International Bureau

(43) International Publication Date

13 February 2014 (13.02.2014)

(10) International Publication Number WO 2014/023272 A1

- (51) International Patent Classification:

 C08B 37/00 (2006.01) C08G 81/00 (2006.01)

 A61K 31/728 (2006.01)
- A61K 31/728 (2006.01)
 (21) International Application Number:

PCT/CZ2013/000091

(22) International Filing Date:

5 August 2013 (05.08.2013)

(25) Filing Language:

Czech

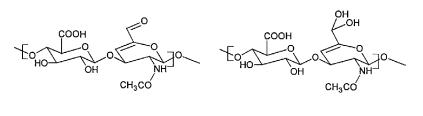
(26) Publication Language:

English

(30) Priority Data:

PV 2012-537 8 August 2012 (08.08.2012)

CZ


- (71) Applicant: CONTIPRO BIOTECH S.R.O. [CZ/CZ]; Dolní Dobrouč 401, 561 02 Dolní Dobrouč (CZ).
- (72) Inventors: BUFFA, Radovan; Kukorelliho 1495/2, 066 01 Humenne (SK). SEDOVA, Petra; Vetrna 674, 560 02 Ceska Trabova (CZ). WOLFOVA, Lucie; Na Rybnicku 27, 746 01 Opava (CZ). BASARABOVA, Ivana; Majova 731/6, 068 01 Medzilaborce (SK). POSPISIL, Robert; Na Okrajich 60, 530 02 Spojil (CZ). HASOVA, Martina; Orlice 117, 561 51 Letohrad (CZ). NESPOROVA, Kristina; Mosnova 22, 615 00 Brno (CZ). VELEBNY, Vladimir; Sadova 1466, 564 01 Zamberk (CZ).

- (74) Agent: DVORAKOVA, Martina; Kania, Sedlak, Smola, Mendlovo namesti 1a, 603 00 Brno (CZ).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: HYALURONIC ACID DERIVATIVE, METHOD OF PREPARATION THEREOF, METHOD OF MODIFICATION THEREOF AND USE THEREOF

X Y

(57) Abstract: The invention relates to the preparation and use of α,β-unsaturated aldehyde of hyaluronan having a double bond in the positions 4 and 5 and an aldehydic group in the position 6 of the glucosamine part of the polysaccharide. The method of preparation is based on dehydration of hyaluronan having an aldehydic group in the position 6 of the glucosamine part of the polysaccharide. Two methods have been described, which are dehydration in a solution or heating in solid state in absence of solvents, bases or other additives. This derivative allows stabilization of conjugates of hyaluronan with amino compounds by means of a multiple bond from the aldehyde side, and therefore, it is possible to effectively immobilize practically any compound containing an amino group to such modified hyaluronan in physiological conditions. In case of using a diamine or compounds or polymers containing three or more amino groups, it is possible to prepare crosslinked hyaluronan derivatives. The described solution brings along a significant advantage not only in the field of carriers of biologically active substances, but also in tissue engineering where crosslinking with biologically acceptable amino compounds in physiological conditions is very much demanded.

Hyaluronic acid derivative, method of preparation thereof, method of modification thereof and use thereof

Field of the Art

The invention relates to the preparation and use of a new hyaluronic acid derivative having a double bond in the positions 4 and 5 of the glucosamine part of the polysaccharide and an aldehydic group in the position 6 the glucosamine part of the polysaccharide chain, according to the formula X, or a hydrated form thereof with a geminal diole in the position 6 of the glucosamine part of the polysaccharide and a retained double bond in the positions 4 and 5 of the glucosamine part of the polysaccharide, according to the formula Y

wherein R may be hydrogen, any metal cation or organic cation.

This unsaturated derivative of hyaluronan aldehyde is suitable for bonding of compounds containing an amino group, mainly in physiologic conditions. In case the bonded compound contains two or more amino groups, crosslinked materials may be prepared.

Prior Art

Hyaluronic acid is a glycosamino glycane composed of two repeating units of β -(1,3)-D-glucuronic acid and β -(1,4)-N-acetyl-D-glucosamine.

Scheme 1. Hyaluronic acid

It is characterized by a high molecular weight of 5.10⁴ to 5.10⁶ g.mol⁻¹ which depends on the way of isolation thereof and on the starting material. This very hydrophilic polysaccharide is water-soluble in the form of a salt within the whole pH range. It is a part of the connective tissue, skin, joint synovial fluid, it plays an important role in a number of biological processes such as hydration, organization of proteoglycanes, cell differentiation, proliferation and angiogenesis. Since this polymer is body-natural, and therefore,

biodegradable, it becomes a suitable substrate for tissue engineering or a carrier of biologically active substances.

