

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2014/130445 A1

(43) International Publication Date
28 August 2014 (28.08.2014)

(51) International Patent Classification:
C07C 17/25 (2006.01) *C07C 21/04* (2006.01)
C07C 17/383 (2006.01)

(74) Agent: BEATUS, Carrie; Honeywell International Inc., Patent Services M/S AB/2B, 101 Columbia Road, P.O. Box 2245, Morristown, NJ 07962-2245 (US).

(21) International Application Number:
PCT/US2014/016873

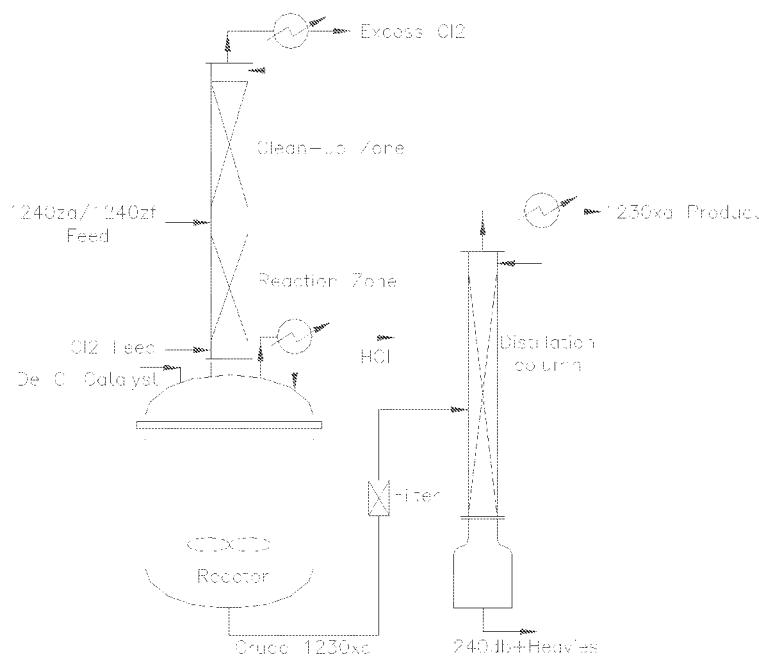
(22) International Filing Date:
18 February 2014 (18.02.2014)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/766,405 19 February 2013 (19.02.2013) US
14/181,769 17 February 2014 (17.02.2014) US

(71) Applicant: HONEYWELL INTERNATIONAL INC. [US/US]; Patent Services M/S AB/2B, 101 Columbia Road, P.O. Box 2245, Morristown, New Jersey 07962-2245 (US).


(72) Inventors: YANG, Terris; 193 Meadow Spring Lane, East Amherst, New York 14051 (US). TUNG, Hsueh Sung; 16 Vassar Drive, Getzville, New York 14068 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

[Continued on next page]

(54) Title: PROCESS TO MAKE 1,1,2,3-TETRACHLOROPROPENE FROM 1,1,3-TRICHLOROPROPENE AND/OR 3,3,3-TRICHLOROPROPENE

(57) Abstract: Disclosed is a process for the synthesis of 1,1,2,3-tetrachloropropene (HCC-1230xa) using 1,1,3-trichloropropene (HCC-1240za) and/or 3,3,3-trichloropropene (HCC-1240zf) and Cl₂ gas as the reactants, wherein the process takes place in a single reactor system. Before this invention, HCC-1230xa was made in a two-step process using HCC-1240za/HCC-1240zf and Cl₂ gas, and the processing was conducted using two separate reactors.

FIGURE 1.

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Published:
KM, ML, MR, NE, SN, TD, TG).

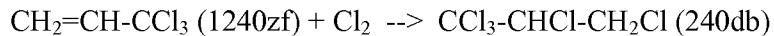
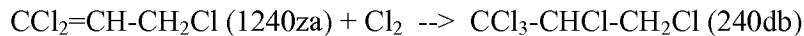
— *with international search report (Art. 21(3))*

PROCESS TO MAKE 1,1,2,3-TETRACHLOROPROPENE

FROM 1,1,3-TRICHLOROPROPENE AND/OR 3,3,3- TRICHLOROPROPENE

PRIORITY CLAIMS

This application claims benefit of U.S. Patent Application Serial No. 14/181,769 filed February 17, 2014, the disclosure of which is hereby incorporated herein by reference.



