wo 2010/033648 A1 I 0E OO0 OO0 OO0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2010/033648 Al

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau v{ 0
Al
(43) International Publication Date \'{_5___,/
25 March 2010 (25.03.2010) PCT
(51) International Patent Classification:
GO6F 15/00 (2006.01)
(21) International Application Number:
PCT/US2009/057225 (74)
(22) International Filing Date:
16 September 2009 (16.09.2009) (81)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/192,178 16 September 2008 (16.09.2008) US
12/422,491 13 April 2009 (13.04.2009) US
12/422,979 13 April 2009 (13.04.2009) US
(71) Applicant (for all designated States except US): MAS-
SACHUSETTS INSTITUTE OF TECHNOLOGY
[US/US]; 77 Massachusetts Avenue, Cambridge, MA (84)
02139 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): DALRYMPLE,

David, Allen [US/US]; 5619 Mirrolight Place, Columbia,
MD 21045 (US). DEMAINE, Erik [US/US]; 93 Moore
St, Cambridge, MA 02139 (US). GERSHENFELD, Neil
[US/US]; 20 Chapel Street, Somerville, MA 02144 (US).

GREEN, Forrest [US/US]; 212 Windsor St. #2, Cam-
bridge, MA 02139 (US). KNAIAN, Ara [US/US]; 90
Cherry St., Newton, MA 02465 (US).

Agent: HENDERSON, Norma, E.; Henderson Patent
Law, 13 Jetferson Drive, Londonderry, NH 03053 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: RECONFIGURABLE LOGIC AUTOMATA

210
_\\

21077

D Ry

(57) Abstract: A family of reconfigurable asyn-
chronous logic elements that interact with their
nearest neighbors permits recontigurable implemen-
tation of circuits that are asynchronous at the bit
level, rather than at the level of functional blocks.
These elements pass information by means of to-
kens. Each cell is self-timed, and cells that are con-
figured as interconnect perform at propagation delay
speeds, so no hardware non-local connections are
needed. A reconfigurable asynchronous logic ele-
ment comprises a set of edges for communication
with at least one neighboring cell, each edge having
an input for receiving tokens from neighboring cells
and an output for transferring tokens to at least one
neighboring cell, circuitry configured to perform a
logic operation utilizing received tokens as inputs
and to produce an output token reflecting the result
of the logic operation, and circuitry.

WO 2010/033648 A1 I W00)00 U000 DR O

Published:
— with international search report (Art. 21(3))

WO 2010/033648 PCT/US2009/057225

RECONFIGURABLE LOGIC AUTOMATA

RELATED APPLICATIONS
[0001] This application claims the benefit of United States Provisional
Application Ser. No. 61/192,178, filed September 16, 2008, the entire disclosure of which
is herein incorporated by reference.
[0002] This application is also a continuation-in-part of United States Patent
Application Ser. No. 12/422,979, filed April 13, 2009, which claims the benefit of United
States Provisional Application Ser. No. 61/123,809, filed April 11, 2008, and United
States Patent Application Ser. No. 12/422,491, filed April 13, 2009, which claims the
benefit of United States Provisional Application Ser. No. 61/123,985, filed April 11,

2008, the entire disclosures of which are each herein incorporated by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT
[0003] This invention was made with U.S. government support under Grant
Number CCF-0122419, awarded by the National Science Foundation (NSF) and Grant
Number H94003-07-2-0707, awarded by Defense Microelectronics Activity (DMEA).

The government has certain rights in this invention.

FIELD OF THE TECHNOLOGY
[0004] The present invention relates to logic circuits, cellular automata, and

computation models and, in particular, to reconfigurable asynchronous logic automata.

BACKGROUND
[0005] Today's most advanced computers are used to model physical systems,
such as, for example, the folding of a protein or the circulation of the global climate, but
they are also physical systems themselves. The demands of high-performance computing
have driven the frontiers of device physics from vacuum tubes to semiconductor

heterostructures. Between these simulated and physical realities lie many layers of

WO 2010/033648 PCT/US2009/057225

abstraction: materials are assembled into devices, devices into circuits, circuits into
boards, boards into cases, cases into racks, and racks into systems, and, in corresponding
layers of software, applications are implemented in algorithms, written in a high-level
language, compiled into microcode, scheduled by an operating system, and then executed
by processors.

[0006] Most computer science programming models hide the underlying physical
reality of computation, and the corresponding layers of software serve to insulate
programs and programmers from knowledge of the physical construction of the
computer. This division of labor is now being challenged by the growing complexity of
computing systems. While device performance has been improving exponentially for
decades and has a firm future roadmap [Paul S. Peercy, “The Drive to Miniaturization”,
Nature (406), pp. 1023-26 (2000)], this has not been true for software. Rather, cost
overruns, shipping delays, and bugs have been recurring features of development efforts
ranging from taping out chips to delivering operating systems. Along with programmer
productivity, system scaling obstacles include interconnect bottlenecks and prohibitive
power requirements.

[0007] As information technologies scale down in device size and up in system
complexity, their computational and physical descriptions converge as the number of
information-bearing degrees of freedom becomes comparable to the number of physical
ones. It is already possible to store data in atomic nuclei and to use electron bonds as
logical gates [N. Gershenfeld and I. Chuang, “Bulk Spin Resonance Quantum
Computation”, Science (275), pp. 350-356 (1997)]. In such a computer, the information-
bearing degrees of freedom are the same as the physical ones, and it is no longer feasible
to account for them independently. The universe executes in linear time, independent of
its size. A scalable computer architecture must similarly reflect the scaling of its contents.
An explicit description of the spatial distribution, propagation, and interaction of
information in a computer program offers portability across device technologies (which
must satisfy the same physical laws), scalability across machine sizes (because physical
dynamics are inherently parallel), and simplification of fabrication (since causality

implies locality).

WO 2010/033648 PCT/US2009/057225

[0008] The performance of a computer is limited by the bandwidth and latency
of the connection between where data is stored and where it is processed. Early
computers were far more limited by speed and availability of processing and memory
than the performance of the connections between them. Von Neumann or Harvard-style
computer architectures, where for each cycle data is transmitted to and manipulated in a
central processing unit, are well suited for computers built from slow and expensive
processing elements (i.e. vacuum tubes) and comparatively fast and cheap
communication (wires). However, faster modern building blocks (smaller transistors,
improved logic families, and other emerging technologies) have outpaced the rate that
data can be fetched from memory. The operating speeds of many modern computers are
beyond even the relativistic limits for data to be retrieved from an arbitrary location in a
single cycle. In modern computers, it can take hundreds or even thousands of cycles to
fetch a piece of data. There are a wide variety of techniques that have been developed to
anticipate what data will be needed and load it ahead of time (pipelining, caching,
instruction reordering, branch prediction, speculative execution, etc.), but the availability
and behavior of these features can vary widely from processor to processor as can their
effectiveness with different program behaviors. Although the Von Neumann abstraction
is a familiar model of computation, in order to write software that takes advantage of the
aggressive performance possible with modern (and future) technologies, fundamentally
different models of computation will be needed, as well as computer architectures that
can efficiently run them.

[0009] Physics, above the atomic level, is inherently local, and computation, like
every other process, relies on physics. Thus, programming models that assume non-local
processes, such as data buses, random access memory, and global clocking, must be
implemented at a slow enough speed to allow local interactions to simulate the non-local
effects that are assumed. Since such models do not take physical locality into account,
even local effects are limited to the speed of the false non-local effects, by a global clock
that regulates all operations.

[0010] A second physical attribute of information is causality: there is a finite
propagation velocity. The length of the wires in a computer introduces a distance and

hence time scale to its operation. This is manifestly violated in the Parallel Random

WO 2010/033648 PCT/US2009/057225

Access Machine (PRAM) model for parallel computing [R.M. Karp, M. Luby, F. Meyer
auf der Heide, “Efficient PRAM Simulation on a Distributed Memory Machine”,
Algorithmica (16), pp. 517-542 (1996)], which assumes instantaneous access from any
processor to any memory location. If instead the only interconnect is between
neighboring cells, then the information velocity is on the order of the gate propagation
delay over the gate size, which can be picoseconds per micron [M. Sokolich, A.R.
Kramer, Y.K. Boegeman, and R.R. Martinez, “Demonstration of Sub-5 ps CML Ring
Oscillator Gate Delay with Reduced Parasitic AllnAs/InGaAs HBT”, IEEE Electron
Device Letters (22), pp. 309-311 (2001)]. This is about 100 times slower than the speed
of light, or nanoseconds to cross millimeter distances on a chip, which is comparable to
the speed at which conventional chips are clocked. In return for using nearest-neighbor
communication the interconnect becomes a programmable part of the computation rather
than fixed wiring, and scaling is based on the cell size rather than the chip size.

[0011] In computing today, many observers agree that there is a practical physical
speed limit for the venerable von Neumann model (see, ¢.g., Ronny Ronen, Avi
Mendelson, Konrad Lai, Shih L. Lu, Fred Pollack, and John P. Shen, “Coming challenges
in microarchitecture and architecture”, Proceedings of the IEEE, 89(3):325-340, 2001),
and that the bulk of future speed increases will derive from parallelism in some form.
Chipmakers are currently working to pack as many processors as they can into one box to
achieve this parallelism, but in doing so, they are moving even further from the locality
that is necessary for a direct implementation as physics. At the other end of the
abstraction spectrum, while sequential programming models can be generalized to use
multiple parallel threads, such models are often clumsy and do not reflect the physical
location of the threads relative to each other or memory.

[0012] In addition, research has long suggested that asynchronous (or “self-
timed”’) devices consume less power and dissipate less heat than typical clocked devices
[Tony Werner and Venkatesh Akella, “Asynchronous processor survey”, Computer,
30(11):67-76, 1997]. However, traditional microarchitectures require significant book-
keeping overhead to synchronize various functional blocks, due to the nature of their
instructions, which must be executed in sequence. Most asynchronous designs to present

have derived their performance benefits from clever pipelining and power distribution

WO 2010/033648 PCT/US2009/057225

rather than true asynchrony — known as “globally asynchronous, locally synchronous”
design — and often this is not enough to offset the overhead [D. Geer, “Is it time for
clockless chips? [asynchronous processor chips]”, Computer, 38(3):18-21, March 2005].
[0013] These shortcomings are accepted because of the tremendous body of
existing code written in sequential fashion, which is expected to run on the latest
hardware. However, by removing the assumption of backwards compatibility, there is an
opportunity to create a new, disruptive programming model that is more efficient to
physically implement. In particular, such a model could scale favorably to an arbitrary
number of parallel elements, to larger problem sizes, and to faster, smaller process
technologies. Potentially, this may have eventual impact across the computing industry,
particularly in high-performance computing. In addition, it could be an enabling
technology for the Singularity (see Ray Kurzweil, “The Singularity Is Near: When
Humans Transcend Biology”, Viking Adult, September 2005).