Modification of hyaluronic acid to HA-aldehyde

Most often, HA-aldehyde is prepared by a selective oxidation of the native hyaluronan. Oxidation of polysaccharides is a process in which the degree of oxidation of the functional groups of the polysaccharide is changed. In case of formation of an aldehyde the degree of oxidation increases formally by one degree. Carboxylic groups (oxidation by two degrees) form often as well, which may be a by-product of the oxidation to an aldehyde. In case of hyaluronic acid several approaches to the preparation of hyaluronan having an aldehydic group bonded thereto (HA-aldehyd) are known. These hyaluronan derivatives are one of the most used precursors for the preparation of bio-materials from a chemically modified hyaluronan. The main reason is that aldehydic groups are very stable in physiological conditions but at the same time they are still reactive enough for a fast and effective chemical reaction e.g. with amines.

The main methods of preparation of HA-aldehydes are shown in the following scheme 2.

Scheme 2

By far the most frequent method of introduction of an aldehydic group on hyaluronan is oxidation by means of NaIO₄ in water (Scheme 2, structure 1) (Spiro Robert et al.: WO 99/01143, Aeschlimann Daniel, Bulpitt Paul: WO 2007/0149441). This modification leads to opening of the saccharidic cycle and forming of two aldehydic groups.

Another method is oxidation of the primary hydroxylic group in the position 6 of the glucosamine part of the polysaccharide to an aldehyde (Scheme 2, structure 2) by means of the system NaClO/TEMPO in water (Buffa R., Kettou S., Velebný V. et al. WO 2011/069475) or by means of Dess-Martin periodinane in DMSO (Buffa R., Kettou S., Velebný V. et al. WO 2011/069474). As opposed to the structure 1, the aldehydic group in this position maintains the rigidity of the polymer chain.

An interesting method of introduction of an aldehydic group on hyaluronan is the possibility of bonding this group via a linker (Scheme 2, structure 3). There are various approaches possible here, such as introducing a vicinal diol on the carboxylic group of hyaluronan via an amide and the subsequent oxidation of the diol by means of NaIO₄ which gives rise to an aldehyde bonded via a linker (Hilborn J. et al: WO 2010/138074). This strategy may be advantageous consisting in that the aldehydic group is sterically more accessible for optional further modifications.

Another patent application (Aeschlimann Daniel and Bulpitt Paul: WO 2007/0149441) mentions the possibility to prepare HA-aldehyde by means of reduction of the carboxylic group of hyaluronan, using the agent 9-BBN (9-borabicyclo[3,3,1]nonan). It results in hyaluronan having an aldehydic group in the position 6 of the glucuronic part of the polysaccharide (Scheme 2, structure 4).

Condensation of HA-aldehyde with N-nucleophiles

The main application advantage of the condensation of HA-aldehydes with *N*-nucleophiles (amines) is that it may be carried out in physiological conditions. Generally, this reaction is described by the following scheme 3:

Scheme 3.

$$H_2N \longrightarrow X$$
 $HA - CHO \longrightarrow HA - CH = N - X$

The hydrolytic stability of the resulting imine –CH=N- linkage depends to a great extent on the character of the group X. Provided that X is an atom which is not bearing any free electron pair, such as -CH₂- group, hydrolytically very unstable imine HA-CH=N-CH₂- is formed. Provided that X is an atom which is bearing a free electron pair, a hydrolytically more stable conjugate is formed (oxime HA-CH=N-O-, hydrazone HA-CH=N-NH-, semicarbazone HA-CH=N-NH-CO- and the like) in which the imine bond –CH=N- is stabilized by conjugation with the free electron pair of the atom X. Many patents are known that disclose bonding of amines having the general formula NH₂-X-, wherein X is nitrogen or oxygen, to hyaluronan oxidized to an aldehyde, and where the final materials are formed at

physiologically acceptable conditions so that they are applicable for a wide range of biomedicine applications. The recent ones include the patent (Bergman K., et al: WO 2009/108100) where materials based on hyaluronic acid modified by electrophilic groups such as aldehyde, maleinimide, acrylate, acrylamide, methacrylate, methacrylamide, vinylsulphone and aziridine are claimed in general. Hydrazides, semicarbazides, thiosemicarbazides, aminooxy, thiol and β -aminothiol groups are mentioned as crosslinking nucleophiles. Another patent application (Hilborn J. et al: WO 2010/138074) is similar and discloses bonding of N, S or at the same time N and S nucleophiles directly to hyaluronan oxidized to an aldehyde by means of oxidation with sodium periodate.

In case X is an aliphatic carbon (Scheme 3), it is generally known that the resulting imines are not hydrolytically stable (the bond -C=N- doesn't have any partner for conjugation) and reversibly convert to the original aldehyde and amine (Buffa R., Kettou S., Velebný V. et al. WO 2011/069474). The situation is described in the Scheme 4.

Scheme 4

Another possibility how to stabilize said imines is to extend the conjugation from the other side, i.e. from the aldehyde side, which means providing the resulting imine with the conjugation having a multiple –C=C- bond. The general reaction is shown in Scheme 5.

Scheme 5.

