

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ³ : A61K 37/36, 37/00; A61M 5/00; A61J 7/00		A1	(11) International Publication Number: WO 81/00354 (43) International Publication Date: 19 February 1981 (19.02.81)		
(21) International Application Number: PCT/US80/00969 (22) International Filing Date: 30 July 1980 (30.07.80)		(81) Designated States: AT (European patent), AU, BR, CF (OAPI patent), CG (OAPI patent), CH (European patent), CM (OAPI patent), DE (European patent), FR (European patent), GA (OAPI patent), GB (European patent), JP, LU (European patent), NL (European patent), SE (European patent), SN (OAPI patent), TD (OAPI patent), TG (OAPI patent).			
(31) Priority Application Number: 062,484 (32) Priority Date: 31 July 1979 (31.07.79)		Published <i>With international search report</i>			
(33) Priority Country: US					
(71) Applicant: THE ROCKEFELLER UNIVERSITY [US/US]; 1230 York Avenue, New York, NY 10021 (US).					
(72) Inventors: BROWNLEE, Micheal; 3 Oak Place, Watertown, MA 02172 (US). CERAMI, Anthony; 76 Flanders-Drakestown Road, Flanders, NJ 07836 (US).					
(74) Agents: KELLY, Richard, D., et al.; Obbon, Fisher, Spivak, McClelland & Maier, Crystal Square Five, Suite 400, 1755 S. Jefferson Davis Highway, Arlington, VA 22202 (US).					
(54) Title: METHOD AND SYSTEM FOR THE CONTROLLED RELEASE OF BIOLOGICALLY ACTIVE SUBSTANCES TO A BODY FLUID					
(57) Abstract					
<p>A process and system for controlled delivery of a biologically active substance to an animal body fluid which comprises contacting fluid with a reversible complex of a conjugate (1) and a binding macromolecule (2), wherein the conjugate (1) comprises a biologically active portion which is intended to be proportionately released into a body fluid stream in response to varying concentration levels of a component of the body fluid stream, and a complexing substrate portion which conjugates with the biologically active portion and which is characterized by affinity to the binding macromolecule (2), competitively or non-competitively with the variable component of the body fluid; thereby causing the component present in the body fluid to complex to the binding macromolecule and thus releasing the conjugate (1) therefrom into the fluid. The process and system are particularly applicable for the glucose-controlled release of insulin and other hypoglycemic agents in the treatment of diabetes.</p>					

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	KP	Democratic People's Republic of Korea
AU	Australia	LI	Liechtenstein
BR	Brazil	LU	Luxembourg
CF	Central African Republic	MC	Monaco
CG	Congo	MG	Madagascar
CH	Switzerland	MW	Malawi
CM	Cameroon	NL	Netherlands
DE	Germany, Federal Republic of	NO	Norway
DK	Denmark	RO	Romania
FI	Finland	SE	Sweden
FR	France	SN	Senegal
GA	Gabon	SU	Soviet Union
GB	United Kingdom	TD	Chad
HU	Hungary	TG	Togo
JP	Japan	US	United States of America

- 1 -

Description

Method and System for the Controlled Release of Biologically Active Substances to a Body Fluid

Technical Field

5 The present invention relates to a chemical method for the controlled release and delivery of biologically active substances to body fluids.

Background Art

10 The use of systems for the slow delivery of medications is known in the art. These systems have been suggested for a wide range of diseases where accurate control of the concentration of released agent is not necessarily critical.

15 Most "controlled-release" systems known to the prior art however (see e.g. Sears, USP 4,145,410, who shows drug release from capsules which are enzymatically labile) are incapable of releasing medication at intervals and concentrations which are in direct proportion to the amount of a metabolite present in the human body. The delivery or release of drug in these prior art systems is thus not literally "controlled", but is simply a slow release, independent of 20 external or internal factors.

25 For example, although injectable insulin has been available for the treatment of diabetes mellitus for over fifty years, it is apparent that the simple replacement of the hormone is not sufficient to prevent the pathological sequelae associated with this disease.

30 The development of these sequelae is believed to reflect an inability to provide exogenous insulin proportional to varying blood glucose concentrations experienced by the patient. To solve this problem several biological and bioengineering approaches to develop a more physiological insulin delivery system have been suggested.

35 Metas et al (Diabetes 25, 785 (1976)) describe the transplantation into a diabetic animal, of pancreatic tissue from a healthy animal. The transplanted tissue provides a ready source of insulin whose release is controlled primarily by the level of glucose in the blood. This approach has only succeeded with highly inbred strains of animals, however, since tissue rejection otherwise be-

- 2 -

comes a limiting factor. Obtaining sufficient quantities of acceptably pure islet tissue for future clinical applications also poses significant problems.

5 Chick (Science, 187, 847 (1975)) avoids the problem of tissue rejection by culturing pancreatic islets on the outside of semipermeable tube-shaped membranes, bundles of which are enclosed by a cylindrical shell. Blood flows through the inner tubes when the system is interposed into the circulation of an animal providing nutrients to the cells. Glucose and insulin pass across the membrane, 10 while larger immunologically active substances remain inside. The use of cultured tissue however implies that the system is only viable for short periods of time. Mechanical problems, such as clogging of the inner tubes by blood also prevent its extensive use.

15 Soeldner et al (NIH publication No. 76-854 (1976), pp. 267) describe a glucose sensitive electrode which utilizes immobilized glucose oxidase to produce electric current inversely proportional to the blood glucose level. Glucose oxidase is a very unstable enzyme in this system, and thus limits the use of such an electrode.

20 Colton et al (Transplantation and Clinical Immunology, X, 165-173, Amsterdam, 1978) discuss a system which would eventually include an electronic glucose sensor, an insulin reservoir and pump, and electronics connecting the two. If the sensor finds glucose levels rising, an appropriate amount of insulin would be pumped into the bloodstream - automatically. This system utilizes a platinum 25 electrode catalyst for oxidizing glucose in the sensor. This results in less specific electrodes which show interference with other metabolites and so cannot be used with reliability.