[0014] Information in physics is an extensive quantity. Like mass, it scales with
the system size. For a computer to do the same, it must be uniform, unlike the
inhomogeneous combinations of processors, memory, storage, and communications that
are the norm today. For this reason, cellular architectures have long been attractive as a
model for computation [J. von Neumann, “Theory of Self-Reproducing Automata”,
edited by A.W. Burks, Univ. of Illinois Press (Urbana, 1966)], and more recently for its
implementation [M. Sipper, “The Emergence of Cellular Computing”, Computer (32),
pp. 18-26 (1999)]. “Cellular Automata” was originally a discrete model in which space,
time, and states were discretized, and update rules were carefully designed for studying
complex phenomena [Neil Gershenfeld (1999), “The Nature of Mathematical Modeling”,
Cambridge, UK: Cambridge University Press]. Cellular automata were found to be quite
successful in modeling physical interactions governed by differential equations in a
continuum limit, such as, for example, lattice gases for hydrodynamics [U.S. Patent No.
6,760,032; U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-Gas Automata for the
Navier-Stokes Equation”, Phys. Rev. Lett. (56), pp. 1505-1508 (1986)] and spin
dynamics [E. Domany and W. Kinzel, “Equivalence of Cellular Automata to Ising
Models and Directed Percolation”, Phys. Rev. Lett. (53), pp. 311-314 (1984)]. Because of

this great potential of computing as a physical system, cellular automata present a

WO 2010/033648 PCT/US2009/057225

practical architecture for computation [N. Margolus, “Physics-Like Models of
Computation”, Physica D (10), pp. 81-95 (1984)].

[0015] Relevant research in the 1970s demonstrated that universal Boolean logic
could be implemented in cellular automata with one-bit states and just three local rules
[R.E. Banks, “Information Processing and Transmission in Cellular Automata”, Ph.D.
thesis, MIT (1971)]. The Banks Boolean cellular automata has only three rules, acting in
2D on one-bit states with 4 rectangular neighbors. The simplicity in primitive functioning
unit, however, led to complexity in the implementation of wires and gates. In such a
system, the logic functions are distributed, requiring many cells to realize them. The
generality of a cellular automata's rule table allows many other behaviors to be modeled,
such as hydrodynamics or graphics. Many more variants of cellular automata
models/applications [see, e.g., U.S. Patent No. 6,910,057] and hardware implementations
[see, e.g., U.S. Patent No. 7,509,479; U.S. Patent No. 5,243,238] have been proposed. All
of these implementations are based on Boolean logic.

[0016] If the goal is just computation, then this can be implemented more
compactly in “logic automata” in which every cell can contain a logic gate and store its
state, locally providing the interactions needed for computational universality. Logic
automata are a subset of cellular automata [N. Gershenfeld, The Nature of Mathematical
Modeling, Cambridge University Press, 1999] and quantize space and time with
distributed cells connected locally, each performing a basic logic operation. Logic
automata are therefore scalable, universal for digital computation [R.E. Banks,
Information Processing and Transmission in Cellular Automata, Ph.D. thesis,
Massachusetts Institute of Technology, 1971], and reflect the nature of many complex
physical and biological systems [D.A. Dalrymple, N. Gershenfeld, and K. Chen,
"Asynchronous logic automata,” Proceedings of AUTOMATA 2008 (14th International
Workshop on Cellular Automata), pp.313-322, Jun 2008; L.O. Chua, "CA belongs to
CNN," invited talk at AUTOMATA 2008 (14th International Workshop on Cellular
Automata), Jun 2008]. Logic automata form a family of computer architectures that
expose a cartoon version of physics that is easy for a programmer to work with but
maintains the underlying physical relationship between the size of logic elements, their

computation rates, and signal travel speeds. This allows programmers to work with

WO 2010/033648 PCT/US2009/057225

abstractions that will have well defined behavior for both correctness and performance,
regardless of which underlying technology is used to fabricate it.

[0017] The history begins with the cellular automata of von Neumann [John von
Neumann, “Theory of Self-Reproducing Automata”, University of Illinois Press, 1966],
designed to explore the theory of self-replicating machines in a mathematical way
(though never finished). This was some time after he completed the architecture for the
EDVAC project [John von Neumann, “First Draft of a Report on the EDVAC”, IEEE
Annals of the History of Computing, 15(4):27-75, 1993], which has come to be known as
“the von Neumann architecture.” Many papers since then can be found examining
(mostly 2-state) cellular automata, and there are a few directions to prove simple cellular
automata universality — Alvy Ray Smith’s [Alvay Ray Smith, “Cellular Automata
Theory”, PhD thesis, Stanford University, 1970], E. Roger Banks’ [Edwin Roger Banks,
“Cellular Automata”, Technical Report AIM-198, MIT, June 1970], and Matthew Cook’s
more recent Rule110 construction [Matthew Cook, “Universality in elementary cellular
automata”, Complex Systems, 15(1), 2004]. However, while interesting from the point of
view of computability theory, classical cellular automata clearly over-constrain
algorithms to beyond the point of practicality, except in a small class of problems related
to physical simulation (for instance, see Uriel Frisch, Dominique d’Humieres, Brasl
Hasslacher, Pierre Lallemand, Yves Pomeau, and Jean-Pierre Rivet, “Lattice gas
hydrodynamics in two and three dimensions”, pages 77-135, Addison-Wesley, 1990).
[0018] An earlier model of cellular automaton was known as the “Logic CA”
[unpublished]. The Logic CA has ties to previous work [e.g., John von Neumann,
“Theory of Self-Reproducing Automata”, University of Illinois Press, 1966], particularly
if familiar with these types of constructions. A typical cellular automaton is an indefinite
lattice (usually 2-dimensional) of “cells”, each of which has a state variable that takes one
of a finite number of values at every discrete time step (0, 1, 2,...), and a transition
function which takes as arguments the states of a cell’s nearest neighbors and itself at
some time step, and returns the state of that cell in the next time step. The number of
neighbors is typically 4 or 8 in 2-dimensional cellular automaton, depending on the

inclusion of diagonal neighbors.

WO 2010/033648 PCT/US2009/057225

[0019] The Logic CA consists of cells with 8 neighbors and 9 bits of state. The
state bits are divided into 8 configuration bits and 1 dynamic state bit. The configuration
bits are further divided into 2 gate bits that choose among the four allowed Boolean

functions (AND, OR, XOR, NAND) and 6 input bits that choose among the 36 possible

pairs of (potentially identical) inputs chosen from the 8 neighbors (1/2 - 8 - (8-1) — 8). At

each time step, a cell examines the dynamic state bit of its selected inputs, performs the
selected Boolean operation on these inputs, and sets its own dynamic state to the result.

[0020] Mathematically, an instance of the Logic CA can be described as a series

of global states St (t € NO), each composed of local states Sp € 10, 1}(i,je 7Z),and a

set of constant configuration elements

cop € C=({AND, OR, XOR, NAND} x (-1, 0, 1¥ — {(0,00))
={AND, OR, XOR, NAND}
X {(150)’ (191)1 (0!1)5 ('111)9 ('190)’ ('19'1)5 (07'1)5 (15'1)}
X {(150)9 (191)9 (0!1)5 ('191)9 ('190)9 ('19'1)9 (09'1)5 (15'1)}

8
(note that there is a bijection between C and {0, 1} , 8 bits) such that

if (ci) = AND 5,6 a0 ™ St

s _ (e) =OR Staivicgn ¥ Sa6. ey s
HLij 9.
if (0 = XOR 80010 © St
if (¢ = NAND 8 vt A St neie s
[0021] Although the Logic CA is useful for many applications, two major

problems were identified with it: lack of reversible/adiabatic logic and the requirement
for a global clock. The system does not employ conservative logic [Edward Fredkin and
Tommaso Toffoli, “Conservative logic”, Interational Journal of Theoretical Physics,
21(3):219-253, April 1982] or adiabatic computing [I.S. Denker, “A review of adiabatic
computing”, In Low Power Electronics, Digest of Technical Papers, IEEE Symposium,

pages 94-97, 1994, which is necessary to truly represent physical resources. The clock 1s

SUBSTITUTE SHEET (RULE 26)

WO 2010/033648 PCT/US2009/057225

global, which is clearly a non-local effect, and cellular automata are not fundamentally
required to have a global clock in order to perform universal computation [Kenichi
Morita and Katsunobu Imai, “Logical Universality and Self-Reproduction in Reversible
Cellular Automata”, ICES *96: Proceedings of the First International Conference on
Evolvable Systems, pages 152—-166, London, UK, 1996, Springer-Verlag; Jia Lee,
Ferdinand Peper, Susumu Adachi, Kenichi Morita, and Shinro Mashiko, “Reversible
Computation in Asynchronous Cellular Automata”, UMC ’02: Proceedings of the Third
International Conference on Unconventional Models of Computation, pages 220-229,
London, UK, 2002, Springer-Verlag].

[0022] Another related sub-field is that of field-programmable gate arrays
(FPGAs). Gate arrays have evolved over time from sum-product networks such as
Shoup’s [R. G. Shoup, “Programmable Cellular Logic Arrays”, PhD thesis, Carnegie
Mellon University, 1970] and other acyclic, memoryless structures such as Minnick’s [R.
C. Minnick, “Cutpoint Cellular Logic”, IEEE Transactions on Electronic Computers,
EC13(6):685-698, December 1964] to the complex, non-local constructions of today’s
commercial offerings, yet skipping over synchronous and sequential, but simplified local-
effect cells.

