20097015272 A 1INV 00 0 0O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 January 2009 (29.01.2009)

lﬂb A0 A OO

(10) International Publication Number

WO 2009/015272 Al

(51) International Patent Classification:
GOGF 19/00 (2006.01)

(21) International Application Number:
PCT/US2008/071016

(22) International Filing Date:
3 September 2008 (03.09.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/951,748 25 July 2007 (25.07.2007) US

(71) Applicant (for all designated States except US): PITNEY
BOWES INC. [US/US]; 1 Elmcroft Road, Stamford, CT
06926 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WRONSKI, John,
Jr. [US/US]; 17 Webster Drive, Shelton, CT 06484 (US).
KIRSCHNER, Wesley, A. [US/US]; 41 Bradford Walk,
Farmington, CT 06032 (US). PAULY, Steven, J. [US/US];
10 Surrey Lane, New Milford, CT 06776 (US). HURD,

(74)

(81)

(34)

John, A. [US/US]; 145 Penny Lane, Torrington, CT 06790
(US).

Agent: RUSSO, Karin, A.; Pitney Bowes Inc., 35 Water-
view Drive, Shelton, CT 06484 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD FOR PRINTING INFORMATION ON PACKAGES

13

14

FLASH /NVM
MEMORY FOR |«
CODE STORAGE

A 4

MICROPROCESSOR

RAM

h

A 4

FIG.

1

11

(57) Abstract: A method that enables the correct information to be printed on packages when switching from printing one type of
information to another type of information, i.e., switching from printing one job to another job. The foregoing is accomplished by
utilizing separate memory heaps (a dedicated consecutive sequence of memory space for a specific process) and flushing the memory
heaps in order to quickly return to the memory and prevent no package on the conveyor from having the incorrect information printed
on it from each printer printing information on the package. A parser (utilizes computer control language to assemble a set of data
objects that represent the print job) and a renderer (takes the parser’s description of the print job and formats a block of memory that
indicates the print pattern of the job) are all synchronized to perform the system wide flush to control memory fragmentation and

loading the new job.

WO 2009/015272 A1 | NINIAI] DA 000 0T R0 100 A0 0

Declarations under Rule 4.17: Published:
— as to applicant’s entitlement to apply for and be granted a — with international search report

patent (Rule 4.17(ii)) — thefiling date of the international application is within two
— asto the applicant’s entitlement to claim the priority of the months from the date of expiration of the priority period

earlier application (Rule 4.17(iii))
— of inventorship (Rule 4.17(iv))

WO 2009/015272 PCT/US2008/071016

METHOD FOR PRINTING INFORMATION ON PACKAGES

[0001] This Application claims the benefit of the filing date of U.S. Provisional
Application Number 60/951,748 filed July 25, 2007, which is owned by the assignee

of the present Application.

Field of the Invention

[0002] The invention relates generally to packaging and package conveying
systems, and more particularly to, a method for printing information on packages.

Background of the Invention

[0003] Printing information on packages has been an ongoing requirement for
centuries. As automation becomes evermore a fact of life, the information printed on
the label or the information printed on package play an ever wider role in achieving
automation. The printed information may relate to the contents of the package, the
source and/or destination of the package, relevant purchase and transit data, the

brand of the goods within the package etc.

[0004] Printing information on a moving object requires the ordering of many
events, positioning for each package to be labeled or printed, while the packages
continue to move rapidly on the conveyor. The variability in package height, size and
spacing, together with the varied data to be printed on the packages require
significant system agility and responsiveness to keep pace with the flow of
packages. Information maybe printed on packages by one or more printers which

are controlled by one or more computers.

