(54) 发明名称
一种批量服务器上架机位检查的方法

(57) 摘要
本发明提供一种批量服务器上架机位检查的方法，其具体检查过程为：将机柜接入交换机，扫描机柜服务器的网卡MAC地址，建立服务器网卡MAC地址与交换机端口的对应关系，生成MAC地址表；对比用户规划的机柜上架信息表，检查机房批量部署服务器的上架准确性：当对比信息不一致时，则出现安装错误，进而调整出现错误的服务器即可；当对比信息一致时，表明服务器的部署正确，结束部署步骤。该一种批量服务器上架机位检查的方法和现有技术相比，可以通过网络远程管理，方便快捷；精度高，避免人工误差；实现方式简单，易于操作，实用性强，易于推广。
1. 一种批量服务器上架机位检查的方法，其特征在于，其具体检查过程为：
 1) 将机柜接入交换机，扫描机柜服务器的网卡 MAC 地址，建立服务器网卡 MAC 地址与交换机端口的对应关系，生成 MAC 地址表；
 2) 对比用户规划的机柜上架信息表，检查机房批量部署服务器的上架准确性；
 3) 当对比信息不一致时，则出现安装错误，进而调整出现错误的服务器即可；当对比信息一致时，表明服务器的部署正确，结束部署步骤。
2. 根据权利要求 1 所述的一种批量服务器上架机位检查的方法，其特征在于，所述步骤 1) 的详细过程为：
 服务器安装结束后将机柜上电，确保服务器都正常开机，然后将便携终端接入到用户机房的管理网络中，配置好 ip 使其能跟机柜的接入交换机连通，远程登录到交换机上，获取 MAC 地址表；根据安装机柜时交换机端口与机柜托盘位的对应关系，确定机器在机柜中的位置，连同 MAC 地址表保存成信息表。
3. 根据权利要求 2 所述的一种批量服务器上架机位检查的方法，其特征在于，所述便携终端是指笔记本电脑或平板电脑。
4. 根据权利要求 1 或 2 所述的一种批量服务器上架机位检查的方法，其特征在于，所述步骤 2) 中的检查过程通过计算机程序完成，该程序可根据生成的新的信息表与用户规划的机柜上架信息表一一对应检查，当检查一致时则返回安装成功的提示；当安装错误时则返回错误服务器具体地址的反馈。
一种批量服务器上架机位检查的方法

技术领域
[0001] 本发明涉及计算机技术领域，具体的说是一种批量服务器上架机位检查的方法。

背景技术
[0002] 目前大量互联网用户采购批量服务器，这些服务器在批量安装结束后，一个很重要的工作就是要对服务器的上架机位进行检查，但是目前绝大多数情况下采用的方法就是对每一台服务器的序列号、网卡 MAC 地址、上架机位、连接交换机端口等信息进行统计，当全部的服务器都统计一遍后，再整理成表，然后再根据用户规划的机柜上架信息表进行逐行比对。找出安装错误的服务器。随着互联网用户一次性采购服务器的数量越来越多，机房规模也越来越大，动辄上百台甚至上千台服务器需要部署，如果再采用这种原始的处理方法将大大增加工作成本，也会大大降低工作效率。而且，随着远程管理技术的逐渐成熟，对服务器的管理不再依赖于服务器所在机房本地管理，而是通过网络远程控制，因此需要一种简单、高效的解决方法。

