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State variables, health parameters, and actuators

State variables Health parameters Actuators

Nf—fanspeed  Fan efficiency W - fuel flow

Nc — core spced  Fan flow capacity* VSV — variable stator vane
LPC efficiency* VBV —variable bleed valve
LPC flow capacity
HPC cfficiency*

HPC flow capacity*
HPT efficiency*
HPT flow capacity*
LPT efficiency
LPT flow capacity*
* Health parameters sclected as tuners in conventional estimation approach

FIG. 2

Sensed outputs and standard deviation as percent of operating point trim values

Sensed output Standard deviation (%)
Nf — fan speed 0.25%
Nc — core speed 0.25%
P24 — HPC inlet total pressure 0.50%
T24 — HPC inlet total temperature 0.75%
Ps30 — HPC exit static pressure 0.50%
T30 — HPC exit total temperature 0.75%
T48 — Exhaust gas temperature 0.75%

FIG. 3



U.S. Patent

Tuners

e

health

~ parameters

SVD tuner
selection

~ Systematic
tuner
selection

~ Exper. sqr. error

Feb. 26, 2013 Sheet 3 of 7 US 8,386,121 B1
Estimated auxiliary parameters
Auxiliary parameter
T40 — Combustor exit temperature
T50 — LPT exit temperature
Fn — Net thrust
SmLPC — LPC stall margin
FIG. 4
Auxiliary parameter squared estimation errors
Error T40 T50 Fn SmLPC
(°R) CR) (%) (%)
_ Theor.sqr.bias  0.00  561.76 384 3.28
~ Theor.sqr.error 7476 591 .4 Al 382
Exper.sqr.error = 7490 58329 4727 3.60
Theor. sqr. bias 0.00 512.46 4.05 5.28
Theor. variance 65.99 67.21 0.80 1.31
Theor. sqr. error  65.99 579.67 4.86 6.59
Exper. sqr. error 66.20 579.39 4.98 6.76
Theor. sqr. bias 0.00 87.81 10.66 0.95
Theor. variance 17.49 18.55 0.13 0.35
Theor. sgr. error 1749 10635 0.79 1.30
17.61 106.54 0.86 1.35

FIG. 5
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Health parameter % squarcd estimation crrors (nominal noisc)
Error type 2 h2 h3 hd h3 hé h7 h8 h9 hl0 Sum

Estimator

: S i : ‘ 00 197 306 | 1200
Kalman - Theor.variance 073  0.19 080 045 040 068 021 021 034 008 409

filter ~ Theor. squared 200 167 307 166 040 068 096 0210 232 314 1609

Experisquared - - 189160 277 LS9 041, 068057 1 021 213 3051531

Theor. squared bias 242 1.75  3.53 1.90 047 096 1.00 016 247 317 17.81

MAP Theor. vanance 022 027 016 064 069 071 036 036 017 009 368

estimator  Theor. squared 263 202 369 254 116 167 136 052 264 326 2148

Exper. squared 252 189 344 245 114 157 134 051 249 324 2060

FIG. 10
Health parameter % squared estimation errors (reduced noise)

Estimator Error type hi h2 h3 hd h3 ho h7 h8 hy hi0 Sum

~ . Theor squared bias™: 126 148 2728 120 0007000 074,000 197 306 . 1200

Katrmun - Theot: variance 002 000 003 00l 00l 002 000 000 00l 000 0.0

filter * ~ Theor.squared = 129 148 230 122 001 002 074 000 198 306 1210

Expersquared - o143 1410 197 116,001,002 075 0,000 179 .3.08 . 1131

Theor. squared bias 1.26 148 228 122 0.00 000 074 000 197 3.06 12.00

MAP  Theor, variance 0.03 000 004 001 001 002 000 000 001 000 0.3

estimator  Theor. squared 130 148 232 122 001 002 074 000 199 3.06 1214

Exper. squared 1.14 141 198 117 001 002 075 000 179 3.08 11.34

FIG. 11
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1
OPTIMIZED TUNER SELECTION FOR
ENGINE PERFORMANCE ESTIMATION

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims benefit from U.S. Provisional
Patent Application No. 61/247325, entitled “OPTIMAL
TUNER SELECTION,” filed on Sep. 30, 2009, which is
hereby incorporated by reference in its entirety.

BACKGROUND

An emerging approach in the field of aircraft engine con-
trols and health management is the inclusion of real-time
on-board models for the in-flight estimation of engine perfor-
mance variations. This technology, typically based on Kal-
man filter concepts, enables the estimation of unmeasured
engine performance parameters that can be directly utilized
by controls, prognostics and health management applica-
tions. A challenge which complicates this practice is the fact
that an aircraft engine’s performance is affected by its level of
degradation, generally described in terms of unmeasurable
health parameters such as efficiencies and flow capacities
related to each major engine module. Through Kalman filter-
based estimation techniques, the level of engine performance
degradation can be estimated, given that there are at least as
many sensors as parameters to be estimated. However, in an
aircraft engine the number of sensors available is typically
less than the number of health parameters presenting an
under-determined estimation problem. A common approach
to address this shortcoming is to estimate a sub-set of the
health parameters, referred to as model tuning parameters.
While this approach enables on-line Kalman filter-based esti-
mation, it can result in “smearing” the effects of unestimated
health parameters onto those which are estimated, and in turn
introduce error in the accuracy of overall model-based per-
formance estimation applications.

Recently, a new method has been presented based on sin-
gular value decomposition that selects a model tuning param-
eter vector of low-enough dimension to be estimated by a
Kalman filter. The model tuning parameter vector, defined as
g, was constructed as a linear combination of all health
parameters, h, given by the equation

q=V*h, ey
where the transformation matrix, V*, is selected applying
singular value decomposition to capture the overall effect of
the larger set of health parameters on the engine variables as
closely as possible in the least squares sense.

