(86) Date de dépôt PCT/PCT Filing Date: 2005/09/06
(87) Date publication PCT/PCT Publication Date: 2006/03/16
(85) Entrée phase nationale/National Entry: 2007/01/31
(86) N° demande PCT/PCT Application No.: EP 2005/009548
(87) N° publication PCT/PCT Publication No.: 2006/027204
(30) Priorité/Priority: 2004/09/11 (DE10 2004 043 944.3)

(54) Titre : 8-(3-AMINO-PIPERIDIN-1-YL)-7-(BUT-2-INYL)-XANTHINES, LEUR PRODUCTION ET LEUR UTILISATION EN TANT QUE MEDICAMENTS
(54) Title: 8-(3-AMINO-PIPERIDIN-1-YL)-7-(BUT-2-INYL)-XANTHINES, PRODUCTION THEREOF AND USE THEREOF AS MEDICAMENTS

(57) Abrégé/Abstract:
The invention relates to substituted xanthines of general formula (I), wherein R¹ and R² have the meaning cited in claims 1 to 11. The invention also relates to the tautomers, enantiomers, diastereomers, mixtures and salts thereof, which have valuable pharmacological properties, especially an inhibiting action on the activity of the enzyme dipeptidyl-peptidase-IV (DPP-IV).
Abstract

The application relates to new substituted xanthines of general formula

\[\text{(I),} \]

wherein \(R^1 \) and \(R^2 \) are defined as in claims 1 to 11, the tautomers, the enantiomers, the diastereomers, the mixtures thereof and the salts thereof, which have valuable pharmacological properties, particularly an inhibiting effect on the activity of the enzyme dipeptidylpeptidase-IV (DPP-IV).
88275fft

New 8-(3-amino-piperidin-1-yl)-7-(but-2-ynyl)-xanthines, the preparation thereof and their use as pharmaceutical compositions

The present invention relates to new substituted xanthines of general formula

\[
\begin{align*}
\text{R}^1 & \quad \text{N} \quad \text{N} \\
\text{O} & \quad \text{O} \\
\text{R}^2 & \quad \text{N} \quad \text{N} \\
& \quad \text{R}^1 \quad \text{N} \quad \text{R}^2 \\
\text{NH}_2
\end{align*}
\]

the tautomers, the enantiomers, the diastereomers, the mixtures thereof and the salts thereof, particularly the physiologically acceptable salts thereof with inorganic or organic acids which have valuable pharmacological properties, particularly an inhibiting effect on the activity of the enzyme dipeptidylpeptidase-IV (DPP-IV), the preparation thereof, the use thereof for preventing or treating illnesses or conditions connected with an increased DPP-IV activity or capable of being prevented or alleviated by reducing the DPP-IV activity, particularly type I or type II diabetes mellitus, the pharmaceutical compositions containing a compound of general formula (I) or a physiologically acceptable salt thereof and processes for the preparation thereof.

Related xanthines are described in International Applications WO 02/068420, WO 04/018468, WO 04/018467, WO 04/041820 and WO 04/046148.

In the above formula I

\(R^1 \) denotes an arylmethyl or arylethyl group,
a heteroarylmethyl or heteroarylethyl group,

an arylcarbonylmethyl group,

5 a heteroarylcarbonylmethyl group or

an arylprop-2-enyl or heteroarylprop-2-enyl group, wherein the propenyl chain may be substituted by 1 to 4 fluorine atoms or a cyano, C₁₃-alkyloxy-carbonyl or nitro group, and

10 \(R^2 \) denotes a C₁₆-alkyl group substituted by a tetrazolyl, hydroxysulphonyl, cyano, piperidin-1-ylcarbonyl or pyrrolidin-1-ylcarbonyl group,

while in the above-mentioned piperidinyl and pyrrolidinyl groups one or two methylene groups may be replaced independently of one another by an oxygen or sulphur atom, by an imino group optionally substituted by a C₁₄-alkyl group or by a carbonyl, sulphinyl or sulphonyl group, or

a C₁₆-alkyl group substituted by a group of formula \(R_9 \cdot O-CO, (R_9)_2N-CO \) or

20 \([(R_9O)_2PO\cdot]^- \) wherein

\(R_9 \) each independently denote a hydrogen atom, a C₁₆-alkyl, C₂₆-alkenyl, C₂₆-alkynyl, aryl-C₁₃-alkyl, heteroaryl-C₁₃-alkyl, C₃-1₀-cycloalkyl-C₁₃-alkyl, C₅-1₀-cycloalkenyl-C₁₃-alkyl, aryl, heteroaryl, C₃-1₀-cycloalkyl or C₅-1₀-cycloalkenyl group,

while all the alkyl, alkenyl, alkynyl, cycloalkyl and cycloalkenyl groups mentioned for \(R_9 \) may be partly or completely fluorinated or mono- to disubstituted by identical or different substituents selected from chlorine, hydroxy, C₁₃-alkoxy and C₁₃-alkyl, and

30 in the cycloalkyl and cycloalkenyl groups mentioned for \(R_9 \) one or two methylene groups may be replaced independently of one another by an
oxygen or sulphur atom, by an imino group optionally substituted by a C\textsubscript{1-4}-alkyl group or by a carbonyl, sulphinyl or sulphonyl group,

while by the aryl groups mentioned in the definition of the above groups are meant phenyl or naphthyl groups, which may be mono-, di- or trisubstituted by R\textsubscript{h}, independently of one another, while the substituents may be identical or different and R\textsubscript{h} denotes a fluorine, chlorine, bromine or iodine atom, a trifluoromethyl, cyano, nitro, amino, aminocarbonyl, C\textsubscript{1-3}-alkoxy-carbonyl, aminosulphonyl, methyisulphonyl, acetylamino, methylsulphonylamino, C\textsubscript{1-3}-alkyl, cyclopropyl, ethenyl, ethynyl, phenyl, morpholinyl, hydroxy, C\textsubscript{1-3}-alkoxy, difluoromethoxy or trifluoromethoxy group, or two R\textsubscript{h} at two adjacent carbon atoms of the aromatic group together form a C\textsubscript{3-5}-alkylene chain, while in the alkylene chain one or two methylene groups may be substituted independently of one another by oxygen atoms or carbonyl groups, and additionally each hydrogen atom may be replaced by a fluorine atom,

by the heteroaryl groups mentioned in the definition of the above-mentioned groups are meant a pyrrolyl, furanyl, thietyl, pyridyl, indolyl, benzofuranyl, benzothiophenyl, phenanthridinyl, quinolinyl or isoquinolinyl group,

or a pyrrolyl, furanyl, thietyl, imidazolyl or pyridyl group, wherein one or two methyne groups are replaced by nitrogen atoms,

or an indolyl, benzofuranyl, benzothiophenyl, phenanthridinyl, quinolinyl or isoquinolinyl group, wherein one to three methyne groups are replaced by nitrogen atoms,

or a 1,2-dihydro-2-oxo-pyrinidinyl, 1,4-dihydro-4-oxo-pyrinidinyl, 2,3-dihydro-3-oxo-pyridazinyl, 1,2,3,6-tetrahydro-3,6-dioxo-pyridazinyl, 1,2-dihydro-2-oxo-pyrimidinyl, 3,4-dihydro-4-oxo-pyrimidinyl, 1,2,3,4-tetrahydro-2,4-dioxo-pyrimidinyl, 1,2-dihydro-2-oxo-pyrazinyl, 1,2,3,4-tetrahydro-2,3-dioxo-pyrazinyl, 2,3-dihydro-2-oxo-indolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydro-2-oxo-1H-benzimidazolyl, 2,3-dihydro-2-oxo-benzoxazolyl, 1,2-dihydro-2-oxo-quinolinyl, 1,4-dihydro-4-oxo-quinolinyl, 1,2-dihydro-1-oxo-isoquinolinyl, 1,4-dihydro-4-oxo-cinnolinyl, 1,2-dihydro-2-oxo-quinazolinyl, 3,4-
dihydro-4-oxo-quinazolinyl, 1,2,3,4-tetrahydro-2,4-dioxo-quinazolinyl, 1,2-dihydro-2-oxoquinoxaliny1, 1,2,3,4-tetrahydro-2,3-dioxo-quinoxaliny1, 1,2-dihydro-1-oxo-phthalaziny1, 1,2,3,4-tetrahydro-1,4-dioxo-phthalaziny1, chromany1, cumaraniny1, 2,3-dihydro-benzo[1,4]dioxiny1, imidazo[1,2-a]quinoliny1, benzo[1,6]naphthyridiny1, 3H-quinazolin-4-ony1, 1H-quinolin-2-ony1 or 3,4-dihydro-3-oxo-2H-benzo[1,4]oxaziny1 group,