30 All of these prior art systems take into account the critical relationship between the blood glucose levels and insulin released, and thus attempt to provide the necessary feedback response which would allow the release of insulin to be controlled directly by the amount of blood sugar present at any particular time. However, the systems suffer from a general lack of reproducibility, long-term effectiveness and reliability. None of them have been put into extensive use because of this. A reliable feedback system which does 35 not depend on the use of electrodes or transplanted tissue has not

yet been developed. The use of such a simple internally controlled system would greatly expand the use of controlled-release medications. It would be particularly useful in the feedback controlled release of other hormones such as somatostatin, and of modified pharmacological compounds such as enzyme inhibitors and hypoglycemic agents.

Disclosure of Invention

It is therefore an object of the invention to provide a safe and reliable feedback-controlled release drug delivery system.

Another object of the invention is to provide a drug release system which is internally controlled. Still another object of the invention is to provide a controlled drug release system for hormone deficiency diseases.

A further object of the invention is to provide a method for periodically and controllably delivering drugs, especially hormones, to human biological fluids.

These and other objects of the invention have been attained by providing a process for feedback controlled delivery of a biologically active substance to an animal body fluid which comprises contacting said fluid with a reversible complex of a conjugate (1) and a binding macromolecule (2), wherein said conjugate (1) comprises a biologically active portion which is intended to be proportionately released into a body fluid stream in response to varying concentration levels of a component of said body fluid stream, and a complexing substrate portion which conjugates with said biologically active portion and which is characterized by affinity to said binding macromolecule (2) competitively or non-competitively with said variable component of said body fluid; thereby causing the component present in said body fluid to complex to said binding macromolecule and to release said conjugate (1) therefrom into said fluid.

The objects of the invention have also been attained by providing a process for the controlled delivery of a biologically active hypoglycemic substance to a glucose containing human body fluid which comprises contacting said fluid with a reversible complex of (1) a biologically active hypoglycemic substance which is a conjugate between a carbohydrate and a hypoglycemic agent, and (2) a binding

- 4 -

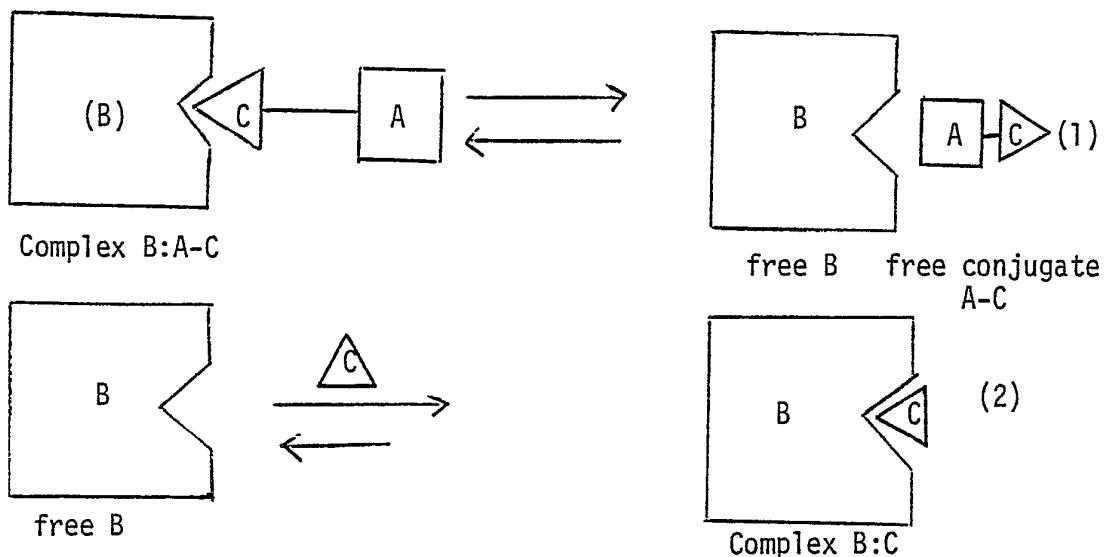
macromolecule having affinity for glucose and for the carbohydrate portion of said conjugate (1); thereby causing the glucose present in said fluid to complex to said binding macromolecule and to release said conjugate into said fluid.

5 Other objects of the invention have also been attained by providing: a controlled release medication system which comprises a reversible complex of (1) a biologically active hypoglycemic substance which is a conjugate between a carbohydrate and a hypoglycemic agent and (2) a binding macromolecule having affinity for glucose and for 10 the carbohydrate portion of said conjugate.

Brief Description of Drawings

A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed 15 description when considered in connection with the accompanying drawings, wherein:

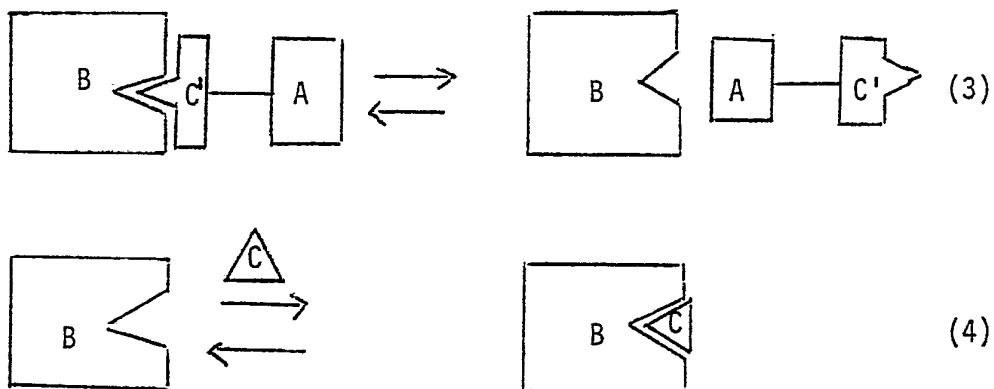
Figure 1 is the elution profile from a column of immobilized concanavalin A, of insulin (A) and maltose-insulin conjugate (B) in the presence of glucose as eluant (arrows).


20 Figure 2 is the elution profile from a column of immobilized concanavalin A of a maltose-insulin in the presence of pulses of increasing glucose concentration.