SUMMARY

A new linear point design technique which applies a sys-
tematic approach to optimal tuning parameter selection is
presented. This technique defines a transformation matrix,
V*, used to construct a tuning parameter vector which is a
linear combination of all health parameters, and of low
enough dimension to enable Kalman filter estimation. The
new approach optimally selects the transformation matrix,
V*, to minimize the theoretical steady-state estimation error
in the engine performance parameters of interest. There is no
known closed form solution for optimally selecting V* to
satisfy this objective. Therefore, a multivariable iterative
search routine is applied to perform this function.
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2
BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Objects and advantages together with the operation of the
invention may be better understood by reference to the
detailed description taken in connection with the following
illustrations, wherein:

FIG. 1 illustrates a flow chart for performing an iterative
optimal search;

FIG. 2 illustrates a table of state variables, health param-
eters, and actuators;

FIG. 3 illustrates a table of sensed outputs and standard
deviation as percent of operating point trim values;

FIG. 4 illustrates a table of estimated auxiliary parameters;

FIG. 5 illustrates a table of auxiliary parameter squared
estimation errors;

FIG. 6 illustrates a first graph of tuner comparisons;

FIG. 7 illustrates a second graph of tuner comparisons;

FIG. 8 illustrates a third graph of tuner comparisons;

FIG. 9 illustrates a fourth graph of tuner comparisons;

FIG. 10 illustrates a table of health parameter squared
estimation errors at nominal noise levels;

FIG. 11 illustrates a table of health parameter squared
estimation errors at reduced noise levels; and

FIG. 12 illustrates a graph of tuner impact on estimator
response.

DETAILED DESCRIPTION

Reference will now be made in detail to exemplary
embodiments of the present invention, examples of which are
illustrated in the accompanying drawings. It is to be under-
stood that other embodiments may be utilized and changes
may be made without departing from the respective scope of
the present invention.

The following includes definitions of selected terms
employed herein. The definitions include various examples
and/or forms of components that fall within the scope of a
term and that may be used for implementation. The examples
are not intended to be limiting. Both singular and plural forms
of terms may be within the definitions.

A A Ay System Matrices

B, By, By,

C,Cy, Cyy

D,F Fy, Fy

G,L,M,N

C-MAPSS Commercial Modular Aero-Propulsion
System Simulation

Fn Net Thrust

Estimation bias matrices
Matrix which relates health parameter
effects to steady-state engine outputs

Go> G> G G2
H

HPC High pressure compressor
HPT High pressure turbine
I Identity matrix
K., Kalman filter gain
LPC Low pressure compressor
LPT Low pressure turbine
MAP Maximum a posteriori
Nf Fan speed
Ne Core speed
P, P, Health & auxiliary parameter covariance matrices
P24 HPC inlet total pressure
Ps30 HPC exit static pressure
i . P Covariance matrices of estimated parameters
[N SRR R AN
P, Kalman filter state estimation covariance matrix
Q, Qi Quy Process noise covariance matrices
R Measurement noise covariance matrix
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-continued
SmLPC LPC Stall margin
T24 HPC inlet total temperature
T30 HPC exit total temperature
T40 Combustor exit temperature 5
T48 Exhaust gas temperature
T50 LPT exit temperature
v* Transformation matrix relating hy to q;
VsV Variable stator vane
VBV Variable bleed valve
Wi Fuel flow 10
W, Auxiliary parameter weighting matrix
h, Health parameter vector
Qs Kalman filter tuning parameter vector
Uy Actuator command vector
Vi Measurement noise vector
Wi Wit Wan ke Process noise vectors 15
X State vector
p Augmented state vector (xk and hk)
Rege Reduced order state vector (xk and gk)
Vi Vector of measured outputs
7z Vector of unmeasured (auxiliary) outputs
Eogk residual vector (estimate minus its expected value)
Subscripts 20
k Discrete time step index
xh Augmented state vector (x and h)
Xq Reduced order state vector (x and q)
ss Steady-state value
Superscripts 25
t Pseudo-inverse
) Estimated value
~ Error value
- Mean value
T Transpose 30
Operators
E[] Expected value of argument
tr{-} Trace of matrix
SSEE(") Sum of squared estimation errors
WSSEE(") Weighted sum of squared estimation errors 35
I = Matrix Frobenius norm
The discrete linear time-invariant engine state space equa-
tions about a linear design point are given as:
40
Xy 1 =AXz Bz Lig+wy
Ve=Cxp+Duz+MhyAvy,
45
2. =Fx+Fu;4Nhy, 2)
where k is the time index, x is the vector of state variables, u
is the vector of control inputs, y is the vector of measured
outputs, and 7 is the vector of auxiliary (unmeasured) model <

outputs. The vector h represents the engine health parameters,
which induce shifts in other variables as the health parameters
deviate from their nominal values. The vectors w and v are
uncorrelated zero-mean white noise input sequences. Q will
be used to denote the covariance of w, and R to denote the
covariance of v. The matrices A, B, C, D, F, G,L, M, and N are 33
ofappropriate dimension. The health parameters, represented
by the vector h, are unknown inputs to the system. They may
be treated as a set of biases, and are thus modeled without
dynamics. With this interpretation Eq. (2) can be written as:

=1 il
Bt |10 1l iy

60

©)

65
= AsnXanp + Bnth + Wan i

4

-continued

= FanXang + G

The vector w,;, is Zero-mean white noise associated with
the augmented state vector, [x” h”]%, with a covariance of Q .
W, consists of the original state process noise, w, concat-
enated with the process noise associated with the health
parameter vector, w,,.

