(19) 世界知的財産権関係
国際事務局

(43) 国際公開日
2003年6月5日 (05.06.2003)

(51) 国際特許分類:
A23F 5/24,
3/16, A23L 1/212, 1/221, 2/04

(21) 国際公開番号:
PCT/JP2002/012064

(22) 国際公開日:
2003年11月19日 (19.11.2002)

(25) 国際公開の言語:
日本語

(26) 国際公募の言語:
日本語

(30) 優先権データ:
特願2001-364348
2001年11月29日 (29.11.2001) JP
特願2002-113730

(71) 出願人／国名を除く全ての指定国について:
明治乳業株式会社 (MEIJI DAIRIES CORPORATION) [JP/JP];
〒136-8908 東京都 渋谷区 早稲田 1丁目 2-1 10 東京 (JP)

(72) 発明者; および
発明者／出願人／国名についてのみ:
本多 健志 (HONDA,Takeshi) [JP/JP]; 〒167-0034 東京都 中野区 杉並区 三鷹 1-3-7-1 東京 (JP), 今澤 武司 (IMAZAWA,Takeshi) [JP/JP]; 〒189-0022 東京都 東村山市 野口町 1-2-1-13 メゾンドアーネス 303 東京 (JP), 保田 健史 (KUBOTA,Yasushi) [JP/JP]; 〒188-0026 東京都 東村山市 多摩湖町 4-1-2 5-6

(74) 代理人: 戸田 賢男 (TODA,Chikao) 〒105-0001 東京都 港区 虎ノ門 1-9-1 4 邦楽ビル 503 戸田特許事務所 東京 (JP)

(84) 指定国 (広域): ARIPPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(54) Title: METHOD OF EXTRACTING AND/OR PRESSING EDIBLE FOOD OR DRINK

(57) Abstract: A food to be extracted and/or pressed is fed into a colloid mill or a twin-screw extruder and, immediately after milling and/or simultaneously with milling, a cold solvent (for example, water or milk at 3 to 50°C) is added thereto. After treating the food with the extruder, the cake is eliminated to give an extract and/or a press juice. After milling a subject food (for example, coffee, green tea, black tea, herb tea, wild herb tea, Chinese herb tea, cocoa, vanilla, fruits or vegetables, either as a single material or a combination thereof), an extract or a press juice can be quickly and highly efficiently obtained at a low temperature in a manner appropriate for the mass production without any worsening in flavor due to oxidation after milling, etc. Compared with the existing extraction/pressing methods such as the cold extraction method with a need for a long time, the above method is much advantageous from the viewpoints of improving flavor and economics. In case of tea drinks, for example, useful components are suspended and the vivid color tones characteristic to individual teas can be maintained over a long time.
抽出および／または搾汁の対象となる食品をコロイドミルや二軸エクストルーダーに装填し、粉砕した直後および／または粉砕と同時に低温溶媒（例えば－3～50℃の水、牛乳）を添加し、エクストルーダーで処理し、滓を除去して、抽出液および／または搾汁液を製造する。

対象となる食品、例えばコーヒー、緑茶、紅茶、ハーブティー、野草茶、漢方茶、ココア、バニラ、果実、野菜等の単品、またはこれらの組み合わせ品を粉砕後、速やかに抽出および／または搾汁を低温で極めて効率的に、または大量連続生産に適した実施が可能となり、粉砕後の酸化等による風味劣化や、長時間要する低温抽出法といった、従来用いられていた抽出／搾汁方法に比べて、風味向上および経済性の観点からも極めて有益な効果をもたらし、例えば茶系飲料にあっては、有用な成分が浮遊し、鮮やかな各々の茶特有の色調が長期間保持される。
明細書

可食飲食物の抽出および／または搾汁方法

発明の属する技術分野

本発明は、抽出液および／または搾汁液の製造に関するものであり、特に詳細には、エクストルーダーやコロイドミル等を利用してことににより酸化を極力抑制した抽出液および／または搾汁液を短時間に効率よく製造する方法に関するものである。したがって、本発明によれば、アロマの揮散が抑制された風香のすくれたコーヒーや、有用な茶成分が浮遊し、鮮やかな緑色を保持した茶系飲料（例えば、茶葉をそのまま摂取する「食茶」飲料等）等、従来工業的に製造し得なかった各種製品の提供も可能にするものである。

従来の技術

従来、工業的にレギュラーコーヒー抽出液を得る場合は、所定量のコーヒー焙煎豆粉砕物を密閉式抽出カラムや、ニーダー、デカンター等により熱水抽出する方法が常例である。しかし、この方法ではバッチ毎に抽出操作を繰り返さなければならないこと、また、粉砕によって表面積が増大した焙煎豆は、速やかに酸化し風味劣化、アロマ香気成分の喪失等を招く。また、このようにして
熱水により得られたコーヒー抽出液は、15〜30分間程度の短時間放置によっても、急速にコーヒー焙煎豆が本来有するアロマ香気成分を変質、散逸してしまう欠点は避けられない。強くてこれを抑制しようとすれば、補助的な手段として冷媒によるコーヒー抽出液の急速冷却工程が必要となるが、充分な効果は得られない。

このように従来工業的に行われている熱水抽出では渋味やあく味成分といった雑味は避けられず、しかもこれらの雑味は抽出効率を上げるとともに強く出現することから、低温抽出法が案出され、水出しコーヒー（ダッチコーヒーと通称）といった、渋味が少なくアロマ香気成分の喪失が少ないコーヒーが市場に存在するものの、現行の抽出方法である水滴を滴下しながら抽出するウォータードリップ方式等は、可溶性固形分1％以上の抽出液を得るために3〜8時間と長時間を要するため、工業的に採算の合う商品開発が極めて難しい状況にあり、ほとんど実用化されていない。

一方、茶類の代表例として、緑茶の抽出についてみると、工業的生産の場合、通常、所定量の緑茶葉をニーダー、デカンター等により50℃以上の熱水で10分以上かけて抽出し、ネル濾過やカラフィヤー等の通心分離機で茶滓を除去して製造される。緑茶は、抽出温度によって温水中に出てくる成分が異なり、一般的には抽出温度を低く設定すると、L-テアニン、グルタミン酸等のアミノ酸を主体とした旨味成分、および各種香気成分が、また抽出温度を高く設定すると、それに加えて、ポリフェノール等を主体とした渋味成分が溶出してくれるようになる。渋味成分は緑茶の風味を形成する重要な要素であるが、過剰に溶出すると好ましくない風味となる。