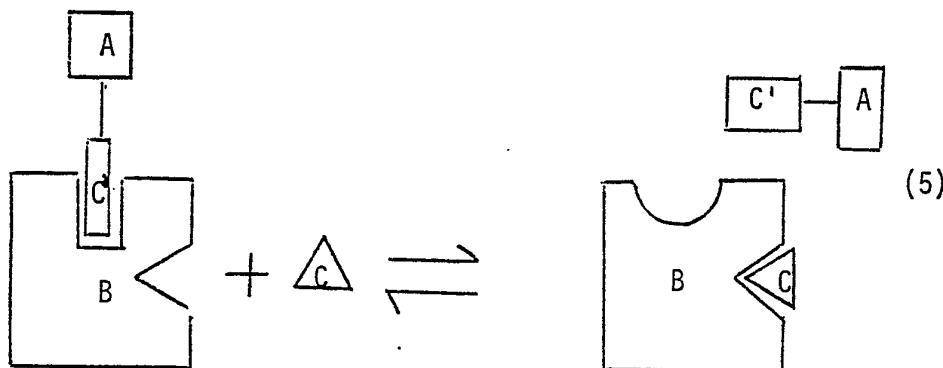
Best Mode for Carrying Out the Invention

The drug delivery system of the present invention comprises a 25 reversible non-covalent complex (B:A-C) between a binding macromolecule (B) and a conjugate of a biologically active substance (A) with a complexing substance (C). The conjugate (A-C) contains a biologically active portion (A) and a complexing portion (C). Equations (1) and (2) show a first embodiment for the operation of the system.

30 This embodiment will be called directly competitive in analogy to the well-known kinetic system of competitive inhibition for enzymes. (Mahler and Cordes, Biological Chemistry, 2d Edition (1971) pp. 295-297.)


- 5 -

The complex B:A-C is initially in reversible chemical equilibrium with the separated components B and A-C (eq. 1). The binding site of B can only recognize molecules of shape C, either when these are free in solution or when they are coupled to another component such as in conjugate A-C. The degree of association of B with conjugate A-C is ideally very high, so that when no or little C is present independently, the system lies mostly on the B:C-A side of the equilibrium (1), and there are very few free, unassociated B molecules present in solution (eq. 1). However, when the concentration levels of C increase in the system, the molecules of C start competing for the available binding sites on B and the equilibrium represented by equation (2) becomes more important. The few unassociated binding molecules B (which are always present) enter into complexation with C and because of the law of mass action, this event causes other B:A-C complexes to become dissociated. In this fashion, the molecules of conjugate A-C are released into the medium when the concentration of free C increases in the medium. Through the intermediacy of binding molecule B, the free concentration of C regulates and controls the appearance of free conjugate A-C in the medium. It is unnecessary that free C and the complexing portion of conjugate A-C corresponding to C, be molecularly exactly identical. It is only necessary that both show complexing affinity for binding molecule B, that they be capable of forming reversible complexes therewith,


- 6 -

and that they displace each other from B as a function of concentration, according to the equilibria represented by equations (1) and (2). A system where free C and conjugated C are not identical can therefore also be used in the present invention and is represented 5 by the following equations (3) and (4):

Conjugate A-C' in equation (3) is recognized by B although complexing portion C' is, in overall structure, different than C. The recognition sites of both C and C' molecules are, however, exactly alike. C and C' bind at the same site and displace each other from the site.

10 A second embodiment of the system which is useful in the present invention is one wherein the displacement of conjugate A-C (or A-C'), or more precisely, the blocking of the available site on B for its complexation therewith occurs non-competitively. In this embodiment, B has two sites, one of which complexes which conjugate C-A or C'-A, and the other one with free C. The binding sites are 15 structurally different but they interact by negative feedback. When C binds at its own site, this binding causes the second site, which is the site for C-A or C'-A, to change structurally so that its affinity for the conjugate is decreased. Such an embodiment is represented- 20 ed by equation (5):

In the absence of fluid component C, the affinity of B for conjugate A-C' is high. The A-C' conjugate is therefore complexed with B. In the presence of C however, the affinity of B for A-C' is much lower, and A-C' is released into the medium. In this second embodiment,

5 the concentration levels of free C directly control the release of conjugate A-C' into the body fluid. This manner of operation of the system is called non-competitive in analogy to the type of enzyme inhibition called non-competitive inhibition (Mahler and Cordes, Biological Chemistry, 2nd Edition, pp. 295-298 (1971)).

10 Binding macromolecule B can by any of a number of well-known macromolecular entities which exhibit molecular recognition and reversible binding of other micro- or macromolecules. B is preferably a natural binding protein, such as an antibody, an enzyme, a regulatory protein, a drug receptor site or the like. It is also possible 15 to use synthetically modified binding molecules, such as chemically modified proteins. Such modified proteins sometimes have increased or decreased affinities for their substrates when compared to their natural unmodified counterparts. By "macromolecule" is also meant a conjugate of a smaller molecule which shows binding characteristics, with a larger polymeric molecule which, by itself does not. The 20 polymeric molecule would therefore serve as support for the binding smaller molecule and the whole arrangement would therefore be a binding macromolecule. By choosing the appropriate binding macromolecule it becomes possible to control the nature of the released 25 therapeutic drug and its release concentrations. Among examples of binding proteins B, antibodies and lectins are the most preferred.

- 8 -

Antibodies can be prepared and purified from animals in standard fashion (Eisen, H.N. "Immunology", Harper & Row, 1974). Antibodies have the advantage of being induceable in an animal by challenge with an appropriate antigenic agent. Since this agent can be chosen from 5 any chemical family, e.g., amino acids, carbohydrates, their respective polymeric derivatives, or the like, the resulting antibodies may have a wide range of binding specificity and affinity. Lectins are also particularly useful in this invention. Lectins are carbohydrate-binding proteins of plants and animals with a wide variety of 10 specificities for carbohydrates; (Lis et al, Ann. Review of Biochemistry, 42, 541 (1973); I.J. Goldstein and C. E. Hayes, Adv. in Carbohydrate Chemistry and Biochemistry, Vol. 35, R.S. Tipson and D. Horton, eds. (Academic Press, New York, 1978, pp. 128-341), herein incorporated by reference). For example, concanavalin A, a Jack Bean 15 lectin, has specificity for α -D mannopyranose and α -D glucopyranose; soybean lectins are specific for α and β -D-N-acetylgalactosamine and α -D-galactose units and wheat germ lectin is specific for β -D-N-acetyl glucosamine.

