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1. 

METHODS AND APPARATUS FOR 
IMPROVING FACTORRISK MODEL 

RESPONSIVENESS 

The present application claims benefit of U.S. Provisional 5 
Application Ser. No. 61/435,439, file Jan. 24, 2011, which is 
incorporated by reference herein in its entirety. 

FIELD OF INVENTION 
10 

The present invention relates generally to the estimation of 
the risk, or active risk, of an investment portfolio using factor 
risk models. More particularly, it relates to improved com 
puter based systems, methods and Software for more accurate 
estimation of the risk or active risk of an investment portfolio. 15 
The invention addresses techniques allowing a factor risk 
model’s risk estimates to be more accurate, more stable, and 
more responsive. 

BACKGROUND OF THE INVENTION 2O 

Financial time series analysis often assumes that the sta 
tistical properties of equity returns do not vary over time. 
However, the statistical properties of actual returns data from 
financial markets do vary over time. In particular, empirical 25 
evidence Suggests that Volatility or risk, the square root of the 
variance of returns, changes with time. FIG. 1 shows a plot of 
both predicted risk 202 from a global factor risk model and 
one month forward looking realized risk 200 for a broad 
global benchmark portfolio. The one month, realized forward 30 
looking risk 200 changes over time. Even within relatively 
short time intervals, such as a few weeks, the realized risk is 
not constant, exhibiting intermittent spikes of both modest 
and large magnitude as well as fluctuating noticeably. During 
periods of market turmoil, such as late 2008, volatility surges 35 
from a low value varying between 10% and 20% annual 
volatility to over 70% annual volatility in a matter of one or 
two months. 

The challenge for commercial risk model vendors is to 
produce risk models that predict future volatility, or, in other 40 
words, accurately predicting the realized risk 200 shown in 
FIG.1. The quality of risk model predictions can be measured 
with respect to at least three metrics: 

1. Prediction Accuracy. The difference between the real 
ized and predicted volatilities. 45 

2. Stability. The risk model predictions should not exhibit 
the Smaller, transient changes observed in realized risk. 
In other words, the risk predictions should be smoother 
than the realized risk. Such smoothness ensures that 
portfolio rebalancing and risk management decisions 50 
are not driven by market transients of shorter duration 
than the investment holding horizon. 

3. Responsiveness. When the overall level of market vola 
tility rises or falls, the predicted risk should respond 
similarly with as little time lag in the response as pos- 55 
sible. 

Stability and responsiveness both bear on how changes in 
realized risk are tracked by risk model predictions. On the one 
hand, stability requires that Smaller, temporary changes in 
realized volatility should not appear in the risk model predic- 60 
tions. On the other hand, responsiveness requires that larger, 
Sustained changes in realized volatility should appear. Thus 
Smaller changes are interpreted as noise that should not affect 
investment decisions while the larger changes are interpreted 
as meaningful changes that can and should affect investment 65 
decisions. The difference between Smaller and larger changes 
or temporary and Sustained changes depends, of course, on 

2 
the manner in which the risk model is used. A portfolio 
manager who trades every day may consider a weeklong 
change in realized volatility a Sustained change that should be 
captured by a high quality risk model, while a portfolio man 
ager who invests over a time horizon of months may consider 
a weeklong change in realized volatility a temporary effect 
that should be filtered out of a high quality risk model. In both 
cases, the portfolio manager wants to react to meaningful 
changes in market Volatility that cause material changes to his 
or her investment decisions while simultaneously avoiding 
any overreaction to temporary, noisy market conditions that 
may lead to unnecessary trading. Stability seeks to ensure that 
the risk model predictions are smooth over a sufficiently long 
period of time, while responsiveness seeks to ensure that the 
risk model predictions change and respond to market changes 
in volatility over a sufficiently short period of time. 

In FIG. 1, risk model accuracy is measured by the differ 
ence between the realized risk 200 and the predicted risk 202. 
Stability is measured by the fact that the predicted risk 202 is 
smoother than the realized risk 200. Responsiveness is deter 
mined by how well the predicted risk 202 tracks the realized 
risk 200 when the overall level of volatility changes. 

In FIG. 1, the predicted risk 202 is reasonably accurate 
during the early years of the decade and from 2006 to 2009. 
However, it is less accurate in reducing the predicted volatil 
ity from 2003 to 2006, when market volatility drops to a 
historic low, remaining low for several years. In particular, the 
gap 201 between the predicted and realized risk in 2003, 
indicated by the arrows, is more than 5% throughout most of 
2003, and the gap 203 between the predicted and realized risk 
in 2009, indicated by the arrows, is more than 10% through 
out most of 2009. Approximately twenty-four months elapse 
starting from the beginning of 2003 when market volatility 
falls before the predicted and realized volatilities are at the 
same level. Similarly, the predictions throughout 2009 are 
significantly higher than the realized volatility. More particu 
larly, gaps 201 and 203 are larger than desirable. 

