(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10) 申请公布号 CN 102023637 A

(43) 申请公布日 2011.04.20

(21) 申请号 201010594972.X

(22) 申请日 2010.12.17

(71) 申请人 中国北车股份有限公司大连电力牵引研发中心
 地址 116022 辽宁省大连市沙河口区中长街 51 号

(72) 发明人 赵国平 郭建斌 蔡景荣

(74) 专利代理机构 大连东方专利代理有限责任公司 21212
 代理人 李洪福

(51) Int.Cl.
 G05B 23/02(2006.01)

(54) 发明名称
 一种基于 CAN 网络的轻轨车辆网络控制系统试验平台

(57) 摘要
 本发明公开了一种基于 CAN 网络的轻轨车辆网络控制系统试验平台，包括司机控制台 A、司机控制台 B、控制柜 A、控制柜 B 和子系统模拟柜，所述的司机控制台 A 与司机控制台 B 结构相同，所述的控制柜 A 与控制柜 B 结构相同。所述的司机控制台 A、控制柜 A、子系统模拟柜、控制柜 B 和司机控制台 B 通过 CAN 网络连接。本发明可以极大的缩短车辆网络控制系统的调试时间，从而缩短主机厂向用户交付车辆的时间，最终可以实现车辆的提前交付或运营。为基于 CAN 网络技术的控制系统提供了一个试验平台和研究平台，有利于 CAN 网络系统在我国的推广应用，从而促进我国轨道交通车辆网络控制系统的多元化发展。
1. 一种基于 CAN 网络的轻轨车辆网络控制系统试验平台，其特征在于：包括司机控制台 A(1)、司机控制台 B(5)、控制台 A(2)、控制台 B(4) 和子系统模拟柜 (3)，所述的司机控制台 A(1) 与司机控制台 B(5) 结构相同，所述的控制台 A(2) 与控制台 B(4) 结构相同，所述的司机控制台 A(1)、控制台 A(2)、子系统模拟柜 (3)、控制台 B(4) 和司机控制台 B(5) 通过 CAN 网络连接；

所述的子系统模拟柜 (3) 内安装有多个用来模拟车辆的子系统，各子系统之间通过 CAN 网络依次串联；所述的多个子系统包括牵引子系统 (31)、辅助子系统 (32)、制动子系统 (33) 和车门子系统 (34)。

所述的司机控制台 A(1) 包括显示单元 IDU(11)、司机控制器 (12)、司机操作指令按钮 (13) 和重联网关 TBC(14)，所述的显示单元 IDU(11) 是车辆上的人机接口设备，用来显示车辆及子系统的运行状态，并具有车辆诊断功能；所述的司机控制器 (12) 是车辆中的主要操作设备，司机通过操作司机控制器 (12) 来控制车辆的运行；所述的司机操作指令按钮 (13) 提供司机在驾驶操作过程中的一些辅助功能；所述的重联网关 TBC(14) 用于车辆重联控制的 UIC 网关，用来实现在列车重联时各个车辆之间的信息传输；

所述的控制台 A(2) 包括车辆控制单元 VCU(21)、车辆信号采集单元 RIOM(22)、速度信号模拟仪 (23) 与模拟信号仪 (24)，所述的速度信号模拟仪 (23) 与模拟信号仪 (24) 产生的信号通过车辆信号采集单元 RIOM(22) 采集，同时车辆信号采集单元 RIOM(22) 还采集司机控制器 (12) 与司机操作指令按钮 (13) 信号，车辆控制单元 VCU(21) 与车辆信号采集单元 RIOM(22) 之间通过 CAN 网络连接；所述的车辆控制单元 VCU(21) 用于实现车辆的所有控制功能，车辆信号采集单元 RIOM(22) 负责采集车辆及子系统的 I/O 信号，并向车辆输出控制指令，速度信号模拟仪 (23) 用来在实验室静置环境下模拟车辆的动态运行情况，模拟信号仪 (24) 用来产生轻轨车辆中的各种 4~20mA 的模拟信号源。