[0023] The tradition of parallel programming languages, from Occam [A. W.
Roscoe and C. A. R. Hoare, “The laws of Occam programming”, Theoretical Computer
Science, 60(2):177-229, September 1988] to Erlang [Joe Armstrong, Robert Virding,
Claes Wikstrom, and Mike Williams, “Concurrent Programming in Erlang”, Second
Edition, Prentice-Hall, 1996] to Fortress [Guy L. Steele, Eric Allen, David Chase, Victor
Luchangco, Jan-Willem Maessen, Sukyoung Ryu, and Sam Tobin-Hochstadt, “The
Fortress Language Specification”, Technical report, Sun Microsystems, March 2007] is
also of interest. Although they are designed for clusters of standard machines (possibly
with multiple processors sharing access to a single, separate memory), they introduce
work distribution techniques and programming language ideas that are likely to prove
useful in the practical application of the present invention.

[0024] The Connection Machine [W. Daniel Hillis, “The Connection Machine”,
MIT Press, Cambridge, MA, 1985] was designed with a similar motivation — merging

processing and memory into a homogeneous substrate — but as the name indicates, it also

WO 2010/033648 PCT/US2009/057225

included many non-local connections (“In an abstract sense, the Connection Machine is a
universal cellular automaton with an additional mechanism added for non-local
communication. In other words, the Connection Machine hardware hides the details.”)
However, the implementation of Lisp on the Connection Machine [G. L. Steele and W.
D. Hillis, “Connection Machine Lisp: fine-grained parallel symbolic processing”, ACM
Press, 1986] does introduces concepts such as xectors, which are likely to be useful in the
implementation of functional programming languages in a cellular automaton-based

architecture.

SUMMARY
[0025] A family of reconfigurable, asynchronous logic elements that interact with
their nearest neighbors allows the design and implementation of circuits which are
asynchronous at the bit level, rather than merely at the level of functional blocks. These
elements pass information by means of charge packets (tokens), rather than voltages.
Each cell is self-timed, and cells that are configured as interconnect perform at
propagation delay speeds, so hardware non-local connections are not needed.
Reconfigurable asynchronous logic automata are a specialized extension of asynchronous
logic automata, specifically designed to provide virtual and physical reconfigurability.
[0026] In one aspect, a reconfigurable asynchronous logic element is a cell having
a set of edges with neighboring cells, each containing zero or one tokens, thus comprising
a bit of state. Each cell represents one logical operation, storage for its state, one unit of
space, and one unit of time to transit. At each time step, a cell examines the dynamic
state bit of its selected inputs, performs the selected Boolean operation on these inputs,
and sets its own dynamic state to the result. Logical states are represented by tokens for 0
and 1, and gates pull and push tokens when their inputs are valid and outputs empty.
Between each pair of cells, in each direction, there is a pair of edges, one to represent a
“0” signal, and the other a “1” signal. Instead of each cell being configured to read the
appropriate inputs, this data is now represented by an “active” bit in each edge. Then,
cach cell becomes a stateless node (except the gate type), which can fire on the conditions
that all its active inputs are providing either a “0” token or a “1” token and that none of

its active output edges is currently occupied by a token of either type. When firing, it

-10-

WO 2010/033648 PCT/US2009/057225

consumes the input tokens, removing them from the input edges, performs its configured
function, and deposits the result to the appropriate output edges.

[0027] In one aspect of the invention, a reconfigurable asynchronous logic
element comprises a set of edges for communication with at least one neighboring cell,
cach edge having an input for receiving tokens from neighboring cells and an output for
transferring tokens to at least one neighboring cell, circuitry configured to perform a logic
operation utilizing received tokens as inputs and to produce an output token reflecting the
result of the logic operation, and circuitry. In another aspect, a reconfigurable lattice of
asynchronous logic automata comprises a plurality of reconfigurable logic automata that
compute by locally passing state tokens and are reconfigured by the directed shifting of

programming instructions through neighboring logic elements.

BRIEF DESCRIPTION OF THE DRAWINGS
[0028] Other aspects, advantages and novel features of the invention will become
more apparent from the following detailed description of the invention when considered
in conjunction with the accompanying drawings wherein:
[0029] Fig. 1 is a chart functionally depicting Asynchronous Logic Automata cell
types, according to one aspect of the present invention;
[0030] Fig. 2 depicts an exemplary conceptual embodiment of a basic
Asynchronous Logic Automata cell;
[0031] Figs. 3A-C depict an example of construction of a RALA circuit by
building a forwarding chain and then programming the cells, according to one aspect of
the present invention;
[0032] Figs. 4A-E depict a simple example of construction of a RALA circuit via
the spanning-tree algorithm, according to one aspect of the present invention;
[0033] Fig. 5 depicts an example of reconfigurable asynchronous logic automata
folding and differentiation of a linear-time sorting circuit, according to one aspect of the
present invention;
[0034] Fig. 6 depicts the exemplary construction of an oscillator through a stem

cell, according to one aspect of the present invention;

-11-

WO 2010/033648 PCT/US2009/057225

[0035] Figs 7A-D depict an example of building an H-tree fractal using parallel
construction, according to one aspect of the present invention;

[0036] Figs. 8A-C depict an example of building a 3 x 3 array of copies of a
simple construction via parallel construction, according to one aspect of the present
invention;

[0037] Figs. 9A-B depict an example of constructing infinitely copies of a simple

circuit via an infinite replicator, according to one aspect of the present invention;

[0038] Fig. 10 is a high level diagram of an exemplary RALA quine, according to
another aspect of the present invention;

[0039] Fig. 11 is a schematic of an exemplary embodiment of ASIC architecture

for a reconfigurable asynchronous logic automata cell;

[0040] Fig. 12 is a schematic of an exemplary section of a single array of RALA
cells;
[0041] Fig. 13 is a detail view of a RALA array, showing the signal interaction

and interconnection of two cells on one edge;

[0042] Fig. 14 is a schematic of an exemplary ASIC embodiment of the input unit
of a RALA cell;
[0043] Fig. 15 is a schematic of an exemplary ASIC embodiment of the crossover

and output unit of a RALA cell;

[0044] Fig. 16 is a schematic of an exemplary ASIC embodiment of the Listening
Output unit of a RALA cell;
[0045] Fig. 17 is a schematic of an exemplary ASIC embodiment of the

Arithmatic and Logic Unit (ALU) for a RALA cell;

[0046] Fig. 18 depicts an exemplary embodiment of the configuration word for
cach RALA cell, as stored in an internal register; and

[0047] Fig. 19 depicts an implementation of an exemplary physically-
reconfigurable ALA cell.

DETAILED DESCRIPTION
[0048] Reconfigurable logic automata are, in a preferred embodiment, a

specialized extension of asynchronous logic automata, and are specifically designed to

-12-

WO 2010/033648 PCT/US2009/057225

provide virtual and physical reconfigurability. Asynchronous logic automata are a family
of reconfigurable, charge-conserving asynchronous logic elements that interact with their
nearest neighbors, facilitating the design and implementation of circuits which are
asynchronous at the bit level, rather than merely at the level of functional blocks
(sometimes known as “globally asynchronous, locally synchronous” design). These
circuits pass information by means of charge packets (tokens), rather than voltages, thus
conserving energy. Because each cell is self-timed, cells that are configured as
interconnect perform at propagation delay speeds, so hardware non-local connections are
not needed.

[0049] Logic automata in general are a class of cellular automata specialized for
computation, in which the cells are logic gates. Their development is aimed at aligning
the computational and physical descriptions of information processing systems in order to
provide scalability, incremental extensibility, and flexibility in two- and three-
dimensional form factors. Asynchronous logic automata eliminate the need for
synchronized operation by using tokens to represent the logical states; when a cell has
valid inputs and empty outputs it pulls the input tokens and pushes the output tokens.
This eliminates the need for clock distribution, and allows for faster and lower-power
operation. Asynchronous logic automata can be understood as an asymptotic limit of
FPGAs and multicore processors, in which each cell represents one unit of time, space,
state, and logic. Because asynchronous logic automata have only nearest-neighbor
interconnect, global programs must be loaded through local communications in a regular
array. Reconfigurable asynchronous logic automata (RALA) accomplish this through the
use of “stem” cells that can be dynamically configured as any cell type, and that can
transfer communication strings.

[0050] A computer in the RALA model of computation consists of cells arranged
in the cubic lattice (or the square lattice in 2D), with two wires connecting cells that are a
unit distance apart (adjacent in X, y, or z). Each cell has a small amount of state defining
its behavior as a “one-bit CPU”, and this state is reprogrammable. For example, one cell
might repeatedly take a bit from its north neighbor, take a bit from its south neighbor, and
output their XOR to its west and east neighbors, effectively forming an XOR stream

processor with two inputs and two copies of the output. Later, a neighboring cell might

-13-

WO 2010/033648 PCT/US2009/057225

reprogram this cell to perform AND computations instead of XOR. The heart of the
RALA model is this reprogramming functionality, enabled by a particular type of cell
called a stem cell.

[0051] Fig. 1 is a chart functionally depicting asynchronous logic automata cell
types, according to one aspect of the present invention. When implemented using
reconfigurable logic automata, these types are essentially modes that define the cell’s
currently configured behavior. “Stem” cells 105 provide the option of reconfigurability.
There are also 4 logic cell types: AND 108, NAND 110, OR 115, and XOR 120. NAND
110 is actually universal, with the others being included in order to simplify logic design.
Transport (crossover) cell 130 provides non-blocking token transport. Copy 140 and
delete 145 cells have a data input, marked by a triangle 155, 160, and a control input;
when the control is 0, the data token passes the gate, and when it is 1, the data token is
either deleted or copied. Copy and delete cells either pass or create and destroy input
tokens based on the value of the control token. Each of these two-input gates is
deterministic, so that their operation is independent of the evaluation order in an
Asynchronous Logic Automata circuit. They are connected by wire cells 170 between
nearest neighbors (rectangular in 2D or 3D) that can store a token or be empty. In some
embodiments, one input AND 108 or OR 115 gates are utilized as wire cells 170.