发明内容
[0003] 本发明的技术任务是解决现有技术的不足，提供一种批量服务器上架机位检查的方法。
[0004] 本发明的技术方案是按以下方式实现的，该一种批量服务器上架机位检查的方法，其具体检查过程为：
 1) 将机柜接入交换机，扫描机柜服务器的网卡 MAC 地址，建立服务器网卡 MAC 地址与交换机端口的对应关系，生成 MAC 地址表；
 2) 对比用户规划的机柜上架信息表，检查机房批量部署服务器的上架准确性；
 3) 当对比信息不一致时，则出现安装错误，进而调整出现错误的服务器即可；当对比信息一致时，表明服务器的部署正确，结束部署步骤。
[0005] 在上述技术方案中，利用机柜接入交换机扫描机柜服务器的网卡 MAC 地址，建立服务器网卡 MAC 地址与交换机端口的对应关系，由于该地址是唯一的，根据交换机端口与机柜托盘位的对应关系就能确定服务器在机柜中的位置，再通过自动化程序跟用户规划的机柜上架信息表进行比对，从而快速检查机房批量部署服务器的上架准确性。
[0006] 所述步骤 1) 的详细过程为：
 服务器安装结束后将机柜上电，确保服务器都正常开机，然后将便携终端接入到用户机房的管理网络中，配置好 ip 使其能跟机柜的接入交换机连通，远程登录到交换机上，获取 MAC 地址表，根据安装机柜时交换机端口与机柜托盘位的对应关系，确定机器在机柜中的位置，连同 MAC 地址表保存成信息表。
[0007] 所述便携终端是指笔记本电脑或平板电脑。
[0008] 所述步骤 2) 中的检查过程通过计算机程序完成，该程序可根据生成的新的信息表与用户规划的机柜上架信息表一一对应检查，当检查一致时则返回安装成功的提示；当安
装错误时则返回错误服务器具体地址的反馈。

本发明与现有技术相比所产生的有益效果是：

本发明的一种批量服务器上架机位检查的方法可自动完成批量检查，有效提高工作效率，整个过程不依赖于现场；可以网络远程管理，方便快捷，精度高，避免人工误差；实现方式简单，易于操作，实用性强，易于推广。

附图说明

附图 1 是本发明的实现流程图。

附图 2 是本发明的实施例检查结果显示示意图。

具体实施方式

下面对本发明的一种批量服务器上架机位检查的方法作详细说明。

如附图 1 所示，现提供一种批量服务器上架机位检查的方法，其具体检查过程为：

1) 将机柜接入交换机，扫描机柜服务器的网卡 MAC 地址，建立服务器网卡 MAC 地址与交换机端口的对应关系，生成 MAC 地址表；

2) 对比用户规划的机柜上架信息表，检查机房部署服务器的上架正确性；

3) 当对比信息不一致时，则出现安装错误，可立即调整出现错误的服务器即可；当对比信息一致时，表明服务器的部署正确，结束部署步骤。

所述步骤 1) 的详细过程为：

服务器安装完成后将机柜上电，确保服务器都正常开机，然后将便携终端接入到用户机房的管理网络中，配置好 IP 使其能跟机柜的接入交换机连通，远程登录到交换机上，获取 MAC 地址表；根据安装机柜时交换机端口与机柜托盘位的对应关系，确定服务器在机柜中的位置，连同 MAC 地址表保存成信息表。

所述便携终端是指笔记本电脑或平板电脑。

所述步骤 2) 中的检查过程通过计算机程序完成，该程序可根据生成的新的信息表与用户规划的机柜上架信息表一一对应检查，当检查一致时则返回安装成功的提示；当安装错误时则返回错误服务器具体地址的反馈。

具体实施例：

1、服务器安装结束后将机柜上电，确保服务器都正常开机，然后将笔记本接入到用户机房的管理网络中，配置好 IP 使其能跟机柜的接入交换机连通，远程登录到交换机上，获取 MAC 地址表：