2. 根据权利要求 1 所述的一种基于 CAN 网络的轻轨车辆网络控制系统试验平台，其特征在于：所述的子系统模拟柜 (3) 内包括 4 个子系统，每个子系统具有完全相同的硬件结构和不同的软件，分别用来模拟车辆的牵引子系统 (31)、辅助子系统 (32)、制动子系统 (33) 和车门子系统 (34)。

3. 根据权利要求 1 所述的一种基于 CAN 网络的轻轨车辆网络控制系统试验平台，其特征在于：所述的子系统模拟柜 (3) 内包括 4 个以上的子系统，每个子系统具有完全相同的硬件结构和不同的软件，均通过 CAN 线缆串联起来，分别用来模拟车辆上 4 个以上的子系统。

4. 根据权利要求 1 所述的一种基于 CAN 网络的轻轨车辆网络控制系统试验平台，其特征在于：所述的重联网关 TBC(14) 的车辆总线接口 CANopen 端口通过 CANopen 网络线缆依次与显示单元 IDU(11)、车辆控制单元 VCU(21) 和车辆信号采集单元 RIOM(22) 连接，车辆信号采集单元 RIOM(22) 的 CANopen 端口通过 CANopen 网络线缆与子系统模拟柜 (3) 内的几个子系统的 CANopen 端口串联，所有具有 CANopen 接口的设备通过 CANopen 线缆连接，形成 CAN 网络；所述的车辆信号采集单元 RIOM(22) 还通过电源线和 IO 信号线分别与司机控制器 (12)、司机操作指令按钮 (13)、速度信号模拟仪 (23) 与模拟信号仪 (24) 连接。

5. 根据权利要求 1 所述的一种基于 CAN 网络的轻轨车辆网络控制系统试验平台，其
特征在于：所述的车辆控制单元 VCU (21)、车辆信号采集单元 RIOM (22) 以及子系统模拟柜 (3) 内的每个子系统均具有符合 IEC61131-3 标准的图形化编程能力和 PLC 的功能。
一种基于 CAN 网络的轻轨车辆网络控制系统试验平台

技术领域
[0001] 本发明涉及一种轻轨车辆的试验装置，特别是基于 CAN 网络的轻轨车辆网络控制系统试验平台。

背景技术
[0002] 目前世界轨道交通行业处于快速发展时期，为了缓解日益严重的交通压力，同步提高运输效率，新型的机车、动车组、轻轨车辆、地铁车辆等轨道车辆在全球开始广泛应用。随着轨道交通行业的兴起，轨道交通车辆的控制越来越趋向智能化，传统的车辆控制方式已经不能满足新形式下的技术要求，基于网络控制的智能轨道车辆开始在全球的轨道交通行业开始广泛应用。但是如何针对不同的车辆，开发满足相关技术要求的车辆控制系统，一直是轨道交通行业控制系统工程师所面临的问题。

[0003] 在全世界的轨道交通行业中，所使用的网络控制技术主要包括西门子和庞巴迪等公司推荐的 TCN 网络、法国 Alstom 等公司推荐的 WorldFip 网络以及日本三菱等公司推荐的 RS485 网络等。这几种控制系统都具有多年的应用经验，较为成熟，尤其是一些世界著名的大公司，都有非常完善的网络控制系统试验平台，用于对新开发车辆的网络控制系统进行相关的试验与验证。

[0004] 然而，伴随着汽车工业的飞速发展，作为汽车行业的主要网络系统之一的 CAN 网络近几年也进入了蓬勃发展时期，由于汽车行业对成本要求较高，CAN 网络为了适应汽车行业的发展，已经演变成为一种低成本高可靠的网络。而在轨道交通行业中所使用的 TCN、WorldFip 等网络控制技术垄断、轨道交通市场相对汽车行业市场小等原因，一直具有非常高的成本，已经严重影响了轨道交通车辆的整体成本。正是在这种情况下，国外一些从事轨道交通网络研究的公司开始将用于汽车工业的 CAN 网络引入轨道交通行业。在原有的 CAN 网络基础上通过对应用层进行一些协议的开发研究，从而研制出一种适合于轨道交通的 CAN 网络。这种应用近几年已经在国外的项目中得到验证。在我国轨道交通行业跨越式发展的发展下，这种新型的 CAN 网络业进入我国，并开始在国内的一些项目中开始尝试使用。但是由于国内还没有建立基于这种 CAN 网络的控制系统试验平台，因此给 CAN 网络在国内的应用带来了很大的障碍，很多智能控制策略必须在车辆制造完成后通过上车调试才能实现，一方面使得车辆调试时间加长，影响车辆的交付周期，另一方面也带来了很大的困难，增加了调试的成本，另一方面也影响了 CAN 网络控制系统的快速应用。

