATA j':> M8 | M7 | M6 | M5 | M4 | M3 | M2 | M1 | MO :
| | ENCODER Mg | M7 [M6 | M5 | M4 | M3 | M2 | M1 | MO ||
| |ENGINE 316 | | |
: ::M8|v|7|v|6|v|5|v|4|v|3|v|2|v|1|v|0|
I
I
: :||v|8|v|7|v|6|\/|5|v|4|v|3|v|2|v|1|v|0|
| | |___________________I
| |
R N i e e EEC LRy
ETADATA | | |
: ENCODER MS| M8 | M7 | M6 | M5 | M4 | M3 | M2 | M1 | MO :
| Egc;g\JE i, :: MS | M8 | M7 | M6 | M5 | M4 | M3 | M2 | M1 | MO ||
| 210 | [
| | :I\/ISM8M7M6M5M4M3M2M’|MOI
I I I
: | :I\/ISM8M7M6M5M4M3M2M’IMOI
I I
| A e L
: I r----=--=-=-=----=--=-=-=-=-=-=-=-=-=-=-=- bl
I
| | . ERROR || MS| M8 | M7 | M6 | M5 | M4 | M3 | M2 | M1|mO|pP1 P2]!
| |CORRECTION[™, :
| | _CobE '\MS | M8 | M7 | M6 | M5 | M4 [M3 | M2 | M1| MO | P1 | P2 |,
| | ENcoDER || | |
: ENGINE 320 : : MS| M8 | M7 | M6 |M5| M4 | M3 |M2| M1 |MO|P1|P2]
I
| | IMs | w8 | w7 | M6 | M5 w4 |3 | M2 | w1 (Mo |p1| P2]|
| R e ——————————————— |
I I I’ ______________________ A
| |1 S1089 $8 S7 $6 S5 S4 $3 S2 S1 SO |
I
I
: :|M8M7M6M5M4M3M2M’IMOP’|P2:
| [RoTaTioN | 1| |
I
: ENCODER M7 | M6 M5 | M4 | M3 | M2 (M1 |MO|P1|P2|M8B :
| ENG|NE : | MEMOR
| 322 | : MG |MS (M4 | M3 | M2 | MT|MO|PT1|P2|M8| M7 Y 306
I I I
I |:M5|v|4|v|3|v|2|v|1|v|0P1P2M8|v|7M6|
_______ I

WO 2024/258889 PCT/US2024/033475

——————— 1 7113
MEMORY |
CONTROLLER :
412 |
I __________________ -
I |
MESSAGE | | : M8 | M7 | M6 | M5 | M4 | M3 | M2 [M1 | MO ||
DATA l :
DECODER : || M8 | M7 | MB | M5 | M4 | M3 | M2 | M1 | MO || DATA 402
I
ENGINE 426 : : M8 | M7 | M6 | M5 | M4 | M3 | M2 | M1 | MO ||
I
I
:|M8|v|7|v|6|\/|5|v|4|v|3|v|2|v|1|v|0|
| o= 3
s
I
METADATA | | MS|
DESC?IZER |)I MS| Y METADATA 404
LV
428 | MS| |
I I
| ms
Ly I
\ o ______
T 'i
ERROR : :MS M8 | M7 | M6 | M5 | M4 | M3 | M2 | M1 | MO | PT| P2 |
I
COFEROE[‘;;'ON | XM | u8 | w7 | u6 | w5 | w4 M3 |2 | ut|mo| P P2 ||
I
DECODER : :MS M8 | M7 | M6 | M5 | M4 | M3 | M2 | M1 MO | P1|P2]|
ENGINE43Q | || |
| 1|MS| M8 | M7 |ME|MS|M4 | M3 | M2 M1 MO |PT|P2|I
I e ———————
R 1
RoTATION | | I M8 | M7 | M6 | M5 | M4 | M3 | M2 | M1 |[MO|PT|P2
I
I

