wo 2011/048100 A1 |1} 110000 RO R

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

/252>,) 0 OO0 OO O
A ())

Wy

(19) World Intellectual Property Organization
International Bureau

i

(43) International Publication Date '_ (10) International Publication Number

28 April 2011 (28.04.2011) WO 2011/048100 A1

(51) International Patent Classification: BARAMAN, Vignesh [IN/DE]; Bayreutherstrale 35a,
G10L 19/00 (2006.01) 91054 Frlangen (DE). RETTELBACH, Nikolaus
[DE/DE]; Spessartstraie 38, 90427 Niirnberg (DE).

(21) International Application Number: MULTRUS, Markus [DE/DE]; Etzlaubweg 7, 90469

PCT/EP2010/065727 Niimberg (DE). GAYER, Marc [DE/DE]; Falkenauer
(22) International Filing Date: Stralie 3, 91058 Erlangen (DE). WARMBOLD, Patrick
19 October 2010 (19.10.2010) [DE/DE]; Mausdorf 50, 91448 Emskirchen (DE).
o1e . GRIEBEL, Patrick [DE/DE]; Ostendstralie 44, 90402
(25) Filing Language: English Niirberg (DE). WEISS, Oliver [DE/DE]; Peter-Henlein-
(26) Publication Language: English Strafie 45, 90459 Niirnberg (DE).
(30) Priority Data: (74) Agents: BURGER, Markus et al; Schoppe, Zimmer-
61/253,459 20 October 2009 (20.10.2009) Us mann, Stéckeler, Zinkler & Partner, Postfach 246, 82043
Pullach (DE).
(71) Applicant (for all designated States except US):
FRAUNHOFER-GESELLSCHAFT ZUR (81) Designated States (unless otherwise indicated, for every
FORDERUNG DER ANGEWANDTEN kind of national protection available): AE, AG, AL, AM,
FORSCHUNG E.V. [DE/DE]; HansastraBe 27c, 80686 AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
Miinchen (DE). CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(72) Inventors; and HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(75) Inventors/Applicants (for US only): FUCHS, Guillaume KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
[FR/DE]; Fiirther Strafle 17, 91058 Erlangen (DE). SUB- ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NL

[Continued on next page]

(54) Title: AUDIO ENCODER, AUDIO DECODER, METHOD FOR ENCODING AN AUDIO INFORMATION, METHOD
FOR DECODING AN AUDIO INFORMATION AND COMPUTER PROGRAM USING AN ITERATIVE INTERVAL SIZE
REDUCTION

(57) Abstract: An audio decoder (2200) for providing a decoded audio in-

2200 2210~ encoded zudio information formation on the basis of an encoded audio information comprises an arith-
audio metic decoder (2200) for providing a plurality of decoded spectral values
decoder 2222 (2224) on the basis of an arithmetically-encoded representation (2222) of

arithmeticalty-encoded representation

the spectral coefficients. The audio decoder also comprises a frequency-do-
of spectral values (code-values)

main-to-time-domain converter (2230) for providing a time-domain audio

g:m::m g:t!;l(er;(t”:/;gllé? 28 representation using the decoded spectral values (2224), in order to obtain
x previously-tecoded [T the decoded audio information (2212). The arithmetic decoder is config-
spectral values ured to select a mapping rule describing a mapping of a code value onto a
299 . Zﬁﬂlgi‘fvgsuuf?g) symbol code in dependence on a numeric current context value describing a
current context state. The arithmetic decoder is configured to determine the
migfe'gﬁofr‘]”e numeric current context value in dependence on a plurality of previously
witerative o295 | decoded spectral values. The arithmetic decodet is configured to evaluate at
table size least one table using an iterative interval size reduction to determine
2225 reduction whether the numeric current context value is identical to a table context val-
—2227 ue described by an entry of the table or lies within an interval described by
) mfgﬂg%gle entries of the table, and to derive a mapping rule index value describing a
mapping (pki) selected mapping table. An audio encoder also uses an iterative interval ta-
ble size reduction.

2224v/j'decoded speciral values

2220
2230 frequency-domain-to-
time-domain converter

time-domain audio
representation

2212—{decoded audio information

v

FIG 22

WO 2011/048100 A1 I 0000) 00T 0 0N RO

84)

NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SL, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727

Audio Encoder, Audio Decoder, Method for Encoding an Audio Information, Method
for Decoding an Audio Information and Computer Program
using an Iterative Interval Size Reduction

Technical Field

Embodiments according to the invention are related to an audio decoder for providing a
decoded audio information on the basis of an encoded audio information, an audio encoder
for providing an encoded audio information on the basis of an input audio information, a
method for providing a decoded audio information on the basis of an encoded audio
information, a method for providing an encoded audio information on the basis of an input

audio information and a computer program.
Embodiments according to the invention are related an improved spectral noiseless coding,
which can be used in an audio encoder or decoder, like, for example, a so-called unified

speech-and-audio coder (USAC).

Background of the Invention

In the following, the background of the invention will be briefly explained in order to
facilitate the understanding of the invention and the advantages thereof. During the past
decade, big efforts have been put on creating the possibility to digitally store and distribute
audio contents with good bitrate efficiency. One important achievement on this way is the
definition of the International Standard ISO/IEC 14496-3. Part 3 of this Standard is related
to an encoding and decoding of audio contents, and subpart 4 of part 3 is related to general
audio coding. ISO/IEC 14496 part 3, subpart 4 defines a concept for encoding and
decoding of general audio content. In addition, further improvements have been proposed

in order to improve the quality and/or to reduce the required bit rate.

According to the concept described in said Standard, a time-domain audio signal is
converted into a time-frequency representation. The transform from the time-domain to the
time-frequency-domain is typically performed using transform blocks, which are also
designated as “frames”, of time-domain samples. It has been found that it is advantageous
to use overlapping frames, which are shifted, for example, by half a frame, because the
overlap allows to efficiently avoid (or at least reduce) artifacts. In addition, it has been
found that a windowing should be performed in order to avoid the artifacts originating
from this processing of temporally limited frames.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727

By transforming a windowed portion of the input audio signal from the time-domain to the
time-frequency domain, an energy compaction is obtained in many cases, such that some
of the spectral values comprise a significantly larger magnitude than a plurality of other
spectral values. Accordingly, there are, in many cases, a comparatively small number of
spectral values having a magnitude, which is significantly above an average magnitude of
the spectral values. A typical example of a time-domain to time-frequency domain
transform resulting in an energy compaction is the so-called modified-discrete-cosine-
transform (MDCT).

The spectral values are often scaled and quantized in accordance with a psychoacoustic
model, such that quantization errors are comparatively smaller for psychoacoustically more
important spectral values, and are comparatively larger for psychoacoustically less-
important spectral values. The scaled and quantized spectral values are encoded in order to
provide a bitrate-efficient representation thereof.

For example, the usage of a so-called Huffman coding of quantized spectral coefficients is
described in the International Standard ISO/IEC 14496-3:2005(E), part 3, subpart 4.

However, it has been found that the quality of the coding of the spectral values has a
significant impact on the required bitrate. Also, it has been found that the complexity of an
audio decoder, which is often implemented in a portable consumer device, and which
should therefore be cheap and of low power consumption, is dependent on the coding used
for encoding the spectral values.

In view of this situation, there is a need for a concept for encoding and decoding of an
audio content, which provides for an improved trade-off between bitrate efficiency and

computational effort.

Summary of the Invention

An embodiment according to the invention creates an audio decoder for providing a
decoded audio information on the basis of an encoded audio information. The audio
decoder comprises an arithmetic decoder for providing a plurality of decoded spectral
values on the basis of an arithmetically encoded representation of the spectral coefficients.
The arithmetic decoder also comprises a frequency-domain-to-time-domain converter for
providing a time-domain audio representation using the decoded spectral values, in order
to obtain the decoded audio information. The arithmetic decoder is configured to select a

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727

mapping rule describing a mapping of a code value onto a symbol code in dependence on a
numeric current context value describing a current context state. The arithmetic decoder is
configured to determine the numeric current context value in dependence on a plurality of
previously decoded spectral values. Also, the arithmetic decoder is configured to evaluate
at least one table using an iterative interval size reduction, to determine whether the
numeric current context value is identical to a table context value described by an entry of
the table or lies within an interval described by entries of the table, in order to derive a
mapping rule index value describing a selected mapping rule.

An embodiment according to the invention is based on the finding that it is possible to
provide a numeric current context value describing a current context state of an arithmetic
decoder for decoding spectral values of an audio content, which numeric current context
value 1s well-suited for the derivation of a mapping rule index value, wherein the mapping
rule index value describes a mapping rule to be selected in the arithmetic decoder, using an
iterative interval size reduction on the basis of a table. It has been found that a table search
using an iterative interval size reduction is well-suited to select a mapping rule (described
by a mapping rule index value) out of a comparatively small number of mapping rules, in
dependence on a numeric current context value, which is typically computed to describe a
comparatively large number of different context states, wherein the number of possible
mapping rules is typically smaller, at least by a factor of ten, than a number of possible
context states described by the numeric current context value. A detailed analysis has
shown that a selection of an appropriate mapping rule may be performed with high
computational efficiency by using an iterative interval size reduction. A number of table
accesses can be kept comparatively small by this concept, even in the worst case. This has
shown to be very positive when making an attempt to implement the audio decoding in a
real time environment. Moreover, it has been found that an iterative interval size reduction
can be applied both for the detection whether a numeric current context value is identical
to a table context value described by an entry of the table and for a detection whether a

numeric current context value lies within an interval described by entries of the table.

To summarize, it has been found that the use of an iterative interval size reduction is well-
suited for performing a hashing algorithm to select a mapping rule for an arithmetic
decoding of an audio content in dependence on a numeric current context value, wherein
typically a number of possible values of the numeric current context value is significantly
larger than a number of mapping rules to keep the memory requirements for the storage of
the mapping rules significantly small.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727

In a preferred embodiment, the arithmetic decoder is configured to initialize a lower
interval boundary variable to designate a lower boundary of an initial table interval and to
initialize an upper interval boundary variable to designate an upper boundary of the initial
table interval. The arithmetic decoder is preferably also configured to evaluate a table
entry, a table index of which is arranged at a center of the initial table interval, to compare
the numeric current context value with a table context value represented by the evaluated
table entry. The arithmetic decoder is also configured to adapt the lower interval boundary
variable or the upper interval boundary variable in dependence on a result of the
comparison, to obtain an updated table interval. Moreover, the arithmetic decoder is
configured to repeat the evaluation of a table entry and the adaptation of the lower interval
boundary variable or of the upper interval boundary variable on the basis of one or more
updated table intervals, until a table context value is equal to the numeric current context
value or a size of the table interval defined by the updated interval boundary variables
reaches or falls below a threshold table interval size. It has been found that the iterative

interval size reduction can be implemented efficiently using the above described steps.

In a preferred embodiment, the arithmetic decoder is configured to provide a mapping rule
index value described by a given entry of the table in response to a finding that said given
entry of the table represents a table context value which is equal to the numeric current
context value. Accordingly, a very efficient table access mechanism is implemented, which
is well-suited for a hardware implementation, because a number of table accesses, which

typically consumes time and electrical energy, are kept small.

In a preferred embodiment, the arithmetic decoder is configured to perform an algorithm,
wherein a lower interval boundary variable i min is set to —1 and an upper interval
boundary variable i_max is set to a number of table entries minus 1 in preparatory steps. In
the algorithm, it is further checked whether a difference between the interval boundary
variables i_max and i_min is larger than 1, and the following steps are repeated until the
above mentioned condition (i_max - i_min>1) is no longer fulfilled or an abort condition is
reached: (1) setting the variable i to i min + ((i_max — i_min)/2), (2) setting the upper
interval boundary variable i_max to i if a table context value described by the table entry
having table index i is larger than the numeric current context value, and (3) setting the
lower interval boundary variable i_min to i if the table context value described by the table
entry having table index i is smaller than the numeric current context value. The repetition
of the steps (1) (2) (3) described before is aborted if the table context value described by
the table entry having table index i is equal to the numeric current context value. In this
case, i.e. if the table context value described by the table entry having table index i is equal
to the numeric current context value, a mapping rule index value described by the table

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727

entry having table index i is returned. The execution of this algorithm in an audio decoder

provides for a very good computational efficiency when selecting a mapping rule.

In a preferred embodiment, the arithmetic decoder is configured to obtain the numeric
current context value on the basis of a weighted combination of magnitude values
describing magnitudes of previously decoded spectral values. It has been found that this
mechanism for obtaining the numeric current context value results in a numeric current
context value which allows for an efficient selection of the mapping rule using the iterative
interval size reduction. This is due to the fact that a weighted combination of magnitude
values describing magnitudes of previously decoded spectral values results in a numeric
current context value, such that numerically adjacent numeric current context values are
often related to similar context environments of the spectral value to be currently decoded.
This allows an efficient application of the hashing algorithm on the basis of the iterative
interval size reduction.

In a preferred embodiment, the table comprises a plurality of entries, wherein each of the
plurality of entries describes a table context value and an associated mapping rule index
value, and wherein the entries of the table are numerically ordered in accordance with the
table context values. It has been found that such a table is very well-suited for the
application in combination with the iterative interval size reduction. The numeric ordering
of the entries of the table allows to perform the search for a table context value which is
identical to the numeric current context value, of the identification of an interval in which
the numeric current context value lies, within a relatively small number of iterations.
Accordingly, a number of table accesses is kept small. Also, by combining a table context
value and an associated mapping rule index value within a single table entry, a number of
table accesses can be reduced, which helps to keep an execution time in a hardware
apparatus and a power consumption thereof small.

In a preferred embodiment, the table comprises a plurality of entries, wherein each of the
plurality of entries describes a table context value defining a boundary value of a context
value interval, and a mapping rule index value associated with a context value interval.
Using this concept, it is possible to efficiently identify an interval in which the numeric
current context value lies using the iterative interval size reduction. Again, a number of

iterations and a number of table accesses can be kept small.

In a preferred embodiment, the arithmetic decoder is configured to perform a two-step
selection of a mapping rule in dependence on the numeric current context value. In this

case, the arithmetic decoder is configured to check, in a first selection step, whether the

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727

numeric current context value, or a value derived therefrom, is equal to a significant state
value described by an entry of a direct-hit table. The arithmetic decoder is also configured
to determine, in a second selection step, which is only executed if the numeric current
context value, or the value derived therefrom, is different from the significant state values
described by the entries of the direct-hit table, in which interval out of a plurality of
intervals the numeric current context value lies. The arithmetic decoder is configured to
evaluate the direct-hit table using the iterative interval size reduction, to determine whether
the numeric current context value is identical to a table context value described by an entry
of the direct-hit table. It has been found that by using this two-step table evaluation
mechanism it is possible to efficiently identify particularly significant context states,
which particularly significant context states are described by the entries of the direct-hit
table, and to also select an appropriate mapping rule for a less-significant context states
(which are not described by the entries of the direct-hit table) in the second selection step.
By doing so, the most-significant context states can be handled in the first selection step,
which reduces the computational complexity in the presence of a particularly significant
state. Moreover, it is possible to find a well-suited mapping rule even for the less
significant states.

In a preferred embodiment, the arithmetic decoder is configured to evaluate, in the second
selection step, an interval mapping table, entries of which describe boundary values of
context value intervals using an iterative interval size reduction. It has been found that the
iterative interval size reduction is well-suited both for the identification of a direct hit and
for the identification in which interval out of a plurality of intervals described by the

interval mapping table a numeric current context value lies.

In a preferred embodiment, the arithmetic decoder is configured to iteratively reduce a size
of a table interval in dependence on a comparison between interval boundary context
values represented by entries of the interval mapping table and the numeric current context
value, until a size of the table interval reaches or decreases below a predetermined
threshold table interval size or the interval boundary context value described by a table
entry at a center of the table interval is equal to the numeric current context value. The
arithmetic decoder is configured to provide the mapping rule index value in dependence on
a setting of an interval boundary of the table interval when the iterative reduction of the
table interval is avoided. Using this concept, it can be determined with low computational
effort in which table interval out of a plurality of table intervals defined by the entries of
the interval mapping table the numeric current context value lies. Accordingly, the
mapping rule can be selected with low computational effort.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727

An embodiment according to the invention creates an audio encoder for providing an
encoded audio information on the basis of an input audio information. The audio encoder
comprises an energy-compacting time-domain-to-frequency-domain converter for
providing a frequency-domain audio representation on the basis of a time-domain
representation of the input audio information, such that the frequency-domain audio
representation comprises a set of spectral values. The audio encoder also comprises an
arithmetic encoder configured to encode a spectral value or a preprocessed version thereof
using a variable-length codeword. The arithmetic encoder is configured to map a spectral
value, or a value of a most-significant bitplane of a spectral value, onto a code value. The
arithmetic encoder is configured to select a mapping rule describing a mapping of a
spectral value, or of a most-significant bitplane of a spectral value, onto a code value in
dependence on a numeric current context value describing a current context state. The
arithmetic encoder is configured to determine the numeric current context value in
dependence on a plurality of previously encoded spectral values. The arithmetic encoder is
configured to evaluate at least one table using an iterative interval size reduction, to
determine whether the numeric current context value is identical to a context value
described by an entry of the table or lies within an interval described by entries of the table,
and to thereby derive a mapping rule index value describing a selected mapping rule. This
audio signal encoder is based on the same finding as the audio signal decoder discussed
above. It has been found that the mechanism for the selection of the mapping rule, which
has been shown to be efficient for the decoding of an audio content, should also be applied

at the encoder side, in order to allow for a consistent system.

An embodiment according to the invention creates a method for providing decoded audio
information on the basis of encoded audio information.

Yet another embodiment according to the invention creates a method for providing

encoded audio information on the basis of an input audio information.

Another embodiment according to the invention creates a computer program for

performing one of said methods.

The methods and the computer program are based on the same findings as the above
described audio decoder and the above described audio encoder.

Brief Description of the Figures

10

15

20

25

30

35

WO 2011/048100

PCT/EP2010/065727

Embodiments according to the present invention will subsequently be described taking

reference to the enclosed figures, in which:

Fig

Fig.

Fig.

Fig.

Fig.

Fig

Fig.

Fig.

Fig.

Fig.

Fig.

.1

S5a

. 5band 5c

5d

Se

5f

5h

shows a block schematic diagram of an audio encoder, according to

an embodiment of the invention;

shows a block schematic diagram of an audio decoder, according to
an embodiment of the invention;

shows a pseudo-program-code representation of an algorithm
“value_decode()” for decoding a spectral value;

shows a schematic representation of a context for a state calculation;

shows a pseudo-program-code representation of an algorithm
“arith_map_context ()” for mapping a context;

show a pseudo-program-code representation of an algorithm
“arith_get context ()” for obtaining a context state value;

shows a pseudo-program-code representation of an algorithm
“get pk(s)” for deriving a cumulative-frequencies-table index value

,,pki“ from a state variable;

shows a pseudo-program-code representation of an algorithm
“arith_get pk(s)” for deriving a cumulative-frequencies-table index
value ,,pki“ from a state value;

shows a pseudo-program-code representation of an algorithm
“get pk(unsigned long s)” for deriving a cumulative-frequencies-
table index value ,,pki* from a state value;

shows a pseudo-program-code representation of an algorithm
“arith_decode ()” for arithmetically decoding a symbol from a
variable-length codeword,

shows a pseudo-program-code representation of an algorithm
“arith_update context ()” for updating the context;

10

15

20

25

30

35

WO 2011/048100

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

51

6a

6b

6¢

6d

6e

6f

6g

6h

10a

10b

PCT/EP2010/065727

shows a legend of definitions and variables;

shows as syntax representation of a unified-speech-and-audio-coding
(USAC) raw data block;

shows a syntax representation of a single channel element;
shows syntax representation of a channel pair element;
shows a syntax representation of an “ics” control information;

shows a syntax representation of a frequency-domain channel

stream;

shows a syntax representation of arithmetically-coded spectral data;
shows a syntax representation for decoding a set of spectral values;
shows a legend of data elements and variables;

shows a block schematic diagram of an audio encoder, according to
another embodiment of the invention:

shows a block schematic diagram of an audio decoder, according to

another embodiment of the invention;

shows an arrangement for a comparison of a noiseless coding
according to a working draft 3 of the USAC draft standard with a
coding scheme according to the present invention:

shows a schematic representation of a context for a state calculation,
as it is used in accordance with the working draft 4 of the USAC
draft standard;

shows a schematic representation of a context for a state calculation,
as it is used in embodiments according to the invention;

10

15

20

25

30

35

WO 2011/048100

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

11a

11b

12a

12b

13a

13b

14

15

16

PCT/EP2010/065727
10

shows an overview of the table as used in the arithmetic coding
scheme according to the working draft 4 of the USAC draft standard;

shows an overview of the table as used in the arithmetic coding

scheme according to the present invention;

shows a graphical representation of a read-only memory demand for
the noiseless coding schemes according to the present invention and
according to the working draft 4 of the USAC draft standard;

shows a graphical representation of a total USAC decoder data read-
only memory demand in accordance with the present invention and

in accordance with the concept according to the working draft 4 of
the USAC draft standard;

shows a table representation of average bitrates which are used by a
unified-speech-and-audio-coding coder, using an arithmetic coder
according to the working draft 3 of the USAC draft standard and an
arithmetic decoder according to an embodiment of the present
invention;

shows a table representation of a bit reservoir control for a unified-
speech-and-audio-coding coder, using the arithmetic coder according
to the working draft 3 of the USAC draft standard and the arithmetic

coder according to an embodiment of the present invention;

shows a table representation of average bitrates for a USAC coder
according to the working draft 3 of the USAC draft standard, and

according to an embodiment of the present invention;

shows a table representation of minimum, maximum and average
bitrates of USAC on a frame basis;

shows a table representation of the best and worst cases on a frame
basis;

Figs. 17(1) and 17(2) show a table representation of a content of a table “ari_s_hash[387]”;

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
11

Fig. 18 shows a table representation of a content of a table
“ari_gs hash[225]";

Figs. 19(1) and 19(2) show a table representation of a content of a table “ari_cf m[64][9]”;
and

Figs. 20(1) and 20(2) show a table representation of a content of a table “ari_s_hash[387];

Fig. 21 shows a block schematic diagram of an audio encoder, according to
an embodiment of the invention; and

Fig. 22 shows a block schematic diagram of an audio decoder, according to
an embodiment of the invention.

Detailed Description of the Embodiments

1. Audio Encoder according to Fig. 7

Fig. 7 shows a block schematic diagram of an audio encoder, according to an embodiment
of the invention. The audio encoder 700 is configured to receive an input audio
information 710 and to provide, on the basis thereof, an encoded audio information 712.
The audio encoder comprises an energy-compacting time-domain-to-frequency-domain
converter 720 which is configured to provide a frequency-domain audio representation 722
on the basis of a time-domain representation of the input audio information 710, such that
the frequency-domain audio representation 722 comprises a set of spectral values. The
audio encoder 700 also comprises an arithmetic encoder 730 configured to encode a
spectral value (out of the set of spectral values forming the frequency-domain audio
representation 722), or a pre-processed version thereof, using a variable-length codeword,
to obtain the encoded audio information 712 (which may comprise, for example, a plurality
of variable-length codewords).

The arithmetic encoder 730 is configured to map a spectral value or a value of a most-
significant bit-plane of a spectral value onto a code value (i.e. onto a variable-length
codeword), in dependence on a context state. The arithmetic encoder 730 is configured to

select a mapping rule describing a mapping of a spectral value, or of a most-significant bit-

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
12

plane of a spectral value, onto a code value, in dependence on a context state. The
arithmetic encoder is configured to determine the current context state in dependence on a
plurality of previously-encoded (preferably, but not necessarily, adjacent) spectral values.
For this purpose, the arithmetic encoder is configured to detect a group of a plurality of
previously-encoded adjacent spectral values, which fulfill, individually or taken together, a
predetermined condition regarding their magnitudes, and determine the current context
state in dependence on a result of the detection.

As can be seen, the mapping of a spectral value or of a most-significant bit-plane of a
spectral value onto a code value may be performed by a spectral value encoding 740 using
a mapping rule 742. A state tracker 750 may be configured to track the context state and
may comprise a group detector 752 to detect a group of a plurality of previously-encoded
adjacent spectral values which fulfill, individually or taken together, the predetermined
condition regarding their magnitudes. The state tracker 750 is also preferably configured to
determine the current context state in dependence on the result of said detection performed
by the group detector 752. Accordingly, the state tracker 750 provides an information 754
describing the current context state. A mapping rule selector 760 may select a mapping
rule, for example, a cumulative-frequencies-table, describing a mapping of a spectral
value, or of a most-significant bit-plane of a spectral value, onto a code value.
Accordingly, the mapping rule selector 760 provides the mapping rule information 742 to
the spectral encoding 740.

To summarize the above, the audio encoder 700 performs an arithmetic encoding of a
frequency-domain audio representation provided by the time-domain-to-frequency-domain
converter. The arithmetic encoding is context-dependent, such that a mapping rule (e.g., a
cumulative-frequencies-table) is selected in dependence on previously-encoded spectral
values. Accordingly, spectral values adjacent in time and/or frequency (or at least, within a
predetermined environment) to each other and/or to the currently-encoded spectral value
(i.e. spectral values within a predetermined environment of the currently encoded spectral
value) are considered in the arithmetic encoding to adjust the probability distribution
evaluated by the arithmetic encoding. When selecting an appropriate mapping rule, a
detection is performed in order to detect whether there is a group of a plurality of
previously-encoded adjacent spectral values which fulfill, individually or taken together, a
predetermined condition regarding their magnitudes. The result of this detection is applied
in the selection of the current context state, i.e. in the selection of a mapping rule. By
detecting whether there is a group of a plurality of spectral values which are particularly
small or particularly large, it is possible to recognize special features within the frequency-
domain audio representation, which may be a time-frequency representation. Special

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
13

features such as, for example, a group of a plurality of particularly small or particularly
large spectral values, indicate that a specific context state should be used as this specific
context state may provide a particularly good coding efficiency. Thus, the detection of the
group of adjacent spectral values which fulfill the predetermined condition, which is
typically used in combination with an alternative context evaluation based on a
combination of a plurality of previously-coded spectral values, provides a mechanism
which allows for an efficient selection of an appropriate context if the input audio

information takes some special states (e.g., comprises a large masked frequency range).