This application also claims benefit of U.S. Provisional Patent Application Serial No. 61/766,405 filed February 19, 2013, the disclosure of which is hereby incorporated herein by reference.

BACKGROUND OF THE INVENTION

As disclosed in U.S. Patent No. 8,058,486, the compound 1,1,2,3-tetrachloropropene (HCC-1230xa) is an important precursor that can be used for the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf), which is a low GWP molecule that can be used as an effective refrigerant, fire extinguishing agent, heat transfer medium, propellant, foaming agent, blowing agent, gaseous dielectric agent, sterilant carrier, polymerization medium, particulate removal fluid, carrier fluid, buffing abrasive agent, displacement drying agent and power cycle working fluid, to name but a few.

- 2 -

In normal practice, HCC-1230xa can be made in a two-step process using 1,1,3-trichloropropene (HCC-1240za or 1240za) and/or 3,3,3-trichloropropene (HCC-1240zf or 1240zf) as the starting material. In the first step, 1240za and/or 1240zf are chlorinated by Cl₂ in one reactor to form the intermediate product 1,1,1,2,3-penta-chloropropane (HCC-240db or 240db) under certain reaction conditions:

Next, the 240db is fed into another reactor and dehydrochlorinated by a catalyst (such as FeCl₃) to form HCC-1230xa and HCl:

The present invention improves this two-reactor process by consolidating these two reactions into a single reactor, thus saving capital costs, simplifying the operation and improving both reaction times and product yield.

SUMMARY OF THE INVENTION

The process described herein combines two reactions for the formation of HCC-1230xa into one reactor, which will reduce the operational steps from two to one. The present invention consolidates the two-step process into one reactor which can significantly simplify the operation, and reduce both the operation and maintenance costs.

Thus, one embodiment of the invention is directed to a process for the synthesis of HCC-1230xa using HCC-1240za and/or HCC-1240zf and Cl₂ gas as the reactants with a dehydrochlorination catalyst, such as an iron halide catalyst or an equivalent, wherein the process takes place in a single reactor system.

In certain embodiments, the process is conducted in a single reactor system which comprises a continuous stirred-tank reactor (CSTR) equipped with a total condenser, combined with a reaction column and a total condenser.

In certain embodiments, the reaction column can be separated into four zones

- 3 -

comprising (a) a Cl₂ feed zone, (b) a reaction zone, (c) an organic feed zone and (d) a clean-up zone. In certain embodiments, the starting material containing 1240za and/or 1240zf is fed into the reaction column via the organic feed zone. In certain embodiments, the Cl₂ gas is fed into the reaction column via the Cl₂ feed zone. In certain embodiments, the material used to build the reaction column comprises a chlorine-resistant material. In certain embodiments, the reaction column can be empty. In certain embodiments, the reaction column can be packed with chlorine-resistant material or equipped with trays/plates or a stirring device to enhance gas/liquid contact.

It should be appreciated by those persons having ordinary skill in the art to which the present invention relates that any of the features described herein in respect of any particular aspect and/or embodiment of the present invention can be combined with one or more of any of the other features of any other aspects and/or embodiments of the present invention described herein, with modifications as appropriate to ensure compatibility of the combinations. Such combinations are considered to be part of the present invention contemplated by this disclosure.

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a schematic of one embodiment of a single reactor design, useful in this invention for the production of HCC-1230xa.

DETAILED DESCRIPTION OF THE INVENTION

As shown in Figure 1, the process of this invention is carried out in an apparatus including a CSTR (equipped with a total condenser) which connects to a reaction column equipped with a total condenser, and a distillation column. The reaction column can be separated into four zones, i.e., from the bottom to top, (1) a

- 4 -

Cl₂ feed zone, (2) a reaction zone, (3) an organic feed zone and (4) a clean-up zone, as shown in Fig.1.