通常の場合、経済性を考慮して、工業的製造においては、一般的には60℃以上の熱水で抽出される。しかしながら、熱水での抽出は、緑茶クロロフィル
等の色素の速やかな退色、黄色化をもたらし、色彩的な品質の低下をもたらすことでも知られている。この退色防止に、ビタミンCやそのナトリウム塩の添加が有効とされているが、その効果は限定的であり、過剰のビタミンC等の添加はヒタミンPの発生により好ましくない結果をもたらし、高温長時間の処理によって、緑茶葉が保有する香りや旨味は少なくず消失しており、食物繊維にいたってはほとんど抽出されない。

また、従来のPET飲料市場に代表される工業的な茶系飲料は、外観上の観点からも沈澱するおそれのある茶滓をできるだけ除去して透明化しており、熱による褐変化を補うために、緑色のフィルム包装等によって緑茶飲料の質感を出す工夫をしていた。このように、緑茶を熱水で抽出する限り、緑茶抽出液の退色は進行し、急に緑茶特有の好ましい香気の喪失は免れない。また、これとは逆に、低温抽出を選択すると、可溶性固形分は溶出しにくくなるため、抽出に長時間を要し、生産性を著しく低下させる。よって、通常の低温抽出法は工業生産に利用することはできない。

さらに、緑茶のもつ有用成分は近年研究されてきており、7割以上の有用成分は茶葉に残存することから、茶葉をそのまま食す「食茶」等の健康法も近年クローズアップされている状況である。

こうした茶の香りや旨味を可能な限り残し、食物繊維に代表される茶葉の有用成分を均一な状態で長期間容器内に分散させることができるが可能であり、本来の緑色をかなりの程度まで残存することができる技術の開発が求められているが、完全に成功した例は報告されていない。

発明が解決しようとする課題

上記したように、コーヒーや緑茶だけではなく、他の食品においても、高温
抽出法では製品の風味品質の劣化は避けられず、これに対して低温抽出法は、
抽出効率、搾汁効率が悪く、工業的ではなく、かかる従来の方法においては、
一般的に抽出、およびまたは搾汁の対象となる食品、例えばコーヒー、緑茶、
紅茶、烏龍茶、ハーブティー、野草茶、漢方茶、コッパ、バニラ、果実、野菜
等の単品、またはこれらの組み合わせ品から、可溶性固形分を粉碎後、速やか
に低温の溶媒で、効率的かつ連続的、短時間に抽出およびまたは搾汁するこ
とが極めて難しく、また、牛乳等のタンパク質や脂質を含む溶媒を用いる場合
は抽出効率を高めるために、高温抽出を選択せざるを得ず、その代償としてタ
ンパク質の加熱による凝固や脂質の変質といった風味劣化のリスクを敢えて取
らざるを得なかった。

このように従来法では、高温抽出法及び低温抽出法のいずれも決定的な問題
点があることに鑑み、本発明は、短時間に好ましい風香味を効率的に抽出、搾
汁することのできる画期的な方法を新たに開発する目的でなされたものである。

また、茶系飲料に関しては、従来は、一般的に茶系飲料として抽出の対象と
なる食品、例えば緑茶、紅茶、烏龍茶、ハーブティー、野草茶、漢方茶等の単
品、または組合わせ品の茶系飲料は、不溶物を完全に除去し非常に透明度の高
い飲料としていた。また、その不溶物の内、微細粉を長時間浮遊させることが
極めて難しく、また、上記のように、茶系飲料の製造においても、経済的な
観点と有用成分の溶出の観点から 50℃以上 10 分以上の熱水長時間抽出によ
って、褐変化や風味劣化のリスクを敢えて取らざるを得なかった。

課題を解決するための手段

本発明は、上記目的を達成するためになされたものであって、本発明者らは、
各方面から検討の結果、二軸エクストルーダーを用い、高温ではなく低温の溶
媒を添加してエクストルーダー処理するという新規な構成をはじめて採用することにより、エグ味や淡味その他雑味がなく風味のすくれたコーヒー等抽出液および／またはジュース等の搾汁液をきわめて短時間に効率よく製造できること、そしてまた、溶媒の種類を水以外の溶媒、例えば牛乳その他に置換することもでき、その場合にはミルクコーヒーその他使用する溶媒に応じて各種のバラエティーに富んだ製品をきわめて簡単な操作で効率的に製造できること、しかも、使用する溶媒や処理対象食品によっては、従来未知の製品も製造できること、といった数多くの新規有用知見をはじめて得た。

本発明は、これらの有用新知見に基づき、更に研究の結果、遂に完成されたものである。以下、本発明について詳述する。

本発明を実施するには、二軸エクストルーダーを用いて処理対象食品を処理する。すなわち、二軸エクストルーダーは、回転する2本のスクリュウの狭隘な間隙に対象とする食品分散液を通して、連続的に剪断、混練、乳化の少なくともひとつを行わせ、この作用によって溶媒への抽出および／または搾汁を行うものであり、実際の装置としては、市販の装置が適宜使用可能である。また、二軸エクストルーダーのほか、上記した二軸エクストルーダーと同様の作用を有する二軸のスクリュウ等を装備した連続混練装置（例えば、栗本鉄工所製のコンディニュアス・ニーダーケー&ケイなど）であれば、すべての装置が使用可能である。したがって、マラコロイダーに代表されるコロイドミルも、狭隘な間隙を有する粉碎装置であるので、本発明において二軸エクストルーダー等と同様に使用可能であるが、以下、二軸エクストルーダーを代表例として本発明を説明していくことにする。

本発明においては、二軸エクストルーダー（上記連続混練装置を含む）で処理対象食品を処理するのであるが、その際、該食品を充填して粉碎した直後お
および／または粉末と同時に、溶媒、特に低温溶媒を添加してエクストルーダー処理することが必要である。このように低温条件下でエクストルーダー処理することにより、雜味の生成を抑制し、有用成分の品質を保持しながら、酸化を抑制しつつ、しかもきわめて短時間に効率的に抽出および／または搾汁を行うものである。

このようにして、抽出および／または搾汁後、抽出滓および／または搾汁滓を常法にしたがって除去し（遠心分離、濾過、デカンテーション等）、目的とする抽出液および／または搾汁液（ジュース）を得る。また、例えば野菜ジュースや果実ジュースの場合において、繊維パルプ分の利用を所望する場合には、滓を完全に分離する必要もないし、場合によっては滓の分離自体を行わないこともあり得る。また、茶葉の有用成分も浮遊ないし懸濁せしめるタイプの茶系飲料の場合には、茶殻のみを分離、除去すればよい。