Accordingly, an efficient encoding can be achieved while keeping the context calculation
sufficiently simple.

2. Audio Decoder according to Fig. 8

Fig. 8 shows a block schematic diagram of an audio decoder 800. The audio decoder 800 is
configured to receive an encoded audio information 810 and to provide, on the basis
thereof, a decoded audio information 812. The audio decoder 800 comprises an arithmetic
decoder 820 that is configured to provide a plurality of decoded spectral values 822 on the
basis of an arithmetically-encoded representation 821 of the spectral values. The audio
decoder 800 also comprises a frequency-domain-to-time-domain converter 830 which is
configured to receive the decoded spectral values 822 and to provide the time-domain
audio representation 8§12, which may constitute the decoded audio information, using the

decoded spectral values 822, in order to obtain a decoded audio information 812.

The arithmetic decoder 820 comprises a spectral value determinator 824 which is
configured to map a code value of the arithmetically-encoded representation 821 of
spectral values onto a symbol code representing one or more of the decoded spectral
values, or at least a portion (for example, a most-significant bit-plane) of one or more of
the decoded spectral values. The spectral value determinator 824 may be configured to
perform the mapping in dependence on a mapping rule, which may be described by a
mapping rule information 828a.

The arithmetic decoder 820 is configured to select a mapping rule (e.g. a cumulative-
frequencies-table) describing a mapping of a code-value (described by the arithmetically-
encoded representation 821 of spectral values) onto a symbol code (describing one or more
spectral values) in dependence on a context state (which may be described by the context
state information 826a). The arithmetic decoder 820 is configured to determine the current

context state in dependence on a plurality of previously-decoded spectral values 822. For

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
14

this purpose, a state tracker 826 may be used, which receives an information describing the
previously-decoded spectral values. The arithmetic decoder is also configured to detect a
group of a plurality of previously-decoded (preferably, but not necessarily, adjacent)
spectral values, which fulfill, individually or taken together, a predetermined condition
regarding their magnitudes, and to determine the current context state (described, for

example, by the context state information 826a) in dependence on a result of the detection.

The detection of the group of a plurality of previously-decoded adjacent spectral values
which fulfill the predetermined condition regarding their magnitudes may, for example, be
performed by a group detector, which is part of the state tracker 826. Accordingly, a
current context state information 826a is obtained. The selection of the mapping rule may
be performed by a mapping rule selector 828, which derives a mapping rule information
828a from the current context state information 826a, and which provides the mapping rule
information 828a to the spectral value determinator 824.

Regarding the functionality of the audio signal decoder 800, it should be noted that the
arithmetic decoder 820 is configured to select a mapping rule (e.g. a cumulative-
frequencies-table) which is, on an average, well-adapted to the spectral value to be
decoded, as the mapping rule is selected in dependence on the current context state, which
in turn is determined in dependence on a plurality of previously-decoded spectral values.
Accordingly, statistical dependencies between adjacent spectral values to be decoded can
be exploited. Moreover, by detecting a group of a plurality of previously-decoded adjacent
spectral values which fulfill, individually or taken together, a predetermined condition
regarding their magnitudes, it is possible to adapt the mapping rule to special conditions
(or patterns) of previously-decoded spectral values. For example, a specific mapping rule
may be selected if a group of a plurality of comparatively small previously-decoded
adjacent spectral values is identified, or if a group of a plurality of comparatively large
previously-decoded adjacent spectral values is identified. It has been found that the
presence of a group of comparatively large spectral values or of a group of comparatively
small spectral values may be considered as a significant indication that a dedicated
mapping rule, specifically adapted to such a condition, should be used. Accordingly, a
context computation can be facilitated (or accelerated) by exploiting the detection of such a
group of a plurality of spectral values. Also, characteristics of an audio content can be
considered that could not be considered as easily without applying the above-mentioned
concept. For example, the detection of a group of a plurality of spectral values which
fulfill, individually or taken together, a predetermined condition regarding their
magnitudes, can be performed on the basis of a different set of spectral values, when
compared to the set of spectral values used for a normal context computation.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
15

Further details will be described below.

3. Audio Encoder according to Fig. 1

In the following, an audio encoder according to an embodiment of the present invention
will be described. Fig. 1 shows a block schematic diagram of such an audio encoder 100.

The audio encoder 100 is configured to receive an input audio information 110 and to
provide, on the basis thereof, a bitstream 112, which constitutes an encoded audio
information. The audio encoder 100 optionally comprises a preprocessor 120, which is
configured to receive the input audio information 110 and to provide, on the basis thereof,
a pre-processed input audio information 110a. The audio encoder 100 also comprises an
energy-compacting time-domain to frequency-domain signal transformer 130, which is
also designated as signal converter. The signal converter 130 is configured to receive the
input audio information 110, 110a and to provide, on the basis thereof, a frequency-domain
audio information 132, which preferably takes the form of a set of spectral values. For
example, the signal transformer 130 may be configured to receive a frame of the input
audio information 110, 110a (e.g. a block of time-domain samples) and to provide a set of
spectral values representing the audio content of the respective audio frame. In addition,
the signal transformer 130 may be configured to receive a plurality of subsequent,
overlapping or non-overlapping, audio frames of the input audio information 110, 110a and
to provide, on the basis thereof, a time-frequency-domain audio representation, which
comprises a sequence of subsequent sets of spectral values, one set of spectral values

associated with each frame.

The energy-compacting time-domain to frequency-domain signal transformer 130 may
comprise an energy-compacting filterbank, which provides spectral values associated with
different, overlapping or non-overlapping, frequency ranges. For example, the signal
transformer 130 may comprise a windowing MDCT transformer 130a, which is configured
to window the input audio information 110, 110a (or a frame thereof) using a transform
window and to perform a modified-discrete-cosine-transform of the windowed input audio
information 110, 110a (or of the windowed frame thereof). Accordingly, the frequency-
domain audio representation 132 may comprise a set of, for example, 1024 spectral values

in the form of MDCT coefficients associated with a frame of the input audio information.

The audio encoder 100 may further, optionally, comprise a spectral post-processor 140,
which is configured to receive the frequency-domain audio representation 132 and to

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
16

provide, on the basis thereof, a post-processed frequency-domain audio representation 142,
The spectral post-processor 140 may, for example, be configured to perform a temporal
noise shaping and/or a long term prediction and/or any other spectral post-processing
known in the art. The audio encoder further comprises, optionally, a scaler/quantizer 150,
which is configured to receive the frequency-domain audio representation 132 or the post-
processed version 142 thereof and to provide a scaled and quantized frequency-domain
audio representation 152.

The audio encoder 100 further comprises, optionally, a psycho-acoustic model processor
160, which is configured to receive the input audio information 110 (or the post-processed
version 110a thereof) and to provide, on the basis thereof, an optional control information,
which may be used for the control of the energy-compacting time-domain to frequency-
domain signal transformer 130, for the control of the optional spectral post-processor 140
and/or for the control of the optional scaler/quantizer 150. For example, the psycho-
acoustic model processor 160 may be configured to analyze the input audio information, to
determine which components of the input audio information 110, 110a are particularly
important for the human perception of the audio content and which components of the
input audio information 110, 110a are less important for the perception of the audio
content. Accordingly, the psycho-acoustic model processor 160 may provide control
information, which is used by the audio encoder 100 in order to adjust the scaling of the
frequency-domain audio representation 132, 142 by the scaler/quantizer 150 and/or the
quantization resolution applied by the scaler/quantizer 150. Consequently, perceptually
important scale factor bands (i.e. groups of adjacent spectral values which are particularly
important for the human perception of the audio content) are scaled with a large scaling
factor and quantized with comparatively high resolution, while perceptually less-important
scale factor bands (i.e. groups of adjacent spectral values) are scaled with a comparatively
smaller scaling factor and quantized with a comparatively lower quantization resolution.
Accordingly, scaled spectral values of perceptually more important frequencies are
typically significantly larger than spectral values of perceptually less important
frequencies.

The audio encoder also comprises an arithmetic encoder 170, which is configured to
receive the scaled and quantized version 152 of the frequency-domain audio representation
132 (or, alternatively, the post-processed version 142 of the frequency-domain audio
representation 132, or even the frequency-domain audio representation 132 itself) and to
provide arithmetic codeword information 172a on the basis thereof, such that the

arithmetic codeword information represents the frequency-domain audio representation
152.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
17

The audio encoder 100 also comprises a bitstream payload formatter 190, which is
configured to receive the arithmetic codeword information 172a. The bitstream payload
formatter 190 is also typically configured to receive additional information, like, for
example, scale factor information describing which scale factors have been applied by the
scaler/quantizer 150. In addition, the bitstream payload formatter 190 may be configured to
receive other control information. The bitstream payload formatter 190 is configured to
provide the bitstream 112 on the basis of the received information by assembling the
bitstream in accordance with a desired bitstream syntax, which will be discussed below.

In the following, details regarding the arithmetic encoder 170 will be described. The
arithmetic encoder 170 is configured to receive a plurality of post-processed and scaled
and quantized spectral values of the frequency-domain audio representation 132. The
arithmetic encoder comprises a most-significant-bit-plane-extractor 174, which is
configured to extract a most-significant bit-plane m from a spectral value. It should be
noted here that the most-significant bit-plane may comprise one or even more bits (e.g. two
or three bits), which are the most-significant bits of the spectral value. Thus, the most-
significant bit-plane extractor 174 provides a most-significant bit-plane value 176 of a
spectral value.

The arithmetic encoder 170 also comprises a first codeword determinator 180, which is
configured to determine an arithmetic codeword acod_m [pki][m] representing the most-
significant bit-plane value m. Optionally, the codeword determinator 180 may also provide
one or more escape codewords (also designated herein with “ARITH ESCAPE”)
indicating, for example, how many less-significant bit-planes are available (and,
consequently, indicating the numeric weight of the most-significant bit-plane). The first
codeword determinator 180 may be configured to provide the codeword associated with a
most-significant bit-plane value m using a selected cumulative-frequencies-table having

(or being referenced by) a cumulative-frequencies-table index pki.

In order to determine as to which cumulative-frequencies-table should be selected, the
arithmetic encoder preferably comprises a state tracker 182, which is configured to track
the state of the arithmetic encoder, for example, by observing which spectral values have
been encoded previously. The state tracker 182 consequently provides a state information
184, for example, a state value designated with “s” or “t”. The arithmetic encoder 170 also
comprises a cumulative-frequencies-table selector 186, which is configured to receive the
state information 184 and to provide an information 188 describing the selected
cumulative-frequencies-table to the codeword determinator 180. For example, the

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
18

cumulative-frequencies-table selector 186 may provide a cumulative-frequencies-table
index ,,pki“ describing which cumulative-frequencies-table, out of a set of 64 cumulative-
frequencies-tables, is selected for usage by the codeword determinator. Alternatively, the
cumulative-frequencies-table selector 186 may provide the entire selected cumulative-
frequencies-table to the codeword determinator. Thus, the codeword determinator 180 may
use the selected cumulative-frequencies-table for the provision of the codeword
acod_m[pki][m] of the most-significant bit-plane value m, such that the actual codeword
acod_m[pki][m] encoding the most-significant bit-plane value m is dependent on the value
of m and the cumulative-frequencies-table index pki, and consequently on the current state
information 184. Further details regarding the coding process and the obtained codeword
format will be described below.

The arithmetic encoder 170 further comprises a less-significant bit-plane extractor 189a,
which is configured to extract one or more less-significant bit-planes from the scaled and
quantized frequency-domain audio representation 152, if one or more of the spectral values
to be encoded exceed the range of values encodeable using the most-significant bit-plane
only. The less-significant bit-planes may comprise one or more bits, as desired.
Accordingly, the less-significant bit-plane extractor 189a provides a less-significant bit-
plane information 189b. The arithmetic encoder 170 also comprises a second codeword
determinator 189¢, which is configured to receive the less-significant bit-plane information
189d and to provide, on the basis thereof, 0, 1 or more codewords “acod_r” representing
the content of 0, 1 or more less-significant bit-planes. The second codeword determinator
189¢ may be configured to apply an arithmetic encoding algorithm or any other encoding
algorithm in order to derive the less-significant bit-plane codewords “acod_r” from the
less-significant bit-plane information 189b.

It should be noted here that the number of less-significant bit-planes may vary in
dependence on the value of the scaled and quantized spectral values 152, such that there
may be no less-significant bit-plane at all, if the scaled and quantized spectral value to be
encoded is comparatively small, such that there may be one less-significant bit-plane if the
current scaled and quantized spectral value to be encoded is of a medium range and such
that there may be more than one less-significant bit-plane if the scaled and quantized
spectral value to be encoded takes a comparatively large value.

To summarize the above, the arithmetic encoder 170 is configured to encode scaled and
quantized spectral values, which are described by the information 152, using a hierarchical
encoding process. The most-significant bit-plane (comprising, for example, one, two or
three bits per spectral value) is encoded to obtain an arithmetic codeword

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
19

“acod_m[pki][m]” of a most-significant bit-plane value. One or more less-significant bit-
planes (each of the less-significant bit-planes comprising, for example, one, two or three
bits) are encoded to obtain one or more codewords “acod r”. When encoding the most-
significant bit-plane, the value m of the most-significant bit-plane is mapped to a codeword
acod_m[pki][m]. For this purpose, 64 different cumulative-frequencies-tables are available
for the encoding of the value m in dependence on a state of the arithmetic encoder 170, i.e.
in dependence on previously-encoded spectral values. Accordingly, the codeword
“acod_m[pki][m]” is obtained. In addition, one or more codewords “acod_r” are provided
and included into the bitstream if one or more less-significant bit-planes are present.

Reset description

The audio encoder 100 may optionally be configured to decide whether an improvement in
bitrate can be obtained by resetting the context, for example by setting the state index to a
default value. Accordingly, the audio encoder 100 may be configured to provide a reset
information (e.g. named “arith reset flag”) indicating whether the context for the
arithmetic encoding is reset, and also indicating whether the context for the arithmetic
decoding in a corresponding decoder should be reset.

Details regarding the bitstream format and the applied cumulative-frequency tables will be
discussed below.

4, Audio Decoder

In the following, an audio decoder according to an embodiment of the invention will be
described. Fig. 2 shows a block schematic diagram of such an audio decoder 200.

The audio decoder 200 is configured to receive a bitstream 210, which represents an
encoded audio information and which may be identical to the bitstream 112 provided by
the audio encoder 100. The audio decoder 200 provides a decoded audio information 212
on the basis of the bitstream 210.

The audio decoder 200 comprises an optional bitstream payload de-formatter 220, which is
configured to receive the bitstream 210 and to extract from the bitstream 210 an encoded
frequency-domain audio representation 222. For example, the bitstream payload de-
formatter 220 may be configured to extract from the bitstream 210 arithmetically-coded
spectral data like, for example, an arithmetic codeword “acod_m [pki][m]” representing
the most-significant bit-plane value m of a spectral value a, and a codeword “acod r”

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
20

representing a content of a less-significant bit-plane of the spectral value a of the
frequency-domain audio representation. Thus, the encoded frequency-domain audio
representation 222 constitutes (or comprises) an arithmetically-encoded representation of
spectral values. The bitstream payload deformatter 220 is further configured to extract
from the bitstream additional control information, which is not shown in Fig. 2. In
addition, the bitstream payload deformatter is optionally configured to extract from the
bitstream 210 a state reset information 224, which is also designated as arithmetic reset
flag or “arith_reset_flag”.

The audio decoder 200 comprises an arithmetic decoder 230, which is also designated as
“spectral noiseless decoder”. The arithmetic decoder 230 is configured to receive the
encoded frequency-domain audio representation 220 and, optionally, the state reset
information 224. The arithmetic decoder 230 is also configured to provide a decoded
frequency-domain audio representation 232, which may comprise a decoded representation
of spectral values. For example, the decoded frequency-domain audio representation 232
may comprise a decoded representation of spectral values, which are described by the

encoded frequency-domain audio representation 220.

The audio decoder 200 also comprises an optional inverse quantizer/rescaler 240, which is
configured to receive the decoded frequency-domain audio representation 232 and to
provide, on the basis thereof, an inversely-quantized and rescaled frequency-domain audio
representation 242.

The audio decoder 200 further comprises an optional spectral pre-processor 250, which is
configured to receive the inversely-quantized and rescaled frequency-domain audio
representation 242 and to provide, on the basis thereof, a pre-processed version 252 of the
inversely-quantized and rescaled frequency-domain audio representation 242. The audio
decoder 200 also comprises a frequency-domain to time-domain signal transformer 260,
which is also designatéd as a “signal converter”. The signal transformer 260 is configured
to receive the pre-processed version 252 of the inversely-quantized and rescaled
frequency-domain audio representation 242 (or, alternatively, the inversely-quantized and
rescaled frequency-domain audio representation 242 or the decoded frequency-domain
audio representation 232) and to provide, on the basis thereof, a time-domain
representation 262 of the audio information. The frequency-domain to time-domain signal
transformer 260 may, for example, comprise a transformer for performing an inverse-
modified-discrete-cosine transform (IMDCT) and an appropriate windowing (as well as
other auxiliary functionalities, like, for example, an overlap-and-add).

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
21

The audio decoder 200 may further comprise an optional time-domain post-processor 270,
which is configured to receive the time-domain representation 262 of the audio information
and to obtain the decoded audio information 212 using a time-domain post-processing.
However, if the post-processing is omitted, the time-domain representation 262 may be
identical to the decoded audio information 212.

It should be noted here that the inverse quantizer/rescaler 240, the spectral pre-processor
250, the frequency-domain to time-domain signal transformer 260 and the time-domain
post-processor 270 may be controlled in dependence on control information, which is
extracted from the bitstream 210 by the bitstream payload deformatter 220.

To summarize the overall functionality of the audio decoder 200, a decoded frequency-
domain audio representation 232, for example, a set of spectral values associated with an
audio frame of the encoded audio information, may be obtained on the basis of the encoded
frequency-domain representation 222 using the arithmetic decoder 230. Subsequently, the
set of, for example, 1024 spectral values, which may be MDCT coefficients, are inversely
quantized, rescaled and pre-processed. Accordingly, an inversely-quantized, rescaled and
spectrally pre-processed set of spectral values (e.g., 1024 MDCT coefficients) is obtained.
Afterwards, a time-domain representation of an audio frame is derived from the inversely-
quantized, rescaled and spectrally pre-processed set of frequency-domain values (e.g.
MDCT coefficients). Accordingly, a time-domain representation of an audio frame is
obtained. The time-domain representation of a given audio frame may be combined with
time-domain representations of previous and/or subsequent audio frames. For example, an
overlap-and-add between time-domain representations of subsequent audio frames may be
performed in order to smoothen the transitions between the time-domain representations of
the adjacent audio frames and in order to obtain an aliasing cancellation. For details
regarding the reconstruction of the decoded audio information 212 on the basis of the
decoded time-frequency domain audio representation 232, reference is made, for example,
to the International Standard ISO/IEC 14496-3, part 3, sub-part 4 where a detailed
discussion is given. However, other more elaborate overlapping and aliasing-cancellation
schemes may be used.

In the following, some details regarding the arithmetic decoder 230 will be described. The
arithmetic decoder 230 comprises a most-significant bit-plane determinator 284, which is
configured to receive the arithmetic codeword acod m [pki][m] describing the most-
significant bit-plane value m. The most-significant bit-plane determinator 284 may be
configured to use a cumulative-frequencies table out of a set comprising a plurality of 64

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
22

cumulative-frequencies-tables for deriving the most-significant bit-plane value m from the

arithmetic codeword “acod_m [pki][m]”.

The most-significant bit-plane determinator 284 is configured to derive values 286 of a
most-significant bit-plane of spectral values on the basis of the codeword acod m. The
arithmetic decoder 230 further comprises a less-significant bit-plane determinator 288,
which is configured to receive one or more codewords “acod_r” representing one or more
less-significant bit-planes of a spectral value. Accordingly, the less-significant bit-plane
determinator 288 is configured to provide decoded values 290 of one or more less-
significant bit-planes. The audio decoder 200 also comprises a bit-plane combiner 292,
which is configured to receive the decoded values 286 of the most-significant bit-plane of
the spectral values and the decoded values 290 of one or more less-significant bit-planes of
the spectral values if such less-significant bit-planes are available for the current spectral
values. Accordingly, the bit-plane combiner 292 provides decoded spectral values, which
are part of the decoded frequency-domain audio representation 232. Naturally, the
arithmetic decoder 230 is typically configured to provide a plurality of spectral values in
order to obtain a full set of decoded spectral values associated with a current frame of the
audio content.

The arithmetic decoder 230 further comprises a cumulative-frequencies-table selector 296,
which is configured to select one of the 64 cumulative-frequencies tables in dependence on
a state index 298 describing a state of the arithmetic decoder. The arithmetic decoder 230
further comprises a state tracker 299, which is configured to track a state of the arithmetic
decoder in dependence on the previously-decoded spectral values. The state information
may optionally be reset to a default state information in response to the state reset
information 224. Accordingly, the cumulative-frequencies-table selector 296 is configured
to provide an index (e.g. pki) of a selected cumulative-frequencies-table, or a selected
cumulative-frequencies-table itself, for application in the decoding of the most-significant
bit-plane value m in dependence on the codeword “acod_m”.

To summarize the functionality of the audio decoder 200, the audio decoder 200 is
configured to receive a bitrate-efficiently-encoded frequency-domain audio representation
222 and to obtain a decoded frequency-domain audio representation on the basis thereof. In
the arithmetic decoder 230, which is used for obtaining the decoded frequency-domain
audio representation 232 on the basis of the encoded frequency-domain audio
representation 222, a probability of different combinations of values of the most-significant
bit-plane of adjacent spectral values is exploited by using an arithmetic decoder 280, which
is configured to apply a cumulative-frequencies-table. In other words, statistic

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
23

dependencies between spectral values are exploited by selecting different cumulative-
frequencies-tables out of a set comprising 64 different cumulative-frequencies-tables in
dependence on a state index 298, which is obtained by observing the previously-computed
decoded spectral values.

5. Overview over the Tool of Spectral Noiseless Coding

In the following, details regarding the encoding and decoding algorithm, which is
performed, for example, by the arithmetic encoder 170 and the arithmetic decoder 230 will
be explained.

Focus is put on the description of the decoding algorithm. It should be noted, however, that
a corresponding encoding algorithm can be performed in accordance with the teachings of

the decoding algorithm, wherein mappings are inversed.

It should be noted that the decoding, which will be discussed in the following, is used in
order to allow for a so-called “spectral noiseless coding” of typically post-processed,
scaled and quantized spectral values. The spectral noiseless coding is used in an audio
encoding/decoding concept to further reduce the redundancy of the quantized spectrum,
which is obtained, for example, by an energy-compacting time-domain to a frequency-
domain transformer.

The spectral noiseless coding scheme, which is used in embodiments of the invention, is
based on an arithmetic coding in conjunction with a dynamically-adapted context. The
noiseless coding is fed by (original or encoded representations of) quantized spectral
values and uses context-dependent cumulative-frequencies-tables derived, for example,
from a plurality of previously-decoded neighboring spectral values. Here, the
neighborhood in both time and frequency is taken into account as illustrated in Fig. 4. The
cumulative-frequencies-tables (which will be explained below) are then used by the
arithmetic coder to generate a variable-length binary code and by the arithmetic decoder to
derive decoded values from a variable-length binary code.

For example, the arithmetic coder 170 produces a binary code for a given set of symbols in
dependence on the respective probabilities. The binary code is generated by mapping a
probability interval, where the set of symbol lies, to a codeword.

In the following, another short overview of the tool of spectral noiseless coding will be
given. Spectral noiseless coding is used to further reduce the redundancy of the quantized

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
24

spectrum. The spectral noiseless coding scheme is based on an arithmetic coding in
conjunction with a dynamically adapted context. The noiseless coding is fed by the
quantized spectral values and uses context dependent cumulative-frequencies-tables

derived from, for example, seven previously-decoded neighboring spectral values

Here, the neighborhood in both, time and frequency, is taken into account, as illustrated in
Fig. 4. The cumulative-frequencies-tables are then used by the arithmetic coder to generate
a variable length binary code.

The arithmetic coder produces a binary code for a given set of symbols and their respective
probabilities. The binary code is generated by mapping a probability interval, where the set

of symbols lies to a codeword.

6. Decoding Process

6.1 Decoding Process Qverview

In the following, an overview of the process of decoding a spectral value will be given
taking teference to Fig. 3, which shows a pseudo-program code representation of the
process of decoding a plurality of spectral values.

The process of decoding a plurality of spectral values comprises an initialization 310 of a
context. The initialization 310 of the context comprises a derivation of the current context
from a previous context using the function “arith_map_context (Ig)”. The derivation of the
current context from a previous context may comprise a reset of the context. Both the reset
of the context and the derivation of the current context from a previous context will be
discussed below.