This approach is mentioned very rarely in literature, e.g. for reactions of aromatic aldehydes with amines, forming the so-called Schiff bases, where the stability is supported by the conjugation with an aromatic cycle Ar-CHO + H_2N-R \rightarrow Ar-CH=N-R. However, in case of polysaccharides or polymers in general, no analogous example has been found. In such a modification of polymers, it would be necessary to introduce an aromatic group or, generally, any conjugated multiple bonds via a linker on the aldehyde, which is a technological complication and the biocompatibility of the material is not guaranteed. However, this method points to another potential complication. In case of presence of an aromatic system or more

conjugated multiple bonds the material may absorb in the visible region already, therefore, the compound will be coloured which generally is not desirable (a possible photosensibility, complications in analytics in *in vitro* tests).

Summary of the Invention

The subject-matter of the invention is hyaluronic acid of the general structural formula **X** or **Y**, which has some of its glucosamine cycles of the polysaccharide modified with a double bond in the positions 4 and 5 and at the same time an aldehydic group is present, or geminal diol (structure **Y**) in the position 6 of the glucosamine part of the polysaccharide

wherein R may be hydrogen, any metal cation or organic cation. Preferably, said derivative has the molecular weight within the range of 1 to 500 kDa. R is a sodium, potassium, calcium cation or an organic cation selected from the group comprising tetra C_1 - C_6 alkylammonium, protonized C_1 - C_6 alkylamine, preferably tetrabutyl ammonium or protonized triethylamine.

This solution allows stabilizing the hyaluronan conjugates with amino compounds by means of a multiple bond from the side of the aldehyde, so that practically any compound containing an amino group may be bonded to such modified hyaluronan in physiological conditions.

This is an important difference compared to saturated aldehydes of hyaluronan which are in physiological conditions able to strongly bond the compounds of the general formula H_2N-X- , wherein X is an atom bearing a free electron pair, usually oxygen or nitrogen. Since only very few natural substances contain the grouping H_2N-X- , the solution described in this patent application brings along a great advantage not only as a prospective carrier of

biologically active substances but also in tissue engineering where very often hyaluronan derivatives crosslinked in physiological conditions with biologically acceptable amino compounds are used.

Further, the invention relates to the method of preparation of the derivative according to the structural formula X or Y, wherein first hyaluronic acid is oxidized to a HA-aldehyde in the position 6 of the glucosamine part (hereinafter referred to as Step 1), and then HA-aldehyde is dehydrated either in solution or by a simple heating in absence of solvents, bases or other additives (hereinafter referred to as Step 2). These two steps are explained in detail below:

Step 1: Selective oxidation of the primary hydroxyl group of hyaluronic acid in the position 6 of the glucosamine part of the polysaccharide to an aldehyde. The reaction may be carried out by means of e.g. the oxidation system 2,2,6,6-tetramethyl-1-piperidinyloxyl radical R¹-TEMPO / NaClO in water, wherein R¹ is hydrogen or the group *N*-acetyl:

This step takes place preferably in water at the temperature -5 to 10 °C, the molar amount of NaClO is within the range of 0,05 to 0,7 eq. and the molar amount of R¹-TEMPO is within the range of 0,005 to 0,2 eq. with respect to a dimer of hyaluronic acid. The starting hyaluronic acid may have the molecular weight within the range of 10 kDa to 5 MDa.

Step 2:

Variant 1: Dehydration of the HA-aldehyde in a polar aprotic solvent and water at the temperature of 30 to 80 °C, preferably at 50 to 60 °C, or

Variant 2: Heating of the pure saturated HA-aldehyde in dry state to the temperature of 50 to 100 °C, preferably 70 to 80 °C.

The first variant is dehydration in an aqueous-organic medium, wherein the organic solvent is water-miscible and the volume ratio solvent/water is within the range of 3/1 to 1/2.

Preferably, in this step bases having limited nucleophilic properties, such as organic bases, e.g. triethylamine or *N*-diisopropyl-*N*-ethylamine, or inorganic bases, e.g. Ca(OH)₂ may be used. The amount of the base in the reaction is 0.01 - 20 equivalents with respect to a hyaluronan dimer, preferably 5 - 10 equivalents. The base may support elimination by cleaving a proton in alpha position of the aldehyde (position 5 of the cycle) and the resulting carbanion eliminates the hydroxy group in the position 4, forming a multiple bond. As organic solvents, aprotic polar solvents miscible with water may be used, preferably DMSO or sulfolan. The reaction is preferably carried out for 12 to 150 hours.

The second, technologically very attractive variant of realizing step 2 is to heat the starting saturated aldehyde in its dry state in absence of any additives to a higher temperature, preferably to the temperature of 70 to 80 °C for 12 hours to 10 days, preferably 4 to 5 days.

Further, the invention relates to the use of the unsaturated HA-aldehyde for bonding of amines. More specifically, the invention relates to the method of modification of the hyaluronic acid derivative according to the formula X or Y, wherein the derivative reacts with an amine according to the general formula H_2N-R^2 , wherein R^2 is an alkyl, aromatic, heteroaromatic, linear or branched chain $C_1 - C_{30}$, optionally containg N, S or O atoms. Said amine may be e.g. an amino acid, peptide or polymer containing a free amino group, wherein such polymer may be e.g. deacetylated hyaluronic acid, hyaluronic acid with an amino group bonded thereto via a linker, or gelatin, or another biologically acceptable polymer. The amount of amine, amino acid, peptide or free amino groups in the polymer is preferably within the range of 0.05 to 2 equivalents with respect to a hyaluronan dimer.