[0005] A problem occurs in prior art packaging systems when the system
switches from one job (the information printed on the package) to the next. As
packages continue to flow down a conveyor at a fixed speed different information
may be printed on the package. The foregoing requires different print jobs to be sent
to a printer. When a new print job is received, it is important for the system to switch
as fast as possible from printing one type of information to printing another type of
information. This means that the memory controlling the information that is printed

needs to be released quickly and the new print job needs to be loaded. In certain

1

WO 2009/015272 PCT/US2008/071016

applications, where the printing mechanism does not control the speed of the
conveyor, packages may arrive at the print head and receive no ink because the new
print job was not loaded, information is printed on a precise number of packages and
then the job needs to switch to printing information on a precise number of other
packages. In other applications, the number of packages is not exactly specified, but
the printing of different information on the package must occur such that a package
has the correct information printed on either the previous job package or new job

package.

[0006] Prior art attempts to solve the foregoing problem have resulted in
packages completing their journey down the assembly line with no information
printed on the package or packages completing their journey down the assembly line
with partial information printed on the package or incorrect information printed on the

package.
[0007] Another prior art problem is coordinating the printing of information on
packages by a downstream printer controlled by a computer with printing information

on another package by an upstream printer controlled by a different computer.

Summary of the Invention

[0008] This invention overcomes the disadvantages of the prior art by providing a
method that enables the correct information to be printed on packages when
switching from printing one type of information to another type of information, i.e.,
switching from printing one job to another job. The foregoing is accomplished by
utilizing separate memory heaps (a dedicated consecutive sequence of memory
space for a specific process) and flushing the memory heaps in order to quickly
return to the memory and prevent no package on the conveyor from having the
incorrect information printed on it from each printer printing information on the
package. The parser (utilizes computer control language to assemble a set of data
objects that represent the print job) and renderer (takes the parser’s description of
the print job and formats a block of memory that indicates the print pattern of the job)
are all synchronized to perform the system wide flush to control memory

fragmentation and loading the new job.

WO 2009/015272 PCT/US2008/071016

[0009] The parallel parsing of the new job occurs while the old job is continuing
printing. A counter is also utilized to trigger the switching to a new job when an exact
number of pieces need to be loaded. Thus, continuing printing may be obtained

when switching from one job to another job.

[0010] An advantage of this invention is that the throughput of a conveyor system
that prints information on packages may be increased, since an exact number of

packages may be loaded and printed without the conveyor stopping.

[0011] An additional advantage of this invention is that incorrect information will

not be printed on packages.

[0012] An additional advantage of this invention is that partial information will not

be printed on packages.

[0013] A further advantage of this invention is that the utilization of flushing a
heap in the algorithm results in an extremely fast method to return all dynamically

allocated memory.

[0014] A still further advantage of this invention is that there will be no memory

leaks or fragmentation caused by this algorithm.

[0015] An additional advantage of the invention is that two complete Jobs can be
loaded into the overlay buffers and have the variable Page Objects available for

printing at the same time.

[0016] A still further advantage of this invention is that it has the ability to switch
from one print job to the next print job at nominal printing speed with no blank prints

and without stopping the conveyer.

[0017] A still further advantage of this invention is that it has the ability to print
exactly N number of prints per job and switch to the next job and print N number of

prints without stopping the conveyer. This allows an exact job size to be specified.

WO 2009/015272 PCT/US2008/071016

Brief Description of the Drawings

[0018] Fig. 1 is a drawing of the hardware embodiment of this invention showing
a printer having flash non volatile memory, a microprocessor and random access

memory;

[0019] Fig. 2A is a drawing showing a dedicated host module which parses the

print job and communicates the print job to the attached rendering modules;
[0020] Fig. 2B is a drawing showing a dedicated host module which parses the
print job and communicates the print job to the attached rendering modules and
receives a portion of the print job to print;

[0021] Fig. 2C is a drawing showing the printing of two labels on three packages;

[0022] Fig. 3A and Fig. 3B is a flow chart of a program running on the host with
parser 31 (Fig. 2B); and

[0023] Fig. 4A and Fig. 4B is a flow chart of a program running on renders 23 and
24 (Fig. 2A) , and renders 32, 33 and 34 (Fig. 2B).