<table>
<thead>
<tr>
<th>MAC 地址</th>
<th>接口名</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:E5:22:3C:B0:63</td>
<td>FastEthernet0/0</td>
</tr>
<tr>
<td>00:E5:22:3C:B0:65</td>
<td>FastEthernet0/1</td>
</tr>
<tr>
<td>00:E5:22:3C:B0:67</td>
<td>FastEthernet0/2</td>
</tr>
<tr>
<td>00:E5:22:3C:B0:69</td>
<td>FastEthernet0/3</td>
</tr>
<tr>
<td>00:E5:22:3C:B0:6B</td>
<td>FastEthernet0/4</td>
</tr>
<tr>
<td>00:E5:22:3C:B0:23</td>
<td>FastEthernet0/5</td>
</tr>
<tr>
<td>00:E5:22:3C:B0:25</td>
<td>FastEthernet0/6</td>
</tr>
<tr>
<td>00:E5:22:3C:B0:76</td>
<td>FastEthernet0/7</td>
</tr>
</tbody>
</table>
00:E5:22:3C:B0:7B FastEthernet0/8
00:E5:22:3C:B0:A0 FastEthernet0/9
00:E5:22:3C:B0:88 FastEthernet0/10
00:E5:22:3C:B0:87 FastEthernet0/11

2. 根据安装机柜时交换机端口与机柜托盘位的对应关系，确定机器在机柜中的位置，
连同 MAC 地址表保存成如下文件，文件取名 swtable.txt(用户规划的机柜上架信息表文件
名为 svtable.txt):

<table>
<thead>
<tr>
<th>机柜</th>
<th>服务器</th>
<th>MAC 地址</th>
<th>交换机端口号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>00:E5:22:3C:B0:63</td>
<td>FastEthernet0/0</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>00:E5:22:3C:B0:65</td>
<td>FastEthernet0/1</td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>00:E5:22:3C:B0:67</td>
<td>FastEthernet0/2</td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>00:E5:22:3C:B0:69</td>
<td>FastEthernet0/3</td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td>00:E5:22:3C:B0:6B</td>
<td>FastEthernet0/4</td>
<td></td>
</tr>
<tr>
<td>1-6</td>
<td>00:E5:22:3C:B0:23</td>
<td>FastEthernet0/5</td>
<td></td>
</tr>
<tr>
<td>1-7</td>
<td>00:E5:22:3C:B0:2B</td>
<td>FastEthernet0/6</td>
<td></td>
</tr>
<tr>
<td>1-8</td>
<td>00:E5:22:3C:B0:3B</td>
<td>FastEthernet0/7</td>
<td></td>
</tr>
<tr>
<td>1-9</td>
<td>00:E5:22:3C:B0:7B</td>
<td>FastEthernet0/8</td>
<td></td>
</tr>
<tr>
<td>1-10</td>
<td>00:E5:22:3C:B0:A0</td>
<td>FastEthernet0/9</td>
<td></td>
</tr>
<tr>
<td>1-11</td>
<td>00:E5:22:3C:B0:85</td>
<td>FastEthernet0/10</td>
<td></td>
</tr>
<tr>
<td>1-12</td>
<td>00:E5:22:3C:B0:87</td>
<td>FastEthernet0/11</td>
<td></td>
</tr>
</tbody>
</table>

3. 上架信息表检查程序取名为 macCheck，基于 Linux 系统，可以在个人电脑的虚拟机
或者直接在服务器上运行，代码如下:

```bash
#!/bin/bash
clear
echo "规划上架信息表文件名:" && read MAC_SERVER
echo "保存的交换机 MAC 地址表文件名:" && read MAC_SWITCH
echo -e "\n正在检查，请稍候..."
diff $MAC_SERVER $MAC_SWITCH --side-by-side > /dev/null
if [ $ -eq 0 ];
then
echo -e "所有服务器均已正确安装到机柜中！\n"
else
echo -e "发现异常！安装错误的服务器已在下表中用"|"标出：\n
diff $MAC_SERVER $MAC_SWITCH --side-by-side
fi
```

4. 赋予程序文件可执行权限：chmod 777 macCheck
5. 执行检查程序:
如果机器全部安装正确，程序会返回成功提示；如果有安装错误的服务器，程序会报错并具体指出错误服务器的具体位置。附图 2 中显示 1 机柜第 9 台服务器和 2 机柜第 8 台服务器在预设位置不同，左边表格是正确的上架信息表，右边表格是实际获取的 MAC 地址表，通过对比可知，这两台服务器相反。

