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State variables, health parameters, and actuators 
State variables Health parameters Actuators 
Nf-fan speed Fan efficiency Wf - fuel flow 
Nc - core spccd Fan flow capacity* VSV - variable stator vane 

LPC efficiency* VBV -variable bleed valve 
LPC flow capacity 
HPC efficiency * 
HPC flow capacity* 
HPT efficiency * 
HPT flow capacity* 
LPT efficiency 
LPT flow capacity 

* Health parameters selected as tuners in conventional estimation approach 

FIG. 2 

Sensed output Standard deviation (%) 
Nf-?an speed 0.25% 
Nc-core speed 0.25% 
P24 - HPC inlet total pressure 0.50% 
T24 – HPC inlet total temperature 0.75% 
Ps30 – HPC exit static pressure 0.50% 
T30 – HPC exit total temperature 0.75% 
T48 - Exhaust gas temperature 0.75% 
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Estimated auxiliary parameters 
Auxiliary parameter 
T40 - Combustor exit temperature 
T50 - LPT exit temperature 
Fn - Net thrust 
SmLPC - LPC stall marg 

FIG. 4 

Tao Tso F spot 
oR oR (%) (%) 

Theor sqr. bias 0.00. 561.76 3.84 3.28 
SE. Theor variance 7476. 29.65 0.34 pries Theor. sqr.error 74.76 591.41 3.62. 

Exper sqr. error 74.90 583.29 360 
Theor. Sqr, bias 0.00 51246 5.28 

SVD tuner Theor. Variance 65.99 67.21 1.31 
selection Theor. Sqr. error 65.99 579.67 6.59 

Exper, sqr. error 66.20 579.39 6.76 
SSSSSSSS Systematic Theor. sqr. bias 0.00 87.8 0.95 

tuner Theor, variance 1749 18.55 0.35 
selection Theor. Sqr, error 1749 106.35 -::: Aa: - 130 

FIG. 5 
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ho O Sum 

0000 3.06 12.00 
Kalman WallaCe 0.68 0.21 0.21 0.340.08, 4.09 
filter Theor, squared 2.00 1.67 3.07. 1.66 0.40. 0.68 0.96 0.21, 2,323.1416.09 

Exper squared 1.82 60 2.77 1.59 0.41 0.68 0.97 0.21 2.I3 - 3.15. 5.3i 
Thcor. Squared bias 2.42 1.75 3.53 90 O.47 0.96 OO O. 6 2.47 3.7 178 

MAP Theor. variance 0.22 O.27 O. 6 O-64 O.69 O.7 0.36 O.36 Oli OO9 3.68 

estimator Thcor, squared 2.63 202 369 2S4 6 67 3.6 OS2 2.64 3.26 2.48 

Exper. squared 2.52 89 344 2.45 114 157 134 O51 249 3.24 20.60 

FIG. 10 

Health parameter a squared estimation errors (reduced noise) 
Estimator Error type h h2 h3 h4 h5 h6 h h8 h9 hiO Sum 

. . . . . Theor squared bias 1261.48 2281.220,000.00. 0.74.0.00. 1,97 3.06 12.00 
Kanan. Theor variance 0.02 000 003 0.01 0.01 0.02 000 000 0.01 0.00 0.10 
filter Theor squared 129, 148 2.30. 1.22 0.01 0.02 0.74 0.00. 98 3.06 12.10 

Exper squared 1,131.41 1971.16 0.01.0.02 0.75 000 1.79 .308 11.31 
Theor. Squared bias 26 148 228 22 O.OO O.OO 0.74 O.OC) 197 3.06 12.00 

MAP Theor, variance 0.03 0.00 0.04 0.01 0.01 0.02 0.00 000 OO1 O.OO 0.13 
estimator Theor. Squared 130 148 2.32 .22 0.01 0.02 0.74 0.00 199 3.06 12.14 

Exper. Squared 114 141 1.98 1.17 O.01 0.02 0.75 O.OO 1.79 3.08 34 

FIG. 11 
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1. 

OPTIMIZED TUNER SELECTION FOR 
ENGINE PERFORMANCE ESTMATION 

CROSS-REFERENCE TO RELATED 
APPLICATION 

This application claims benefit from U.S. Provisional 
Patent Application No. 61/247,325, entitled “OPTIMAL 
TUNER SELECTION, filed on Sep. 30, 2009, which is 
hereby incorporated by reference in its entirety. 

BACKGROUND 

An emerging approach in the field of aircraft engine con 
trols and health management is the inclusion of real-time 
on-board models for the in-flight estimation of engine perfor 
mance variations. This technology, typically based on Kal 
man filter concepts, enables the estimation of unmeasured 
engine performance parameters that can be directly utilized 
by controls, prognostics and health management applica 
tions. A challenge which complicates this practice is the fact 
that an aircraft engine's performance is affected by its level of 
degradation, generally described in terms of unmeasurable 
health parameters such as efficiencies and flow capacities 
related to each major engine module. Through Kalman filter 
based estimation techniques, the level of engine performance 
degradation can be estimated, given that there are at least as 
many sensors as parameters to be estimated. However, in an 
aircraft engine the number of sensors available is typically 
less than the number of health parameters presenting an 
under-determined estimation problem. A common approach 
to address this shortcoming is to estimate a sub-set of the 
health parameters, referred to as model tuning parameters. 
While this approach enables on-line Kalman filter-based esti 
mation, it can result in "Smearing the effects of unestimated 
health parameters onto those which are estimated, and in turn 
introduce error in the accuracy of overall model-based per 
formance estimation applications. 