[0052] Reconfigurable Asynchronous Logic Automata according to the present
invention are based on the earlier model cellular automaton known as the Logic CA, but
they solve the two identified major problems with it, lack of reversible/adiabatic logic
and the requirement for a global clock. In the majority of cases, these asynchronous
circuits consume less total power, dissipate proportionally less waste heat, and run more
quickly than synchronous equivalents. They may solve any problems that can be solved
with a computer, but scale far more readily due to their local-only connections, and will
find practical applications in high-performance and/or scientific computing. They may
also be considered as replacements for field-programmable gate array devices, having the
same advantages in power, heat, and speed. Asynchronous Logic Automata according to
the present invention are described in more detail in U.S. Pat. App. Ser. No. 12/422,979,
filed April 13, 2009, of which this application is a continuation-in-part and which is

incorporated by reference herein in its entirety.

-14-

WO 2010/033648 PCT/US2009/057225

[0053] Fig. 2 depicts an exemplary conceptual embodiment of a basic
Asynchronous Logic Automata cell 205 and its neighbors 210, according to one aspect of
the present invention. Logical states are represented by tokens for 0 and 1, and gates pull
and push tokens when their inputs are valid and outputs empty. Between each pair of
cells, in each direction, there is a pair of edges, one to represent a “0” signal, and the
other a “1” signal. Each pair of edges could be considered one edge which can carry a “0”
token or a “1” token. Instead of each cell being configured to read the appropriate inputs,
this data is now represented by an “active” bit in each edge. Then, each cell becomes a
stateless node (except the gate type), which can fire on the conditions that all its active
inputs are providing either a “0” token or a “1” token and that none of its active output
edges is currently occupied by a token of either type. When firing, it consumes the input
tokens, removing them from the input edges, performs its configured function, and
deposits the result to the appropriate output edges. As it is a marked graph, the behavior
of this model is well-defined, even without any assumptions regarding the timing of the
computations, except that each computation will fire in some finite length of time after
the preconditions are met.

[0054] While the reconfigurable logic automata of the present invention may be
advantageously implemented as digital Asynchronous Logic Automata, and the preferred
embodiments discussed herein are directed to such an implementation, it will be clear to
one of skill in the art that they may also be advantageously implemented as Analog Logic
Automata. Analog Logic Automata are described in detail in co-pending U.S. Pat. App.
Ser. No. 12/422,491, “Analog Logic Automata”, filed April 13, 2009, the entire
disclosure of which is herein incorporated by reference.

[0055] Reconfigurable Asynchronous Logic Automata pass data only locally, as
in systolic arrays. RALA does not rely on global synchronization, making use of token
presence or absence to ensure data validity, as do Petri nets. It is programmed by
spreading instructions through the same local wires as data, in a way reminiscent of von
Neumann’s Universal Constructor. It consists of simple, custom one-bit processors,
similar to the (original) Connection Machine. It has native support for standard logical
primitives (AND, OR, XOR, and NAND), as well as data flow in any direction, like

FPGAs. Instructions are passed locally and processed as if they are data. Thus, not only

-15-

WO 2010/033648 PCT/US2009/057225

can self-replicating systems be built, but also systems that branch into multiple directions,
and follow a logical program of mutations as they get further from the seed. RALA
permits easy and efficient construction of useful primitives such as arithmetic operations
on arbitrary word sizes, and even matrix/vector operations.

[0056] In general, a cell has one of eight modes defining its current behavior (Fig.
1), up to two input directions among the six neighboring wires, and up to six output
directions. It is convenient to distinguish the two inputs (when there are two) as first and
second, while the outputs are unordered. Each mode defines a different behavior of how
the cell reads inputs and writes outputs, but the communication is always through the
wires. Two wires connect every pair of adjacent cells, one in each direction. A wire has
one of three states: 0, 1, and empty. Effectively, a wire is a one-bit buffer for data, with
the empty state indicating that the data is not yet available. Cells wait for their inputs to
be available (nonempty) before proceeding with computation, thus providing a local
synchronization mechanism that avoids the need for global clocking. The synchronization
is actually very simple because each wire has a single writer (the source) and single
reader (the target). In implementation, a wire can be built as part of the target cell (or the
source cell).

[0057] The simpler computational elements include the trivial special case of a
cell programmed to have no inputs. Such a cell is a no-op, never consuming inputs and
never producing outputs, independent of its mode. No-op cells are useful as filler, and
may later be reprogrammed. The most intuitive cell modes are the logical operations:
AND, OR, XOR, NAND. In one of these modes, a cell waits for a bit to be available on
both of its input wires (or one if the cell has only one input) and for all of its output wires
to be empty. When both the inputs and outputs are ready, the cell computes the logical
function on the input bits, writes the resulting bit to all of the output wires, and empties
the input wires. A slightly more sophisticated implementation waits only for the inputs to
become available, and stores the output of the logical function in an internal register (and
empties the input wires) while waiting for the outputs to become empty. Experiments
with both implementations and have found it to make little difference in circuit design,

although the more sophisticated implementation is slightly easier to work with.

-16-

WO 2010/033648 PCT/US2009/057225

[0058] A useful special case is when a logical cell has only one input; then it
effectively acts as a wire with a possible output splitter. Such cells are represented
graphically as circles, because the specific logic gate is irrelevant in this case. Another
intuitive cell mode is the crossover, which is most useful when building 2D RALA
circuits. A cell in this mode must have two inputs that form a right angle at the cell, and
the two other wires in that plane must be outputs. This type of cell is the only one that
does not wait for both inputs to become available. Rather, it waits for any one
input/output pair to become ready (input available and output empty); then it copies the
input bit to the output wire and empties the input wire.

[0059] Two more unusual cell modes are the so-called memory operations: copy
and delete. This mode distinguishes the first and second inputs as control and data. As
with logical operations, the cell waits for all inputs and outputs to become ready. Then, if
the control bit is 0, it copies the data input to the outputs and empties both input wires.
The more interesting behavior is when the control bit is1. In this case, a copy cell copies
the data input to the outputs but then empties only the control wire, leaving the bit on the
data input wire; while a delete cell empties both input wires without writing anything to
the output wires. Copy cells enable making arbitrarily many copies of a bit in a stream,
while delete cells enable filtering bits out of a stream. Without these operations, the total
number of bits in the system would be conserved (ignoring stem cells for the moment),
which makes it difficult if not impossible to do certain computations. Though less
symmetric, it is practical to allow a delete cell to operate when the output wires are not
ready, provided the control bit is a 1. This variation does not appear to affect circuit
design.

[0060] The stem cell is the most complicated and interesting feature of the RALA
model. Its purpose is to enable reprogramming the entire state of cells: their mode, input
directions, output directions, and input wire values. Effectively, a stem cell enables the
transformation of data (streams of Os and1s) into programs (cell state). To achieve these
goals, stem cells actually offer two functions: they can transform a neighboring cell into a
stem cell and start forwarding messages to it, and they can reprogram their own state

(typically changing to a mode other than stem cell). The idea is that a stem cell can first

-17-

WO 2010/033648 PCT/US2009/057225

create a chain of stem cells that fill the necessary space, use their forwarding capacity to
route messages to the cells in order, and then program each one in order to build a circuit.
[0061] More precisely, a stem cell has a single input, from which it receives a
stream of bits encoded according to the stem protocol. From the perspective of this stem
cell, the protocol consists of a series of forwarding rounds. Each round begins with a
three-bit code, given in Table 1, to indicate the (relative) direction to forward messages,
or the special code 000 to indicate the end of forwarding and the beginning of
programming the current stem cell. If the code is not special, the stem cell transforms the
cell in the specified direction into a “child” stem cell, and forwards subsequent bits in the
protocol to that child. The forwarding round ends when the child stem cell is fully
programmed (implemented by that stem cell sending a message back to its parent). Then
the bit stream may specify another direction to transform into a stem cell and forward
messages, and so on, until the special code 000.

[0062] Table 1 presents an exemplary set of options for the three-bit code for

encoding direction relative to the input direction.

Table 1

code — direction
000 — special (end of forwarding/ program this cell/ no input)
001 — continue straight (opposite the input direction)
010 — turn left (in same xy plane as input direction)
011 — turn right (in same xy plane as input direction)
100 — go up (absolute + z)
101 — go down (absolute - z)
110 — unused
111 — unused

[0063] After the special code 000, the protocol specifics the entire state of the cell
to replace the present stem cell, as follows:

1 the mode, using the three-bit code in Table 2;

2 the first input direction, using the three-bit code in Table 1, where the special code
000 indicates “no first input”;

3 the second input direction, using the three-bit code in Table 1, where the special

code 000 indicates “no second input”; and

18-

WO 2010/033648 PCT/US2009/057225

4 the output directions, using a six-bit code indicating whether each direction (in the
order of Table 1) is an output(1) or not(0).

Once the stem cell receives this fifteen-bit code, it notifies its parent stem cell that it is
fully programmed (finishing its round of forwarding), and begins acting in the specified
mode with specified inputs and outputs.

[0064] Table 2 presents an exemplary set of options for the three-bit code for

encoding the mode of a cell.

Table 3

code — mode

000 — AND cell
001 — NAND cell
010 — OR cell

011 — XOR cell

100 — crossover cell
101 — copy cell

110 — delete cell

111 — stem cell

[0065] An advantage of the RALA model is its construction universality: any
RALA circuit can be encoded into a bit string with the property that, when fed into a
single stem cell, produces the desired circuit. One simple construction is for the code to
use the forwarding mechanism to build a chain of stem cells that cover the desired circuit
(and possibly some extra cells), and then program those cells one by one from the end to
have the desired modes and initial input-wire states (and program any extra cells visited
by the chain of stem cells into no-ops). Figs. 3A-C depict an example of construction of a
RALA circuit by building a forwarding chain and then programming the cells. Fig. 3A
depicts the initial building of the forwarding chain, Fig. 3B, depicts further building of
the forwarding chain, and Fig. 3C depicts a completed forwarding chain with initial
programming of cells. This implementation uses the bounding-box scan-line algorithm,

optimized to go only as far as necessary in each scan line.

-19-

WO 2010/033648 PCT/US2009/057225

[0066] The length of the encoding and resulting construction time is proportional
to the length of the chain covering the circuit. Perhaps the simplest chain that covers a
desired circuit is a scan-line tour of the bounding box, visiting each 1D row in order
within each 2D slab in order within the box. The length of this string is proportional to
the volume of the bounding box. For circuits that densely occupy their bounding box, this
approach is a reasonable one, but in general it is suboptimal.