Preferably, a manno-oligosaccharide containing from 2 to 7 (1, 20 2) α -D-mannopyranosyl residues is used as the carbohydrate.

The molecular complexation reaction between binding macromolecule B and molecule C, or the C or C' portion of conjugate A-C, has 25 to be reversible and non-covalent. This bonding between B and C (or B and A-C) is caused by non-covalent forces such as hydrophobic, ionic, hydrogen bonding forces and the like. These interactions have been well studied in the art and their effects on molecular affinity and recognition are described, for example in Korolkovas et al, "Essentials of Medicinal Chemistry", pp. 44-81, Wiley, 1976, which is herein incorporated by reference. Such reversible interactions 30 are exemplified by the interaction between an enzyme and its substrate or a competitive inhibitor thereof; and antibody with its antigen, or a drug receptor site and its drug.

The functional relation between component C present in the body fluid and the biologically active agent A is very important. The 35 biologically active conjugate A-C (or A-C') is released in proportionate amounts to the levels of component C present in the body

- 9 -

fluid. Agent A therefore can be a hormone-type substance which directly regulates the levels of C in the fluid, by for example, causing a decrease of the levels of C. Agent A, however need not be directly functionally related to component C but only indirectly.

5 In such case, increasing levels of C in the fluid would release conjugate A-C (or A-C') which then, via its biologically active portion A, will act on a biological system unrelated or only indirectly related to component C. The system will then release A-C into the fluid as a function of the concentration of any metabolite being 10 "monitored". In a preferred embodiment, however, A is a hormone or hormone-like substance and C is a metabolite participating in a feedback regulatory loop with A.

Hormones are substances secreted by endocrine glands or in tissues and released into the bloodstream, by which they are transported 15 to other tissues where, by selectively binding to specific receptors, they exert their effects. Hormones possess a wide range of chemical structures: peptides, steroids, derivatives of amino acids and derivatives of fatty acids. Hormones are glandular or tissue-originated. Among the common glandular hormones useful with the system of 20 the present invention are the pituitary and hypothalamic polypeptide hormones such as oxytocin, arginine-vasopressin, lysin-vasopressin, adrenocorticotropin (ACTH), follicle-stimulating hormone (FSH); somatotropin (GH), luteinizing hormone (LH), melanocyte-stimulating hormone (MSH), prolactin, thyroid-stimulating hormone (TSH); the parathyroid hormone; calcitonin; the hormones of the pancreas such as insulin; glucagon and somatostatin, the adrenal cortical hormones 25 such as mineralocorticoids as aldosterone and desoxycorticosterone, glucocorticoids as cortisone and hydrocortisone, sexual hormones as androgens, anabolic steroids, estrogens, progestagens. Among the common tissue hormones useful in the method of the present invention 30 are, for example, histamine, norepinephrine, serotonin, prostaglandins, prostacyclins, and thromboxanes. Any of these hormones or their biologically active analogues or derivatives can be used in the preparation of the A-C conjugate of the present invention.

35 The coupling molecule C is the substance whose varying levels will proportionately release active conjugate A-C (or A-C'). In a prefererd embodiment, C is a fluid component whose levels are regualted by A-C. In such case, C has to be in functinal relation to

- 10 -

to molecule A, since as explained above, its levels are regulated by A. Most preferably, C is chosen so that a feedback loop exists between C and A; i.e., when the levels of C increase in the blood, the levels of A increase under normal circumstances, thus returning the 5 level of C, and in turn A, to their equilibrium positions.

It is crucial that after the chemical coupling of C to A, the complexing portion of the conjugate A-C corresponding to C, preserve the affinity of the original C to the binding macromolecule B and that it be displaced therefrom by increasing concentrations of free 10 C. Furthermore, it is useful to choose or chemically modify C in such manner that it will be easily chemically coupled to A, to yield conjugate A-C. Examples of coupling molecules C (given with their regulatory active substances) are: glucose (regulated by insulin and also by other hypoglycemic agents such as sulfonylureas and bi- 15 guanides); calcium (regulated by calcitonin); cortisone (regulated by ACTH); progesterone (regulated by LH); testosterone (regulated by LH); thyroid hormones (regulated by TSH); prolactin (regulated by prolactin-release inhibiting hormone); growth hormone (regulated by growth hormone releasing-inhibiting hormone); electrolytes (regulated 20 by mineralocorticoids).

The coupling between A and C can be carried out directly by using appropriate functional groups on both molecules or by using a bridging or spacer group between them. Nucleophilic groups on one component, such as free -OH or -NH₂ or -SH can be reacted with electrophilic groups on the other component, such as esters, ketones, aldehydes and the like, to give covalent adducts. The coupling between a peptide containing free amino groups and a carbohydrate containing aldehyde groups can be carried out to yield an imine ($\text{C}=\text{N}$) which, in the presence of a reducing agent such as NaBH₄, KBH₄, Na 25 CNBH₃ will give primary or secondary amines. This type of reaction is well exemplified in the prior art, as demonstrated by Gray, G.R., Archives of Biochemistry and Biophysics, 163, 426 (1974) or by Wilson, G., J. of Biol. Chemistry 253, 2070 (1978), both of which are herein incorporated by reference. Another possible coupling reaction 30 is that between free amines on proteins and ester functions on proteins or carbohydrates, to give amides. In the latter case of course, the naturally occurring free carboxylic acids of the protein 35

- 11 -

or carbohydrate have to be chemically esterified first, as by reaction with a diazoalkane such as diazomethane.

The final bond between A and C has to be stable and irreversible and is, most preferably, covalent.

5 The properties of the conjugate A-C or A-C' are such that it should retain both the reversible affinity and binding characteristics of C and the biological activity of A. Its properties are therefore a composite of those of both its constituents. The choice of appropriate coupling partners and coupling methods are critical.

10 Chemical attachment of the type required by the present invention might lead to a great or even total loss of binding or of regulatory activity, or both. It is crucial that none of these activities be lost after coupling.