发明内容
[0005] 为解决现有技术存在的上述问题，本发明要设计一种方便轻轨车调试、缩短调试周期、降低调试费用、便于在国内快速推广应用的基于 CAN 网络的轻轨车辆网络控制系统试验平台。
为了实现上述目的，本发明的技术方案如下：一种基于 CAN 网络的轻轨车辆网络控制系统试验平台，包括车辆控制台 A、车辆控制台 B、控制柜 A、控制柜 B 和子系统模拟柜，所述的车辆控制台 A 与车辆控制台 B 结构相同，所述的控制柜 A 与控制柜 B 结构相同，所述的车辆控制台 A、控制柜 A、子系统模拟柜、控制柜 B 和车辆控制台 B 通过 CAN 网络连接；

所述的车辆控制台 A 包括显示单元 IDU、车辆控制器、车辆操作指令按钮和重联网关 TBC，所述的显示单元 IDU 是车辆上的人机接口设备，用来显示车辆及子系统的运行状态，并具有车辆诊断功能；所述的车辆控制器是车辆中主要的操作设备，通过操作车辆控制器来控制车辆的运行；所述的车辆操作指令按钮提供司机在驾驶过程中的一些辅助功能；所述的重联网关 TBC 为用于车辆重联控制的 UIC 网关，用来实现车辆重联时各个车辆之间的信息传输；

所述的控制柜 A 包括车辆控制单元 VCU、车辆信号采集单元 RIOM、速度信号模拟仪与模拟信号仪，所述的速度信号模拟仪与模拟信号仪产生的信号通过车辆信号采集单元 RIOM 采集，同时车辆信号采集单元 RIOM 还采集车辆控制器与车辆操作指令按钮信号，车辆控制单元 VCU 与车辆信号采集单元 RIOM 之间通过 CAN 网络连接；所述的车辆控制单元 VCU 用于实现车辆的所有控制功能，车辆信号采集单元 RIOM 负责采集车辆及子系统的 I/O 信号，并向车辆输出控制指令，速度信号模拟仪用来在实验室环境下模拟车辆的动态运行情况，模拟信号仪用来产生轻轨车辆中的各种 4~20mA 的模拟信号源。

本发明所述的子系统模拟柜内包括 4 个子系统，每个子系统具有完全相同的硬件结构和不同的软件，分别用来模拟车辆的牵引子系统、辅助子系统、制动子系统和车门子系统。

本发明所述的子系统模拟柜内包括 4 个以上的子系统，每个子系统具有完全相同的硬件结构和不同的软件，均通过 CAN 线缆串联起来，分别用来模拟车辆上 4 个以上的子系统。

本发明所述的车辆网络关 TBC 的车辆总线接口 CANopen 端口通过 CANopen 网络线缆依次与车辆控制单元 VCU、显示单元 IDU 和车辆信号采集单元 RIOM 连接，车辆信号采集单元 RIOM 的 CANopen 端口通过 CANopen 网络线缆与子系统模拟柜内的几个子系统的 CANopen 端口串联，所有具有 CANopen 接口的设备通过 CANopen 线缆连接，形成 CAN 网络；所述的车辆信号采集单元 RIOM 还通过电源线和 IO 信号线分别与司机控制器、司机操作指令按钮、速度信号模拟仪与模拟信号仪连接。

本发明所述的车辆控制单元 VCU、车辆信号采集单元 RIOM 以及子系统模拟柜内的每个子系统所使用的 CPU 均具有符合 IEC61131-3 标准的图形化编程能力和 PLC 的功能。