滓の分離は、上記したように常法によって行うが、具体的には、例えばエクストルーダー出口部であるダイ部にノズルもしくはスリット様の金具を取り付けて固液分離を行ったり、フィルター濾過、液体サイクロン、クラリファイアーや、デカンター等の使用が可能である。

本発明においては、低温溶媒を用いて低温条件下でエクストルーダー処理するものであって、60℃未満、好ましくは55℃以下、更に好ましくは50℃以下の低温溶媒が使用される。低温の下限については、溶媒が連結しない温度であればよく、溶媒の種類にもよるが、-5℃以上であって、通常、-3℃以上とするのが好ましい。具体的には、実施例において5〜50℃の低温域が例示されているが、2〜30℃の低温域の条件が望ましい。必要であればエクストルーダーに冷却装置を設けてもよい。

溶媒としては、水、牛乳のほか、次に例示するような各種溶媒が広範に使用
可能である：乳製品（生乳、脱脂乳、ホエイ、酸乳、還元全脂粉乳、還元脱脂粉乳その他）；糖類含有液（グルコース、フラクトース、シュートクロース、ラクトース、マルトース、トレハロース、ラフィノース、ラクチュロース、メリビオース、ラクトオリゴ糖、ガラクトオリゴ糖、大豆オリゴ糖）、異性化糖、液糖等を1種又はそれ以上含有する液状物；糖アルコール含有液（エリスリトール、キシリトール、マルチトール、ソルビトールその他各種糖アルコールを1種又はそれ以上含有する液状物）；カルシウム、マグネシウム、ナトリウム、カリウム等のミネラル含有液；ビタミンA、B、C、D、E等のビタミン含有液；ベクチン、カルボキシメチルセルロース等の安定剂含有液；例えば脂溶性成分を使用する等の場合における乳化剤、静菌剤（ショ糖脂肪酸エステル、ポリグルリシン脂肪酸エステル等）、pH調整剤（重曹等）、香料、色素、酸化防止剤（ビタミンC、そのナトリウム塩など）、甘味料（上記した糖類のほか、ステビア、蜂蜜など）、呈味料（核酸、アミノ酸など）その他。

これらの溶媒は単用しても2種類以上を併用してもよく、所望する場合、上記した各成分を溶液にすることなくそれ自体を、直接、水や牛乳等各種溶媒に添加してもよい。

本発明においては、上記した方法を利用して各種食品を低温エクストルーダー処理することによって、風味品質の劣化が防化された抽出液および／または搾汁液が得られるが、処理対象食品としては、次のものが例示される：コーヒー、緑茶、紅茶、中国茶（ウーロン茶、プーアール茶、鉄観音茶等）、ハーブティー、野草茶、漢方茶、ココア、バニラ、果実、野菜の1種又はそれ以上。

本発明に係る低温エクストルーダー処理による抽出液および／または搾汁液の製造方法の実施態様を例示すると、次のとおりである。

（態様1）一般的に抽出および／または搾汁の対象となる食品、例えばコ
ーヒー、緑茶、紅茶、烏龍茶、ハーブティー、野草茶、漢方茶、ココア、パニュラ、果実、野菜等の単品、またはこれらの組み合わせ品を二軸エクストルーダーに装填し、粉碎した直後もしくは同時に、水、牛乳等適当な溶媒を添加して、エクストルーダー内に剪断、混練、乳化し、食品有用成分の溶媒への抽出、搾汁した後、何らかの手段で抽出滓、搾汁滓を除去することを特徴とする、極めて抽出、搾汁効率が高く、新規性のある風味を有する抽出液、および／または搾汁液を得る製造法。

（態様２）二軸エクストルーダーは、一般的に同方向に回転する２本のスクリュウの狭隘な間隙を、対象の食品分散液を通し、連続的に剪断、混練、乳化させる装置であり、この物理的・化学的・食品収稿法によって溶媒への抽出および搾汁を行うことを特徴とする態様１に記載した抽出液および／または搾汁液を得る製造法。

（態様３）二軸エクストルーダーによって、対象となる食品を粉碎した後、極めて迅速に、一連の動作の中で抽出および／または搾汁を施し、粉碎後の風味劣化につながる酸化を極力抑えることを特徴とする態様１、または態様２に記載した抽出液および／または搾汁液を得る製造法。

（態様４）抽出および／または搾汁に使用する水、牛乳等の溶媒は、－3℃から50℃と低温であり、通常の食品の熱水抽出および／または搾汁の温度帯と明らかに異なることを特徴とする態様１、または態様２、態様３に記載した抽出液および／または搾汁液を得る製造法。

（態様５）コーヒーの抽出に使用する水、牛乳等の溶媒は、－3℃から50℃と低温であり、通常のコーヒーの９0℃前後の温度帯における熱水抽出と明らかに異なることを特徴する態様１、または態様２、態様３に記載した抽出液を得る製造法。

（態様６）茶類の抽出に使用する水、牛乳等の溶媒は、－3℃から50℃と低
温であり、通常の茶類の60～95℃程度の温度帯における熱水抽出と明らかに異なることを特徴とする懸懸1、または懸懸2、懸懸3に記載した抽出液を得る製造法。

（懸懸7） 野菜の搾汁に使用する水、牛乳等の溶媒の温度は－3～50℃と低温であり、なおかつ、溶媒を使用した場合の乳化作用等によって、親油性成分等の溶出を容易にする、通常の食品の60℃以上の高温帯での搾汁処理とは明らかに異なることを特徴とする懸懸1、または懸懸2、懸懸3に記載した搾汁液を得る製造法。

（懸懸8） 二軸エクストルーダーと同様の効果をもつ二軸のスクリュウを有する連続混練装置等を用いる本製造法。

（懸懸9） マスコロイダーに代表されるコロイドミル等の狭狭な間隙を有する微粉末装置を用いる本製造法。

（懸懸10） 抽出の対象となる食品として、緑茶、紅茶、ウーロン茶、ブーアール茶、緑茶、ハーブティー、野草茶、漢方茶の少なくともひとつのを用い、50℃以下の低温で該装置にて微粉末し、微粉末したと同時および又はその直後に、該低温に保持した低溫溶媒で抽出した後、沈澱する抽出滓を除去すること、を特徴とする懸懸1～4、懸懸6のいずれか1項に記載の方法。