@)

Wi
Wik = w
'k

The eigenvalues of A, consist of the original eigenvalues
of A plus an additional dim(h) eigenvalues located at 1.0 on
the unit circle due to the augmentation. Thus, the new aug-
mented system given in Eq. (3) has at least as many eigenval-
ues located on the unit circle as there are elements of h. Once
the h vector is appended to the state vector, it may be directly
estimated, provided that the realization in Eq. (3) is observ-
able. Using this formulation, the number of health parameters
that can be estimated is limited to the number of sensors, the
dimension of y. Since in an aircraft gas turbine engine there
are usually fewer sensors than health parameters, the problem
becomes one of choosing the best set of tuners for the appli-
cation. A methodology is presented for the optimal selection
of'a model tuning parameter vector, ¢, of low-enough dimen-
sion to be estimated by a Kalman filter, while minimizing the
estimation error in the model variables of interest. The steps
in this process include construction of the reduced-order state
space model, formulation of the Kalman filter estimator, cal-
culation of the mean sum of squared estimation errors, and
optimal selection of the transformation matrix to minimize
the estimation error.

The first step is to construct a reduced-order state space
model. The model tuning parameter vector, g, is constructed
as a linear combination of all health parameters, h, given by

q=V*h )

where qEP", hEP?, m<p, and V* is an mxp transformation
matrix of rank m, applied to construct the tuning parameter
vector. An approximation of the health parameter vector, h,
can be obtained as

h=v+tq (6)
where V*T is the pseudo-inverse of V*. Substituting Eq. (6)
into Eq. (3) yields the following reduced order state space
equations which will be used to formulate the Kalman filter:

[xm} [A Lv**ka B W } M
= +  +
genl 10 1 Jla] LOJT [ wax |

Axg Txg ke Bxq Wag k

= ququ,k + quuk + Wag k
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5

-continued

= FrgXegi + Gy

The state process noise, w,,, and its associated covariance,

Q,,» for the reduced order system are calculated as:

i

el o]

0 v

Next, the Kalman filter estimator is formulated. Here,
steady-state Kalman filtering may be applied. This means that
while the Kalman filter is a dynamic system, the state estima-
tion error covariance matrix and the Kalman gain matrix are
invariant—instead of updating these matrices each time step
they are held constant. Given the reduced order linear state
space equations shown in Eq. (7), the state estimation error
covariance matrix, P, is calculated by solving the following
Ricatti equation:

I 0
0 v*

[ (3)
Wagk =
I 0

0=[y -

P4, P =4,.P.CT(C,
1Co P+ 0, ©

The steady-state Kalman filter gain, K_,, can then be calcu-
lated as follows:

T, pie
wCog +R)

— T T —1
KomPoCo (Co P uCofT+R) (10)

and, assuming steady-state, open-loop operation (u=0), the
Kalman filter estimator takes the following form

xqu,k:quJexq,k— 1K (Vi Cquququ,k— )

an
The reduced order state vector estimate, X, produced by
Eq. (11) can be used to produce an estimate of the augmented

state vector, and the auxiliary parameter vector as follows:

I 0
0 v+

(12

Xeni = [ }%g,k

o= [F NV &g,

The estimation errors in X, , and 2, are defined as the
difference between the estimated and actual values:

Koch e Noch X Je

13)

Due to the under-determined nature of the estimation prob-
lem, it will be impossible for the Kalman filter estimator to
completely restore all information when transforming g into
. As such, the Kalman filter will be a biased estimator,
meaning the expected values of X,, ,, and Z, will be non-zero.
The estimation errors can be considered to consist of two
components: an estimation error bias, and an estimation vari-

=tz
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6

ance. The estimation error bias vectors are equivalent to the
mean estimation error vectors defined as:

Eank = El¥uns] = ElReng — Xuni] a4

e = E[%] = Elz% - %]

where the operator E[*] represents the expected value of the
argument. The variance of the estimates can be found by
constructing their respective estimation covariance matrices:

Py, = ElGrons = EBnDune — Elane D] )

Poy = ElGi - ET5 DG - E2 D]

Diagonal elements of the covariance matrices will reflect the
variance in individual parameter estimates, while off-diago-
nal elements reflect the covariance between parameter esti-
mates. The overall sum of squared estimation errors (SSEE)
can be obtained by combining the estimation error bias and
estimation variance information as

SSEE(%,5,1) =%, ,krich P it

SSEE(£)=Z, Zttr{ Pz} (16)

where tr{*} represents the trace (sum of the diagonal ele-
ments) of the matrix. As described herein, theoretical values
for each error component will be derived assuming steady-
state, open-loop (u=0) operating conditions. First, the estima-
tion error bias is derived, followed by a derivation of the
estimation variance.

The estimation error biases, X, , and 7, can be analytically
derived for an arbitrary health parameter vector, h, at steady-
state operating conditions. This is done taking advantage of
the following expected value properties at steady-state open-
loop operating conditions

EfxrJ=Efxr] =%
Efh,J=h

Ef% 1] s

E[yi] =ss

Efz]=z,

Efu;]-0

Efw]=0

E[v,]-0

Eff g i “ElFqsr] Fag
E % j] "R ss

Ef£]=Z
where the subscript “ss” denotes steady-state operation. By

taking expected values of Eq. (2), x,,, y,, and z.; can be
written as functions of the health parameter vector h

Efxy, J=AE[x]+B-E[u;J+L-E[h ] +E[w;]

a7

Xgo=Ax,+Lh

X, =(-4) ' Lh (18)
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7

Efy,]=CE[x;J+DE fu J+M-E[h,J+E[v;]
Yss=CxotMh

Poum(CU-A) LM (19)

E[z;]=FE [x;]+GE fu, J+N-E[h;]
2 =Fx +Nh

7 =(F(I-4) 'L+ N)h (20)