During the operation, the starting material (1240za and/or 1240zf) is fed into the organic feed zone of the reaction column and flow downward via a liquid distributor, while an excess amount of Cl₂ gas is fed into the Cl₂ feed zone of the reaction column and flow upward via a gas distributor. Downward flowing 1240za/1240zf reacts with reversed flow of Cl₂ gas in the reaction zone to produce 1,1,1,2,3-pentachloropropane (HCC-240db). Un-reacted Cl₂ moves further up and continues to react with 1240za/1240zf in the vapor phase and/or in the liquid phase in the clean-up zone. Excess Cl₂ gas with organic vapor containing 1240za/1240zf and 240db passes through the total condenser, where 1240za/1240zf and 240db are condensed and returned back into the top of the reaction column as reflux. Excess Cl₂ is captured by a downstream scrubber.

HCC-240db produced in the reaction column moves downwards into the CSTR and is dehydrochlorinated to HCC-1230xa there by a dehydrochlorination catalyst (such as FeCl₃) at a controlled reaction temperature, residence time and FeCl₃/240db ratio. HCl and the organic vapor containing mainly HCC-240db and HCC-1230xa produced in the CSTR pass through the total condenser, where the organic vapor is condensed and returned back into the reactor and HCl is either captured as a byproduct or neutralized by a downstream scrubber.

The crude HCC-1230xa product is continuously discharged from the bottom of the CSTR, with the FeCl₃ catalyst removed by filtration, and fed into the distillation column, where the un-reacted intermediate HCC-240db and other high boiling compounds are separated as heavies and HCC-1230xa collected from the top of the column as the final product.

EXAMPLE 1

A jacketed Monel pipe (namely, Reaction Column or Pipe Reactor) with 1-inch ID and 28-inch long is connected to a 1000 ml round-bottom glass flask via a RCV valve. The pipe reactor can be either heated by steam or cooled by cooling water via the jacket side to control the reaction temperature. The pipe reactor is packed with

- 5 -

structured PFA packing (20 inches in length), and equipped with a water-cooled total condenser. An organic feed line (located at 16 inches above the bottom of the pipe reactor) is connected to the 1240za supply container to feed the organic into the pipe reactor. Two inches above the organic feed port, an organic recycle line with a liquid seal loop is connected to a 2000 ml glass receiver to maintain a maximum liquid level of 18 inches inside the pipe reactor. The 1000 ml round-bottom glass flask is equipped with an agitator (namely, CSTR) and a water-cooled total condenser, and heated by an oil bath.

At the start-up, after the pipe reactor is filled with about 240g of 1240za (>99.5 wt%), the pipe reactor is heated up to 80°C by 30# steam. Cl₂ is fed into the pipe reactor via the Cl₂ dispenser located at the bottom of the pipe reactor. When the pipe reactor temperature starts to rise, the steam supply to the pipe reactor jacket is switched to cooling water to control the pipe reactor temperature at 80 ± 5°C. The Cl₂ feed rate is controlled via a mass flow meter so that a total of 139 g of Cl₂ (about 120 mol% of 1240za) is fed into the pipe reactor in about 4 hours. Thereafter, continuous 1240za and Cl₂ feeds are started at flow rates of about 60 g/hr and about 12 std. L/hr for 1240za and Cl₂, respectively. At the same time, the generated 240db in the pipe reactor is transferred into the CSTR via RCV valve, with the transfer rate being controlled in such a way that the liquid level in the pipe reactor is stable (indicated by a side tube installed between organic feed and recycle ports).

After 4 hours, the feeds to the pipe reactor and the transfer of 240db from the pipe reactor to CSTR are stopped, and the CSTR is agitated and heated to 120°C. After the CSTR temperature reaches 120°C, 3.5 g of anhydrous FeCl₃ is added into the CSTR via the FeCl₃ loading port, which initiates the 4 hours of batching of the material in the CSTR. After 4 hours, the CSTR is well batched, and a continuous operation is resumed by restarting 1240za and Cl₂ feeds into the pipe reactor, and 240db transfer from the pipe reactor to the CSTR at previous rates. The crude product of 1230xa is continuously pumped off the CSTR at a rate of about 74 g/hr and filtered for further purification. 1.7-2.2 g of anhydrous FeCl₃ is added into the CSTR every two hours to maintain the concentration of FeCl₃ in the range of 1.0-1.2 wt% in the CSTR.

