wo 2012/082362 A1 |1 N0F V0 0O O 0 00O

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2012/082362 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

31

21 June 2012 (21.06.2012) WIPOIPCT
International Patent Classification:
GO6F 17/30 (2006.01)
International Application Number:
PCT/US2011/062479

International Filing Date:
29 November 2011 (29.11.2011)

Filing Language: English
Publication Language: English
Priority Data:

12/968,618 15 December 2010 (15.12.2010) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, WA 98052-6399 (US).

Inventors: LAMANNA, Charles William; c/o Microsoft
Corporation, LCA - International Patents, One Microsott
Way, Redmond, WA 98052-6399 (US). GANDHI, Mauk-
tik H.; ¢/o Microsott Corporation, LCA - International Pat-
ents, One Microsoft Way, Redmond, WA 98052-6399
(US). BREWER, Jason Eric; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, WA 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

(84)

DZ, EC, EE, EG, ES, FI, GB, GD, GF, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW,ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: DECOMPOSING AND MERGING REGULAR EXPRESSIONS

Keyword Graphs 113

e see————

113A

Graph 112
(Representing
RE 111)

bt

Decomposition
Module
101

Regular
Expression CD
111

113B

-

113C

100

03

Labeled Keyword Graphs 113L

[rEsee———

113AL

Labeling
Module
102

Graph 123
(Representing
RE 121)

&

Regular
Expression |:|'>
121

113BL

X E ; E}l

Labeled
Graph 123L L

&

Figure 1

113CL

Directed

Merge Module
141 Acyclic Graph
134

Position
Detector
142

(Collectively
Representing RE 111
And RE 121)

ik

Overlap
Detector
143
I
Overlap
Compensator
144

(57) Abstract: The present invention extends to methods, systems, and computer program products for decomposing and merging
regular expressions. Embodiments of the invention decompose a regular expression into multiple simple keyword graphs, merge
those keyword graphs in a compact and efficient manner, and produce a directed acyclic graph (DAG) that can execute a simplitied
regular expression alphabet. Several of these regular expression DAG's can then be merged together to produce a single DAG that
represents an entire collection of regular expressions. DAGs along with other text processing algorithms and a heap collection can be
combined in a multi-pass approach to expand the regular expression alphabet.

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

DECOMPOSING AND MERGING REGULAR EXPRESSIONS

BACKGROUND
[0001] Computer systems and related technology affect many aspects of society.
Indeed, the computer system’s ability to process information has transformed the way we
live and work. Computer systems now commonly perform a host of tasks (e.g., word
processing, scheduling, accounting, etc.) that prior to the advent of the computer system
were performed manually. More recently, computer systems have been coupled to one
another and to other electronic devices to form both wired and wireless computer networks
over which the computer systems and other electronic devices can transfer electronic data.
Accordingly, the performance of many computing tasks are distributed across a number of
different computer systems and/or a number of different computing environments.
[0002] In some computing environments, regular expressions are used to match strings
of text, such as, for example, particular characters, words, or patterns of characters.
Regular expressions can be written in a formal language that can be interpreted by a
regular expression processor. The regular expression processor is a program that serves as
a parser generator or examines text and identifies parts that match a provided
specification.
[0003] Regular expressions are used by many text editors, utilities, and programming
languages to search and manipulate text based on patterns. For example, anti-spam
services can utilize regular expressions to determine if strings of text known to be
indicative of SPAM are contained in an clectronic message. Similarly, data leakage
protection services can utilize regular expressions to detect and prevent the unauthorized
use and transmission of confidential information.
[0004] In environments that utilize regular expressions, it is not uncommon for large
collections of regular expressions to be executed sequentially. For example, an anti-spam
service can use tens of thousands of regular expressions when determining if an electronic
message contains SPAM. Regular expressions within a set of regular expressions can be
run sequentially against each received electronic message. Sequential execution of regular
expressions limits scalability and can consume significant resources as the number of

regular expressions and/or portions of text being checked for matches increases.

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

BRIEF SUMMARY
[0005] The present invention extends to methods, systems, and computer program
products for decomposing and merging regular expressions. One or more keyword graphs
are accessed. The one or more keyword graphs were decomposed from a first regular
expression. Each of the one or more keyword graphs has a root node, one or more
intermediate nodes, and a leaf node. Each of the one or more intermediate nodes and the
leaf node indentify a character pattern that partially matches the first regular expression.
The root node and each of the one or more intermediate nodes have a single child node.
One of the intermediate nodes has the leaf node as a child node. Each leaf node is labeled
as a matching state for the first regular expression.
[0006] A second graph is accessed. The second graph represents a second regular
expression. The second graph has a root node, one or more intermediate nodes, and one or
more leaf nodes. Each of the one or more intermediate nodes and the one or more leaf
nodes indentify a character pattern that partially matches the second regular expression.
The second graph has one or more terminal nodes labeled as a matching state for the
second regular expression.
[0007] The one or more keyword graphs and the second graph are merged into a
directed acyclic graph that collectively represents both the first regular expression and the
second regular expression. Merging includes identifying any similarly positioned
intermediate nodes within the one or more keyword graphs and the second graph that have
at least partially overlapping character patterns. For any identified intermediate nodes that
have partially overlapping character patterns, the character pattern of at least one of the
indentified intermediate nodes is altered to ecliminate the partially overlapping character
pattern. An edge is added between the keyword graph and the second graph to
compensate for altering the character pattern of the at least one of the identified
intermediate nodes. For any identified intermediate nodes that have fully overlapping
character patterns, the intermediate node in the keyword graph and the intermediate node
in the second graph are combined into a single node representing the fully overlapping
character pattern.
[0008] This summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is

it intended to be used as an aid in determining the scope of the claimed subject matter.