No specific conditions are required for the preparation of said conjugates. The reaction may take place in water, in phosphate buffer or in the system water-organic solvent at the temperature within the range of 20 to 60 °C for 10 minutes to 150 hours. The organic solvent may be selected from the group including water-miscible alcohols, especially isopropanol or ethanol, and water-miscible polar aprotic solvents, especially dimethyl sulfoxide, wherein the water content in the mixture is at least 50 % vol. The reaction proceeds smoothly in physiological conditions, such as in phosphate buffer at pH = 7.4 and the temperature 37 °C, with a wide variety of amines, from simple amino acids to complicated peptides. In these conditions it is also possible to bond hydrazines, hydroxylamines, hydrazides, semicarbazides or thio semicarbazides without any problem. In case compounds containing two or more amino groups are bound, it is possible to prepare insoluble crosslinked derivatives having a wide variety of viscoelastic properties.

COONa
$$H_2N$$
 NH_2 H_2O H_3CO H_4O H_4O

The higher stability of the bond of amine and unsaturated HA-aldehyde, compared to the saturated analogue thereof, allows preparation of more stable and better crosslinked insoluble biomaterials based on hyaluronan. This statement is described in greater detail in the part Examples, Example 21, wherein a saturated and an unsaturated derivative of HA-aldehyde having a similar substitution degree and molecular weight are compared in terms of the final rheologic properties for crosslinking with deacetylated hyaluronan.

Compared to the analogues mentioned in the part "Prior Art", the suggested method of modification is more advantageous in that it allows stronger bonding of considerably broader scale of amino group-containing compounds to hyaluronic acid in physiological conditions. This fact is a great advantage for application especially in tissue engineering where many biocompatible crosslinking amino-linkers may be used in physiological conditions even in presence of live cells. The modified derivatives may be used e.g. for the preparation of crosslinked materials and hydrogels, for the preparation of materials for tissue engineering or for biomedicinal applications. For crosslinking, also polysaccharides or amino groupscontaining polymers in general may be used. Preferably, said invention may be used in the field of carriers of biologically active substances as well. The devised method allows immobilization of a wider range of biologically active amines (e.g. peptides) on hyaluronan, which may then be naturally released in native (active) form thereof. It has been found out that at a lower pH the bond amine - unsaturated HA-aldehyde is hydrolytically less stable and therefore the prepared conjugates may be used as pH-responsive materials as well (carriers, gels...). It has been demonstrated that the unsaturated HA-aldehyde alone is not cytotoxic, and therefore, the conjugates thereof are a suitable candidate for various biomedicinal applications. Even though a person skilled in the art could expect that the conjugation from the aldehyde side with the -C=C- multiple bond would lead to a higher toxicity because e.g. acrolein CH₂=CH-CHO is a highly toxic and irritative substance, it is not so. The derivative according to the invention has a double bond right within the structure of the polymer

(without any linker) and the final substrate has not exhibited any toxic properties. The derivatives according to the formula X or Y may be used for the preparation of materials having an anticancer effect, as carriers of biologically active substances in cosmetics and pharmacy or as carriers of biologically active substances with controlled release by means of changing the pH value.

The realization of the solution described in this application is not technologically complicated and does not require the use of expensive chemicals, solvents or isolation processes.

Brief Description of Drawings

Figure 1 represents the elastic material prepared according to Example 20.

Preferred Embodiments of the Invention

DS = substitution degree = 100 % * (molar amount of the bound substituent or modified dimer) / (molar amount of all polysaccharide dimers)

The term equivalent (eq) as used herein means a hyaluronic acid dimer, if not indicated otherwise. The percentages are weight percentages, if not indicated otherwise.

The molecular weight of the initial hyaluronic acid (source: CPN spol. s r.o., Dolní Dobrouč, CZ) is weight average and was determined by means of SEC-MALLS.

Example 1 Preparation of HA-aldehyde oxidized in the position 6 of the glucosamine part.

Oxidation of hyaluronic acid

Aqueous solution of NaClO (0.5 eq) was gradually added to a 1-percent aqueous solution of hyaluronan (1 g, 200 kDa) containing NaCl 1%, KBr 1%, TEMPO (0.01 eq) and NaHCO₃ (20 eq.), under nitrogen atmosphere. The mixture was stirred for 12 hours at the temperature of -5 °C, then 0.1 g of ethanol was added and the mixture was stirred for another 1 hour. The resulting solution was then diluted by distilled water to 0.2% and dialyzed against the mixture (0.1% NaCl, 0.1% NaHCO₃) 3-times 5 litres (once a day) and against distilled water 7-times 5 litres (twice a day). Thereafter, the final solution was evaporated and analysed.