There are several well known mathematical modeling tech 
niques for estimating the risk of a portfolio of financial assets 
Such as securities and for deciding how to strategically invest 
a fixed amount of wealth given a large number of financial 
assets in which to potentially invest. 

For example, mutual funds often estimate the active risk 
associated with a managed portfolio of securities, where the 
active risk is the risk associated with portfolio allocations that 
differ from a benchmark portfolio. Often, a mutual fund man 
ager is given a "risk budget', which defines the maximum 
allowable active risk that he or she can accept when construct 
ing a managed portfolio. Active risk is also sometimes called 
portfolio tracking error. Portfolio managers may also use 
numerical estimates of risk as a component of performance 
contribution, performance attribution, or return attribution, as 
well as, other ex-ante and ex-post portfolio analyses. See for 
example, R. Litterman, Modern Investment Management: An 
Equilibrium Approach, John Wiley and Sons, Inc., Hoboken, 
N.J., 2003 (Litterman), which gives detailed descriptions of 
how these analyses make use of numerical estimates of risk 
and which is incorporated by reference herein in its entirety. 

Another use of numerically estimated risk is for optimal 
portfolio construction. One example of this is mean-variance 
portfolio optimization as described by H. Markowitz. “Port 
folio Selection”, Journal of Finance 7(1), pp. 77-91, 1952 
which is incorporated by reference herein in its entirety. In 
mean-variance optimization, a portfolio is constructed that 
minimizes the risk of the portfolio while achieving a mini 
mum acceptable level of return. Alternatively, the level of 
return is maximized subject to a maximum allowable portfo 
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lio risk. The family of portfolio solutions solving these opti 
mization problems for different values of either minimum 
acceptable return or maximum allowable risk is said to form 
an “efficient frontier, which is often depicted graphically on 
a plot of risk versus return. There are numerous, well known, 5 
variations of mean-variance portfolio optimization that are 
used for portfolio construction. These variations include 
methods based on utility functions, Sharpe ratio, and value at 
risk. 

Suppose that there are Nassets in an investment portfolio 10 
and the weight or fraction of the available wealth invested in 
each asset is given by the N-dimensional column vector w. 
These weights may be the actual fraction of wealth invested 
or, in the case of active risk, they may represent the difference 
in weights between a managed portfolio and a benchmark 15 
portfolio as described by Litterman. The risk of this portfolio 
is calculated, using standard matrix notation, as 

where V is the portfolio variance, a scalar quantity, and Q is an o 
NxN positive semi-definite matrix whose elements are the 
variance or covariance of the asset returns. Risk or volatility 
is given by the square root of V. 
The individual elements of Q are the expected covariances 

of security returns and are difficult to estimate. For Nassets, as 
there are N(N+1)/2 separate variances and covariances to be 
estimated. The number of securities that may be part of a 
portfolio, N, is often over one thousand, which implies that 
over 500,000 values must be estimated. Risk models typically 
cover all the assets in the asset universe, not just the assets so 
withholdings in the portfolio, so N can be considerably larger 
than the number of assets in a managed or benchmark port 
folio. 

To obtain reliable variance or covariance estimates based 
on historical return data, the number of historical time periods is 
used for estimation should be of the same order of magnitude 
as the number of assets, N. Often, there may be insufficient 
historical time periods. For example, new companies and 
bankrupt companies have abbreviated historical price data 
and companies that undergo mergers or acquisitions have 40 
non-unique historical price data. As a result, the covariances 
estimated from historical data can lead to matrices that are 
numerically ill conditioned. Such covariance estimates are of 
limited value. 

Factor risk models were developed, in part, to overcome 4s 
these short comings. See for example, R. C. Grinold, and R. 
N. Kahn, Active Portfolio Management: A Quantitative 
Approach for Providing Superior Returns and Controlling 
Risk, Second Edition, McGraw-Hill, New York, 2000, which 
is incorporated by reference herein it its entirety, and Litter- so 
a. 

Factor risk models represent the expected variances and 
covariances of security returns using a set of Mfactors, where 
M is much less than N, that are derived using statistical, 
fundamental, or macro-economic information or a combina- ss 
tion of any of Such types of information. Given exposures of 
the securities to the factors and the covariances of factor 
returns, the covariances of security returns can be expressed 
as a function of the factor exposures, the covariances of factor 
returns, and a remainder, called the specific risk of each go 
security. Factor risk models typically have between 20 and 80 
factors. Even with 80 factors and 1000 securities, the total 
number of values that must be estimated is just over 85,000, as 
opposed to over 500,000. 