本発明にしたがってコーヒーを製造するには、例えば次のようにしてエクストルーダー処理すればよい。

すなわち、コーヒー焙煎豆を二軸エクストルーダー、もしくは同様の効果をもつ二軸のスクリュウを有する連続混練装置等に装填し、粉砕した直後もしくは同時に、水、牛乳等適当な溶媒を添加して、本装置内で剪断・混練・乳化し、コーヒー有用成分を溶媒へ抽出した後、何らかの方法で抽出滓を除去した抽出液を得るものである。
従来のドリップ式等で－3～50℃程度の低温水を用いた抽出法では、1％以上の可溶性固形分を得るのに3～8時間も要し、しかもパッチ式処理方法であった。さらには従来の抽出方法で、溶媒として低温の牛乳や生クリーム、脱脂粉乳等の乳成分を用いた場合では、可溶性固形分の溶出が極めて難しく、50℃程度以上で抽出せざるを得なかった。そうしたことから、乳タンパク質の加熱による凝固や乳脂質の酸化・変質を招く結果となった。

本法によれば、20℃程度の水で焙煎コーヒー豆を二軸エクストルーダー、もしくは同様の効果をもつ二軸のスクリュウを有する連続混練装置等で処理することによって、通常熱水で粉碎焙煎コーヒー豆を抽出した場合と同様の、20～30％程度の抽出効率を得ることが可能である。また、10℃以下牛乳等の溶媒で処理した場合も、水と同様のコーヒー成分の抽出が可能であり、しかも乳タンパク質の凝固や乳脂肪の酸化・変質のない、コーヒーの親油性分を豊富に含んだ、新規性の高い抽出液を得ることができる。

しかし、高温での抽出方法は、条件によってはコーヒー油の酸化による風味劣化を招くことや、一般的には15～30分間程度の放置により、コーヒーアロマ香気成分が速やかに散逸するといった欠点を有する。

二軸エクストルーダー、もしくは同様の効果をもつ二軸のスクリュウを有する連続混練装置等で処理されたコーヒー抽出液には、細かい抽出済が含まれているため、何らかの方法により分離除去する必要がある。本発明では、その方法を規定するものではないが、一般的な分離除去法として、エクストルーダー出口部であるダイ部のノズルもしくはスリット状の金具を取り付け固液分離を行ったり、フィルター濾過、液体サイクロン、クラリファイヤー、デカンタ等の使用が可能である。

本発明で使用する溶媒の温度は、60℃未満、好ましくは50℃以下で良好
な結果が得られる。50℃を超えると特に60℃以上になると熱水（牛乳）抽出の場合と同じように、コーヒー・アロマ香気成分の散逸、タンニン等の渋味成分の漏出が認められるようになり、その効果は限定的である。

一方、本発明における茶系飲料は、葉茶をマスコロイダーに代表されるコロイドミルや二軸エクストルーダー等の狭隘な間隙を望ましくは50℃以下の低温で通過させることによって微粉砕し、粉砕した直後もしくは同時に、水、牛乳等の適当な溶媒を添加して、本装置内で剪断・混練され、茶の有効成分を溶媒へ抽出した後、何らかの方法で沈澱させる茶滓を除去して得られるものである。これらの工程の内、粉砕抽出工程は一連の動作で行われ、数十秒の非常に急速な処理方法である。こうして得られた微粉末は各々の茶本来の色調を有しており、香り高く茶本来の旨味が強い。また、食物繊維含量も従来の抽出液に比べて高い。そして本微粉末は、3ヶ月以上の長期間にわたって浮遊分散しており、PETボトル容器等の透明容器での商品としての質感を安定的に維持することができる。

このようにして製造した緑茶の場合、コーヒーと同様に、極めて高い抽出効率が得られ、抽出液は温湯で得られない美しい緑褐色を呈する。また風味は、渋味、雑味がほとんどなく、マイルドな後味を有するのが特徴で、これまでの常識を覆した品質特性を示す。特に、牛乳を用いた場合において、その傾向が強まり、香りや旨味成分の溶出度向上が認められる。

また、果実、野菜の場合も同様に、色調の美しさはさることながら、纖維質の粉砕や、特に牛乳等を溶媒に使った場合の、乳化による有効成分の溶出度向上や、マイルドな風味、香気成分の保持向上が認められる。

このように本発明により、コーヒー、緑茶、紅茶、烏龍茶、ハーブティー、野草茶、漢方茶、ココア、バニラ、果実、野菜等の単品、またはこれらの組み
合わせ品の－5～60℃、好ましくは－3～50℃の低温域における抽出および／または搾汁の効率を大幅に上げることが可能となる。また、得られた抽出液、搾汁液はそれぞれ極めて利用価値の高い品質特性を有する。

このようにして本発明によって得られた抽出液、搾汁液、茶系飲料は、そのまま容器に充填して製品とることができ、所望する場合、既述した糖類、ステビア、蜂蜜等の甘味料、重曹等のpH調整剤、ビタミンC、そのナトリウム塩等の酸化防止剤、呈味料（核酸、アミノ酸など）、その他溶媒の調製に例示した各種の原料、成分を添加して製品としてもよい。また、これらの抽出液、搾汁液、茶系飲料は最終製品とすることなく、原料としても各種利用可能である。

実施例

以下に本発明を実施例を挙げて説明するが、本発明はこれに限定されるものではない。

実施例1

二軸エクストルーダーはKEX－50（栗本機械予製）を用い、第2、第3、第4パレル部に12mmパドルスクリュウを装填し、第3、第4パレル部のパドルスクリュウ下流部直後に16mmピッチリバーススクリュウを装填して混練能力を高めた。スクリュウ回転数220rpm、パレル温度20℃に設定した。

コーヒー豆は、L値21に焙煎したコロンビア産コーヒー豆を用い、二軸エクストルーダー第1パレル部から振動フィーダーによって4.2kg/hで添加した。スクリュウの回転によって、狭間間隙に焙煎豆を強制的に送り込むことで粉砕した。
その後、20℃の水を第2バレルより38.6kg/hで添加し、粉碎焙煎コーヒー豆の剪断・混練・乳化を施した。約20秒〜1分30秒の間で抽出液はダイ出口より押出され、3分間程度以上で定常化する。得られた抽出液は、750G、10分の遠心処理を施し、上澄波量および沈殿量を測定し、上澄液の可溶性固形分を糖度計で測定した。

また、エクストルーダーによる熱水抽出として、各バレルの温度を60℃、もしくは80℃、150℃に上げ、20℃の水を第2バレルより33.6kg/hで添加し、粉碎焙煎コーヒー豆の剪断・混練・乳化を施した。この際のダイ出口部での抽出液温度は50℃、もしくは60℃、95℃であった。