According to the process of the present invention the B:A-C (or B:A-C') complex is brought into intimate contact with the physiological human fluid to be treated. The controlled release of active conjugate A-C (or A-C') begins when the amount of free C in the fluid contacting the complexes reach a given critical high level. Virtually no active conjugate is released when the levels of free C fall below the critical level. It is also possible to simultaneously contact the body fluid with complexes between B and active conjugates A-C', A-C" and A-C'" wherein these conjugates have different affinity towards B. In this way, increasing levels of C in the fluid would release a steadily increasing amount of active conjugate. Still another possibility is to contact the body fluid with complexes between B and A-C, A'-C and A"-C, where A, A' and A" represent biologically active portions of the conjugate exhibiting different biological activities. In this mode, increasing levels of fluid component C will release two or more different substances which exhibit different biological effects.

By appropriate choice of B, A and C and of active analogues thereof, the possibility exists of treating a wide variety of diseases with individualized drug-delivery profiles.

35 The system of the present invention is ideally suited for use in externally or internally implanted devices, such as insulin pumps or the like. The complex B:A-C may be present in a semiperme-

- 12 -

able or porous tube or fiber, which is brought into contact with human fluid such as plasma. The pores of the tube or device are chosen so that the complex and the binding molecule B cannot pass therethrough and are "trapped" inside. The pores however are permeable 5 to conjugate A-C and free component C. When the concentration of component C in the plasma reaches critical levels, conjugate A-C (or A-C') is released into the plasma. It passes freely through the pores of the tube or fibers and is assimilated into the body, while the B:C complex remains trapped behind. Exchanging the solution 10 within the tubes periodically by fresh solution of B:A-C complex, simply replenishes the supply of drug. Another embodiment of the invention is to fix the binding macromolecule B covalently either directly, or via a spacer or bridging group, to the tube itself. The techniques of solid-state immobilization of enzymes and other proteins 15 on resins, films, test tubes, glass beads and the like are well known (see e.g., Zaborsky, C. "Immobilized Enzymes" CRC Press, Cleveland, 1973; Axen et al USP 3,645,852; Kraemer et al, USP 4,039,413). In this fashion, "cartridges" of a semiporous, semipermeable film such as cellulose can be prepared which contain covalently bound B 20 in the form of its reversible complex B:A-C. Upon contact with body fluid and subsequent exchange of A-C by C, the cartridge becomes "spent" and can be readily replaced by a fresh one. The spent cartridges can then be recycled by extensive dialysis against solution containing conjugate A-C.

25 In a particularly preferred embodiment, this invention relates to a system for the delivery of active hypoglycemic agents, preferably insulin, to the bloodstream of patients with diabetes mellitus. Diabetes mellitus is a hereditary disease characterized by the relative or absolute deficiency of insulin. Insulin is a polypeptide 30 hormone made of 2 chains of amino acids, molecular weight 6000. It is synthesized, stored and released from the pancreas primarily in response to blood glucose levels. Insulin carries out a variety of physiological functions such as for example, activation of transport systems for glucose and of certain enzymes involved in increased glucose 35 utilization, glycolysis, glycogenesis and lipogenesis. Absence of insulin thus causes an increase in the blood levels of glucose (hyperglycemia).

- 13 -

The system of the present invention wherein A is an active hypoglycemic agent, C is glucose or an actively binding analogue thereof with complexing characteristics similar to those of glucose, and B is a carbohydrate-binding molecule, is readily applicable to the treatment of hyperglycemia. In particular, when the conjugate A-C is prepared from insulin and oligosaccharides such as maltose, and maltose-triose, the resulting conjugate retains hormonal activity. Any of the oligosaccharides described in Lis et al, Ann. Rev. of Biochemistry, 42, 541 (1973), can be used. Furthermore, the oligosaccharide-insulin conjugate binds to a lectin such as concanavalin A and can be displaced therefrom by solutions with increasing glucose content. Various hypoglycemic agent-conjugates, complementary to the major combining sites of the lectins, can be synthesized and the products are stable. Since lectin binding affinity for various saccharides varies more than ten-fold, a mixture of different high- and low-affinity semisynthetic conjugates can be combined to produce clinically desirable elution profiles. A number of active insulin derivatives have been prepared (Ellis, M.S. et al, Diabetologia 11: 340, 1975; Tompkins, C.V. and Sonksen, P.H., Clin. Sci. and Mol. Med. 50: 31, 1976; Darby, S.C. et al, Diabetologia 15: 403, 1978). These derivatives and/or analogues can of course be used in the process of the present invention. It is also possible to synthesize other glycosylated hypoglycemic agents such glycosylated sulfonylureas and biguanides (Korolkovas et al, Essentials of Medicinal Chemistry, p. 605 (Wiley, 1976)). Glucose-activated release of these agents is then carried out according to the same system. Another application, is the preparation of glycosylated derivatives of somatostatin. This would provide glucose-controlled inhibition of the excessive glucagon secretion which is thought to exacerbate diabetic hyperglycemia.

Yet another application of the system, in a mode where agent A is not a hormone involved in the regulation of component C, is for example the release of enzymatic inhibitors in diabetes mellitus. Studies in animals (Winegrad, A.I. et al, In Proceedings of the VII Congress of the International Diabetes Federation, ed.. W.J. Malaisse and J. Pirart, pp. 387-395, Excerpta Medica, Amsterdam), suggest that excessive conversion of glucose to sorbitol by the enzyme aldose

- 14 -

reductase may be of etiologic significance in the pathogenesis of several diabetic complications. A variety of inhibitors for aldose reductase have been prepared (Gabbay, L.H., Adv. Metab. Disorders Suppl. 2. New York, Academic Press, 1973, pp. 417-424; Dvornik, D. et al: Science 182: 1146, 1973; Varma, S.D. et al, Science 188: 1215, 1975; M.J. Peterson et al, Metabolism 28: 456, 1979; Kinoshita, J.H. et al Metabolism 28: 462, 1979, all of which are herein incorporated by reference) with the purpose of decreasing the levels of activity of the enzyme. Any of these inhibitors could be conjugated to a carbohydrate and used in the system of the present invention. When the levels of glucose increase in the blood, inhibitor-conjugates will be released, decreasing the possibility of damage due to sorbitol.

The synthesis of glomerular basement membrane (GBM) has also been reported to increase with increased levels of blood glucose (Spiro, R.G. and Spiro, M.J. Diabetes 20: 641, 1971; Brownlee M. and Spiro, R.G. Diabetes 28: 121, 1979). Excessive accumulation of this material is also a cause of damage in diabetes. Conjugating a carbohydrate to an inhibitor of an enzyme involved in the synthesis of GBM (Maragoudakis, M. et al, J. Pharm. Exp. Ther. 204: 377, 1978, herein incorporated by reference) will then yield a substance capable of use in the process and system of the present invention.