Next, by taking expected values of both sides of Eq. (11), the
expected value of X, can be obtained as a function of y

Ef8s il =g Efxgp1]- - -

R B~ Cogag B g 1))

B o™ Agng stKooVes CrgagRing s5)

Frguas A Ko Cogh) " Kooiee

Then, making the substitution y . ~(C(I-A)™* L+M)" given in
Eq. (19), the expected steady-state value of X ; can be writ-
ten as a function of h

eay)

T (-4, K LC,

o5 o) Ko (CU-4)" LR 22

The steady-state augmented state estimation error bias can
then be found, and partitioned into error bias information for
the original state vector, X,,, and the health parameter vector,

i, by combining Egs. (12), (14), (18) and (22) to yield

Xanss = ERnp — Xans] 23
Xass = Xanss = Xxhyss

_ X [ I 0 },
Ymss=|= |= s [xg.ss = Xxhss

ss

I 0 .
[0 ot }(I—qu+1<mququ)* X
Ko[CU-A'L+M] ... - h
[(I—A)’IL}
I
Gspy

P
:

= Gyh

Xanss = [

The steady-state auxiliary parameter estimation error bias can
also be derived by combining Eqgs. (12), (14), (20) and (22) to
yield

M;*-l\
8

e = Elfi — 2] @

Zss = Zss — Zss

Zo=[F NV R — 2
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8

-continued
[F NV = Ay + KuCrgAg) ™t X
o= | KJ[CU-AT'L+M] ... - h
[FU-AT'L+N]

G,

%xx = Gzh

The estimation error bias equations given in Egs. (23) and
(24) are functions of an arbitrary health parameter vector, h.
As such they are representative of the parameter estimation
error biases in a single engine, at a given point in its lifetime
of use where its deterioration is represented by the health
parameter vector h. The average sum of squared estimation
error biases across a fleet of engines can be calculated as

ifh, feet = E [gh,m}xh,m] =] [fr {§xh,xS§:h,m}] @3
= E[tr{ G hhT GT )]
= fri G 'ELZL_’LT_].GQ]
Pn
= tr{G, PrGL,}
Tieer = E|EZ] = B[22 (26)
= E[tr{G hh" GT}]
= frTGz : ELZ‘_’LT_].GZ]
Py
= |G, PrGT}

where the matrix P, defined as E[hh?], reflects a priori or
historical knowledge of the covariance in the health param-
eters across all engines. If available, it can be used to predict
the sum of squared estimation errors biases as shown in (25)
and (26).

Next, derivations are presented for the augmented state
estimate and auxiliary parameter estimate covariance matri-
ces, P, 1, and P_ ;. respectively. These matrices will be cal-
culated as a function of the reduced-order state vector esti-
mation covariance matrix, P, ,, which is defined as

Pepi = E[ Gt = ElRequ)egi — Elgi))” @n

& T
xqk Sxak

where the vector €, , is defined as the residual between X,
at time k and its expected value. Since E[X, 1=K, ... €

xXq K
can be obtained by subtracting Eq. (21) from Eq. (11) !

Exgh = Xagp — ElRugu] (28)

= Xagh — Fgyss

= Agg¥xgi-1 + Ko (Vi = CrgAxgRagio1) - —

gk

(ArgXaguss + KeolVss = CrgAagingss)

Xxq,s5

= (Axg = Koo CaqArg) (a1 = Rngss) + Kook = ¥ss)
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Mak.ing the substitutions €, =K, 4 1Koy o and v;=y,—
v, yields

Exq,k:(qu_Kwaqqu)exq,k—1+vak 29)

The estimation covariance matrix P ; is then calculated as

w

Py = Elegiel ] (30
= [Axg = Koo CigAsg ElExgu180,4 1] .. % 10
[Arg = Ko CrgAzgl” .. +
[Arg = KaoCrgArg)Elesgu v KL ... +
KooE[Vké‘Iq,kq][qu - KmCXqAXq]T e+ s

K Elvev1KL

The substituti.ons E[exq,k_lexq,k_.lT]:P.fq,k_l, and E[v,v,”]-R
can be made in the above equation. Since €, ; and v, T are

20
uncorrelated, the substitution E[Exq,k—lva ]:E[Vkexq,k_lT]ZO
can also be made, producing

Pog i Ag Ko CrgArgIPrs o 1/Axg Ko Crgh g+
K RK,T B

25
At steady-state operating conditions Py, , =P, ;. Making
this substitution in (31) produces the following Ricatti equa-
tion which can be solved for P ;:

P il Arg Ko Crg o] Pog el g K o Crogdog) T+
KRK,T @32) 30

It should be noted that P, , obtained by solving (32) will be

identical to P, produced via Eq. (9) if the system’s actual state

process noise covariance is identical to the Q,, assumed in the

design of the Kalman filter. However, Q is often treated as a 45
Kalman filter design parameter to provide acceptable
dynamic response. For the purpose of this derivation, we have
assumed a steady-state operating condition where the state
variables and health parameters are invariant, and thus the
actual system process noise is zero (i.e., w,,, ,=0). In this case
P, will not equal P.... Once P, , is obtained, it can be used
to calculate P, ,, the covariance of X, ;, which is defined as

I 0 1 o7
L 0 v Pean 0 vt

The augmented state vector estimation covariance given in
Eq. (33) canbe partitioned into covariance information for the
original state vector, P., (upper left comer of the P,
matrix), and the health parameter vector, Py, (lower right
corner of the P, , matrix)

B3 4s

55
(34)

b [ka
thi
X Piz,k

The P, ;, matrix from Bq. (32) can also be used to calculate
P, ;, the covariance in the estimation of z,, which is equivalent

to E[(ik_E[ik])(ik_E[ik])T]

Pi,k:/FNV*T]P)Eq,k/F NV*T]T

60

€D

The variance in the estimates X ;, , and Z, can be obtained from 65
the diagonals of the covariance matrices produced by (33) and

(35) respectively.