In a factor risk model, the covariance matrix Q is modelled as 
aS 

4 
where B is an NXM matrix of factor exposures, X is an MXM 
matrix of factor-factor covariances, and A is a matrix of 
specific variances. Normally, A is assumed to be diagonal. 
The factor-factor covariance matrix X is typically esti 

mated from a time series of historical factor returns, f, for 
each of the M factors, while the specific variances are esti 
mated from a time series of historical specific returns. 

Risk models used in quantitative portfolio management 
partly address the issues of stability and responsiveness when 
predicting time varying Volatility by relying on an exponen 
tially weighted covariance estimator since this estimator 
places greater emphasis on current observations, implicitly 
assuming that the most recent Subset of return values often 
vary around a constant value. The returns can be asset returns, 
or they may be factor returns or specific returns used for 
estimating a risk model covariance. Given a time series of T 
returns (r. r. 1, r2,..., r, z), we form the weighted returns 
series {r} 

{f}{(war),(w, 1 r. 1), . . . .(w, T1, r. T ) (3) 

w =2', k=0,....T-1 (4) 
where H is the half-life parameter. The exponentially 
weighted covariance estimator gives 

Elvar(r)=6, var(f) (5) 
This is frequently seen expressed in the RiskMetricsTM speci 
fication in which the half-life is reformulated as a decay factor 
W. See, for example, J. Longerstaey and M. Spencer, Risk 
MetricsTM Technical Document, Morgan Guaranty Trust 
Company, New York, 4th ed., 1996, which is incorporated by 
reference herein it its entirety. Equation (5) can be rewritten 
aS 

Ease and speed of computation, robustness, and parsimony 
have largely been responsible for the widespread adoption of 
exponentially weighted covariance estimates in commercial 
risk models. Exponential weighting generally improves the 
accuracy of the risk model. 

However, when realized risk changes rapidly, the risk pre 
dictions of risk models using exponentially weighted covari 
ance estimates often lag realized risk changes over consider 
able periods of time. In other words, exponential weighting 
does not always lead to the desired level of responsiveness in 
a risk model. This lag is shown in FIG. 1 during 2003 by gap 
201 and 2009 by gap 203, for example. The predicted risk in 
FIG. 1202 is computed from a risk model that uses exponen 
tial weighting with a 125-day halflife for volatility estimation 
and a 250-day half-life for correlations. A larger half life is 
used for the correlation estimation in order to ensure a stable 
estimate. 
One problem with exponentially weighted covariance esti 

mates recognized and addressed by the present invention is 
that large returns have a disproportionate effect on the cova 
riance estimate even with exponential weighting. These large 
returns can inflate risk estimates, and they impact risk esti 
mates for very longtimes, resulting in lagged risk predictions, 
especially when volatility falls from a high level, such as 
shown by gap 201 in 2003 and gap 203 in 2009. 

In order to produce stable risk predictions, risk models 
typically require a long history of data for the covariance 
estimate. The longer the data history, however, the more 
likely it is that the return history will span a time period over 
which the volatility of the older returns is at a substantially 
different level than the volatility of the recent returns. 
Although the exponentially weighted covariance estimate 



US 8,700,516 B2 
5 

will give the older return data less weight than the most recent 
returns, the resulting Volatility forecast may noticeably lag, in 
other words, not be as responsive to the realized volatility 
results as desired, if the volatility of the older return data is 
substantially different than the volatility of the more recent 
return data. 
One approach to the problem of lagging risk model predic 

tions is to use shorter data histories and/or aggressive decay 
factors in order to reduce the influence of the older data on the 
forecasts. However, if the data history is too short or the decay 
factors too aggressive, the stability of the risk model predic 
tions may be jeopardized. 

Other methods besides more aggressive half-lives have 
been proposed to address the issue of non-stationarity of asset 
returns, factor returns, and specific returns. For example, 
generalized autoregressive conditional heteroskedasticity 
(GARCH.) models have been proposed. See, for example, 
Tim Bollerslev, “Generalized Autoregressive Conditional 
Heteroskedasticity”, Journal of Econometrics, 31:307-327. 
1986, which is incorporated by reference herein it its entirety. 
However, GARCH models normally produce risk models that 
are too unstable for use in commercial risk models. 

SUMMARY OF THE INVENTION 

The present invention recognizes that the lag in responding 
to rapidly changing market volatility in 2003 and 2009 can be 
improved upon when compared with the responsiveness to 
existing risk models. One aspect of the present invention is to 
provide a methodology for improving risk model responsive 
ness with minimal negative impact on both the risk model 
accuracy and stability. In some cases, as addressed further 
below, the accuracy and stability may also be improved. 
One goal of risk model prediction in accordance with the 

present invention, then, is to obtain a smooth curve of pre 
dicted risks that closely tracks the realized risk but that does 
not exhibit lags when the overall level of volatility changes 
Substantially. Exponential weighting alone does not solve the 
problem, nor does the use of shorter data histories or more 
aggressive decay factors. 