Recently, a new method has been presented based on Sin 
gular value decomposition that selects a model tuning param 
eter vector of low-enough dimension to be estimated by a 
Kalman filter. The model tuning parameter vector, defined as 
q, was constructed as a linear combination of all health 
parameters, h, given by the equation 

where the transformation matrix, V, is selected applying 
singular value decomposition to capture the overall effect of 
the larger set of health parameters on the engine variables as 
closely as possible in the least squares sense. 

SUMMARY 

A new linear point design technique which applies a sys 
tematic approach to optimal tuning parameter selection is 
presented. This technique defines a transformation matrix, 
V*, used to construct a tuning parameter vector which is a 
linear combination of all health parameters, and of low 
enough dimension to enable Kalman filter estimation. The 
new approach optimally selects the transformation matrix, 
V*, to minimize the theoretical steady-state estimation error 
in the engine performance parameters of interest. There is no 
known closed form solution for optimally selecting V* to 
satisfy this objective. Therefore, a multivariable iterative 
search routine is applied to perform this function. 
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2 
BRIEF DESCRIPTION OF THE SEVERAL 

VIEWS OF THE DRAWINGS 

Objects and advantages together with the operation of the 
invention may be better understood by reference to the 
detailed description taken in connection with the following 
illustrations, wherein: 

FIG. 1 illustrates a flow chart for performing an iterative 
optimal search; 

FIG. 2 illustrates a table of state variables, health param 
eters, and actuators; 

FIG. 3 illustrates a table of sensed outputs and standard 
deviation as percent of operating point trim values; 

FIG. 4 illustrates a table of estimated auxiliary parameters: 
FIG. 5 illustrates a table of auxiliary parameter squared 

estimation errors; 
FIG. 6 illustrates a first graph of tuner comparisons; 
FIG. 7 illustrates a second graph of tuner comparisons; 
FIG. 8 illustrates a third graph of tuner comparisons: 
FIG. 9 illustrates a fourth graph of tuner comparisons: 
FIG. 10 illustrates a table of health parameter squared 

estimation errors at nominal noise levels; 
FIG. 11 illustrates a table of health parameter squared 

estimation errors at reduced noise levels; and 
FIG. 12 illustrates a graph of tuner impact on estimator 

response. 

DETAILED DESCRIPTION 

Reference will now be made in detail to exemplary 
embodiments of the present invention, examples of which are 
illustrated in the accompanying drawings. It is to be under 
stood that other embodiments may be utilized and changes 
may be made without departing from the respective scope of 
the present invention. 
The following includes definitions of selected terms 

employed herein. The definitions include various examples 
and/or forms of components that fall within the scope of a 
term and that may be used for implementation. The examples 
are not intended to be limiting. Both singular and plural forms 
of terms may be within the definitions. 

A, Axi, Aya System Matrices 
B. B. B. 
C.Ch., Ca 
D, F, F, F, 
G, L, M, N 
C-MAPSS Commercial Modular Aero-Propulsion 

System Simulation 
Fn Net Thrust 
G, G, G, G, Estimation bias matrices 
H Matrix which relates health parameter 

effects to steady-state engine outputs 
HPC High pressure compressor 
HPT High pressure turbine 

dentity matrix 
K. Kalman filter gain 
LPC Low pressure compressor 
LPT Low pressure turbine 
MAP Maximum a posteriori 
Nf Fan speed 
Nc Core speed 
P., P. Health & auxiliary parameter covariance matrices 
P24 HPC inlet total pressure 
PS30 HPC exit static pressure 

P. P. Covariance matrices of estimated parameters 
ii, j, k 2. ' 

P. Kalman filter state estimation covariance matrix 
Q, Qi Q. Process noise covariance matrices 
R Measurement noise covariance matrix 
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-continued 

SLPC LPC Stall margin 
T24 HPC inlet total temperature 
T30 HPC exit total temperature 
T40 Combustor exit temperature 5 
T48 Exhaust gas temperature 
TSO LPT exit temperature 
V: Transformation matrix relatingh to q 
VSV Variable stator vane 
VBV Variable bleed valve 
Wif Fuel flow 10 
W. Auxiliary parameter weighting matrix 
h Health parameter vector 
Ci. Kalman filter tuning parameter vector 
li Actuator command vector 
Wi. Measurement noise vector 
Wie Wii, Wii- Process noise vectors 15 
Xi. State vector 
Xxhi. Augmented State vector (xk and hk) 
Xxak Reduced order state vector (xk and qk) 
yi. Vector of measured outputs 
Zi. Vector of unmeasured (auxiliary) outputs 
Exa.k. residual vector (estimate minus its expected value) 
Subscripts 2O 

k Discrete time step index 
xh Augmented State vector (x and h) 
Xq Reduced order state vector (x and q) 
SS Steady-state value 
SuperScripts 25 

t Pseudo-inverse 
- Estimated value 

-- Error value 

Mean value 
T Transpose 30 
Operators 

E. Expected value of argument 
tr {} Trace of matrix 
SSEE() Sum of squared estimation errors 
WSSEE() Weighted Sum of squared estimation errors 35 
|| || Matrix Frobenius norm 

The discrete linear time-invariant engine state space equa 
tions about a linear design point are given as: 

40 

x1=Ax+Bu:+Lh+w: 

y = Cx+Dni--Mh--v. 