and the above-mentioned heteroaryl groups may be mono- or disubstituted by \(R_n \), while the substituents may be identical or different and \(R_n \) is as hereinbefore defined,

by the cycloalkyl and cycloalkenyl groups mentioned in the above definitions are meant both monocyclic and polycyclic ring systems, while the polycyclic groups may be of annelated, spiro-linked or bridged structure, for example the term polycyclic groups denotes decahydronaphthalene, norbornane, spiro[4.4]nonane, spiro[4.5]decane, bicyclo[2.1.1]hexane, bicyclo[2.2.2]octane, bicyclo[3.2.1]octane, bicyclo[3.2.2]nonane, bicyclo[3.3.1]nonane, bicyclo[3.3.2]decane or adamantane or the monounsaturated derivatives thereof,

while, unless otherwise stated, the above-mentioned alkyl, alkenyl and alkyny1 groups may be straight-chain or branched,

the tautomers, enantiomers, diastereomers, the mixtures thereof, the prodrugs thereof and the salts thereof.

The carboxy groups mentioned in the definition of the abovementioned groups may be replaced by a group which can be converted into a carboxy group \textit{in vivo} or by a group which is negatively charged under physiological conditions,

and furthermore the amino and imino groups mentioned in the definition of the abovementioned groups may be substituted by a group which can be cleaved \textit{in vivo}. Such groups are described for example in WO 98/46576 and by N.M. Nielsen \textit{et al.} in International Journal of Pharmaceutics \textbf{39}, 75-85 (1987).
By a group which can be converted in vivo into a carboxy group is meant, for example, a hydroxymethyl group, a carboxy group esterified with an alcohol wherein the alcohol moiety is preferably a C$_{1,6}$-alkanol, a phenyl-C$_{1,3}$-alkanol, a C$_{3,9}$-cycloalkanol, while a C$_{5,8}$-cycloalkanol may additionally be substituted by one or two C$_{1,3}$-alkyl groups, a C$_{5,8}$-cycloalkanol wherein a methylene group in the 3 or 4 position is replaced by an oxygen atom or by an imino group optionally substituted by a C$_{1,3}$-alkyl, phenyl-C$_{1,3}$-alkyl, phenyl-C$_{1,3}$-alkoxycarbonyl or C$_{2,6}$-alkanoyl group and the cycloalkanol moiety may additionally be substituted by one or two C$_{1,3}$-alkyl groups, a C$_{4,7}$-cycloalkenol, a C$_{3,5}$-alkenol, a phenyl-C$_{3,5}$-alkenol, a C$_{3,5}$-alkynol or phenyl-C$_{3,5}$-alkynol with the proviso that no bonds to the oxygen atom start from a carbon atom which carries a double or triple bond, a C$_{3,8}$-cycloalkyl-C$_{1,3}$-alkanol, a bicycloalkanol with a total of 8 to 10 carbon atoms which may additionally be substituted in the bicycloalkyl moiety by one or two C$_{1,3}$-alkyl groups, a 1,3-dihydro-3-oxo-1-isobenzofuranol or an alcohol of formula

$$R_p\text{-CO-O-}(R_qCR_i)\text{-OH},$$

wherein

20 R_p denotes a C$_{1,8}$-alkyl, C$_{5,7}$-cycloalkyl, C$_{1,8}$-alkyloxy, C$_{5,7}$-cycloalkyloxy, phenyl or phenyl-C$_{1,3}$-alkyl group,

R_q denotes a hydrogen atom, a C$_{1,3}$-alkyl, C$_{5,7}$-cycloalkyl or phenyl group and

25 R_i denotes a hydrogen atom or a C$_{1,3}$-alkyl group,

by a group which is negatively charged under physiological conditions is meant, for example, a tetrazol-5-yl, phenylcarbonylaminocarbonyl, trifluoromethylcarbonylaminocarbonyl, C$_{1,6}$-alkylsulphonylamino, phenylsulphonylamin, benzylsulphonylamino, trifluoromethylsulphonylamino, C$_{1,6}$-alkylsulphonylaminocarbonyl, phenylsulphonylaminocarbonyl, benzylsulphonylaminocarbonyl or perfluoro-C$_{1,6}$-alkylsulphonylamino carbonyl group
and by a group which can be cleaved in vivo from an imino or amino group is meant, for example, a hydroxy group, an acyl group such as a phenylcarboxyl group optionally mono- or disubstituted by fluorine, chlorine, bromine or iodine atoms, by C_{1,3}-alkyl or C_{1,3}-alkoxy groups, while the substituents may be identical or different, a pyridinoyl group or a C_{1,6}-alkanoyl group such as the formyl, acetyl, propionyl, butanoyl, pentanoyl or hexanoyl group, a 3,3,3-trichloropropionyl or allyloxy carbonyl group, a C_{1,6}-alkoxy carbonyl or C_{1,6}-alkylcarboxyloxy group, wherein hydrogen atoms may be wholly or partially replaced by fluorine or chlorine atoms such as the methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, tert.butoxycarbonyl, pentoxycarbonyl, hexoxycarbonyl, octyloxycarbonyl, nonyloxycarbonyl, decyloxycarbonyl, undecyloxycarbonyl, dodecyloxycarbonyl, hexadecyloxycarbonyl, methylcarbonyloxy, ethylcarbonyloxy, 2,2,2-trichloroethylcarbonyloxy, propylcarbonyloxy, isopropylcarbonyloxy, butylcarbonyloxy, tert.butylcarbonyloxy, pentylcarbonyloxy, hexylcarbonyloxy, octylcarbonyloxy, nonylcarbonyloxy, decylcarbonyloxy, undecylcarbonyloxy, dodecylcarbonyloxy or hexadecylcarbonyloxy group, a phenyl-C_{1,6}-alkoxy carbonyl group such as the benzylloxycarbonyl, phenylethoxycarbonyl or phenylpropoxycarbonyl group, a 3-amino-propionyl group wherein the amino group may be mono- or disubstituted by C_{1,6}-alkyl or C_{3,7}-cycloalkyl groups and the substituents may be identical or different, a C_{1,3}-alkylsulphonyl-C_{2,4}-alkoxy carbonyl, C_{1,3}-alkoxy-C_{2,4}-alkoxy-C_{2,4}-alkoxy carbonyl, R_p-CO-O-(R_qCR_1)-O-CO-, C_{1,6}-alkyl-CO-NH-(R_qCR_1)-O-CO- or C_{1,6}-alkyl-CO-O-(R_qCR_1)-(R_qCR_1)-O-CO- group, wherein R_p to R_1 are as hereinbefore defined,

R_3 and R_4, which may be identical or different, denote hydrogen atoms or C_{1,3}-alkyl groups.

Moreover, unless otherwise stated, the saturated alkyl and alkoxy moieties containing more than 2 carbon atoms mentioned in the definitions above also include the branched isomers thereof such as the isopropyl, tert.butyl, isobutyl group, etc.