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

[0009] Additional features and advantages of the invention will be set forth in the
description which follows, and in part will be obvious from the description, or may be
learned by the practice of the invention. The features and advantages of the invention may
be realized and obtained by means of the instruments and combinations particularly
pointed out in the appended claims. These and other features of the present invention will
become more fully apparent from the following description and appended claims, or may
be learned by the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0010] In order to describe the manner in which the above-recited and other
advantages and features of the invention can be obtained, a more particular description of
the invention briefly described above will be rendered by reference to specific
embodiments thereof which are illustrated in the appended drawings. Understanding that
these drawings depict only typical embodiments of the invention and are not therefore to
be considered to be limiting of its scope, the invention will be described and explained
with additional specificity and detail through the use of the accompanying drawings in
which:
[0011] Figure 1 illustrates an example computer architecture that facilitates
decomposing and merging regular expressions.
[0012] Figure 2 illustrates an example of decomposing a graph that represents a
regular expression.
[0013] Figures 3 illustrate an example of merging graphs that represent different
regular expressions.
[0014] Figure 4 illustrates another example of decomposing a graph that represents a
regular expression.
[0015] Figure 5 illustrates another example of merging graphs that represent different
regular expressions.
[0016] Figure 6 illustrates a flow chart of an example method for decomposing and
merging regular expressions.

DETAILED DESCRIPTION

[0017] The present invention extends to methods, systems, and computer program
products for decomposing and merging regular expressions. One or more keyword graphs
are accessed. The one or more keyword graphs were decomposed from a first regular
expression. Each of the one or more keyword graphs has a root node, one or more

intermediate nodes, and a leaf node. Each of the one or more intermediate nodes and the

3

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

leaf node indentify a character pattern that partially matches the first regular expression.
The root node and each of the one or more intermediate nodes have a single child node.
One of the intermediate nodes has the leaf node as a child node. Each leaf node is labeled
as a matching state for the first regular expression.

[0018] A second graph is accessed. The second graph represents a second regular
expression. The second graph has a root node, one or more intermediate nodes, and one or
more leaf nodes. Each of the one or more intermediate nodes and the one or more leaf
nodes indentify a character pattern that partially matches the second regular expression.
The second graph has one or more terminal nodes labeled as a matching state for the
second regular expression.

[0019] The one or more keyword graphs and the second graph are merged into a
directed acyclic graph that collectively represents both the first regular expression and the
second regular expression. Merging includes identifying any similarly positioned
intermediate nodes within the one or more keyword graphs and the second graph that have
at least partially overlapping character patterns. For any identified intermediate nodes that
have partially overlapping character patterns, the character pattern of at least one of the
indentified intermediate nodes is altered to eliminate the partially overlapping character
pattern. An edge is added between the keyword graph and the second graph to
compensate for altering the character pattern of the at least one of the identified
intermediate nodes. For any identified intermediate nodes that have fully overlapping
character patterns, the intermediate node in the keyword graph and the intermediate node
in the second graph are combined into a single node representing the fully overlapping
character pattern.

[0020] Embodiments of the present invention may comprise or utilize a special
purpose or general-purpose computer including computer hardware, such as, for example,
one or more processors and system memory, as discussed in greater detail below.
Embodiments within the scope of the present invention also include physical and other
computer-readable media for carrying or storing computer-executable instructions and/or
data structures. Such computer-readable media can be any available media that can be
accessed by a gencral purpose or special purpose computer system. Computer-readable
media that store computer-executable instructions are computer storage media (devices).
Computer-readable media that carry computer-executable instructions are transmission

media. Thus, by way of example, and not limitation, embodiments of the invention can

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

comprise at least two distinctly different kinds of computer-readable media: computer
storage media (devices) and transmission media.

[0021] Computer storage media (devices) includes RAM, ROM, EEPROM, CD-ROM
or other optical disk storage, magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store desired program code means in the form of
computer-executable instructions or data structures and which can be accessed by a
general purpose or special purpose computer.

[0022] A “network” is defined as one or more data links that enable the transport of
electronic data between computer systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network or another communications
connection (either hardwired, wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a transmission medium.
Transmissions media can include a network and/or data links which can be used to carry
or desired program code means in the form of computer-executable instructions or data
structures and which can be accessed by a general purpose or special purpose computer.
Combinations of the above should also be included within the scope of computer-readable
media.

[0023] Further, upon reaching various computer system components, program code
means in the form of computer-executable instructions or data structures can be
transferred automatically from transmission media to computer storage media (devices)
(or vice versa). For example, computer-executable instructions or data structures received
over a network or data link can be buffered in RAM within a network interface module
(e.g., a “NIC”), and then eventually transferred to computer system RAM and/or to less
volatile computer storage media (devices) at a computer system. Thus, it should be
understood that computer storage media (devices) can be included in computer system
components that also (or even primarily) utilize transmission media.

[0024] Computer-executable instructions comprise, for example, instructions and data
which, when executed at a processor, cause a general purpose computer, special purpose
computer, or special purpose processing device to perform a certain function or group of
functions. The computer executable instructions may be, for example, binaries,
intermediate format instructions such as assembly language, or even source code.
Although the subject matter has been described in language specific to structural features
and/or methodological acts, it is to be understood that the subject matter defined in the

appended claims is not necessarily limited to the described features or acts described

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

above. Rather, the described features and acts are disclosed as example forms of
implementing the claims.