The decoding of a plurality of spectral values also comprises an iteration of a spectral
value decoding 312 and a context update 314, which context update is performed by a
function “Arith_update context(a,i,lg)” which is described below. The spectral value
decoding 312 and the context update 314 are repeated 1g times, wherein lg indicates the
number of spectral values to be decoded (e.g. for an audio frame). The spectral value
decoding 312 comprises a context-value calculation 312a, a most-significant bit-plane
decoding 312b, and a less-significant bit-plane addition 312c.

The state value computation 312a comprises the computation of a first state value s using
the function “arith_get context(i, lg, arith_reset flag, N/2)” which function returns the first

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
25

state value s. The state value computation 312a also comprises a computation of a level
value “lev0” and of a level value “lev”, which level values “lev0”, ,lev* are obtained by
shifting the first state value s to the right by 24 bits. The state value computation 312a also
comprises a computation of a second state value t according to the formula shown in Fig. 3
at reference numeral 312a.

The most-significant bit-plane decoding 312b comprises an iterative execution of a
decoding algorithm 312ba, wherein a variable j is initialized to O before a first execution of
the algorithm 312ba.

The algorithm 312ba comprises a computation of a state index ,,pki“ (which also serves as
a cumulative-frequencies-table index) in dependence on the second state value t, and also
in dependence on the level values ,lev* and lev0, using a function “arith_get pk()”, which
is discussed below. The algorithm 312ba also comprises the selection of a cumulative-
frequencies-table in dependence on the state index pki, wherein a variable “cum_freq” may
be set to a starting address of one out of 64 cumulative-frequencies-tables in dependence
on the state index pki. Also, a variable “cfl” may be initialized to a length of the selected
cumulative-frequencieé-table, which is, for example, equal to the number of symbols in the
alphabet, i.e. the number of different values which can be decoded. The lengths of all the
cumulative-frequencies-tables from “arith_cf m[pki=0][9]” to “arith_cf m[pki=63][9]”
available for the decoding of the most-significant bit-plane value m is 9, as eight different
most-significant bit-plane values and an escape symbol can be decoded. Subsequently, a
most-significant bit-plane value m may be obtained by executing a function
“arith_decode()”, taking into consideration the selected cumulative-frequencies-table
(described by the variable “cum_freq” and the variable “cfl”). When deriving the most-
significant bit-plane value m, bits named “acod_m” of the bitstream 210 may be evaluated
(see, for example, Fig. 6g).

The algorithm 312ba also comprises checking whether the most-significant bit-plane value
m is equal to an escape symbol “ARITH_ESCAPE”, or not. If the most-significant bit-
plane value m is not equal to the arithmetic escape symbol, the algorithm 312ba is aborted
(“break”-condition) and the remaining instructions of the algorithm 312ba are therefore
skipped. Accordingly, execution of the process is continued with the setting of the spectral
value a to be equal to the most-significant bit-plane value m (instruction “a=m”). In
contrast, if the decoded most-significant bit-plane value m is identical to the arithmetic
escape symbol “ARITH ESCAPE”, the level value ,lev® is increased by one. As
mentioned, the algorithm 312ba is then repeated until the decoded most-significant bit-
plane value m is different from the arithmetic escape symbol.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
26

As soon as most-significant bit-plane decoding is completed, i.e. a most-significant bit-
plane value m different from the arithmetic escape symbol has been decoded, the spectral
value variable ,a* is set to be equal to the most-significant bit-plane value m.
Subsequently, the less-significant bit-planes are obtained, for example, as shown at
reference numeral 312¢ in Fig. 3. For each less-significant bit-plane of the spectral value,
one out of two binary values is decoded. For example, a less-significant bit-plane value r is
obtained. Subsequently, the spectral value variable ,,a* is updated by shifting the content of
the spectral value variable ,,a* to the left by 1 bit and by adding the currently-decoded les-
significant bit-plane value r as a least-significant bit. However, it should be noted that the
concept for obtaining the values of the less-significant bit-planes is not of particular
relevance for the present invention. In some embodiments, the decoding of any less-
significant bit-planes may even be omitted. Alternatively, different decoding algorithms
may be used for this purpose.

6.2 Decoding Order according to Fig. 4

In the following, the decoding order of the spectral values will be described.

Spectral coefficients are noiselessly coded and transmitted (e.g. in the bitstream) starting

from the lowest-frequency coefficient and progressing to the highest-frequency coefficient.

Coefficients from an advanced audio coding (for example obtained using a modified-
discrete-cosine-transform, as discussed in ISO/IEC 14496, part3, subpart 4) are stored in
an array called “x_ac_quant[g][win][sfb]{bin]”, and the order of transmission of the
noiseless-coding-codeword (e.g. acod_m, acod _r) is such that when they are decoded in
the order received and stored in the array, “bin” (the frequency index) is the most rapidly

incrementing index and “g” is the most slowly incrementing index.

Spectral coefficients associated with a lower frequency are encoded before spectral
coefficients associated with a higher frequency.

Coefficients from the transform-coded-excitation (tcx) are stored directly in an array
x_tex_invquant[win][bin], and the order of the transmission of the noiseless coding
codewords is such that when they are decoded in the order received and stored in the array,
“bin” is the most rapidly incrementing index and “win” is the slowest incrementing index.
In other words, if the spectral values describe a transform-coded-excitation of the linear-

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
27

prediction filter of a speech coder, the spectral values a are associated to adjacent and
increasing frequencies of the transform-coded-excitation.

Spectral coefficients associated to a lower frequency are encoded before spectral
coefficients associated with a higher frequency.

Notably, the audio decoder 200 may be configured to apply the decoded frequency-domain
audio representation 232, which is provided by the arithmetic decoder 230, both for a
“direct” generation of a time-domain audio signal representation using a frequency-domain
to time-domain signal transform and for an “indirect” provision of an audio signal
representation using both a frequency-domain to time-domain decoder and a linear-
prediction-filter excited by the output of the frequency-domain to time-domain signal
transformer.

In other words, the arithmetic decoder 200, the functionality of which is discussed here in
detail, is well-suited for decoding spectral values of a time-frequency-domain
representation of an audio content encoded in the frequency-domain and for the provision
ofa time-frequency-dbmain representation of a stimulus signal for a linear-prediction-filter
adapted to decode a speech signal encoded in the linear-prediction-domain. Thus, the
arithmetic decoder is well-suited for use in an audio decoder which is capable of handling
both frequency-domain-encoded audio content and linear-predictive-frequency-domain-

encoded audio content (transform-coded-excitation linear prediction domain mode).

6.3. Context Initialization according to Figs. 5a and 5b

In the following, the context initialization (also designated as a “context mapping”), which
is performed in a step 310, will be described.

The context initialization comprises a mapping between a past context and a current
context in accordance with the algorithm “arith map context()”, which is shown in Fig.
5a. As can be seen, the current context is stored in a global variable q[2][n_context] which
takes the form of an array having a first dimension of two and a second dimension of
n_context. A past context is a stored in a variable qs[n_context], which takes the form of a
table having a dimension of n_context. The variable “previous_lg” describes a number of

spectral values of a past context.

The variable “lg” describes a number of spectral coefficients to decode in the frame. The

variable “previous _lg” describes a previous number of spectral lines of a previous frame.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
28

A mapping of the context may be performed in accordance with the algorithm
“arith_map_context()”. It should be noted here that the function “arith_map_context()” sets
the entries q[0][i] of the current context array q to the values gs[i] of the past context array
gs, if the number of spectral values associated with the current (e.g. frequency-domain-
encoded) audio frame is identical to the number of spectral values associated with the
previous audio frame for i=0 to i=lg-1.

However, a more complicated mapping is performed if the number of spectral values
associated to the current audio frame is different from the number of spectral values
associated to the previous audio frame. However, details regarding the mapping in this
case are not particularly relevant for the key idea of present invention, such that reference
is made to the pseudo program code of Fig. 5a for details.

6.4 State Value Computation according to Figs. 5b and 5¢

In the following, the state value computation 312a will be described in more detail.

It should be noted that the first state value s (as shown in Fig. 3) can be obtained as a return
value of the function “arith get context(i, lg, arith reset_flag, N/2)”, a pseudo program
code representation of which is shown in Figs. 5b and Sc.

Regarding the computation of the state value, reference is also made to Fig. 4, which
shows the context used for a state evaluation. Fig. 4 shows a two-dimensional
representation of spectral values, both over time and frequency. An abscissa 410 describes
the time, and an ordinate 412 describes the frequency. As can be seen in Fig. 4, a spectral
value 420 to decode, is associated with a time index t0 and a frequency index i. As can be
seen, for the time index t0, the tuples having frequency indices i-1, i-2 and i-3 are already
decoded at the time at which the spectral value 420 having the frequency index i is to be
decoded. As can be seen from Fig. 4, a spectral value 430 having a time index t0 and a
frequency index i-1 is already decoded before the spectral value 420 is decoded, and the
spectral value 430 is considered for the context which is used for the decoding of the
spectral value 420. Similarly, a spectral value 434 having a time index t0 and a frequency
index i-2, is already decoded before the spectral value 420 is decoded, and the spectral
value 434 is considered for the context which is used for decoding the spectral value 420.
Similarly, a spectral value 440 having a time index t-1 and a frequency index of i-2, a
spectral value 444 having a time index t-1 and a frequency index i-1, a spectral value 448
having a time index t-1 and a frequency index i, a spectral value 452 having a time index t-

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
29

1 and a frequency index i+1, and a spectral value 456 having a time index t-1 and a
frequency index i+2, are already decoded before the spectral value 420 is decoded, and are
considered for the determination of the context, which is used for decoding the spectral
value 420. The spectral values (coefficients) already decoded at the time when the spectral
value 420 is decoded and considered for the context are shown by shaded squares. In
contrast, some other spectral values already decoded (at the time when the spectral value
420 is decoded), which are represented by squares having dashed lines, and other spectral
values, which are not yet decoded (at the time when the spectral value 420 is decoded) and
which are shown by circles having dashed lines, are not used for determining the context
for decoding the spectral value 420.

However, it should be noted that some of these spectral values, which are not used for the
“regular” (or “normal™) computation of the context for decoding the spectral value 420
may, nevertheless, be evaluated for a detection of a plurality of previously-decoded
adjacent spectral values which fulfill, individually or taken together, a predetermined
condition regarding their magnitudes.

Taking reference now to Figs. 5b and 5c, which show the functionality of the function
“arith_get context()” in the form of a pseudo program code, some more details regarding

the calculation of the first context value “s”, which is performed by the function
“arith_get context()”, will be described.

It should be noted that the function “arith_get context()” receives, as input variables an
index i of the spectral value to decode. The index i is typically a frequency index. An input
variable lg describes a (total) number of expected quantized coefficients (for a current
audio frame). A variable N describes a number of lines of the transformation. A flag
“arith_reset flag” indicates whether the context should be reset. The function
“arith_get context” provides, as an output value, a variable ,t“, which represents a

concatenated state index s and a predicted bit-plane level lev0.

The function “arith_get context()” uses integer variables a0, c0, c1, ¢2, ¢3, ¢4, c5, c6, lev0,
and “region”.

The function “arith get context()” comprises as main functional blocks, a first arithmetic
reset processing 510, a detection 512 of a group of a plurality of previously-decoded
adjacent zero spectral values, a first variable setting 514, a second variable setting 516, a
level adaptation 518, a region value setting 520, a level adaptation 522, a level limitation
524, an arithmetic reset processing 526, a third variable setting 528, a fourth variable

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
30

setting 530, a fifth variable setting 532, a level adaptation 534, and a selective return value
computation 536.

In the first arithmetic reset processing 510, it is checked whether the arithmetic reset flag
“arith_reset flag” is set, while the index of the spectral value to decode is equal to zero. In
this case, a context value of zero is returned, and the function is aborted.

In the detection 512 of a group of a plurality of previously-decoded zero spectral values,
which is only performed if the arithmetic reset flag is inactive and the index i of the
spectral value to decode is different from zero, a variable named “flag” is initialized to 1,
as shown at reference numeral 512a, and a region of spectral value that is to be evaluated is
determined, as shown at reference numeral 512b. Subsequently, the region of spectral
values, which is determined as shown at reference number 512b, is evaluated as shown at
reference numeral 512c. If it is found that there is a sufficient region of previously-decoded
zero spectral values, a context value of 1 is returned, as shown at reference numeral 512d.
For example, an upper frequency index boundary “lim_max” is set to i+6, unless index i of
the spectral value to be decoded is close to a maximum frequency index Ig-1, in which case
a special setting of the upper frequency index boundary is made, as shown at reference

numeral 512b. Moreover, a lower frequency index boundary “lim_min” is set to -5, unless

the index i of the spectral value to decode is close to zero (i+lim_min<0), in which case a
special computation of the lower frequency index boundary lim_min is performed, as
shown at reference numeral 512b. When evaluating the region of spectral values
determined in step 512b, an evaluation is first performed for negative frequency indices k
between the lower frequency index boundary lim min and zero. For frequency indices k
between lim_min and zero, it is verified whether at least one out of the context values
q[0][k].c and q[1][k].c is equal to zero. If, however, both of the context values q[0][k].c
and q[1][k].c are different from zero for any frequency indices k between lim_min and
zero, it is concluded that there is no sufficient group of zero spectral values and the
evaluation 512¢ is aborted. Subsequently, context values q[0][k].c for frequency indices
between zero and lim max are evaluated. If it found that any of the context values
q[0][k].c for any of the frequency indices between zero and lim_max is different from zero,
it is concluded that there is no sufficient group of previously-decoded zero spectral values,
and the evaluation 512c¢ is aborted. If, however, it is found that for every frequency indices
k between lim_min and zero, there is at least one context value q[0][k].c or q[1][k].c which
is equal to zero and if there is a zero context value q[0][k].c for every frequency index k
between zero and lim_max, it is concluded that there is a sufficient group of previously-
decoded zero spectral values. Accordingly, a context value of 1 is returned in this case to
indicate this condition, without any further calculation. In other words, calculations 514,

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
31

516, 518, 520, 522, 524, 526, 528, 530, 532, 534, 536 are skipped, if a sufficient group of a
plurality of context values q[0][k].c, q[1][k].c having a value of zero is identified. In other
words, the returned context value, which describes the context state (s), is determined
independent from the previously decoded spectral values in response to the detection that
the predetermined condition is fulfilled.

Otherwise, i.e. if there is no sufficient group of context values [q]{0][k].c, [q][1][k].c,
which are zero at least some of the computations 514, 516, 518, 520, 522, 524,526, 528,
530, 532, 534, 536 are executed.

In the first variable setting 514, which is selectively executed if (and only if) index i of the
spectral value to be decoded is less than 1, the variable a is initialized to take the context
value g[1][i-1], and the variable ¢0 is initialized to take the absolute value of the variable
a0. The variable ,,lev0* is initialized to take the value of zero. Subsequently, the variables
,lev0“ and c0 are increased if the variable a0 comprises a comparatively large absolute
value, i.e. is smaller than -4, or larger or equal to 4. The increase of the variables ,,lev0*
and c0 is performed iteratively, until the value of the variable a0 is brought into a range
between -4 and 3 by a shift-to-the-right operation (step 514b).

Subsequently, the variables c0 and ,lev0“ are limited to maximum values of 7 and 3,
respectively (step 514c).

If the index i of the spectral value to be decoded is equal to 1 and the arithmetic reset flag
(“arith_reset_flag”) is active, a context value is returned, which is computed merely on the
basis of the variables cO and levQ (step 514d). Accordingly, only a single previously-
decoded spectral value having the same time index as the spectral value to decode and
having a frequency index which is smaller, by 1, than the frequency index i of the spectral
value to be decoded, is considered for the context computation (step 514d). Otherwise, i.e.
if there is no arithmetic reset functionality, the variable c4 is initialized (step 514e).

To conclude, in the first variable setting 514, the variables ¢0 and ,,lev0* are initialized in
dependence on a previously-decoded spectral value, decoded for the same frame as the
spectral value to be currently decoded and for a preceding spectral bin i-1. The variable c4
is initialized in dependence on a previously-decoded spectral value, decoded for a previous
audio frame (having time index t-1) and having a frequency which is lower (e.g., by one
frequency bin) than the frequency associated with the spectral value to be currently
decoded.

10

15

20

25

30

35

WO 2011/048100 . PCT/EP2010/065727
32

The second variable setting 516 which is selectively executed if (and only if) the frequency
index of the spectral value to be currently decoded is larger than 1, comprises an
initialization of the variables c1 and ¢6 and an update of the variable lev0. The variable c1
is updated in dependence on a context value q[1][i-2].c associated with a previously-
decoded spectral value of the current audio frame, a frequency of which is smaller (e.g. by
two frequency bins) than a frequency of a spectral value currently to be decoded. Similarly,
variable c6 is initialized in dependence on a context value q[0][i-2].c, which describes a
previously-decoded spectral value of a previous frame (having time index t-1), an
associated frequency of which is smaller (e.g. by two frequency bins) than a frequency
associated with the spectral value to currently be decoded. In addition, the level variable
,lev0™ is set to a level value q[1][i-2].1 associated with a previously-decoded spectral value
of the current frame, an associated frequency of which is smaller (e.g. by two frequency
bins) than a frequency associated with the spectral value to currently be decoded, if q[1][i-
2].1 is larger than levO0.

The level adaptation 518 and the region value setting 520 are selectively executed, if (and
only if) the index i of the spectral value to be decoded is larger than 2. In the level
adaptation 518, the level variable ,lev0* is increased to a value of q[1][i-3].l, if the level
value q1][i-3].1 which is associated to a previously-decoded spectral value of the current
frame, an associated frequency of which is smaller (e.g. by three frequency bins) than the
frequency associated with the spectral value to currently be decoded, is larger than the
level value lev0.

In the region value setting 520, a variable “region” is set in dependence on an evaluation,
in which spectral region, out of a plurality of spectral regions, the spectral value to
currently be decoded is arranged. For example, if it is found that the spectral value to be
currently decoded is associated to a frequency bin (having frequency bin index i) which is
in the first (lower most) quarter of the frequency bins (0 <1 < N/4), the region variable
“region” is set to zero. Otherwise, if the spectral value currently to be decoded is
associated to a frequency bin which is in a second quarter of the frequency bins associated
to the current frame (N/4 < i < N/2), the region variable is set to a value of 1. Otherwise,
i.e. if the spectral value currently to be decoded is associated to a frequency bin which is in
the second (upper) half of the frequency bins (N/2 < i < N), the region variable is set to 2.
Thus, a region variable is set in dependence on an evaluation to which frequency region the
spectral value currently to be decoded is associated. Two or more frequency regions may
be distinguished.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
33

An additional level adaptation 522 is executed if (and only if) the spectral value currently
to be decoded comprises a spectral index which is larger than 3. In this case, the level
variable ,,lev0“ is increased (set to the value q[1][i-4].1) if the level value q[i][i-4].1, which
is associated to a previously-decoded spectral value of the current frame, which is
associated to a frequency which is smaller, for example, by four frequency bins, than a
frequency associated to the spectral value currently to be decoded is larger than the current
level ,,]ev0“ (step 522). The level variable ,,lev0“ is limited to a maximum value of 3 (step
524).

If an arithmetic reset condition is detected and the index i of the spectral value currently to
be decoded is larger than 1, the state value is returned in dependence on the variables c0,
cl, lev0, as well as in dependence on the region variable “region” (step 526). Accordingly,
previously-decoded spectral values of any previous frames are left out of consideration if
an arithmetic reset condition is given.

In the third variable setting 528, the variable c2 is set to the context value q[0][i].c, which
is associated to a previously-decoded spectral value of the previous audio frame (having
time index t-1), which previously-decoded spectral value is associated with the same
frequency as the spectral value currently to be decoded.

In the fourth variable setting 530, the variable ¢3 is set to the context value q[0][i+1].c,
which is associated to a previously-decoded spectral value of the previous audio frame
having a frequency index i+1, unless the spectral value currently to be decoded is
associated with the highest possible frequency index 1g-1.

In the fifth variable setting 532, the variable c5 is set to the context value q[0][i+2].c,
which is associated with a previously-decoded spectral value of the previous audio frame
having frequency index i+2, unless the frequency index i of the spectral value currently to
be decoded is too close to the maximum frequency index value (i.e. takes the frequency
index value Ig-2 or 1g-1).

An additional adaptation of the level variable ,,lev0“ is performed if the frequency index i
is equal to zero (i.e. if the spectral value currently to be decoded is the lowermost spectral
value). In this case, the level variable ,lev0* is increased from zero to 1, if the variable c2
or c¢3 takes a value of 3, which indicates that a previously-decoded spectral value of a
previous audio frame, which is associated with the same frequency or even a higher
frequency, when compared to the frequency associated with the spectral value currently to
be encoded, takes a comparatively large value.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
34

In the selective return value computation 536, the return value is computed in dependence
on whether the index i of the spectral values currently to be decoded takes the value zero,
1, or a larger value. The return value is computed in dependence on the variables ¢2, ¢3, ¢5
and lev0, as indicated at reference numeral 536a, if index i takes the value of zero. The
return value is computed in dependence on the variables c0, c2, ¢3, c4, c5, and ,,lev0® as
shown at reference numeral 536b, if index i takes the value of 1. The return value is
computed in dependence on the variable ¢0, ¢2, ¢3, ¢4, cl, ¢5, ¢6, “region”, and lev0, if the
index i takes a value which is different from zero or 1 (reference numeral 536c).

To summarize the above, the context value computation “arith_get context()” comprises a
detection 512 of a gro‘up of a plurality of previously-decoded zero spectral values (or at
least, sufficiently small spectral values). If a sufficient group of previously-decoded zero
spectral values is found, the presence of a special context is indicated by setting the return
value to 1. Otherwise, the context value computation is performed. It can generally be said
that in the context value computation, the index value i is evaluated in order to decide how
many previously-decoded spectral values should be evaluated. For example, a number of
evaluated previously-decoded spectral values is reduced if a frequency index i of the
spectral value currently to be decoded is close to a lower boundary (e.g. zero), or close to
an upper boundary (e.g. Ig-1). In addition, even if the frequency index i of the spectral
value currently to be decoded is sufficiently far away from a minimum value, different
spectral regions are distinguished by the region value setting 520. Accordingly, different
statistical properties of different spectral regions (e.g. first, low frequency spectral region,
second, medium frequency spectral region, and third, high frequency spectral region) are
taken into consideration. The context value, which is calculated as a return value, is
dependent on the variable “region”, such that the returned context value is dependent on
whether a spectral value currently to be decoded is in a first predetermined frequency
region or in a second predetermined frequency region (or in any other predetermined

frequency region).

6.5 Mapping Rule Selection

In the following, the selection of a mapping rule, for example, a cumulative-frequencies-
table, which describes a mapping of a code value onto a symbol code, will be described.
The selection of the mapping rule is made in dependence on the context state, which is
described by the state value s or t.

6.5.1 Mapping Rule Selection using the Algorithm according to Fig. 5d

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
35

In the following, the selection of a mapping rule using the function “get_pk” according to
Fig. 5d will be described. It should be noted that the function “get_pk” may be performed
to obtain the value of “pki” in the sub-algorithm 312ba of the algorithm of Fig. 3. Thus, the
function “get_pk” may take the place of the function “arith_get _pk” in the algorithm of
Fig. 3.

It should also be noted that a function “get pk” according to Fig. 5d may evaluate the table
“ari_s hash[387]” according to Figs. 17(1) and 17(2) and a table “ari_gs hash”[225]
according to Fig. 18.

The function ,,get pk® receives, as an input variable, a state value s, which may be
obtained by a combination of the variable ,,t* according to Fig. 3 and the variables “lev”,
_lev0“ according to Fig. 3. The function ,,get pk‘ is also configured to return, as a return
value, a value of a variable “pki”, which designates a mapping rule or a cumulative-
frequencies-table. The function ,.get pk“ is configured to map the state value s onto a
mapping rule index value “pki”.

The function ,,get_pk* comprises a first table evaluation 540, and a second table evaluation
544. The first table evaluation 540 comprises a variable initialization 541 in which the
variables i_min, i_max, and i are initialized, as shown at reference numeral 541. The first
table evaluation 540 also comprises an iterative table search 542, in the course of which a
determination is made as to whether there is an entry of the table “ari_s_hash” which
matches the state value s. If such a match is identified during the iterative table search 542,
the function get_pk is aborted, wherein a return value of the function is determined by the
entry of the table “ari_s_hash” which matches the state value s, as will be explained in
more detail. If, however, no perfect match between the state value s and an entry of the
table “ari_s_hash” is found during the course of the iterative table search 542, a boundary
entry check 543 is performed.

Turning now to the details of the first table evaluation 540, it can be seen that a search
interval is defined by the variables i_min and i_max. The iterative table search 542 is
repeated as long as the interval defined by the variables i_min and i_max is sufficiently
large, which may be true if the condition i_max-i_min > 1 is fulfilled. Subsequently, the
variable i is set, at least approximately, to designate the middle of the interval
(i=1_min+(i_max-i_min)/2). Subsequently, a variable j is set to a value which is
determined by the array “ari_s_hash” at an array position designated by the variable i
(reference numeral 542). It should be noted here that each entry of the table “ari_s_hash”

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
36

describes both, a state value, which is associated to the table entry, and a mapping rule
index value which is associated to the table entry. The state value, which is associated to
the table entry, is described by the more-significant bits (bits 8-31) of the table entry, while
the mapping rule index values are described by the lower bits (e.g. bits 0-7) of said table
entry. The lower boundary i_min or the upper boundary i_max are adapted in dependence
on whether the state value s is smaller than a state value described by the most-significant
24 bits of the entry “ari_s_hash[i]” of the table “ari s hash” referenced by the variable i.
For example, if the state value s is smaller than the state value described by the most-
significant 24 bits of the entry “ari_s hashl[i]”, the upper boundary i max of the table
interval is set to the value i. Accordingly, the table interval for the next iteration of the
iterative table search 542 is restricted to the lower half of the table interval (from i_min to
i_max) used for the present iteration of the iterative table search 542. If, in contrast, the
state value s is larger than the state values described by the most-significant 24 bits of the
table entry “ari_s_hash[i]”, then the lower boundary i_min of the table interval for the next
iteration of the iterative table search 542 is set to value i, such that the upper half of the
current table interval (between i_min and i_max) is used as the table interval for the next
iterative table search. If, however, it is found that the state value s is identical to the state
value described by the most-significant 24 bits of the table entry “ari_s hash[i]”, the
mapping rule index value described by the least-significant 8-bits of the table entry
“ari_s_hash[i]” is returned by the function “get_pk”, and the function is aborted.