R^1 may denote for example a 2-cyanobenzyl, 3-cyanobenzyl, 2-fluorobenzyl, 3-fluorobenzyl, 3-methoxybenzyl, 4-bromo-2-cyanobenzyl, 3-chloro-2-cyanobenzyl, 2-
cyano-4-fluorobenzyl, 2-cyano-5-fluorobenzyl, 2-cyano-6-fluorobenzyl, 4-cyano-3-fluorobenzyl, 4-cyano-3-nitrobenzyl, 3,5-dimethoxybenzyl, 2-cyano-3-methoxybenzyl, 2-cyano-4-methoxybenzyl, 2-cyano-5-methoxybenzyl, 2,6-dicyanobenzyl, 3,4-dicyanobenzyl, 3,5-dicyanobenzyl, 5-cyanofuranymethyl, oxazolylmethyl, isoxazolylmethyl, 5-methoxycarbonylthienylmethyl, pyridinylmethyl, 3-cyanopyridin-2-ylmethyl, 6-cyanopyridin-2-ylmethyl, 6-fluoropyridin-2-ylmethyl, pyrimidin-2-yl, 4-methylpyrimidin-2-yl, 4,6-dimethylpyrimidin-2-yl, 3-(2-cyanophenyl)-prop-2-enyl, 3-(2-nitrophenyl)-prop-2-enyl, 3-(pyridin-2-yl)-prop-2-enyl, 3-(pentafluorophenyl)-prop-2-enyl, phenylcarbonylmethyl, 3-methoxyphenylcarbonylmethyl, 1-methyl-benzotriazol-5-ylmethyl, naphth-1-ylmethyl, 4-cyanonaphth-1-ylmethyl, 4-fluoronaphth-1-ylmethyl, 4-bromonaphth-1-ylmethyl, 4-methoxynaphth-1-ylmethyl, quinolin-1-ylmethyl, 4-cyanoquinolin-1-ylmethyl, 8-cyanoquinolin-7-ylmethyl, isoquinolin-1-ylmethyl, 4-cyanoisoquinolin-1-ylmethyl, 3-methylisoquinolin-1-ylmethyl, quinazolin-2-ylmethyl, 4-methylquinazolin-2-ylmethyl, 4-cyanoquinazolin-2-ylmethyl, 4-aminoquinazolin-2-ylmethyl, 4-morpholin-4-ylquinazolin-2-ylmethyl, [1,5]naphthridin-2-ylmethyl, [1,5]naphthridin-3-ylmethyl, phenanthridin-6-ylmethyl, quinoxalin-6-ylmethyl or 2,3-dimethyl-quinoxalin-6-ylmethyl group.

R² may denote for example a cyanomethyl, cyanoethyl, cyanopropyl, carboxymethyl, carboxyethyl, carboxypropyl, methoxycarbonylmethyl, methoxycarbonylethyl, methoxycarbonylpropyl, ethoxycarbonylmethyl, ethoxycarbonylethyl, ethoxycarbonylpropyl, isopropoxycarbonylmethyl, isopropoxycarbonylethyl, isopropoxycarbonylpropyl, propoxycarbonylmethyl, propoxycarbonylethyl, propoxycarbonylpropyl, allyloxy carbonylmethyl, propargyloxy carbonylmethyl, butoxycarbonylmethyl, tert-butoxycarbonylmethyl, benzyl oxycarbonylmethyl or p-methoxybenzylcarbonylmethyl group.

Preferred compounds of general formula I are those wherein

R¹ is as hereinbefore defined, and

R² denotes a C₁₄-alkyl group substituted by a cyano group or a group of formula R₈-O-CO₂-.
where R_a is as hereinbefore defined,

the enantiomers, the diastereomers, the mixtures thereof and the salts thereof.

5

Particularly preferred are those compounds of general formula I wherein

R^1 denotes a phenylmethyl, phenylcarbonylmethyl, phenylprop-2-enyl, pyridinylmethyl, pyrimidinylmethyl, naphthylmethyl, quinolinylmethyl, 1H-quinolin-2-onylmethyl, imidazo[1,2-a]quinolinylmethyl, isoquinolinylmethyl, quinazolinylmethyl, 3H-quinazolin-4-onylmethyl, quinoxalinylmethyl, phenanthridinylmethyl, naphthyridinylmethyl, benzo[1,6]naphthridinylmethyl, imidazopyridinylmethyl or benzotriazolylmethyl group which may be substituted in each case by one or two fluorine, chlorine or bromine atoms or by one or two cyano, nitro, amino, C$_{1,3}$-alkyl, C$_{1,3}$-alkoxy, phenyl or morpholinyl groups, while the substituents may be identical or different, and

R^2 denotes a cyano-C$_{1,3}$-alkyl, hydroxycarbonylmethyl, C$_{1,6}$-alkyloxy carbonylmethyl, C$_{3,6}$-alkenyloxy carbonylmethyl, C$_{3,6}$-cycloalkyl-C$_{1,3}$-alkyloxy carbonylmethyl or C$_{3,6}$-cycloalkyloxy carbonylmethyl group, while the alkyl, alkenyl and cycloalkyl groups may each be substituted by one or two C$_{1,3}$-alkyl or C$_{1,3}$-alkyloxy groups and/or partly or completely fluorinated,

the enantiomers, the diastereomers, the tautomers, the mixtures thereof and the salts thereof.

Most particularly preferred are those compounds of general formula I wherein

R^1 denotes a pyridinylmethyl, pyrimidinylmethyl, isoquinolinylmethyl, quinazolinylmethyl, quinoxalinylmethyl or naphthylmethyl group which may be substituted by one or two cyano or methyl groups, and
R^2 denotes a cyanomethyl, hydroxycarbonylmethyl, methoxycarbonylmethyl or ethoxycarbonylmethyl group,

the enantiomers, the tautomers and the salts thereof.

A preferred sub-group comprises those compounds of general formula I wherein

R^1 denotes a quinazolinylmethyl group which may be substituted by a methyl group,
and

R^2 denotes a methyl group substituted by a C_{1-4}-alkoxy-carbonyl group,

the enantiomers, the tautomers and the salts thereof.

The following preferred compounds are mentioned by way of example:

(a) 1-(naphthyl-1ylmethyl)-3-(methoxycarbonylmethyl)-7-(but-2-ynyl)-8-(3-amino-piperidin-1yl)-xanthine
(b) 1-(naphthyl-1ylmethyl)-3-(cyanomethyl)-7-(but-2-ynyl)-8-(3-amino-piperidin-1yl)-xanthine
(c) (R)-1-(4-methyl-quinazolin-2-ylmethyl)-3-(methoxycarbonylmethyl)-7-(but-2ynyl)-8-(3-amino-piperidin-1yl)-xanthine
(d) (R)-1-(4-methyl-quinazolin-2-ylmethyl)-3(ethoxycarbonylmethyl)-7-(but-2-ynyl)-8-(3-amino-piperidin-1yl)-xanthine
(e) (R)-1-(4-methyl-quinazolin-2-ylmethyl)-3(hydroxycarbonylmethyl)-7-(but-2ynyl)-8-(3-amino-piperidin-1yl)-xanthine

and the tautomers and the salts thereof.

According to the invention the compounds of general formula I are obtained by methods known *per se*, for example by the following methods:
a) reacting a compound of general formula

\[\text{(II)} \]

wherein
R\(^1\) and R\(^2\) are as hereinbefore defined and
Z\(^1\) denotes a leaving group such as a halogen atom, a substituted hydroxy, mercapto, sulphinyl, sulphonyl or sulphonyloxy group such as e.g. a chlorine, bromine or iodine atom, a methanesulphonyl, trifluoromethanesulphonyloxy or methanesulphonyloxy group, with 3-aminopiperidine, a 3-N-protected aminopiperidine, a derivative or salts thereof.

Protecting groups for the 3-amino group might be, for example, the formyl, acetyl, trifluoroacetyl, ethoxycarbonyl, tert.-butoxycarbonyl, allyloxy carbonyl, benzyl oxycarbonyl, p-methoxy benzyl carbonyl, benzyl, methoxy benzyl, 2,4-dimethoxy benzyl, phthalyl or tetrachlorophthalyl group. However, the amino group may also be part of a heteraromatic group, for example, such as e.g. 2,5-dimethylpyrrole and may be released therefrom at a later stage.

The 3-amino function may also be masked in the form of a carboxy group or a derivative thereof, which may be converted into the amino function by so-called Curtius, Schmidt or Hofmann degradation (cf inter alia J. March, Advanced Organic Reactions, Reactions, Mechanisms, and Structure, 4th Edition, John Wiley & Sons, Chichester/New York/Brisbane/Toronto/Singapore, 1992 and literature cited therein).