[0025] Those skilled in the art will appreciate that the invention may be practiced in
network computing environments with many types of computer system configurations,
including, personal computers, desktop computers, laptop computers, message processors,
hand-held devices, multi-processor systems, microprocessor-based or programmable
consumer clectronics, network PCs, minicomputers, mainframe computers, mobile
telephones, PDAs, pagers, routers, switches, and the like. The invention may also be
practiced in distributed system environments where local and remote computer systems,
which are linked (either by hardwired data links, wireless data links, or by a combination
of hardwired and wireless data links) through a network, both perform tasks. In a
distributed system environment, program modules may be located in both local and remote
memory storage devices.

[0026] Within this description and the following claims a “regular expression”, is a
construct used to match strings of text, such as, for example, particular characters, words,
or patterns of characters. In some embodiments, a regular expression has a limited
alphabet. A regular expression can be written in a formal language that can be interpreted
by a regular expression processor. The regular expression processor serves as a parser
generator or examines text and identifies parts of the text that match a provided regular
expression.

[0027] In generally, graphs can be used to represent regular expressions and their
matching states. For example, turning briefly to Figure 2, graph 201 represents the regular
expression “(\d\d)|(a(blc))”. Similarly, turning briefly to Figure 4, graph 401 represents
the regular expression “([a,b,c]x)|(\d(cd|[1,3,5]([a,c,d]|ea)))”. A graph can “run” by
executing a state machine with input text, which allows parallelization of graphs.

[0028] Figure 1 illustrates an example computer architecture 100 that facilitates
decomposing and merging regular expressions. Referring to Figure 1, computer
architecture 100 includes decomposition module 101, labeling module 102, and merge
module 141. Each of the depicted components can be connected to one another over (or is
part of) a network, such as, for example, a Local Area Network ("LAN"), a Wide Area
Network (“WAN”), and even the Internet. Accordingly, each of the depicted comments as
well as any other connected computer systems and their components, can create message
related data and exchange message related data (e.g., Internet Protocol (“IP”) datagrams

and other higher layer protocols that utilize IP datagrams, such as, Transmission Control

6

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

Protocol (“TCP”), Hypertext Transfer Protocol (“HTTP”), Simple Mail Transfer Protocol
(“SMTP”), etc.) over the network.

[0029] In general, decomposition can be used to produce a set of simple graphs that
represent a regular expression from a more complex graph that represents the regular
expression. Accordingly, decomposition module 101 is configured to decompose a graph,
such as, for example, a graph representing a regular expression, into a corresponding
plurality of keyword graphs. Decomposition module 101 can essentially remove
disjunctive portions of a more complex regular expression to break the more complex
regular expression into a plurality of simpler regular expressions. A leaf node of each
keyword graph represents a terminal condition from the more complex graph (which may
be at an intermediate node or leaf node in the more complex graph). Decomposition
module 101 can decompose labeled or unlabeled graphs.

[0030] Labeling module 102 is configured to label nodes of a graph or keyword graph
to indicate matching states for a represented regular expression. Labeling module 102 can
label nodes before or after decomposition.

[0031] Turning again to Figure 2, Figure 2 illustrates an example of decomposing a
graph that represents a regular expression. As depicted, decomposition module 101
receives graph 201 as input. Graph 201 was previously labeled (represented by the
diagonal hatching) to indicate matching states for the regular expression “(\d\d)|(a(bl|c))”.
Decomposition module 101 decomposes graph 201 and outputs keyword graphs 202. The
labels in graph 201 are carried over to keyword graphs 202. Thus, when text is compared
to (run against) graph 201 or any of keyword graphs 202 any match is indicated as a match
to “(\d\d)|(a(blc))”.

[0032] Turning again to Figure 4, Figure 4 illustrates another example of decomposing
a graph that represents a regular expression. As depicted, decomposition module 101
receives graph 401 as input. Graph 401 was previously labeled (represented by the
diagonal hatching) to indicate matching states for the regular expression
“([a,b,c]x)|(\d(cd|[1,3,5]([a,c.d]|ea)))”. Decomposition module 101 decomposes graph 401
and outputs keyword graphs 402. The labels in graph 401 are carried over to keyword
graphs 402. Thus, when text is compared to (run against) graph 401 or any of keyword
graphs 402 any match is indicated as a match to “([a,b,c]x)|(\d(cd|[1,3,5]([a,c,d]|ea)))”.

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

[0033] In some embodiments, a graph is decomposed into keyword graphs in
accordance with the following algorithm:
Start at the root node.
Identify all the children nodes of the root node.
For each of these nodes:
a. Copy the parent nodes above the node (call this “prefix.i”).
b. Add this node and its subtree as a child to “prefix.i”.
c. Start again from (2) except use the current node as the root node.
[0034] The algorithm can produce a collection of keyword graphs (e.g., DAGs)
representing the graph. Each keyword graph has a single terminal node that is a leaf node.
Within each graph, each node has a single child node.
[0035] In general, merging can be used to produce a single Directed Acyclic Graph
(“DAG”) representing a collection of regular expressions. Accordingly, merge module 101
is configured to receive two graphs as input and merge the two graphs into a single DAG
that collectively represents matching states for the two input graphs. To eliminate
processing redundancies, merge module 101 can combine overlapping character patterns
at similarly positioned nodes in the two input graphs into a single node in the single DAG.
When character patterns partially overlap, merge module 101 can alter the character
pattern at a node in one input graph. Merge module 101 can then compensate by adding
an additional edge between the node and a corresponding node in the other input graph.
Adding an additional edge facilitates equivalence in matching states between the two input
graphs and the single DAG.
[0036] In some embodiments, merge module 141 merges two keyword graphs into a
single DAG. In other embodiments, merge module 141 merges a keyword graph and
another graph into a single DAG. The functionality of merge module 141 can be reused as
needed to merge larger sets of graphs together.
[0037] Turning to Figure 3, merge module 141 merges keyword graphs 301 (e.g.,
previously decomposed from another graph) and graph 302 into directed acyclic graph
304. Merge module 141 utilizes graph 302 and keyword graph 301A as input. Merge
module 141 merges graph 302 and keyword graph 301A into intermediate graph 303.
Subsequently, merge module 141 utilizes intermediate graph 330 and keyword graph
301B. Merge module 141 merges intermediate graph 303 and keyword graph 301B into
directed acyclic graph 304. Since the character patterns nodes 312 and 313 overlap, nodes