Detailed Description of the Present Invention

[0024] Referring now to the drawings in detail and more particularly to Fig. 1, the
reference character 11 represents a printer that contains flash or non volatile
memory 12, microprocessor 13 and random access memory 14. Microprocessor 13
is coupled to non volatile memory 12 and random access memory 14.
Microprocessor 13 executes the software algorithm described in the description of
Fig. 3 to be used by printer 11 to parse and render the print job. Non volatile
memory 12 is used for storing the algorithm. Memory 12 is shown external to the
processor, but it also may be internal to the processor. Random access memory 14

stores the parsed and rendered print job.

[0025] Fig. 2A is a drawing showing a dedicated host module which parses the

print job and communicates the print job to the attached rendering modules. A host
4

WO 2009/015272 PCT/US2008/071016

21 containing a parser is coupled to a first renderer and print head 22, a second
renderer and print head 23 and Nth renderer and print head 24. A conveyor 25
containing moving packages is adjacent to first renderer and print head 22, second

renderer and print head 23 and Nth renderer and print head 24.

[0026] Fig. 2B is a drawing showing a dedicated host module which parses the
print job and communicates the print job to the attached rendering modules and
receives a portion of the print job to print. A host 31 containing a parser first
renderer and print heads is coupled to a second renderer 32, a third renderer 33,
and Nth renderer 34. A conveyor 35 containing moving packages is adjacent to the
first renderer and print head 31, second renderer and print head 32, third renderer
and print head 33, and Nth renderer and print head 34.

[0027] The parsers and renders shown in Figs. 2A and 2b may exist on the same
microprocessor. It is also possible for the renderer and parser to be present on
separate microprocessors. When the renders and parsers are on a separate
microprocessor, Module 1 with a CPU and parser creates package data objects and
sends them through a communication channel to Module 2 and Module 2 with a
CPU, a renderer, and print head, receives package data objects and renders a print

buffer for printing the print job.

[0028] In this invention a host has a parser at a minimum. It can also contain a

renderer and print heads. There may be other print heads in the system and each
has renderers. Both the host and the renderers contain the hardware embodiment
shown in Fig. 1, i.e., contains flash or non volatile memory 12, microprocessor 13

and random access memory 14.

[0029] The invention of the embodiment of Fig. 2B has 1, 2, 3, or 4 print heads.

[0030] In order to allow flexibility in building pages, a very flexible data structure
that dynamically allocates a lot of memory is built. It would take a large amount of
conveyor time, measured in packages per minute, to free up the memory of the first
job and hence, it would cause a serious delay in starting another job once the first
packaging job has completed. When the conveyor is not stopped while the new print

job is loading, some boxes on the conveyor will not receive any printed data.

5

WO 2009/015272 PCT/US2008/071016

[0031] One possible algorithm to implement this invention is described in Figs. 3A
— 3D is very flexible, thus it may be utilized by the basic hardware described above.

[0032] In order to quickly free memory, the algorithm described in Figs. 3A — 3D
is used to place different parts of the parsed pages on different memory heaps (large
regions of memory that can be dynamically allocated) and then flushes (releases and
reinitializes) the entire heap when the new job comes in. The algorithm also allows
the previous job to keep printing until the new job is parsed and ready. This
controlled flushing of heaps allows maximum throughput and a precise switchover

from one job to the next.

[0033] The foregoing is accomplished by creating different heaps for different
objects. Odd and Even heaps are used according to the job ids polarity. At a high
level, the table below shows the heaps and the role the parser and renderer have for

each of them:

Heap Object Parser Renderer

1 Graphic (static) Populates Deletes after Rendering to an
available buffer

2 Page (variable) Populates Renders to buffer on each page print
New Job event halts Start Page
events
Deletes after all Start Page events
are processed

2 Font (variable) Populates Renders to buffer on each page print
New Job event halts Start Page
events
Deletes after all Start Page events

are processed

WO 2009/015272 PCT/US2008/071016

3 Page (variable) Populates Renders to buffer on each page print
New Job event halts Start Page
events Deletes after all Start Page
events are processed

3 Font (variable) Populates Renders to buffer on each page print
New Job event halts Start Page
events
Deletes after all Start Page events

are Processed.

