A system is provided for estimating time travel distributions on signalized arterials. The system may be implemented as a network service. Traffic data regarding a plurality of travel times on a signalized arterial may be received. A present distribution of the travel times on the signalized arterial may be determined. A prior distribution based on one or more travel time observations may also be determined. The present distribution may be calibrated based on the prior distribution.
The present invention generally concerns traffic management. More specifically, the present invention concerns estimating time travel distributions on signalized arterials and thoroughfares.

DESCRIPTION OF THE RELATED ART

Systems for estimating traffic conditions have historically focused on highways. Highways carry a majority of all vehicle-miles travelled on roads and are instrumented with traffic detectors. Notably, highways lack traffic signals (i.e., they are not “signalized”). Estimating traffic conditions on signalized streets represents a far greater challenge for two main reasons. First, traffic flows are interrupted because vehicles must stop at signalized intersections. These interruptions generate complex traffic patterns. Second, instrumentation amongst signalized arterials is sparse because the low traffic volumes make such instrumentation difficult to justify economically.

In recent years, however, global positioning system (GPS) connected devices have become a viable alternative to traditional traffic detectors for collecting data. As a result of the permeation of GPS connected devices, travel information services now commonly offer information related to arterial conditions. Although such information is frequently available, the actual quality of the traffic estimations provided remains dubious.

Even the most cursory of comparisons between information from multiple service providers reveals glaring differences in approximated signalized arterial traffic conditions. The low quality of such estimations is usually a result of having been produced from a limited set of observations. Recent efforts, however, have sought to increase data collection by using re-identification technologies.

Such techniques have been based on being based on magnetic signatures, toll tags, license plates, or embedded devices. The sampling sizes obtained from such technologies are orders of magnitude greater than those obtained from mobile GPS units. Sensys Networks, Inc. of Berkeley, California, for example, collects arterial travel time data using magnetic re-identification and yields sampling rates of up to 50%. Notwithstanding these recently improved observation techniques, there remains a need to provide more accurate estimates of traffic conditions on signalized arterials.

SUMMARY

The present invention provides a method as defined in the appended claims.
herein, which may alternatively be distributed between client computer 110 and server 130, or may be provided by server 130 as a network service for client 110. Each of client 110 and server computer 130 are listed as a single block, but it is envisioned that either be implemented using one or more actual or logical machines.

In one embodiment, the system may utilize Bayesian Inference principles to update a prior belief based on new data. In such an embodiment, the system may determine the distribution of travel times on a given signalized arterial at the present time T. The prior beliefs may include the shape of the travel time distribution and the range of its possible parameters \(\theta_1 \) (e.g., mean and standard deviation) that are typical of a given time of day, such that \(y \) follows a probability function \(p(y|\theta_1) \). These parameters themselves may follow a probability distribution \(p(\theta_1|\alpha_T) \) called the prior distribution. The prior distribution may comprise its own set of parameters \(\alpha_T \), which are referred to as hyper-parameters.

The system may estimate the current parameters using a recent travel time observation of the arterial of interest. The system may also account for observations on neighboring streets. In still further embodiments, the system may consider contextual evidence such as local weather, incidents, and special events such as sporting events, one off road closures, or other intermittent traffic diversions. In one embodiment, \(y^* \) may designate the current travel time observations. The system may determine the likeliest \(\theta_1 \) using a known \(y^* \) and \(\alpha_T \).

The system 100 may account for one or more travel time variability components. First, there may be individual variations between vehicles traveling at the same time of day. These variations stem from diverse driving profiles among drivers and their varying luck with traffic signals. Second, there may be recurring time-of-day variations that stem from fluctuating traffic demand patterns and signal timing. Third, there may be daily variations in the distributions of travel times over a given time slot. System 100 may account for other time travel variability components.

In one exemplary embodiment, the system 100 may employ standard Traffic Message Channel (TMC) location codes as base units of space, and fifteen-minute periods as base units of time. In such an embodiment, the system approximates that traffic conditions remain homogeneous across a given TMC location code over each fifteen-minute period. The system 100 may also use other spatial or temporal time units depending on the degree of precision desired. For example, the system 100 may normalize travel time data into a unit of pace that is expressed in seconds per mile. The system 100 may also calculate the average pace as a linear combination of individual paces weighted by distance travelled. Such calculations may be more convenient than using speed values.