312 and 313 are merged into a single node 314 in directed acyclic graph 304.

8

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

[0038] Labels (as indicated by different diagonal hatching) are maintained throughout
the merge process. Thus, terminal nodes indicate a regular expression that is matched.
Nodes 316 and 317 indicate a match to the regular expression ‘“‘d\djum” (the regular
expression they were decomposed from) and node 318 indicates a match to the regular
expression “un’.

[0039] As depicted in Figure 3, inputs to merge module 141 are external. In other
embodiments, merge module 141 receives a set of graphs as input and outputs a DAG.
During processing, intermediate graphs are maintained and processed internally within
merge module 141.

[0040] As depicted, merge module 141 includes position detector 142, overlap
detector 143, and overlap compensator 144. During merging position, position detector
142 is configured to identify similarly positioned nodes within different graphs. Similarly
positioned nodes can be identified based on a distance from the root node. For example,
in Figure 3, nodes 312 and 313 are similarly positioned. During merging, overlap detector
143 is configured to detect if character patterns of different nodes at least partially overlap.
For example, the character pattern [1, 3, 5] partially matches the character pattern \d. On
the other hand, the character pattern [a, b, c] and the character pattern [a, b, c] fully
overlap. During merging, overlap compensator 144 is configured to compensate when
nodes with partially overlapping character patterns are merged into a single node.
Compensation can include adding edges between input graphs that are being merged. The
additional edges facilitate equivalence between matching states of the input graphs and
matching states of resulting DAG.

[0041] Figure 5 illustrates another example of merging graphs that represent different
regular expressions. Keyword graph 501 and graph 502 can be received as input (e.g., at
merge module 141). Position detector 142 can detect that node 511 and node 512 are
similarly positioned within keyword graph 501 and graph 502 respectively. Overlap
detector 143 can identify partially overlapping patterns 503 (or common edges). That is,
character pattern \d partially overlaps the character pattern [2, 3]. Overlap compensator
144 can remove the partial overlap (remove common edges) by altering the character
pattern of node 511 to “\d-[2,3]”. Overlap compensator can also add edge 514 from node
512 to node 513. Merge module 114 can then combine root nodes to add (altered)
keyword graph 501 to graph 502. Overlap compensation allows graphs to be merged yet

still represent equivalent matching states. For example, the text string “2cd” still matches

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

keyword graph 501 even though a comparison is made at node 512 (and node 511 is
bypassed).
[0042] As depicted, the different hatching within terminal nodes indicates matching
states for keyword graph 501 and graph 502 respectively.
[0043] In some embodiments, graphs are merge in accordance with the following
algorithm:
Create an empty DAG with just a Root node. Label this as the Final. DAG.
For each DAG (1.DAG) in the collection, do the following:
a. Set i.node as the root node of . DAG.
b. Set final.node as the root node of Final. DAG.
c. Iterate through i.node and final.node as long as final.node has the exact
same edge.
d. Ifthei.node edge is a superset of the final.node edge:
i. Add an edge representing the non-common characters between
i.node and final.node. This edge points to the child of i.node.
ii. For each common (edge, node)
1. Tterate along final.node and i.node as long as they have the
exact same edge.
2. If the terminal node was reached, label it as terminal for
1.DAG.
3. Ifnot, add an edge from the final.node to the i.node’s child.
¢. If the final.node edge is a superset of the i.node edge:
i. Add an edge representing the non-common characters between
i.node and final.node. This edge points to the child of final.node.
ii. For each common (edge, node)
1. Tterate along final.node and i.node as long as they have the
exact same edge.
2. If the terminal node was reached, label it as terminal for
final. DAG.
3. Ifnot, add an edge from the i.node to the final.node’s
children.
[0044] Figure 6 illustrates a flow chart of an example method 600 for decomposing
and merging regular expressions. Method 600 will be described with respect to the

components and data of computer architecture 100 and some reference to Figures 3 and 5.

10

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

[0045] Method 600 includes an act of accessing a graph representing a first regular
expression (act 601). For example, decomposition module 101 can access graph 112,
representing regular expression 111. Method 600 includes an act of decomposing the
graph into one or more keyword graphs, each of one or more keyword graphs having a
root node, one or more intermediate nodes, and a leaf node, each of the one or more
intermediate nodes and the leaf node indentifying a character pattern that partially matches
the first regular expression, the root node and each of the one or more intermediate nodes
having a single child node, one of the intermediate nodes having the leaf node as a child
node (act 602). For example, decomposition module 101 can decompose graph 112 into
keyword graphs 113 (e.g., 113A, 113B, 113C, etc.).

[0046] Method 600 includes an act of labeling the leaf node of each of the one or more
keyword graphs as a matching state for the first regular expression (act 603). For
example, labeling module 102 can label the leaf nodes of keyword graphs 113 to generate
labeled keyword graphs 113AL, 113BL, 113BL, etc.