[0034] On a more detailed level, the following objects and are used by the

algorithm:

e One Heap for Static Page Objects that is flushed after the overlay print buffer
has been rendered.

e One Odd Overlay Print Buffer for Static Page Objects for Jobs with and Odd
Page ID

¢ One Even Overlay Print Buffer for Static Page Objects for Jobs with and Odd
Page ID

e Four Print Buffers for rendering the variable page objects

e One Heap for Odd Variable Page Obijects that is flushed when the Odd
counter for Jobs with an Odd Page ID reaches zero and the print engine has
switched to a new print job

e One Heap for Even Variable Page Objects that is flushed when the Even
counter for Jobs with an Even Page ID reaches zero and the print engine has

switched to a new print job

WO 2009/015272 PCT/US2008/071016

e One Static Render Thread for rendering Static Page Objects to the Overlay
Buffer.

e One Variable Render Thread for rendering Variable Page Objects to one of
the four Print Buffer.

¢ One Odd UpstreamSensor Counter incremented when Jobs with an Odd
Page ID is active

e One Even UpstreamSensor Counter incremented when Jobs with an Even
Page ID is active

¢ One PageObiject with two lists, a Static Object List and a Variable Object List

[0035] The host will broadcast a message to indicate to all renders when it is time
to switch jobs, which requires the UpstreamSensor Counter to switch to the other

counter.

[0036] This invention can also be used in standard printers when they are printing
copies. It can even be used in mail finishing equipment to load and unload ad

slogans and other parts of the envelope that are printed on.

[0037] Typically there are two major software tasks in a printer that are used to
create a page that will be printed.

Parser — this software takes PCL (Printer Control Language) and parses the data
into a data object form that specifies how the page will be created.

Renderer — this software takes the parsed page data objects and creates a bit map
in memory of the image for the section of the page the renderer is configured. In
certain applications, there will be multiple renderers because each piece will create a

part of the image.

[0038] Fig. 3A and Fig. 3B is a flow chart of a program running on the host with
parser 31 (Fig. 2B). The program begins at start block 99. Decision block 200
receives an input from encoder 98 (Fig. 2B). Block 200 determines whether or not it

is time to print. If decision block 200 determines it is not time to print the program

8

WO 2009/015272 PCT/US2008/071016

goes back to the input to block 200. If block 200 determines that it is time to print the
program goes to decision block 201. Block 201 determines whether or not there is a
column to print. If decision block 201 determines there is not a column to print the
program goes back to the input to block 200. If block 201 determines that there is a
column to print the program goes to decision block 202 to print the column. Then the
program goes to decision block 203. Block 203 determines whether or not it was the
last column to print. If decision block 203 determines there was the last column to
print the program goes back to the input to block 200. If block 203 determines that it
was the last column to print the program goes to block 204. Block 204 releases the

page buffer and decrements the active page counter for printing.

[0039] Now the program goes to decision block 205. Block 205 determines
whether or not the active print page counter equals zero. If block 205 determines
that the active print page counter does not equals zero the program goes to decision
block 208. If block 205 determines that the active print page counter equals zero the
program goes to decision block 206. Block 206 determines whether or not it is time
to switch the active print page. [f block 206 determines that it is not time to switch
the active print page the program goes back to the input of block 200. If block 206
determines that it is time to switch the active print page the program goes to block
207 to switch the active page counter for printing and free the variable heap. Next
the program goes to decision block 208. Block 208 determines whether or not a
page has to be created. If block 208 determines that a page does not have to be
created the program goes back to the input of block 200. [f block 208 determines
that a page has to be created the program goes to block 209 to get page buffer,
render variable data for the page from the variable heap. Then the program goes
back to the input of block 200.