45 

z-Fix--Fu-Nhi. (2) 

where k is the time index, X is the vector of state variables, u 
is the vector of control inputs, y is the vector of measured 
outputs, and Z is the vector of auxiliary (unmeasured) model 50 outputs. The vector h represents the engine health parameters, 
which induce shifts in other variables as the health parameters 
deviate from their nominal values. The vectors w and v are 
uncorrelated Zero-mean white noise input sequences. Q will 
be used to denote the covariance of w, and R to denote the 55 
covariance of v. The matrices A, B, C, D, F, G, L, M, and Nare 
of appropriate dimension. The health parameters, represented 
by the vector h, are unknown inputs to the system. They may 
be treated as a set of biases, and are thus modeled without 
dynamics. With this interpretation Eq. (2) can be written as: 60 

2. B wk (3) -- it + 
hk+1 O 1 hi. O Whk 

Ah Yahk. Bah k 
65 

F Ah Xth k + Bhuk + Whk 

-continued 
Wik 

y = C M + Du + v. hk 

The vector w is Zero-mean white noise associated with 
the augmented state vector,x'h'', with a covariance of Q, 
W, consists of the original state process noise, w, concat 
enated with the process noise associated with the health 
parameter vector, wi. 

(4) wk 
Whk * 

hik 

The eigenvalues of A, consist of the original eigenvalues 
of A plus an additional dim(h) eigenvalues located at 1.0 on 
the unit circle due to the augmentation. Thus, the new aug 
mented system given in Eq. (3) has at least as many eigenval 
ues located on the unit circle as there are elements of h. Once 
the h vector is appended to the state vector, it may be directly 
estimated, provided that the realization in Eq. (3) is observ 
able. Using this formulation, the number of health parameters 
that can be estimated is limited to the number of sensors, the 
dimension of y. Since in an aircraft gas turbine engine there 
are usually fewer sensors than health parameters, the problem 
becomes one of choosing the best set of tuners for the appli 
cation. A methodology is presented for the optimal selection 
of a model tuning parameter vector, q, of low-enough dimen 
sion to be estimated by a Kalman filter, while minimizing the 
estimation error in the model variables of interest. The steps 
in this process include construction of the reduced-orderstate 
space model, formulation of the Kalman filter estimator, cal 
culation of the mean Sum of squared estimation errors, and 
optimal selection of the transformation matrix to minimize 
the estimation error. 
The first step is to construct a reduced-order State space 

model. The model tuning parameter vector, q, is constructed 
as a linear combination of all health parameters, h, given by 

where q6P", heP, map, and V* is an mxp transformation 
matrix of rank m, applied to construct the tuning parameter 
vector. An approximation of the health parameter vector, h, 
can be obtained as 

h=Vita (6) 
where V* is the pseudo-inverse of V*. Substituting Eq. (6) 
into Eq. (3) yields the following reduced order state space 
equations which will be used to formulate the Kalman filter: 

LV- |C B wk (7) -- it + 
(k+1 O I 4kJ L'ak 

Axq xq.k Baq 'aak 

Aya-vyak -- Batik + walk 
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-continued 

Wik 
y = C My + Du + v. 

--- lik 

= FXk + Gulk 

The state process noise, w, and its associated covariance, 
Q, for the reduced order system are calculated as: 

O O wk 

"a lo y "shko v. || 
O I O IT o, - a . 

(8) 

Next, the Kalman filter estimator is formulated. Here, 
steady-state Kalman filtering may be applied. This means that 
while the Kalman filter is a dynamic system, the state estima 
tion error covariance matrix and the Kalman gain matrix are 
invariant—instead of updating these matrices each time step 
they are held constant. Given the reduced order linear state 
space equations shown in Eq. (7), the state estimation error 
covariance matrix, P., is calculated by Solving the following 
Ricatti equation: 

P.A.P.A.A.F.C. (C.F.C. --R) 
1C.P.A. --O. (9) 

The steady-state Kalman filter gain, K., can then be calcu 
lated as follows: 

and, assuming steady-state, open-loop operation (u0), the 
Kalman filter estimator takes the following form 

&ai-Araj-1+K-O- Ca4-5a-1) (11) 

The reduced order state vector estimate, x, produced by 
Eq. (11) can be used to produce an estimate of the augmented 
state vector, and the auxiliary parameter vector as follows: 

O (12) 
Šh.k = k 
3 = F NV3, 

The estimation errors in X, and Ž are defined as the 
difference between the estimated and actual values: 

Whi-Whitchi 

(13) 

Due to the under-determined nature of the estimation prob 
lem, it will be impossible for the Kalman filter estimator to 
completely restore all information when transforming d into 
h. As such, the Kalman filter will be a biased estimator, 
meaning the expected values of X, and Ž will be non-zero. 
The estimation errors can be considered to consist of two 
components: an estimation error bias, and an estimation vari 
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6 
ance. The estimation error bias vectors are equivalent to the 
mean estimation error vectors defined as: 

sh. = EIihil= Eish k - whil (14) 
2k = Ezi- E2k - at 

where the operator EI represents the expected value of the 
argument. The variance of the estimates can be found by 
constructing their respective estimation covariance matrices: 

Diagonal elements of the covariance matrices will reflect the 
variance in individual parameter estimates, while off-diago 
nal elements reflect the covariance between parameter esti 
mates. The overall sum of squared estimation errors (SSEE) 
can be obtained by combining the estimation error bias and 
estimation variance information as 

where tr{!} represents the trace (sum of the diagonal ele 
ments) of the matrix. As described herein, theoretical values 
for each error component will be derived assuming steady 
state, open-loop (u0) operating conditions. First, the estima 
tion error bias is derived, followed by a derivation of the 
estimation variance. 
The estimation error biases, X, and Z, can be analytically 

derived for an arbitrary health parameter vector, h, at steady 
state operating conditions. This is done taking advantage of 
the following expected value properties at steady-state open 
loop operating conditions 

Efik *hs 

Eff=2. 
where the subscript “ss' denotes steady-state operation. By 
taking expected values of Eq. (2), X, y, and Z, can be 
written as functions of the health parameter vector h 

(17) 
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Next, by taking expected values of both sides of Eq. (11), the 
expected value of x, can be obtained as a function of y. 