[0047] Method 600 includes an act of accessing a second graph representing a second
regular expression, the second graph having a root node, one or more intermediate nodes,
and one or more leaf nodes, each of the one or more intermediate nodes and the one or
more leaf nodes indentifying a character pattern that partially matches the second regular
expression (act 604). For example, labeling module 102 can access graph 123,
representing regular expression 121. Method 600 includes an act of labeling one or more
terminal nodes in the second graph as a matching state for the second regular expression
(act 605). For example, labeling module 102 can label the terminal nodes of graph 123 to
generate labeled graph 1231

[0048] Method 600 includes an act of merging the one or more keyword graphs and
the second graph into a directed acyclic graph that collectively represents both the first
regular expression and the second regular expression (act 606). For example, merge
module 141 can mere labeled keyword graphs 113L and labeled graph 123L into directed
acyclic graph 134. Directed acyclic graph 134 collectively represents regular expression
111 and regular expression 121.

[0049] Act 606 includes an act of an act of identifying any similarly positioned
intermediate nodes within the one or more keyword graphs and the second graph that have
at least partially overlapping character patterns (act 607). For example, position detector
142 can identify similarly positioned intermediate nodes in one more labeled keyword

graphs 113L and labeled graph 123L. Similarly positioned nodes can be nodes that are

11

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

equidistance from their root node. For example, referring to Figure 3 nodes 312 and 313
are similarly positioned (both are one edge from their corresponding root node).
Similarly, in Figure 5, nodes 511 and 512 are similarly position. Nodes 513 and 514 are
also similarly positioned in Figure 5.

[0050] Among similarly positioned intermediate nodes, overlap detector 143 can
detect when nodes have at least partially overlapping character patterns. In Figure 3,
nodes 312 and 313 fully overlap. In Figure 5, nodes 511 and 512 partially overlap and
nodes 513 and 514 do not overlap.

[0051] For any identified intermediate nodes in a keyword graph and indentified
intermediate nodes in the second graph that are similarly positioned and have partially
overlapping character patterns, act 606 includes an act of altering the character pattern of
at least one of the indentified intermediate nodes to eliminate the partially overlapping
character pattern (act 608). For example, overlap compensator 144 can alter a character
pattern at an intermediate node to eliminate a partial overlap with another node. Referring
to Figure 5, character pattern ‘“\d” at node 511 can be altered to “\d-[2,3]” (which is
equivalent to [0, 1, 4, 5, 6, 7, 8, 9]) to eliminate the partial overlap with node 512.

[0052] For any identified intermediate nodes in a keyword graph and indentified
intermediate nodes in the second graph that are similarly positioned and have partially
overlapping character patterns, act 606 includes an act of adding an edge between the
keyword graph and the second graph to compensate for altering the character pattern of
the at least one of the identified intermediate nodes (act 609). For example, overlap
compensator 144 can add an edge from a non-altered node to a node below the altered
node to compensate for altering the character pattern of the altered node. Referring to
Figure 5, edge 514 can be added from node 512 to node 513 to compensate for altering the
character pattern of node 511.

[0053] For any identified intermediate nodes in a keyword graph and indentified
intermediate nodes in the second graph that are similarly positioned and have fully
overlapping character patterns, act 606 includes an act of combining together the keyword
graph and the second graph by combining the intermediate node in the keyword graph and
the intermediate node in the second graph into a single node representing the fully
overlapping character pattern (act 610). For example, overlap compensator 144 can
combine an intermediate node of a labeled keyword graph 113L and an intermediate node
of labeled graph 123L. Referring to Figure 3, node 312 and node 313 can be combined
into node 314.

12

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

[0054] Subsequent to creation of a DAG, the DAG can be run on a state machine
against a portion of text to determine if the portion of text matches any regular expressions
represented in the DAG.
[0055] In some embodiments, merging graphs is combined with other passes over
regular expressions to facilitate expanding regular expression syntax (e.g. *, +, or number
sets). For example, when constructing a DAG to represent regular expressions, it is
possible that the entirety of a regular expression cannot be represented by DAG. For
example, a regular expression can be include characters such as, ?: or nested * operators.
[0056] An increasingly complex state machine can be constructed to handle these
types of operators. Another alternative is to create multiple “text processors” that include
actual regular expressions and a monolithic DAG. The following algorithm can then be
used to merge regular expressions:
Decompose regular expressions into its components that can be represented as a
complex DAG and that which cannot.
a. Consider: 123\d\d\d(5.*3)*\d\d\d\d
b. This can produce the following components:
1. DAG: 123\d\d\d | \d\d\d\d
ii. Regular Expression: (5.%3)*
Run all the “text processors” for regular expressions and the single DAG
Collect the locations in the text at which these text processors were found (already
sorted, as guaranteed by the DAG/Regex).
Reassemble the original regular expression based on the results of the DAG and its
regular expressions to determine if it was found.
If the results from step (3) are stored in a collection of heaps (e.g. Fibonacci heap),
this step is bound by O(n).
[0057] As such, a generated DAG can be used with a regular expression engine to
produce results for an entire regular expression alphabet. A multi-pass approach also
allows for the execution of look-ahead or look-behind regular expressions without in place
backtracking or forward tracking, which simplifies the complexity of the system and helps
performance.
[0058] Accordingly, embodiments of the invention decompose a regular expression
into multiple simple keyword graphs, merge those keyword graphs in a compact and
efficient manner, and produce a directed acyclic graph (DAG) that can execute a

simplified regular expression alphabet. Several of these regular expression DAG’s can

13

10

WO 2012/082362 PCT/US2011/062479

then be merged together to produce a single DAG that represents an entire collection of
regular expressions. DAGs along with other text processing algorithms and a heap
collection can be combined in a multi-pass approach to expand the regular expression
alphabet.