[0067] With a bit of care, a chain can be constructed that covers a desired circuit
using at most eight times as many cells as are used by the circuit. The idea is to view the
RALA cells as being grouped into 222 blocks on a twice coarsened grid. Then the chain
visits all eight cells in every block that contains at least one cell used by the circuit. The
set of all cells contained in these blocks (whose number is at most eight times the number
of cells used by the circuit) is Hamiltonian: each cell can be visited exactly once by a
closed tour, by repeatedly gluing together closed tours of each block. This assumes that
the groups form a connected set; this property is implied by the circuit consisting of a
connected set of cells.

[0068] With even more care, exactly the desired circuit can be constructed,
programming exactly the desired cells and no additional no-ops. This example assumes
that the circuit consists of a connected set of cells. This construction is useful when there
are other circuits nearby that it is desirable not to overwrite, and it also achieves a time
bound proportional to the number of cells used by the circuit. The basic idea is to follow
a dual spanning tree of the used cells, that is, a minimal set of connections between cells
that form a connected structure (a tree). The tree is rooted at one of the cells, which will
be the original stem cell from which the circuit will be created (typically chosen to be on
the boundary of the bounding box of the circuit). For each cell in the tree, the encoding
creates each child of the cell (via a forward instruction), recursively builds the child’s
subtree, stops forwarding one step(via code 000), and then proceeds to the next child (if
any). Although such a construction is conceptually more complicated because some cells
do multiple forwarding tasks, the end result is quite attractive. In particular, the length of
the code and the construction time are proportional to the number of cells contained in

the circuit.

220-

WO 2010/033648 PCT/US2009/057225

[0069] Figs. 4A-E depict a simple example of construction of a RALA circuit via
the spanning-tree algorithm. Fig. 4A depicts the initial configuration: one stem cell 410.
Fig. 4B depicts forwarding to new stem cell 420 to build the right subtree. In Fig. 4C, the
right subtree is completed. Fig. 4D depicts forwarding to new stem cell 430 to build the
left subtree. In Fig. 4E, the left subtree is completed.

[0070] One important note in these constructions is that the partially built circuit
may run, but it will wait (as necessary) for the parts that have not yet been built, and will
not interfere with the construction process. The key property is that stem cells accept
inputs only from one direction, from which its program code comes, and it provides
outputs only to other stem cells. Thus, when a partially built circuit will block when
requesting an input from or trying to send an output to an unbuilt part of the circuit, i.c., a
stem cell.

[0071] Stem cells initially interpret the configuration string as relative folding
directions, generating new cells at the end of the path and passing string tokens within the
path. A termination code is then used to differentiate the terminal cell on the path. An
example of code used to configure reconfigurable asynchronous logic automata according

to the present invention is shown in Table 3.

Table 3
direction: straight=00 right=01 left=10 end=11
gate: and=000 nand=001 or/wire=010 xor=011
crossover=100 copy=101 delete=110 stem=111
input 1: forward=00 backward=01 right=10 left=11
(wrt fold direction)
init 1: 0=00 1=01 x=10 not used=11
input 2: not used=00 +90=01 +180=10 +270=11
(clockwise)
init 2: 0=00 1=01 x=10 stay connected=11
output directions: forward backward right left:
0=off 1l=on (wrt fold direction)
[0072] An example of RALA folding configuration code is shown in Table 4.

21-

WO 2010/033648 PCT/US2009/057225

Table 4
format (right-hand rule coordinate system):
fold direction: forward=000 backward=001 right=010 left=011 up=101 down=110 end=111
...
gate: and=000 nand=001 or=010 xor=011
cross=100 copy=101 delete=110 stem=111
input 1: forward=000 backward=001 right=010 left=011 up=101 down=110 not used=111
init 1: 0=00 1=01 x=10
input 2: forward=000 backward=001 right=010 left=011 up=101 down=110 not used=111
init 2: 0=00 1=01 x=10 stay connected=11
output directions: forward backward right left up down: O=off 1=on
...

[0073] A differentiated cell becomes active, with the upstream neighbor
becoming the new terminal cell. Because the active cells can operate only when they
have valid inputs and empty outputs, the global circuit will turn on correctly with only
local communication. Fig. 5 depicts an example of reconfigurable asynchronous logic
automata folding and differentiation of a linear-time sorting circuit, according to one
aspect of the present invention.

[0074] Fig. 6 depicts the exemplary construction of an oscillator through a stem
cell. The initial bit string (stored here in a shift register) creates and folds the new cells,
then the subsequent bit string differentiates them. After the last cell in the path is
configured it becomes active, waiting for valid asynchronous inputs and outputs, and the
preceding call on the path becomes the new terminal one. The global circuit will turn on
consistently because each cell will enforce consistency locally.

[0075] Similarly, logic, communication, and computation can be integrated in the
reconfigurable asynchronous logic automata. Starting from a source cell and a stem cell,
a fanout circuit is folded and configured. Then the same bit string from the source causes
the new stem cells to fold parallel fanout circuits, and repeating the bit string again causes
cach of those to create fanout circuits. A folding path is generated for a shape defined by

a mathematical string, and the configuration drops the support cells that are no longer

20

WO 2010/033648 PCT/US2009/057225

needed on the path. A similar construction applies to creating three-dimensional objects.
The combination of coded construction along a folding path and asynchronous operation
allows for the loading of arbitrary spatial program structures, I/O to and from arbitrary
cells, and eliminates the need for distributed synchronization and clock coordination. It
provides an analog to operating system services for such “conformal” computing
substrates.

[0076] The RALA architecture can be used to write programs that run on standard
desktop PCs, emulators on a compute cluster, arrays of commodity microcontrollers,
FPGAs, General Purpose Graphics Processing Cards, and implementation in an ASIC.
Programs can be compiled into the native instruction set or emulated on virtual machines.
Standard techniques, such as on the fly compilation, can be applied to improve
performance when emulating the RALA outside of native hardware embodiments.
Furthermore a small set of designs for non-reconfigurable versions of the different gates
(as either transistor layouts, machine instructions, or similar) can provide a portable and
casy to use set of building blocks for designing digital systems with anything from
circuits to machine code to microfluidics. These designs would be directly portable from
prototyping with reconfigurable gates (more flexibility and faster design iterations) to
production runs with fixed gates (at a lower cost).

[0077] Possible RALA embodiments include simulation in a compute cluster,
virtualization in arrays of commodity microcontrollers, and implementation in an ASIC.
The RALA architecture could provide a competitive alternative to technologies like
NVIDIA’s CUDA and ATI’s CTM in the GPGPU (General Purpose computing on
Graphics Processing Unit) market. Current technologies are attempting to add flexibility
needed for non-graphics tasks to highly specialized stream processors. The RALA
architecture provides a clean model of general computation that could be configured for
both simple high throughput stream processing or for more general tasks. Prospective
RALA applications include program configuration and dynamic rearrangement for high-
performance computing, linear-time signal processing, distributed interactive graphics,
secure communications, and parallel multi-model inference.

[0078] Data and instructions can intermingle in the RALA model: a binary data

stream can be transformed into computational elements by way of a stem cell, and to

3

WO 2010/033648 PCT/US2009/057225

close the loop, computational elements produce data (as usual). In RALA, instructions
and data both play by the same rules: locality of transmission, locality of synchronization,
etc. This property is not true of many similar types of machines, SIMD being the extreme
case. The implication of this property is that all techniques used to process data in
interesting and efficient ways can be applied to the instructions as well: instead of
programming the system, a program is written to program the system. This fact has
implications for the concepts of programming languages and compiler design in the
context of RALA.

[0079] Many applications resulting from the fusion of computation and
reconfiguration can be derived. For clarity of exposition, examples of these are described
herein in 2D RALA, but it will be clear to one of skill in the art that they easily generalize
to 3D RALA.

[0080] H-tree fractal. The simplest idea for mixing computation and
reconfiguration is to duplicate a program, using a splitter, to send the same bit stream to
two stem cells and thus simultaneously build two copies of the same circuit. To turn this
idea into a single program that can be fed into two stem cells, imagine prefixing a
program with code to produce a splitter, two stem cells, and wires connecting them. This
prefix turns the program for a single circuit into a slightly longer program that makes two
identical copies of the circuit. Repeated for more levels, the classic H-tree fractal can be
generated, where vertices are splitters and edges are wires.

[0081] Figs 7A-D depict an example of building an H-tree fractal using parallel
construction. Fig. 7A depicts after construction of an initial wire, two stem cells, and a
splitter. Fig. 7B depicts construction of the next two wires in parallel. Fig. 7C is after
construction of the next four stem cells and splitters, and Fig. 7D depicts after
construction of the third level of stem cells and splitters, all in parallel.

[0082] The code size and construction time required to fill an n X n square in this
way is given by the recurrence T (n)= T (n\2) + O(n), which is just O(r), roughly the
time necessary simply to traverse the square. By contrast, any code to fill an #» X » square
with n2 random computational elements requires Q(nz) bits on average. The H-tree fractal
is a common tool in planar circuit design because it has a uniform distance from every

leaf to the root. Although such layouts are not required in RALA for correctness by clock

4.

WO 2010/033648 PCT/US2009/057225

synchronization, a rough synchronization along these lines can be useful for efficiency of
when wire buffers empty.

[0083] Grid manufacture. Another example is motivated by bulk manufacture of
many identical components. Suppose a b-bit binary string that encodes the assembly

(from a single stem cell) of an x 'y module. In the obvious encoding discussed carlier, for

example, b = O(xy). Now suppose it is desired to assemble an m X » array of these
modules. For example, this motivation arises in building a memory of #» words each of m
bits, or in building # parallel m-bit adders. In the obvious encoding, this assembly takes
O(mnxy) bits to encode and time to assemble.

[0084] However, it is possible to do asymptotically better: @(mx + ny) + b space
and time, which is @(mx + ny + xy) in the worst case. First a horizontal wire of length m(x
+ 1) is created with splitters every x+1 units, and with a stem cell below every such
splitter. This construction is possible, for example, using the spanning-tree method
described previously: create a stem cell forwarding down, then finish a stem cell below,
then forward right x times, repeat m times, then finish the horizontal line of stem cells
into wires and splitters in the appropriate sequence. Next perform the same construction,
but for a vertical wire of length n(y +1) with splitters and stem cells to their right every
y+1 units. The result is an m X n array of stem cells, with a comb of splitters arranged to
feed the same input to every stem cell. Finally the b-bit code for the desired component is
provided, causing m X » copies of that component to be built in parallel.