Efraid A. Efai-il. . . 

ass4a.stk.('s-CoA ass) 

3.a.s. (I-4+K.C.A.) K.P. 
Then, making the substitution y=(C(I-A) L+M) given in 
Eq. (19), the expected steady-state value of X, can be writ 
ten as a function of h 

(21) 

3cess 

The steady-state augmented State estimation error bias can 
then be found, and partitioned into error bias information for 
the original state vector, X., and the health parameter vector, SS 

h by combining Eqs. (12), (14), (18) and (22) to yield 

ihs = EIshik - whil (23) 

sh ss F &h ss Vahss 

s is | | 0 | 
Wahiss F his y ki ka Wahss 

is 
ths = | r = 

his 

O 

y? |-A. + K.C.A.) ... x 
K.C(I-A)' L + M). - h 

(I-A) L 

-- 

is 
Whss = | = Ghh 

hss 

The steady-state auxiliary parameterestimation error bias can 
also be derived by combining Eqs. (12), (14), (20) and (22) to 
yield 

is = EI2 - 3.) (24) 

is =&s-3s 

| F NV is -3s s = 

5 
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-continued 

F NV (1 - A + K.C.A.) ... x 
is = K.C(I-A)' L + M) ... - h 

The estimation error bias equations given in Eqs. (23) and 
(24) are functions of an arbitrary health parameter vector, h. 
As such they are representative of the parameter estimation 
error biases in a single engine, at a given point in its lifetime 
of use where its deterioration is represented by the health 
parameter vector h. The average Sum of squared estimation 
error biases across a fleet of engines can be calculated as 

it,fleet = E|Rains = Etr(shai, all (25) 
= Etr; Ghhh'G,} 

r Gh flyi) Ph 

= tr{Gh P.G.) 

5 = Eliza) = Eltrail (26) 
= Etr{G.hht G}) 

re Figo) Ph 

= tr{G.P.G} 

where the matrix P, defined as Ehh", reflects a priori or 
historical knowledge of the covariance in the health param 
eters across all engines. If available, it can be used to predict 
the Sum of squared estimation errors biases as shown in (25) 
and (26). 

Next, derivations are presented for the augmented State 
estimate and auxiliary parameter estimate covariance matri 
ces, Pi, and P. respectively. These matrices will be cal 
culated as a function of the reduced-order state vector esti 

mation covariance matrix, P., which is defined as 

- Eliak))(3.a. - E34) (27) 

where the vectore, is defined as the residual between X, 
at time k and its expected value. Since Ex, FX, e, 
can be obtained by subtracting Eq. (21) from Eq. (11) 

(28) 
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Making the Substitutions e, -1-x, -1-X, and Vy 
y yields 

The estimation covariance matrix P, is then calculated as 

P = Eleake, (30) 

= (Ara - K. CaAg|E|eak-18, -1]... x 
(A - K.C.A ... + 
(A - K.C.A. ELeak-1 vilK. ... + 

K. Elve-IIA - K.C.A.' ... + 
K. Ev. v. K. 

The substitutions Elsa.-16v - "Pa-1: and EVV"-R 
can be made in the above equation. Since e, and Vare 
uncorrelated, the substitution Elek-IV."-Eve, '-0 
can also be made, producing 

Faii-Arg-KoCgA affei - Arg-K-CoA-cal f 
KRK- (31) 

At steady-state operating conditions P =P. Making 
this substitution in (31) produces the following Ricatti equa 
tion which can be solved for P: 

T 

Pa 14-i-Ca4-affairfax-K-C Aalt KRK, 

It should be noted that P. obtained by solving (32) will be 
identical to P-produced via Eq. (9) if the systems actual state 
process noise covariance is identical to the Q, assumed in the 
design of the Kalman filter. However, Q is often treated as a 
Kalman filter design parameter to provide acceptable 
dynamic response. For the purpose of this derivation, we have 
assumed a steady-state operating condition where the state 
variables and health parameters are invariant, and thus the 
actual system process noise is Zero (i.e., W, 0). In this case 
P. will not equal P. Once P, is obtained, it can be used 
to calculate Pi, the covariance of X, which is defined as 

O O IT 
P. = O W** Peak O W** 

The augmented State vector estimation covariance given in 
Eq. (33) can be partitioned into covariance information for the 
original state vector, P., (upper left corner of the Pi, 
matrix), and the health parameter vector, Pi (lower right 
corner of the Pi, matrix) 

(32) 

(33) 

(34) 

The P. matrix from Eq. (32) can also be used to calculate 
P., the covariance in the estimation of Z, which is equivalent 

The variance in the estimates x, and Z, can be obtained from 
the diagonals of the covariance matrices produced by (33) and 
(35) respectively. 
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10 
Once Eqs. (25), (26), (33) and (35) are obtained, they may 

be used to analytically calculate the mean Sum of squared 
estimation errors over all engines by combining the respec 
tive estimation error bias and estimation variance information 
as previously shown in Eq. (16). The mean augmented State 
vector sum of squared estimation errors, SSEE(x,a), and 
the mean auxiliary parameter vector Sum of squared estima 
tion errors, SSEE(x,a), become 

r 2 SSEE(sh fleet) = inlet + tr{P} (36) 

If required, a weighted Sum approach can be applied to 
normalize the contributions of individual auxiliary parameter 
estimation errors. This is often necessary as there may be 
several orders of magnitude difference between the auxiliary 
parameters of interest. A weighted Sum approach prevents 
domination by individual parameters. In this study a diagonal 
auxiliary parameter weighting matrix, W, is applied based on 
the inverse of auxiliary parameter variance (obtained from the 
main diagonal of the auxiliary parameter covariance matrix, 
P.) 2 

P = F(I-A) L--NP, F(I-A)' L - N' (37) 

P.11 () () 
W = 0 . () 

0 0 P. 