[0040] Decision block 220 receives an input when the user loads a new job.
Block 220 determines whether or not this is a new job. If decision block 220
determines that it is not a new job the program goes back to the input to block 220.
If block 220 determines that it is a new job the program goes to block 221 to parse
the PCL (Printer Control Language) job and to create page objects on static and
variable heaps. Then the program goes to block 222 to send the page objects to
other printers. Next the program goes to decision block 223. Block 223 determines

whether or not all the printers have stored the page objects. If block 223 determines

9

WO 2009/015272 PCT/US2008/071016

that all the printers have not stored the page objects the program goes back to the
input of block 223. If block 223 determines that all the printers have stored the page
objects the program goes to the block 224 to render static objects to next overlay
buffer. Now the program goes to block 225 to free the static heap. At this point the
program goes to block 226 to send page rendered notifications to all printers. Then
the program goes to decision block 227. Block 227 determines whether or not all
printers have finished rendering static page objects. If block 227 determines that all
the printers have not finished rendering static page objects the program goes back to
the input of block 227. If block 227 determines that all the printers have finished
rendering static page objects the program goes to block 228 to send switch job
notifications to all printers. Then the program goes to block 229 to switch the active
page counter for incoming pages. At this point the program goes back to block 220

to wait for the next job.

[0041] Decision block 240 receives an input from sensor 41 (Fig. 2B). Block 240
determines whether or not this is a new page. If decision block 240 determines that
it is not a new page the program goes back to the input to block 240. If block 240
determines that it is a new page the program goes to block 241 to send new page
notifications to all printers. Then the program goes to block 242 to increment the
page counter for incoming pages. Next the program goes to decision block 243.
Block 243 determines whether or not a new page has to be created. If decision
block 243 determines that a new page does not have to be created the program
goes back to the input of block 240. If block 243 determines that a new page has to
be created the program goes to block 244 to get page buffer, render variable data for
the page from the variable heap. Then the program goes back to the input of block
240.

[0042] Fig. 4A and Fig. 4B is a flow chart of a program running on renders 23 and
24 (Fig. 2A) , and renders 32, 33 and 34 (Fig. 2B). Decision block 300 receives an
input from encoder 97and encoder 98. Block 300 determines whether or not it is
time to print a column. If decision block 300 determines it is not time to print a
column the program goes back to the input to block 300. If block 300 determines
that it is time to print a column the program goes to decision block 301. Block 301
determines whether or not there is a column to print. If decision block 301

determines there is not a column to print the program goes back to the input to block

10

WO 2009/015272 PCT/US2008/071016

300. If block 301 determines that there is a column to print the program goes to
block 302 to print the column. Then the program goes to decision block 303. Block
303 determines whether or not it was the last column printed. If decision block 303
determines that it was not the last column printed the program goes back to the input
to block 300. If block 303 determines that it was the last column printed the program
goes to block 304. Block 304 releases the page buffer and decrements the active

page counter for printing.

[0043] Now the program goes to decision block 305. Block 305 determines
whether or not the active print page counter equals zero. If block 305 determines
that the active print page counter does not equals zero the program goes to decision
block 308. If block 305 determines that the active print page counter equals zero the
program goes to decision block 306. Block 306 determines whether or not it is time
to switch the active print page counter for printing. If block 306 determines that it is
not time to switch the active print page counter for printing the program goes back to
the input of block 200. If block 306 determines that it is time to switch the active print
page counter for printing the program goes to block 307 to switch the active page
counter for printing and free the variable heap. Next the program goes to decision
block 308. Block 308 determines whether or not a page has to be created. If block
308 determines that a page does not have to be created the program goes back to
the input of block 300. If block 308 determines that a page has to be created the
program goes to block 309 to get page buffer, render variable data for the page from

the variable heap. Then the program goes back to the input of block 300.