The iterative table search 542 is repeated until the table interval defined by the variables
i min and i_max is sufficiently small.

A boundary entry check 543 is (optionally) executed to supplement the iterative table
search 542. If the index variable i is equal to index variable i_max after the completion of
the iterative table search 542, a final check is made whether the state value s is equal to a
state value described by the most-significant 24 bits of a table entry “ari_s hash[i_min]”,
and a mapping rule index value described by the least-significant 8 bits of the entry
“ari_s hash[i min]” is returned, in this case, as a result of the function “get pk”. In
contrast, if the index variable i is different from the index variable i_max, then a check is
performed as to whether a state value s is equal to a state value described by the most-
significant 24 bits of the table entry “ari_s_hash[i_max]”, and a mapping rule index value
described by the least-significant 8 bits of said table entry “ari_s_hash[i_max]” is returned
as a return value of the function “get pk” in this case.

However, it should be noted that the boundary entry check 543 may be considered as
optional in its entirety.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
37

Subsequent to the first table evaluation 540, the second table evaluation 544 is performed,
unless a “direct hit” has occurred during the first table evaluation 540, in that the state
value s is identical to one of the state values described by the entries of the table

“ari_s_hash” (or, more precisely, by the 24 most-significant bits thereof).

The second table evaluation 544 comprises a variable initialization 545, in which the index
variables i min, i and i_max are initialized, as shown at reference numeral 545. The
second table evaluation 544 also comprises an iterative table search 546, in the course of
which the table “ari_gs hash” is searched for an entry which represents a state value
identical to the state value s. Finally, the second table search 544 comprises a return value
determination 547.

The iterative table search 546 is repeated as long as the table interval defined by the index
variables i_min and i_max is large enough (e.g. as long as i_max — i_min > 1). In the
iteration of the iterative table search 546, the variable i is set to the center of the table
interval defined by i min and i max (step 546a). Subsequently, an entry j of the table
“ari_gs_hash” is obtained at a table location determined by the index variable i (546b). In
other words, the table entry “ari_gs hash[i]” is a table entry at the center of the current
table interval defined by the table indices i_min and i_max. Subsequently, the table
interval for the next iteration of the iterative table search 546 is determined. For this
purpose, the index value i_max describing the upper boundary of the table interval is set to
the value i, if the state value s is smaller than a state value described by the most-
significant 24 bits of the table entry “j=ari_gs_hash[i]” (546c). In other words, the lower
half of the current table interval is selected as the new table interval for the next iteration of
the iterative table search 546 (step 546¢). Otherwise, if the state value s is larger than a
state value described by the most-significant 24 bits of the table entry “j=ari_gs_hash[i]”,
the index value i_min is set to the value i. Accordingly, the upper half of the current table
interval is selected as the new table interval for the next iteration of the iterative table
search 546 (step 546d). If, however, it is found that the state value s is identical to a state
value described by the uppermost 24 bits of the table entry “j=ari_gs hash[i]” , the index
variable i_max is set to the value i+1 or to the value 224 (if i+1 is larger than 224), and the
iterative table search 546 is aborted. However, if the state value s is different from the state
value described by the 24 most-significant bits of “j=ari_gs_hash[i]”, the iterative table
search 546 is repeated with the newly set table interval defined by the updated index values
i min and i_max, unless the table interval is too small (i_max — i_min < 1). Thus, the
interval size of the table interval (defined by i_min and i_max) is iteratively reduced until
a “direct hit” is detected (s==(j>>8)) or the interval reaches a minimum allowable size

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
38

(i_max —i_min < 1). Finally, following an abortion of the iterative table search 546, a table
entry “j=ari_gs_hash[i_max]” is determined and a mapping rule index value, which is
described by the 8 least-significant bits of said table entry “j=ari_gs hash[i max]” is
returned as the return value of the function “get pk”. Accordingly, the mapping rule index
value is determined in dependence on the upper boundary i_max of the table interval
(defined by i_min and i_max) after the completion or abortion of the iterative table search
546.

The above-described table evaluations 540, 544, which both use iterative table search 542,
546, allow for the examination of tables “ari_s_hash” and “ari_gs _hash” for the presence
of a given significant state with very high computational efficiency. In particular, a number
of table access operations can be kept reasonably small, even in a worst case. It has been
found that a numeric ordering of the table “ari_s hash” and “ari_gs hash” allows for the
acceleration of the search for an appropriate hash value. In addition, a table size can be
kept small as the inclusion of escape symbols in tables “ari_s_hash” and “ari_gs_hash” is
not required. Thus, an efficient context hashing mechanism is established even though
there are a large number of different states: In a first stage (first table evaluation 540), a
search for a direct hit is conducted (s==(j>>8)).

In the second stage (second table evaluation 544) ranges of the state value s can be mapped
onto mapping rule index values. Thus, a well-balanced handling of particularly significant
states, for which there is an associated entry in the table “ari_s_hash”, and less-significant
states, for which there is a range-based handling, can be performed. Accordingly, the
function “get_pk” constitutes an efficient implementation of a mapping rule selection.

For any further details, reference is made to the pseudo program code of Fig. 5d, which
represents the functionality of the function “get pk” in a representation in accordance with

the well-known programming language C.

6.5.2 Mapping Rule Selection using the Algorithm according to Fig. S5¢

In the following, another algorithm for a selection of the mapping rule will be described
taking reference to Fig. Se. It should be noted that the algorithm “arith get pk” according
to Fig. Se receives, as an input variable, a state value s describing a state of the context.
The function “arith_get pk™ provides, as an output value, or return value, an index “pki” of
a probability model, which may be an index for selecting a mapping rule, (e.g., a
cumulative-frequencies-table).

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
39

It should be noted that the function ,.arith get pk“ according to Fig. Se may take the
functionality of the function “arith _get pk” of the function “value_decode” of Fig. 3.

It should also be noted that the function “arith_get pk” may, for example, evaluate the
table ari_s_hash according to Fig. 20, and the table ari_gs hash according to Fig. 18.

The function “arith_get pk” according to Fig. Se comprises a first table evaluation 550 and
a second table evaluation 560. In the first table evaluation 550, a linear scan is made
through the table ari_s_hash, to obtain an entry j=ari_s_hash[i] of said table. If a state
value described by the most-significant 24 bits of a table entry j=ari_s_hash(i] of the table
ari_s_hash is equal to the state value s, a mapping rule index value ,,pki* described by the
least-significant 8 bits of said identified table entry j=ari_s_hash[i] is returned and the
function “arith_get pk” is aborted. Accordingly, all 387 entries of the table ari_s_hash are
evaluated in an ascending sequence unless a “direct hit” (state value s equal to the state
value described by the most-significant 24 bits of a table entry j) is identified.

If a direct hit is not identified within the first table evaluation 550, a second table
evaluation 560 is executed. In the course of the second table evaluation, a linear scan with
entry indices i increasing linearly from zero to a maximum value of 224 is performed.
During the second table evaluation, an entry “ari_gs_hash[i]” of the table “ari_gs_hash”
for table i is read, and the table entry “j=ari_gs hash[i]” is evaluated in that it is
determined whether the state value represented by the 24 most-significant bits of the table
entry j is larger than the state value s. If this is the case, a mapping rule index value
described by the 8 least-significant bits of said table entry j is returned as the return value
of the function “arith_get pk”, and the execution of the function “arith_get pk” is aborted.
If, however, the state value s is not smaller than the state value described by the 24 most-
significant bits of the current table entry j=ari_gs_hash[i], the scan through the entries of
the table ari_gs hash is continued by increasing the table index i. If, however, the state
value s is larger than or equal to any of the state values described by the entries of the table
ari_gs_hash, a mapping rule index value ,,pki“ defined by the 8 least-significant bits of the
last entry of the table ari_gs hash is returned as the return value of the function
“arith_get pk™.

To summarize, the function “arith_get pk” according to Fig. Se performs a two-step
hashing. In a first step, a search for a direct hit is performed, wherein it is determined
whether the state value s is equal to the state value defined by any of the entries of a first
table “ari_s_hash”. If a direct hit is identified in the first table evaluation 550, a return
value is obtained from the first table “ari_s hash” and the function “arith get pk™ is

10

15

20

235

30

35

WO 2011/048100 PCT/EP2010/065727
40

aborted. If, however, no direct hit is identified in the first table evaluation 550, the second
table evaluation 560 is performed. In the second table evaluation, a range-based evaluation
is performed. Subsequent entries of the second table “ari_gs_hash” define ranges. If it is
found that the state value s lies within such a range (which is indicated by the fact that the
state value described by the 24 most-significant bits of the current table entry
“j=ari_gs hash[i]” is larger than the state value s, the mapping rule index value “pki”
described by the 8 least-significant bits of the table entry j=ari_gs_hash[i] is returned.

6.5.3 Mapping Rule Selection using the Algorithm according to Fig. 5f

The function “get pk” according to Fig. 5f is substantially equivalent to the function
“arith_get pk” according to Fig. Se. Accordingly, reference is made to the above
discussion. For further details, reference is made to the pseudo program representation in
Fig. 5f.

It should be noted that the function ,,get_pk* according to Fig. 5f may take the place of the
function “arith_get pk” called in the function “value_decode” of Fig. 3.

6.6. Function “arith decode()” according to Fig. 5g

In the following, the functionality of the function “arith decode()” will be discussed in
detail taking reference to Fig. 5g. It should be noted that the function “arith_decode()” uses
the helper function “arith_first symbol (void)”, which returns TRUE, if it is the first
symbol of the sequence and FALSE otherwise. The function “arith_decode()” also uses the
helper function “arith get next_bit(void)”, which gets and provides the next bit of the
bitstream.

In addition, the function “arith decode()” uses the global variables “low”, “high” and
“value”. Further, the function “arith decode()” receives, as an input variable, the variable
“cum_freq[]”, which points towards a first entry or element (having element index or entry
index 0) of the selected cumulative-frequencies-table. Also, the function “arith_decode()”
uses the input variable “cfl”, which indicates the length of the selected cumulative-
frequencies-table designated by the variable “cum_freq[]”.

The function “arith decode()” comprises, as a first step, a variable initialization 570a,
which is performed if the helper function “arith_first symbol()” indicates that the first
symbol of a sequence of symbols is being decoded. The value initialization 550a initializes

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
41

the variable “value” in dependence on a plurality of, for example, 20 bits, which are
obtained from the bitstream using the helper function “arith_get next bit”, such that the
variable “value” takes the value represented by said bits. Also, the variable “low” is
initialized to take the value of 0, and the variable “high” is initialized to take the value of
1048575.

In a second step 570b, the variable “range” is set to a value, which is larger, by 1, than the
difference between the values of the variables “high” and “low”. The variable “cum” is set
to a value which represents a relative position of the value of the variable “value” between
the value of the variable “low” and the value of the variable “high”. Accordingly, the
variable “cum” takes, for example, a value between 0 and 2'® in dependence on the value
of the variable “value”.

The pointer p is initialized to a value which is smaller, by 1, than the starting address of the
selected cumulative-frequencies-table.

The algorithm “arith_decode()” also comprises an iterative cumulative-frequencies-table-
search 570c. The iterative cumulative-frequencies-table-search is repeated until the
variable cfl is smaller than or equal to 1. In the iterative cumulative-frequencies-table-
search 570c, the pointer variable q is set to a value, which is equal to the sum of the current
value of the pointer variable p and half the value of the variable “cfl”. If the value of the
entry *q of the selected cumulative-frequencies-table, which entry is addressed by the
pointer variable q, is larger than the value of the variable “cum”, the pointer variable p is
set to the value of the pointer variable q, and the variable “cfl” is incremented. Finally, the
variable “cfl” is shifted to the right by one bit, thereby effectively dividing the value of the
variable “cfl” by 2 and neglecting the modulo portion.

Accordingly, the iterative cumulative-frequencies-table-search 570c effectively compares
the value of the variable “cum” with a plurality of entries of the selected cumulative-
frequencies-table, in order to identify an interval within the selected cumulative-
frequencies-table, which is bounded by entries of the cumulative-frequencies-table, such
that the value cum lies within the identified interval. Accordingly, the entries of the
selected cumulative-frequencies-table define intervals, wherein a respective symbol value
is associated to each of the intervals of the selected cumulative-frequencies-table. Also, the
widths of the intervals between two adjacent values of the cumulative-frequencies-table
define probabilities of the symbols associated with said intervals, such that the selected
cumulative-frequencies-table in its entirety defines a probability distribution of the

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
42

different symbols (or symbol values). Details regarding the available cumulative-

frequencies-tables will be discussed below taking reference to Fig. 19.

Taking reference again to Fig. 5g, the symbol value is derived from the value of the pointer
variable p, wherein the symbol value is derived as shown at reference numeral 570d. Thus,
the difference between the value of the pointer variable p and the starting address
“cum_freq” is evaluated in order to obtain the symbol value, which is represented by the
variable “symbol”.

The algorithm “arith_decode” also comprises an adaptation 570e of the variables “high”
and “low”. If the symbol value represented by the variable “symbol” is different from 0,
the variable “high” is updated, as shown at reference numeral 570e. Also, the value of the
variable “low” is updated, as shown at reference numeral 570e. The variable “high” is set
to a value which is determined by the value of the variable “low”, the variable “range” and
the entry having the index “symbol —1” of the selected cumulative-frequencies-table. The
variable “low” is increased, wherein the magnitude of the increase is determined by the
variable “range” and the entry of the selected cumulative-frequencies-table having the
index “symbol”. Accordingly, the difference between the values of the variables “low” and
“high” is adjusted in dependence on the numeric difference between two adjacent entries
of the selected cumulative-frequencies-table.

Accordingly, if a symbol value having a low probability is detected, the interval between
the values of the variables “low” and “high” is reduced to a narrow width. In contrast, if
the detected symbol value comprises a relatively large probability, the width of the interval
between the values of the variables “low” and “high” is set to a comparatively large value.
Again, the width of the interval between the values of the variable “low” and “high” is
dependent on the detected symbol and the corresponding entries of the cumulative-
frequencies-table.

The algorithm “arith_decode()” also comprises an interval renormalization 570f, in which
the interval determined in the step 570e is iteratively shifted and scaled until the “break’-
condition is reached. In the interval renormalization 570f, a selective shift-downward
operation 570fa is performed. If the variable “high” is smaller than 524286, nothing is
done, and the interval renormalization continues with an interval-size-increase operation
5701b. If, however, the variable “high” is not smaller than 524286 and the variable “low” is
greater than or equal to 524286, the variables “values”, “low” and “high” are all reduced
by 524286, such that an interval defined by the variables “low” and “high” is shifted
downwards, and such that the value of the variable “value” is also shifted downwards. If,

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
43

however, it is found that the value of the variable “high” is not smaller than 524286, and
that the variable “low” is not greater than or equal to 524286, and that the variable “low” is
greater than or equal to 262143 and that the variable “high” is smaller than 786429, the
variables “value”, “low” and “high” are all reduced by 262143, thereby shifting down the
interval between the values of the variables “high” and “low” and also the value of the
variable “value”. If, however, neither of the above conditions is fulfilled, the interval

renormalization is aborted.

If, however, any of the above-mentioned conditions, which are evaluated in the step 570fa,
is fulfilled, the interval-increase-operation 570fb is executed. In the interval-increase-
operation 570fb, the value of the variable “low” is doubled. Also, the value of the variable
“high” is doubled, and the result of the doubling is increased by 1. Also, the value of the
variable “value” is doubled (shifted to the left by one bit), and a bit of the bitstream, which
is obtained by the helper function “arith_get next_bit” is used as the least-significant bit.
Accordingly, the size of the interval between the values of the variables “low” and “high”
is approximately doubled, and the precision of the variable “value” is increased by using a
new bit of the bitstream. As mentioned above, the steps 570fa and 570fb are repeated until
the “break” condition is reached, i.e. until the interval between the values of the variables
“low” and “high” is large enough.

Regarding the functionality of the algorithm “arith_decode()”, it should be noted that the
interval between the values of the variables “low” and “high” is reduced in the step 570e in
dependence on two adjacent entries of the cumulative-frequencies-table referenced by the
variable “cum_freq”. If an interval between two adjacent values of the selected
cumulative-frequencies-table is small, i.e. if the adjacent values are comparatively close
together, the interval between the values of the variables “low” and “high”, which is
obtained in the step 570e, will be comparatively small. In contrast, if two adjacent entries
of the cumulative-frequencies-table are spaced further, the interval between the values of
the variables “low” and “high”, which is obtained in the step 570e, will be comparatively
large.

Consequently, if the interval between the values of the variables “low” and “high”, which
is obtained in the step 570e, is comparatively small, a large number of interval
renormalization steps will be executed to re-scale the interval to a “sufficient” size (such
that neither of the conditions of the condition evaluation 570fa is fulfilled). Accordingly, a
comparatively large number of bits from the bitstream will be used in order to increase the
precision of the variable “value”. If, in contrast, the interval size obtained in the step 570¢
is comparatively large, only a smaller number of repetitions of the interval normalization

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
44

steps 570fa and 570fb will be required in order to renormalize the interval between the
values of the variables “low” and “high” to a “sufficient” size. Accordingly, only a
comparatively small number of bits from the bitstream will be used to increase the

precision of the variable “value” and to prepare a decoding of a next symbol.

To summarize the above, if a symbol is decoded, which comprises a comparatively high
probability, and to which a large interval is associated by the entries of the selected
cumulative-frequencies-table, only a comparatively small number of bits will be read from
the bitstream in order to allow for the decoding of a subsequent symbol. In contrast, if a
symbol is decoded, which comprises a comparatively small probability and to which a
small interval is associated by the entries of the selected cumulative-frequencies-table, a
comparatively large number of bits will be taken from the bitstream in order to prepare a
decoding of the next symbol.

Accordingly, the entries of the cumulative-frequencies-tables reflect the probabilities of the
different symbols and also reflect a number of bits required for decoding a sequence of
symbols. By varying the cumulative-frequencies-table in dependence on a context, i.e. in
dependence on previously-decoded symbols (or spectral values), for example, by selecting
different cumulative-frequencies-tables in dependence on the context, stochastic
dependencies between the different symbols can be exploited, which allows for a particular
bitrate-efficient encoding of the subsequent (or adjacent) symbols.

To summarize the above, the function “arith_decode()”, which has been described with
reference to Fig. 5g, is called with the cumulative-frequencies-table “arith_cf_m[pki][]”,
corresponding to the index “pki” returned by the function “,arith_get_pk()” to determine

~ the most-significant bit-plane value m (which may be set to the symbol value represented

by the return variable “symbol”).

6.7 Escape Mechanism

While the decoded most-significant bit-plane value m (which is returned as a symbol value
by the function “arith_decode () is the escape symbol “ARITH_ESCAPE”, an additional
most-significant bit-plane value m is decoded and the variable “lev” is incremented by 1.
Accordingly, an information is obtained about the numeric significance of the most-

significant bit-plane value m as well as on the number of less-significant bit-planes to be
decoded.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
45

If an escape symbol “ARITH_ESCAPE?” is decoded, the level variable “lev” is increased
by 1. Accordingly, the state value which is input to the function “arith_get pk” is also
modified in that a value represented by the uppermost bits (bits 24 and up) is increased for
the next iterations of the algorithm 312ba.

6.8 Context Update according to Fig. 5h

Once the spectral value is completely decoded (i.e. all of the least-significant bit-planes
have been added, the context tables q and gs are updated by calling the function
“grith_update_context(a,i,lg))”. In the following, details regarding the function
“arith_update_context(a,i,lg)” will be described taking reference to Fig. Sh, which shows a
pseudo program code representation of said function.

The function “arith update_context()” receives, as input variables, the decoded quantized
spectral coefficient a, the index i of the spectral value to be decoded (or of the decoded
spectral value) and the number lg of spectral values (or coefficients) associated with the
current audio frame.

In a step 580, the currently decoded quantized spectral value (or coefficient) a is copied
into the context table or context array q. Accordingly, the entry q[1][i] of the context table
q is set to a. Also, the variable “a0” is set to the value of “a”.

In a step 582, the level value q[1][i].l of the context table q is determined. By default, the
level value q[1][i].l of the context table q is set to zero. However, if the absolute value of
the currently coded spectral value a is larger than 4, the level value q[1][i].1 is incremented.
With each increment, the variable “a” is shifted to the right by one bit. The increment of
the level value q[1][i].1 is repeated until the absolute value of the variable a0 is smaller
than, or equal to, 4.

In a step 584, a 2-bit context value q[1][i].c of the context table q is set. The 2-bit context
value g[1][i].c is set to the value of zero if the currently decoded spectral value a is equal to
zero. Otherwise, if the absolute value of the decoded spectral value a is smaller than, or
equal to, 1, the 2-bit context value g[1][i].c is set to 1. Otherwise, if the absolute value of
the currently decoded spectral value a is smaller than, or equal to, 3, the 2-bit context value
q[1][i].c is set to 2. Otherwise, i.e. if the absolute value of the currently decoded spectral
value a is larger than 3, the 2-bit context value g[1][i].c is set to 3. Accordingly, the 2-bit
context value g[1][i].c is obtained by a very coarse quantization of the currently decoded
spectral coefficient a.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
46

In a subsequent step 586, which is only performed if the index i of the currently decoded
spectral value is equal to the number Ig of coefficients (spectral values) in the frame, that
is, if the last spectral value of the frame has been decoded) and the core mode is a linear-
prediction-domain core mode (which is indicated by “core mode==1"), the entries
q[1][j].c are copied into the context table gs[k]. The copying is performed as shown at
reference numeral 586, such that the number Ig of spectral values in the current frame is
taken into consideration for the copying of the entries q[1][j].c to the context table qs[k]. In
addition, the variable “previous_lg” takes the value 1024.

Alternatively, however, the entries q[1][j].c of the context table q are copied into the
context table gs[j] if the index i of the currently decoded spectral coefficient reaches the
value of lg and the core mode is a frequency-domain core mode (indicated by
“core_mode==0").

In this case, the variable “previous_lg” is set to the minimum between the value of 1024
and the number 1g of spectral values in the frame.

6.9 Summary of the Decoding Process

In the following, the decoding process will briefly be summarized. For details, reference is
made to the above discussion and also to Figs. 3, 4 and 5a to 5i.

The quantized spectral coefficients a are noiselessly coded and transmitted, starting from
the lowest frequency coefficient and progressing to the highest frequency coefficient.

The coefficients from the advanced-audio coding (AAC) are stored in the array
“x_ac_quant{g]{win][sfb][bin]”, and the order of transmission of the noiseless coding
codewords is such, that when they are decoded in the order received and stored in the
array, bin is the most rapidly incrementing index and g is the most slowly incrementing
index. Index bin designates frequency bins. The index “sfb” designates scale factor bands.

The index “win” designates windows. The index “g” designates audio frames.

The coefficients from the transform-coded-excitation are stored directly in an array
“x_tex_invquant[win][bin]”, and the order of the transmission of the noiseless coding
codewords is such that when they are decoded in the order received and stored in the array,
“bin” is the most rapidly incrementing index and “win” is the most slowly incrementing
index.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
47

First, a mapping is done between the saved past context stored in the context table or array
“gs” and the context of the current frame q (stored in the context table or array q). The past
context “qs” is stored onto 2-bits per frequency line (or per frequency bin).

The mapping between the saved past context stored in the context table “qs” and the
context of the current frame stored in the context table “q” is performed using the function
“arith map_context()”, a pseudo-program-code representation of which is shown in Fig.
Sa.

The noiseless decoder outputs signed quantized spectral coefficients “a”.

At first, the state of the context is calculated based on the previously-decoded spectral
coefficients surrounding the quantized spectral coefficients to decode. The state of the
context s corresponds to the 24 first bits of the value returned by the function
“arith_get context()”. The bits beyond the 24™ bit of the returned value correspond to the
predicted bit-plane-level lev0. The variable ,lev* is initialized to lev0. A pseudo program
code representation of the function “arith_get context™ is shown in Figs. 5b and Sc.

Once the state s and the predicted level ,.lev0* are known, the most-significant 2-bits wise
plane m is decoded using the function “arith_decode()”, fed with the appropriated
cumulative-frequencies-table corresponding to the probability model corresponding to the
context state.

The correspondence is made by the function “arith_get_pk()”.
A pseudo-program-code representation of the function “arith_get pk()”is shown in Fig. Se.

A pseudo program code of another function “get_pk” which may take the place of the
function “arith_get pk()” is shown in Fig. 5f. A pseudo program code of another function
“get_pk”, which may take over the place of the function “arith_get pk()” is shown in Fig.
5d.

The value m is decoded using the function “arith_decode()” called with the cumulative-
frequencies-table, “arith_cf m[pki][], where ,,pki* corresponds to the index returned by the
function “arith_get pk()” (or, alternatively, by the function “get_pk()”).