10

Once Egs. (25), (26), (33) and (35) are obtained, they may
be used to analytically calculate the mean sum of squared
estimation errors over all engines by combining the respec-
tive estimation error bias and estimation variance information
as previously shown in Eq. (16). The mean augmented state
vector sum of squared estimation errors, SSEE(X, 4...), and
the mean auxiliary parameter vector sum of squared estima-
tion errors, SSEE(R, 4...), become

N =2
SSEEGRut o) = T eer + 1Py, ) 36)

= |G PuGly + Py}

N 32
SSEEQ fleer) = Zfteer + 11{P3}
= 1r{G,PyGT + P, )

If required, a weighted sum approach can be applied to
normalize the contributions of individual auxiliary parameter
estimation errors. This is often necessary as there may be
several orders of magnitude difference between the auxiliary
parameters of interest. A weighted sum approach prevents
domination by individual parameters. In this study a diagonal
auxiliary parameter weighting matrix, W_, is applied based on
the inverse of auxiliary parameter variance (obtained from the
main diagonal of the auxiliary parameter covariance matrix,
PZ)

P, = [F(l=A) 'L+ NIPy[FU - A 'L+ N]” @D
Py 0 077

w,=| 0 -~ 0
0 0 Py

W, is then applied to calculate of a “weighted” sum of auxil-
iary parameter squared estimation errors given as

WSSEE poc)~tr{ W/ GG, +P2 ] } (39)

From Egs. (23), (24), (33) and (35) it can be observed that
both bias and variance are affected by the selection of the
transformation matrix, V*. The sum of squared estimation
error terms derived in this section give rise to an optimization
problem: selecting V* to minimize the squared estimation
error in the Kalman filter produced parameter estimates. This
could include health parameter estimates, auxiliary param-
eter estimates, or a combination of parameters. Although
there is no known closed form solution for optimally selecting
the V* matrix to satisfy the objective of minimizing estima-
tion errors, a multi-parameter iterative search method has
been developed to perform this task, and will be described in
the next section.

Prior to initiating the search for an optimal V*, specific
system design information must be defined or obtained. This
includes specifying the auxiliary parameters to be estimated,
generating system state space equations at a fleet average
(50% deteriorated) engine trim point, defining measurement
noise covariance matrix, R, defining augmented state process
noise covariance matrix, Q,,, and defining fleet average
health parameter covariance, P,

Some additional clarification is provided regarding the
selection of P, and Q_, as the distinction between these two
ovariance matrices may not be immediately obvious. P,
defines the expected health parameter covariance across all
engines. It may be based on past knowledge gained from
engine gas path analysis programs and/or historical studies of
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engine module performance deterioration. Conversely, Q_,
defines the expected process noise covariance in the state
variables and health parameters of an individual engine, at a
single discrete time step, k. The selection of Q,;, will directly
impact the dynamic response and the variance of the esti-
mates generated.

After the necessary system information has been obtained,
the search for an optimal transformation matrix to minimize
the Kalman filter sum of squared estimation errors can com-
mence. This is performed using the Isqnonlin function of the
Matlab® Optimization Toolbox. This function applies an
iterative search to find the least squares solution of a user-
specified multivariable optimization problem. A flow chart
depicting the steps in this optimal iterative search is shown in
FIG. 1, and a further description of each step is given below.

Upon startup, an initial random guess of V* is generated. It
is selected such that the matrix Frobenius norm |[V*||z=1. This
requirement is applied to help prevent convergence to a
poorly scaled solution. The reduced order state-space model
is then constructed, (Eq. (7)). The Kalman filter is then for-
mulated by first calculating the estimation covariance matrix,
P, (Eq. (9)), then calculating the Kalman gain matrix, K,
(Eq. (10)). Next, the sum of squared estimation errors (Eq.
(36)), or weighted sum of squared estimation errors (Eq. (38))
is calculated. On each iteration the change in SSEE (or
WSSEE) relative to the previous iteration is assessed to deter-
mine if convergence within a user specified tolerance has
been achieved. If convergence is not achieved then, V* is
updated via the Matlab® Isqnonlin function, again requiring
that |[V*||z=1, and then returning to again construct the
reduced order state-space equations. If convergence is
achieved then he optimization routine returns the optimal
value of V*, and ends.

The transformation matrix returned by the optimization
routine may not be unique. Thus, different matrices can be
found which produce a global minimum of the objective
function. Experience has also shown that the optimization
routine will usually return a V* matrix which satisfies, or
nearly satisfies (i.e. within 5%), the global minimum of the
objective function. However, in order to guard against poten-
tial convergence to a local minimum, it is prudent to run the
optimization routine multiple times, each time starting with a
different initial guess for V*. This is only to assure the
designer that the global minimum is achieved, not to produce
a consistent V*. It should be emphasized that the optimal
search for V* is only conducted off-line during the estimator
design process. This calculation is not conducted as part of the
on-line real-time Kalman filter implementation, and thus
places no additional computational burden upon it.

In an applied example of the methods described herein, a
linearized cruise operating point extracted from the NASA
Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) high-bypass turbofan engine model is used to
evaluate the new systematic tuner selection methodology.
The linear model has two state variables, ten health param-
eters, and three control inputs, all shown in FIG. 2. The
model’s seven sensed outputs, and corresponding sensor
noise standard deviation, are shown in FIG. 3. The auxiliary
output parameters of interest to be estimated are shown in
FIG. 4. The linear model is used as the truth model for this
application example. The model is run open-loop, so all con-
trol inputs remain at 0, i.e., they do not deviate from the trim
value for the linear model and no actuator bias is present.
Deviations in all ten health parameters are assumed to be
uncorrelated, and randomly shifted from their trim conditions
with a standard deviation of £0.02 (x2%). Since a parameter’s
variance is equal to its standard deviation squared, the health
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parameter covariance matrix, P,, is defined as a diagonal
matrix with all diagonal elements equal to 0.0004.