[0044] Decision block 320 receives an input from host 31 (Fig. 2B) after a user
has loaded a new job. Block 320 determines whether or not there are new page
objects. If decision block 320 determines that are no new page objects the program
goes back to the input to block 320. If block 320 determines that it are new page
objects the program goes to block 321 to store page objects on static and variable
heaps. Then the program goes to block 322 to send to host stored page objects.
Next the program goes to decision block 323. Block 323 renders static objects to
next overlay buffer. Then the program goes to the block 324 to free the static heap.
Then the program goes to block 325 to send page rendered notification to host. At
this point the program goes to decision block 326. Block 326 determines whether or

not it is time to switch jobs. If block 326 determines that it is not time to switch jobs

11

WO 2009/015272 PCT/US2008/071016

the program goes back to the input of block 326. If block 326 determines that it is
time to switch jobs the program goes to block 327 to switch active page counter for
incoming pages. Then the program goes back to the input of block 320.

[0045] Decision block 340 receives an input from host 31 or sensor 41. Block
340 determines whether or not this is a new page. [f decision block 340 determines
that it is not a new page the program goes back to the input to block 340. If block
340 determines that it is a new page the program goes to block 341 to increment
page counter for incoming pages. Then the program goes to decision block 342.
Block 342 determines whether or not a new page has to be created. If decision
block 342 determines that a new page does not have to be created the program
goes back to the input of block 340. If block 342 determines that a new page has to
be created the program goes to block 343 to get page buffer, render variable data for
the page from the variable heap. Then the program goes back to the input of block
340.

[0046] The above specification describes a new and improved method for method
for printing information on packages. It is realized that the above description may
indicate to those skilled in the art additional ways in which the principles of this
invention may be used without departing from the spirit. Therefore, it is intended that

this invention be limited only by the scope of the appended claims.

12

WO 2009/015272 PCT/US2008/071016

What is claimed is:

1. A method for printing information on packages, comprising the steps of:
placing a plurality of packages on a continuously moving conveyor,
printing information by a plurality of printers comprising font, font size, font
character and graphic on the packages as the packages move on the conveyor, and
changing the information printed by the plurality of printers on the packages
as the conveyor continues to move so that the information printed on the packages
will be correct when the printers switch from printing a type of the information on a

first job to a different type of the information on a second job.

2. The method claimed in claim 1, wherein the packages have varying sizes.
3. The method claimed in claim 1, wherein the packages have varying shapes.
4. The method claimed in claim 1, wherein the changing step further comprises:

placing static information from a first print job in a static heap;

rendering static information from the static heap to a first overlay print buffer;

freeing the static heap;

determining the package presence on the conveyor in the proximity of a print
head;

parsing variable objects in the first print job to a first variable heap for the first
print job;

placing the variable objects in a print buffer;

placing buffer data in the first overlay print buffer and data in the print buffer in
a print head buffer;

printing information for the first print job;

placing static information from a second print job in the static heap;

rendering static information from the static heap to a second overlay print
buffer;

freeing the static heap;

determining the package presence on the conveyor in the proximity of a print
head;

parsing variable objects in the second print job to a second variable heap for
the second print job;

13

WO 2009/015272 PCT/US2008/071016

placing the variable objects in the print buffer;

placing buffer data in the second overlay print buffer and data in the print
buffer in a print head buffer; and

printing information for the second print job.

5. The method claimed in claim 1, wherein information is printed on X number of
packages before printing information on Y number of packages, wherein X and Y are

numbers greater than or equal to one.

6. The method claimed in claim 2, wherein the changing step comprises:

placing static information from a first print job in a static heap;

rendering static information from the static heap to a first overlay print buffer;

freeing the static heap;

determining the package presence on the conveyor in the proximity of a print
head;

parsing variable objects in the first print job to a first variable heap for the first
print job;

placing the variable objects in a print buffer;

placing buffer data in the first overlay print buffer and data in the print buffer in
a print head buffer;

setting a counter for the number of packages to be printed for the first print
job;

printing information for the first print job;

decrementing the counter as the packages for the first print job are printed;

placing static information from a second print job in the static heap;

rendering static information from the static heap to a second overlay print
buffer;

freeing the static heap;

determining the package presence on the conveyor in the proximity of a print
head;

parsing variable objects in the second print job to a second variable heap for
the second print job;

placing the variable objects in the print buffer;

placing buffer data in the second overlay print buffer and data in the print

buffer in a print head buffer;

14

WO 2009/015272 PCT/US2008/071016

setting the counter for the number of packages to be printed for the second
print job;

switching from the first print job to the second print job when the first print job
count has a count of zero

and

printing information for the second print job.