W is then applied to calculate of a “weighted sum of auxil 
iary parameter squared estimation errors given as 

From Eqs. (23), (24), (33) and (35) it can be observed that 
both bias and variance are affected by the selection of the 
transformation matrix, V*. The sum of squared estimation 
error terms derived in this section give rise to an optimization 
problem: selecting V* to minimize the squared estimation 
error in the Kalman filter produced parameterestimates. This 
could include health parameter estimates, auxiliary param 
eter estimates, or a combination of parameters. Although 
there is no known closed form solution for optimally selecting 
the V* matrix to satisfy the objective of minimizing estima 
tion errors, a multi-parameter iterative search method has 
been developed to perform this task, and will be described in 
the next section. 

Prior to initiating the search for an optimal V*, specific 
system design information must be defined or obtained. This 
includes specifying the auxiliary parameters to be estimated, 
generating system state space equations at a fleet average 
(50% deteriorated) engine trim point, defining measurement 
noise covariance matrix, R., defining augmented State process 
noise covariance matrix, Q, and defining fleet average 
health parameter covariance, P. 
Some additional clarification is provided regarding the 

selection of P, and Q, as the distinction between these two 
ovariance matrices may not be immediately obvious. Pl, 
defines the expected health parameter covariance across all 
engines. It may be based on past knowledge gained from 
engine gas path analysis programs and/or historical studies of 
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engine module performance deterioration. Conversely, Q, 
defines the expected process noise covariance in the state 
variables and health parameters of an individual engine, at a 
single discrete time step, k. The selection of Qi, will directly 
impact the dynamic response and the variance of the esti 
mates generated. 

After the necessary system information has been obtained, 
the search for an optimal transformation matrix to minimize 
the Kalman filter Sum of squared estimation errors can com 
mence. This is performed using the 1sqnonlin function of the 
Matlab.R. Optimization Toolbox. This function applies an 
iterative search to find the least squares solution of a user 
specified multivariable optimization problem. A flow chart 
depicting the steps in this optimal iterative search is shown in 
FIG. 1, and a further description of each step is given below. 
Upon startup, an initial random guess of V* is generated. It 

is selected such that the matrix Frobenius norm V*=1. This 
requirement is applied to help prevent convergence to a 
poorly scaled solution. The reduced order state-space model 
is then constructed, (Eq. (7)). The Kalman filter is then for 
mulated by first calculating the estimation covariance matrix, 
P. (Eq. (9)), then calculating the Kalman gain matrix, K. 
(Eq. (10)). Next, the sum of Squared estimation errors (Eq. 
(36)), or weighted sum of squaredestimation errors (Eq. (38)) 
is calculated. On each iteration the change in SSEE (or 
WSSEE) relative to the previous iteration is assessed to deter 
mine if convergence within a user specified tolerance has 
been achieved. If convergence is not achieved then, V* is 
updated via the Matlab.R. 1sqnonlin function, again requiring 
that V-1, and then returning to again construct the 
reduced order state-space equations. If convergence is 
achieved then he optimization routine returns the optimal 
value of V, and ends. 
The transformation matrix returned by the optimization 

routine may not be unique. Thus, different matrices can be 
found which produce a global minimum of the objective 
function. Experience has also shown that the optimization 
routine will usually return a V* matrix which satisfies, or 
nearly satisfies (i.e. within 5%), the global minimum of the 
objective function. However, in order to guard against poten 
tial convergence to a local minimum, it is prudent to run the 
optimization routine multiple times, each time starting with a 
different initial guess for V*. This is only to assure the 
designer that the global minimum is achieved, not to produce 
a consistent V*. It should be emphasized that the optimal 
search for V* is only conducted off-line during the estimator 
design process. This calculation is not conducted as part of the 
on-line real-time Kalman filter implementation, and thus 
places no additional computational burden upon it. 

In an applied example of the methods described herein, a 
linearized cruise operating point extracted from the NASA 
Commercial Modular Aero-Propulsion System Simulation 
(C-MAPSS) high-bypass turbofan engine model is used to 
evaluate the new systematic tuner selection methodology. 
The linear model has two state variables, ten health param 
eters, and three control inputs, all shown in FIG. 2. The 
models seven sensed outputs, and corresponding sensor 
noise standard deviation, are shown in FIG. 3. The auxiliary 
output parameters of interest to be estimated are shown in 
FIG. 4. The linear model is used as the truth model for this 
application example. The model is run open-loop, so all con 
trol inputs remain at 0, i.e., they do not deviate from the trim 
value for the linear model and no actuator bias is present. 
Deviations in all ten health parameters are assumed to be 
uncorrelated, and randomly shifted from their trim conditions 
with a standard deviation of 0.02 (+2%). Since a parameter's 
variance is equal to its standard deviation squared, the health 
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12 
parameter covariance matrix, P is defined as a diagonal 
matrix with all diagonal elements equal to 0.0004. 