加えて、5℃の牛乳を第2バレル部より33.6kg/hで添加し、上記同様に粉碎焙煎コーヒー豆の剪断・混練・乳化を施し、遠心分離後、試料の調製を行った。

対照品として、グラニュレーターで粉碎した直後の平均粒子径400μmの焙煎コーヒー豆1部に対し、20℃の水9部を数滴ずつ滴下するウォータードリップ方式で8時間滴下抽出した。また、95℃の熱水9部で粉碎直後の焙煎コーヒー豆1部を、ベーパードリップ方式で抽出した試料を調製した。さらには、グラニュレーターで粉碎後、25℃12時間放置し、95℃の熱水で抽出した試料と調製した。なお、風味比較は専門パネル5名により、可溶性固形分1.0%に調製した試料で行った。

このようにして調製した試料を以下にまとめて示す。

(対照)

イ：20℃水抽出
ロ：95℃熱水抽出
ハ：95℃熱水抽出（粉碎後12時間放置）
ニ：60℃熱水エクストルーダー抽出
ホ：95℃熱水エクストルーダー抽出
（本発明）
ヘ：20℃水エクストルーダー抽出
ト：50℃水エクストルーダー抽出
チ：5℃牛乳エクストルーダー抽出

試験結果を下記表1に示す。測定項目は次のとおりである。
A：抽出効率（％）
B：風味的特徴（コーヒー可溶性固形分1％調整時）
 B1：香り
 B2：苦味
 B3：酸味
 B4：雑味
 B5：総合評価
C：コーヒー可溶性固形分当たりのタンニン量（mg／g）
なお、注1）本発明法による牛乳抽出液は、遠心分離後粘度計による可溶性固形分の測定は誤差が大きいため、掲載していない。注2）官能評価は、専門パネル5名で評点法による5段階絶対評価（1：弱い／悪い〜5：強い／良い）を行い、平均値をスコアとした。
上記結果から明らかように、二軸エクストルーダー処理による水抽出試料は、熱水ドリップ抽出と同等の高い抽出効率を示しており、官能的な評価として、香りが高く、酸味や雑味が少ないスッキリとした水だしコーヒーの風味を有している。一方、60℃以上の熱水で二軸エクストルーダー処理をした場合、コーヒーオイルの酸化に伴う劣化臭が認められ、また酸味や雑味が増した。また水抽出は、熱水抽出に比べて淡味等の雑味感にかながるタンニン量が少なく、特に二軸エクストルーダーによる95℃熱水抽出に対しても30%程度少ないことが確認され、この結果は官能的な評価を裏付けるものと推察できる。

一方、二軸エクストルーダーを用い牛乳による抽出を行った試料は、コーヒーの風味としての香りおよび苦味が強く、そして酸味が少ないといった、非常に
に新規な風味を有するコーヒー抽出液となった。加えて、本発明の二軸エクストルーダーによる水抽出法の有用性を裏付ける結果として、GC/MS（ガスクロマトグラフマススペクトリー）による香気成分の分析結果を示す。GC/MSの測定は、HS/TCT（Head Space/Thermal-desorption Cold Trap injection）法を用いた。具体的には、各試料100mLをそれぞれナスフラスコ採取し、約40℃に加温しながらフラスコ内のヘッドスペースを10分間バージして試料の易揮発性におい成分を抽出し、GC/MS（機種:GC/MS5973、Agrilent Technologies社。カラム:CP-WAX、GLサイエンス社）にて分析した。試料は本発明法である20℃水エクストルーダー抽出液（ヘ）と、対照として20℃水抽出液（イ）および95℃熱水抽出液（ロ）を分析した。検出された香気成分は、合計34分間の溶出時間（RT）の内、軽い成分の検出される前半部（1分以上10分未満）と、中間部（10分以上20分未満）、重い成分の検出される後半部（20分以上）の各ピーク面積合計を相対比較した。
（表2）

<table>
<thead>
<tr>
<th>ピーク面積相対比較</th>
<th>20℃水抽出</th>
<th>95℃熱水抽出</th>
<th>20℃水エクストルーダー抽出</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT:1分以上10分未満</td>
<td>28%</td>
<td>22%</td>
<td>29%</td>
</tr>
<tr>
<td>RT:10分以上20分未満</td>
<td>43%</td>
<td>22%</td>
<td>20%</td>
</tr>
<tr>
<td>RT:20分以上</td>
<td>29%</td>
<td>56%</td>
<td>51%</td>
</tr>
<tr>
<td>合計</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
表2の通り、20°C水抽出は比較的軽い成分の溶出パターンが多く、トップ立ちの良い香気成分を多く有していることを示している。また、95°C熱水抽出は、20分以降の重い成分の溶出パターンが多く、ボディ感のある香気成分を多く有していることを示している。一方、本発明である20°C水エクストルーダー抽出は、両者の特性を併せ持った特異な溶出パターンを示しており、新規な抽出法であることを窺い知ることができる。

実施例2

エクストルーダー抽出と水浸漬抽出の両者に関し、緑茶の抽出効率について実験を行なった。緑茶（静岡産やぶきた種、煎茶）を、水／茶葉＝30/1の比率となるように、二軸エクストルーダーの第1パレル部よりフィーダーによって3.2kg/hで添加し、脱イオン水を第2パレル部より96.8kg/hで添加した。二軸エクストルーダーはKEX-50、スクリューパターンは実施例1と同様、スクリュ回転数220rpm、パレル設定温度20°Cとした。脱イオン水の温度は、5°C〜80°Cまで5°C変って抽出を行なった。その後、抽出液を750G、10分の遠心分離を行い、沈殿する茶滓を除去した。

また、対照として、水浸漬抽出については、緑茶1部に対し脱イオン水を30部加え、60°C18分間放置後、750G、10分の遠心分離を施した。加えて、同様の緑茶（静岡産やぶきた種、煎茶）をグラインダーで1〜20μm程度の粒子径に粉碎し、20、40、60°Cの水で浸漬抽出を行った後、750G、10分の遠心分離を施した。