与现有技术相比，本发明具有以下有益效果：

1. 由于本发明可以在车辆制造之前或制造期间，就可以进行智能控制系统的
试验与验证，原来必须要在车辆制造完成后在车上进行的试验现在可以提前在该试验平台完成；同时由于该试验平台所提供的调试条件为其他子系统全部工作正常，这样就避免了在车上调试时由于其他子系统的原因影响网络控制系统的调试，通过该试验平台可以极大的缩短车辆网络控制系统的调试时间，从而缩短主机厂向用户交付车辆的时间，最终可以实现车辆的提前交付或运营。

[0016] 2、原来必须要在车辆制造完成后在车上进行的试验，现在可以提前通过本发明完成，避免了在车上调试时各个系统之间资源冲突，责任相互推脱的现象，从而可以降低车辆的调试费用。

[0017] 3、基于 CAN 网络的控制系统与 TCN 及 WorldFip 等网络相同相比本来就具有非常大的成本优势，本发明的应用，又可以降低车辆的调试周期及费用，从而最终实现了降低车辆整体成本的效果。

[0018] 4、基于 CAN 网络的控制系统具有显著的成本优势，通过本发明的应用不但可以缩短调试周期，降低车辆成本，更重要的是为基于 CAN 网络技术的控制系统提供了一个试验平台和研究平台，有利于 CAN 网络系统在我国的推广应用，从而促进我国轨道交通车辆网络控制系统多元化发展。

[0019] 5、本发明中在控制框 A 与控制框 B 中分别使用了一个车辆控制单元 VCU，这两个车辆控制单元 VCU 通过 CANopen 线缆串联到 CANopen 网络中，通过控制软件实现冗余功能。作为 CANopen 网络中的主控单元，在正常情况下只有一个车辆控制单元 VCU 处于工作状态，接收所有的控制信号，执行控制逻辑，并将控制指令通过 CANopen 网络输出到其他 CANopen 网络的从设备（如 RIOM、IDU、模拟子系统等），另一个车辆控制单元 VCU 处于监听状态，接收所有控制信号，也执行控制逻辑，但并不向网络中发送控制指令，当处于监听状态的车辆控制单元 VCU 检测到处于运行状态的车辆控制单元 VCU 出现故障时，会立刻接替故障的车辆控制单元 VCU 向 CANopen 网络中发送控制指令，从而实现 CANopen 的网络的冗余管理与车辆的冗余控制功能。

[0020] 6、本发明中首次使用的重联网关 TBC 具有符合 UIC556 规范的列车重联控制功能，当系统试验的多个车辆通过列车线缆 PowerLine 连接时，该重联网关 TBC 能够实现列车间的自动编组，初步运行功能，在各个列车相互传输控制信息，当 PowerLine 线缆断开时该重联网关 TBC 又可以实现列车的自动解编功能。

[0021] 7、本发明首次使用了模拟速度仪，在实验室的静态环境下可以模拟车辆动态运行的状况。

[0022] 8、本发明首次使用了模拟信号仪，用来模拟实际车辆中的载荷传感器与压力传感器等设备，便于实现车辆对模拟信号的采集与处理。

[0023] 9、本发明的子系统模拟设备都是供电后通过 CAN 线缆连接起来即可工作，因此需要增加模拟设备时，只要增加相同的设备并供电，即可。但是由于模拟设备的功能不同，只要更新设备内部的软件即可。因此，本发明具有开放的接口，用户可以根据实际需求任意的增加或减少模拟子系统的数量，因此该试验平台几乎可以满足任何轻轨车辆的控制系统试验。

[0024] 10、本发明对于车辆控制单元所有的数字输出信号通过指示灯来直观的显示。

[0025] 11、由于本发明的车辆控制单元 VCU、车辆信号采集单元 RIOM 以及子系统模
拟柜内的每个子系统所使用的CPU均具有符合IEC61131-3标准的图形化编程能力和PLC的功能，方便用户多对轻轨车辆控制功能的试验与验证。