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
48

The arithmetic coder is an integer implementation using the method of tag generation with
scaling (see, e.g., K. Sayood “Introduction to Data Compression” third edition, 2006,
Elsevier Inc.). The pseudo-C-code shown in Fig. 5g describes the used algorithm.

When the decoded value m is the escape symbol, “ARITH_ESCAPE”, another value m is
decoded and the variable ,lev is incremented by 1. Once the value m is not the escape
symbol, “ARITH_ESCAPE”, the remaining bit-planes are then decoded from the most-

(1

significant to the least-significant level, by calling ,lev® times the function
“arith_decode()”with the cumulative-frequencies-table “arith_cf_r[]”. Said cumulative-

frequencies-table “arith_cf r[] may, for example, describe an even probability distribution.

The decoded bit planes r permit the refining of the previously-decoded value m in the
following manner:

a = m;

for (i=0; i<lev;i++) {
r = arith_decode (arith_cf r,2);
a=(a<<1)| (r&1);

Once the spectral quantized coefficient a is completely decoded, the context tables g, or the
stored context gs, is updated by the function “arith update _context()”, for the next
quantized spectral coefficients to decode.

A pseudo program code representation of the function “arith_update_context()” is shown
in Fig. Sh.

In addition, a legend of the definitions is shown in Fig. 5i.

7. Mapping Tables

In an embodiment according to the invention, particularly advantageous tables
“ari s hash” and “ari_gs hash” and “ari_cf m” are used for the execution of the function

“get pk”, which has been discussed with reference to Fig. 5d, or for the execution of the
function “arith_get pk”, which has been discussed with reference to Fig. Se, or for the

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
49

execution of the function “get pk”, which was discussed with reference 5f, and for the
execution of the function “arith_decode” which was discussed with reference to Fig. 5g.

7.1. Table “ari s hash[387] according to Fig. 17

A content of a particularly advantageous implementation of the table “ari_s_hash”, which
is used by the function “get_pk” which was described with reference to Fig. 5d, is shown
in the table of Fig. 17. It should be noted that the table of Fig. 17 lists the 387 entries of the
table “ari_s_hash[387]”. It should also be noted that the table representation of Fig. 17
shows the elements in the order of the element indices, such that the first value
“0x00000200” corresponds to a table entry “ari_s_hash[0]” having element index (or table
index) 0, such that the last value “0x03D0713D” corresponds to a table entry
“ari_s_hash[386]” having element index or table index 386. It should further be noted her
that “0Ox” indicates that the table entries of the table “ari_s_hash” are represented in a
hexadecimal format. Furthermore, the table entries of the table “ari_s_hash” according to
Fig. 17 are arranged in numeric order in order to allow for the execution of the first table
evaluation 540 of the function “get_pk”.

It should further be noted that the most-significant 24 bits of the table entries of the table
“ari_s_hash” represent state values, while the least-significant 8-bits represent mapping

rule index values pki.

Thus, the entries of the table “ari_s_hash” describe a “direct hit” mapping of a state value

onto a mapping rule index value “pki”.

7.2 Table “ari gs hash” according to Fig. 18

A content of a particularly advantageous embodiment of the table “ari_gs_hash” is shown
in the table of Fig. 18. It should be noted here that the table of table 18 lists the entries of
the table “ari_gs hash”. Said entries are referenced by a one-dimensional integer-type
entry index (also designated as “element index” or “array index” or “table index”), which
is, for example, designated with “i”. It should be noted that the table “ari_gs_hash” which
comprises a total of 225 entries, is well-suited for the use by the second table evaluation
544 of the function “get_pk” described in Fig. 5d.

It should be noted that the entries of the table “ari_gs hash” are listed in an ascending
order of the table index i for table index values i between zero and 224. The term “0x”
indicates that the table entries are described in a hexadecimal format. Accordingly, the first

10

15

20

25

30

.35

WO 2011/048100 PCT/EP2010/065727
50

table entry “0X00000401” corresponds to table entry “ari_gs_hash[0]” having table index
0 and the last table entry “OXffffff3f” corresponds to table entry “ari_gs hash[224]”
having table index 224.

It should also be noted that the table entries are ordered in a numerically ascending
manner, such that the table entries are well-suited for the second table evaluation 544 of
the function “get pk”. The most-significant 24 bits of the table entries of the table
“ari gs hash” describe boundaries between ranges of state values, and the 8 least-
significant bits of the entries describe mapping rule index values “pki” associated with the
ranges of state values defined by the 24 most-significant bits.

7.3 Table “ari ¢f m” according to Fig. 19

Fig. 19 shows a set of 64 cumulative-frequencies-tables “ari_cf_m[pki][9]”, one of which
is selected by an audio encoder 100, 700, or an audio decoder 200, 800, for example, for
the execution of the function “arith_decode”, i.e. for the decoding of the most-significant
bit-plane value. The selected one of the 64 cumulative-frequencies-tables shown in Fig. 19
takes the function of the table “cum freq[]” in the execution of the function
“arith_decode()”.

As can be seen from Fig. 19, each line represents a cumulative-frequencies-table having 9
entries. For example, a first line 1910 represents the 9 entries of a cumulative-frequencies-
table for “pki=0”. A second line 1912 represents the 9 entries of a cumulative-frequencies-
table for “pki=1”. Finally, a 64™ line 1964 represents the 9 entries of a cumulative-
frequencies-table for “pki=63”. Thus, Fig. 19 effectively represents 64 different
cumulative-frequencies-tables for “pki=0" to a “pki=63”, wherein each of the 64
cumulative-frequencies-tables is represented by a single line and wherein each of said
cumulative-frequencies-tables comprises 9 entries.

Within a line (e.g. a line 1910 or a line 1912 or a line 1964), a lefimost value describes a
first entry of a cumulative-frequencies-table and a rightmost value describes the last entry
of a cumulative-frequencies-table.

Accordingly, each line 1910, 1912, 1964 of the table representation of Fig. 19 represents
the entries of a cumulative-frequencies-table for use by the function “arith_decode”
according to Fig. 5g. The input variable “cum_freq[]” of the function “arith decode”
describes which of the 64 cumulative-frequencies-tables (represented by individual lines of

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
51

9 entries) of the table “ari_cf m” should be used for the decoding of the current spectral
coefficients.

7.4 Table “ari s hash” according to Fig. 20

Fig. 20 shows an alternative for the table “ari_s_hash”, which may be used in combination
with the alternative function “arith_get pk()” or “get_pk()” according to Fig. Se or 5f.

The table “ari_s_hash” according to Fig. 20 comprises 386 entries, which are listed in Fig.
20 in an ascending order of the table index. Thus, the first table value “0x0090D52E”
corresponds to the table entry “ari_s_hash[0]” having table index 0, and the last table entry
“0x03D0513C” corresponds to the table entry “ari_s_hash[386]” having table index 386.

The “Ox” indicates that the table entries are represented in a hexadecimal form. The 24
most-significant bits of the entries of the table “ari_s_hash” describe significant states, and
the 8 least-significant bits of the entries of the table “ari_s_hash” describe mapping rule
index values.

Accordingly, the entries of the table “ari_s_hash” describe a mapping of significant states
onto mapping rule index values “pki”.

8. Performance Evaluation and Advantages

The embodiments according to the invention use updated functions (or algorithms) and an
updated set of tables, as discussed above, in order to obtain an improved tradeoff between

computation complexity, memory requirements, and coding efficiency.

Generally speaking, the embodiments according to the invention create an improved
spectral noiseless coding.

The present description describes embodiments for the CE on improved spectral noiseless
coding of spectral coefficients. The proposed scheme is based on the “original” context-
based arithmetic coding scheme, as described in the working draft 4 of the USAC draft
standard, but significantly reduces memory requirements (RAM, ROM), while maintaining
a noiseless coding performance. A lossless transcoding of WD3 (i.e. of the output of an
audio encoder providing a bitstream in accordance with the working draft 3 of the USAC
draft standard) was proven to be possible. The scheme described herein is, in general,
scalable, allowing further alternative tradeoffs between memory requirements and

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
52

encoding performance. Embodiments according to the invention aim at replacing the
spectral noiseless coding scheme as used in the working draft 4 of the USAC draft
standard.

The arithmetic coding scheme described herein is based on the scheme as in the reference
model 0 (RMO) or the working draft 4 (WD4) of the USAC draft standard. Spectral
coefficients previous in frequency or in time model a context. This context is used for the
selection of cumulative-frequencies-tables for the arithmetic coder (encoder or decoder).
Compared to the embodiment according to WD4, the context modeling is further improved
and the tables holding the symbol probabilities were retrained. The number of different
probability models was increased from 32 to 64.

Embodiments according to the invention reduce the table sizes (data ROM demand) to 900
words of length 32-bits or 3600 bytes. In contrast, embodiments according to WD4 of the
USAC draft standard require 16894.5 words or 76578 bytes. The static RAM demand is
reduced, in some embodiments according to the invention, from 666 words (2664 bytes) to
72 (288 bytes) per core coder channel. At the same time, it fully preserves the coding
performance and can even reach a gain of approximately 1.04% to 1.39%, compared to the
overall data rate over all 9 operating points. All working draft 3 (WD3) bitstreams can be

transcoded in a lossless manner without affecting the bit reservoir constraints.

The proposed scheme according to the embodiments of the invention is scalable: flexible
tradeoffs between memory demand and coding performance are possible. By increasing the
table sizes to the coding gain can be further increased.

In the following, a brief discussion of the coding concept according to WD4 of the USAC
draft standard will be provided to facilitate the understanding of the advantages of the
concept described herein. In USAC WDA4, a context based arithmetic coding scheme is
used for noiseless coding of quantized spectral coefficients. As context, the decoded
spectral coefficients are used, which are previous in frequency and time. According to
WD4, a maximum number of 16 spectral coefficients are used as context, 12 of which are
previous in time. Both, spectral coefficients used for the context and to be decoded, are
grouped as 4-tuples (i.e. four spectral coefficients neighbored in frequency, see Fig. 10a).
The context is reduced and mapped on a cumulative-frequencies-table, which is then used

to decode the next 4-tuple of spectral coefficients.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
53

For the complete WD4 noiseless coding scheme, a memory demand (ROM) of 16894.5
words (67578 bytes) is required. Additionally, 666 words (2664 byte) of static ROM per
core-coder channel are required to store the states for the next frame.

The table representation of Fig. 11la describes the tables as used in the USAC WD4
arithmetic coding scheme.

A total memory demand of a complete USAC WD4 decoder is estimated to be 37000
words (148000 byte) for data ROM without a program code and 10000 to 17000 words for
the static RAM. It can clearly be seen that the noiseless coder tables consume
approximately 45% of the total data ROM demand. The largest individual table already
consumes 4096 words (16384 byte).

It has been found that both, the size of the combination of all tables and the large
individual tables exceed typical cache sizes as provided by fixed point chips for low-
budget portable devices, which is in a typical range of 8-32 kByte (e.g. ARM%e, TIC64xx,
etc). This means that the set of tables can probably not be stored in the fast data RAM,
which enables a quick random access to the data. This causes the whole decoding process

to slow down.
In the following, the proposed new scheme will briefly be described.

To overcome the problems mentioned above, an improved noiseless coding scheme is
proposed to replace the scheme as in WD4 of the USAC draft standard. As a context based
arithmetic coding scheme, it is based on the scheme of WD4 of the USAC draft standard,
but features a modified scheme for the derivation of cumulative-frequencies-tables from
the context. Further on, context derivation and symbol coding is performed on granularity
of a single spectral coefficient (opposed to 4-tuples, as in WD4 of the USAC draft
standard). In total, 7 spectral coefficients are used for the context (at least in some cases).
By reduction in mapping, one of in total 64 probability models or cumulative frequency
tables (in WD4: 32) is selected.

Fig. 10b shows a graphical representation of a context for the state calculation, as used in

the proposed scheme (wherein a context used for the zero region detection is not shown in
Fig. 10b).

In the following, a brief discussion will be provided regarding the reduction of the memory
demand, which can be achieved by using the proposed coding scheme. The proposed new

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
54

scheme exhibits a total ROM demand of 900 words (3600 Bytes) (see the table of Fig. 11b
which describes the tables as used in the proposed coding scheme).

Compared to the ROM demand of the noiseless coding scheme in WD4 of the USAC draft
standard, the ROM demand is reduced by 15994.5 words (64978 Bytes)(see also Fig. 12a,
which figure shows a graphical representation of the ROM demand of the noiseless coding
scheme as proposed and of the noiseless coding scheme in WD4 of the USAC draft
standard). This reduces the overall ROM demand of a complete USAC decoder from
approximately 37000 words to approximately 21000 words, or by more than 43% (see Fig.
12b, which shows a graphical representation of a total USAC decoder data ROM demand
in accordance with WD4 of the USAC draft standard, as well as in accordance with the
present proposal).

Further on, the amount of information needed for the context derivation in the next frame
(static RAM) is also reduced. According to WD4, the complete set of coefficients
(maximally 1152) with a resolution of typically 16-bits additional to a group index per 4-
tuple of resolution 10-bits needed to be stored, which sums up to 666 words (2664 Bytes)
per core-coder channel (complete USAC WD4 decoder: approximately 10000 to 17000
words).

The new scheme, which is used in embodiments according to the invention, reduces the
persistent information to only 2-bits per spectral coefficient, which sums up to 72 words
(288 Bytes) in total per core-coder channel. The demand on static memory can be reduced
by 594 words (2376 Bytes).

In the following, some details regarding a possible increase of coding efficiency will be
described. The coding efficiency of embodiments according to the new proposal was
compared against the reference quality bitstreams according to WD3 of the USAC draft
standard. The comparison was performed by means of a transcoder, based on a reference
software decoder. For details regarding the comparison of the noiseless coding according
to WD?3 of the USAC draft standard and the proposed coding scheme, reference is made to
Fig. 9, which shows a schematic representation of a test arrangement.

Although the memory demand is drastically reduced in embodiments according to the
invention when compared to embodiments according to WD3 or WD4 of the USAC draft
standard, the coding efficiency is not only maintained, but slightly increased. The coding
efficiency is on average increased by 1.04% to 1.39%. For details, reference is made to the
table of Fig. 13a, which shows a table representation of average bitrates produced by the

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
55

USAC coder using the working draft arithmetic coder and an audio coder (e.g., USAC
audio coder) according to an embodiment of the invention.

By measurement of the bit reservoir fill level, it was shown that the proposed noiseless
coding is able to losslessly transcode the WD3 bitstream for every operating point. For
details, reference is made to the table of Fig. 13b which shows a table representation of a
bit reservoir control for an audio coder according to the USAC WD3 and an audio coder
according to an embodiment of the present invention.

Details on average bitrates per operating mode, minimum, maximum and average bitrates
on a frame basis and a best/worst case performance on a frame basis can be found in the
tables of Figs. 14, 15, and 16, wherein the table of Fig. 14 shows a table representation of
average bitrates for an audio coder according to the USAC WD3 and for an audio coder
according to an embodiment of the present invention, wherein the table of Fig. 15 shows a
table representation of minimum, maximum, and average bitrates of a USAC audio coder
on a frame basis, and wherein the table of Fig. 16 shows a table representation of best and

worst cases on a frame basis.

In addition, it should be noted that embodiments according to the present invention provide
a good scalability. By adapting the table size, a tradeoff between memory requirements,
computational complexity and coding efficiency can be adjusted in accordance with the
requirements.

9. Bitstream Syntax

9.1. Payloads of the Spectral Noiseless Coder

In the following, some details regarding the payloads of the spectral noiseless coder will be
described. In some embodiments, there is a plurality of different coding modes, such as for
example, a so-called linear-prediction-domain, “coding mode” and a “frequency-domain”
coding mode. In the linear-prediction-domain coding mode, a noise shaping is performed
on the basis of a linear-prediction analysis of the audio signal, and a noise-shaped signal is
encoded in the frequency-domain. In the frequency-domain mode, a noise shaping is
performed on the basis of a psychoacoustic analysis and a noise-shaped version of the
audio content is encoded in the frequency-domain.

Spectral coefficients from both, a “linear-prediction domain” coded signal and a

“frequency-domain” coded signal are scalar quantized and then noiselessly coded by an

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
56

adaptively context dependent arithmetic coding. The quantized coefficients are transmitted
from the lowest-frequency to the highest-frequency. Each individual quantized coefficient
is split into the most significant 2-bits-wise plane m, and the remaining less-significant bit-
planes r. The value m is coded according to the coefficient’s neighborhood. The remaining
less-significant bit-planes r are entropy-encoded, without considering the context. The

values m and r form the symbols of the arithmetic coder.
A detailed arithmetic decoding procedure is described herein.
9.2. Syntax Elements

In the following, the bitstream syntax of a bitstream carrying the arithmetically-encoded
spectral information will be described taking reference to Figs. 6a to 6h.

Fig. 6a shows a syntax representation of so-called USAC raw data block
(“usac_raw_data_block()”).

The USAC raw data block comprises one or more single channel elements
(“single_channel element()”) and/or one or more channel pair elements
(“channel_pair_element()”).

Taking reference now to Fig. 6b, the syntax of a single channel element is described. The
single channel element comprises a linear-prediction-domain channel stream
(“Ipd_channel_stream ()”) or a frequency-domain channel stream (“fd_channel_stream ()”)
in dependence on the core mode.

Fig. 6¢c shows a syntax representation of a channel pair element. A channel pair element
comprises core mode information (“core_mode0”, “core_model”). In addition, the channel
pair element may comprise a configuration information “ics info()”. Additionally,
depending on the core mode information, the channel pair element comprises a linear-
prediction-domain channel stream or a frequency-domain channel stream associated with a
first of the channels, and the channel pair element also comprises a linear-prediction-
domain channel stream or a frequency-domain channel stream associated with a second of
the channels.

The configuration information “ics_info()”, a syntax representation of which is shown in
Fig. 6d, comprises a plurality of different configuration information items, which are not of
particular relevance for the present invention.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
57

A frequency-domain channel stream (“fd_channel_stream ()”), a syntax representation of
which is shown in Fig. 6e, comprises a gain information (“global_gain”) and a
configuration information (*ics_info ()”). In addition, the frequency-domain channel
stream comprises scale factor data (“scale_factor data ()”), which describes scale factors
used for the scaling of spectral values of different scale factor bands, and which is applied,
for example, by the scaler 150 and the rescaler 240. The frequency-domain channel stream
also comprises arithmetically-coded spectral data (“ac_spectral _data ()”), which represents
arithmetically-encoded spectral values.

The arithmetically-coded spectral data (“ac_spectral_data()”), a syntax representation of
which is shown in Fig. 6f, comprises an optional arithmetic reset flag (“arith_reset _flag”),
which is used for selectively resetting the context, as described above. In addition, the
arithmetically-coded spectral data comprise a plurality of arithmetic-data blocks
(“arith_data™), which carry the arithmetically-coded spectral values. The structure of the
arithmetically-coded data blocks depends on the number of frequency bands (represented
by the variable “num_bands”) and also on the state of the arithmetic reset flag, as will be
discussed in the following.

The structure of the arithmetically-encoded data block will be described taking reference to
Fig. 6g, which shows a syntax representation of said arithmetically-coded data blocks. The
data representation within the arithmetically-coded data block depends on the number Ig of
spectral values to be encoded, the status of the arithmetic reset flag and also on the context,

i.e. the previously-encoded spectral values.

The context for the encoding of the current set of spectral values is determined in
accordance with the context determination algorithm shown at reference numeral 660.
Details with respect to the context determination algorithm have been discussed above
taking reference to Fig. 5a. The arithmetically-encoded data block comprises lg sets of
codewords, each set of codewords representing a spectral value. A set of codewords
comprises an arithmetic codeword “acod_m [pki][m]” representing a most-significant bit-
plane value m of the spectral value using between 1 and 20 bits. In addition, the set of
codewords comprises one or more codewords “acod_rr]” if the spectral value requires
more bit planes than the most-significant bit plane for a correct representation. The

codeword “acod_r [r]* represents a less-significant bit plane using between 1 and 20 bits.

If, however, one or more less-significant bit-planes are required (in addition to the most-
significant bit plane) for a proper representation of the spectral value, this is signaled by

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
58

using one or more arithmetic escape codewords (“ARITH_ESCAPE”). Thus, it can be
generally said that for a spectral value, it is determined how many bit planes (the most-
significant bit plane and, possibly, one or more additional less-significant bit planes) are
required. If one or more less-significant bit planes are required, this is signaled by one or
more arithmetic escape codewords “acod_m [pki]J[ARITH_ESCAPE]”, which are encoded
in accordance with a currently-selected cumulative-frequencies-table, a cumulative-
frequencies-table-index of which is given by the variable pki. In addition, the context is
adapted, as can be seen at reference numerals 664, 662, if one or more arithmetic escape
codewords are included in the bitstream. Following the one or more arithmetic escape
codewords, an arithmetic codeword “acod_m [pki][m]” is included in the bitstream, as
shown at reference numeral 663, wherein pki designates the currently-valid probability
model index (taking into consideration the context adaptation caused by the inclusion of
the arithmetic escape codewords), and wherein m designates the most-significant bit-plane
value of the spectral value to be encoded or decoded.

As discussed above, the presence of any less-significant-bit planes results in the presence
of one or more codewords “acod r [r]”, each of which represents one bit of the least-
significant bit plane. The one or more codewords “acod_r[r]” are encoded in accordance
with a corresponding cumulative-frequencies-table, which is constant and context-
independent.

In addition, it should be noted that the context is updated after the encoding of each
spectral value, as shown at reference numeral 668, such that the context is typically
different for encoding of two subsequent spectral values.

Fig. 6h shows a legend of definitions and help elements defining the syntax of the
arithmetically-encoded data block.

To summarize the above, a bitstream format has been described, which may be provided
by the audio coder 100, and which may be evaluated by the audio decoder 200. The
bitstream of the arithmetically-encoded spectral values is encoded such that it fits the
decoding algorithm discussed above.

In addition, it should be generally noted that the encoding is the inverse operation of the
decoding, such that it can generally be assumed that the encoder performs a table lookup
using the above-discussed tables, which is approximately inverse to the table lookup
performed by the decoder. Generally, it can be said that a man skilled in the art who knows
the decoding algorithm and/or the desired bitstream syntax will easily be able to design an

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
59

arithmetic encoder, which provides the data defined in the bitstream syntax and required by
the arithmetic decoder.

10. Further Embodiments according to Figs. 21 and 22

In the following, some further simplified embodiments according to the invention will be
described.

Fig. 21 shows a block schematic diagram of an audio encoder 2100 according to an
embodiment of the invention. The audio encoder 2100 is configured to receive an input
audio information 2110 and to provide, on the basis thereof, an encoded audio information
2112. The audio encoder 2100 comprises an energy-compacting time-domain-to-
frequency-domain converter, which is configured to receive a time-domain representation
2122 of the input audio representation 2110, and to provide, on the basis thereof, a
frequency-domain audio representation 2124, such that the frequency-domain audio
representation comprises a set of spectral values (for example, spectral values a). The
audio signal encoder 2100 also comprises an arithmetic encoder 2130, which is configured
to encode spectral values 2124, or a preprocessed version thereof, using a variable-length
codeword. The arithmetic encoder 2130 is configured to map a spectral value, or a value of
a most-significant bit plane of a spectral value, onto a code value (for example, a code
value representing the variable-length codeword).

The arithmetic encoder comprises a mapping rule selection 2132 and a context value
determination 2136. The arithmetic encoder is configured to select a mapping rule
describing a mapping ‘of a spectral value 2124, or of a most significant bit plane of a
spectral value 2124, onto a code value (which may represent a variable-length codeword)
in dependence on a numeric current context value 2134 describing a context state. The
arithmetic decoder is configured to determine the numeric current context value 2134,
which is used for the mapping rule selection 2132, in dependence on a plurality of
previously-encoded spectral values. The arithmetic encoder, or, more precisely, the
mapping rule selection 2132, is configured to evaluate at least one table using an iterative
interval size reduction, to determine whether the numeric current context value 2134 is
identical to a table context value described by an entry of the table or lies within an interval
described by entries of the table, in order to derive a mapping rule index value 2133
describing a selected mapping rule. Accordingly, the mapping 2131 can be selected with
high computational efficiency in dependence on the numeric current context value 2134.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
60

Fig. 22 shows a block schematic diagram of an audio signal decoder 2200 according to
another embodiment of the invention. The audio signal decoder 2200 is configured to
receive an encoded audio information 2210 and to provide, on the basis thereof, a decoded
audio information 2212. The audio signal decoder 2200 comprises an arithmetic decoder
2220, which is configured to receive an arithmetically encoded representation 2222 of the
spectral values and to provide, on the basis thereof, a plurality of decoded spectral values
2224 (for example, decoded spectral values a). The audio signal decoder 2200 also
comprises a frequency-domain-to-time-domain converter 2230, which is configured to
receive the decoded spectral values 2224 and to provide a time-domain audio
representation using the decoded spectral values, in order to obtain the decoded audio
information 2212.

The arithmetic decoder 2220 comprises a mapping 2225, which is used to map a code
value (for example, a code value extracted from a bitstream representing the encoded audio
information) onto a symbol code (which symbol code may describe, for example, a
decoded spectral value or a most significant bit plane of the decoded spectral value). The
arithmetic decoder further comprises a mapping rule selection 2226, which provides a
mapping rule selection information 2227 to the mapping 2225. The arithmetic decoder
2220 also comprises a context value determination 2228, which provides a numeric current
context value 2229 to the mapping rule selection 2226.