The reaction is expediently carried out in a solvent such as isopropanol, butanol, tetrahydrofuran, dioxane, dimethylformamide, dimethyl sulfoxide, ethyleneglycol monomethyl ether, ethyleneglycol diethyl ether or sulpholane, optionally in the
presence of an inorganic or tertiary organic base, e.g. sodium carbonate, potassium carbonate or potassium hydroxide, a tertiary organic base, e.g. triethylamine, or in the presence of N-ethyl-diisopropylamine (Hünig base), while these organic bases may simultaneously also serve as solvent, and optionally in the presence of a reaction accelerator such as an alkali metal halide or a palladium- or copper-based catalyst at temperatures between -20 and 180°C, but preferably at temperatures between -10 and 120°C. The reaction may, however, also be carried out without a solvent in an excess of piperidine derivative with conventional heating or in the microwave oven.

b) deprotecting a compound of general formula

![Chemical Structure](image)

(III),

wherein R₁ and R₂ are as hereinbefore defined and NPG denotes a protected or masked amino functionality. Possible protective groups or maskings of the amino function have already been mentioned under a). Preferably the amino group is protected by a tert.-butoxycarbonyl or phthalyl group.

The tert.-butoxycarbonyl group is preferably cleaved by treating with an acid such as trifluoroacetic acid or hydrochloric acid or by treating with bromotrimethylsilane or iodonitriletrimethylsilane, optionally using a solvent such as methylene chloride, ethyl acetate, dioxane, methanol, isopropanol or diethyl ether, at temperatures between 0 and 80°C. The phthalyl group is preferably cleaved in the presence of hydrazine or a primary amine such as methylamine, ethylamine, ethanolamine or n-butylamine in a solvent such as methanol, ethanol, isopropanol, toluene, toluene/water or dioxane, at temperatures between 20 and 120°C.
In the reactions described hereinbefore, any reactive groups present such as amino, alkylamino or imino groups may be protected during the reaction by conventional protecting groups which are cleaved again after the reaction.

For example, protecting groups for an amino, alkylamino or imino group may be a formyl, acetyl, trifluoroacetyl, ethoxycarbonyl, tert.butoxycarbonyl, benzyloxycarbonyl, benzyl, methoxybenzyl or 2,4-dimethoxybenzyl group and additionally, for the amino group, a phthalyl group.

Any protecting group used is optionally subsequently cleaved for example by hydrolysis in an aqueous solvent, e.g. in water, isopropanol/water, acetic acid/water, tetrahydrofuran/water or dioxane/water, in the presence of an acid such as trifluoroacetic acid, hydrochloric acid or sulphuric acid or in the presence of an alkali metal base such as sodium hydroxide or potassium hydroxide or aprotically, e.g. in the presence of iodosotrimethylsilane, at temperatures between 0 and 120°C, preferably at temperatures between 10 and 100°C.

However, a benzyl, methoxybenzyl or benzyloxycarbonyl group is cleaved, for example, hydrogenolytically, e.g. with hydrogen in the presence of a catalyst such as palladium/charcoal in a suitable solvent such as methanol, ethanol, ethyl acetate or glacial acetic acid, optionally with the addition of an acid such as hydrochloric acid at temperatures between 0 and 100°C, but preferably at ambient temperatures between 20 and 60°C, and at a hydrogen pressure of 1 to 7 bar, but preferably from 3 to 5 bar. However, a 2,4-dimethoxybenzyl group is preferably cleaved in trifluoroacetic acid in the presence of anisole.

A tert.-butyl or tert. butyloxycarbonyl group is preferably cleaved by treating with an acid such as trifluoroacetic acid or hydrochloric acid or by treating with iodosotrimethylsilane, optionally using a solvent such as methylene chloride, dioxane, methanol or diethyl ether.

A trifluoroacetyl group is preferably cleaved by treating with an acid such as hydrochloric acid, optionally in the presence of a solvent such as acetic acid, at
temperatures between 50 and 120°C or by treating with sodium hydroxide solution, optionally in the presence of a solvent such as tetrahydrofuran, at temperatures between 0 and 50°C.

5 A phthalyl group is preferably cleaved in the presence of hydrazine or a primary amine such as methylamine, ethylamine or n-butylamine in a solvent such as methanol, ethanol, ethanolamine, isopropanol, toluene, toluene/water or dioxane at temperatures between 20 and 120°C.

10 The liberation of an amino function from 2,5-dimethylpyrrole is carried out, for example, with hydroxylamine hydrochloride in the presence of a base such as e.g. triethylamine, in a suitable solvent such as an alcohol, such as e.g. methanol, ethanol, propanol or isopropanol or water or mixtures thereof, at temperatures between 0 and 150°C, but preferably at ambient temperatures between 50 and 110°C.

Moreover, the compounds of general formula I obtained may be resolved into their enantiomers and/or diastereomers, as mentioned hereinbefore. Thus, for example, cis/trans mixtures may be resolved into their cis and trans isomers, and compounds with at least one optically active carbon atom may be separated into their enantiomers.

Thus, for example, the cis/trans mixtures obtained may be separated by chromatography into their cis and trans isomers, the compounds of general formula I obtained which occur as racemates may be separated by methods known per se (cf. Allinger N. L. and Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971) into their optical enantiomers and compounds of general formula I with at least 2 asymmetric carbon atoms may be resolved into their diastereomers on the basis of their physical-chemical differences using methods known per se, e.g. by chromatography and/or fractional crystallisation, and, if these compounds are obtained in racemic form, they may subsequently be resolved into the enantiomers as mentioned above.
The enantiomers are preferably separated by column separation on chiral phases or by recrystallisation from an optically active solvent or by reacting with an optically active substance which forms salts or derivatives such as e.g. esters or amides with the racemic compound, particularly acids and the activated derivatives or alcohols thereof, and separating the diastereomeric mixture of salts or derivatives thus obtained, e.g. on the basis of their differences in solubility, whilst the free antipodes may be released from the pure diastereomeric salts or derivatives by the action of suitable agents. Optically active acids in common use are e.g. the D- and L-forms of tartaric acid or dibenzoyltartaric acid, di-o-p-toluoyltartaric acid, malic acid, mandelic acid, camphorsulphonic acid, glutamic acid, aspartic acid or quinic acid. An optically active alcohol may be, for example, (+)- or (-)-menthol and an optically active acyl group in amides, for example, may be a (+)- or (-)-menthylxoyxy carbonyl.

Furthermore, the compounds of formula I obtained may be converted into the salts thereof, particularly for pharmaceutical use into the physiologically acceptable salts with inorganic or organic acids. Acids which may be used for this purpose include for example hydrochloric acid, hydrobromic acid, sulphuric acid, methanesulphonic acid, phosphoric acid, fumaric acid, succinic acid, lactic acid, citric acid, tartaric acid or maleic acid.

Moreover, the new compounds of formula I, if they contain a carboxy group, may if desired be converted into the salts thereof with inorganic or organic bases, particularly for pharmaceutical use into the physiologically acceptable salts thereof. Suitable bases for this include, for example, sodium hydroxide, potassium hydroxide, cyclohexylamine, ethanolamine, diethanolamine and triethanolamine.

The compounds of general formulae II and III used as starting compounds are either known from the literature or may be prepared by methods known from the literature (see Examples I to VI).

As already mentioned hereinbefore, the compounds of general formula I according to the invention and the physiologically acceptable salts thereof have valuable pharmacological properties, particularly an inhibiting effect on the enzyme DPP-IV.
The biological properties of the new compounds were investigated as follows:

The ability of the substances and their corresponding salts to inhibit the DPP-IV activity can be demonstrated in an experiment in which an extract of the human colon carcinoma cell line Caco-2 is used as the DPP IV source. The differentiation of the cells in order to induce the DPP-IV expression was carried out in accordance with the description by Reiher et al. in an article entitled "Increased expression of intestinal cell line Caco-2", which appeared in Proc. Natl. Acad. Sci. Vol. 90, pp. 5757-5761 (1993). The cell extract was obtained from cells solubilised in a buffer (10mM Tris HCl, 0.15 M NaCl, 0.04 t.i.u. aprotinin, 0.5% Nonidet-P40, pH 8.0) by centrifugation at 35,000 g for 30 minutes at 4°C (to remove cell debris).