7. The method claimed in claim 1, wherein images are printed on media.

8. The method claimed in claim 7, wherein images are printed on the media in a

desired order.

9. The method claimed in claim 8, images are printed on the media in a desired

order for a precise predefined number of media items.

15

WO 2009/015272 PCT/US2008/071016

CONVEYOR WITH PACKAGES ON IT

1/6
12 13 14
— J R W R
[}
[}
'
' FLASH / NVM
i MEMORY FOR _ l¢«—»| MICROPROCESSOR |¢—» RAM
' | CODE STORAGE
'
1
e mcmmmcccmmmmmmemceeemeemeeeeeeeseeeeeeeeeeoeooos 7/--
11
26
Ve - T T
! R\) !
]
: ENCODER SENSOR !
[}
i 21 i
| 3 4 :
1
1
! ———| HOST WITH PARSER |« :
1
1
] A 1
| |FIRST RENDERER SECOND RENDERER NTH RENDERER !
t | AND PRINTHEAD AND PRINT HEAD AND PRINT HEAD .
| |
! 1
! i
!]
{]

WO 2009/015272 PCT/US2008/071016
2/6
36 \
: ----- L L1 - - e L L L 2 3 L L}) - S 5N 6B 6D &R 6D &R aB 5 G5 ED R 6B G AR 40 O &) (N &N 6B BB &N an) &5 U5 6P 6B 6B &N B
: 98
! ENCODER |/
1
|
! #1
| SENSOR |/
1
|
i
|
!
| 31 32 33 34
: Y A /- \ 4 f A F /
: PA'}{%SETF{W,':T,EST SECOND THIRD NTH
i | RENDER AND | | RENDERER AND| | RENDERER AND| | RENDERER AND
| 'PRINTHEAD PRINTHEAD | | PRINT HEAD PRINT HEAD
i
: CONVEYOR WITH PACKAGES ON IT
35

FIG. 2B

WO 2009/015272

PCT/US2008/071016

3/6

HOST

204

208

NG DOES A
PAGE HAVE

TO BE
CREATED?

GET PAGE
BUFFER.

RENDER VARIABLE
DATA FOR THE
PAGE FROM
VARIABLE HEAP.

200)

A

TIMETO
PRINT A
COLUMN?

201

IS THERE A
COLUMN TO
PRINT?

lYES

PRINT COLUMN

RELEASE PAGE
BUFFER.

DECREMENT ACTIVE
PAGE COUNTER FOR
PRINTING

205

DOES
ACTIVE PRINT
PAGE COUNTER
EQUAL 07

206

TIME
TO SWITCH
ACTIVE PRINT
PAGE?

YES

SWITCH ACTIVE
PAGE COUNTER FOR
PRINTING

FREE VARIABLE
HEAP

207

FIG. 3A

WO 2009/015272

PCT/US2008/071016
4/6
220 NG 240
NEW JOB? , @ NO
YES YES
221 241
PARSE PCL JOB SEND NEW PAGE
“—| 'CREATE PAGE \— NOTIFICATION TO
OBJECTS ON ALL PRINTERS
STATIC AND
VARIABLE HEAPS
242 v
A 4 INCREMENT PAGE
222 SEND PAGE \-— COUNTER FOR
__| OBJECTSTO INCOMING PAGES
OTHER PRINTERS
I 243
223 DOES A
HAVE ALL PAGE HAVE TO
PRINTERS STORED BE CREATED?
AGE OBJECTS?