DS 10 % (determined by NMR)

 1 H NMR (D₂O) δ 5.26 (s, 1H, polymer-CH(OH)₂)

 $HSQC (D_2O)$ cross signal 5.26 ppm(1H) – 90ppm(^{13}C) (polymer- $CH(OH)_2$)

Example 2 Dehydration of HA-aldehyde

6.7 ml of DMSO and base DIPEA (5 eq) were added to a three-percent solution of HA-aldehyde (0.1 g, oxidation degree DS=10%, Example 1) in water. The mixture was stirred for 72 hours at the temperature of 40 °C. The final solution was then precipitated by means of the mixture isopropanol/hexane and the solid fraction was dried in vacuum.

DS 6 % (determined by NMR), Mw = 110kDa (determined by SEC MALLS)

¹H NMR (D₂O) δ 9.24 (s, 1H, -CH=O), 6.32 (m, 1H, -CH=C-CH=O)

UV-Vis (D₂O) 252nm, π - π * transition of α , β -unsaturated aldehyde

Example 3 Dehydration of HA-aldehyde

7.5 ml of DMSO and base DIPEA (5 eq) were added to a four-percent solution of HA-aldehyde (0.1 g, oxidation degree DS=10 %, Example 1) in water. The mixture was stirred for 72 hours at the temperature of 50 °C. The final solution was then precipitated by means of the mixture isopropanol/hexane and the solid fraction was dried in vacuum.

DS 5 % (determined by NMR, more details in Example 2)

Example 4 Dehydration of HA-aldehyde

2.5 ml of DMSO and base DIPEA (5 eq) were added to a two-percent solution of HA-aldehyde (0.1 g, oxidation degree DS=10 %, Example 1) in water. The mixture was stirred for 72 hours at the temperature of 50 °C. The final solution was then precipitated by means of the mixture isopropanol/hexane and the solid fraction was dried in vacuum.

DS 2 % (determined by NMR, more details in Example 2)

Example 5 Dehydration of HA-aldehyde

6.7 ml of sulfolan were added to a three-percent solution of HA-aldehyde (0.1 g, oxidation degree DS=10 %, Example 1) in water. The mixture was stirred for 72 hours at the temperature of 60 °C. The final solution was then precipitated by means of the mixture isopropanol/hexane and the solid fraction was dried in vacuum.

DS 1 % (determined by NMR, more details in Example 2)

Example 6 Dehydration of HA-aldehyde

6.7 ml of sulfolan and base Et₃N (5 eq) were added to a three-percent solution of HA-aldehyde (0.1 g, oxidation degree DS=10 %, Example 1) in water. The mixture was stirred for 72 hours at the temperature of 50 °C. The final solution was then precipitated by means of the mixture isopropanol/hexane and the solid fraction was dried in vacuum.

DS 5 % (determined by NMR, more details in Example 2)

Example 7 Dehydration of HA-aldehyde

6.7 ml of sulfolan and base DIPEA (2 eq) were added to a three-percent solution of HA-aldehyde (0.1 g, oxidation degree, Example 1) in water. The mixture was stirred for 12 hours at the temperature of 80 °C. The final solution was then precipitated by means of the mixture isopropanol/hexane and the solid fraction was dried in vacuum.

DS 2 % (determined by NMR, more details in Example 2)

Example 8 Dehydration of HA-aldehyde

6.7 ml of sulfolan and base Ca(OH)₂ (1 eq) were added to a three-percent solution of HA-aldehyde (0.1 g, oxidation degree, Example 1) in water. The mixture was stirred for 150 hours at the temperature of 30 °C. The final solution was then precipitated by means of the mixture isopropanol/hexane and the solid fraction was dried in vacuum.

DS 2 % (determined by NMR, more details in Example 2)

Example 9 Dehydration of HA-aldehyde

HA-aldehyde (0.1 g, oxidation degree DS = 10 %, Example 1) was heated in its solid state for 5 days at $80 \, ^{\circ}$ C. Then it was analysed by means of NMR.

DS 3 % (determined by NMR, more details in Example 2)

Example 10 Dehydration of HA-aldehyde

HA-aldehyde (0.1 g, oxidation degree DS=10 %, Example 1) was heated in its solid state for 12 hours at 100 °C. Then it was analysed by means of NMR.

DS 2 % (determined by NMR, more details in Example 2)

Example 11 Dehydration of HA-aldehyde

HA-aldehyde (0.1 g, oxidation degree DS=10 %, Example 1) was heated in its solid state for 10 days at 50 °C. Then it was analysed by means of NMR.

DS 2 % (determined by NMR, more details in Example 2)

Example 12 Bonding of amines to α, β -unsaturated HA-aldehyde

n-butylamine (2 eq) was added to a one-percent solution of unsaturated HA-aldehyde (0.1 g, substitution degree DS=6 %, Example 2) in 0.1M aqueous phosphate buffer at pH of 7.4. The mixture was stirred for 5 hours at the temperature of 37 °C. The final solution was then precipitated by means of the mixture isopropanol/hexane and the solid fraction was dried in vacuum.