The DPP-IV assay was carried out as follows:

50 µl of substrate solution (AFC; AFC is amido-4-trifluoromethylcoumarin), final concentration 100 µM, were placed in black microtitre plates. 20 µl of assay buffer (final concentrations 50 mM Tris HCl pH 7.8, 50 mM NaCl, 1% DMSO) was pipetted in. The reaction was started by the addition of 30 µl of solubilised Caco-2 protein (final concentration 0.14 µg of protein per well). The test substances under investigation were typically added prediluted to 20 µl, while the volume of assay buffer was then reduced accordingly. The reaction was carried out at ambient temperature, the incubation period was 60 minutes. Then the fluorescence was measured in a Victor 1420 Multilabel Counter, with the excitation wavelength at 405 nm and the emission wavelength at 535 nm. Dummy values (corresponding to 0 % activity) were obtained in mixtures with no Caco-2 protein (volume replaced by assay buffer), control values (corresponding to 100 % activity) were obtained in mixtures without any added substance. The potency of the test substances in question, expressed as IC\textsubscript{50} values, were calculated from dosage/activity curves consisting of 11 measured points in each case. The following results were obtained:
<table>
<thead>
<tr>
<th>Compound (Example No.)</th>
<th>DPP IV inhibition IC$_{50}$ [nM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(2)</td>
<td>3</td>
</tr>
<tr>
<td>1(3)</td>
<td>3</td>
</tr>
</tbody>
</table>

The compounds prepared according to the invention are well tolerated as no toxic side effects could be detected in rats after the oral administration of 10 mg/kg of the compound of Example 1(2), for example.

In view of their ability to inhibit DPP-IV activity, the compounds of general formula I according to the invention and the corresponding pharmaceutically acceptable salts thereof are suitable for influencing any conditions or diseases which can be affected by the inhibition of the DPP-IV activity. It is therefore to be expected that the compounds according to the invention will be suitable for the prevention or treatment of diseases or conditions such as type I and type II diabetes mellitus, prediabetes, reduced glucose tolerance or changes in the fasting blood sugar, diabetic complications (e.g. retinopathy, nephropathy or neuropathies), metabolic acidosis or ketosis, reactive hypoglycaemia, insulin resistance, metabolic syndrome, dyslipidaemias of various origins, arthritis, atherosclerosis and related diseases, obesity, allograft transplantation and osteoporosis caused by calcitonin. In addition, these substances are suitable for preventing B-cell degeneration such as e.g. apoptosis or necrosis of pancreatic B-cells. The substances are also suitable for improving or restoring the function of pancreatic cells and additionally increasing the size and number of pancreatic B-cells. Additionally, on the basis of the role of the glucagon-like peptides such as e.g. GLP-1 and GLP-2 and their link with DPP-IV inhibition, it is expected that the compounds according to the invention will be suitable for achieving, inter alia, a sedative or tranquillisng effect, as well as having a favourable effect on catabolic states after operations or hormonal stress responses or possibly reducing mortality and morbidity after myocardial infarction. Moreover, they are suitable for treating any conditions connected with the effects mentioned above and mediated by GLP-1 or GLP-2. The compounds according to the invention
may also be used as diuretics or antihypertensives and are suitable for preventing and treating acute kidney failure. The compounds according to the invention may also be used to treat inflammatory complaints of the respiratory tract. They are also suitable for preventing and treating chronic inflammatory bowel diseases such as e.g. irritable bowel syndrome (IBS), Crohn's disease or ulcerative colitis and also pancreatitis. It is also expected that they can be used for all kinds of injury or damage to the gastrointestinal tract such as may occur in colitis and enteritis, for example. Moreover, it is expected that DPP-IV inhibitors and hence the compounds according to the invention can be used to treat infertility or to improve fertility in humans or mammals, particularly if the infertility is connected with insulin resistance or with polycystic ovary syndrome. On the other hand these substances are suitable for influencing sperm motility and are thus suitable for use as male contraceptives. In addition, the substances are suitable for treating growth hormone deficiencies connected with restricted growth, and may reasonably be used for all indications for which growth hormone may be used. The compounds according to the invention are also suitable, on the basis of their inhibitory effect on DPP-IV, for treating various autoimmune diseases such as e.g. rheumatoid arthritis, multiple sclerosis, thyroiditis and Basedow's disease, etc. They may also be used to treat viral diseases and also, for example, in HIV infections, for stimulating blood production, in benign prostatic hyperplasia, gingivitis, as well as for the treatment of neuronal defects and neurodegenerative diseases such as Alzheimer's disease, for example. The compounds described may also be used for the treatment of tumours, particularly for modifying tumour invasion and also metastasisation; examples here are their use in treating T-cell lymphomas, acute lymphoblastic leukaemia, cell-based thyroid carcinomas, basal cell carcinomas or breast cancers. Other indications are stroke, ischaemia of various origins, Parkinson's disease and migraine. In addition, further indications include follicular and epidermal hyperkeratoses, increased keratinocyte proliferation, psoriasis, encephalomyelitis, glomerulonephritis, lipodystrophies, as well as psychosomatic, depressive and neuropsychiatric diseases of all kinds.

The compounds according to the invention may also be used in conjunction with other active substances. Suitable therapeutic agents for such combinations include for example antidiabetic agents such as metformin, sulphonylureas (e.g.
glibenclamide, tolbutamide, glimepiride), nateglinide, repaglinide, thiazolidinediones (e.g. rosiglitazone, pioglitazone), PPAR-gamma agonists (e.g. GI 262570) and antagonists, PPAR-gamma/alpha modulators (e.g. KRP 297), PPAR-gamma/alpha/delta modulators, AMPK activators, ACC1 and ACC2 inhibitors, DGAT-inhibitors, SMT3 receptor agonists, 11β-HSD inhibitors, FGF19 agonists or mimetics, alpha-glucosidase inhibitors (e.g. acarbose, voglibose), other DPPIV inhibitors, alpha2 antagonists, insulin and insulin analogues, GLP-1 and GLP-1 analogues (e.g. exendin-4) or amylin. Also, combinations with SGLT2 inhibitors such as T-1095 or KGT-1251 (869682), inhibitors of protein tyrosine phosphatase 1, substances which influence deregulated glucose production in the liver, such as e.g. inhibitors of glucose-6-phosphatase, or fructose-1,6-bisphosphatase, glycogen phosphorylase, glucagon receptor antagonists and inhibitors of phosphoenol pyruvate carboxykinase, glycogen synthase kinase or pyruvate dehydrokinase, lipid lowering agents, such as HMG-CoA-reductase inhibitors (e.g. simvastatin, atorvastatin), fibrates (e.g. bezafibrate, fenofibrate), nicotinic acid and its derivatives, PPAR-alpha agonists, PPAR-delta agonists, ACAT inhibitors (e.g. avasimibe) or cholesterol absorption inhibitors such as for example ezetimibe, bile acid-binding substances such as for example cholestyramine, inhibitors of ileal bile acid transport, HDL-raising compounds such as for example inhibitors of CETP or regulators of ABC1 or LXRA/alpha antagonists, LXRB beta agonists or LXRA/alpha/beta regulators or active substances for the treatment of obesity, such as e.g. sibutramine or tetrahydrodipostatin, dexfenfluramine, axokine, antagonists of the cannabinoid1 receptor, MCH-1 receptor antagonists, MC4 receptor agonists, NPY5 or NPY2 antagonists or β3-agonists such as SB-418790 or AD-9677 as well as agonists of the 5HT2c receptor.

It is also possible to combine the compounds with drugs for treating high blood pressure such as e.g. All antagonists or ACE inhibitors, diuretics, β-blockers, Ca-antagonists, etc., or combinations thereof.

The dosage required to expediently achieve such an effect is, by intravenous route, 1 to 100 mg, preferably 1 to 30 mg, and by oral route 1 to 1000 mg, preferably 1 to 100 mg, in each case 1 to 4 times a day. For this purpose, the compounds of formula I
prepared according to the invention, optionally combined with other active substances, may be incorporated together with one or more inert conventional carriers and/or diluents, e.g. with corn starch, lactose, glucose, microcrystalline cellulose, magnesium stearate, polyvinylpyrrolidone, citric acid, tartric acid, water, water/ethanol, water/glycerol, water/sorbitol, water/polyethylene glycol, propylene glycol, cetylstearyl alcohol, carboxymethylcellulose or fatty substances such as hard fat or suitable mixtures thereof into conventional galenic preparations such as plain or coated tablets, capsules, powders, suspensions or suppositories.