The arithmetic decoder 2220 is configured to select a mapping rule describing a mapping
of a code value (for example, a code value extracted from a bitstream representing the
encoded audio information) onto a symbol code (for example, a numeric value
representing the decoded spectral value or a numeric value representing a most significant
bit plane of the decoded spectral value) in dependence on a context state. The arithmetic
decoder is configured to determine a numeric current context value describing the current
context state in dependénce on a plurality of previously decoded spectral values. Moreover,
the arithmetic decoder (or, more precisely, the mapping rule selection 2226) is configured
to evaluate at least one table using an iterative interval size reduction, to determine whether
the numeric current context value 2229 is identical to a table context value described by an
entry of the table or lies within an interval described by entries of the table, in order to
derive a mapping rule index value 2227 describing a selected mapping rule. Accordingly,
the mapping rule applied in the mapping 2225 can be selected in a computationally
efficient manner.

11. Implementation Alternatives

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
61

Although some aspects have been described in the context of an apparatus, it is clear that
these aspects also represent a description of the corresponding method, where a block or
device corresponds to a method step or a feature of a method step. Analogously, aspects
described in the context of a method step also represent a description of a corresponding
block or item or feature of a corresponding apparatus. Some or all of the method steps may
be executed by (or using) a hardware apparatus, like for example, a microprocessor, a
programmable computer or an electronic circuit. In some embodiments, some one or more
of the most important method steps may be executed by such an apparatus.

The inventive encoded audio signal can be stored on a digital storage medium or can be
transmitted on a transmission medium such as a wireless transmission medium or a wired

transmission medium such as the Internet.

Depending on certain implementation requirements, embodiments of the invention can be
implemented in hardware or in software. The implementation can be performed using a
digital storage medium, for example a floppy disk, a DVD, a Blue-Ray, a CD, a ROM, a
PROM, an EPROM, an EEPROM or a FLASH memory, having electronically readable
control signals stored thereon, which cooperate (or are capable of cooperating) with a
programmable computer system such that the respective method is performed. Therefore,
the digital storage medium may be computer readable.

Some embodiments according to the invention comprise a data carrier having
electronically readable control signals, which are capable of cooperating with a
programmable computer system, such that one of the methods described herein is
performed.

Generally, embodiments of the present invention can be implemented as a computer
program product with a program code, the program code being operative for performing
one of the methods when the computer program product runs on a computer. The program

code may for example be stored on a machine readable carrier.

Other embodiments comprise the computer program for performing one of the methods
described herein, stored on a machine readable carrier.

In other words, an embodiment of the inventive method is, therefore, a computer program
having a program code for performing one of the methods described herein, when the
computer program runs on a computer.

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727
62

A further embodiment of the inventive methods is, therefore, a data carrier (or a digital
storage medium, or a computer-readable medium) comprising, recorded thereon, the

computer program for performing one of the methods described herein.

A further embodiment of the inventive method is, therefore, a data stream or a sequence of
signals representing the computer program for performing one of the methods described
herein. The data stream or the sequence of signals may for example be configured to be

transferred via a data communication connection, for example via the Internet.

A further embodiment comprises a processing means, for example a computer, or a
programmable logic device, configured to or adapted to perform one of the methods
described herein.

A further embodiment comprises a computer having installed thereon the computer
program for performing one of the methods described herein.

In some embodiments, a programmable logic device (for example a field programmable
gate array) may be used to perform some or all of the functionalities of the methods
described herein. In some embodiments, a field programmable gate array may cooperate
with a microprocessor in order to perform one of the methods described herein. Generally,
the methods are preferably performed by any hardware apparatus.

The above described embodiments are merely illustrative for the principles of the present
invention. It is understood that modifications and variations of the arrangements and the
details described herein will be apparent to others skilled in the art. It is the intent,
therefore, to be limited only by the scope of the impending patent claims and not by the
specific details presented by way of description and explanation of the embodiments
herein.

While the foregoing has been particularly shown and described with reference to particular
embodiments above, it will be understood by those skilled in the art that various other
changes in the forms and details may be made without departing from the sprit and cope
thereof. It is to be understood that various changes may be made in adapting to different
embodiments without departing from the broader concept disclosed herein and
comprehended by the claims that follow.

12. Conclusion

10

15

20

25

WO 2011/048100 PCT/EP2010/065727
63

To conclude, it can be noted that embodiments according to the invention create an
improved spectral noiseless coding scheme. Embodiments according to the new proposal
allows for the significant reduction of the memory demand from 16894.5 words to 900
words (ROM) and from 666 words to 72 (static RAM per core-coder channel). This allows
for the reduction of the data ROM demand of the complete system by approximately 43%
in one embodiment. Simultaneously, the coding performance is not only fully maintained,
but on average even increased. A lossless transcoding of WD3 (or of a bitstream provided
in accordance with WD3 of the USAC draft standard) was proven to be possible.
Accordingly, an embodiment according to the invention is obtained by adopting the
noiseless decoding described herein into the upcoming working draft of the USAC draft
standard.

To summarize, in an embodiment the proposed new noiseless coding may engender the
modifications in the MPEG USAC working draft with respect to the syntax of the
bitstream element “arith_data()” as shown in Fig. 6g, with respect to the payloads of the
spectral noiseless coder as described above and as shown in Fig. 5h, with respect to the
spectral noiseless coding, as described above, with respect to the context for the state
calculation as shown in Fig. 4, with respect to the definitions as shown in Fig. 5i, with
respect to the decoding process as described above with reference to Figs. Sa, 5b, 5¢, Se,
5g, 5h, and with respect to the tables as shown in Figs. 17, 18, 20, and with respect to the
function “get pk” as shown in Fig. 5d. Alternatively, however, the table “ari_s_hash”
according to Fig. 20 may be used instead of the table “ari_s_hash” of Fig. 17, and the
function “get_pk” of Fig. 5f may be used instead of the function “get_pk” according to Fig.
5d. '

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727

64
Claims

An audio decoder (200; 800;2200) for providing a decoded audio information (212;
812) on the basis of an encoded audio information (210; 810), the audio decoder
comprising:

an arithmetic decoder (230; 820; 2220) for providing a plurality of decoded spectral
values (232; 822; 2224) on the basis of an arithmetically-encoded representation
(222; 821; 2222) of the spectral values; and

a frequency-domain-to-time-domain converter (260; 830; 2230) for providing a
time-domain audio representation (262; 812; 2212) using the decoded spectral
values (232; 822; 2224), in order to obtain the decoded audio information (212;
812; 2212);

wherein the arithmetic decoder (230; 820; 2220) is configured to select a mapping
rule (297; cum_freq[]) describing a mapping of a code value (value) onto a symbol
code (symbol) in dependence on a numeric current context value (s) describing a
current context state,

wherein the arithmetic decoder is configured to determine the numeric current
context value (s) in dependence on a plurality of previously decoded spectral values

(@),

wherein the arithmetic decoder is configured to evaluate at least one table
(ari_s_hash[387];ari_gs hash[225]) using an iterative interval size reduction (542;
546), to determine whether the numeric current context value (s) is identical to a
table context value described by an entry (j, ari_s_hash[i], ari_gs hash[i]) of the
table or lies within an interval described by entries of the table, and to derive a
mapping rule index value (pki) describing a selected mapping rule
(arith_cf m[pki][9]).

Audio decoder (200; 800) according to claim 1, wherein the arithmetic decoder
(230; 820) is configured

to initialize a lower interval boundary variable (i_min) to designate a lower
boundary of an initial table interval,

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727

65

to initialize an upper interval boundary variable (i_max) to designate an upper

boundary of the initial table interval,

to evaluate a table entry (ari_s_hash][i], ari_gs hash][i]), a table index (i) of which is
arranged at a center of the initial table interval, to compare the numeric current
context value (s) with a table context value (j >> 8) represented by the evaluated
table entry (ari_s_hash[i], ari_gs_hash[i]),

to adapt the lower interval boundary variable (i_min) or the upper interval boundary
variable (i_max) in dependence on a result of the comparison, to obtain an updated
table interval, and

to repeat the evaluation of a table entry and the adaptation of the lower interval
boundary variable or of the upper interval boundary variable on the basis of one or
more updated table intervals, until a table context value is equal to the numeric
current context value (s) or a size of the table interval defined by the updated
interval boundary variables (i_min, i_max) reaches or falls below a threshold table

interval size.

The audio decoder (200; 800) according to claim 2, wherein the arithmetic decoder
(230; 820) is configured to provide a mapping rule index value (pki) described by a
given entry (ari_s_hash][i], ari_gs hash][i]) of the table in response to a finding that
said given entry of the table (ari s hash, ari gs hash) represents a table context
value (j >> 8) which is equal to the numeric current context value (s).

The audio decoder (200; 800) according to one of claims 1 to 3, wherein the
arithmetic decoder (230; 820) is configured to perform the following algorithm:

a) set lower interval boundary variable i_min to —1;

b) set upper interval boundary variable i_max to a number of table entries minus 1;
c) check whether a difference between i_max and i_min is larger than 1 and repeat
the following steps until this condition is no longer fulfilled or an abort condition is

reached:

cl) set variable i to i min + ((i_max —i_min)/2),

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727

66

c2) set upper interval boundary variable i_max to i if a table context value
described by a table entry having table index i is larger than the numeric
current context value, and set lower interval boundary variable i_min to
i if a table context value described by a table entry having table index i
is smaller than the numeric current context value; and

c3) abort repetition of (c¢) if a table context value described by a table entry
having table index i is equal to the numeric current context value,
returning as a result of the algorithm a mapping rule index value (pki)
described by the table entry having table index i.

The audio decoder (200;800) according to one of claims 1 to 4, wherein the
arithmetic decoder is configured to obtain the numeric current context value (s) on
the basis of a weighted combination of magnitude values (c0, c1, c2, c3, c4, c5, c6)
describing magnitudes of previously decoded spectral values (a).

The audio decoder (200; 800) according to one of claims 1 to 5, wherein the table
(ari_s_hash, ari gs hash) comprises a plurality of entries,

wherein each of the plurality of entries describes a table context value (j >> 8) and

an associated mapping rule index value (j& OxFF, pki), and

wherein the entries of the table are numerically ordered in accordance with the table
context values.

The audio decoder (200;800) according to one of claims 1 to 5, wherein the table
comprises a plurality of entries,

wherein each of the plurality of entries describes a table context value defining a
boundary value of a context value interval, and a mapping rule index value (pki)
associated with the context value interval.

The audio decoder (200; 800) according to one claims 1 to 7, wherein the
arithmetic decoder (230; 820) is configured to perform a two-step selection of a
mapping rule in dependence on the numeric current context value (s);

wherein the arithmetic decoder is configured to check, in a first selection step
(540), whether the numeric current context value (s) or a value derived therefrom is

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727

10.

11.

67

equal to a significant state value (j >> 8) described by an entry (j, ari_s_hash[i]) of
a direct-hit table (ari_s_hash); and

wherein the arithmetic decoder is configured to determine, in a second selection
step (544), which is only executed if the numeric current context value (s) or the
value derived therefrom, is different from the significant state values described by
the entries of the direct-hit table (ari_s_hash), in which interval, out of a plurality of
intervals, the numeric current context value (s) lies; and

wherein the arithmetic decoder is configured to evaluate the direct-hit table
(ari_s_hash) using the iterative interval size reduction (542), to determine whether
the numeric current context value (s) is identical to a table context value (j >> 8)
described by an entry (ari_s_hash[i]) of the direct-hit table (ari_s_hash).

The audio decoder (200; 800) according to claim 8, wherein the arithmetic decoder
is configured to evaluate, in the second selection step (544), an interval mapping
table (ari_gs hash), entries of which describe boundary values of context value
intervals, using an iterative interval size reduction (546).

The audio decoder according to claim 9, wherein the arithmetic decoder (230; 820)
is configured to iteratively reduce a size of a table interval in dependence on a
comparison between interval boundary context values (j >> 8) represented by
entries (ari_gs hash[i]) and the numeric current context value (s), until a size of the
table interval reaches or decreases below a predetermined threshold table interval
size or the interval boundary context value described by a table entry (j,
ari_gs hash[i]) at a center of the table interval is equal to the numeric current

context value (s); and

wherein the arithmetic decoder is configured to provide the mapping rule index
value (pki) in dependence on a setting of an interval boundary of the table interval
when the iterative reduction of the size of the table interval is aborted.

An audio encoder (100; 700; 2100) for providing an encoded audio information
(112;712; 2112) on the basis of an input audio information (110;710;2110), the
audio encoder comprising:

an energy-compacting time-domain-to-frequency-domain converter (130;720;2120)

for providing a frequency-domain audio representation on the basis of a time-

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727

12.

68

domain representation of the input audio information, such that the frequency-
domain audio representation (132;722;2124) comprises a set of spectral values; and

an arithmetic encoder (170;730;2130) configured to encode a spectral value (a) or a

preprocessed version thereof, using a variable length codeword (acod_m, acod_r),

wherein the arithmetic encoder (170) is configured to map a spectral value (a), or a
value (m) of a most-significant bitplane of a spectral value (a), onto a code value
(acod_m),

wherein the arithmetic encoder is configured to select a mapping rule describing a
mapping of a spectral value, or of a most-significant bitplane of a spectral value,
onto a code value in dependence on a numeric current context value (s) describing a
current context state; and

wherein the arithmetic encoder is configured to determine the numeric current
context value (s) in dependence on a plurality of previously encoded spectral

values;

wherein the arithmetic encoder is configured to evaluate at least one table
(ari_s hash, ari gs hash) using an iterative interval size reduction, to determine
whether the numeric current context value (s) is identical to a context value
described by an entry (ari_s_hash[i], ari_gs hash[i]) of the table or lies within an
interval described by entries of the table, and to derive a mapping rule index value
(pki) describing a selected mapping rule.

A method for providing a decoded audio information on the basis of an encoded
audio information, the method comprising:

providing a plurality of decoded spectral values on the basis of an arithmetically-
encoded representation of the spectral values; and

providing a time-domain audio representation using the decoded spectral values, in

order to obtain the decoded audio information;

wherein providing the plurality of decoded spectral values comprises selecting a
mapping rule describing a mapping of a code value (acod_m; value), representing a
spectral value (a) or a most-significant bitplane (m) of a spectral value in an

10

15

20

25

30

35

WO 2011/048100 PCT/EP2010/065727

13.

69

encoded form, onto a symbol code (symbol), representing a spectral value (a) or a
most-significant bitplane (m) of a spectral value in a decoded form, in dependence

on a numeric current context value (s) describing a current context state; and

wherein the numeric current context value is determined in dependence on a

plurality of previously decoded spectral values;

wherein at least one table is evaluated using an iterative interval size reduction, to
determine whether the numeric current context value is identical to a table context
value described by an entry of the table or lies within an interval described by
entries of the table, and to derive a mapping rule index value describing a selected
mapping rule.

A method for providing an encoded audio information on the basis of an input

audio information, the method comprising:

providing a frequency-domain audio representation on the basis of a time-domain
representation of the input audio information using an energy-compacting time-
domain-to-frequency-domain conversion, such that the frequency-domain audio

representation comprises a set of spectral values; and

arithmetically encoding a spectral value, or a preprocessed version thereof, using a
variable-length codeword, wherein a spectral value or a value of a most-significant

bitplane of a spectral value is mapped onto a code value;

wherein a mapping rule describing a mapping of a spectral value, or of a most-
significant bitplane of a spectral value, onto a code value is selected in dependence

on a numeric current context value describing a current context state;

wherein the numeric current context value is determine in dependence on a plurality
of previously decoded spectral values; and

wherein at least one table is evaluated using an iterative interval size reduction to
determine whether the numeric current context value is identical to a table context
value described by entry of the table or lies within an interval described by entries
of the table, and to determine a mapping rule index value describing a selected
mapping rule.

WO 2011/048100 PCT/EP2010/065727
70

14. A computer program for performing the method according to claim 12 or claim 13,
when the computer program runes on a computer.

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727
1/43
100\'
energy-compacting
| | 1103 time-domainto |132 optional.
input audio frequency-domain | frequence- ral nost-
pre- n n audio processing
! | ("converter”) = | (e.g.temporal |
! processing| ! representation| * > .
| | for example, > noise shaping,
2101 | windowing (6.9. SetS Of | jong term
! 4 ! MDCT spectral values) orediction,
: | transﬁormer 1 40—)
1 1 A
I | l
! 1130 130a | RS GE——
1 I oo
| | !
! iing . |
| . optional: |
e R optional; control !
psychoacoustic nformati n:
model processor - - *
/ |
160 |
|
|
|
|
|
|
|
|
|
|
190 :
|
\ v
optional: bitstream payload formatter
112 bitstream
FIG 1 (encoded audio information)
FIG | FIG FIG 1A
1A |18 AUDIO ENCODER

WO 2011/048100 PCT/EP2010/065727

2/43
arithmetic encoder
142 152
; optional:|) 174 182
| scaler/ ! / /
uantizer _sianifi
q mostt) itspi)gl;;rzgcant state
RN extractor tracker
: 150 most-significant state
1189 bitplane of information
l
i 4 176 __|spectral valuea g, |
I less-significant
bitplane ¥
% extractor
189¢ 180 Selected 186
£/\1 83 S/ cumulative 188 /
- frequencies ——
codeword first table cumulative
determinator codeword Wd ex kD) frequencies
determinator table selector
ZE10, One or arithmetic codeword
more codewords | acod m of spectral
1890 acod_r of zero, value a
one or more (and, optionally, one
T!gss—significant 7 or more escape
bitplanes codewords)
1723 |
172b—yacod_r acod_m 190\

optional: bitstream payload formatter |~ 170

FIG 1
FIG 1B FIG|FIG
AUDIO ENCODER 1A 1B

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100

PCT/EP2010/065727

3/43
230 arithmetic decode values of a most-
ancoded \ decoder g, tsu;;lmﬂfcant b;tpllan? of
frequency- 222 uple of spectral values
domain audio most 286
representaiion significant >
e.q. arithmetically- Tacod_m bitplane npmper of le.ss—
coded spectral data determinator] [Significant bit-
acod_m i planes information
% d optional:
210 £ (acoo_r acod 1| Jess-
. S |(arithmetically- | =2 . ooy <
bit-} 3 encoded Significan decoded values
stream| £ B |representation of / bitplane of ong or more
encoded| = = rgg./ |determinator] 2901 fess-significant
'S =|spectral values) bitplanes of a
audio) g 297\ tuple of spectral
I?for— S cumulative values
mation) = 220 frequencies cumulative
/ 296 fable frequencies
selector fable
optional: 298——state index
state
_repr_es_egteitxgn_ doo— state |,]
tracker
24 299,///
FIG 2
FIG |FIG FIG 2A
oA | 2B AUDIO DECODER

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

4/43
200
S
inversely quantized and
decoded| rescaled frequency domain
spectral audio representation /260
252
values| 232 frequency-domain
o optional: |\ | optional: to time-domain 270
] (t))[i)tn(l)gr?els' % inverse {)| spectral signal transformer| 0% !
Ba Corr?biner | quantized pre- (signal converter)| /1 optional:
| rescaler |/ [processor . time
| AN for example, M| domain [
292 ||\ 240 242 20 inverse modified nost-
| {decoded descrete cosine || | |processing
é ! frequency-domain transform and
i |audio representation windowing || time-domain
! representation|
| - of encoded
| audio
, information |
|
| .
! decoded audio
| information |
u /
|
: 2127«
_________ I '

FIG 2
FIG 2B FIG|FIG
AUDIO DECODER oA | 2B

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

5/43

value_decode ()

{

310 —— arith_map_context(lg);

for (i=0; i<lIg; i++) 4
s = arith_get_context (ilg,arith_reset_flag,N/2);
3123{ levQ = lev = s>>24:
t =5 & OxFFFFFF + 1
for (j=0;:) {
[pki = arith_get_pk(t-((lev-lev0) < <24))
cum_freq = table_start_position (pki);
~cfl = table_length (pki); |
< m = arith_decode(); use between 1 and 20 bits
of bits acod_m

312b ,
if (m!= ARITH ESCAPE)

break;
k lev += 1,
}

L a-m

[for (I=lev; I>0; 1--) {
cum_freq = arith_cf r;
cfl = 2;
312C< r = arith_decode; use between 1 and 20 bits
of bits acod r

312

k a=a<<l+r;

}

34— Arith_update_context(a,i,g);

FIG 3

SUBSTITUTE SHEET (RULE 26)

PCT/EP2010/065727

WO 2011/048100

6/43

NOILYINI VI 3LV1S 3HL 404 LX3INOJ

3p0J3P 0} JUaIDIY307 jeljoads:

JX8JLI0D 3U) JO} P3IAPISUOD
Pap0ooap Apealje Sjualoljeod

Pap0Iap 134 10U SJUBIDILA0D

Xa)u09 AUy} 10} paIapISU0I
J0U P3po9ap SIU3IILA09

Ol

(T
~— (Y

¢+

v
Aouanbal)

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

7/43

/*Input variables*/
lg /*number of sepctral coefficients to decode in the frame™/
previous_Ig /Previous number of spectral lines of the previous frame™/

arith_map_context()

{
v=w=0
ratio= ((float)previous_Ig)/((float)!g);
for(j=0; j<lg; j+ +){
k = (int) ((float)) ((j)*ratio);
q[0][v+ +].c = qs[w+k];
} |
previous lg=Ig;
}

FIG SA

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727
8/43

/*Input variables*/
FI G 5 B i /*Index of the spectral value to decode in the vector™/

Ig /*Number of expected quantized coefficients*/

N /*Number of lines of the transformation™/

ari_reset_flag /*flag indicating whether the context should be reset™/
/*Qutput value™/

t /*Concatenated state index s and predicted bit-plane level lev0*/

arith_get_context()

{

int a0,¢0,¢1,¢2,¢3,c4,c5,c6,lev0,region;

if(arith_reset_flag && i==0)
510 - return(0);
if(("arith_reset_flag) && (i'=0)){
int k;
int lim_min,lim_max;
512a— intflag=1;
lim_max = i+6;
if((i+1im_max)>1g-1)
lim_max=Ig-1-i;
o12b lim_min = -5;
if((i+lim_min)<0)
512 lim_min=-i;
for(k=lim_mink<Q;k++)
if(q[0] [k].c!=0 && q[1][k].c!=0)
flag=0; break;
212 for(k< =lim_maxk++)
if(q[0] [k].c!=0)

flag=0; break;
if(flag)
S12d { return(1);
}

[if(i>0){

a0=q[1][i-1];
51 4a{ c0=ABS(a0);
[

lev0=0;
while((a0<-4)| | (a0>=4)){
a0>>=1;

514b lev0+ +;

c0=4+1ev0;

}

if(c0>7)
c0=71;

if(lev0>3)
lev0=3;

514

if(arith_reset_flag && i==1)
1 4d{ return((2+¢0) | (lev0 < <24));
514e—— c4=q[0}[i-1).c;
} <CONTINUED IN FIG 5C>

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

9/43
< CONTINUATION FROM FIG 5B>

if(i>1){
c1=q[1][i-2].c;
516 levO=MAX(q[1][i-2].1lev0);
¢6=q[0][i-2].c;
¥
if(i > 2){
518—— lev0=MAX(q[1][i-3].1,lev0);
if(i<N/4)
~ region=0;
else if(i<N /2)
520 region=1;
else
region=2;
}
if(i>3)
522{ lev0=MAX(q[1][i-4].1,lev0);
if(lev0>3)
524{ lev0=3;
if(arith_reset_flag)
526{ return((10+4*(8*c0+c1)+region) | (levl< <24)),
528——— c2=a0llil
if(i<lg-1) .
5301 e‘sec,3=q[O][|+1].c,
\ ¢3=0;
(if(i <1g-2)
532 c5=q[0][i+2].c;
1 else
co=0;
if(lev0==0)
534 if((c2==3] ¢3 ==3) &&i==0)
lev0=1;
if(i==0)
5369 —> return((249+4*(4*c2+¢3)+cd) | (lev0< <24));
else if(i==1)
5364 5360 ——> retumn((313+4* (4 (4*(8*c0+c2) +¢3) +c4)+5) | (lev0< <24));
glse
536¢——> return((4212+4" (4™ (4" (4" (4™ (47 (8" c0+c2) +c3) +c4) +c1)+cd) +c6) +region)
| (lev0 < <24)),

}

FIG 5C

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

540

541

5424

10/43

unsigned long get_pk(unsigned long s)
{

register unsigned long j;

register long i,i_min,i_max;

ari_get pk call_total++; ------------- optional

I min=-1;
i=i_min;
(_max=2386;
- while((i_max-i_min)>1){
542a— i=i_min+((i_max-i_min)/2);
542h— j=ari_s_hashli]; ‘
ari_get_pk_inc++; ------------- optional
if(s<(j>>8))
|_max=i;
else if(s>(j> >8))
I_min=i,
else

if(i_max==i){

\ return(j&OxFF);
}

543

A

j=ari_s_hash[i_min];
ari_get_pk_inc++; --mmmmmmmoee- optional
if(s==(j>>8))
return(j&OxFF);
¥
else{
j=ari_s_hash[i_max];
ari_get_pk_inc++; ---eoo-oooo- optional

if(s==(>>8))
k return(j&0xFF);
}

/

FIG 5D1 FIG 5D1
FIG 5D2

FIG
5D

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

11/43

i min=-1;
545 i=i_min;
|_max=224,

while((i_max-i_min)>1){
5463— i=i_min+({i_max-i_min)/2),
__» |=ari_gs_hash([i];
54bb ari_get_pk_inc++;
if(s<(j>>8))
546¢c—" i max=i;
glse if(s>(j> >8))
544{546{ 546d— i min=i;
else{
i_max=i+1;
if(i_max>224)
i max=224,
break;
}