Another goal of the present invention is to improve respon 
siveness of the predicted risk without Substantially increasing 
the change in forecast risk from one period to another. 

Another aspect of the present invention is to improve risk 
model responsiveness over long periods of time. 
Among its several aspects, the present invention addresses 

three things: (1), improving the responsiveness of the risk 
model; (2), maintaining the same level of stability found in 
traditional risk models, where stability is measured using the 
change in month-to-month predicted risk; and (3), maintain 
ing accurate risk predictions over long periods of time during 
which the overall level of market volatility may or may not 
change Substantially. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates predicted versus realized risk for a broad 
global portfolio from 2000 to 2010; 

FIG. 2 shows a computer based system which may be 
suitably utilized to implement the present invention; 

FIG. 3 illustrates unsealed and scaled factor returns corre 
sponding to a global, fundamental factor risk model being 
estimated in July 2010; 

FIG. 4 illustrates predicted versus realized risk of a broad 
global benchmark portfolio from 2000-2010; 

FIG. 5 illustrates risk comparison for the broad global 
benchmark portfolio from 2000-2009: 
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6 
FIG. 6 illustrates average month-to-month predicted risk 

change for three different risk models; 
FIG. 7 illustrates total risk of a global benchmark using the 

three variants of Axiomas global fundamental factor risk 
model for three risk model variants; 

FIG. 8 illustrates total risk of an Asian Pacific benchmark 
using the three variants of Axioma's global fundamental fac 
tor risk model for three risk model variants; 

FIG. 9 illustrates total risk of a European benchmark using 
the three variants of Axioma's global fundamental factor risk 
model for three risk model variants; 

FIG. 10 illustrates total risk of a US benchmark using the 
three variants of Axiomas global fundamental factor risk 
model for three risk model variants; 

FIG. 11 illustrates bias statistics for 45 different portfolios 
from 2000 to 2010; and 

FIG. 12 illustrates the average forecast change for 45 dif 
ferent portfolios for three risk model variants. 

DETAILED DESCRIPTION 

The present invention may be suitably implemented as a 
computer based system, in computer Software which is stored 
in a non-transitory manner and which may suitably reside on 
computer readable media, such as Solid state storage devices, 
such as RAM, ROM, or the like, magnetic storage devices 
Such as a hard disk or floppy disk media, optical storage 
devices, such as CD-ROM or the like, or as methods imple 
mented by Such systems and software. 

FIG. 2 shows a block diagram of a computer system 100 
which may be suitably used to implement the present inven 
tion. System 100 is implemented as a computer 12 including 
one or more programmed processors, such as a personal 
computer, workstation, or server. One likely scenario is that 
the system of the invention will be implemented as a personal 
computer or workstation which connects to a server 28 or 
other computer through an Internet or other network connec 
tion 26. In this embodiment, both the computer 12 and server 
28 run software that when executed enables the user to input 
instructions and calculations on the computer 12, send the 
input for conversion to output at the server 28, and then 
display the output on a display, Such as display 22, or is 
printed out, using a printer, Such as printer 24, connected to 
the computer 12. The output could also be sent electronically 
through the Internet connection 26. In another embodiment of 
the invention, the entire software is installed and runs on the 
computer 12, and the Internet connection 26 and server 28 are 
not needed. In still a further embodiment, the Internet con 
nection is replaced with a local area network. As shown in 
FIG. 2 and described in further detail below, the system 100 
includes Software that is run by the central processing unit of 
the computer 12. The computer 12 may suitably include a 
number of standard input and output devices, including a 
keyboard 14, a mouse 16, CD-ROM drive 18, disk drive 20, 
monitor 22, and printer 24. It will be appreciated, in light of 
the present description of the invention, that the present 
invention may be practiced in any of a number of different 
computing environments without departing from the spirit of 
the invention. For example, the system 100 may be imple 
mented in a network configuration with individual worksta 
tions connected to a server. Also, other input and output 
devices may be used, as desired. For example, a remote user 
could access the server with a desktop computer, a laptop 
utilizing the Internet or with a wireless handheld device such 
as an IPadTM, IPhoneTM, IPodTM, BlackberryTM, TreoTM, or the 
like. 
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One embodiment of the invention has been designed for 
use on a stand-alone personal computer running in Windows 
(Microsoft XP, Vista, Windows 7). Another embodiment of 
the invention has been designed to run on a Linux-based 
server system. 