Still another application of the present invention is in the simultaneous release of a combination of hypoglycemic agents. Alburn et al (USP 3,912,807) have shown that the combination of somatostatin and insulin is very effective in the treatment of diabetes mellitus. Dietze et al (USP 4,150,121) have demonstrated that kinin-insulin combinations are useful in diabetes, and Laborit (USP 4,035,486) has shown that guanosine increases glucose utilization in diabetic animals treated with insulin or acetylcholine. The system of the present invention can thus be simply adapted to the glucose-dependent release of drug combinations. For example, it is possible to contact the body fluid with two complexes: a first one comprising a lectin and a conjugate of carbohydrate and insulin, and a second one comprising a lectin and a conjugate of carbohydrate and guanosine. In this fashion raising glucose levels will release both guanosine and insulin into the body fluid.

- 15 -

Having now generally described this invention, a further understanding can be obtained by reference to a specific example which is provided herein for purposes of illustration only and is not intended to be limiting unless otherwise specified.

5 I. Preparation of a Maltose-Insulin Conjugate

Maltose was incubated with porcine insulin (Lilly) at a Molar ratio of 650:1 for 5 days at 37°C in 0.1M sodium phosphate buffer pH 8.0. The incubation was carried out in the presence and absence of 0.25M sodium cyanoborohydride. Unreacted maltose was removed by gel 10 filtration on Bio-gel P-G and the conjugated insulin was separated by affinity chromatography on a Concanavalin A Sepharose 4B column. Analysis of the product for carbohydrate (phenolsulfuric acid method, Dubois, M. et al, *Analyt. Chem.*, 28, 350 (1956)) and for protein (Lowry, O.H. et al, *J. Biol. Chem.*, 193, 265 (1951)) showed that after 15 a 5 day incubation, the derivative contained 1.76 moles of covalently bound carbohydrate per mole of insulin monomer. Since substitution of all three primary amino groups has been reported to result in the loss of hormone activity (Ellis, M.J. et al, *Diabetologia*, 15, 403 (1978)), a 5 day incubation time was chosen to maximize yield 20 while minimizing loss of biological activity.

The insulin conjugate was stored at 4°C and was stable for at least seven weeks regardless of whether or not reducing agent had been added.

II. Bioactivity of Maltose-Insulin Conjugate

25 The conjugate prepared in I was tested using the blood-glucose depression assay modified from the U.S. Pharmoacopeia (Vol. XVIII, 883-884 (1967)). Preparations varied from 78 to 95% of unmodified insulin bioactivity. The results are given in Table 1.

Table 1

30 BIOACTIVITY OF MALTOSE-INSULIN DERIVATIVE
ANIMAL BLOOD GLUCOSE DEPRESSION*

	Maltose-insulin derivative	Control insulin	p
A	61 mg%	75 mg%	
B	64 mg%	70 mg%	
C	66 mg%	79 mg%	
D	63 mg%	79 mg%	
E	69 mg%	64 mg%	

- 16 -

Table 1 (continued)
 BIOACTIVITY OF MALTOSE-INSULIN DERIVATIVE

ANIMAL	BLOOD-GLUCOSE DEPRESSION*		
	Maltose-insulin derivative	Control insulin	p
F	74 mg%	73 mg%	
Mean \pm S.E.M.	66.17 \pm 1.92	73.33 \pm 2.35	< 0.1

*After an overnight fast, each animal received 0.1 mg protein/100 gm body weight by subcutaneous injection. Each of the animals served as its own control, receiving the maltose-insulin derivative on day 1, and control insulin on day 2. Blood glucose depression was determined 60 minutes after injection using a Beckman Glucose Analyzer 2.

III. Binding of Maltose Insulin to Concanavalin A

Figure 1 shows the elution profile obtained from 20 mg of unmodified insulin (A) and maltose-insulin (B) applied to columns (24.0 X 1.5 cm I.D.) of immobilized Concanavalin A. Initial buffer was 1 mM MgCl₂, 1 mM CaCl₂, 50 mM NaCl, 25 mM sodium phosphate, pH 7.4. At the point indicated by the arrow, 0.2 M glucose in the column buffer was begun. Fractions (2.0 ml) were collected at a flow rate of 10-15 ml/h. Unmodified insulin did not bind to Concanavalin A. When this material was applied to the lectin, all of the protein was recovered in the buffer wash, and none was eluted by the addition of glucose. In contrast, all of the maltose-insulin derivative was bound to Concanavalin A. None was eluted by the buffer wash, and all of the maltose-insulin derivative could be displaced from Concanavalin A binding sites by a 1,000:1 molar excess of glucose.

Figure 2 shows the elution profile obtained from 20 mg maltose-insulin derivative applied to a column (12.0 X 1.5 cm I.D.) of immobilized Concanavalin A. Initial buffer was 1 mM MgCl₂, 1 mM CaCl₂, 50 mM NaCl, 25 mM sodium phosphate, pH 7.4. Displacement of hormone was accomplished using 1.0 ml pulses of column buffer containing varying amounts of glucose. Glucose content is indicated over the appropriate arrows. Fractions (1.7 ml) were collected at a flow rate of 10-15 ml/h. Glucose-pulse experiments with the lectin-bound maltose-insulin derivative demonstrate that hormone release is a function of the quantity of glucose present.

- 17 -

Having now fully described this invention, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the invention set forth herein.