[0085] Figs. 8A-C depict an example of building a 3 x 3 array of copies of a
simple construction via parallel construction. Fig. 8A depicts the construct after
construction of one stem cell per column, Fig. 8B depicts the construct after
programming the wire and splitters to feed the columns, and Fig. 8C is after construction
of one stem cell in each column in parallel.

[0086] Naturally, this construction generalizes to constructing an m X n X p grid
of components in 3D. An improvement is made from the obvious @(mupxyz) bound to
O(mx + ny + pz) + b, which is @(mx + ny + pz + xyz)in the worst case. As a final stage, it
is possible to fill in the cracks between the components with arbitrary interconnection

circuitry. The total area of these cracks in 2D is @(mx + ny), so any interconnection

5.

WO 2010/033648 PCT/US2009/057225

structure can be built in that much space and time. In 3D, the cracks are slabs of total
volume @(mnxy + mpxz + npyz), so the obvious encoding may be rather large and slow.
Instead, if the interconnection circuitry has a regular structure, the 2D grid construction
can be applied to fill in the circuitry in @(mx + ny + pz)space and time.

[0087] Infinite replicator. In another example, the idea is that any program to
build an x X y circuit can be prefixed with an O(x)-bit string to make it instead produce
infinitely many copies of that circuit arranged in a horizontal line. This idea is illustrated
in Figs. 9A-B after the prefix has been sent to the stem cell and produced its own
constant-size driver circuit. Figs. 9A-B depict an example of constructing infinitely
copies of a simple circuit via an infinite replicator, according to one aspect of the present
invention. Fig. 9A is an initial forwarding chain built by a replicator program and Fig. 9B
shows completion of the first stem cell, wire chain.

[0088] This driver circuit is like a combination of two biological devices:
polymerase (for duplication) and ribosome (for decoding code into circuitry).
Specifically, it is a bitloop with a splitter, repeatedly feeding the same O(x)bits,
connected to a stem cell. Illustrated in Figs. 9A-B is the case x =2, where just 81 bits are
needed. These O(x) bits encode a simple construction: forward right x times, forward
down, forward left x times, forward down, finish a stem cell, finish a splitter with outputs
right and down, finish a wire with output right x times, forward right. The bit loop causes
these instructions to be repeated infinitely, which builds an infinite chain of splitters
every x units along a wire, with a stem cell below each splitter. Thus the construction,
over time, builds an infinite sequence of stem cells and feeds the original program to each
of them, producing infinitely many copies of the desired circuit. More practically, a
similar construction can be used to build # copies of a given circuit, using a binary
counter to limit the number of repetitions of the bitloop. Again this construction can be
represented by a prefix to a given b-bit string. The resulting construction uses O(nx +
b)time and O(lgn + x) + b space.

[0089] Another aspect is self-replication. In modern use, a quine is a program that
outputs its own source code. The idea in a sequential computing system is as follows:
first write a program Q which, given some program X as input, outputs a program Z

which calls program X, giving it the code of program X as input. Then, call program Q,

6-

WO 2010/033648 PCT/US2009/057225

giving it the code of program Q as its arguments. In RALA, if a program is “quoted” then
it is represented on the data wires; otherwise, it is configured into properly arranged cells.
The output is performed by the stem cells, taking data from the data wires and
configuring a proper arrangement of cells as specified. The “duplication” can be achieved
by using two stem cells in parallel.

[0090] Fig. 10 is a high level diagram of an exemplary RALA quine. In Fig. 10,
upper stem cell 1010 creates a copy of tape 1020, and lower stem cell 1030 creates a copy
of quoting machine 1040 (including two stem cells for the next generation). The tape
contains all the data necessary to build the quoting machine, and the quoting machine
contains an algorithm that can build a tape containing any given data. The substance of
this quine therefore resides in the algorithm to convert a stream of data into a stream of
folding codes that creates a tape pre-loaded with the same data. This depends on the
specifics of the folding code being used.

[0091] Minimal RALA. A RALA-type model according to the present invention
may be made simpler while maintaining the ability to systematically translate RALA
circuits into it. For instance, the AND, OR, and XOR functions of a cell can be removed,
and those functions simulated using NAND cells (replacing each original RALA cell by
perhaps a 5 X Sarray of these simpler cells). This embodiment provides a new model for
direct use that improves the efficiency of the average circuit by allocating computational
resources with a finer granularity. Requiring a local simulation strategy simply ensures
that the new model is still universal. An important consequence of a simpler RALA
model is that it reduces the number of bits required to encode the state of a cell in the
stem-cell program code.

[0092] Removing some of the logical functions is one way to simplify RALA; a
more radical approach is to remove the explicit distinction between 0 tokens and 1
tokens, and represent this difference in software by the location of the token. Each “wire”
carrying data is then replaced by two token channels, one for 0 tokens and the other for 1
tokens. The main challenge to this approach is that, if a 1 is sent, followed by a 0, there is
no guarantee that the 0 will not get ahead of thel on the simulated wire. This challenge
may be met, for example, by sending only one token at a time and employing a third

token channel in the reverse direction for acknowledging receipt.

D7

WO 2010/033648 PCT/US2009/057225

[0093] Other alternate embodiments include replacing explicit specification of
input directions with another scheme for selective communication, or requiring that input
directions be adjacent so that only one needs to be specified. The method to test these
concepts is implementation of the same functions in each candidate model, and then to
write down the stem-cell code for each one. The number of bits needed per cell goes
down as the cells become simpler, but the number of cells needed to implement the same
function could also go up. If the length of the folding code consistently decreases for
various functions from RALA implementation to a different model, then that model
maybe considered more efficient. It may also be desirable to find a model with the
smallest stem-cell code per cell, even if the number of cells needed to implement
practical functions increases by such a factor that the total stem-cell code becomes
longer.

[0094] Algorithmic compression. Instead of changing the model, another way to
minimize folding codes is to write the folding code for a machine that outputs the folding
code to a stem cell, instead of just using the folding code itself. This has been
demonstrated already for certain special cases such as unbounded lines and grids, but
there is an interesting question of how best to compress an arbitrary circuit into a
decompressing machine and (if necessary) a compact datastring. Given the similarity to
Kolmogorov complexity, it seems possible that this problem is uncomputable, but there
still may be interesting approximations or upper bounds.

[0095] System services. A different set of alternatives revolves around the
necessary structures to support execution of multiple programs simultaneously, allocating
them space, and then restricting their access to other programs. Such a collection of
structures would be analogous to the operating system of a traditional computer. One
possible consequence for the core model of such developments might be the necessity of
a supervisor bit, like that in modern CPUs. Each cell would have the supervisor bit either
set or cleared; a stem cell with the supervisor bit set can overwrite any existing cell and
may set its supervisor bit, while a stem cell with the supervisor bit cleared may only
overwrite other cells with the bit cleared and may not set the bit. The purpose of such a
facility is for the “operating system” to keep the bit set, and to clear the bit wherever it

loads programs. The operating system can then keep the program in a “cage” of cells

8-

WO 2010/033648 PCT/US2009/057225

with the supervisor bit set, and the program cannot expand beyond that cage. If the
program needs to expand, it can make a system call using a wire back to the operating
system, which can expand the cage.

[0096] High level programming. Individually specifying the function of each cell
is analogous to individually writing a sequence of machine instructions for a traditional
computer. Most computer programmers prefer to use a more abstract specification, and
there is no reason that RALA should be any different. However, the types of abstraction
that might be useful are likely to be different, because RALA instructions are placed in
space rather than in time. One obvious type of tool would be to package RALA machines
into “blocks” that can be created, deleted, and dragged about a display (similar to a visual
dataflow language such as LabView). However, as with visual dataflow languages, it
seems likely that such a tool would not easily scale to building large, complex systems:
there is no facility for encapsulation, abstraction, iteration, etc. It may be advantageous to
introduce such programming-language concepts into the visual tool provided by the
present invention. Similarly, some form of textual language with spatial annotations may
be useful. In some cases, it may alternatively be possible to do sufficient static analysis
and layout that even the spatial annotations are unnecessary. Alternatively, the visual and
textual languages could be merged into some hybrid language that captures both issues.
[0097] Exemplary ASIC Implementation of RALA. Fig. 11 depicts an exemplary
embodiment of ASIC architecture for a reconfigurable asynchronous logic automata cell.
While a preferred embodiment is shown, it will be clear to one of skill in the art that
many other configurations may be alternatively employed.

[0098] A RALA chip consists of one of more arrays of RALA cells. A section of
a single array of RALA cells is shown in Figure 12. In Fig. 12, RALA chip 1200 contains
an array of interconnected cells 1210, 1220. Each cell 1210, 1220 has four one-bit
input/output ports 1230, each of which connect to its nearest neighbor cell only, in a
square grid, as shown. Cells contain combinational logic and flip-flops. Cells 1210 are
clocked on the positive edge of the clock, and cells 1220 are clocked on a negative edge.
Since cells only connect to their north/south/east/west neighbors, this allows cells to use
the combinational logic outputs of their connected neighbors in their own combinational

logic without problems with invalid outputs or metastability.

220

WO 2010/033648 PCT/US2009/057225

[0099] Each RALA cell array is a double-edge-clocked synchronous finite state
machine, whose operation is described in detail in conjunction with the descriptions of
Figs. 13-18. A RALA array process tokens input around its perimeter, and outputs
tokens around its perimeter. At its perimeter, a RALA array may be connected to another
RALA array or to external communications interfaces (e.g. Ethernet), other computers,
human-interface, or data-storage devices.