FIGURE 2 is a series of graphs showing distributions of pace on a signalized arterial segment at the same time on over three consecutive days. More specifically, FIGURE 2 shows an exemplary distribution of pace on a 2-km arterial segment in Seattle, Washington for the same fifteen-minute time period on three consecutive days. As suggested in FIGURE 2, determining an exact distribution shape for a given fifteen minute period on any given day may pose a difficult realistic objective. The presently described system can, however, directly observe three different states of an arterial segment and then calibrate the prior probabilities of being in either state from archived data. The system may also use real-time data to help refine a given brief regarding which of the multiple states applies to the real-time prediction.

FIGURE 3 is a graph showing variations in pace throughout different time periods in a day. As shown in FIGURE 3, the presently disclosed system may account for time-of-day variations. Notably, the box indicates the 25th, 50th, and 75th percentile value while the dotted lines extend to extreme values. In such embodiments, the system may use data regarding regular patterns of increase and decrease in travel times to calibrate prior distributions by time of day.

FIGURE 4 is a block diagram of a device 400 for implementing an embodiment of the presently disclosed invention. System 400 of FIGURE 4 may be implemented in the contexts of the likes of client computer 110 and server computer 130. The computing system 400 of FIGURE 4 includes one or more processors 410 and memory 420. Main memory 420 may store, in part, instructions and data for execution by processor 410. Main memory can store the executable code when in operation. The system 400 of FIGURE 4 further includes a storage 420, which may include mass storage and portable storage, antenna 440, output devices 450, user input devices 460, a display system 470, and peripheral devices 480.

The components shown in FIGURE 4 are depicted as being connected via a single bus 490. The components may, however, be connected through one or more means of data transport. For example, processor unit 410 and main memory 420 may be connected via a local microprocessor bus, and the storage 430, peripheral device(s) 480 and display system 470 may be connected via one or more input/output (I/O) buses. In this regard, the exemplary computing device of FIGURE 4 should not be considered limiting as to implementation of the presently disclosed invention. Embodiments may utilize one or more of the components illustrated in FIGURE 4 as might be necessary and otherwise understood to one of ordinary skill in the art.

Storage device 430, which may include mass storage implemented with a magnetic disk drive or an optical disk drive, may be a non-volatile storage device for storing data and instructions for use by processor unit 410. Storage device 430 can store the system software for implementing embodiments of the present invention for purposes of loading that software into main memory 410.

Portable storage device of storage 430 oper-
Antenna 440 may include one or more antennas for communicating wirelessly with another device. Antenna 440 may be used, for example, to communicate wirelessly via Wi-Fi, Bluetooth, with a cellular network, or with other wireless protocols and systems including but not limited to GPS, A-GPS, or other location based service technologies. The one or more antennas may be controlled by a processor 410, which may include a controller, to transmit and receive wireless signals. For example, processor 410 execute programs stored in memory 412 to control antenna 440 transmit a wireless signal to a cellular network and receive a wireless signal from a cellular network.

The system 400 as shown in FIGURE 4 includes output devices 450 and input device 460. Examples of suitable output devices include speakers, printers, network interfaces, and monitors. Input devices 460 may include a touch screen, microphone, accelerometers, a camera, and other device. Input devices 460 may include an alpha-numeric keypad, such as a keyboard, for inputting alpha-numeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys.

Display system 470 may include a liquid crystal display (LCD), LED display, or other suitable display device. Display system 470 receives textual and graphical information, and processes the information for output to the display device.

Peripherals 480 may include any type of computer support device to add additional functionality to the computer system. For example, peripheral device(s) 480 may include a modem or a router.