244
224 RENDER STATIC »
N o SR GET PAGE BUFFER.
OVERLAY BUFFER RENDER VARIABLE DATA
FOR THE PAGE FROM
225 v VARIABLE HEAP.
“—1} FREE STATIC HEAP
226 v
_| SEND PAGE RENDERED
NOTIFICATION TO ALL
PRINTERS
229 \
SEND SWITCH JOB SWITCH ACTIVE PAGE

NOTIFICATION TO ALL COUNTER FOR F I G . 3 B
PRINTERS(RENDERS) INCOMING PAGES

Y

WO 2009/015272 PCT/US2008/071016
5/6

OTHER PRINTERS l

300
TIME TO
PRINT A COLUMN?

301
IS THERE
A COLUMN TO
PRINT?

YES

302
\. PRINT
COLUMN
303

LAST COLUMN
PRINTED?

RELEASE PAGE BUFFER.

DECREMENT ACTIVE
PAGE. COUNTER FOR
PRINTING

308

- DOES
A PAGE HAVE TO
BE CREATED?,

f 309
GET PAGE BUFFER.
TIME TO
RENDER VARIABLE NO
DATA FOR THE PAGE PAGE COUNTER FOR
FROM VARIABLE HEAP. PRINTING? -
J 307

hY YES

SWITCH ACTIVE PAGE
COUNTER FOR

PRINTING FIG. 4A

FREE VARIABLE HEAP

WO 2009/015272 PCT/US2008/071016
6/6

©

320 340
NEW PAGE NO
OBJECTS?
YES
321 341
STORE PAGE _| INCREMENT PAGE
_| OBJECTS ON STATIC COUNTER FOR
AND VARIABLE INCOMING PAGES
HEAPS
v 342
322 SEND TO HOST DOES A NO
~_ STORED PAGE PAGE HAVE TO BE
OBJECTS CREATED?
\ 4 343
323 RENDER STATIC
- OBJECTS TO NEXT K GET PAGE BUFFER.
OVERLAY BUFFER RENDER VARIABLE DATA
FOR THE PAGE FROM
324 v VARIABLE HEAP.
~~—1 FREE STATIC HEAP
\ 4
325
SEND PAGE RENDERED
~— NOTIFICATION TO HOST
326 X
TIME TO
SWITCH JOB?
327
SWITCH ACTIVE PAGE
K, COUNTER FOR
INCOMING PAGES

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 08/71016

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 19/00 (2008.04)
USPC - 700/99

According to Intcrnational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system fotlowed by ¢
IPC(8): GO6F 19/00 (2008.04)
USPC: 700/99

lassification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields scarched

USPC: 700/90, 99, 100, 102; 715/200, 256, 274

Electronic data base consulted during the intemational search (name of
PubWest(PGPB,USPT,USOC,EPAB,JPAB); Google Scholar; Google

data base and, where practicable, search terms used)
Patents

Search Terms Used: printed, packages, conveying, separate memory heaps, paralle! parsing, plurality of printers, correct, information,

print head buffer etc.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2002/0152001 A1 (KNIPP et al.) 17 October 2002 (17.10.2002), para [0075])-[0099), para 1-9
{0108}-[0127]
Y US 2005/0065645 A1 (LIFF et al.) 24 March 2005 (24.03.2005), para [0012] 1-9
Y US 2007/0019016 A1 (SILVERBROOK et al.) 25 January 2007 (25.01.2007), para [2252]- 4 and 6

(2481], para [5356]-{5478]

[:] Further documents are listed in the continuation of Box C.

[]

Special categories of cited documents:

document defining the general state of the art which is not considered
to be of particular relevance

carlier application or patent but published on or afier the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior 1o the international filing date but later than
the priority date claimed

apr

later document published after the intcrnational filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

* document of particular relevance: the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is 1aken alone

“Y" document of particular relevance: the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the arn

“&" document member of the same patent family

Date of the actual completion of the international search

06 October 2008 (06.10.2008)

Date of mailing of the intcmational scarch report

150CT 2008

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT QSP: 571-272-7774

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - wo-search-report