According to one aspect of the invention, it is contemplated 
that the computer 12 will be operated by a user in an office, 
business, trading floor, classroom, or home setting. 
As illustrated in FIG. 2, and as described in greater detail 

below, the inputs 30 may suitably include historical unad 
justed returns of the financial assets to be included in a factor 
risk model; historical unadjusted factor returns for the factors 
of a factor risk model; and historical, unadjusted specific 
returns of a factor risk model. 
As further illustrated in FIG. 2, and as described in greater 

detail below, the system outputs 32 may suitably include 
adjusted historical factor returns; an improved factor-factor 
covariance matrix for the factor risk model; and an improved 
factor risk model. 
The output information may appear on a display screen of 

the monitor 22 or may also be printed out at the printer 24. The 
output information may also be electronically sent to an inter 
mediary for interpretation. For example, risk predictions for 
many portfolios can be aggregated for multiple portfolio or 
cross-portfolio risk management. Or, alternatively, trades 
based, in part, on the factor risk model predictions, may be 
sent to an electronic trading platform. Other devices and 
techniques may be used to provide outputs, as desired. 

With this background in mind, we turn to a detailed dis 
cussion of the invention and its context. The invention is 
herein referred to as Dynamic Volatility Adjustment (DVA). 
DVA seeks to find a weighting scheme for historical returns 
that transforms them so that they more closely resemble a 
weakly stationary time-series. In the discussion that follows, 
algorithms may be suitably implemented as Software stored 
in memory and executed by a processor or processors in 
computer 12. Data may be input by a user or retrieved from a 
database or other storage. Data entered by a user may be 
entered using a keyboard, mouse, touchscreen display or 
other data entry device or means. Output data may be printed 
by a printer, displayed by a display, transmitted over the 
network to another user or users, or otherwise output utilizing 
an output device or means. Equity returns r, are weakly sta 
tionary when the first two moments of their distributions are 
stationary: 

Efr=1. (7) 

(8) 

for any T. where we assume that r, and thave finite and time 
invariant first and second moments, and that these values only 
depend on T. When t=0, equation (8) becomes variance, 
which is often used as a measure of market volatility. Weak 
stationarity is a handy condition because it allows inferences 
and predictions to be made about future returns. See, for 
example, Ruey Tsay, Analysis of Financial Time Series, John 
Wiley & Sons Inc., 2005, which is incorporated by reference 
herein it its entirety. 
DVA seeks a weighting scheme for a set of historical factor 

returns data that transforms its second moment into a weakly 
stationary statistic. Specific returns are not modified by the 
DVA algorithm as they are too unstable. Let f, be the observed 
time history of factor returns, and g, be a weighting function 
to be determined. Weak stationarity of the volatility of (g f) 
requires 
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8 
For a finite set of T observed returns, f. f. f. f. . . . , f,}, 
wheref, is the oldest return and fis the most recent return, we 
want the series of weighted returns, {(gy, fl), (g2. f.).(gs, f). 
(ga, fl), ..., (gz, f,)}, to fluctuate with a relatively constant 
level of variance, computed as of var{(g, f), (g2, f2). (gs. 
f), (g4 f.). . . . . (gr. fr)}. 

There are many weighting functions g, that will satisfy 
weak stationarity of the covariance. As originally formulated, 
DVA includes the following steps. 

First, assume that the T data points can be grouped into N 
overlapping segments of length K, where T-(N-1) K/2, and 
one final data segment of length K/2. Each segment except the 
earliest shares half of the points of the segment immediately 
before it, and each segment except the latest shares half the 
points of the segment immediately after it. The latest segment 
is only half the length of the others, and is the reference 
segment, containing the most recent data. For example, with 
T=12, N=5, and K=4, we obtain the segments: 

Each segment of historical data is denoted by {S,i}, n=1,... 
N+1, and is used to define a distinct volatility regime. The last 
segment, {S}, is referred to as the reference chuck or 
reference segment. In practice, the values for T. N. and K 
would be larger than for this simple example. For example, T 
is often the entire factor return history. For Axiomas US 
Equity model, there are daily returns going back to Jan. 3. 
1995, which is more than 4000 factor returns. For a funda 
mental factor risk model, T normally corresponds to four 
years of data, making T=1000. For a statistical factor risk 
model, T normally corresponds to one year of data, making 
T=250. Knormally corresponds to about 6 months or 125. 
Hence, N=7 for a fundamental factor risk model and N=3 for 
a statistical factor risk model. Compute the N mean absolute 
deviations for each {S}: 

(10) 

X. If (11) 1 1 
w kX, fil, n = 1, ... 1; VN+1 = K/2 

ies w? 

Second, compute the N scaling factors for each V, 

(12) .., N + 1. 

The N+1 scaling factors are clipped to lie within 0.8sö,51.25. 
This prevents the scaling values having too large an impact on 
the returns, which improves stability. This potentially 
adversely affects the stationarity of the resulting time series, 
but is imposed for the sake of model stability and robustness 
to noisy data. 
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Third, assume a piecewise constant approximation of the 
N+1 scaling factors Ö, to compute the T weighting values g. 
That is 

grg T-1-. . . gr. K2 16x1=1 

grk/2 gr. Kip-1. . . gr. K-16N 

g T. Kg7 K-1 . . . g T-3K2 16x-1 (13) 

Since Öy =1, we have g-1 so that the most recently 
observed return is unchanged when weighted. 