[0059] The present invention may be embodied in other specific forms without
departing from its spirit or essential characteristics. The described embodiments are to be
considered in all respects only as illustrative and not restrictive. The scope of the
invention 1is, therefore, indicated by the appended claims rather than by the foregoing
description. All changes which come within the meaning and range of equivalency of the

claims are to be embraced within their scope.

14

5

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

CLAIMS
What is claimed:

1. At a computer system including one or more processors and system

memory, a method for representing one or more regular expressions in a directed acyclic

graph, the method comprising:

an act of accessing one or more keyword graphs decomposed from a first
regular expression, each of one or more keyword graphs having a root node, one or
more intermediate nodes, and a leaf node, each of the one or more intermediate
nodes and the leaf node indentifying a character pattern that partially matches the
first regular expression, the root node and each of the one or more intermediate
nodes having a single child node, one of the intermediate nodes having the leaf
node as a child node, each leaf node labeled as a matching state for the first regular
expression;
an act of accessing a second graph representing at least a part of a second
regular expression, the second graph having a root node, one or more intermediate
nodes, and one or more leaf nodes, each of the one or more intermediate nodes and
the one or more leaf nodes indentifying a character pattern that partially matches
the second regular expression;
an act of merging the one or more keyword graphs and the second graph
into a directed acyclic graph that collectively represents both the first regular
expression and the second regular expression, including for each of the one or
more keyword graphs:
an act of selecting the keyword graph individually;
an act of identifying any similarly positioned intermediate nodes
within the selected keyword graph and the second graph that have at least
partially overlapping character patterns; and
for any identified intermediate nodes in the selected keyword graph
and indentified intermediate nodes in the second graph that are similarly
positioned and have partially overlapping character patterns, an act of
merging the selected keyword graph and the second graph at the indentified
intermediate nodes to represent equivalent matching states from the
selected keyword graph and the second graph in the directed acyclic graph,
the merging causing the keyword graph to become part of the second graph.

15

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

2. The method as recited in claim 1, wherein the act of identifying any
similarly positioned intermediate nodes within the selected keyword graph and the second
graph that have at least partially overlapping character patterns comprises an act of
identifying an intermediate node in the selected keyword graph and an intermediate node
in the second graph that fully overlap.

3. The method as recited in claim 2, wherein the act of merging the selected
keyword graph and the second graph at the indentified intermediate nodes comprises an
act of combining the intermediate node in the selected keyword graph and the intermediate
node in the second graph into a single node representing the fully overlapping character
pattern.

4. The method as recited in claim 1, wherein the act of identifying any
similarly positioned intermediate nodes within the selected keyword graph and the second
graph that have at least partially overlapping character patterns comprises an act of
identifying an intermediate node in the selected keyword graph and an intermediate node
in the second graph that partially overlap.

5. The method as recited in claim 4, wherein the act of merging the selected
keyword graph and the second graph at the indentified intermediate nodes comprises an
act of altering the character pattern of at least one of the indentified intermediate nodes to
eliminate the partially overlapping character pattern

6. The method as recited in claim 4, wherein the act of merging the selected
keyword graph and the second graph at the indentified intermediate nodes comprises an
act of adding an edge between the sclected keyword graph and the second graph to
compensate for altering the character pattern of the at least one of the identified
intermediate nodes.

7. A computer program product for use at computer system, the computer
program product for implementing a method for representing one or more regular
expressions in a directed acyclic graph, the computer program product comprising one or
more computer storage devices, having stored thercon computer-executable instructions
that, when executed at a processor, cause the computer system to perform the method,
including the following:

access one or more keyword graphs decomposed from a first regular
expression, each of one or more keyword graphs having a root node, one or more
intermediate nodes, and a leaf node, each of the one or more intermediate nodes

and the leaf node indentifying a character pattern that partially matches the first

16

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

regular expression, the root node and each of the one or more intermediate nodes

having a single child node, one of the intermediate nodes having the leaf node as a

child node, each leaf node labeled as a matching state for the first regular

expression;
access a second graph representing a second regular expression, the second
graph having a root node, one or more intermediate nodes, and one or more leaf
nodes, each of the one or more intermediate nodes and the one or more leaf nodes
indentifying a character pattern that partially matches the second regular
expression;
merge the one or more keyword graphs and the second graph into a directed
acyclic graph that collectively represents both the first regular expression and the
second regular expression, including;:
identify any similarly positioned intermediate nodes within the one
or more keyword graphs and the second graph that have at least partially
overlapping character patterns; and
for any identified intermediate nodes in a keyword graph and
indentified intermediate nodes in the second graph that are similarly
positioned and have partially overlapping character patterns, merge the
keyword graph and the second graph at the indentified intermediate nodes
to represent equivalent matching states represented in the keyword graph
and in the second graph in the directed acyclic graph.

3. The computer program product as recited in claim 7, further comprising
computer-executable instructions that, when executed, cause the computer system to label
the leaf node of each of the one or more keyword graphs as a matching state for the first
regular expression.

9. The computer program product as recited in claim 7, further comprising
computer-executable instructions that, when executed, cause the computer system to label
each terminal node in the second graph as a matching state for the second regular
expression.