Next, the estimation accuracy of the systematic approach 
for selecting Kalman filter tuning parameters will be com 
pared to the conventional approach of selecting a Sub-set of 
health parameters to serve as tuners (the seven health param 
eters denoted with “*” in FIG. 2), and the singular value 
decomposition approach to tuner selection. FIG. 5 shows a 
comparison of the theoretically predicted estimation errors 
(squared bias, variance, and total squared error) and experi 
mentally obtained squared estimation errors for each of the 
three tuner selection approaches. T40 and T50 estimation 
errors are shown in squared degrees Rankine, and Fn and 
SmLPC estimation errors are shown in squared percent net 
thrust and squared percent stall margin respectively. The 
experimental results were obtained through a Monte Carlo 
simulation analysis where the health parameters varied overa 
random distribution in accordance with the covariance 
matrix, P. The test cases were concatenated to produce a 
single time history input which was provided to the 
C-MAPSS linear discrete state space model given in Eq. (2), 
with an update rate of 15 ms. Each individual health param 
eter test case lasted 30s. 
At the completion of each 30s test case, the health param 

eter vector input instantaneously transitioned to the next test 
case. A total of 37530s test cases were evaluated, resulting in 
an 11,250 s input time history. Three separate Kalman filters 
were implemented using the three tuner selection approaches. 
The experimental estimation errors were determined by cal 
culating the mean squared error between estimated and actual 
values during the last 10 s of each 30 s test case. The error 
calculation is based on only the last 10s so that engine model 
outputs and Kalman estimator outputs have reached a quasi 
steady-state operating condition prior to calculating the error. 
This ensures that the experimental results are consistent with 
the theoretically predicted estimation errors which were 
derived assuming steady-state operation. 
From FIG. 5 it can be seen that the theoretically predicted 

and the experimentally obtained squared estimation errors 
exhibit good agreement. If the number of random test cases 
were increased to a suitably large number, it is expected that 
the theoretical and experimental results would be identical. It 
can also be seen that all three estimators are able to produce 
unbiased estimates of the combustor exit temperature, T40; 
however, their estimates of LPT exit temperature, T50, net 
thrust, Fn, and LPC stall margin, SmLPC, are biased. The 
encouraging finding is that the new systematic approach to 
tuner selection significantly reduces the overall mean squared 
estimation error compared to the other two approaches. Rela 
tive to the conventional approach of tuner selection the 
experimental mean squared estimation errors in T40, T50, Fn 
and SmLPC are reduced 76%, 82%, 80% and 63%, respec 
tively. It can also be observed that the SVD tuner selection 
approach, which is designed to reduce the estimation error 
bias, does in fact reduce the Sum of squared biases relative to 
the subset of health parameters approach. However, the SVD 
approach is also found to increase the estimation variance, 
which contributes to its overall mean squared estimation 
eO. 

A visual illustration of the effect that tuner selection has on 
Kalman filter estimation accuracy can be seen in FIGS. 6-9. 
which show actual and estimated results for the auxiliary 
parameters T40, T50, Fn and SmLPC respectively. Each plot 
shows a 300 s segment of the evaluated test cases. The step 
changes that can be observed in each plot every 30s corre 
spond to a transition to a different health parameter vector. 
True model auxiliary parameter outputs are shown in black, 
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and Kalman filter estimates are shown in red. In each figure 
the information is arranged top to bottom according to tuner 
selection based upon: a) a Subset of health parameters; b) 
singular value decomposition; and c) the new systematic 
selection strategy. The information shown in these figures 
corroborates the information in FIG. 5: namely all three tuner 
selection approaches produce unbiased estimates of T40 
(FIG. 6), while the systematic tuner selection strategy yields 
a noticeable reduction in the total squared estimation error 
(squared bias plus variance) of all four auxiliary parameters. 
The presented systematic tuner selection strategy mini 

mizes the mean Squared error of the on-line estimator at 
steady-state operating conditions, taking advantage of prior 
knowledge of engine health parameter distributions. AS Such 
it is somewhat analogous to the maximum a posteriori (MAP) 
estimation method which is commonly applied for ground 
based aircraft gas turbine engine gas path analysis. This leads 
to the question, how does the on-line Kalman filterestimation 
accuracy compare to MAP estimation accuracy? Prior to 
making this comparison the mathematical formulation of the 
MAP estimator is briefly introduced. Here a steady-state 
model of the Measurement process in the following form is 
applied 

where the matrix H relates the effects of the health parameter 
vector, h, to the sensed measurements, y. From Eq. (19), it can 
be seen that His equivalent to C(I-A)' L+M. The maximum 
a posteriori (MAP) estimator follows the closed Form expres 
S1O. 

The MAP estimator is capable of estimating more 
unknowns than available measurements due to the inclusion 
of a priori knowledge of the estimated parameter covariance, 
P. However, the MAPestimator, unlike a Kalman filter, is not 
a recursive estimator and does not take advantage of past 
measurements to enhance its estimate at the current time step. 
Furthermore, the MAP estimator only considers a static rela 
tionship between system state variables and measured out 
puts—it does not consider System dynamics. Because of these 
differences a Kalman estimator with optimally selected tun 
ing parameters should outperform the MAP estimator How 
ever, under steady-state conditions, with minimal sensor 
noise the two estimation approaches should produce similar 
results. To test this theory, a MAP estimator was designed and 
its estimation accuracy was compared to a Kalman filter with 
tuning parameters optimally selected to minimize the estima 
tion errors in the health parameter vector h. First, the two 
estimators were designed and evaluated using the original 
sensor noise levels shown in FIG. 3. Next, the sensor noise 
levels were set to /20th of their original levels, the estimators 
were re-designed, and the comparison was repeated. Monte 
Carlo simulation evaluations as previously described were 
applied (i.e., 375 random health parameter vectors, 30 s in 
duration, with estimation accuracy calculations based upon 
the last 10s of each 30s test case). Theoretical and experi 
mental estimation errors are shown in FIGS. 10 and 11 for the 
original noise and reduced noise levels, respectively. At origi 
nal noise levels the Kalman estimator is able to produce 
smallerestimation errors. However, at the reduced noise level 
the two estimation approaches are found to be nearly identi 
cal. This comparison validates that the Kalman estimation 
approach is indeed producing a minimum mean squared esti 
mation error as intended, while providing the capability to 
Support real-time on-line estimation under dynamic operating 
scenarios. 
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While the systematic tuner selection approach presented 