附图说明

图1是基于CAN的网络控制系统试验平台结构图。
图2是基于CAN的网络控制系统试验平台网络拓扑图。
图3是基于CAN的网络控制系统试验平台所有CAN设备之间的网络连接关系示意图。

图中：1、司机控制台A，2、控制柜A，3、子系统模拟柜，4、控制柜B，5、司机控制台B，6、显示单元IDU，7、司机控制器，8、司机操作指令按钮，9、重联网关TBC，10、车辆控制单元VCU，11、车辆信号采集单元RIOM，12、速度信号模拟仪，13、模拟信号仪，14、牵引子系统，15、辅助子系统，16、制动子系统，17、车门子系统。

具体实施方式

下面结合附图对本发明进行进一步地描述。如图1-3所示，一种基于CAN网络的轻轨车辆网络控制系统试验平台，包括司机控制台A1、司机控制台B1、控制柜A2、控制柜B4和子系统模拟柜3。所述的司机控制台A1与司机控制台B1结构相同，所述的控制柜A2与控制柜B4结构相同，所述的司机控制台A1控制柜A2、子系统模拟柜3、控制柜B4和司机控制台B5通过CAN网络连接。

所述的子系统模拟柜3内安装有多个用于模拟车辆的子系统，各子系统之间通过CAN网络依次串联；所述的多个子系统包括牵引子系统31、辅助子系统32、制动子系统33和车门子系统34；

所述的司机控制台A1包括显示单元IDU11，司机控制器12、司机操作指令按钮13和重联网关TBC14，所述的显示单元IDU11是车辆上的人机接口设备，用来显示车辆及子系统的运行状态，并具有车辆诊断功能；所述的司机控制器12是车辆中主要的操作设备，司机通过操作司机控制器12来控制车辆的运行；所述的司机操作指令按钮13提供司机在驾驶操作过程中的一些辅助功能，所述的重联网关TBC14为用于车辆重联控制的UIC网关，用来实现在列车重联时各个车辆之间的信息传输。

所述的控制柜A2包括车辆控制单元VCU21，车辆信号采集单元RIOM22，速度信号模拟仪23与模拟信号仪24，所述的速度信号模拟仪23与模拟信号仪24产生的信号通过车辆信号采集单元RIOM22采集，同时车辆信号采集单元RIOM22还采集司机控制器12与司机操作指令按钮13信号，车辆控制单元VCU21与车辆信号采集单元RIOM22之间通过CAN网络连接；所述的车辆控制单元VCU21用于实现车辆的所有控制功能，车辆信号采集单元RIOM22作为采集车辆及子系统的I/O信号，并向车辆输出控制指令，速度信号模拟仪23用来在实验室静态环境下模拟车辆的动态运行情况，模拟信号仪24用来产生轻轨车辆中的各种4-20mA的模拟信号源。

所述的子系统模拟柜3内包括4个子系统，每个子系统具有完全相同的硬件结构。
和不同的软件，分别用来模拟车辆的牵引子系统 31、辅助子系统 32、制动子系统 33 和车门子系统 34。

[0036] 所述的重联网关 TBC14 的车辆总线接口 CANopen 端口通过 CANopen 网络线缆依次与车辆控制单元 VCU21、显示单元 IDU11 和车辆信号采集单元 RIOM22 连接，车辆信号采集单元 RIOM22 的 CANopen 端口通过 CANopen 网络线缆与子系统模拟柜 3 内的几个子系统的 CANopen 端口串联，所有具有 CANopen 接口的设备通过 CANopen 线缆连接，形成 CAN 网络：所述的车辆信号采集单元 RIOM22 还通过电源线和 IO 信号线分别与司机控制器 12、司机操作指令按钮 13、速度信号模拟仪 23 与模拟信号仪 24 连接。

[0037] 所述的车辆控制单元 VCU21、车辆信号采集单元 RIOM22 以及子系统模拟柜 3 内的每个子系统均具有符合 IEC61131-3 标准的图形化编程能力和 PLC 的功能。[0038] 下面结合图 1-3 对本发明的组成及功能作进一步的描述。