[00100] Fig. 13 is a detail view of the array of Fig. 12, showing the signal
interaction and interconnection of two cells on one edge. The signals associated with
sending tokens from left to right are shown in upper group 1310 of signals, and the
signals associated with sending tokens from right to left are shown in the lower group
1320 of signals. For upper group1310, if right cell 1330 is ready to accept a token on the
next clock, it sets the READY signal 1340 high. To send a token, left cell 1350 sets the
VALID signal 1360 high and sets the DATA signal 1370 to the 1-bit data value for the
token. Note that it is completely valid for READY signal 1340 to be high again on the
very next clock; this indicates either that right cell 1330 is not listening to tokens on this
input, or that the token was received and processed in one clock; in any event, cell 1330
is again ready for a new token. Lower signal group 1320 functions identically, but with
left and right reversed.

[00101] Fig. 14 is a schematic of an exemplary ASIC embodiment of the input
unit of a RALA cell. From the four (north/south/east/west) inputs 1410, 1420, 1430,
1440 to the cell, two are selected based on the configuration word. The data from each
input1410, 1420, 1430, 1440 is buffered in a D-flip flop 1450 and passed to arithmetic
and logic unit (ALU) 1460.

[00102] Fig. 15 is a schematic of an exemplary ASIC embodiment of the
crossover and output unit of a RALA cell. If the crossover gate is not selected, the
DATA_O, VALID O, and READY O signals are routed to all outputs. If the crossover
gate is selected, the DATA A, VALID_ A, and READY A signals are routed to outputs 1
and 3 and the DATA B, VALID B, and READY B signals are routed to outputs 2 and
4. The READY OUT signal for each output is forced active-high if the cell is not listing

to the corresponding input.

-30-

WO 2010/033648 PCT/US2009/057225

[00103] Fig. 16 is a schematic of an exemplary ASIC embodiment of the
Listening Output unit of a RALA cell. This circuit generates the active-high
LISTENING for an input if it is used in the computation. Fig. 17 is a schematic of an
exemplary ASIC embodiment of the Arithmatic and Logic Unit (ALU) for a RALA cell.
The ALU computes the required function (NAND, OR, XOR, or AND) required of the
cell. If the SW_OR_CROSS signal is active, indicating a switch or crossover operation
rather than a gate operation is selected, the ALU routes input A to the output.

[00104] Fig. 18 depicts an exemplary embodiment of the configuration word for
cach RALA cell, as stored in an internal register. G0-G3 select the gate active (AND,
OR, NAND, XOR, copy, delete, crossover, or stem) from one of the eight possible gates
for each cell. AINO-AINTI select one of the four inputs for the channel A input for the
gate, and BINOBINT select one of the four inputs for the channel B input to the gate. A
wire or fan-out element is selected by using a one-input AND or OR gate with both
inputs set to the same channel. If the crossover is selected, the A input must be input 1 or
3, and the B input must be input 2 or 4, so that the simple crossover circuitry shown
above will work correctly.

[00105] Connection of multiple arrays on a chip or in a system to form a larger,
virtual RALA array. Multiple, asynchronously clocked RALA arrays can be connected
together, on the same chip, on different chips, or a combination of these, to allow the
construction of a indefinitely large virtual RALA array without concern for speed-of-light
delays in signal routing, since all interconnections are nearest neighbor and asynchronous
token-passing is allowed.

[00106] At the perimeter of each RALA array state machine, a communications
processing unit is typically required to buffer tokens and transfer them between clock
domains. One such communications processing unit could have a 2-token-deep FIFO
buffer for tokens at each communications port, and transmit the tokens between clock
domains using the well known four-phase-commit asynchronous token-passing protocol.
[00107] One of skill in the art of the invention will see that, with this architecture,
it is possible to construct an indefinitely large computational fabric out of a set of nearest-
neighbor connected RALA arrays that appears to be one large asynchronous RALA, but

without the transistor-count overhead typically associated with asynchronous circuits,

-31-

WO 2010/033648 PCT/US2009/057225

since most interconnections are made inside the synchronous clock domain, and only a
small number are made between them. Because RALA create spatial structures, if the
cells are actuated this provides a programming model for programmable matter that can
simultaneously describe an object's shape, logic, and communications. In an exemplary
embodiment, the attraction of cells is done by hydrodynamic forces, and the latching by
electro-permanent magnets. Physically reconfigurable asynchronous logic automata have
applications in three-dimensional rapid prototyping of functional systems, reconfigurable
robotics, and inventory and supply chain management.

[00108] Fig. 19 depicts an implementation of an exemplary physically-
reconfigurable ALA cell. The cells tile in a rectangular array to form an ALA. Each cell
is responsible for a rectangular region of the computation, which could be as small as one
cell, or could be millions of cells. Cells include electrical contacts for transferring power
to neighboring cells, a latching mechanism to attach to neighboring cells, a mechanism to
communicate to neighboring cells, and reconfigurable ALA logic. In the embodiment
shown in Fig. 19, electropermanent magnets 1910 are used for the latches, spring-pins
1920 for the contacts, and infrared transceivers to communicate or to detect the presence
of neighboring cells. Alternative options for the latch include, but are not limited to,
electrostatic (capacitor) pads or mechanical solenoid or motor-operated latches.
Alternative options for the communications include, but are not limited to, near-field
electrostatic, radio, or electrical contacts. Alternative options for sensing a nearby cell
include, but are not limited to, electrostatic or inductive proximity sensors. Also shown in
Fig. 19 are fluid port 1930, flexure magnet mount 1940, 3D-printed acrylic base 1950,
printed circuit board (PCB) 1960, MCU 1970, and Dual Power MOSFET 1980.

[00109] In a preferred embodiment, reconfigurable ALA cells are used in a fluid
bath. The fluid bath has one or more ports with the same interfaces as a cell, providing
communications and supplying power. RALA cells are poured into the fluid bath by the
operator, and then circulated by jets in the bath.

[00110] When the user desires to begin a computation, they send a program
through one of the ports. When the port detects one of the cells swirling in the bath has
come within range of the port, it draws it in with the electropermanant magnet or

electrostatic capacitor pads. Geometric features in the design of the cell align it with the

-32-

WO 2010/033648 PCT/US2009/057225

port. Once the contacts line up, the cell is powered, and loaded with the user’s data.
From then, the process of ALA circuit construction continues as in the virtual versions,
with the program streaming in over the communications port in the matrix of cells,
initially configured as stem cells. If the program reaches an edge, where there are no
more cells, that that edge waits until a cell comes within range, draws it in, and the
process continues. In this way, the computer self-reconfigures its shape to fit the shape of
the user’s computation. If the computation is too large for the number of cells in the
bath, the user can pour more RALA cells into the bath.

[00111] Digital Fabrication Applications. This same system can also be used as a
fabrication tool, in similar fashion to a three-dimensional printer. The user loads the
program for the desired object, and by the process of the program growing itself, the
object- made from RALA cells- is fabricated. (For example, the object could be a
wrench, or a drink mug, or a picture frame.) Unlike with a three-dimensional printer,
when the user is done with the object, they can put it back into the bath and attach it to
one of the power ports, and they can program it to disassemble itself, so the RALA cells
can be used to build new objects. Also, since the object is made of RALA cells, it can
have a computational function; for example, it could be used as a digital music player or
a cellular telephone.

[00112] Fluid Valves. In one embodiment, fluidic flow fields are employed to
increase the speed with which system can grow a computation or object. In this
embodiment, there is a pump attached to each port providing a fluid flow source. The
cells have fluid connections as well as electrical connections on their faces, and each cell
contains a valve for each face. All fluid ports connect to each other, switched through one
valve per face. When a cell is latched the valve on that face is open, effectively making
the network of RALA cells a porous channel for flow. When a cell needs to draw in a
cell, it opens its valve, biasing the flow toward that cell. This will tend to draw cells
floating in the bath toward arecas needing cells. A preferred fluid is 3M Flourinert
electronic liquid, because it is electrically insulating, dense, and low viscosity. However,
air, water, silicone oil, or a variety of other fluids could be alternatively used.

[00113] It will be clear to one of skill in the art that there are many possible

Reconfigurable Asynchronous Logic Automata variations, including, but not limited to:

-33-

WO 2010/033648 PCT/US2009/057225

(1) No Diagonals, wherein connections may only be present between vertically or
horizontally adjacent cells, in order to simplify circuit layout; (2) Multiple signals,
wherein more than four token-storing edges may connect neighboring cells, allowing the
conveyance of more parallel information in the same period of time; and (3) More

functions, wherein the class of possible functions executed by each cell need not be

limited to {AND, OR, XOR, NAND}, but may include any function f: {0, 1, & }Il - {0,
1,0 }n’ where n is the number of neighbors of each cell (for n = 8, there are 43,046,721

possible functions). A cell executing function f may fire if f’s present output is not & '

and every non-empty element of the output points to either an inactive or empty set of
output edges. Then each of those output edges would become populated with the value
specified by s output. There is a tradeoff between the number of functions allowed and
the number of configuration bits in each cell needed to specify the function.

[00114] While a preferred embodiment is disclosed, many other implementations
will occur to one of ordinary skill in the art and are all within the scope of the invention.
Each of the various embodiments described above may be combined with other described
embodiments in order to provide multiple features. Furthermore, while the foregoing
describes a number of separate embodiments of the apparatus and method of the present
invention, what has been described herein is merely illustrative of the application of the
principles of the present invention. Other arrangements, methods, modifications, and
substitutions by one of ordinary skill in the art are therefore also considered to be within
the scope of the present invention, which is not to be limited except by the claims that

follow.

-34.

WO 2010/033648 PCT/US2009/057225

CLAIMS
What is claimed is:
1. A reconfigurable asynchronous logic element, comprising:
a plurality of edges for asynchronous communication with at least one
neighboring logic element, each edge comprising:
at least one input for receiving at least one input state token from a
neighboring logic element; and
at least one output for transferring an output state token to a
neighboring logic element; and
computational circuitry configured to perform a logic operation utilizing at
least one received input token as at least one input to produce an output state token
reflecting the result of the logic operation, wherein the logic operation performed by the

logic element is reconfigurably programmable.

2. The logic element of claim 1, further comprising storage circuitry for storing a

logic element current state.

3. The logic element of claim 1, further comprising configuration circuitry for
responding to programming instructions received by the logic element by changing the

logic operation performed by the computational circuitry.

4. The logic element of claim 3, wherein the configuration circuitry responds to
programming instructions received by the logic element as combinations of one or more

state tokens.