ENGINE
432

I
DECODER 4> M8 | M7 | M6 | M5 | M4 | M3 | M2 | M1 MO | P1 | P2
|

|

|

|
| |
<:[<:: MEMORY

M7 | w6 | w5 | ma | m3 | v2 | m1|mo| Pt | P2 | M8

| 406
! |

|

|

|

|

WO 2024/258889

PCT/US2024/033475

8/13
m——————————————————
: MS1 MESSAGE BIT SYMBOLS
METADATA ONE METADATA
ENCODER SYMBOL FOR ALL ' MS1 MESSAGE BIT SYMBOLS
ENGINE CODEWORDS MS1 MESSAGE BIT SYMBOLS
318 318A :
| MS1 MESSAGE BIT SYMBOLS
e - - - e e
m—————————————————— =
ONE METADATA : MS1 MESSAGE BIT SYMBOLS
METADATA SHARED BY I
ENCODER j‘> j> MS1 MESSAGE BIT SYMBOLS
NUMBER OF
ENGINE |
318 CO%IiVélgRDS | MS2 MESSAGE BIT SYMBOLS
: MS2 MESSAGE BIT SYmBOLS
Yo - Y — —_ _ _ _ _____—_——C
m—————————————————— =
METADATA : MS1 MESSAGE BIT SYMBOLS
METADATA S |
ENCODER YMBOL MS2 MESSAGE BIT SYMBOLS
ENGINE DIFFERENT FOR |
318 EACH CODEWORD | MS3 MESSAGE BIT SYMBOLS
— 318C
: MS4 MESSAGE BIT SYMBOLS

WO 2024/258889 PCT/US2024/033475

9/13

600

DETERMINING THE MESSAGE BITS OF EACH MESSAGE
SYMBOL OF THE PLURALITY OF MESSAGE AND PARITY
SYMBOLS OF EACH CODEWORD BASED ON THE DATA FOR
THE CACHE LINE

~610

DETERMINING AT LEAST ONE METADATA SYMBOL FOR
EACH CODEWORD BASED ON THE METADATA OF THE DATA|~620
FOR THE CACHE LINE

DETERMINING THE PARITY BITS OF EACH PARITY SYMBOL
OF THE PLURALITY OF MESSAGE AND PARITY SYMBOLS OF
EACH CODEWORD BASED ON THE AT LEAST ONE ~630
METADATA SYMBOL FOR EACH CODEWORD AND EACH
MESSAGE SYMBOL OF THE PLURALITY OF MESSAGE AND
PARITY SYMBOLS OF EACH CODEWORD

FOR EACH CODEWORD OF THE PLURALITY OF
CODEWORDS OF THE CACHE LINE, ROTATING THE
PLURALITY OF MESSAGE AND PARITY SYMBOLS SO THAT A ~640
LOCATION OF EACH SYMBOL OF ONE CODEWORD IS
DIFFERENT FROM OTHER CODEWORDS OF THE PLURALITY
OF CODEWORDS OF THE CACHE LINE

STORING, IN MEMORY, EACH CODEWORD OF THE
PLURALITY OF CODEWORDS OF EACH CACHE LINE AS
ROTATED

FIG. 6

~650

WO 2024/258889 PCT/US2024/033475

10/13

700

RECEIVING A REQUEST FOR DATA ~710

ACCESSING A PLURALITY OF CODEWORDS OF EACH
CACHE LINE, EACH CODEWORD OF THE PLURALITY

~720
CODEWORDS BEING A PLURALITY OF MESSAGE AND
PARITY SYMBOLS
DECODING AT LEAST ONE METADATA SYMBOL OF
EACH CODEWORD OF THE PLURALITY OF
CODEWORDS OF EACH CACHE LINE BASED ON AT ~ 730

LEAST ONE PARITY SYMBOL IN EACH IN A
CORRESPONDING ROTATION OF THE PLURALITY OF
MESSAGE AND PARITY SYMBOLS IN EACH CODEWORD