}.
j=ari_gs_hash[i_max]; _

547 ari_get pk_inc++; Tttt optional
return(j&OxFF);

}

const unsigned short ari_pk_2[2] ={(1< <stat_bits)/2, 0};

FIG 5D2 FIG 3D1| FIG
FIG 5D2| 2D

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

12/43

/*Input variable*/

s /*State of the context*/

/*Output value™/

pki /*Index of the probability model */

arith_get_pk(s)

{
register unsigned long i,j;
for (i=0;i<387;i++)
{
550 j=ari_s_hash[i];

it ((j>>8)==5)return j&259;

}
> for (i=0;i<225;i+ +)
{
56054 j=ari_gs_hash[i];
if (s<(j>=>8)) return j&255;

L}
return j&255;

}

FIG S5E

unsigned long get pk(unsigned long s)

{
register unsigned longlong j;
register unsigned long i;

for (i=0:1<387;i+ +)
{
j=ari_s_hash(i];
if ((j>>8)==53)
return j&OXFF;

t

for(i=0:i<225:i+ +)}{
j=ari_gs_hashi];
it { s<{j>=>8)) return j&OxFF;

}
return(j&OxFF);

FIG 5F

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100

570a< {

PCT/EP2010/065727

13/43

/*helper funtions*/
bool arith_first_symbol{void);

/* Return TRUE if it is the first symbol of the sequence, FALSE otherwise™/
Ushort arith_get_next_bit(void);

/* Get the next bit of the bitstream™/

/* global variables */
low

high

value

/* Input variables */
cum_freq(]; /* cumulative frequencies table™/
cfl; /* length of cum_freq[] */

arith_decode)

if(arith_first_symbol())
{
value = 0;
for (i=1;i<=20;i++)

value = (val< <1) | arith_get_next_bit(),

}

low=0;

k . high=1048575;
}

range = high-low+1;

570b{ cum =((((int64) (value-low+1))< <16)-((int64) 1))/((int64) range);

570¢

p = cum_freq-1,

do

{
q=p-+(cfl>>1);
if(*q>cum) {p=q; cll++;}
cfl>>=1:

while (¢fl>1 A/\

FIG 5G1 FIG 5G1
FIG 5G2

FIG
5@

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

14/43

570d— symbol = p-cum_freq+1,
if(symbol)
570e high=low+ ({(int64) range)* ((int64)cum_freg[symbol-1]))>>16-1;

low += (((int64) range)* ((int64) cum_freq{symbol}))>>16;

for (;:)

{

it (high<524286) { }
/ else if (low>=524286)
{
value -=524286;
low -=524286;
high -=524286;

else if (low>=262143 && high<786429)

570fa< }
570 {

value -= 262143;
low -= 262143;

k high -= 262143;
}

glse break:

low-+: low;
570fb{ high += high+1;
value = (value< <1) | arith_get_next_bit();

}

refurn symbol;

}

FIG 5G2 FIG 5G1| Fig
FIG 5G2| 9G

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

15/43

/*input variables™/

a /*Decoded quantized spectral coefficient */

i /*Index of the quantized spectral coefficient to decode™/
lg /*number of coefficients in the frame*/

arith_update_context()
{ inta0;

580—— al1][i]=a0=a;
q[1][i].1=0;
while(ABS(a0) > 4){

582 a0=a0>>1;
Q1)1+ +;
}

ifa==0)
a[1][i].c=0;
else if(ABS(a) < =1)
q(1]fi).c=1; °
584< else if(ABS(a) < =3)
a1]lil.c=2;
else

\ qille=3

(if(i==1g && core_mode==1){
ratio= ((float) Ig)/((float)1024):
for(j=0; j<1024; j+ +){
k = (int) ((float) j*ratio);
5861 osl) = alTl[o
) _

previous_Ig = 1024;

\)
if(i==1g/4 && core_mode==0){
for(j=0; j<MIN(Ig,1024; j+ +){
i1 = ql1]lj].c;
588 , as[i] = ql1]{il.c
previous_Ig = MIN(1024,1g);

}
}

FIG 5H

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100

Definitions

d

m

lev

lev0

arith_s_hash(]
arith_gs_hashi}

arith_cf_m[pki] [9]

arith_cf r]

previous _Ig

arith_reset_flag

PCT/EP2010/065727

16/43

The quantized coefficient to decode

The most significant 2-bits wise plane of the quantized
spectral coefficient to decode.

The most significant 2-bits wise plane of the quantized
spectral coefficient to decode.

Level of the remaining bit-planes. it corresponds to
number the bit planes less significant than the most
significant 2 bits-wise plane.

Predicted bit-plane level

Hash table mapping states of the context to a cumulative
frequencies table index pki.

Hash table mapping group of states of context to a
cumulative frequencies table index pki.

Models of the cumulative frequencies for the most
significant 2-bits wise plane m and the ARITH_ESCAPE
symbol.

Cumulative frequencies for the least significant bit-planes
symbol r

number of transmitted spectral coefficients previously
decoded by the arithmetic decoder

Window length. For AAC it is deduced from the

window_sequence (see section 6.8.3.1) and for TCX N=2.1g.

The current context for the spectral coefficient to decode.

The past context stored for the next frame.

Flag which indicates if the spectral noiseless context must be reset.

FIG ol

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

17/43

usac_raw_data_block ()

{

single_channel element (); and/ar
channel _pair_element ();

}

FIG B6A

Syntax of single_channel_element()

Syntax No. of bits ~ Mnemonic
single_channel_element()
{
core_mode 1 uimsbf
if (core_mode == 1) {
Ind_channel_stream();
}
else {
fd channel_stream();
}
}
FIG 6B

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

18/43

Syntax of channel _pair_element()

Syntax No. of bits ~ Mnemonic

{

channel_pair_element()

core_mode0 1 uimsbf
core_mode1 1 uimsbf

ics_info(); optional: common ics _info for
two channels

if (core_mode0 == 1) {
Ipd_channel_stream();
.
else {
fd_channel stream();

}

if (core_model == 1) {
Ipd_channel_stream();
¥
else {
fd_channel stream();

FIG 6C

SUBSTITUTE SHEET (RULE 26)

PCT/EP2010/065727

WO 2011/048100

19/43

mco:QoA

a9 vl

{
B {
jqswin 9 ‘qQjs xew
JENE!

{
jqswin . ‘Buidnoub 10101} 9jeOS
gswin v ‘qQjs xew

Ho=i yibua| wiojsuen g 0=j uibua| mopuim) ji
jgswin 1 ‘adeys mopuim

{

‘0=bug| wiojsuel)
JNE!
{
jgswin L ‘y1bua| wiojsuesy
} (0=i Wibus|_mopuim)yl
jqswin | ‘pbusl mopuim w,
(Jojur S0
oriowsuly SNQ o “oN XeJUAS

(Joyui s9i Jo xeWAg

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

20/43

Syntax of fd_channel_stream()

Syntax No. of bits ~ Mnemonic
fd_channel stream()
{

global_gain; 8 uimsbf

ics_info(); (unless included in

channel pair element)

scale_factor data ();

ac_spectral_data ();
}

FIG 6E
Syntax of ac_spectral_data()

Syntax No. of bits ~ Mnemonic
ac_spectral_data()
{ .

arith_reset_flag 1 uimsbf

for (win=0; win<num_windows; win+ +){
arith - data(num_bands, arith_reset_flag)
}
h

FIG 6F

SUBSTITUTE SHEET (RULE 26)

PCT/EP2010/065727

WO 2011/048100

21/43

19I31A

1GI0IA

{
‘(Br1I'e)xau09 ayepdn Yy ———1
{
J+|>>e=¢
0z1L [1]4 pooe
}(--10<] hef=1) 1o}
‘W=ep

=4 A9
_ o eaq 799
(3dV0S3 HLHY =jw))
021 (w)[md)w pooe ——
((yg>>(0na)-na)))+1)4d 186 e = md ——
} (=) oy
o+ 44444K0 8 s =)
”vNA <S = Ag| = (A9]
{(z/N'Bej) 18sas yue'B)'1) 1xajuoo 186 yie = S
} (4 +1:B1>10=1) 10}

{(B)1x81u0d dew yjie ~——

}
(Beyy 10sa1 yjie ‘Bj)eiep uily

—899

€99
99

099

DILOWAUN

S1ig JO ON XRJUAS

(Jerep yiue jo xejuAg

99 Il3

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100

Definitions
arith_data()

arith_reset_flag

acod _cf_m[pki][a]

arith_cf_r(]

Help elements
a

m

pki

arith_get_pk ()

{

arith_get_context ()
lev0

S

lev

ARITH_ESCAPE

PCT/EP2010/065727

22/43

Data element to decode the spectral noiseless coder data

Flag which indicates if the spectral noiseless context must be
reset.

Arithmetic codeword necessary for arithmetic decoding of the
most significant 2-bits wise plane a of the quantized spectral
coefficient.

Arithmetic codeword necessary for arithmetic decoding of the
residual bit-planes of the quantized spectral coefficient.

The spectral quantized coefficient to decode

The mast significant 2-bits wise plane of the quantized spectral
coefficient to decode.

The most significant 2-bits wise plane of the quantized spectral
coefficient to decode.

Window length. For AAC it is deduced from the
window_sequence (see section 6.8.3.1) and for TCXN=2.1g.

Number of quantized coefficients to decode.
Index of the quantized coefficients to decode within the frame.

Index of the cumulative frequencies table used by the arithmetic
decoder for decoding a.

Function that returns the index pki of cumulative frequencies table
necessary to decode the codeword acod _ng[pki][a].

State of context

Function that returns the state of the context.

Predicted bit-plane level

State of the context combined with predicted bit-plane level levO.

Level of bit-planes to decode beyond the most significant 2-bits
wise plane.

Escape symbol that indicates additional bit-planes to decode
beyond the predicted bit-plane level lev0.

FIG 6H

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100

PCT/EP2010/065727

23/43
700\ 0 input
audio information
time-domain-to-frequency-domain
720— converter
frequency domain audio
799 representation
"1 (set of spectral values)
arithmetic
encoder ¢
747 750

| | state
* tracker

spectral value encoding ol
740 (mapping of a spectral dgtect%r

~—"1 value or of most-
significant bitplane of
752
spectral value onto e
de val 754
code value) 760\/ context
state
N v

mapping

rule
selector

/ encoded audio

730

12— intormation

v

FIG 7

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727
24/43
800
encoded audio ./
810~—Tinformation |
821 '
arithmetic _ _ mapping rule
decoder arithmetically- information 828 :
encoded /
representation of
spectral values mapping rule
selector
+ 'f82§36a Tcurrent context
spectral value —state
determinator state
824~—""1 (mapping of code tracker
value onto symbol group
code in detector
dependence on
context state
326
¢
decoded spectral
890 822——values
, \ 4
frequency-domain-to-time-domain
830 converter

FIG 8

time-domain audio representation
*deooded audio representation

812——

SUBSTITUTE SHEET (RULE 26)

PCT/EP2010/065727

WO 2011/048100

25/43

6 9Ol

JUaLLAINSeaW
AN
13p02ap 19p0Jud
$S9|asiou Pl NPIENT ——
CURELS pasodosd pasodoid
pazijuenb
A 4
13p09ap
| . $5a1aSI0u
oIS edWI09 wini9ads m_a >> Wwealsliq
pazijuenb eam avsn

awayos Buipod pasodoid yyum Buipos ssajasiou £gm Jo uosuedwod

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

26/43

context for state calculation,
as used in USAC WD4

*

N I L S L {1 4-tuples already decoded not

§ e F @ i considered for the context

= -,

E bt N i} 4-tuples not yet decoded
_____________ 4-tuples already decoded
considered for the context
---------------------------- > @ 4-tuple to decode

FIG 10A

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100

PCT/EP2010/065727

27/43

context for state calculation,
as used in the proposed scheme

.....

“““““

A
............... -y
; i H
0]
............... H LA
peseeny Pt |
' l
............... q
................ | !
| |
> :|\]
(&b] H
— | =mmemmt mmmeet |
D | TR
= i
e Tttt I
]
fl

\ coefficients already decoded
N\ considered for the context

T - @ spectral coefficient to decode

FIG 10B

SUBSTITUTE SHEET (RULE 26)

PCT/EP2010/065727

WO 2011/048100

28/43

JNTFHIS DNIA0J JILINHLIYY ¥AM JVSN NI d3SN SY S318vV1

Vi 9l
S'v6891 jejol
saue|d)1q juedijiubis
3 pIOM Z/1 | 1Sea| JO S819uanbal) sAle|nwNy [91]) 10 ye
|OQLIAS X3pUl Juswals
G0GEl pIom ¢/| au} Jo sarouanbay aanenwNg | [10/gleu Jo ye
$J0}93ABp U1 13s)40 pue dnolb ay)
4y DIOM JO [RUIPIRD 0] Xapu! dnoib dej| [71G]sdnoibp
‘91dn)-1 0} xapul
9607 PIOM /] JusWwa|a pue xapul dnoib deyy | (9601 . 7]S10198A0p
8%02 pIom /| ‘8dn} ¢ Jo xaput dnoin | [g][g][g][g]sdnoibs
|" 9pOLL UOHNQLASIP
Ajijgeqosd yoes Joj sdnoib
0¢/8 plom g/} jo satouanbay aneinwng | (Gyg][zelbu jo ulue
Xapul [apow Ajljigeqoid e |.
871 pIOMm 0} xa)u09 Burddew ajqe) yseH | [gz1lusey Bu o yje
(g z¢ Blep
JO SPIOM) 0 1N uondiiosap auwleu 3|qel

Alowaw

SUBSTITUTE SHEET (RULE 26)

PCT/EP2010/065727

WO 2011/048100

29/43

JN3HIS ONIA0J 03S0d0dd FHL NI d3SN SV S31dvl

gLl 9old
006 |e1o}
|OGUAS 3d¥IST HLIYY duj pue
W aue|d aSIm SIQ-¢ Jueaniubis
JSOW 3y} JoJ Salouanbal)
88¢ piom g/| anRINWNG 8y} 0 S|3poy | [B][p9lw 0 yile
9]qe} Sa1ouaNbay)
aNIJR|NWND B 0} IX8JU0J JO S3JRIS
CZe PIOM J0 dnoib Buiddew ajqey yseH | [GzzJusey sB yie
9|ge) Salouanbay
AIIRNWIND B 0] 1X8)U02
/8¢ piom |au) Jo sajels Bujddew sjqe) yseq | [/8E]USBY S LiLE
(Vg z¢ BIep
JO SPIOM) 10 31U uo1duasap aLLeU 3|qe)

Alowaw

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

30/43

ROM demand noiseless coding scheme as
proposed and in WD4

spectral noiseless coding ROM demand
(32 bit words)

16894.5

18000
16000
14000

12000
10000

3 present proposal
USAC WD4

8000
6000

4000 900
2000 N

_

FIG 12A

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

31/43

total USAC decoder data ROM demand,
WD4 and present proposal

USAC decoder data ROM demand

(32 bits)

40000 37000
35000-
30000- - /
25000_/ 2100/ 3 present proposal
20000- / / . USAC WD4

- i ’
15000- / I / %
10000- / | /%
5000 \

FIG 12B

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100

32/43

PCT/EP2010/065727

average bitrates produced by USAC coder using WD

arithmetic coder and new proposal

e new dm:fizrr‘ce difference after
operating mode . proposal - transcoding
WOIS) | o) | "o |6 oftotal bitate)
Test 1, 64kbps stereo | 64.00 | 63.34 -0.66 -1.04
Test 2, 32kbps stereo | 32.00 31.66 -0.34 -1.05
Test 3, 24kbps stereo | 24.00 23.73 -0.27 -1.11
Test 4, 20kbps stereo | 20.00 19.78 -0.22 -1.11
Test 5, 16kbps stereo | 16.00 15.82 -0.18 -1.10
Test 6, 24kbps mono | 24.00 23.68 -0.32 -1.32
Test 7, 20kbps mono | 20.00 19.72 -0.28 -1.39
Test 8, 16kbps mono | 16.00 15.79 -0.21 -1.31
Test 9, 12kbps mono | 12.00 11.86 -0.14 -1.19
FIG 13A

bitreservoir control for USAC WD3 and new proposal

operating bitreservoir control
mode new proposal WD

min Mmax avg min max dvg
Test 1, 64kbps stereo | 3653 | 9557 | 8137 | 2314 | 9557 | 7018
Test 2, 32kbps stereo { 1808 | 4505 | 4196 | 581 4505 | 3530
Test 3, 24kbps stereo | 1538 | 4704 | 4408 | 957 | 4704 | 3871
Test 4, 20kbps stereo | 2367 | 4864 | 4600 | 712 | 4864 | 3854
Test 5, 16kbps stereo | 2712 | 5006 | 4804 | 724 | 5006 | 4234
Test 6, 24kbps mono | 2185 | 4704 | 4457 | 1002 | 4704 | 392/
Test 7, 20kbps mono | 2599 | 4864 | 4630 | 1192 | 4864 [3935
Test 8, 16kbps mono | 2820 | 5006 | 4876 | 1434 | 5006 | 4450
Test 9, 12kbps mono | 3529 | 5184 | 5081 | 2256 | 5184 | 4787

FIG 13B

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100

33/43

PCT/EP2010/065727

average bitrates for USAC WD3 and new proposal

operating average bitrate in kbit/s
mode new proposal WD
FD mode mbzg total |FD mode xbzg total
Test 1, 64kbps stereo [53.73 [-—- | 53.73 | 54.40 | -——- | 54.40
Test 2, 32kbps stereo | 25.31 | 26.34 | 25.60 | 25.80 | 26.61 | 26.02
Test 3, 24kbps stereo | 18.27 | 19.17 | 18.50 | 18.66 | 19.40 | 18.85
Test 4, 20kbps stereo | 15.50 | 15.93 | 15.61 | 15.83 | 16.12 | 15.90
Test 5, 16kbps stereo | 12.45 | 12.60 | 1252 [12.80 | 12.73 | 12.77
Test 6, 24kbps mono | 19.94 | 19.51 | 19.73 | 20.41 | 19.42 | 20.15
Test 7, 20kbps mono | 16.15 | 15.91 | 16.08 | 16.56 | 16.12 | 16.45
Test 8, 16kbps mono | 13.02 | 12.59 | 12.81 | 1345 | 12.73 | 13.09
Test 9, 12kbps mono | 9.35 | 966 [951 | 968 | 971 | 9.70
FIG 14
minimum, maximum and average bitrates of USAC
on a frame basis
operating minimum maximum average
mode bitrate (kbit/s) | bitrate (kbit/s) | Ditrate (kbit/s)
Test 1, 64kbps stereo 15.26 101.79 63.34
Test 2, 32kbps stereo 13.13 48.61 31.66
Test 3, 24kbps stereo 11.69 36.58 23.73
Test 4, 20kbps stereo 3.09 30.94 19.78
Test 5, 16kbps stereo 4.02 26.47 15.82
Test 6, 24kbps mono 1.47 37.35 23.68
Test 7, 20kbps mono 1.38 3113 19.72
Test 8, 16kbps mono 11.40 24.64 15.79
Test 9, 12kbps mono 8.72 18.91 11.86
FIG 15

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100

best and worst cases on a frame basis

34/43

PCT/EP2010/065727

SUBSTITUTE SHEET (RULE 26)

operating best case worst case

mode (bit/s) (%) (bit/s) (%)
Test 1, 64kbps stereo -30.87 -33.06 6.14 9.07
Test 2, 32kbps stereo | -10.33 -28.63 217 6.77
Test 3, 24kbps stereo [-11.86 -30.75 1.85 {.71
Test 4, 20kbps stereo -7.45 -30.27 1.67 8.36
Test 5, 16kbps stereo -5.43 -27.89 1.50 9.42
Test 6, 24kbps mono -17.06 -45.83 1.25 4.36
Test 7, 20kbps mono -15.86 -41.46 0.88 3.38
Test 8, 16kbps mono -4.75 -24.85 1.1 7.31
Test 9, 12kbps mono -3.95 -26.33 0.82 6.99

FIG 16

WO 2011/048100 PCT/EP2010/065727

35/43
/*
Entropy:
fu mem.: 1.2792 bit (100.00 %) FIG 17(1)
no memn. : 1.6289 bit (127.34 %)
split: : 1.2971 bit (101.40 %)
*/

/* 1224 States, Entropy increase: 0.000384 */ FIG FlG 17(1)
/*Final Entropy : 1.297556 */ 17 FIG 17(2)

/*Total states = 612;*/

/*Signicant states = 387;%*/

/*Pseudo states = 225;*/

/*Proba models = 64;*/

unsigned long long ari_get pk inc=0;
unsigned long long ari get pk call total=0;

static unsigned long ari s hash{387] = {

0x00000200, 0x00000RB01, 0x00000C02, Ox00000D03, 0xC0000F25, 0x0000101C, O0x0000110B,
0x00001327,

0x0000142F, 0x00002B25,0x00002C22, 0x00002D14, 0x00002F2D, 0x0000302B, 0x0000312B,
0x00003330, :

0x00003432, 000003532, 0x00004C32, 0x00005031, 0x00005131, 0x0000FA02, 0x0000FBO1,
0x0000FC1C,

0x0000FE1C, 0x0000FF1C,0x0001001E, 0x00010A2E, 0x00010B25, 0x00010E25, 0x00010F25,
0x00013938, .

0x00013A04, 0x00013B02,0x00013C01, 0x0010393D, 0x00107504, 0x00107605, 0x00107706,
0x0010790D,

0x00107A07, 0x00107B08,0x0010850D, 0x00108609, 0x0010870A, 0x00108RB0OE, 0x0010B50B,
0x0010B60C, .

0x0010B70D, 0x0010B90B, 0x0010BA1D, 0x0010BB16, 0x0010C615, 0x0010C70C, 0x0010F521,
0x0010F628,

0x0010F728, 0x00110528,0x00117516, 0x0011760E, 0x0011770F, 0x00117A12, 0x00117B07,
0x0011870E,

0x0011B514, 0x0011B615,0x0011B70C, 0x0011B914, 0x0011BA15,0x0011BB1D, 0x0011C619,
0x0011C715, _

0x00147516, 0x00147610,0x00147711,0x0014791D, 0x00147A0C, 0x00147B0OE, Ox0014851B,
0x00148616, '
0x00148707, 000148908, 0x00148A1D, 0x00148R16, 0x0014950R,0x0014961D, 0x0014B615,
0x0014B71D, :

0x0014BA14, 0x0014BRB15,0x0014C614,0x0014C715,0x0015052D,0x0015750B, 0x0015760C,
0x00157710,

0x0015790B, 0x00157A1D, 0x00157B16, 0x00158508, 0x0015861D, 0x0015870C, 0x00158914,
0x00158A15,

0x00158B1D, 0x0015B619, 0x0015R714, 0x0020751D, 0x00207612,0x00207713, 0x0020791D,
0x00207A0C,

0x00207BOE, 0x0020850B, 0x0020860C, 0x00208710, 0x0020821D, 0x00208B0C, 0x0020B615,
0x0020B71D,

0x00217508B, 0x0021760C, 0x0021770E, 0x0021790B, 0x00217A1D, 0x00217B12, 0x00218514,
0x00218615,

0x0021870C, 0x0021891C, 0x00218A15, 0x00218B1D, 0x0021B619,0x0021B715, 0x0021BA22,
0x0021BR19,
0x00247514,0x0024761D, 0x0024770E, 0x00247914, 0x00247A15,0x00247B0C, 0x00248514,
0x0024861D,

0x00248716, 0x0024891C, 0x00248A15, 0x00248R1D, 0x0024B619, 0x0024B715, 0x0025751C,
0x0025760B,

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

36/43

0x0025771B, 0x0025791C, 0x00257A0B, 0x00257B18, 0x0025851C, 0x0025860B, 0x0025871B,
0x0025890B,

0x00258A1D, 0x00258B1B, 0x0025B618, 0x0025B722, 0x0025BA1F, 0x0025BB18, 0x0025C61F,
0x0025C718,

0x0025CALF, 0x0025CB1F, 0x003A9D1C, 0x003A9EOB, 0x003A9F0B, 0x004FB125, 0x004FB21C,
0x004FB31C,

0%x00907514, 0x00907615, 0x00907716, 0x00907919, 0x00907A15, 0x00907B1D, 0x00907D1C,
0x00907ELC,
0x00907F14,0x00908522, 0x00908614, 0x0090871D, 0x00908918, 0x00908A19, 0x00908B14,
0x00908D24,

000909523, 0x0090961F, 0x0090992B, 0x0090B517, 0x0090B618, 0x0090B719, 0x0090BI1F,
0x0090BA22,

0x0090BB19, 0x0090BD1C, 0x0090BE1C, 0x0090BF1C, 0x0090C52B, 0x0090C61F, 0x0090C718,
0x0090C917, _

0x0090CALF, 0x0090CB1F, 0x0090CD23, 0x0090D52E, 0x0090D62C, 0x0090D92C, 0x0090F52D,
0x0090F62D,

0x0090F72F, 0x0090F925, 0x0090FA2E, 0x0090FB2D, 0x0090FD1E, 0x0090FELE, 0x0091052F,
0x0091062F,

0x00910928, 0x00910D25, 0x00917519, 0x00917615, 0x0091771D, 0x00917922, 0x00917A14,
0x00917B15,

000918619, 0x00918714, 0x00918A18, 0x00918B18, 0x0091B618, 0x0091B722, 0x0091BA1S,
0x0091BB18,