このようにして抽出実験した結果（Brix値）を以下にまとめて示す。
（表3）抽出実験結果（Brix値）

<table>
<thead>
<tr>
<th>保持時間（分）</th>
<th>0.73</th>
<th>18</th>
<th>60</th>
<th>120</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>未粉碎茶使用</td>
<td>60℃抽出</td>
<td>-</td>
<td>0.93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>対照</td>
<td>20℃抽出</td>
<td>-</td>
<td>0.59</td>
<td>0.80</td>
<td>0.92</td>
</tr>
<tr>
<td>粉碎茶使用</td>
<td>40℃抽出</td>
<td>-</td>
<td>0.73</td>
<td>1.00</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>60℃抽出</td>
<td>-</td>
<td>0.94</td>
<td>1.14</td>
<td>1.25</td>
</tr>
<tr>
<td>エクストルダー抽出</td>
<td>20℃抽出</td>
<td>0.90</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>40℃抽出</td>
<td>0.97</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>60℃抽出</td>
<td>0.98</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>80℃抽出</td>
<td>1.22</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

（注）エクストルダー抽出の保持時間は系内で平均滞留時間で示している。

本実験の結果として特筆すべき点は、エクストルダー抽出による20℃抽出と同等の抽出Brixを得るためには、粉碎茶葉による20℃浸漬抽出では、約120分必要であり、40℃処理の場合も約1時間程度の保持が必要であることが推察された。

よって、本発明において二軸エクストルダーで粉碎抽出するものは、系内で混練効果等によって、60℃未満の低温でも粉碎粉砕の有無を問わず、従来の浸漬抽出法に比えて飛躍的に抽出効率を上げる画期的な方法であることが確認された。
実施例3
緑茶（静岡産やぶきた種、煎茶）を第1バレル部より発動フィーダーによって1.2kg/hで添加し、20℃の脱イオン水を第2バレルより36.0kg/hで添加した。二軸エクストルーダーはKEX-50、スクリュウバター
ンは実施例1と同様、スクリュウ回転数220rpm、バレル設定温度20℃とした。得られた抽出物は、750G、10分の遠心分離を施し、上澄液量および沈殿液量を測定し、またその可溶性固形分を糖度計で測定した。
加えて、5℃の牛乳を第2バレル部より36.0kg/hで添加し、上記と
同様に、緑茶の剪断・混練・乳化を施し、遠心分離後、試料の調製を行なった。
対照品として、緑茶1部に対し、20℃の脱イオン水を30部加え、1時間
放置後、750G、10分の遠心分離を施した。また、同様の浴比で65℃の
脱イオン水で18分間放置し、750G、10分の遠心分離を施した試料を調
製した。なお、風味比較は専門パネル5名により、可溶性固形分0.3％に調
製した試料で行った。
すなわち、このようにして調製した試料を以下にまとめて示す。
(対照)
(イ): 20℃脱イオン水抽出
(ロ): 65℃脱イオン水抽出
(本発明)
(ハ): 20℃脱イオン水エクストルーダー抽出
(ニ): 5℃牛乳エクストルーダー抽出
試験結果を下記表3に示す。測定項目は次のとおりである。
a: 抽出効率（％）
b: 色調
c : 風味的特徴（可溶性固形分 0.3 %調製時）

- c 1 : 香り
- c 2 : 香味
- c 3 : 滋味
- c 4 : 雑味
- c 5 : 総合評価

なお、注 1) 本発明法による牛乳抽出液は、遠心分離後糖度計による可溶性固形分の測定は誤差が大きいため、掲載していない。注 2) 官能評価は、専門パネル 5 名で評点法による 5 段階絶対評価（1 : 弱い／悪い～5 : 強い／良い）を行い、平均値をスコアとした。
（表 4）

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c 1</th>
<th>c 2</th>
<th>c 3</th>
<th>c 4</th>
<th>c 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(イ)</td>
<td>8</td>
<td>透明緑色</td>
<td>3.4</td>
<td>2.8</td>
<td>2.0</td>
<td>1.8</td>
<td>3.4</td>
</tr>
<tr>
<td>(ロ)</td>
<td>25</td>
<td>透明黄緑色</td>
<td>2.6</td>
<td>2.0</td>
<td>3.0</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>(ハ)</td>
<td>20</td>
<td>緑褐色</td>
<td>3.8</td>
<td>3.2</td>
<td>2.0</td>
<td>1.6</td>
<td>4.0</td>
</tr>
<tr>
<td>(ト)</td>
<td>-</td>
<td>-</td>
<td>3.8</td>
<td>3.4</td>
<td>2.0</td>
<td>1.6</td>
<td>4.2</td>
</tr>
</tbody>
</table>

上記結果から明らかなように、二軸エクストルーダーを用いた 20℃脱イオン水処理の抽出効率は、常温抽出ながら 20%程度の高い値を示しており、抽出時間も数十秒で連続的に終了する。また、色調も緑茶成分が溶出して濁った特異なものとなり、緑茶独特の旨味や香りの強いものとなった。この傾向は牛
乳を用いたエクストルーダー抽出の場合さらに強まり、非常に新興性が高く他に類をみないものとなった。

実施例４

二軸エクストルーダーはKEX−50（栗本機械所製）を用い、第２、第３、第４パレル部に12mmピッチリバーススクリュウを装備し、第３、第４パレル部のパドルスクリュウ下流部直後に16mmピッチリバーススクリュウを装備して混練能力を高めた。また、スクリュウ回転数220rpmに設定した。

緑茶（静岡産やぶきた種、煎茶）を、水／茶葉＝30／1の比率となるように、第１パレル部よりフィーダーによって3.2kg/hで添加し、脱イオン水を第２パレル部より96.8kg/hで添加した。脱イオン水の温度は、5℃～80℃まで5℃毎と抽出を行った。その後、抽出液を750G、10分の遠心分離を行い、沈殿する茶滓を除去した。

また対照実験として、緑茶1部に対し脱イオン水を30部加え、60℃18分間放置後、750G、10分の遠心分離を施した。

各抽出液を脱イオン水により、可溶性固形分0.3％に調整後、専門パネル5名による官能評価、および、固形分、窒素、タンニン含有、波長660nmの透過率、及び色調（ジース用分光色差計カラーアナライザー TC-1800J、東京電色社）を測定した。得られた結果を、それぞれ、表5、表6、表7に示した。なお、表5（風味的特徴）において、官能評価は、専門パネル1名で評点法による5段階絶対評価（1：弱い／悪い～5：強い／良い）を行い、平均値を表記した。また、表6において、サンプルの分析値は、Brix 0.3°に調整したときの値であり、表7（色調）において、色差の値は、L値＝十明るい～十暗い、a値＝十赤～十緑、b値＝十黄～十青である。
(表5)