DETERMINING THE METADATA OF THE DATA FROM

THE AT LEAST ONE METADATA SYMBOL OF EACH ~ 740

CODEWORD OF THE PLURALITY OF CODEWORDS OF
EACH CACHE LINE

RESPONSIVE TO THE REQUEST FOR DATA AND BASED
AT LEAST ON THE METADATA FOR THE DATA, ~ 750
TRANSMITTING THE DATA

FIG. 7

WO 2024/258889 PCT/US2024/033475

11/13

800

RECEIVING A REQUEST FOR DATA ~810

ACCESSING A PLURALITY OF CODEWORDS OF EACH

CACHE LINE, EACH CODEWORD OF THE PLURALITY

CODEWORDS BEING A PLURALITY OF MESSAGE AND
PARITY SYMBOLS

~820

ACCESSING MESSAGE SYMBOLS OF EACH
CODEWORD OF THE PLURALITY OF CODEWORDS OF
EACH CACHE LINE IN A CORRESPONDING ROTATION (~830

OF THE PLURALITY OF MESSAGE AND PARITY
SYMBOLS IN EACH CODEWORD

DETERMINING THE DATA OF THE CACHE FROM THE
MESSAGE BITS OF EACH MESSAGE SYMBOL OF

~840
EACH CODEWORD OF THE PLURALITY OF
CODEWORDS OF EACH CACHE LINE
RESPONSIVE TO THE REQUEST FOR DATA, 850
TRANSMITTING THE DATA

FIG. 8

WO 2024/258889

900

12/13

CLIENT DEVICE
980

PCT/US2024/033475

FABRIC
CONTROLLER
940

VIRTUAL VIRTUAL
MACHINE MACHINE
952 954

NoDE 930

!

RESOURCES
960

RAcK 920

CLoup COMPUTING PLATFORM 910

FIG. 9

WO 2024/258889 PCT/US2024/033475

13/13

1000

MEMORY
1012~
/0 PORT(S)
\-1018
PROCESSOR(S)
1014~
/O COMPONENTS
N
PRESENTATION 1020
COMPONENT(S)
1016~

POWER SUPPLY

k’I022

1010

FIG. 10

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2024/033475

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F11/10

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

paragraph [0009]
paragraph [0021]
paragraph [0032]
paragraph [0045]
paragraph [0065]
figures 1-6

abstract
paragraph [0006]
paragraph [0018]
paragraph [0026]
paragraph [0039]
paragraph [0057]
figures 1-5

- paragraph [0013]
- paragraph [0036]
- paragraph [0046]
- paragraph [0068]

A US 2012/278687 Al (SHARON ERAN [IL]
1 November 2012 (2012-11-01)

- paragraph [0029]

- paragraph [0059]

A US 2022/091936 Al (LA FETRA ROSS VOIGT 1-20
[US]) 24 March 2022 (2022-03-24)

ET AL) 1-20

I:‘ Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

v
"A" document defining the general state of the art which is not considered
to be of particular relevance
"E" earlier application or patent but published on or after the international wyr
filing date
"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other g
special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other
means
"P" document published prior to the international filing date but later than
the priority date claimed "&"

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

7 October 2024

Date of the actual completion of the international search

Date of mailing of the international search report

24/10/2024

Name and mailing address of the ISA/

NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

European Patent Office, P.B. 5818 Patentlaan 2

Authorized officer

Alonso Nogueiro, L

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2024/033475
Patent document Publication Patent family Publication
cited in search report date member(s) date
Us 2022091936 Al 24-03-2022 NONE
Us 2012278687 Al 01-11-2012 KR 20140005989 A 15-01-2014
TW 201250462 A 16-12-2012
uUs 2012278687 Al 01-11-2012
WO 2012117263 Al 07-09-2012

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - wo-search-report
	Page 52 - wo-search-report