5. The logic element of claim 1, wherein the logic element is reconfigurable by

programming instructions received by the logic element as one or more state tokens.
6. The logic element of claim 5, wherein the logic element interprets programming

instructions received by the logic element to determine to which neighboring logic

element they should be communicated.

-35-

WO 2010/033648 PCT/US2009/057225

7. A reconfigurable lattice of asynchronous logic automata, comprising:
a plurality of reconfigurable asynchronous logic automata elements, each
element comprising:
a plurality of edges for asynchronous communication with at least
one neighboring logic element, each edge comprising:
at least one input for receiving at least one input state token
from a neighboring logic element; and
at least one output for transferring an output state token to a
neighboring logic element; and
computational circuitry configured to perform a logic operation
utilizing at least one received input token as at least one input to produce an output state
token reflecting the result of the logic operation, wherein the logic operation performed

by the logic element is reconfigurably programmable.

8. The lattice of claim 7, wherein the lattice is reconfigurable by locally passing
combinations of state tokens in order to program individual ones of the logic elements

comprising the lattice.

9. The lattice of claim 8, wherein token sequences representing programming
instructions are shifted through contiguous neighboring logic elements until the
instructions reach a destination logic element that is to be reconfigured by the

instructions.

-36-

WO 2010/033648

PCT/US2009/057225
1/13

108 130

AND |) d CROSSOVER

nanDT e { & copy
15 145,07 160
OR @DELETE

XOR) STEM

120 \1@5

70" wage

FIG. 1

205

21077 o 210

\\210

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 2010/033648

L]

t

Hip N

Fig. 3A
520

g -

(W‘\

"I/o_]/

Fig. 4A Fig. 4B

2/13

PCT/US2009/057225

SRR
K05 -2 K L

- E a8 X
ARG R G R 0
LR T -)
PEE-8- e

'y

Fig. 3C

« O +0 Oe [-0
</§<> -
(\{ 410 5\'}\' 410
Fig. 4D Fig. 4E

WO 2010/033648

"ﬂW‘Gﬂ"“}'ﬁ%% T

SSSSE MRS dth by

OGRS DE EE
T OO L LB Bl Dby
PRt D LT R B

/13

Al g g T
it ol A R
D8R Qo SR h e B L IRSY S840
Rl el s R R S e B R R 2
T D Le g B Oe L B L Ceip
ST S GG LG DG e B A) SO PRy
B o AR BOORES Y T RTRREIITD Y
% '«' ‘*‘u R N R OURe Lo Pedd G XA Ty S
£ Fade ey ..wts{vg e Sl 0N T I TS TR TS 2
RSO AR A O RO 0
€0 B By Bt e 6
BT R LG EREVLE
PR D v*'i‘v*‘sbs:uzut
AR SRR Al

£ el

£

TR RN BRLGE
e g ®

2

QNS 5
IS G asotetn §
g L
‘Mv»ﬁé,}.mm

%\»«, Qe«u\w\u{

LOODB0 LSttt Bip1sy SN NPT 7 SN v
e S0 e G fwwﬁv ¥ & E 9«/%»%‘»* LEBEwe ok b S dopnav o g o s
%ewm&ﬁo-n’&a«'}-ﬁw S & w S e 3 2 t TEREE & R I
PR SR SEIAR Ga S 2 2 Lou-ﬂ«y st fupay H 5 Gy
TEERDOBDIIO G INTE bad e biates lg ; SN
SRS SR DLF R B 4 Fog g &y G Q;»‘«;«,:abs,’mw%qi. X i o desew 4,@:‘
Bl b L e B TR g b 4‘.~mm.< PEE v dwsdddawwy R Y P
: B LR ey P
ﬁftl‘ O o K "’“‘”*\ »: a;;.wy-(:» jkv f ?
kY ¢ g MRS ¥ b g a e
L5 S T Y ;

P OB B
DD £ LTS T Pl 13 X5 el S 153
FUARLG TR DR oS B

prass L R dh i sl a8 o
6 sk s"vt}e: sy g.

D R i & B 8
Lk z ‘L.\}.‘;}é}t?-k

14
E33 STCEGN T QTR
BEFEDLBIBIUL Ll

RIS o eR

DU S B e

PCT/US2009/057225

WO 2010/033648 PCT/US2009/057225
4/13

o- -0 0-0-0-0- 0 -0-0-0-0

Fig. 7A Fig.7B Fig. 7C Fig. 7D

3 403 #0203 40 +O =0 O +O O

&0 0-o n]

00000000050 O +0 0 0 +0 +0 +0 +0 0 +0O & .0 8.0 &
O m] | O 0 0 01 -0 8]

Fig. 8A Fig. 8B Fig. 8C

WO 2010/033648

PCT/US2009/057225
5/13
M//fqom
TAPE
1040
/” /X,wsm
S R
QUOTING §
MAGHINE § STEM
g CELLS
g |t
N\\imﬁ
FIG. 10

SUBSTITUTE SHEET (RULE 26)

PCT/US2009/057225

WO 2010/033648

6/13

Hoid

9L TYL0L S1Ndino
M3 8§ N
06 NOLLYZINOHHONAS NIHOL bbb &
i LOFT5 INdNI _10IB0T L0TTES N LNO e
- HIADSSOMD »
0z NOLYHIAO HO LIS
) HOLYHANTD
0zl NOLYHIH0 HIA0SS0HD 501 NOLLIGNOS 244
B f ;
o ——— HOLIMAS NTXOL -
4
941 HILSIHIY YiIva 199738
31¥D
51 HILSIOIY WrdD0Hd I)) i
SHOLSISNYHL WALSASENS
aNy |1 HO [IaNYNL L HOX
N YN
w 4 4 D
i 13
Ay
3+ 10F7ES 103788
SLNdNi g~ 1NdNI 1NdN
N
y

A
3
S
N

SLNdN

SUBSTITUTE SHEET (RULE 26)

WO 2010/033648

L

=

7/13

PCT/US2009/057225

\ ﬁm v %\\ ﬁm@/
o wv/\v o :>
— —
. < SR
=t ;
¥z s
w o .
< o < > < m<:£
“'“ N - N
AN YEI
3 s ﬁ
= o - O

SUBSTITUTE SHEET (RULE 26)

PCT/US2009/057225

WO 2010/033648

8/13

geel

ﬁmw%

gret ///
N

NELAOYEY
100 LANvA
N0 vivd

O LAOYEY
NELAFTYA
N LYY

&

eb "Did

&

&

0EElL

LN0 sA0V3EY
NI QA
NI evivd

NI EAOVEY

1A §AMYA A 0%

A0 VIV et 028

//%2

SUBSTITUTE SHEET (RULE 26)

PCT/US2009/057225

WO 2010/033648

9/13

7L D4

O anvwN 0 YV

NiPAOYIY
NigAOdY3Y

OYACH
CNYAQY,

artvagd/

NIEAOYEH
NEFAQY Y

GIvAV/
NI EQHIVA
Nigarva— PHIO i e
Pl N1 LOmYA CIvAIG
NI OCHIVA _—
AQY3H

goni- T8N |

100/

iy

SSOHD
THOTMS
g
NIV N1 B b
NI 2Y.LYC el o
0wl = wi Lvva 7 i
NI OY.LYC ashL 7
goni- H N 0571

NI SCITIVA
<€m\ g 110 NEZAITYA L gep
ATTRTY NE LOITYA
05hL J NEOCIIVA
VNI Ly ong
; NI EV.LYC
VA Te10
NI ZY1YC
v oye 0L}
¥ NI LYLYC
%ﬁ\ NI OVLYC
¥ LN

¥ ONi

SUBSTITUTE SHEET (RULE 26)

PCT/US2009/057225

WO 2010/033648

10/13

G Oid

LOOFACYEY

1N0SACYHEY

(T
s

AN0 #ONTYA

LNO SAIvA

0 FYivd

F:

1NO eviva

E:

T i

NI PONINILSHT

miiiii» NI ONINZLSH
e

- g AQYHY
0 AQY3Y

& QYA
O OITVA

— & YLV
0 Yiv(Q

e HAACS SOHO

ALNOCACY HY

LNOLAGY3Y

(T
o

100 eANvA

1NO LAMvA

LNO EY LIV

&

LNO YIva

L

U

NI SONINALSIT

Miiiii» NELDNINZ LS
e

- Y AQY Y
— AQY3Y

— Y QFTYA
— 3 QYA

— Y Y1V
- 0 VIV

e HAAQSSOHD

SUBSTITUTE SHEET (RULE 26)

WO 2010/033648 PCT/US2009/057225
11/13

LISTENINGO
LISTENINGT
LISTENING?2
LISTENINGS

FiG. 16

24
2.4

AING ——
AINT -
BINQ -
BINT —

SUBSTITUTE SHEET (RULE 26)

WO 2010/033648

12/13

GO

A
5 I
) o>
G2 “} CROSSOVER
GO~
G2 SW_OR_CROSS
FIG. 17
GO | G1 | G2 | AINO | AINT | BINO | BING
GATE INPUT A INPUT B
SELECT SELECT SELECT
FIG. 18

SUBSTITUTE SHEET (RULE 26)

PCT/US2009/057225

SW_OR_CROSS

FOUT

¥
(oY)

&

WO 2010/033648 PCT/US2009/057225
13/13

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 09/57225

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 15/00 (2009.01)
USPC - 712/15

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC: 712/15

Minimum documentation searched (classification system followed by classification symbols)

365/51, 189.05, 200, 230.08; 708/501

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPTO WEST (PGPB, USPT, EPAB, JPAB); GOOGLE

automata, input, output, state, neighbor, shift

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Search Terms Used: logic, token, program, asynchronous, communication, circuit, transfer, configurable, reconfigurable, lattice,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2008/0061823 At (SCHMIT et al.) 13 March 2008 (13.03.2008) entire document, 1-9

especially Abstract; para [0012]-[0014], [0072), {0077]), [0099]-{0101]; Figs 15-16, 24-27
A US 2007/0194807 A1 (REBLEWSKI et al.) 23 August 2007 (23.08.2007) entire document 1-9

[:] Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the aplglication but cited to understand
the principle or theory underlying the invention

“X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

20 November 2009 (20.11.2009)

Date of mailing of the international search report

3 0 NOV 2009

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571.273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - wo-search-report