DS 5 % (determined by NMR)

1
H NMR (D₂O) δ 7.74 (s, 1H, -C*H*=N-Bu), 5.68 (m, 1H, -C*H*=C-CH=N-Bu)
HSQC (D₂O) cross signal 7.74 ppm(1 H) – 158ppm(13 C) -*CH*=N-Bu cross signal 5.68 ppm(1 H) – 112ppm(13 C) -*CH*=C-CH=N-Bu

Example 13 Bonding of amines to α, β -unsaturated HA-aldehyde

n-butylamine (0.05 eq) was added to a one-percent solution of unsaturated HA-aldehyde (0.1 g, substitution degree DS=6 %, Example 2) in 0.1M aqueous phosphate buffer at pH of 7.4. The mixture was stirred for 150 hours at the temperature of 20 °C. The final solution was then precipitated by means of the mixture isopropanol/hexane and the solid fraction was dried in vacuum.

DS 2 % (determined by NMR, more details in Example 12)

Example 14 Bonding of amines to α,β-unsaturated HA-aldehyde

n-butylamine (0.3 eq) was added to a one-percent solution of unsaturated HA-aldehyde (0.1 g, substitution degree DS=6 %, Example 2) in water. The mixture was stirred for 10 minutes at the temperature of 60 °C. The final solution was then precipitated by means of the mixture isopropanol/hexane and the solid fraction was dried in vacuum.

DS 5 % (determined by NMR, more details in Example 12)

Example 15 Bonding of lysine to α,β-unsaturated HA-aldehyde

Lysine (0.3 eq) was added to a one-percent solution of unsaturated HA-aldehyde (0.1 g, substitution degree DS=6 %, Example 2) in 0.1M aqueous phosphate buffer at pH of 7.4. The mixture was stirred for 24 hours at the temperature of 20 °C. The final solution was then precipitated by means of the mixture isopropanol/hexane and the solid fraction was dried in vacuum.

DS 5 % (determined by NMR)

¹H NMR (D₂O) δ 7.76 (s, 1H, -CH=N-lysine), 5.65 (m, 1H, -CH=C-CH=N-lysine)

Example 16 Bonding of pentapeptide pal-KTTKS (palmitoyl-Lys-Thr-Thr-Lys-Ser) to α,β -unsaturated HA-aldehyde

5 ml of IPA and then the solution of substituted pentapeptide pal-KTTKS (0.1 eq) in 5 ml of isopropylalcohol were added to a one-percent solution of unsaturated HA-aldehyde (0.1 g, substitution degree DS=6 %, Example 2) in 0.1M aqueous phosphate buffer at pH of 7.4. The mixture was stirred for 72 hours at the temperature of 20 °C. The final solution was evaporated in a rotating vacuum evaporator to one third of the volume and then it was precipitated by means of the mixture of isopropanol/hexane and the solid fraction was dried in vacuum.

DS 1 % (determined by NMR)

 1 H NMR (D₂O) δ 7.75 (s, 1H, -CH=N-peptide), 5.66 (m, 1H, -CH=C-CH=N-peptide)

Example 17 Crosslinking of α,β-unsaturated HA-aldehyde by lysine

One-percent solution of lysine in water (0.1 eq) was added to a five-percent solution of unsaturated HA-aldehyde (0.1 g, substitution degree DS=6 %, Example 2) in 0.1M aqueous phosphate buffer at pH of 7.4. The mixture was stirred for 24 hours at the temperature of 20 °C. An increase of viscosity of the final solution was observed.

Example 18 Crosslinking of α,β-unsaturated HA-aldehyde by dihydrazide adipate

One-percent solution of dihydrazide adipate in water (0.1 eq) was added to a five-percent solution of unsaturated HA-aldehyde (0.015 g, substitution degree DS=6 %, Example 2) in 0.1M aqueous phosphate buffer at pH of 7.4. The mixture was stirred for 24 hours at the temperature of 20 °C. An increase of viscosity of the final solution was observed.

Example 19 Preparation of deacetylated hyaluronan

65 ml of sulfolan were added to a three-percent solution of hyaluronan (1g, 830kDa) in hydrazine hydrate containing 30 g of hydrazine sulphate and the mixture was heated for 48 hours at 70 °C. The final solution is diluted by distilled water to 0.2% and dialysed against the mixture (0.1% NaCl, 0.1% NaHCO₃) 3-times 5 litres (once a day) and against distilled water 7-times 5 litres (twice a day). The final solution was then evaporated and analysed.