10. At a computer system including one or more processors and system
memory, a method for representing one or more regular expressions in a directed acyclic
graph, the method comprising:

an act of accessing one or more keyword graphs decomposed from a first

regular expression, each of one or more keyword graphs having a root node, one or

17

10

15

20

25

30

WO 2012/082362 PCT/US2011/062479

more intermediate nodes, and a leaf node, each of the one or more intermediate
nodes and the leaf node indentifying a character pattern that partially matches the
first regular expression, the root node and each of the one or more intermediate
nodes having a single child node, one of the intermediate nodes having the leaf
node as a child node, each leaf node labeled as a matching state for the first regular
expression;
an act of accessing a second graph representing a second regular
expression, the second graph having a root node, one or more intermediate nodes,
and one or more leaf nodes, each of the one or more intermediate nodes and the
one or more leaf nodes indentifying a character pattern that partially matches the
second regular expression, the second graph having one or more terminal nodes
labeled as a matching state for the second regular expression; and
an act of merging the one or more keyword graphs and the second graph
into a directed acyclic graph that collectively represents both the first regular
expression and the second regular expression, including:
an act of identifying any similarly positioned intermediate nodes
within the one or more keyword graphs and the second graph that have at
least partially overlapping character patterns;
for any identified intermediate nodes in a keyword graph and
indentified intermediate nodes in the second graph that are similarly
positioned and have partially overlapping character patterns:
an act of altering the character pattern of at least one of the
indentified intermediate nodes to eliminate the partially overlapping
character pattern; and
an act of adding an edge between the keyword graph and the
second graph to compensate for altering the character pattern of the
at least one of the identified intermediate nodes;
for any identified intermediate nodes in a keyword graph and
indentified intermediate nodes in the second graph that are similarly
positioned and have fully overlapping character patterns:
an act of combining together the keyword graph and the
second graph by combining the intermediate node in the keyword
graph and the intermediate node in the second graph into a single

node representing the fully overlapping character pattern.

18

PCT/US2011/062479

WO 2012/082362

117

(121 3d puy
L1l 3Y Punussaiday

AloAio8e)|00)
vEl
ydeio o100y
pajoallg

| ainbi4

7

Jojesuadwo)
depsnQ

(54"
ilebEI gl
depsnQ

42"
Jojslag
uoljisod

52
a|npo obiay

7€2) ydeso
pajaqeT

¢

00l

J

12t
AH_ uolssaldxg
Jejnbay

(lel 34
punuasaiday)

€2l ydeis

J. ~ o1 |«
SINPON
** °* " bujegen [
- 5 S S
M_Om: 1actl ._<m:;
€11 sydeio piomkey| pajeqe y
101 1
oo oo -— 9|NPo AH_ uoissaldx3
uonisodwoosa Jeinboy
(b1 3y
punuasaiday)
T Aol 5 5~ 2L ydeso
~Om: dcll veELL)

eLl mcqmcmu plomAay

217

20z syde.s piomAay
A

Z aInbi4

PCT/US2011/062479

WO 2012/082362

(un 3y pue wn |p\p\ 3
Bunuasaiday Aj@Anoe|09)

0¢ ydeto o1jphoy pejoaulq
A

¢ aInbi4

£0¢ ydeln Jﬁm_vmctﬁc_

(
81 S e ,. 5T £0%
SPON <& | ainpon
abiop
145

(un co_wﬁmmaxm_

Jejnbay J04)

Z0¢ ydei

(wn|p\p\ co_mmmaxm_/
Jejnbay J04)

Lyl
S|NPON
abuap

LOE sydels) pJomAsay

22222222222222222222222222222

417

WO 2012/082362 PCT/US2011/062479

517
500
Keyword Keyword [f‘ ‘z
Graph 501 Graplh 502 Partially Overlapping
s \ Patterns 503

Root
(Final)

Begin From Identify Remove
Root Node Common Edges Common Edges
—_ _— ———

Add Keyword

Graph To DAG
—_— e

Add Edge

Figure 5

PCT/US2011/062479

WO 2012/082362

6/7

g9 ainbi4

(909# 01)

*

uoissaldx3 Jeinbay puooag
3y Jo4 sye)s Buiyorey
V sy ydeio puooeg
8y U| S9pON [eulwia]
8Jo|\ 4O 8uQ Buljege

509

uolssaidxg
Jejnbay puoosg
a1 sayore| Ajjenied
Jey] ulened Jsyoeleyn
v Buihyiuspu| sspoN
1eaT aloj\ JO dUQ 9yl
puUy SSPON 8jelpawisiu|
8ION 1O 8UQ 8yl JO Yoed
‘SSpON JesT IOy JO SUOD
puy ‘SSpopN slelpswIsiu|
BI0|N 1O BUQ ‘OpON 100y
v BuineH ydeis) puoosg
8] ‘uolssaidx3 Jeinbay
puoossg v Bunussaidsy
ydeis) puoossg y Buisssooy

109

uolssaidxg Jeinbey

1sl14 8y Jod 9)eIs
Buiyoley v sy sydeio
plomAay| aIo|\ JO suQO
8yl JO yoe3 JO spoN

Jes syl Buijsge

SPON PIYD
V SV 9poN Jjea ayl BuineH
S9PON 8jelpswsiu] syl JO
BUQ ‘SPON PIIYD 8|buIS V¥
BuineH sapopN ajelpawla)u|
8JOJ\ JO BUQ By L
JO Yoe3 puy SpoN Jooy
ay] ‘uoissaidx3 Jeinbay
}siid 8yl seyoye Ajlenied
Jeyl uiaped Jajoeleyd
v BuiAyuspu) apoN jes
8Y] puy S9PON 9djelpawlalu|
3ION JO 3UQ 3yl JO yoe3q
‘9pPON Jes v puy ‘s9poN
ajelpawaju] a1op 1O
auQ ‘@poN 100y vy BuineH
sydeio piomAay] alop
JO 8uQ 1O yoeg ‘sydels
piomAay| alop JO auQ o]
ydeis) sy] Buisodwoosg