Next, the estimation accuracy of the systematic approach
for selecting Kalman filter tuning parameters will be com-
pared to the conventional approach of selecting a sub-set of
health parameters to serve as tuners (the seven health param-
eters denoted with “*” in FIG. 2), and the singular value
decomposition approach to tuner selection. FIG. 5 shows a
comparison of the theoretically predicted estimation errors
(squared bias, variance, and total squared error) and experi-
mentally obtained squared estimation errors for each of the
three tuner selection approaches. T40 and T50 estimation
errors are shown in squared degrees Rankine, and Fn and
SmLPC estimation errors are shown in squared percent net
thrust and squared percent stall margin respectively. The
experimental results were obtained through a Monte Carlo
simulation analysis where the health parameters varied over a
random distribution in accordance with the covariance
matrix, P,. The test cases were concatenated to produce a
single time history input which was provided to the
C-MAPSS linear discrete state space model given in Eq. (2),
with an update rate of 15 ms. Each individual health param-
eter test case lasted 30 s.

At the completion of each 30 s test case, the health param-
eter vector input instantaneously transitioned to the next test
case. A total of 375 30 s test cases were evaluated, resulting in
an 11,250 s input time history. Three separate Kalman filters
were implemented using the three tuner selection approaches.
The experimental estimation errors were determined by cal-
culating the mean squared error between estimated and actual
values during the last 10 s of each 30 s test case. The error
calculation is based on only the last 10 s so that engine model
outputs and Kalman estimator outputs have reached a quasi-
steady-state operating condition prior to calculating the error.
This ensures that the experimental results are consistent with
the theoretically predicted estimation errors which were
derived assuming steady-state operation.

From FIG. 5 it can be seen that the theoretically predicted
and the experimentally obtained squared estimation errors
exhibit good agreement. If the number of random test cases
were increased to a suitably large number, it is expected that
the theoretical and experimental results would be identical. It
can also be seen that all three estimators are able to produce
unbiased estimates of the combustor exit temperature, T40;
however, their estimates of LPT exit temperature, T50, net
thrust, Fn, and LPC stall margin, SmL.PC, are biased. The
encouraging finding is that the new systematic approach to
tuner selection significantly reduces the overall mean squared
estimation error compared to the other two approaches. Rela-
tive to the conventional approach of tuner selection the
experimental mean squared estimation errors in T40, T50, Fn
and SmLPC are reduced 76%, 82%, 80% and 63%, respec-
tively. It can also be observed that the SVD tuner selection
approach, which is designed to reduce the estimation error
bias, does in fact reduce the sum of squared biases relative to
the subset of health parameters approach. However, the SVD
approach is also found to increase the estimation variance,
which contributes to its overall mean squared estimation
error.

A visual illustration of the effect that tuner selection has on
Kalman filter estimation accuracy can be seen in FIGS. 6-9,
which show actual and estimated results for the auxiliary
parameters T40, T50, Fn and SmLPC respectively. Each plot
shows a 300 s segment of the evaluated test cases. The step
changes that can be observed in each plot every 30 s corre-
spond to a transition to a different health parameter vector.
True model auxiliary parameter outputs are shown in black,
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and Kalman filter estimates are shown in red. In each figure
the information is arranged top to bottom according to tuner
selection based upon: a) a subset of health parameters; b)
singular value decomposition; and c) the new systematic
selection strategy. The information shown in these figures
corroborates the information in FIG. 5; namely all three tuner
selection approaches produce unbiased estimates of T40
(FIG. 6), while the systematic tuner selection strategy yields
a noticeable reduction in the total squared estimation error
(squared bias plus variance) of all four auxiliary parameters.

The presented systematic tuner selection strategy mini-
mizes the mean squared error of the on-line estimator at
steady-state operating conditions, taking advantage of prior
knowledge of engine health parameter distributions. As such
it is somewhat analogous to the maximum a posteriori (MAP)
estimation method which is commonly applied for ground-
based aircraft gas turbine engine gas path analysis. This leads
to the question, how does the on-line Kalman filter estimation
accuracy compare to MAP estimation accuracy? Prior to
making this comparison the mathematical formulation of the
MAP estimator is briefly introduced. Here a steady-state
model of the Measurement process in the following form is
applied

yi=Hh4v; 39)

where the matrix H relates the effects of the health parameter
vector, h, to the sensed measurements, y. From Eq. (19), it can
be seen that H is equivalent to CI1-A)~! L+M. The maximum
aposteriori (MAP) estimator follows the closed Form expres-
sion

Ju=(Py +H'R\ "' HTR Yy, (40)