The Examples that follow are intended to illustrate the invention:
Preparation of the starting compounds:

Example I

1-ethoxycarbonylmethyl-3-cyano-2-phenyl-isourea

29.3 g glycine ethylester hydrochloride are added to a solution of 50.0 g diphenyl-N-cyano-carbonimidate in 29 ml triethylamine and 500 ml isopropanol. The solution is stirred for 16 h (hours) at ambient temperature and then evaporated down. The residue is dissolved in ethyl acetate and the organic phase is washed with water and aqueous potassium carbonate solution. The organic phase is dried over sodium sulphate and the solvent is eliminated completely. The residue is washed with diethyl ether and dried.

Yield: 35.5 g (68% of theory)

Mass spectrum (ESI⁺): m/z = 248 [M+H]⁺

Example II

1-ethoxycarbonylmethyl-1-(but-2-ynyl)-3-cyano-2-phenyl-isourea

11 ml of but-2-ynylbromide are added to a mixture of 30.2 g 1-ethoxycarbonylmethyl-3-cyano-2-phenyl-isourea and 20.0 g potassium carbonate in 200 ml acetone. After 1 day (day) stirring at ambient temperature a further 6.5 g potassium carbonate and 3.5 ml of but-2-ynylbromide are added. After another 20 h at ambient temperature the solvent is removed and ethyl acetate is added. The organic phase is washed with water, dried over sodium sulphate and evaporated to dryness.

Yield: 35.2 g (96% of theory)

Mass spectrum (ESI⁺): m/z = 300 [M+H]⁺

Example III

3-tert-butoxycarbamoylamino-N-(ethoxycarbonylmethyl)-N-(but-2-ynyl)-N'-cyano-piperidine-1-carboxamidine

10.0 g of 1-ethoxycarbonylmethyl-1-(but-2-ynyl)-3-cyano-2-phenyl-isourea are added to a mixture of 10.0 g 3-tert-butoxycarbamoylamino piperidine and 4.8 g potassium carbonate in 50 ml of dimethylformamide. The reaction mixture is stirred for 1 day at ambient temperature and then a further 1.6 g potassium carbonate and 3.0 g 3-tert-butoxycarbamoylamino piperidine are added. After another 3 days at ambient
temperature water is added and the mixture is extracted with ethyl acetate. The organic extracts are dried over sodium sulphate, the solvent is removed and the residue is purified on silica gel (cyclohexane/ethyl acetate 5:1->1:2).

Yield: 12.5 g (approx. 90%, 83% of theory)

5 Mass spectrum (ESI⁺): m/z = 406 [M+H]⁺

The following compound is obtained analogously to Example III:

(1) (R)-3-tert-butoxycarbonylamino-N-(ethoxycarbonylmethyl)-N-(but-2-ynyl)-N'-cyano-piperidine-1-carboxamidine

Mass spectrum (ESI⁺): m/z = 406 [M+H]⁺

Example IV
Ethyl 5-amino-2-(3-tert-butoxycarbonylamino-piperidin-1-yl)-3-(but-2-ynyl)-3H-imidazole-4-carboxylate

2.5 g sodium ethoxide are added to a solution of 12.5 g (approx. 90%) 3-tert-butoxycarbonylamino-N-(ethoxycarbonylmethyl)-N-(but-2-ynyl)-N'-cyano-piperidine-1-carboxamidine in 100 ml dry ethanol. The reaction solution is stirred for 3 h at ambient temperature and then neutralised with 1 M hydrochloric acid. The solvent is removed, water is added and the mixture is extracted with ethyl acetate. The organic extracts are dried over sodium sulphate, the solvent is removed and the residue is purified on silica (cyclohexane/ethyl acetate 3:1->1:5).

Yield: 5.7 g (51% of theory)

Mass spectrum (ESI⁺): m/z = 406 [M+H]⁺

The following compound is obtained analogously to Example III:

(1) ethyl 5-amino-2-(3-tert-butoxycarbonylamino-piperidin-1-yl)-3-(but-2-ynyl)-3H-imidazole-4-carboxylate

Mass spectrum (ESI⁺): m/z = 406 [M+H]⁺
Example V

1-(naphth-1-ylmethyl)-7-(but-2-ynyl)-8-(3-tert-butoxycarbonylamino-piperidin-1-yl)-xanthine

0.5 g triphosgene and 1.4 ml triethylamine are added successively to an ice-cooled solution of 2.0 g of ethyl 5-amino-2-(3-tert-butoxycarbonylamino-piperidin-1-yl)-3-(but-2-ynyl)-3H-imidazole-4-carboxylate in 35 ml dry 1,2-dimethoxyethane. After 2 h stirring at ambient temperature 0.76 ml naphth-1-ylmethylamine and a further 35 ml dry 1,2-dimethoxyethane are added. The reaction solution is stirred for a further 14 h at ambient temperature. Then the solution is evaporated down to approx. 20 ml and diluted with 150 ml dichloromethane. The organic phase is washed with 1 M hydrochloric acid and with aqueous sodium hydrogen carbonate solution and then dried over sodium sulphate. After the solvent has been eliminated the residue is dissolved in 100 ml of ethanol and combined with 0.41 g sodium ethoxide. The solution is stirred for 4 h at 60°C. After cooling to ambient temperature the reaction solution is neutralised with 1 M hydrochloric acid and the ethanol is evaporated off. Water is added and the precipitate is separated off, washed with ether and dried at 60°C.

Yield: 2.1 g (77% of theory)

Mass spectrum (ESI⁺): m/z = 543 [M+H]⁺

The following compound is obtained analogously to Example V:

(1) (R)-1-(4-methyl-quinazolin-2-ylmethyl)-7-(but-2-ynyl)-8-(3-tert-butoxycarbonylamino-piperidin-1-yl)-xanthine

Mass spectrum (ESI⁺): m/z = 559 [M+H]⁺

Example VI

1-(naphth-1-ylmethyl)-3-(cyanomethyl)-7-(but-2-ynyl)-8-(3-tert-butoxycarbonylamino-piperidin-1-yl)-xanthine

30 µl of bromoacetonitrile are added to a mixture of 0.20 g 1-(naphth-1-ylmethyl)-7-(but-2-ynyl)-8-(3-tert-butoxycarbonylamino-piperidin-1-yl)-xanthine and 0.10 g potassium carbonate in 3 ml of dimethylformamide. The reaction mixture is stirred for
3 h at 60°C and then cooled to ambient temperature. Water is added and the precipitate is separated off and dried at 60°C.

Yield: 0.20 g (93% of theory)

Mass spectrum (ESI⁺): m/z = 582 [M+H]⁺

The following compounds are obtained analogously to Example VI:

(1) 1-(naphth-1-ylmethyl)-3-(methoxycarbonylmethyl)-7-(but-2-ynyl)-8-(3-tert-butoxycarbonylamino-piperidin-1-yl)-xanthine

Mass spectrum (ESI⁺): m/z = 615 [M+H]⁺

(2) (R)-1-(4-methylquinazolin-2-ylmethyl)-3-(methoxycarbonylmethyl)-7-(but-2-ynyl)-8-(3-tert-butoxycarbonylamino-piperidin-1-yl)-xanthine

Mass spectrum (ESI⁺): m/z = 631 [M+H]⁺

(3) (R)-1-(4-methylquinazolin-2-ylmethyl)-3-(ethoxycarbonylmethyl)-7-(but-2-ynyl)-8-(3-tert-butoxycarbonylamino-piperidin-1-yl)-xanthine

Mass spectrum (ESI⁺): m/z = 645 [M+H]⁺
Preparation of the end compounds:

Example 1

1-(naphth-1-ylmethyl)-3-(methoxycarbonylmethyl)-7-(but-2-ynyl)-8-(3-amino-piperidin-1-yl)-xanthine

0.7 ml of trifluoroacetic acid are added to a solution of 200 mg 1-(naphth-1-ylmethyl)-3-(methoxycarbonylmethyl)-7-(but-2-ynyl)-8-(3-tert-butoxycarbonylamino-piperidin-1-yl)-xanthine in 3 ml dichloromethane. The solution is stirred for 3 h at ambient temperature and then added to ice-cooled aqueous potassium carbonate solution. The aqueous phase is extracted with dichloromethane, the combined organic extracts are dried over sodium sulphate, and the solvent is removed. The residue is purified by chromatography on a silica gel column with methylene chloride/methanol (7:3) as eluant.