A 009

A \—209

uoissaidx3 Jejnbay 18114 v Bunussaiday ydeio y Buissaooy

\—109

PCT/US2011/062479

117

(Panupuo)) g ainbi

uiened Jeyeleyn BuiddeisnQ AjIn4 syl
Buinuesaiday spoN 9|buls v oju| ydels puosesg ayl
U] @pON ajelpawllalul ay] puy ydels piomAay ayl uj
SPON ajelpawliaiul ay] Buiuiguod Ag ydelo puoseg
ayl puy ydelo piomAay ay] Jeyiebo] Buuiquion

‘sulened Jeypeleyn buiddepsao Ajjng — 049
SABH puy pauoilisod Ale|iwIg aJy jey] ydels puodsg
8L U] SSPON Sjelpauiiaiul palyjuspul puy ydelo
plomAsy] V¥ U] SBpoN ejelpauieiu] paiyuep| Auy Jo4

SOPON SJelpswIalu| palnuap)

UL JO 2UQ 1sea7 1V BYL JO Uisled Jajoereyd ayL
Bulie)y Jo4 sjesusdwon o] ydels) puoosg sy

puy ydelo) plomAsy| syl ussmiag abp3 uy Buippy
—609

uiened Jeeieyn buiddepsaQ Ajlenied syl
ajeulw3 01 SSPON Sjelpswislu| payuspul YL
JO 3UQ 15897 IV JO UIaNed JajoeleyD syl Buua)y

:sulsned Jeyoeleyn bBuiddepsnO — 809
Allenyed eneH puy pauolisod Aleiwis aiy yey | ydeio
puO2ag 8y U] SBPON dleIpawaju] paiijuapu| puy ydelo
plomAay] y U] SBPON ajelpawaju| paiiuap| Auy Jo4

!

!

WO 2012/082362

sulened Jepeleys BuiddelsnQ Ajlened 1ses 1y aAeH Jey] ydels) puooss syl puy
sydelo) plomAsy| aloj JO UQ YL UIYIAA SSPON Slelpauliau] pauoiisod Apewig Auy BulAmusp)

—/09

:Buipnjou] ‘uoissaidx3 Jejnbsy puooag sy puy uoissaidx3 Jenbay 1si4 8y yjog sjussaiday AjoAos|joD
eyl ydeio oljohoy pejoalig v oju] ydels puoosg sy puy sydels piomAsy alop JO suQ ayL Buibis|y

+ \—909
(G09# pue £9# Woid)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2011/062479

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 17/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 17/30; GO6F 15/00; GOGF 17/00; HO4L 9/00; GO6N 5/00; GO6F 15/177; GO6F 15/18

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: regular, expression, combine, tree

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 20100114811 A1l (BRANIMIR LAMBOV) 06 May 2010 1-10
See abstract; paragraphs[0036-0042,0081-0084] and figures 1,7B.

A US 2005-0278781 Al (SHI-MING ZHAO et al.) 15 December 2005 1-10
See abstract; paragraphs[0030-0043,0052-0060] and figures 1,2A,7.

A US 7689530 B1 (JOHN J. WILLIAMS, JR. et al.) 30 March 2010 1-10
See abstract; column 6,line 42 — column 19,line 39; figures 6A-6C.

A US 2009-0276506 A1l (CHARU TIWARI et al.) 05 November 2009 1-10
See abstract; paragraphs[0021-0024,0063-0075] and figures 4A,4B.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
26 APRIL 2012 (26.04.2012) 04 MAY 2012 (04.05.2012)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
Government Complex-Daejeon, 189 Cheongsa-ro, LEE, Myung Jin
. Seo-gu, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8474

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2011/062479

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2010-0114811 A1 06.05.2010 None

US 2005-0278781 A1 15.12.2005 CN 100574321 C 23.12.2009
CN 101098331 A 02.01.2008
CN 101098331 B 09.06.2010
CN 101098331 GO 02.01.2008
CN 1716958 A 04.01.2006
CN 1716958 CO 04.01.2006
CN 1716959 A 04.01.2006
CN 1716959 CO 04.01.2006
CN 1838670 AO 27.09.2006
EP 1607823 A2 21.12.2005
EP 1607823 A3 25.01.2006
EP 1701285 A1 13.09. 2006
EP 1744235 A1 17.01.2007
EP 1865434 A1 12.12.2007
TW 1268057 B 01.12.2006
TW 1271056 B 11.01.2007
TW 1314705 A 11.09.2009
TW 268057 A 01.12.2006
TW 268057 B 01.12.2006
TW 271056 A 11.01.2007
TW 271056 B 11.01.2007
US 2005-0278783 A1 15.12.2005
US 2006-0005241 A1 05.01.2006
US 2006-0206939 A1 14.09. 2006
US 2006-0224828 A1 05.10.2006
US 7216364 B2 08.05.2007
US 7596800 B2 29.09.2009
US 7685637 B2 23.03.2010
US 7779464 B2 17.08.2010
US 7930742 B2 19.04.2011

US 7689530 B1 30.03.2010 US 7308446 B1 11.12.2007

US 2009-0276506 A1 05.11.2009 US 2010-0174715 A1 08.07.2010
US 7668942 B2 23.02.2010

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report
	Page 28 - wo-search-report