<table>
<thead>
<tr>
<th></th>
<th>香り</th>
<th>旨味</th>
<th>渋味</th>
<th>雑味</th>
<th>総合評価</th>
</tr>
</thead>
<tbody>
<tr>
<td>60℃抽出</td>
<td>2.6</td>
<td>1.8</td>
<td>3.4</td>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

60℃エクス

対照品 トルーダー

抽出 | 2.6 | 3.0 | 3.2 | 3.0 | 3.6 |

85℃エクストルー

抽出 | 2.6 | 3.0 | 3.2 | 3.0 | 3.2 |

5℃エクストルー

抽出 | 3.0 | 3.2 | 1.2 | 2.0 | 4.0 |

本発明品 20℃エクストルー

抽出 | 3.0 | 3.2 | 1.2 | 2.4 | 4.0 |

40℃エクストルー

抽出 | 2.8 | 3.0 | 2.8 | 2.4 | 3.8 |
（表6）

<table>
<thead>
<tr>
<th></th>
<th>固形分 (%)</th>
<th>窒素含量 (%)</th>
<th>タンニン含量 (mg%)</th>
<th>660nm 透過率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60℃抽出</td>
<td>0.28</td>
<td>8.5</td>
<td>87.3</td>
<td>92.52</td>
</tr>
<tr>
<td>対照品 60℃エクストール</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オー抽出</td>
<td>0.33</td>
<td>9.2</td>
<td>81.6</td>
<td>60.33</td>
</tr>
<tr>
<td>80℃エクストール</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オー抽出</td>
<td>0.34</td>
<td>9.3</td>
<td>81.6</td>
<td>59.55</td>
</tr>
<tr>
<td>5℃エクストール</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オー抽出</td>
<td>0.32</td>
<td>9.2</td>
<td>76.3</td>
<td>66.80</td>
</tr>
<tr>
<td>本発明品 20℃エクストール</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オー抽出</td>
<td>0.33</td>
<td>9.3</td>
<td>76.0</td>
<td>65.37</td>
</tr>
<tr>
<td>40℃エクストール</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オー抽出</td>
<td>0.32</td>
<td>9.0</td>
<td>77.8</td>
<td>63.42</td>
</tr>
<tr>
<td></td>
<td>L値</td>
<td>a値</td>
<td>b値</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>60℃抽出</td>
<td>89.18</td>
<td>2.89</td>
<td>28.80</td>
<td></td>
</tr>
<tr>
<td>対照品 60℃エクスト</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ルーダー抽出</td>
<td>83.18</td>
<td>-0.52</td>
<td>37.72</td>
<td></td>
</tr>
<tr>
<td>80℃エクスト</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>トルーダー抽出</td>
<td>82.98</td>
<td>-0.35</td>
<td>38.36</td>
<td></td>
</tr>
<tr>
<td>5℃エクスト</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ルーダー抽出</td>
<td>84.46</td>
<td>-0.62</td>
<td>36.00</td>
<td></td>
</tr>
<tr>
<td>本発明品 20℃エクスト</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ルーダー抽出</td>
<td>84.14</td>
<td>-0.48</td>
<td>36.54</td>
<td></td>
</tr>
<tr>
<td>40℃エクスト</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ルーダー抽出</td>
<td>84.34</td>
<td>-0.68</td>
<td>37.28</td>
<td></td>
</tr>
</tbody>
</table>

本発明品は、750G、10分の遠心分離処理を施しても浮遊する成分が
あることから、対照品に比べて透過率が低く、濁っていることが確認された。その濁り成分は、3ヶ月保存したものでも沈殿することなく浮遊しつづけることが保存テスト（85℃、5分の殺菌を行った後、耐熱PETボトルに80℃ホットパック充填し、10℃にて静置保存を行った。その結果を表7に示す。）より確認された。

（表8）

<table>
<thead>
<tr>
<th>660nm透過率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>初期値</td>
</tr>
<tr>
<td>1ヶ月保存</td>
</tr>
<tr>
<td>2ヶ月保存</td>
</tr>
<tr>
<td>3ヶ月保存</td>
</tr>
<tr>
<td>4ヶ月保存</td>
</tr>
</tbody>
</table>

また、色調もa値が低く緑茶本来の緑色を呈していることが確認された。エクストルーダー内での処理時間は、系内容量約1.2Lより平均滞留時間が約43秒と非常に短時間で処理されており、対照品の抽出温度60℃以上で抽出したにもかかわらず、緑色度が高い。また、これは浮遊成分に起因するところも大きいためと思われる。

官能評価より、特に40℃以下の低温抽出品はタンニン由来の渋味が少ないため、旨味が残り、高級な玉露様の風味を呈する新規なものであることが確認された。従って、エクストルーダー処理物は、風味の観点から、60℃未満、好
ましくは50°C以下、より好ましくは40°C以下で抽出処理することが望ましい。

また、抽出液の成分分析より、本発明品の窒素含量が対照品に比べて高いことから、テアニン等のアミノ酸もより多く抽出されていることが示唆される。さらに、浮遊成分の分析より、0.2％程度の糖類を含むものであることが確認されており、現行の抽出法ではほとんど含まれない食物繊維も、本発明品には含まれていることが推察された。

なお、本実施例においては、750G、10分間の遠心分離処理を行ったが、本処理は茶殻等の大きな滓を除去するために行うものであるので、上記した条件以下の場合で行うことも可能であり、上記条件を参考にして、適宜定めればよく、例えば600〜900G、1〜30分間、好適には650〜850G、5〜20分間程度の処理が好ましい。その際上記条件を各種変更して抽出液中の浮遊成分の量を各種変更することも可能である。

実施例5

ニンジンを2cm程度の大きさに予め裁断し、二軸エクストルーダーの第1パレル部より4.2kg/hで添加した。そして第2パレル部から牛乳を16.8kg/hで加えて、実施例1、2と同様の条件（：同スクリューパターン、スクリューリバネ220rpm、パレル設定温度20℃）の処理を施した。

スクリューリバネの回転によって、剪断・混練・乳化が進み、ダイ出口部から白濁した挿汁液を得ることができた。

風味として、ニンジン本来の香りおよび風味を十分に保持するとともに、乳との乳化に伴ってβ-カロチン等の親油性有用成分が溶出した挿汁液となった。次工程として、フィルター濾過によって挿汁滓との分離を行った後、ホモゲナイザー等を用いて親油性成分の均質化を施すことで、新味なニンジン汁を得ることができた。
発明の効果