FIG. 3 shows both unsealed factor returns, f. 204 as indi 
vidual points and scaled returns, gif, 206 drawn as a thin line 
for a time series of returns for a global fundamental factor risk 
model from October 2006 to July 2010. The weighting 
scheme shown is for July 2010. FIG. 3 shows that, for July 
2010, the historical factor returns are adjusted to slightly 
smaller values during most of 2008 in order for those returns 
to have the same level of volatility as in July 2010. This is 
clear from the fact that several of the unsealed factor returns 
points 204 are much greater than or less than the scaled factor 
returns 206. 
The advantages of DVA can be seen in the results shown in 

FIGS. 4, 5, and 6. FIG. 4 revisits FIG. 1 and compares the 
predicted volatility of a broad global benchmark for the same 
period, with and without DVA, to the benchmark's realized 
volatility. FIG. 4 has three lines: the realized risk 208, the 
predicted risk without DVA 210, and the predicted risk with 
DVA 212. 

In FIG. 4, the overestimation of risk is substantially 
reduced over 2003 and in 2009 by incorporating DVA. When 
volatility stays at a constant level for several years, as occurs 
in 2005-2007, the predictions both with and without DVA 
converge, as overall levels of volatility become stable for the 
duration. 

FIG. 5 compares a DVA-enabled model with a non-DVA 
model that uses shorter, more aggressive half-lives. In the 
shortened half-life model, the half-life for volatility is 
changed from 125 days to 60 days, while the half-life for 
correlation is changed from 250 days to 125 days. FIG. 5 
shows three lines: realized risk 214, predicted risk without 
DVA but with a shorter half life 216, and predicted risk with 
DVA but the Standard half life 218. 

FIG. 5 shows that DVA yields similar responsiveness, 
when necessary, to the model with a shorter half-life. 

The present invention recognizes, for example, that in FIG. 
5 that the DVA 218 and shorter half-life 216 predictions cross 
each other in mid 2009. In the first half of 2009, the DVA 
predictions are more accurate, while in the second half of 
2009, the shorter half life predictions are more accurate. 
Thus, the present invention recognizes that DVA as originally 
proposed could be improved upon particularly with respect to 
long term accuracy. This is one aspect that the present inven 
tion addresses. 

Although both the DVA and shorter half life models have 
comparable responsiveness, the stability of the DVA model is 
superior to that of the shorter half-life model. FIG. 6 com 
pares the average change in predicted risk from one month to 
the next for three different risk models over four time periods: 
2000-2002; 2003-2005; 2006-2009; and 2000-2009. The 
three risk models are the original risk model without DVA 
224; the risk model with DVA 222; and the risk model with 
shorter half life 220. The relative change in risk model pre 
diction gives a quantitative measure of the stability of the 
model. The most stable risk model is the original model, 
which is also the least responsive. The least stable risk model 
is the risk model with the shorter halflife. The risk model with 
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DVA is as responsive as the shorter half life model, but it has 
superior stability over three out of four time periods, and is 
identical for the other one. Hence, the DVA model represents 
a better trade-off between stability and responsiveness than 
either of the other risk models. 
The present invention addresses a formulation of DVA that 

improves upon several aspects of the original formulation. 
In the original DVA formulation, the weighting values g, 

are constant over finite time intervals. The jump that occurs 
when the weighting values change from one scaling factor, ö, 
to another can lead to undesirable changes in the risk model 
prediction. In other words, the fact that the weighting values 
approximate a non-differentiable function can negatively 
impact the stability of the risk predictions. 

In the original formulation of DVA, the length of the ref 
erence chunk {S} is half that of the other chunks. This 
makes it difficult to define the reference time horizon of the 
resulting risk model as the Scaling values are defined over data 
segments of different length. 

In the original DVA formulation, scaling values lie within 
0.8, 1.25. Although this ensures a degree of stability, it also 
means that an older period of excessively high volatility will 
never be scaled down by a factor of greater than 0.8, no matter 
how distantly in the past it lies. 

In the original DVA formulation, the long term accuracy of 
the DVA enable risk model may be worse than that of a risk 
model with a shorter half life, as shown in FIG. 5 over the 
Second half of 2009. 
To address these issues, an improved version of DVA incor 

porates the following improvements. This improved DVA is 
the preferred embodiment of the invention. 

First, rather than segmenting the history of factor returns 
into N segments of length Kanda final segment of length K/2. 
the history is segmented into only N segments of length K. 
Hence, with T=12, N=5, and K=4, we obtain the segments: 

{SS}-fo.foffiz} 
With this change, the N scaling factors are redefined as 

(14) 

(15) 

where now 8-1. 
Secondly, rather than use a piecewise constant approxima 

tion to estimate the weighting values, use cubic spline inter 
polation on the N scaling factors 6 to compute the Tweight 
ing Values g, assuming 

(16) 

Since 6–1, we have g-1 so that the most recently observed 
return is unchanged when weighted. Unlike the piecewise 
constant approximation of the original DVA formulation, this 
approximation varies Smoothly and continuously. 