6. 对安装错误的服务器进行调整。

[0018] 除说明书所述的技术特征外，均为本专业技术人员的公知技术。
扫描 MAC 地址

确定服务器在机柜中的位置，生成 MAC 地址表

比对上架信息表

是否相同？

否

安装错误

是

安装正确

进行调整

结束

图 1
正在检查，请稍候...
发现异常！安装错误的服务器已在下表中用“|”标出：

<table>
<thead>
<tr>
<th>机号</th>
<th>服务器MAC地址</th>
<th>交换机端口号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>00:ES:22:3C:BB:03</td>
<td>FastEthernet/0</td>
</tr>
<tr>
<td>1-2</td>
<td>00:ES:22:3C:BB:05</td>
<td>FastEthernet/1</td>
</tr>
<tr>
<td>1-3</td>
<td>00:ES:22:3C:BB:07</td>
<td>FastEthernet/2</td>
</tr>
<tr>
<td>1-4</td>
<td>00:ES:22:3C:BB:09</td>
<td>FastEthernet/3</td>
</tr>
<tr>
<td>1-5</td>
<td>00:ES:22:3C:BB:0B</td>
<td>FastEthernet/4</td>
</tr>
<tr>
<td>1-6</td>
<td>00:ES:22:3C:BB:2B</td>
<td>FastEthernet/5</td>
</tr>
<tr>
<td>1-7</td>
<td>00:ES:22:3C:BB:2D</td>
<td>FastEthernet/6</td>
</tr>
<tr>
<td>1-8</td>
<td>00:ES:22:3C:BB:2F</td>
<td>FastEthernet/7</td>
</tr>
<tr>
<td>1-9</td>
<td>00:ES:22:3C:BB:7B</td>
<td>FastEthernet/8</td>
</tr>
<tr>
<td>1-10</td>
<td>00:ES:22:3C:BB:7D</td>
<td>FastEthernet/9</td>
</tr>
<tr>
<td>1-11</td>
<td>00:ES:22:3C:BB:85</td>
<td>FastEthernet/10</td>
</tr>
<tr>
<td>1-12</td>
<td>00:ES:22:3C:BB:87</td>
<td>FastEthernet/11</td>
</tr>
<tr>
<td>2-1</td>
<td>00:ES:22:3C:BB:0B</td>
<td>FastEthernet/12</td>
</tr>
<tr>
<td>2-2</td>
<td>00:ES:22:3C:BB:4A</td>
<td>FastEthernet/13</td>
</tr>
<tr>
<td>2-3</td>
<td>00:ES:22:3C:BB:4C</td>
<td>FastEthernet/14</td>
</tr>
<tr>
<td>2-4</td>
<td>00:ES:22:3C:BB:4E</td>
<td>FastEthernet/15</td>
</tr>
<tr>
<td>2-5</td>
<td>00:ES:22:3C:BB:50</td>
<td>FastEthernet/16</td>
</tr>
<tr>
<td>2-6</td>
<td>00:ES:22:3C:BB:27</td>
<td>FastEthernet/17</td>
</tr>
<tr>
<td>2-7</td>
<td>00:ES:22:3C:BB:29</td>
<td>FastEthernet/18</td>
</tr>
<tr>
<td>2-8</td>
<td>00:ES:22:3C:BB:7B</td>
<td>FastEthernet/19</td>
</tr>
<tr>
<td>2-9</td>
<td>00:ES:22:3C:BB:7D</td>
<td>FastEthernet/20</td>
</tr>
<tr>
<td>2-10</td>
<td>00:ES:22:3C:BB:4A</td>
<td>FastEthernet/21</td>
</tr>
<tr>
<td>2-11</td>
<td>00:ES:22:3C:BB:81</td>
<td>FastEthernet/22</td>
</tr>
<tr>
<td>2-12</td>
<td>00:ES:22:3C:BB:83</td>
<td>FastEthernet/23</td>
</tr>
</tbody>
</table>

图 2