0x00947518, 0x00947614, 0x0094771D, 0x0094791F, 0x00947A19, 0x00947B14, 0x00948520,
000948619,

0x00948714, 0x00948A18, 0x00948B18, 0x0094B61F, 0x0094B718, 0x0094BA17, 0x0094BB1F,
0x0094C617,

0x0094C717, 000957520, 0x00957622, 0x00957714, 0x00957924, 0x00957A18, 0x00957B18,
0x00958524,

000958618, 0x00958718, 0x00958928B, 0x00958A17, 0x00958B1F, 0x0095B52B, 0x0095B617,
0x0095B71F,

0x0095B92B, 0x0095BA17, 0x0095BB17, 0x0095C52C, 0x0095C617, 0x0095CT17, 0x0095C92C,
0x0095CA2B,

0x0095CB2C, 0x00A0751F, 0x00A07614, 0x00R07715, 0x00A0791F, 0x00A07A19, 0x00A07B14,
0x00A0851F,

0x00A08622, 0x00A08714, 0x00A08917, 0x00A08A18, 0x00A08B18, 0x00A0B52B, 0Xx00A0B6LF,
0x00A0B718,

0x00AOBA17, 0x00AOBBLF, 0x00A0C617, 0x00A0C717, 0x00A17524, 0x00A17622, 0x00A17714,
0x00A17924,

0x00A17A18, 0x00A17B18, 0x00A1861F, 0x00A18718, 0x00A18A17, 0x00A18B17, 0x00A1BE17,
0x00A1B71F,

0x00A1BA17, 0x00A1BB17, 0x00A47524, 0x00A47618, 0x00A47714, 0x00A4792B, 0x00A4TALS,
0x00A47B18,

0x00A4852B, 0x00A4861F, 0x00A48718, 0x00A4892B, 0x00A48A17, 0x00A48B17, 0x00A4B52C,
0x00A4B617,

0x00A4B717, 0x00A4B92C, 0x00A4BAL7, 0x00A4BB17, 0x00A4C52E, 0x00AACE2B, 0x00A4CT2B,
0x00R4CI2E,

0x00A4CA2C, 0x00A4CB2C, 0x00AS752C, 0x00A57617, 0x00A57718, 0x00A5792B, 0x00A57AL7,
0x00A57BI1F,

0x00A5852C, 0x00A58617, 0x00A5871F, 0x00A5892C, 0x00A58A17, 0x00A58B17, 0x00A5B52E,
0x00A5B62B,

0x00A5B717, 0x00A5BI2E, 0x00ASBA2C, 0x00ASBB2C, 0x00A5CS2E, 0x00ASC62C, 0x00A5CT2C,
0x00A5C92E,

0x00ASCAZC, 0x00A5CB2C, 0x00BAID2D, 0x00BAJEZE, 0x00BAGF2E, 0x00CDDI38, 0x00CE2D38,
0x00CEE938,

0x00CF2D38, 0x00D02D38, 0x00D0313A, 0x00D07134, 0x0110762F, 0x0110B632, 0x0110B731,
0x03D0113B,

0x03D0213C, 0x03D02D3D, 0x03D0313D, 0x03D0413C, 0x03D04D3D, 0x03D0513C, 0x03D05D3D,
0x03D06139,

(})>,.<03D0693D,OXO3DO6D3D,OxO3DO7l3D FIG F|G ‘]7(1)
FIG 17(2) 17 | FIG 17(2)

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

37/43

static unsigned long ari_gs_hash{225] = {
0x00000401,0x0001491A, 0x0001590B, 0x00017621, 0%x0001891C, Ox0002492A, Ox000DFA38,
0x000F6D3D,

0x0010003B,0x0010B21B,0x0011321C,0x00116B29,0x0011B31D, 0x00126B1E,0x00136623,
0x00146729,

0x00146F3B, 0x0015321F, 0x00156E27, 0x00163320, 0x00182725, 000186727, 0x00196323,
0x001C4721,

0x001E3F30, 0x001E433B, 0x00203F2A, 0x0020463B, 0x0020F322, 0x00216A2E, 0x00226723,
0x00245625,
0x00256724,0x00286625, 0x002D3726, 0x002D573A, 0x00316627,0x00326628,0x00344729,
0x00366628,

0x003D4329, 0x00416A2A,0x0042533A,0x00916A2A, 0x00926B2B, 0x0093E72E, 0x00956B2C,
0x009D362D,

0x009D3B39, 0x009E4330, 0x00A2672E, 0x00AD372F, 0x01145630, 0x01146B27,0x011C8231,
0x01226732,

0x012CC333,0x01413B34, 0x019CA335, 0x01SCB338, 0xOlACB736 0x01AD823D, 0x01C37F37,
0x02156738,

0x0218AB3R, 0x021C9B35, 0x021E0738,0x021FB73D, 0x0220E335, 0x02216B3C, 0x02217234,
0x0222B33C,

0x02239B3B, 0x0223B23A, 0x0224673B, 0x02384739, 0x0240B23D, 0x024CBF38, 0x024CC23D,
0x024D8738,

0x0297AF3A, 002986727, 0x0298A33B, 0x0298A738, 0x029CAF3B, 0x029CC33A, 0x02A0AB35,
0x02A3E736,

0x02AC773B, 0x02B0OB335, 0x02B3A73RB, 0x02C0OD73C, 0x02C1E735, 0x03108E3D, 0x03109737,
0x0311D639,

0x03147F3C,0x0314B236, 0x0317A639,0x0317D629, 0x0317DB33, 0x03187627, 0x0318AF3B,
0x0318F61A,

0x0319D739, 0x031C953B, 0x031D633C, 0x031FCF39, 0x0320873B 0x0320963A,0x03222639,
0x0323833C,

0x03239A27, 0x0323EA2F, 0x03242631,0x03242B3B, 0x03249727, 0x0325AB39, 0x0327A73C,
0x0327C728, .
0x03287727,0x03287E3A,0x03288737, 0x032BAA39, 0x032C7527,0x032D2337,0x032E9B39,
0x032EA23B,

0x032EBF3C, 0x032F7E39, 0x0330C63C, 0x0332B23B, 0x0332F230, 0x03339F3B, 0x0333EE27,
0x03348F30,

0x0336AB3C, 0x0338A73B, 0x033A7639, 0x033A7F1A, 0x033C793B, 0x033C9A34, 0x033CA33B,
0x033CA738,

0x033D0A3C, 0x033DB339, 0x033DFF3C,0x033E9739, 0x0340CR3C, 0x0344573B, 0x0344AA3C,
0x0348263B,

0x034C7B3C, 0x034CBB3A, 0x034CD33C, 0x0390B73D, 0x0390E937, 0x0393653D, 0x0394B73B,
0x0394E33D,

0x0394FA38, 0x03950A3C, 0x0396CF3D, 0x03971A36,0x0398673C, 0x0398E13B, 0x03994E39,
0x039C733B,

0x039D191A, 0x039D4536, 0x039E053C, 0x039E6E3D, 0x039E9D34, 0x039F8D39, 0x03A0C93B,
0x03A67939,

0x03RA69D29, 0x03A6D637, 0x03AB5A3C, Ox03AESR3B, Ox03AEDRB3D, Ox03AF2E3C, 0x03BOAL3E,
0x03B2B139,

0x03B3123B, 0x03B36339, 0x03B3AD3C, 0x03B42E33, 0x03B4733B, 0x03B4F53C, 0x03B51F36,
0x03B59139,

0x03B5CB3C, 0x03B61737, 0x03B93A3C, 0x03B98F39, 0x03BIF53C, Ox03BA063B, 0x03BAZA3C,
0x03BB2739,

0x03BD3B3B, 0x03BDCY939, 0x03BDF534, 0x03BF9A39, 0x03C1653B, 0x03C19E2A, 0x03C20527,
0x03C3633B,

0x03C3823C, 0x03C3A527, 0x03C45A3B, 0x03C4993C, 0x03C5B23B, 0x03C5D527, 0x03C9563B,
0x03C9Aa93C,

0x03CA063B, 0x03CBOE3C, 0x03CCRB53B, 0x03CD1E3C, 0Xx03CED23D, 0x03CEDF3C, 0x03CFFA39,
0x40BC673E,

OXFFFEFF3F

i

FIG 18

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

38/43

unsigned short ari cf m[64][9] = { .
1910~ 65535, 65534, 65532, 65215, 321, a, 2, 1, 0},</*Dk!=:0
10192 —» {65490, 65339, 64638, 58133, 7463, 973, 270, 125, 0y, «—pki=1

{65530, 65509, 65319, 60216, 5308, 222, 30, 9, 0}, '

{65534, 65528, 65470, 62535, 3012, 67, 8, 2, 0},

(65533, 65524, 65435,62110, 3434, 104, 14, 5, 0},

(65535, 65533, 65499,62363, 3173, 37, 3, 1, 0},

(65535, 65534, 65522, 63164, 2371, 14, 2, 1, 0},

(65535, 65530, 65448, 59939, 5612, 88, 7, 2, 0},

{65535, 65533, 65500, 61498, 4044, 38, 3, 1, 0},

(65535, 65530, 65444, 59855, 5667, 92, 6, 1, 0},

(65535, 65532, 65495, 61386, 4140, 39, 3, 1, 0},

(65522, 65458, 64905, 55424,10056, 634, 88, 28, 0},

(65532, 65511, 65238, 57072, 8457, 297, 27, 6, 0},

(65534, 65522, 65364,59096, 6461, 171, 15, 3, 0},

{65535, 65530, 65426, 59204, 6342, 109, 8, 2, 0},

(65535, 65533, 65492, 61008, 4512, 43, 3, 1, 0},

{65535, 65529, 65417, 58998, 6519, 118, 6, 1, 0},

(65535, 65533, 65490, 60856, 4679, 46, 4, 1, 0},

(65535, 65528, 65384, 58400, 7127, 149, 9, 1, 0},

(65535, 65532, 65483, 60544, 4984, 56, 4, 1, 0},

(65517, 65413, 64537,53269,12264, 1002, 138, 38, 0},

(65531, 65503, 65125, 55553, 9985, 420, 37, 7, 0},

(65534, 65518, 65303,57889, 7650, 235, 20, 3, 0},

(65490, 65288, 63679, 49500,15949, 1903, 301, 94, 0},

(65522, 65428, 64429,51580,13957, 1113, 114, 22, 0},

(65526, 65447, 64600, 52808,12743, 937, 93, 17, 0},

(63814, 60228, 53108,40709,26294,15412, 8961, 5729, 0},

(65526, 65486, 65133,57227, 8244, 400, 58, 20, 0},

{65500, 65346, 64297, 52845,12477, 1283, 230, 70, 0},

165528, 65486, 65077,56652, 8871, 465, 56, 16, 0},

165464, 65186, 63581,50731,14351, 1992, 396, 128, 0},

(65489, 65278, 63861, 51225,14185, 1726, 302, 96, 03,

165485, 65249, 63632, 50425,14933, 1943, 332, 96, 0},

(65202, 64495, 61270, 47805,17600, 4502, 1337, 542, 0},

(65519, 65421, 64478,52517,12971, 1068, 129, 33, 0},

(65470, 65181, 63344,49862,15299, 2233, 418, 132, 0},

(65472, 65197, 63407,49933, 15445, 2176, 396, 123, 0},

FIG 19(1)

FIGIFIG 19(1)
19 [FIG 19(2)

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

39/43

(65376,64781,62057,48496,16676, 3614, 923, 340, 0},
(65259, 64356, 60836,47316,18158, 4979, 1517, 623, 0},
(64883,63190,58260,45006,21034, 8378, 3559, 1909, 0},
(65261,64180,60126,46710,18694, 5578, 1582, 531, 0},
(64933, 63355,58991,46299,19470, 7245, 2989, 1449, 0},
{63999,61383,56309,44712,24964,14237, 9489, 7028, 0},
(65451, 65091,62953,48747,16324, 2626, 522, 168, 0},
{65400, 64870, 62109,47037,18198, 3526, 794, 278, 0},
(65200, 64074,59673,44322,20692, 6133, 1836, 739, 0},
(65376,64798,61822,46437,18673, 3881, 932, 368, 0},
{65151, 63887,59083,43617,21491, 6768, 2081, 841, 0},
(64592,62314,56211,42184,24450,11142, 5265, 3075, 0},
(64908, 62840,56205,41474,23652, 9844, 3388, 1379, 0},
{65021,63308,57341,42286,22972, 8709, 2895, 1232, 0},
{64790, 62474,55461,40843,24327,10719, 3921, 1677, 0},
{64053, 60476,52429,39583,26962,15208, 7592, 4166, 0},
{63317,58934,51305,40469,29263,19682,12661; 8553, 0},
{63871,59872,52031,39473,26093,15132, 7866, 4080, 0},
[63226,58553,50425,39191,28586,18779,11388, 7035, 0},
{62219,57006,49569,40492,32376,24784,18716,14447, 0},
{62905,58273,50651,39619,28123,18379,11633, 7478, 0},
{63420,59073,51922,41516,29863,20328,13529, 9237, 0},
{63582,59263,51165,37880,24026,13893, 7771, 4535, 0},
(63223,58418,49833,37279,25503,15421, 9122, 5802, 0},
{62322,56878,48746,39095,30723,22195,15849,11887, 0},
(61826,47222,47123,47015,46913,46806,13713, 6895, 0y,

1964 — (60678, 44085, 44084, 44083, 44082, 44081, 16715, 9222, 0} +—pki=63

}

FIG 19(2)

FIGIFIG 19(1)
19 [FIG 19(2)

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727
40/43

static unsigned long ari s hash{387] = {

0x0090D52E, 0x0090CB1F, 0x00A4CB2C, 000003330, 0x00107A07, 0x00907A15, 0x00207A0C,
0x00147A0C,

0x00247A15, 0x00A07A19, 0x00947A19, 0x00RA47A18,0x0010B70D, 0x0090B719, 0x0020B71D,
0x0014B71D,

0x00A0B718,0x0094B718, 0x0024B715, 0x00R4B717, Ox01108731 0x0000FE1C, Ox0090FE1E,
0x00013B0Z,

0x00A5C92E, 0x0095C92C, 0x003A9EOR, 0x00000R01, Ox00BAYE2E, 0x0030992B, 0x0011B514,
0x00ASB52E,

0x0095B52B, 0x0090D62C, 0x0010850D, 0x0014851B,0x00248514,0x00208508B, 0x00908522,
0x00948520,

0x00A4852B, 0x00A0851F, 0x00003432, 0x00107808, 0x00207BOE, 0x00907B1D, 0x00147BOE,
0x00247B0C,

0x00A07B14, OxOO947Bl4,0xOOA47Bl8,0xOO910928,0xO3DO713D,OxOODO713A,OxOOOOFFlC,
0x0090F52D, '

0x0010F521, 0x00013C01, 0x03D0O5D3D, 0x00A5CA2C, 0x0025CALF, 0x0095CA2B, Ox003ASFOB,
0x00000C02,

0x0021790B, 0x0025791C, 0x00917922,0x0015790B, 0x00A17924, 0x00A5792B, 0x00957924,
0x00BA9F2E,

0x00CF2D38, 0x00000200, 0x0011B615,0x0091B618, 0x0021B619, 0x0015B619, 0x00A1B617,
0x0095B617,

0x0025B618, OxOOASB62B 0x004FB125,0x00108609, Ox00148616 0x0020860C, 0200908614,
0x0024861D,

0x00948619, 0x00A08622, 0x00R4861F,0x0090CD23,0x00003532, 0x00010A2E, 0x00002B25,
0x0010B90B,

0x0090BYS1F, OxOOA4B92C 0x0001001E, 0x03D0213C, 0x0090F62D, 0x0010F628, 0x0C0A5CB2C,
0x0025CB1F,

0x0095CB2C, 0x00000D03, 0x00117A12,0x00217A1D, 0x00917A14, 0x00257A0B, 0x00157A1D,
0x00Aa17A18,
0x00A57A17,0x00957A18, 0x0011B70C, 0x0091B722, 0x0021B715,0x0015B714, 0x00A1B71F,
0x0025B722,

0x0095B71F, 0x00A5B717, 0x004FB21C, 0x0010870A, 0x00148707, 0x00208710, 0x0090871D,
0x00248716,

0x00948714,0x00208714, 0x00A48718,0x00907D1C,0x00010B25,0x00002C22, 0x0010BA1D,
0x0090BA22,

0x0014BA14, 0x00A0BA17, 0x0094BA17,0x00A4BA17, 0x03D0693D, 0x0090F72F, 0x0010F728,
0x0025851cC,

0x0015850B, Ox00218514 0x00A5852C,0x00958524,0x00117B07,0x00217B12, 0x00257B1B,
0x00917B15,

0x00157B16, OxOOAl7BlS 0x00A57B1F, 0x00957B18, 0x0090D82C, 0x004FB31C, 0x03D0413C,
0x00907E1C,

0x0080C52B, 0x00A4C52E, 0x00002D14,0x00D02D38, 0x03D02D3D, 0x0010BB16, 0x0090BB19,
0x0014BB15, ’

0x00AOBB1F, 0x0094RB1F, 0x0024BB17, 000258608, 0x0015861D, 0x00218615, 0x00918619,
0x00An58617,

0x00958618, 0x00A1861F, 0x00000F25, 0x00CEE938,0x00004C32, 0x0011B914, 0x00A5B9ZE,
0x0095B92R,

0x0014890B, 0x0024891C, 0x00908918, 0x00A4892B, 0x00A08917, 0x00907F14, 0x0010Ce15,
0x0090Co1lF,
0x0014C614,0x0094C617, 0x00R4C62B, O0x00A0CH617, 0x00810D25, 000107504, 0x00907514,
0x00147516,

0x0020751D, 0x00247514, 0x00A0751F, 0x00947518,0x00R47524, 0x0080F925, 0x0011870E,
0x0025871B,

0x0015870C, 0x0021870C, 0x00918714, 0x00A5871F, 0x00A18718,0x00958718, 0x03D06139,
0x0000101¢,

0x03D04D3D, 0x0011BA15, 0x0091BA18,0x0021BA22, 0x00A1BAL17, 0x0025BA1F, 0x00ASBA2C,
0x0095BA17,

0x00148A1D, 0x0020821D, 0x00248215,0x00908A13, 0x00948A18, 0x00A08A18, 0x00A48A17,

0%x0010393D, FIG FlG 20(1)
FIG 20(1) 20 [FIG 20(2)

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100 PCT/EP2010/065727

41/43

0x0010C70C, 0x0090C718, 0x0014C715, 0x0094C717, 0x00A0C717, 0x00A4C72B, 0x00010E25,
0x00002F2D,

0x00107605, 0x00907615, 0x00147610, 0x00207612, 0x0024761D, 0x00A07614, 0x00947614,
0x00A47618,

0x0110762F, 0x0090BD1C, 0x00CDDY38, 0x0000FAQ2, Ox0090FA2E, 0x0000110B, 0x03D0113B,
0x00ASC52E,

0x0095C52C, 0x0011BB1D, 0x0091BB18, 0x0021BB19, 0x0014950B, 0x00A1BB17, 0x0025BB18,
0x00ASBB2C,

0x0095BB17, 0x00909523, 0x00108BOE, 0x00148B16, 0x00208B0C, 0x00248B1D, 0x00908B14,
0x00948B18,

0x00A08B18, OxOOA48Bl7 0x00010F25, 0x0000302B, 0x00107706, 0x00907716, 0x00147711,
0x00207713,

0x0024770E, 0x00A07715, 0x0094771D, 0x00A47714, 0x0091052F, 0x00110528, 0x0090BELC,
0x0015052D,

0x03D06D3D, 0x0000FB01, 0x00S0FB2D, 0x0025890B, 0x00A5892C, 0x00158914, 0x0021891C,
0x0095892R,

0x0011C619, 0x0025C61F, 0x00A5C62C, 0x0095C617,0x00117516, 0x0021750B, 0x00157508,
0x00917519, '

0x0025751C, 0x00A17524, 000957520, 0x00A5752C, 0x0014961D, 0x0090961F, 0x0090C917,
0x00A4C92E,

0x0000312B, 0x00D0313A, 0x03D0313D, 0x0090BF1C, 0x0091062F, 0x0010B50B, 0x0090B517,
0x00AOB52B, A

0x00A4B52C, 0x0000FC1C, 0x00258A1D, 0x00A58A17, 0x00158A15, 0x00218A15, 0x00918A18,
0x00A18A17,

000958217, 0x00013938, 0x00001327, 0x0011C715, 0x0025C718, 0xO00A5CT2C, 0x00985C717,
0x0011760E,

0x0021760C, 0x00917615, 0x0015760C, 0x0025760R, Ox00A17622,0x00957622, 0x00R57617,
0x00005031,

0x00908D24, OxOO9OCA1F 0x00A4CA2C, 0x0010790D, 0x00907919,0x0020791D, 0x0014791D,
0x00247914,

0x00A0791F, 0x0094791F, 0x00A4792B, 0x00CE2D38, 0x0010B60C, 0x0090B618, 0x0014B615,
0x0020B615,

0x00A0B61F, 0x0094B61F, 0x0024B619, 0x00A4RB617, 0x0110B632, 0x00258B1B, 0x00158B1D,
0x00218B1D,
OxOOA58Bl7,0XOO918818,0XOOA18Bl7,0xOO958BlF,OxOO9OFD1E,OxOOOlBAO4,0xOOOOl42F,
0x003A9D1C,

0x00BA9D2D, 0x0011770F, 0x0021770E, 0x00157710, 0x0091771D, 0x0025771B, 0x00A17714,
0x00957714,

0x00A57718, 000005131, 0x03D0513C

}:

FIG 20(2)

FIGIFIG 20(1)
20 [FIG 20(2)

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100

PCT/EP2010/065727

42/43

2100

~ 9110~ input audio information

audio

encoder 2122—

\/\

2120 energy-compacting time-domain-
to-frequency-domain converter

frequency-domain audio
representation
(set of spectral values a)

arithmetic
encoder

2130
~] 2131

\

context value
determination

X previously-encoded
spectral values

o

2134 numeric current
context value (s)

selection -
X iterative table
size reduction

mapping e

2133

mapping rule
information

(pki)

mapping rule [—_|

2136

2132

encoded audio information

i (code value)

2112x/\1v
FIG

21

SUBSTITUTE SHEET (RULE 26)

WO 2011/048100

PCT/EP2010/065727

43/43
2200 2210~——1encoded audio information

audio

decoder 2222~ —
arithmetically-encoded representation
of spectral values (code-values)

arithmetic context value
.| decoder

determination 2228
X previously-decoded | [

spectral values

9999 numeric current
context value (s)

mapping rule
selection -
X iterative T ~1-2226
table size
2225 reduction
\\ il T ~2227
mapping rule
manoin information
apping (ki)

=

2224\/jdecoded spectral values

2220

2230

frequency-domain-to-

time-domai

n converter

time-domain audio
representation

2212~

v

FIG

decoded audio information

22

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2010/065727

A. CLASSIFICATION O O%UBJECT MATTER

INV. G1l0L19
ADD.

According 1o International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

G10L

Minimum documeniation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Eleclronic data base consulled during the international search (name of dala base and, where practical, search terms used)

EPO-Internal, INSPEC, WPI Data, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of documenl, with indication, where appropriate, of the relevant passages

A MEINE NIKOLAUS ET AL:
SUBBAND AUDIO CODING",
CONVENTION, XX, XX,
1-9, XP008071322,

* abstract

Application to Subband Coding]
figures 5-7

"IMPROVED
QUANTIZATION AND LOSSLESS CODING FOR

PREPRINTS OF PAPERS PRESENTED AT THE AES
vol. 1-4, 31 May 2005 (2005-05-31), pages

page 5, paragraph [3.2 State Reduction
Scheme] - page 6, paragraph [3.4

1-14

Further documents are listed in the continuation of Box C.

* Special categories of cited documents :

A document defining the general state of the an which is not
considered o be of parlicular relevance

E earlier document but published on or after the international
filing date

‘L* document which may throw doubts on prionity claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

Q documeni referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T later document published afier the international filing date
or priorily date and not in conflict with the application but
cited lo understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannol be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannof be considered lo involve an invenlive step when the
document is combined with one or more olher such docu—
merr]ns, such combination being obvious to a person skilled
in the an.

& document member of the same patenl family

Dale of the aclual compielion of the international search

17 December 2010

Date of mailing of the intemational search repon

29/12/2010

Name and mailing address of the 1SA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Greiser, Norbert

Fom PCT/ISA/210 (second sheet) {April 2005)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2010/065727

C(Continuation). DOCUMENTS CONSIOERED TO BE RELEVANT

Calegory®

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

NEUENDORF MAX ET AL: "A Novel Scheme for
Low Bitrate Unified Speech and Audio
Coding AA A MPEG RMO",

AES CONVENTION 126; MAY 2009, AES, 60 EAST
42ND STREET, ROOM 2520 NEW YORK
10165-2520, USA,

1 May 2009 (2009-05-01), XP040508995,

* abstract

pages 7-8, paragraph [3.7 context-Adaptive
Arithmetic Coder]; figure 5

EUNJU IMM ET AL: "Lossless coding of
audio spectral coefficients using
selective bitplane coding”,

COMMUNICATIONS AND INFORMATION TECHNOLOGY,
2009. ISCIT 2009. 9TH INTERNATIONAL
SYMPOSIUM ON, IEEE, PISCATAWAY, NJ, USA,
28 September 2009 (2009-09-28), pages
525-530, XP031571269,

ISBN: 978-1-4244-4521-9

* abstract

1,11-14

1,11-14

Form PCT/ISA/210 (continuation of second sheel) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - wo-search-report
	Page 117 - wo-search-report