The MAP estimator is capable of estimating more
unknowns than available measurements due to the inclusion
of'a priori knowledge of the estimated parameter covariance,
P,,. However, the MAP estimator, unlike a Kalman filter, is not
a recursive estimator and does not take advantage of past
measurements to enhance its estimate at the current time step.
Furthermore, the MAP estimator only considers a static rela-
tionship between system state variables and measured out-
puts—it does not consider system dynamics. Because of these
differences a Kalman estimator with optimally selected tun-
ing parameters should outperform the MAP estimator How-
ever, under steady-state conditions, with minimal sensor
noise the two estimation approaches should produce similar
results. To test this theory, a MAP estimator was designed and
its estimation accuracy was compared to a Kalman filter with
tuning parameters optimally selected to minimize the estima-
tion errors in the health parameter vector h. First, the two
estimators were designed and evaluated using the original
sensor noise levels shown in FIG. 3. Next, the sensor noise
levels were set to Y2oth of their original levels, the estimators
were re-designed, and the comparison was repeated. Monte
Carlo simulation evaluations as previously described were
applied (i.e., 375 random health parameter vectors, 30 s in
duration, with estimation accuracy calculations based upon
the last 10 s of each 30 s test case). Theoretical and experi-
mental estimation errors are shown in FIGS. 10 and 11 for the
original noise and reduced noise levels, respectively. At origi-
nal noise levels the Kalman estimator is able to produce
smaller estimation errors. However, at the reduced noise level
the two estimation approaches are found to be nearly identi-
cal. This comparison validates that the Kalman estimation
approach is indeed producing a minimum mean squared esti-
mation error as intended, while providing the capability to
support real-time on-line estimation under dynamic operating
scenarios.
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While the systematic tuner selection approach presented
here appears promising for on-line Kalman filter based
parameter estimation applications, there are several practical
considerations which need to be assessed when applying such
a technique. The optimization routine attempts to minimize
the overall squared estimation error—both bias and vari-
ance—under steady-state operating conditions. The minimi-
zation of the estimation variance in particular can come at the
expense of dynamic responsiveness of the Kalman filter. To
illustrate this consider the time history plots of actual versus
estimated T40 shown in FIG. 12. The top plot shows Kalman
filter estimation results using a tuning parameter vector sys-
tematically selected to minimize the error in four auxiliary
parameters (T40, T50, Fn and SmI.PC) as presented in the
previous section. The bottom plot shows Kalman filter esti-
mation results using a tuning parameter vector systematically
selected to minimize the estimation error in T40 only. At time
100 s a step change in the health parameter input vector is
introduced into the engine model; this allows the dynamic
response of the two estimators to be compared. It can be
observed that T40 estimation variance in the bottom plot is
reduced, as is the mean steady-state estimation error (>300 s).
This is not surprising since one would generally expect
improved results when optimizing to minimize the error in a
single parameter, as opposed to multiple parameters. How-
ever, the estimator shown in the bottom plot does require a
significantly longer time to reach steady-state convergence.
Conversely, the estimator designed to minimize the steady-
state error in four auxiliary parameters (top plot) is unable to
place as much emphasis on T40 estimation variance reduc-
tion, but it is able to track dynamic changes in T40 more
rapidly. This example illustrates the inter-dependence
between estimation variance and responsiveness. Therefore,
it is prudent for a designer to evaluate the Kalman filter to
ensure that it tracks engine dynamics acceptably. If the
dynamic response is unacceptable, the optimization routine
can be re-run placing more weight on estimation error bias
reduction, and less weight on variance reduction.

In an embodiment, the present approach produces an opti-
mal set of tuning parameters, not just at a single operating
point but rather a globally optimal tuning parameter vector
universally applicable over the range of operating conditions
that an engine is expected to experience. A potential approach
to selecting a single “globally optimal” tuning parameter
vector is to modify the optimization routine to minimize the
combined estimation error over multiple engine operating
points such as takeoff, climb and cruise. This would be a
straightforward modification to the Matlab® optimization
routine, but it would increase the computational time required
to calculate the result. Since the systematic tuner selection
process is only envisioned to be done once during the system
design process, this will not impact the on-line execution
speed ofthe Kalman filter. It is anticipated that the application
of globally optimal tuners will result in some estimation
accuracy degradation relative to tuners optimized for indi-
vidual operating points, although this has not yet been veri-
fied or quantified.

A systematic approach to tuning parameter selection for
on-line Kalman filter based parameter estimation has been
presented. This technique is specifically applicable for the
underdetermined aircraft engine parameter estimation case
where there are fewer sensor measurements than unknown
health parameters which will impact engine outputs. It creates
and applies a linear transformation matrix, V*, to select a
vector of tuning parameters which are a linear combination of
all health parameters. The tuning parameter vector is selected
to be of low-enough dimension to be estimated, while mini-
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mizing the mean-squared error of Kalman filter estimates.
The multiparameter iterative search routine applied to opti-
mally select V* was presented. Results have shown that while
the transformation matrix returned by the optimization rou-
tine is not unique (different matrices can be found which
produce a global minimum of the objective function), the
routine is effective in returning a transformation matrix which
is optimal, or near optimal, regardless of its initial starting
guess of the matrix. The efficacy of the systematic approach
to tuning parameter selection was demonstrated by applying
it to parameter estimation in an aircraft turbofan engine linear
point model. It was found to significantly reduce mean
squared estimation errors compared to the conventional
approach of selecting a subset of health parameters to serve as
tuners. In some parameters the mean squared estimation error
reduction was found to be over 80%. These estimation
improvements were theoretically predicted and experimen-
tally validated through Monte Carlo simulation studies.

The systematic approach to Kalman filter design may be
applicable for a broad range of on-board aircraft engine
model-based applications which produce estimates of
unmeasured parameters. This includes model based controls,
model-based diagnostics, and on-board life usage algorithms.
It also may have benefits for sensor selection during the
engine design process, specifically for assessing the perfor-
mance estimation accuracy benefits of different candidate
sensor suites.

The methods and processes described herein may be per-
formed by a hardware or software system or combination
thereof. For example, a computing system may be configured
to receive input signals from an engine by way of a plurality
of'sensors, and model the health parameters using the Kalman
filter approach described herein. The computing system may
comprise a processor or CPU, a memory, and a storage
device, as is known in the art. The computing system may
further include a logic configured to receive the input signals
from the engine and determine estimates for unknown param-
eters. The computing system may modify the engine control
based on an estimated unknown parameter or parameters
determined by the logic using the methods and processes
described herein.