DS 32 % (determined by NMR), Mw 37 kDa (determined by SEC-MALLS)

 1 H NMR (1% NaOD in D_{2} O)

 δ 2.75 (s, 1H, -C*H*-NH₂)

Example 20 Crosslinking of α,β -unsaturated HA-aldehyde by means of deacetylated hyaluronan

A three-percent solution of deacetylated hyaluronan (0.015 g, Example 19) in 0.1M aqueous phosphate buffer at pH of 7.4 (0.1 eq) was added to a three-percent solution of unsaturated HA-aldehyde (0.025 g, substitution degree DS=6 %, Example 2) in 0.1M aqueous phosphate buffer at pH of 7.4. The mixture was stirred for 24 hours at the temperature of 20 °C. An increase of viscosity of the final solution was observed.

Example 21 Comparison of mechanical and visco-elastic properties of hydrogels based on the crosslinked α, β -unsaturated HA-aldehyde and the crosslinked saturated HA-aldehyde.

- crosslinking by deacetylated hyaluronan

Material 1: Unsaturated HA-aldehyde (0.06 g, DS = 6 %, Mw = 110 kDa, Example 2) 3% solution in PBS pH 7.4 + deacetylated hyaluronan (0.02 g, Example 19) 3% solution in PBS pH 7.4.

Material 2: Saturated HA-aldehyde (0.06 g, DS = 7 %, Mw = 100 kDa) 3% solution in PBS pH 7.4 + deacetylated hyaluronan (0.02 g, Example 19) 3% solution in PBS pH 7.4.

Hydrogel samples were prepared from the above materials by mixing and a thorough homogenization of both components thereof (3% solution of unsaturated HA-aldehyde in PBS / 3% solution of saturated HA-aldehyde and 3% solution of deacetylated hyaluronan in PBS). The samples were always left to mature for 240 minutes at room temperature, thereafter a homogenous transparent gel is formed. All samples were of the same proportions and were measured at constant laboratory conditions (temperature, pressure, humidity).

Mechanical properties of the samples were determined. More specifically, Compressive Young's modulus indicating the hardness / elasticity of the material, Modulus of Toughness indicating the resistence of the sample and what energy the material is able to absorb without occurring any permanent deformation. Further, the Compressive stress at Break indicating the maximum load that the material is able to absorb without occurring any permanent deformation, and, within the framework of visco-elastic properties, the Storage modulus in Shear loss angle.

Material Number	Compressive Young's modulus (kPa) (kPa)	Compressive stress at Break (kPa)	Modulus of Toughness (J/m ³)	Storage modulus (Pa)	Shear loss angleδ (°)
1	0.844	382.06	29690	160	2.36
2	0.482	309.29	19488	55	10.3

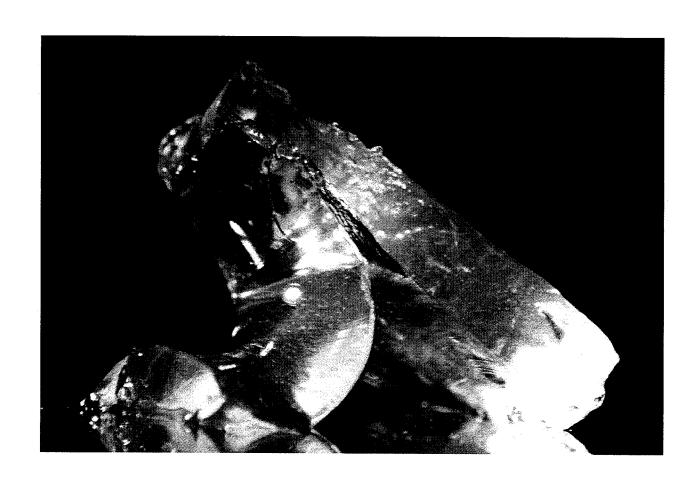
The results achieved within this Example demonstrate the advantageousness of the use of the unsaturated HA-aldehyde compared to the saturated HA-aldehyde with regard to the preparation of more rigid and more tenacious (better crosslinked) materials suitable for tissue engineering.

CLAIMS

1. Hyaluronic acid derivative modified by a double bond in the positions 4 and 5 of the glucosamine part of the polysaccharide and at the same time oxidized to an aldehyde in the position 6 of the glucosamine part of the polysaccharide, according to the structural formula X, or a hydrated form thereof according to the structural formula Y

wherein R is hydrogen, any metal cation or an organic cation.

- 2. The hyaluronic acid derivative according to claim 1, characterized by that it has the molecular weight within the range of 1 to 5.10⁵ g.mol⁻¹ and R is a sodium, potassium, calcium cation or an organic cation which is selected from the group comprising tetra C₁-C₆-alkylammonium, protonized C₁-C₆-alkylamine, preferably tetrabutylammonium or protonized triethyl amine.
- 3. A method of preparation of the hyaluronic acid derivative defined in claim 1 or 2 characterized by that the hyaluronic acid oxidized to an aldehyde in the position 6 of the glucosamine part is dehydrated in the positions 4 and 5 of the glucosamine part in the mixture of water/polar aprotic solvent at the temperature 30 to 80 °C, preferably at the temperature of 50 to 60 °C.
- 4. The method of preparation according to claim 3 **characterized by that** the mixture further contains a base in the amount of 0.01 to 20 equivalents, preferably 5 to 10 equivalents, with respect to a hyaluronic acid dimer, wherein the base is selected from the group comprising organic bases, for example triethylamine or disopropyl ethylamine, or inorganic bases, for example Ca(OH)₂.
- 5. The method of preparation according to claim 3 **characterized by that** the aprotic solvent is water miscible and includes for example DMSO or sulfolan, and the volume ratio solvent/water is within the range of 3/1 to 1/2.