Yield: 85 mg (29% of theory)

Mass spectrum (ESI⁺): m/z = 515 [M+H]⁺

The following compounds are obtained analogously to Example 1:

1. 1-(naphth-1-ylmethyl)-3-(cyanomethyl)-7-(but-2-ynyl)-8-(3-amino-piperidin-1-yl)-xanthine

Mass spectrum (ESI⁺): m/z = 482 [M+H]⁺
(2) \((R)-1-(4\text{-methyl-}\text{quinazolin-2\text{-ylmethyl}})-3-(\text{methoxycarbonylmethyl})-7-(\text{but-2-ynyl})-8-(3\text{-amino-piperidin-1-yl})\text{-xanthine}

\[
\begin{array}{c}
\text{Diagram of molecule}
\end{array}
\]

\text{Mass spectrum (ESI\(^+\)): m/z = 531 [M+H]\(^+\)}

(3) \((R)-1-(4\text{-methyl-}\text{quinazolin-2\text{-ylmethyl}})-3-(\text{ethoxycarbonylmethyl})-7-(\text{but-2-ynyl})-8-(3\text{-amino-piperidin-1-yl})\text{-xanthine}

\[
\begin{array}{c}
\text{Diagram of molecule}
\end{array}
\]

\text{Mass spectrum (ESI\(^+\)): m/z = 545 [M+H]\(^+\)}
Example 2

\[(R)-1-(4\text{-methyl-quinazolin-2-ylmethyl})-3-(\text{hydroxycarbonylmethyl})-7-(\text{but-2-ynyl})-8-(3\text{-amino-piperidin-1-yl})\text{-xanthine}\]

5 ml of 1 M sodium hydroxide solution are added to a solution of 150 mg of \((R)-1-(4\text{-methyl-quinazolin-2-ylmethyl})-3-(\text{methoxycarbonylmethyl})-7-(\text{but-2-ynyl})-8-(3\text{-amino-piperidin-1-yl})\text{-xanthine}\) in 6 ml of tetrahydrofuran/water/methanol (1:1:1). The solution is stirred for 1 h at ambient temperature and then neutralised with 1 M hydrochloric acid. The solution is evaporated to dryness and purified by HPLC (YMC-C18) with water/ acetonitrile (70:30).

Yield: 120 mg (82% of theory)

Mass spectrum (ESI\(^+\)): \(m/z = 517 \text{ [M+H]}^+\)
The following compounds may also be obtained analogously to the foregoing Examples and other methods known from the literature:

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Structure</th>
<th>Ex.</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td></td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td></td>
<td>(6)</td>
<td></td>
</tr>
</tbody>
</table>
(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(23)</td>
<td></td>
<td>(24)</td>
</tr>
<tr>
<td>(25)</td>
<td></td>
<td>(26)</td>
</tr>
<tr>
<td>(27)</td>
<td></td>
<td>(28)</td>
</tr>
<tr>
<td>(29)</td>
<td></td>
<td>(30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(31)</td>
<td>(32)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(33)</td>
<td>(34)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(35)</td>
<td>(36)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(37)</td>
<td>(38)</td>
<td>(39)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(41)</td>
<td>(42)</td>
<td>(43)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Chemical Structure</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>(93)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(94)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(99)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(100)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 3

Coated tablets containing 75 mg of active substance

5

1 tablet core contains:

- active substance 75.0 mg
- calcium phosphate 93.0 mg
- corn starch 35.5 mg
- polyvinylpyrrolidone 10.0 mg
- hydroxypropylmethylcellulose 15.0 mg
- magnesium stearate 1.5 mg
- 230.0 mg

15 Preparation:
The active substance is mixed with calcium phosphate, corn starch, polyvinyl pyrrolidone, hydroxypropylmethylcellulose and half the specified amount of magnesium stearate. Blanks about 13 mm in diameter are produced in a tablet-
making machine and these are then rubbed through a screen with a mesh size of 1.5 mm using a suitable machine and mixed with the rest of the magnesium stearate. This granulate is compressed in a tablet-making machine to form tablets of the desired shape.

5 weight of core: 230 mg
die: 9 mm, convex

The tablet cores thus produced are coated with a film consisting essentially of hydroxypropylmethylcellulose. The finished film-coated tablets are polished with beeswax.

10 Weight of coated tablet: 245 mg.

Example 4

Tablets containing 100 mg of active substance

15 Composition:
1 tablet contains:
active substance 100.0 mg
lactose 80.0 mg
20 corn starch 34.0 mg
polyvinylpyrrolidone 4.0 mg
magnesium stearate 2.0 mg
220.0 mg

25 **Method of Preparation:**
The active substance, lactose and starch are mixed together and uniformly moistened with an aqueous solution of the polyvinylpyrrolidone. After the moist composition has been screened (2.0 mm mesh size) and dried in a rack-type drier at 50°C it is screened again (1.5 mm mesh size) and the lubricant is added. The finished mixture is compressed to form tablets.

Weight of tablet: 220 mg
Diameter: 10 mm, biplanar, faceted on both sides and notched on one side.
Example 5

Tablets containing 150 mg of active substance

Composition:
1 tablet contains:
active substance 150.0 mg
powdered lactose 89.0 mg
corn starch 40.0 mg
colloidal silica 10.0 mg
polyvinylpyrrolidone 10.0 mg
magnesium stearate 1.0 mg
300.0 mg

Preparation:

The active substance mixed with lactose, corn starch and silica is moistened with a 20% aqueous polyvinylpyrrolidone solution and passed through a screen with a mesh size of 1.5 mm.
The granules, dried at 45°C, are passed through the same screen again and mixed with the specified amount of magnesium stearate. Tablets are pressed from the mixture.

Weight of tablet: 300 mg
die: 10 mm, flat
Example 6

Hard gelatine capsules containing 150 mg of active substance

1 capsule contains:

- active substance: 150.0 mg
- corn starch (dried): approx. 180.0 mg
- lactose (powdered): approx. 87.0 mg
- magnesium stearate: 3.0 mg

approx. 420.0 mg

Preparation:

The active substance is mixed with the excipients, passed through a screen with a mesh size of 0.75 mm and homogeneously mixed using a suitable apparatus. The finished mixture is packed into size 1 hard gelatine capsules.

Capsule filling: approx. 320 mg
Capsule shell: size 1 hard gelatine capsule.

Example 7

Suppositories containing 150 mg of active substance

1 suppository contains:

- active substance: 150.0 mg
- polyethyleneglycol 1500: 550.0 mg
- polyethyleneglycol 6000: 460.0 mg
- polyoxyethylene sorbitan monostearate: 840.0 mg
- 2,000.0 mg
Preparation:

After the suppository mass has been melted the active substance is homogeneously distributed therein and the melt is poured into chilled moulds.

Example 8

Suspension containing 50 mg of active substance

10 100 ml of suspension contain:
 active substance 1.00 g
 carboxymethylcellulose-Na-salt 0.10 g
 methyl p-hydroxybenzoate 0.05 g
 propyl p-hydroxybenzoate 0.01 g
 glucose 10.00 g
 glycerol 5.00 g
 70% sorbitol solution 20.00 g
 flavouring 0.30 g
 dist. water ad 100 ml

Preparation:

The distilled water is heated to 70°C. The methyl and propyl p-hydroxybenzoates together with the glycerol and sodium salt of carboxymethylcellulose are dissolved therein with stirring. The solution is cooled to ambient temperature and the active substance is added and homogeneously dispersed therein with stirring. After the sugar, the sorbitol solution and the flavouring have been added and dissolved, the suspension is evacuated with stirring to eliminate air.

5 ml of suspension contain 50 mg of active substance.
Example 9

Ampoules containing 10 mg active substance

5 Composition:

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>active substance</td>
<td>10.0 mg</td>
</tr>
<tr>
<td>0.01 N hydrochloric acid q.s.</td>
<td></td>
</tr>
<tr>
<td>double-distilled water ad</td>
<td>2.0 ml</td>
</tr>
</tbody>
</table>

10 Preparation:

The active substance is dissolved in the necessary amount of 0.01 N HCl, made isotonic with common salt, filtered sterile and transferred into 2 ml ampoules.