[0039] 1、司机控制台

[0040] 司机控制台包括司机控制台 A1 与司机控制台 B5，这两个控制台在硬件结构上完全相同，因此下面具体描述一个司机控制台的组成。

[0041] 司机控制台一般位于车辆的两端，主要放置了显示单元 IDU11、列重联网关 TBC14、司机控制器 12 以及司机操作指令按钮 13。其中显示单元 IDU11 采用 PIXY 公司的 INC70 显示单元 IDUI1，该显示单元 IDU11 具有 CAN 通讯接口，可以直接插入车辆的 CAN 网络中参与通讯；重联网关 TBC14 为符合车辆重联网关的标准的网络，采用 SELECTROL 公司的重联网关 TBC 702 模块，通过该模块可以提供符合 UIC556 规范的车辆重联网关；司机控制单元 12 采用在地铁轻轨车中使用较多的 RTU-220 型司机控制器，同时在司机控制台上设有用于车辆操作车辆的司机操作指令按钮 13，用来模拟车辆上实际的信号。司机控制台上所有设备都是采用 DC24V 直接供电。

[0042] 2、控制柜

[0043] 控制柜包括控制柜 A2 与控制柜 B4，这两个控制柜在硬件结构上完全相同，因此下面具体描述一个控制柜的组成；

[0044] 控制柜内主要包含车辆控制单元 VCU21、车辆信号采集单元 RIOM22、速度模拟仪与模拟信号仪 24，其中车辆控制单元 VCU21 采用 SELECTROL 公司的 CPU731 实现，该控制单元具有符合 IEC61131-3 标准的图形化编程能力，具有 PLC 的功能，同时车辆控制单元 VCU21 为 CAN 网络中的主控设备，实现对 CAN 网络的管理功能。控制柜 A2 与控制柜 B4 中的车辆控制单元 VCU21 可作为冗余的设备，可以满足轨道车辆对冗余系统的要求。数据采集单元 RIOM 采用 SELECTROL 公司的 CPU683 模块，该模块具有 40 路 DI 采集通道、24 路 DO 输出通道、8 路模拟信号采集通道和 4 路模拟信号输出通道。该控制柜内设定了 20 个拨码开关，用来模拟车辆的各种 IO 信号，每个拨码开关的含义可以根据具体项目进行定义：该控制柜内设定了 24 路信号灯，用来将控制单元 VCU21 的信号通过 CPU683 的 DO 通道输出到信号灯，方便查看，该控制柜内的信号灯模拟仪采用 SPS-002 型号，该信号灯模拟仪可以模拟输出 DC15V 的方波信号，CPU683 通过 DI 通道采集该方波信号，通过计算该方波频率从而计算出车辆速度。该控制柜内还装有 4 个 4-20mA 的模拟信号仪 24，该模拟信号仪 24 可以模拟车辆中实际使用的载荷传感器与压力传感器，这些模拟信号通过 CPU683 模块的 AI 通道采集。
3. 子系统模拟柜 3

子系统模拟柜 3 主要用来模拟车辆中的子系统，包括牵引子系统 31、辅助子系统 32、制动子系统 33 和车门子系统 34，这 4 个子系统的硬件结构相同，都是采用 SELECTRO 公司的 CPU727 实现。该 CPU727 具有符合 IEC61131-3 标准的图形化编程功能，用户可以根据项目实际需求，利用 CPU727 模拟各个子系统内部的控制功能，通过 CPU727 可以实现从 CAN 网络中接收数据及向 CAN 网络中的车辆控制单元 VCU21 发送控制指令的。子系统模拟柜 3 内还有子系统设备 CPU727 安装位置，试验过程中可以根据项目需求，任意的增加与减少模拟子系统的数量。

4. CAN 网络线缆的连接

如图 1-3 所示，图中的两个重联网关 TBC14 分别为 CANopen 网络中的两个终端设备，网络线缆从司机控制台 A1 的重联网关 TBC14 出发，依次向下一个设备连接，一直到司机控制台 B5 的重联网关 TBC14 终止。同时重联网关 TBC14 设备具有 CAN PowerLine 接口，提供从控制系统试验平台一端到另一端的列车网络。
图 3