Thirdly, rather than clip the scaling values to be within 0.8. 
1.25, the requirement that the ratio between any two con 
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secutive scaling factors is no more than 10% is imposed. That 
is, 

(17) 

This ensures stability while simultaneously allowing older 
time periods of excessively high volatility to be appropriately 
scaled. It also improves the cubic spline interpolation. If a 
series of scaling factors is clipped at the same level, then the 
cubic-spline interpolation oscillates around the clipped value. 
The 10% figure was chosen empirically to balance respon 
siveness and stability, and to minimize prediction differences 
between improved DVA and original DVA during periods of 
relatively stable volatility. These changes substantially 
improve the performance of DVA. 

FIGS. 7 to 10 compare three variants of risk model predic 
tions to realized, 22-day (one month) volatility for four dif 
ferent benchmarks. The three risk model prediction, variants 
are original DVA, improved DVA, and a risk model with a 
shorter half life (60 days for volatilities, 125 days for corre 
lations). 

FIG. 7 shows the total realized risk 224 of a global bench 
mark compared to predictions from three variants of Axi 
oma's global fundamental factor risk model: original DVA 
230, the shorter half-life model 226, and the improved DVA 
228. The differences between model variants can be seen 
most clearly from 2008 onwards. The short-term model 226 is 
the most responsive, as it should be since it has the most 
aggressive half-life. It overshoots the volatility peak in 
December 2008 substantially more than the other two mod 
els, and then it falls the fastest (from the highest value) 
throughout 2009. Original DVA 230 is more responsive in 
early 2009 in that it drops more rapidly during this period than 
the other variants. However, over the rest of 2009, its predic 
tions actually trend away from market volatility. That is, the 
accuracy of the original DVA model in 2009 erodes in com 
parison with the other models. The improved DVA formula 
tion 228 achieves an advantageous trade offin responsiveness 
and accuracy. Unlike the shorter half-life model, it does not 
overshoot realized volatility as much in early 2009, and 
unlike the original DVA, it tracks realized risk more accu 
rately in late 2009. Similar results are obtained for other 
benchmarks. 

FIG. 8 shows total risk results for an Asian-Pacific bench 
mark portfolio. There are four lines: realized risk 232; the 
shorter half life risk prediction 234; the original DVA risk 
prediction 238; and the improved DVA prediction 236. 

FIG. 9 shows total risk results for a European benchmark. 
There are four lines: realized risk 240; the shorter halflife risk 
prediction 242; the original DVA risk prediction 246; and the 
improved DVA prediction 244. 

FIG. 10 shows results for a US benchmark. There are four 
lines: realized risk 248; the shorter half life risk prediction 
250; the original OVA risk prediction 254; and the improved 
DVA prediction 252. 

In all cases, the original version of DVA is more responsive 
in January 2009, but its accuracy erodes over the rest of 2009 
in comparison to improved DVA and the shorter half-life 
model. 

FIG. 11 shows the average bias statistic for 45 different 
portfolios for the three model variants. The bias statistic is 
taken over the time from 2000 to 2010 on a monthly basis. For 
an unbiased risk model, the bias statistic will be close to one. 
For each of the 45 portfolios, three bars are shown: a light bar 
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12 
on the left 260 representing the shorter half life risk model 
predictions; a medium bar on the right 264 representing the 
original DVA predictions; and a dark bar in the center 262 
representing the improved DVA predictions. Over the broad 
range of portfolios shown in FIG. 11, there is no significant 
difference in the bias statistics of the three different model 
variants. That is, for each factor, the three bars—original DVA 
264, improved DVA 262 and the shorter half-life model 
260 are essentially the same. 

However, there are significant differences in the stability of 
the three model variants. FIG. 12 shows the forecast change 
statistic for 45 different portfolios Forecast change gives a 
quantitative measure of the turnover of the risk model predic 
tions, which is closely related to the stability of the risk 
model. 

For each of the 45 portfolios, three bars are shown: a light 
bar on the left 270 representing the shorter halflife risk model 
predictions; a medium bar on the right 272 representing the 
original DVA predictions; and a dark bar in the center 274 
representing the improved DVA predictions. 
The improved DVA model predictions 274 show a clear 

reduction in forecast change in comparison with both the 
original DVA model 272 and the shorter half-life model 270. 
In other words, its forecasts are much smoother, day on day, 
without losing accuracy. These results show that the 
improved OVA gives better responsiveness without sacrific 
ing Smoothness of forecast. 