here appears promising for on-line Kalman filter based 
parameter estimation applications, there are several practical 
considerations which need to be assessed when applying Such 
a technique. The optimization routine attempts to minimize 
the overall Squared estimation error—both bias and vari 
ance—under steady-state operating conditions. The minimi 
Zation of the estimation variance in particular can come at the 
expense of dynamic responsiveness of the Kalman filter. To 
illustrate this consider the time history plots of actual versus 
estimated T40 shown in FIG. 12. The top plot shows Kalman 
filter estimation results using a tuning parameter vector sys 
tematically selected to minimize the error in four auxiliary 
parameters (T40, T50, Fn and SmLPC) as presented in the 
previous section. The bottom plot shows Kalman filter esti 
mation results using a tuning parameter vector Systematically 
selected to minimize the estimation error in T40 only. At time 
100 S a step change in the health parameter input vector is 
introduced into the engine model; this allows the dynamic 
response of the two estimators to be compared. It can be 
observed that T40 estimation variance in the bottom plot is 
reduced, as is the mean steady-state estimation error (>300s). 
This is not surprising since one would generally expect 
improved results when optimizing to minimize the error in a 
single parameter, as opposed to multiple parameters. How 
ever, the estimator shown in the bottom plot does require a 
significantly longer time to reach steady-state convergence. 
Conversely, the estimator designed to minimize the steady 
state error in four auxiliary parameters (top plot) is unable to 
place as much emphasis on T40 estimation variance reduc 
tion, but it is able to track dynamic changes in T40 more 
rapidly. This example illustrates the inter-dependence 
between estimation variance and responsiveness. Therefore, 
it is prudent for a designer to evaluate the Kalman filter to 
ensure that it tracks engine dynamics acceptably. If the 
dynamic response is unacceptable, the optimization routine 
can be re-run placing more weight on estimation error bias 
reduction, and less weight on variance reduction. 

In an embodiment, the present approach produces an opti 
mal set of tuning parameters, not just at a single operating 
point but rather a globally optimal tuning parameter vector 
universally applicable over the range of operating conditions 
that an engine is expected to experience. A potential approach 
to selecting a single 'globally optimal' tuning parameter 
vector is to modify the optimization routine to minimize the 
combined estimation error over multiple engine operating 
points such as takeoff, climb and cruise. This would be a 
straightforward modification to the Matlab(R) optimization 
routine, but it would increase the computational time required 
to calculate the result. Since the systematic tuner selection 
process is only envisioned to be done once during the system 
design process, this will not impact the on-line execution 
speed of the Kalman filter. It is anticipated that the application 
of globally optimal tuners will result in Some estimation 
accuracy degradation relative to tuners optimized for indi 
vidual operating points, although this has not yet been veri 
fied or quantified. 
A systematic approach to tuning parameter selection for 

on-line Kalman filter based parameter estimation has been 
presented. This technique is specifically applicable for the 
underdetermined aircraft engine parameter estimation case 
where there are fewer sensor measurements than unknown 
health parameters which will impact engine outputs. It creates 
and applies a linear transformation matrix, V, to select a 
vector of tuning parameters which are a linear combination of 
all health parameters. The tuning parameter vector is selected 
to be of low-enough dimension to be estimated, while mini 
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mizing the mean-squared error of Kalman filter estimates. 
The multiparameter iterative search routine applied to opti 
mally selectV* was presented. Results have shown that while 
the transformation matrix returned by the optimization rou 
tine is not unique (different matrices can be found which 
produce a global minimum of the objective function), the 
routine is effective in returning a transformation matrix which 
is optimal, or near optimal, regardless of its initial starting 
guess of the matrix. The efficacy of the systematic approach 
to tuning parameter selection was demonstrated by applying 
it to parameter estimation in an aircraft turbofan engine linear 
point model. It was found to significantly reduce mean 
squared estimation errors compared to the conventional 
approach of selecting a Subset of health parameters to serve as 
tuners. In some parameters the mean squared estimation error 
reduction was found to be over 80%. These estimation 
improvements were theoretically predicted and experimen 
tally validated through Monte Carlo simulation studies. 

The systematic approach to Kalman filter design may be 
applicable for a broad range of on-board aircraft engine 
model-based applications which produce estimates of 
unmeasured parameters. This includes model based controls, 
model-based diagnostics, and on-board life usage algorithms. 
It also may have benefits for sensor selection during the 
engine design process, specifically for assessing the perfor 
mance estimation accuracy benefits of different candidate 
sensor Suites. 
The methods and processes described herein may be per 

formed by a hardware or software system or combination 
thereof. For example, a computing system may be configured 
to receive input signals from an engine by way of a plurality 
of sensors, and model the health parameters using the Kalman 
filter approach described herein. The computing system may 
comprise a processor or CPU, a memory, and a storage 
device, as is known in the art. The computing system may 
further include a logic configured to receive the input signals 
from the engine and determine estimates for unknown param 
eters. The computing system may modify the engine control 
based on an estimated unknown parameter or parameters 
determined by the logic using the methods and processes 
described herein. 
As used herein, the term “logic’ includes but is not limited 

to a software, a firmware, an executable program, a hardware 
or hard-wired circuit, or combinations thereof. For example, 
based on a desired application or needs, logic may include a 
Software controlled microprocessor, discrete logic like an 
application specific integrated circuit (ASIC), an analog cir 
cuit, a digital circuit, a programmed logic device, a memory 
device containing instructions, or the like. Logic may include 
one or more gates, combinations of gates, or other circuit 
components. Logic may also be fully embodied as Software. 
Where multiple logical logics are described, it may be pos 
sible to incorporate the multiple logical logics into one physi 
cal logic. Similarly, where a single logical logic is described, 
it may be possible to distribute that single logical logic 
between multiple physical logics. 