6. The method of preparation according to any of claims 3 to 5 **characterized by that** the reaction proceeds for 12 to 150 hours.

- 7. A method of preparation of the hyaluronic acid derivative defined in claim 1 or 2 characterized by that the hyaluronic acid oxidized to an aldehyde in the position 6 of the glucosamine part is dehydrated in the positions 4 and 5 of the glucosamine part in solid phase, without the use of solvents or other additives, by heating to the temperature of 50 to 100 °C, preferably 70 to 80 °C for 12 hours to 10 days, preferably 4 to 5 days.
- 8. The method of preparation according to any of claims 3 to 7 **characterized by that** the initial hyaluronic acid has the molecular weight within the range of 1.10⁴ g.mol⁻¹ to 5. 10⁶ g.mol⁻¹.
- 9. A method of modification of the hyaluronic acid derivative defined in claim 1 or 2 characterized by that the derivative reacts with an amine of the general formula H_2N-R^2 wherein R^2 is a C_1-C_{30} alkyl, aromatic, heteroaromatic, linear or branched chain, optionally containing N, S or O atoms.
- 10. The method of modification of the hyaluronic acid derivative according to claim 9 characterized by that the derivative reacts with an amino acid or a peptide.
- 11. The method of modification of the hyaluronic acid derivative according to claim 9 characterized by that the derivative reacts with a polymer which contains a free amino group.
- 12. The method of modification of the hyaluronic acid derivative according to claim 11 characterized by that the polymer is for example deacetylated hyaluronic acid, hyaluronic acid with an amino group bonded thereto via a linker, or gelatin, or another biologically acceptable polymer.
- 13. The method of modification according to any of claims 9 to 12 **characterized by that** the amount of amine, amino acid, peptide or free amino groups of the polymer is within the range of 0.05 to 2 equivalents with respect to a hyaluronan dimer.
- 14. The method of modification according to any of claims 9 to 13 characterized by that

 the reaction with the amine, amino acid, peptide or polymer containing a free amino

group takes place in water, in phosphate buffer or in a system water-organic solvent at the temperature within the range of 20 to 60 °C for 10 minutes to 150 hours.

- 15. The method of modification according to claim 14 **characterized by that** the organic solvent is selected from the group comprising water-miscible alcohols, especially isopropanol or ethanol, and water-miscible polar aprotic solvents, especially dimethyl sulfoxide, wherein the content of water in the mixture is at least 50 % by volume.
- 16. A use of the derivatives defined in any of claims 1 to 2 for the preparation of materials having an anticancer effect.
- 17. A use of the derivatives defined in any of claims 1 to 2 as carriers of biologically active substances in cosmetics and pharmacy or as carriers of biologically active substances with controlled release by means of changing the pH value.
- 18. A use of the derivatives prepared by the method defined in any of claims 9 to 17 for the preparation of crosslinked materials and hydrogels, for the preparation of materials for tissue engineering or for biomedicinal applications.

Obr. 1

INTERNATIONAL SEARCH REPORT

International application No PCT/CZ2013/000091

A. CLASSIFICATION OF SUBJECT MATTER INV. C08B37/00 A61K3 ÎNV. A61K31/728 C08G81/00 ADD. According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C08B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPO-Internal, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category* Citation of document, with indication, where appropriate, of the relevant passages WO 2011/069475 A2 (CONTIPRO C A S [CZ]; BUFFA RADOVAN [SK]; KETTOU SOFIANE [CZ]; Α 1-18 POSPISIL) 16 June 2011 (2011-06-16) cited in the application the whole document WO 2011/069474 A2 (CONTIPRO C A S [CZ]; BUFFA RADOVAN [SK]; KETTOU SOFIANE [CZ]; 1 - 18Α POSPISIL) 16 June 2011 (2011-06-16) cited in the application the whole document X See patent family annex. Further documents are listed in the continuation of Box C. Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 18 October 2013 31/10/2013 Name and mailing address of the ISA/ Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016 Zellner, Armin

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/CZ2013/000091

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 2011069475 A2	16-06-2011	CZ 302503 B6 EP 2510016 A2 JP 2013513672 A KR 20120095463 A US 2012264913 A1 WO 2011069475 A2	22-06-2011 17-10-2012 22-04-2013 28-08-2012 18-10-2012 16-06-2011
WO 2011069474 A2	16-06-2011	CZ 302504 B6 EP 2510017 A2 JP 2013513671 A KR 20120091449 A US 2012245323 A1 WO 2011069474 A2	22-06-2011 17-10-2012 22-04-2013 17-08-2012 27-09-2012 16-06-2011