While the present invention has been disclosed in the con 
text of various aspects of presently preferred embodiments, it 
will be recognized that the invention may be suitably applied 
to other environments consistent with the claims which fol 
low. 
The invention claimed is: 
1. A computer-based method of estimating a factor-factor 

covariance matrix of a factor risk model comprising: 
storing data for the factors to be included in the factor risk 
model in a memory, wherein said memory is a non 
transitory computer readable media; 

grouping factor returns from a time series history of factor 
returns to form two or more equal length segments that 
overlap by a programmed processor cooperating with 
the memory and with software; 

computing a measure of Volatility for each segment by the 
programmed processor cooperating with the memory 
and with software; 

computing a segment adjustment factor for all segments by 
the programmed processor cooperating with the 
memory and with Software such that the segment adjust 
ment factor for each segment is calculated as a ratio of 
the Volatility measure of the most recent segment 
divided by the volatility measure of the segment; 

computing a factor return adjustment factor for each factor 
return employing an interpolation approach that gener 
ates a continuous interpolation of the segment adjust 
ment factors by the programmed processor cooperating 
with the memory and with software: 

computing each element of the factor-factor covariance 
matrix as an exponentially weighted covariance of the 
time series of the products of historical factor returns and 
each factor return adjustment factor by the programmed 
processor cooperating with the memory and with Soft 
ware; and 

outputting the factor-factor covariance matrix as an elec 
tronic output by an output device. 

2. The method of claim 1 where the output factor-factor 
covariance matrix is used in computing the Volatility of a 
portfolio of assets. 
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3. The method of claim 1 where the output factor-factor 
covariance matrix is used to rebalance an investment portfo 
lio. 

4. The method of claim 1 where the output factor-factor 
covariance matrix is used in a performance attribution analy 
sis. 

5. The method of claim 1, wherein a number of consecutive 
Overlapping segments, N, are formed; and a ratio of two 
consecutive scaling factors 8, and 8, varies no more than 
10% or 0.9sö,/ö, is 1.1, for n=2,..., N. 

6. The method of claim 1, wherein the interpolation 
approach is cubic spline interpolation. 

7. A computer-based apparatus for estimating the factor 
factor covariance matrix of a factor risk model comprising: 

a programmed processor cooperating with the memory and 
with software operating to: 
store data for the factors to be included in the factor risk 
model in a memory, wherein said memory is a non 
transitory computer readable media: 

group factor returns from a time series history of factor 
returns to form two or more equal length segments 
that overlap: 

compute a measure of volatility for each segment; 
compute a segment adjustment factor for all segments 

such that the adjusted measure of volatility for each 
segment is calculated as a ratio of the volatility mea 
sure of the most recent segment divided by the vola 
tility measure of the segment; 

compute a factor return adjustment factor for each factor 
return employing an interpolation approach that gen 
erates a continuous interpolation of the segment 
adjustment factors; and 

compute each element of the factor-factor covariance 
matrix as an exponentially weighted variance of the time 
series of the products of historical factor returns and 
each factor return adjustment factors; and 

an output means for outputting the factor-factor covariance 
matrix as an electronic output. 

8. The apparatus of claim 7 where the output factor-factor 
covariance matrix is used in computing the volatility of a 
portfolio of assets. 
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9. The apparatus of claim 7 where the output factor-factor 

covariance matrix is used by the programmed processor to 
rebalance an investment portfolio. 

10. The method of claim 7 where the output factor-factor 
covariance matrix is used by the programmed processor to 
perform a performance attribution analysis. 

11. A computer-based method of estimating the variance of 
a factor in a factor risk model comprising the steps of: 

storing data for the factor in a memory, wherein said 
memory is a non-transitory computer readable media; 

determining a time series history of factor returns for the 
factor over a set of historical times by a programmed 
processor cooperating with the memory and with soft 
ware; 

calculating a set of exponentially decaying weights with a 
fixed halflife corresponding to the time series history of 
factor returns by the programmed processor cooperating 
with the memory and with software: 

computing a metric of volatility for each historical time by 
the programmed processor cooperating with memory 
and with software: 

calculating a set of volatility adjustment multipliers by the 
programmed processor cooperating with the memory 
and with software as the ratios of most recent volatility 
metric to the computed volatility metric; 

determining when at least one volatility adjustment multi 
plier is outside a predetermined range; 

adjusting the at least one volatility adjustment multiplier to 
a value in the predetermined range; 

computing the factor-factor covariance for the time series 
of factor returns using the volatility adjustment multi 
pliers within the range and any adjusted volatility adjust 
ment multipliers for any volatility adjustment multipli 
ers determined to be outside the range by the 
programmed processor cooperating with the memory 
and with software; and 

outputting the factor variance as part of a factor risk model 
as an electronic output by an output device, wherein the 
predetermined range extends from 0.80 to 1.25. 

ck ck ck ck ck 