Although the preferred embodiments of the present inven 
tion have been illustrated in the accompanying drawings and 
described in the foregoing detailed description, it is to be 
understood that the present invention is not to be limited to 
just the preferred embodiment disclosed, but that the inven 
tion described herein is capable of numerous rearrangements, 
modifications and Substitutions without departing from the 
scope of the claims hereafter. 
We claim: 
1. A method of optimizing the estimated performance and 

estimated condition of an engine comprising: 
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16 
estimating a plurality of engine parameters based on a 

plurality of sensor inputs, wherein said engine param 
eters include a set of health parameters and a set of 
performance parameters, and wherein the number of 
health parameters in said set is greater than the number 
of sensors; 

determining a relationship between said set of health 
parameters and a tuning vector, wherein said tuning 
vector is a linear combination of said entire set of health 
parameters; 

determining at least one state equation in terms of said 
tuning vector; 

Solving said at least one state equation to determine an 
estimate for said set of health parameters; 

estimating said performance parameters based on said 
health parameter estimates; 

calculating the error in said estimation of said health 
parameters and said performance parameters; 

optimizing said relationship between said tuning vector 
and said set of health parameters based on said error 
calculation; 

determining an optimized tuning vector based on said opti 
mized relationship; 

determining at least one optimized state equation in terms 
of said optimized tuning vector; 

Solving said at least one optimized State equation to deter 
mine an optimized estimate of said engine parameters. 

2. The method of claim 1, wherein calculating the error 
includes calculating the mean estimation error. 

3. The method of claim 1, wherein said performance 
parameters are a function of said health parameters. 

4. The method of claim 1, wherein said relationship 
between said tuning vector and said set of health parameters 
is optimized to minimize the errorinestimating a given Subset 
of said health parameters. 

5. The method of claim 1, wherein said relationship 
between said tuning vector and said set of health parameters 
is optimized to minimize the errorinestimating a given Subset 
of said performance parameters. 

6. The method of claim 1, wherein said relationship 
between said tuning vector and said set of health parameters 
is optimized to minimize the error in estimating a combina 
tion of a given Subset of said health parameters and a given 
Subset of said performance parameters. 

7. The method of claim 1, wherein the dimension of said 
tuning vector is less than or equal to the number of said 
SSOS. 

8. The method of claim 1, wherein said relationship 
between said health parameters and said tuning vector is 
defined by a matrix. 

9. The method of claim8, whereina first dimensions of said 
matrix is equal to the dimension of said tuning vector. 

10. The method of claim 9, wherein a second dimension of 
said matrix is less than or equal to the number of said health 
parameters. 

11. The method of claim 1 further comprising the step of 
modifying control of said engine based on said optimized 
estimate of said engine parameters. 

12. The method of claim 1 wherein solving said state equa 
tion includes constructing a Kalman filter. 

13. An optimal tuning system comprising: 
a plurality of sensors capable of sensing engine param 

eters; 
a logic in operable communication with said plurality of 

sensors and configured to receive input from said plu 
rality of sensors, said logic configured to determine opti 
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mized parameters related to the estimated performance 
and condition of said engine; 

wherein said logic estimates a plurality of engine param 
eters based on said sensors, said engine parameters 
including a set of health parameters and a set of perfor- 5 
mance parameters, and wherein the number of health 
parameters in said set is greater than the number of 
Sensors; 

wherein said logic determines a relationship between said 
set of health parameters and a tuning vector that is a 
linear combination of said entire set of health param 
eters; 

wherein said logic determines at least one state equation in 
terms of said tuning vector and solves said at least one 
state equation to determine an estimate for said set of 
health parameters; 

wherein said logic estimates said performance parameters 
based on said health parameter estimates and calculates 
the error in said estimation of said health parameters and 
said performance parameters; 

wherein said logic optimizes said relationship between 
said tuning vector and said set of health parameters 
based on said error calculation; 

wherein said logic determines an optimized tuning vector 
based on said optimized relationship; 

wherein said logic determines at least one optimized State 
equation in terms of said optimized tuning vector 

wherein said logic solves said at least one optimized State 
equation to determine an optimized estimate of said 
engine parameters. 
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14. The optimal tuning system of claim 13, wherein said 

logic comprises multiple logics. 
15. The optimal tuning system of claim 14, wherein said 

optimized tuning vector is defined within one of said multiple 
logics. 

16. The optimal tuning system of claim 13, wherein said 
logic calculates the mean estimation error in said estimation 
of said health parameters and said performance parameters. 

17. The optimal tuning system of claim 13, wherein said 
performance parameters are a function of said health param 
eters. 

18. The optimal tuning system of claim 13, wherein said 
logic optimizes said relationship between said tuning vector 
and said set of health parameters to minimize the error in 
estimating a given Subset of said health parameters. 

19. The optimal tuning system of claim 13, wherein said 
logic optimizes said relationship between said tuning vector 
and said set of health parameters to minimize the error in 
estimating a combination of a given Subset of said health 
parameters and a given Subset of said performance param 
eters. 

20. The optimal tuning system of claim 13, wherein said 
logic solves said state equation by constructing a Kalman 
filter. 

21. The optimal tuning system of claim 13, wherein said 
logic is capable of modifying control of said engine based on 
said optimized estimate of said engine parameters. 

22. The optimal tuning system of claim 13, wherein the 
dimension of said tuning vector is less than or equal to the 
number of said sensors. 

k k k k k 