The components contained in the computer system 400 of FIGURE 4 are those typically found in computing system, such as but not limited to a desktop top computer, laptop computer, notebook computer, netbook computer, tablet computer, smartphone, personal data assistant (PDA), or other computer that may be suitable for use with embodiments of the present invention and are intended to represent a broad category of such computer components that are well known in the art. Thus, the computer system 400 of FIGURE 4 can be a personal computer, hand held computing device, telephone, mobile computing device, workstation, server, minicomputer, mainframe computer, or any other computing device. The computer can also include different bus configurations, networked platforms, multi-processor platforms, etc. Various operating systems can be used including Unix, Linux, Windows, Macintosh OS, Palm OS, and other suitable operating systems.

The method of any of claims 1 to 5, wherein the travel data about a signalized arterial is collected by identifying devices includes a toll tag.

The method of claim 2 or 3, wherein the plurality of reidentification devices includes an embedded device.

The method of claim 2, wherein the plurality of reidentification devices includes a toll tag.

The method of any of claims 1 to 4, wherein the travel data about a signalized arterial is collected by identifying magnetic signatures.

The method of any of claims 1 to 5, wherein the travel
data about a signalized arterial is collected by identifying license plates.

7. The method of claim 1, wherein the travel data is received from a third-party server.

8. The method of any of claims 1 to 7, wherein the signalized arterials are arterials with traffic signals.

9. A system for estimating time travel distributions on signalized arterials, comprising:
 a processor (410);
 memory (420); and
 instructions stored in memory (420) and executable by the processor (410) to:

 receive travel data about a signalized arterial;
 normalize the travel data into a plurality of individual pace values, the pace values expressed as a ratio of time per distance;
 calculate an average pace value for the signalized arterial as a linear combination of the individual pace values weighted by distance travelled across the signalized arterial;
 estimate a distribution based on the average pace value;
 receive real-time travel data about the signalized arterial;
 calibrate the estimated distribution based on the real-time travel data; and
 generate a real-time prediction of the traffic conditions of the signalized arterial based on the calibrated distribution.

10. The system of claim 9, wherein the instructions stored in memory include instructions executable by the processor to receive the travel data about a signalized arterial from a plurality of reidentification devices.

11. The system of claim 10, wherein the plurality of reidentification devices includes a toll tag.

12. The system of claims 10 or 11, wherein the plurality of reidentification devices includes an embedded device.

13. The system of claim 9, wherein the instructions stored in memory include instructions executable by the processor to receive the travel data about a signalized arterial from a third-party server.

14. A computer program product comprising instructions which, when the program is executed by a computer, cause the computer to carry out the method of any one of claims 1 to 8.

15. A computer-readable medium comprising instructions which, when executed by a computer, cause the computer to carry out the method of any one of claims 1 to 8.
FIGURE 1
FIGURE 2
FIGURE 4
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 1 235 195 A2 (HITACHI LTD [JP]) 28 August 2002 [2002-08-28] * paragraph [0020] - paragraph [0021]; figure 1 * * paragraph [0027]; figure 3 * * paragraph [0029]; paragraph [0031]; figure 5 * * paragraph [0034]; paragraph [0041] * * paragraph [0044] * * figures 5,6,8,14 *</td>
<td>1-15</td>
<td>INV. G08G1/00 G08G1/01</td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munich</td>
<td>23 November 2018</td>
<td>Seisededos, Marta</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **A**: technological background
- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **O**: non-written disclosure
- **P**: intermediate document

[1]: [Link to the original document](https://example.com)
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 23-11-2018.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 1235195 A2</td>
<td>28-08-2002</td>
<td>CN 1372230 A</td>
<td>02-10-2002</td>
</tr>
<tr>
<td>JP 2002251698 A</td>
<td></td>
<td>JP 2002251698 A</td>
<td>06-09-2002</td>
</tr>
<tr>
<td>SG 117404 A1</td>
<td></td>
<td>SG 117404 A1</td>
<td>29-12-2005</td>
</tr>
<tr>
<td>US 2010268456 A1</td>
<td></td>
<td>US 2010268456 A1</td>
<td>21-10-2010</td>
</tr>
<tr>
<td>WO 2005013063 A2</td>
<td></td>
<td>WO 2005013063 A2</td>
<td>10-02-2005</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.