- 18 -

Claims

1. A process for controlled delivery of a biologically active substance to an animal body fluid which comprises
 - 5 contacting said fluid with a reversible complex of a conjugate (1) and a binding macromolecule (2), wherein said conjugate (1) comprises
 - 10 a biologically active portion which is intended to be proportionately released into a body fluid stream in response to varying amounts of a component of said body fluid stream, and a complexing substrate portion which conjugates with said biologically active portion and which is characterized by affinity to said binding macromolecule (2), competitively or non-competitively with said variable component of said body fluid; thereby
 - 15 causing the component present in said body fluid to complex to said binding macromolecule and thus releasing said conjugate (1) therefrom into said fluid.
2. The process of Claim 1, wherein the biologically active portion of said conjugate (1) is selected from the group consisting of substances which physiologically regulate the concentration levels
 - 20 of said component in said body fluid.
3. The process of Claim 2, wherein the biologically active portion of said conjugate (1) is a hormone.
4. The process of Claim 1, wherein the complexing substrate portion of said conjugate (1) contains an analogue of said body fluid component wherein said analogue has affinity to said binding macromolecule.
 - 25
5. The process of Claim 1, wherein the biologically active portion and the complexing portion of said conjugate (1) are covalently bonded to each other.
- 30 6. The process of Claim 1, wherein said binding macromolecule (2) is a protein.

- 19 -

7. The process of Claim 1, wherein said binding macromolecule is a conjugate of a smaller molecule and a polymeric carrier.

8. The process of Claim 1, wherein the biologically active portion of said conjugate (1) is an enzyme inhibitor.

5 9. The process of Claim 1, wherein said complex comprises two or more conjugates (1) of varying affinity towards said binding macromolecule (2).

10. The process of Claim 1, wherein said body fluid is blood.

11. The process of Claim 1, wherein said body fluid is contacted with said complex in a dialysis tube containing said complex.

12. The process of Claim 11, wherein said binding macromolecule (2) is immobilized in said dialysis tube.

13. The process of any of Claims 11 or 12, wherein said dialysis tube is present in a device implanted externally or internally to the human body.

14. A process for the controlled delivery of a biologically active hypoglycemic agent to a glucose containing human body fluid which comprises contacting said fluid with a reversible complex of (1) a biologically active hypoglycemic compound and (2) a binding macromolecule having affinity for glucose and for the carbohydrate portion of said conjugate (1); thereby

causing the glucose present in said fluid to complex to said binding macromolecule and to release said conjugate into said fluid.

15. The process of Claim 14, wherein said binding macromolecule is a protein.

16. The process of Claim 15, wherein said protein is a lectin.

- 20 -

17. The process of Claim 16, wherein said lectin is Concanavalin A.

18. The process of Claim 14, wherein said carbohydrate is maltose.

5 19. The process of Claim 14, wherein said hypoglycemic agent is insulin.

20. The process of Claim 14, wherein said reversible complex comprises at least two conjugates of different affinity towards binding macromolecule (2).

10 21. The process of Claim 14, wherein said reversible complex comprises at least two conjugates with different biologically active portions.

22. The process of Claim 21, wherein said two different biologically active portions are guanosine and insulin.

15 23. The process of Claim 14, wherein said carbohydrate is a mannooligosaccharide containing from 2 to 7 (1→2) α-D-mannopyranosyl residues.

24. The process of Claim 14, wherein said hypoglycemic agent is a hypoglycemically active sulfonylurea.

20 25. A controlled release medication system which comprises a reversible complex of (1) a biologically active hypoglycemic substance which is a conjugate between a carbohydrate and a hypoglycemic compound and (2) a binding macromolecule having affinity for glucose and for the carbohydrate portion of said conjugate.

25 26. The medication system of Claim 25, wherein said binding macromolecule is a protein.

27. The medication system of Claim 26, wherein said binding protein is a lectin.

- 21 -

28. The medication system of Claim 27, wherein said lectin is Concanavalin A.

29. The medication system of Claim 25, wherein said carbohydrate is maltose.

5 30. The system of Claim 25, wherein said hypoglycemic agent is insulin.

31. The medication system of Claim 25, wherein said complex is present in a dialysis tube.

10 32. The medication system of Claim 31, wherein said complex is immobilized in said tube.

33. The medication system of any of Claims 31 or 32, wherein said dialysis tube is present in a device implanted externally or internally in the human body.

15 34. The medication system of Claim 25, wherein said reversible complex comprises at least two conjugates (1) having different affinity towards said binding macromolecule.

35. The medication system of Claim 25, wherein said reversible complex comprises at least two conjugates with different biologically active portions.

20 36. The medication system of Claim 35, wherein said carbohydrate is a manno-oligosaccharide containing from 2 to 7 (1 \rightarrow 2) α -D-mannopyranosyl residues.