Example 10

Ampoules containing 50 mg of active substance

Composition:

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>active substance</td>
<td>50.0 mg</td>
</tr>
<tr>
<td>0.01 N hydrochloric acid q.s.</td>
<td></td>
</tr>
<tr>
<td>double-distilled water ad</td>
<td>10.0 ml</td>
</tr>
</tbody>
</table>

Preparation:

The active substance is dissolved in the necessary amount of 0.01 N HCl, made isotonic with common salt, filtered sterile and transferred into 10 ml ampoules.
Patent Claims

1. Compounds of general formula

$$\text{(I)},$$

wherein

- R^1 denotes an arylmethyl or arylethyl group,
- a heteroarylmethyl or heteroarylethyl group,
- an arylcarbonylmethyl group,
- a heteroarylcarbonylmethyl group or
- an arylprop-2-enyl or heteroarylp-2-enyl group, wherein the propenyl chain may be substituted by 1 to 4 fluorine atoms or a cyano, C_{1-3}-alkyloxy-carbonyl or nitro group, and

- R^2 denotes a C_{1-6}-alkyl group substituted by a tetrazolyl, hydroxysulphonyl, cyano, piperidin-1-ylcarbonyl or pyrrolidin-1-ylcarbonyl group,

...while in the above-mentioned piperidinyl and pyrrolidinyl groups one or two methylene groups may be replaced independently of one another by an oxygen or sulphur atom, by an imino group optionally substituted by a C_{1-4}-alkyl group or by a carbonyl, sulphinyl or sulphonyl group, or...
a C₇₈₆-alkyl group substituted by a group of formula R₈-O-CO, (R₈)₂N-CO or
[(R₈O)₂PO]- wherein

R₈ each independently denote a hydrogen atom, a C₁₋₈-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, aryl-C₃₋₆-alkyl, heteroaryl-C₁₋₃-alkyl, C₃₋₁₀-cycloalkyl-C₁₋₃-alkyl, C₅₋₁₀-cycloalkenyl-C₁₋₃-alkyl, aryl, heteroaryl, C₃₋₁₀-cycloalkyl or C₅₋₁₀-cycloalkenyl group,

while all the alkyl, alkenyl, alkynyl, cycloalkyl and cycloalkenyl groups mentioned for R₈ may be partly or completely fluorinated or mono- to disubstituted by identical or different substituents selected from chlorine, hydroxy, C₁₋₃-alkoxy and C₁₋₃-alkyl, and

in the cycloalkyl and cycloalkenyl groups mentioned for R₈ one or two methylene groups may be replaced independently of one another by an oxygen or sulphur atom, by an imino group optionally substituted by a C₁₋₄-alkyl group or by a carbonyl, sulphinyl or sulphonyl group,

while, unless otherwise stated, the above-mentioned alkyl, alkenyl and alkynyl groups may be straight-chain or branched,

the tautomers, enantiomers, diastereomers, the mixtures thereof, the prodrugs thereof and the salts thereof.

2. Compounds of general formula I according to claim 1, wherein

R¹ is defined as in claim 1, and

R² denotes a C₁₋₄-alkyl group substituted by a cyano group or a group of formula R₈-O-CO₂-,
while R_a is defined as in claim 1,

the enantiomers, the diastereomers, the mixtures thereof and the salts thereof.

3. Compounds of general formula I according to claim 2, wherein

R^1 denotes a phenylmethyl, phenylcarbonylmethyl, phenylprop-2-enyl, pyridinylmethyl, pyrimidinylmethyl, naphthylmethyl, quinolinylmethyl, 1H-quinolin-2-onylmethyl, imidazo[1,2-a]quinolinylmethyl, isoquinolinylmethyl, quinazolinylmethyl, 3H-quinazolin-4-onylmethyl, quinoxalinylmethyl, phenanthridinylmethyl, naphthyridinylmethyl, benzo[1,6]naphthyridinylmethyl, imidazopyridinylmethyl or benzo[c]phenanthridinylmethyl group which may be substituted in each case by one or two fluorine, chlorine or bromine atoms or one or two cyano, nitro, amino, C_{1-3}-alkyl, C_{1-3}-alkyloxy, phenyl or morpholinyl groups, while the substituents may be identical or different, and

R^2 denotes a cyano-C_{1-3}-alkyl, hydroxycarbonylmethyl, C_{1-6}-alkyloxycarbonylmethyl, C_{3-6}-alkenyloxycarbonylmethyl, C_{3-6}-cycloalkyl-C_{1-3}-alkyloxycarbonylmethyl or C_{3-6}-cycloalkyloxycarbonylmethyl group, while the alkyl, alkenyl and cycloalkyl groups in each case may be substituted by one or two C_{1-3}-alkyl or C_{1-3}-alkyloxy groups and/or partly or completely fluorinated,

the enantiomers, the diastereomers, the tautomers, the mixtures thereof and the salts thereof.

4. Compounds of general formula I according to claim 3, wherein

R^1 denotes a pyridinylmethyl, pyrimidinylmethyl, isoquinolinylmethyl, quinazolinylmethyl, quinoxalinylmethyl or naphthylmethyl group which may be substituted by one or two cyano or methyl groups, and
R² denotes a cyanomethyl, hydroxycarbonylmethyl, methoxycarbonylmethyl or ethoxycarbonylmethyl group,

the enantiomers, the tautomers and the salts thereof.

5

5. Compounds of general formula I according to claim 2, wherein

R¹ denotes a quinazolinylmethyl group which may be substituted by a methyl group, and

R² denotes a methyl group substituted by a C₁₋₄-alkoxy-carbonyl group,

the enantiomers, the tautomers and the salts thereof.

15 6. The following preferred compounds according to claim 1:

(a) 1-(naphthyl-1-ylmethyl)-3-(methoxycarbonylmethyl)-7-(but-2-ynyl)-8-(3-amino-piperidin-1-yl)-xanthine
(b) 1-(naphthyl-1-ylmethyl)-3-(cyanomethyl)-7-(but-2-ynyl)-8-(3-amino-piperidin-1-yl)-xanthine
(c) (R)-1-(4-methyl-quinazolin-2-ylmethyl)-3-(methoxycarbonylmethyl)-7-(but-2-ynyl)-8-(3-amino-piperidin-1-yl)-xanthine
(d) (R)-1-(4-methyl-quinazolin-2-ylmethyl)-3-(ethoxycarbonylmethyl)-7-(but-2-ynyl)-8-(3-amino-piperidin-1-yl)-xanthine
(e) (R)-1-(4-methyl-quinazolin-2-ylmethyl)-3-(hydroxycarbonylmethyl)-7-(but-2-ynyl)-8-(3-amino-piperidin-1-yl)-xanthine

and the tautomers and the salts thereof.

30 7. Physiologically acceptable salts of the compounds according to at least one of claims 1 to 6 with inorganic or organic acids or bases.
8. Pharmaceutical compositions, containing a compound according to one of claims 1 to 6 or a physiologically acceptable salt according to claim 7 optionally together with one or more inert carriers and/or diluents.

9. Use of a compound according to at least one of claims 1 to 7 for preparing a pharmaceutical composition which is suitable for the treatment of type I and type II diabetes mellitus, arthritis, obesity, allograft transplantation and osteoporosis caused by calcitonin.

10. Process for preparing a pharmaceutical composition according to claim 8, characterised in that a compound according to at least one of claims 1 to 7 is incorporated in one or more inert carriers and/or diluents by a non-chemical method.

11. Process for preparing the compounds of general formula I according to claims 1 to 7, characterised in that

a) a compound of general formula

\[\text{(III),} \]

wherein
R\(^1\) and R\(^2\) are defined as in one of claims 1 to 6 and
Z\(^1\) denotes a leaving group such as a halogen atom, a substituted hydroxy, mercapto, sulphinyl, sulphonyl or sulphonyloxy group,

b) a compound of general formula
wherein \(R^1 \) and \(R^2 \) are defined as in one of claims 1 to 6 and

5 NPG denotes a protected or masked amino functionality, is deprotected, and/or

10 any protecting groups used during the reaction are then cleaved and/or

the compounds of general formula I thus obtained are resolved into their enantiomers and/or diastereomers and/or

15 the compounds of formula I thus obtained are converted into their salts, particularly for pharmaceutical use into the physiologically acceptable salts thereof with inorganic or organic acids or bases.