本発明は、食品の低温エクストルーダー処理により、食品を粉碎後に直ちに、冷水等の低温溶媒で高濃度抽出および／または搾汁が極めて効率的かつ連続的に可能であること、そして、得られた抽出液および／または搾汁液は、空気等による酸化の過程をほとんど受けずに極めて短時間に得られるため、食品が本来有する風味・色調を全く損なっておらず、家庭で自家抽出した風味の飲食品の工業的な製造を可能とすること、牛乳等の成分と混合、乳化することによって親油性溶出成分の抽出を、効率的かつ連続的に可能とすること、等の利点を有しており、まさに画期的な発明である。

そして、上記の実施からも明らかのように、本発明は一般的に抽出および／または搾汁の対象となる食品、例えばコーヒー、茶、ハーブティー、漢方茶、果実、野菜等から可溶性固形分を効率的に抽出および／または搾汁し、しかも得られた抽出液、搾汁液が色調、風味、等の点において、これまでの概念を払拭するものであり、消費者にとって魅力的な品質を提供することが可能となる。

そして更に、本発明に係る茶系飲料においては、有用成分が3ヶ月以上の長期にわたって浮遊しており、その浮遊成分由来の各茶本来の色調を呈しており、茶葉を飲食することが可能となり、これまでの概念を払拭するもので、消費者にとって魅力的な品質を提供することが可能となる。

従って、製造者側、および消費者側、双方にメリットを与える画期的な技術といえる。
請求の範囲

1. 抽出および／または搾汁の対象となる食品を狭隘な間隙を有する粉砕装置に装填し、粉砕した直後および／または粉砕と同時に、60℃未満の低温溶媒を添加し、該装置内で処理して、食品有用成分の溶媒への抽出および／または搾汁した後、必要に応じて抽出済および／または搾汁済を除去すること、を特徴とする抽出液および／または搾汁液を製造する方法。

2. 抽出および／または搾汁の対象となる食品が、コーヒー、緑茶、紅茶、ウーロン茶、プーアール茶、鉄観音茶、ハーブティー、野草茶、漢方茶、ココア、パニラ、果実、野菜から選ばれる少なくともひとつであることを、を特徴とする請求項1に記載の方法。

3. 低温溶媒が60℃未満、好ましくは50℃以下、更に好ましくは−5 〜50℃の低温溶媒であること、を特徴とする請求項1または2に記載の方法。

4. 溶媒が水、牛乳、乳製品、糖類含有液、糖アルコール含有液、ミネラル含有液、ビタミン含有液、安定剤含有液から選ばれる少なくともひとつであること、を特徴とする請求項1 〜3のいずれか1項に記載の方法。

5. 該装置として、二軸エクストルーダーまたはコロイドミルを使用すること、を特徴とする請求項1 〜4のいずれか1項に記載の方法。

6. 該装置内での処理が、同方向に回転する2本のスクリュを有する二軸エクストルーダーにおいて、2本のスクリュの狭隘な間隙に対象となる食品分散液を通し、連続的に剪断、混練、乳化の少なくともひとつを行わせ、この作用によって溶媒への抽出および／または搾汁を行うものであること、を特徴とする請求項1 〜5のいずれか1項に記載の方法。
7. 二軸エクストルーダーにかえて、二軸エクストルーダーと同様の作用を有する二軸のスクリュウを有する連続混練装置を使用すること、あるいはコロイドミルとしてマスコロイダーやを使用すること、を特徴とする請求項1〜6のいずれか1項に記載の方法。

8. 抽出の対象となる食品として、緑茶、紅茶、ウーロン茶、プーアール茶、鉄観音茶、ハーブティー、野草茶、漢方茶のようにもひとつの用い、50℃以下の低温で該装置にて微粉砕し、微粉砕と同時および／又はその直後に、該低温に保持した低温溶媒で抽出した後、沈澱する茶滓を除去すること、を特徴とする請求項1〜7のいずれか1項に記載の方法。

9. 請求項1〜8のいずれか1項に記載の方法で製造してなる、風味および／または品質の劣化が防止ないし抑制された抽出液および／または搾汁液。

10. 請求項1〜8のいずれか1項に記載の方法で製造してなる、長期間保存しても茶葉が有する有効な成分が浮遊しており、鮮やかな各々の茶特有の色調を有すること、を特徴とする茶系飲料。

11. 甘味料、酸化防止剤、pH調整剤、呈味料、香料の少なくともひとつの添加してなること、を特徴とする請求項9又は10に記載の抽出液、搾汁液、茶系飲料の少なくともひとつ。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 Int.Cl7 A23F5/24, 3/16, A23L1/212, 1/221, 2/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)
 Int.Cl7 A23F3/00-5/50, A23L1/212, 1/221, 2/04, A23N1/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 JICST FILE (JOIS)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 62-126935 A (Kanebo Shokuhin Kabushiki Kaisha), 09 June, 1987 (09.06.87), (Family: none)</td>
<td>1-11</td>
</tr>
<tr>
<td>Y</td>
<td>JP 4-051847 A (Toshiyuki OTA), 20 February, 1992 (20.02.92), (Family: none)</td>
<td>1-11</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
 06 December, 2002 (06.12.02)

Date of mailing of the international search report
 17 December, 2002 (17.12.02)

Name and mailing address of the ISA/
 Japanese Patent Office

Facsimile No.

Authorized officer

Telephone No.
A. 発明の属する分野の分類（国際特許分類（IPPC））
Int.Cl. A23F 5/24, 3/16, A23L 1/212, 1/221, 2/04

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPPC））
Int.Cl. A23F 3/00-5/50, A23L 1/212, 1/221, 2/04, A23N 1/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
JICSTファイル（J01S）

C. 関連すると認められる文献

引用文献の	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する "プテントファミリーに関する別紙を参照"
カテゴリー※		请求の範囲の番号
Y	JP 62-126935 A（カネボウ食品株式会社）1987.06.09 (ファミリーなし)	1-11
Y	JP 4-051847 A（太田 敏行）1992.02.20 (ファミリーなし)	1-11

図書の続きにも文献が列挙されている。

※ 引用文献のカテゴリー
「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「E」国際出願前の出願または特許であるが、国際出願日以後に公表されたもの
「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特例が必要を作る必要に応用する文献（理由を付す）
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願日前でかつ優先権の主張の基礎となる出願

国際調査を完了した日 06.12.02
国際調査報告書の発送日 17.12.02
特許庁審査官（権限のある職員）
鈴木 栄理子
郵便番号 100-8915
電話番号 03-3581-1101 内線 3488

様式PCT／ISA／210（第2ページ）（1998年7月）