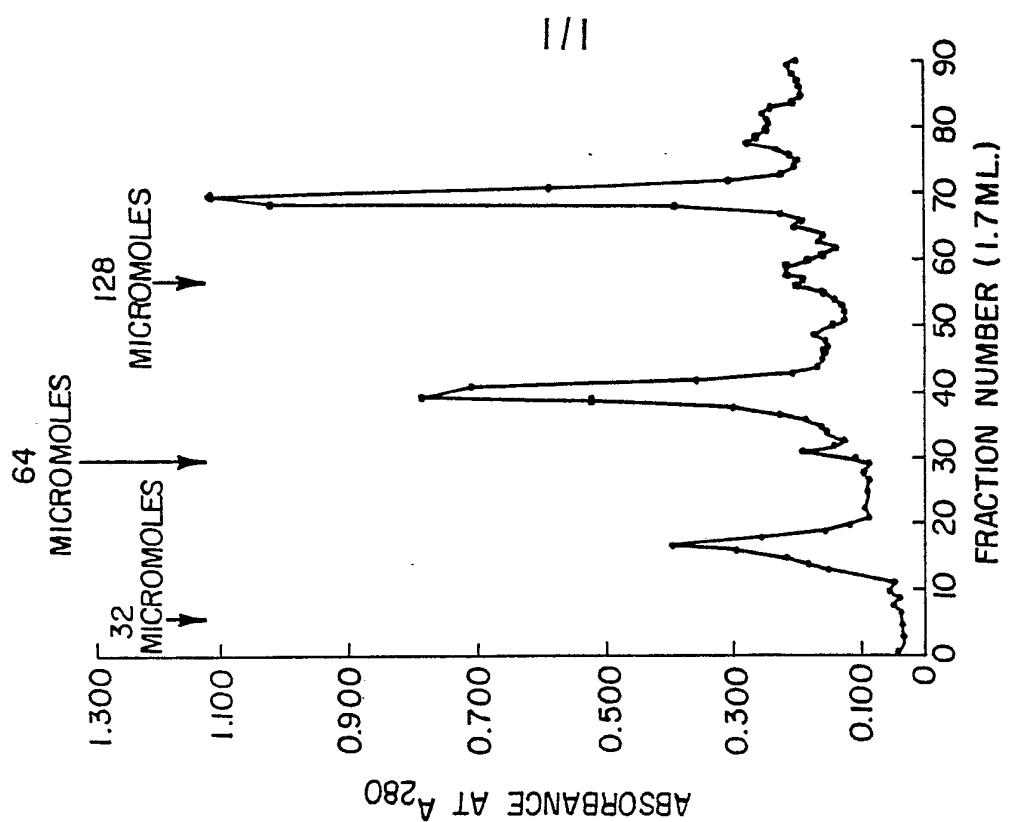


FIG. 1A

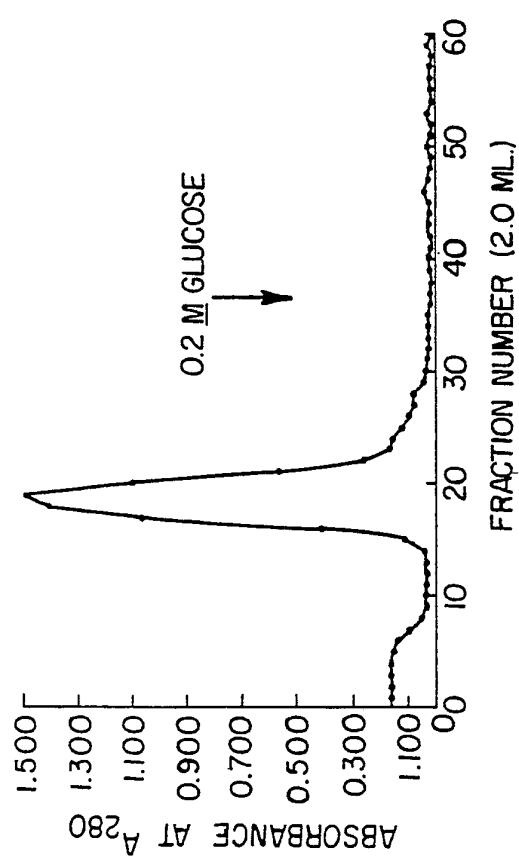
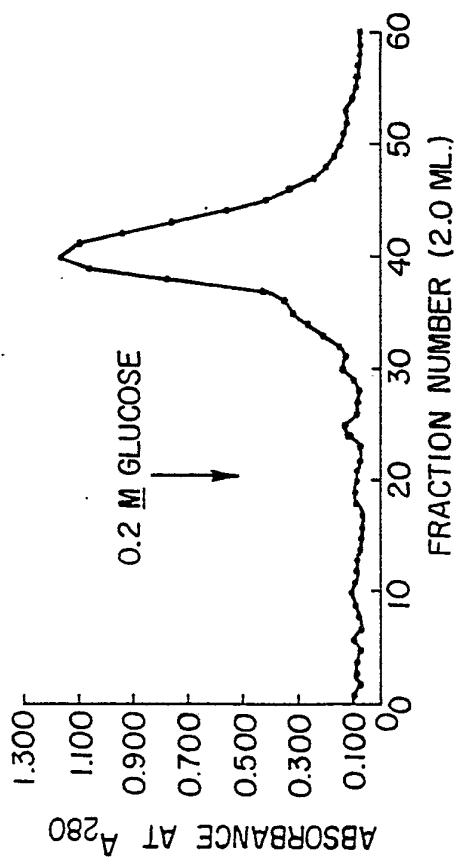



FIG. 1B

FIG. 2

INTERNATIONAL SEARCH REPORT

International Application No PCT/US80/00969

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ⁸

According to International Patent Classification (IPC) or to both National Classification and IPC

Int. Cl. A61K 37/36, A61K 37/00 A61M 5/00, A61J 7/00
U.S. Cl. 424/178, 177 128/213, 214.R

II. FIELDS SEARCHED

Minimum Documentation Searched ⁴

Classification System	Classification Symbols	
U.S.	128/213, 214.R	424/177, 178

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁵

III. DOCUMENTS CONSIDERED TO BE RELEVANT ¹⁴

Category ⁶	Citation of Document, ¹⁶ with indication, where appropriate, of the relevant passages ¹⁷	Relevant to Claim No. ¹⁸
A	US, A, 3,847,890, Published Nov. 12, 1974 Green et al	1-10, 14-30, 34-36
A	US, A, 4,003,792, Published January 18, 1977 MILL	1-10, 14-30, 34-36
A	N, Technology Review, issued July, 1979, "Automatic Diabetes Management" P. 90	1-10, 14-30, 34-36
A	N, Wall Street J., Published May 25, 1979, "Firm says Implant for Diabetes Clears Early Animal Tests"	11-13, 31-33
A	N, J. Biol. Chem., Published April 10, 1978, WILSON "Effect of Reductive Lactosamination..." P. 2070	1-10, 14-30, 34-36
A	N, Arch. Biochem. Biophys. 163, Published 1974, Gray, "Direct Coupling of Oligosaccha- rides...", p.426	1-10, 14-30, 34-36

* Special categories of cited documents: ¹⁵

"A" document defining the general state of the art

"E" earlier document but published on or after the international filing date

"L" document cited for special reason other than those referred to in the other categories

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but on or after the priority date claimed

"T" later document published on or after the International filing date or priority date and not in conflict with the application, but cited to understand the principle or theory underlying the invention

"X" document of particular relevance

IV. CERTIFICATION

Date of the Actual Completion of the International Search ²

05 November 1980

Date of Mailing of this International Search Report ²

14 NOV 1980

International Searching Authority ¹

ISA/US

Signature of Authorized Officer ²⁰

T. Wallen

C. Wallen

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE ¹⁰

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers, because they relate to subject matter¹² not required to be searched by this Authority, namely:

2. Claim numbers, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out¹³, specifically:

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING ¹¹

This International Searching Authority found multiple inventions in this international application as follows:

Claims 1-10, 14-30, 34-36, and claims 11-13, 31-33 were previously held distinct; see PCT/ISA/206, mailed 10-01-80.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.
2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:

3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

Remark on Protest

The additional search fees were accompanied by applicant's protest.
 No protest accompanied the payment of additional search fees.