As used herein, the term “logic” includes but is not limited
to a software, a firmware, an executable program, a hardware
or hard-wired circuit, or combinations thereof. For example,
based on a desired application or needs, logic may include a
software controlled microprocessor, discrete logic like an
application specific integrated circuit (ASIC), an analog cir-
cuit, a digital circuit, a programmed logic device, a memory
device containing instructions, or the like. Logic may include
one or more gates, combinations of gates, or other circuit
components. Logic may also be fully embodied as software.
Where multiple logical logics are described, it may be pos-
sible to incorporate the multiple logical logics into one physi-
cal logic. Similarly, where a single logical logic is described,
it may be possible to distribute that single logical logic
between multiple physical logics.

Although the preferred embodiments of the present inven-
tion have been illustrated in the accompanying drawings and
described in the foregoing detailed description, it is to be
understood that the present invention is not to be limited to
just the preferred embodiment disclosed, but that the inven-
tion described herein is capable of numerous rearrangements,
modifications and substitutions without departing from the
scope of the claims hereafter.

We claim:

1. A method of optimizing the estimated performance and
estimated condition of an engine comprising:
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estimating a plurality of engine parameters based on a
plurality of sensor inputs, wherein said engine param-
eters include a set of health parameters and a set of
performance parameters, and wherein the number of
health parameters in said set is greater than the number
of sensors;

determining a relationship between said set of health
parameters and a tuning vector, wherein said tuning
vector is a linear combination of said entire set of health
parameters;

determining at least one state equation in terms of said
tuning vector;

solving said at least one state equation to determine an
estimate for said set of health parameters;

estimating said performance parameters based on said
health parameter estimates;

calculating the error in said estimation of said health
parameters and said performance parameters;

optimizing said relationship between said tuning vector
and said set of health parameters based on said error
calculation;

determining an optimized tuning vector based on said opti-
mized relationship;

determining at least one optimized state equation in terms
of said optimized tuning vector;

solving said at least one optimized state equation to deter-
mine an optimized estimate of said engine parameters.

2. The method of claim 1, wherein calculating the error
includes calculating the mean estimation error.

3. The method of claim 1, wherein said performance
parameters are a function of said health parameters.

4. The method of claim 1, wherein said relationship
between said tuning vector and said set of health parameters
is optimized to minimize the error in estimating a given subset
of said health parameters.

5. The method of claim 1, wherein said relationship
between said tuning vector and said set of health parameters
is optimized to minimize the error in estimating a given subset
of said performance parameters.

6. The method of claim 1, wherein said relationship
between said tuning vector and said set of health parameters
is optimized to minimize the error in estimating a combina-
tion of a given subset of said health parameters and a given
subset of said performance parameters.

7. The method of claim 1, wherein the dimension of said
tuning vector is less than or equal to the number of said
Sensors.

8. The method of claim 1, wherein said relationship
between said health parameters and said tuning vector is
defined by a matrix.

9. The method of claim 8, wherein a first dimensions of said
matrix is equal to the dimension of said tuning vector.

10. The method of claim 9, wherein a second dimension of
said matrix is less than or equal to the number of said health
parameters.

11. The method of claim 1 further comprising the step of
modifying control of said engine based on said optimized
estimate of said engine parameters.

12. The method of claim 1 wherein solving said state equa-
tion includes constructing a Kalman filter.

13. An optimal tuning system comprising:

a plurality of sensors capable of sensing engine param-

eters;

a logic in operable communication with said plurality of
sensors and configured to receive input from said plu-
rality of sensors, said logic configured to determine opti-
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mized parameters related to the estimated performance
and condition of said engine;

wherein said logic estimates a plurality of engine param-
eters based on said sensors, said engine parameters
including a set of health parameters and a set of perfor-
mance parameters, and wherein the number of health
parameters in said set is greater than the number of
Sensors;

wherein said logic determines a relationship between said
set of health parameters and a tuning vector that is a
linear combination of said entire set of health param-
eters;

wherein said logic determines at least one state equation in
terms of said tuning vector and solves said at least one
state equation to determine an estimate for said set of
health parameters;

wherein said logic estimates said performance parameters
based on said health parameter estimates and calculates
the error in said estimation of said health parameters and
said performance parameters;

wherein said logic optimizes said relationship between
said tuning vector and said set of health parameters
based on said error calculation;

wherein said logic determines an optimized tuning vector
based on said optimized relationship;

wherein said logic determines at least one optimized state
equation in terms of said optimized tuning vector

wherein said logic solves said at least one optimized state
equation to determine an optimized estimate of said
engine parameters.
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14. The optimal tuning system of claim 13, wherein said
logic comprises multiple logics.

15. The optimal tuning system of claim 14, wherein said
optimized tuning vector is defined within one of said multiple
logics.

16. The optimal tuning system of claim 13, wherein said
logic calculates the mean estimation error in said estimation
of said health parameters and said performance parameters.

17. The optimal tuning system of claim 13, wherein said
performance parameters are a function of said health param-
eters.

18. The optimal tuning system of claim 13, wherein said
logic optimizes said relationship between said tuning vector
and said set of health parameters to minimize the error in
estimating a given subset of said health parameters.

19. The optimal tuning system of claim 13, wherein said
logic optimizes said relationship between said tuning vector
and said set of health parameters to minimize the error in
estimating a combination of a given subset of said health
parameters and a given subset of said performance param-
eters.

20. The optimal tuning system of claim 13, wherein said
logic solves said state equation by constructing a Kalman
filter.

21. The optimal tuning system of claim 13, wherein said
logic is capable of modifying control of said engine based on
said optimized estimate of said engine parameters.

22. The optimal tuning system of claim 13, wherein the
dimension of said tuning vector is less than or equal to the
number of said sensors.
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