- 6 -

EXAMPLE 2

This example uses the same apparatus as described in Example 1. At the start-up, the pipe reactor is filled with about 280 g of 240db (>99 wt%) and the CSTR is filled with 350 g of 240db (>99 wt%). The CSTR is agitated and heated to 120°C. After the CSTR temperature reaches 120°C, 3.5 g of anhydrous FeCl₃ is added into the CSTR via the FeCl₃ loading port, which initiates the 4 hours of batching of the material in the CSTR. Twenty minutes before the end of 4 hour batching, the pipe reactor is heated up to 80°C by 30# steam and ready for continuous operation. After 4 hours, the material in the CSTR is well batched, the continuous operation begins by: Initiating feeds to the pipe reactor at flow rates of about 60 g/hr and about 12 std. L/hr for 1240za and Cl₂, starting 240db transfer from the pipe reactor to the CSTR at a rate that maintains the liquid level in the pipe reactor stable, and pumping off the crude 1230xa from the CSTR at a rate of about 74 g/hr.

During the operation, the temperature in the pipe reactor is maintained at 80 ± 5°C, and the temperature in the CSTR is maintained at 120 ± 2°C. The crude 1230xa product off the CSTR is filtered for future purification. 1.7-2.2 g of anhydrous FeCl₃ is added into the CSTR every two hours to maintain the concentration of FeCl₃ in the range of 1.0-1.2 wt% in the CSTR.

For the examples described herein, the liquid transferred from the pipe reactor into the CSTR usually contains the following components: 1240za: 0-0.5 wt%, 1230xa: 1.0-2.0 wt%, 240db: 96.5-98.5 wt%, 230da/230ab: 0.2-0.5 wt%, balanced with other impurities. The crude 1230xa product flow from the CSTR contains the following components: 1230xa: 97.5-98.5 wt%, 240db: 0.5-1.0 wt%; 230da/230ab: 0.2-0.5 wt%, 1230xa dimers: 0.1-0.5 wt%, balanced with other impurities.

As used herein, the singular forms "a", "an" and "the" include plural unless the context clearly dictates otherwise. Moreover, when an amount, concentration, or other value or parameter is given as either a range, preferred range, or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are

- 7 -

separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the invention be limited to the specific values recited when defining a range.

It should be understood that the foregoing description is only illustrative of the present invention. Various alternatives and modifications can be devised by those skilled in the art without departing from the invention. Accordingly, the present invention is intended to embrace all such alternatives, modifications and variances that fall within the scope of the appended claims.

REMAINDER OF PAGE INTENTIONALLY BLANK

CLAIMS

1. A process for the synthesis of 1,1,2,3-tetrachloropropene (HCC-1230xa) using 1,1,3-trichloropropene, and/or 3,3,3-trichloropropene and Cl₂ gas as the reactants, with a dehydrochlorination catalyst, wherein the process takes place in a single reactor system.
2. The process of Claim 1, wherein the dehydrochlorination catalyst comprises one or more iron halide compounds.
3. The process of Claim 2, wherein the iron halide compounds comprise one or more chloride compounds.
4. The process of Claim 3, wherein the catalyst comprises FeCl₃.
5. The process of Claim 1, wherein the single reactor system comprises a CSTR, a reaction column and a total condenser.
6. The process of Claim 5, wherein the reaction column can be separated into four zones comprising (a) a Cl₂ feed zone, (b) a reaction zone, (c) an organic feed zone and (d) a clean-up zone.
7. The process of Claim 6, wherein the 1,1,3-trichloropropene is fed into the reaction column via the organic feed zone.
8. The process of Claim 6, wherein the Cl₂ gas is fed into the reaction column via the Cl₂ feed zone.
9. The process of Claim 6, wherein the reaction column can be empty.
10. The process of Claim 6, wherein the reaction column can be packed with chlorine-resistant material or equipped with trays/plates or stirring device to enhance gas/liquid contact.

1/1

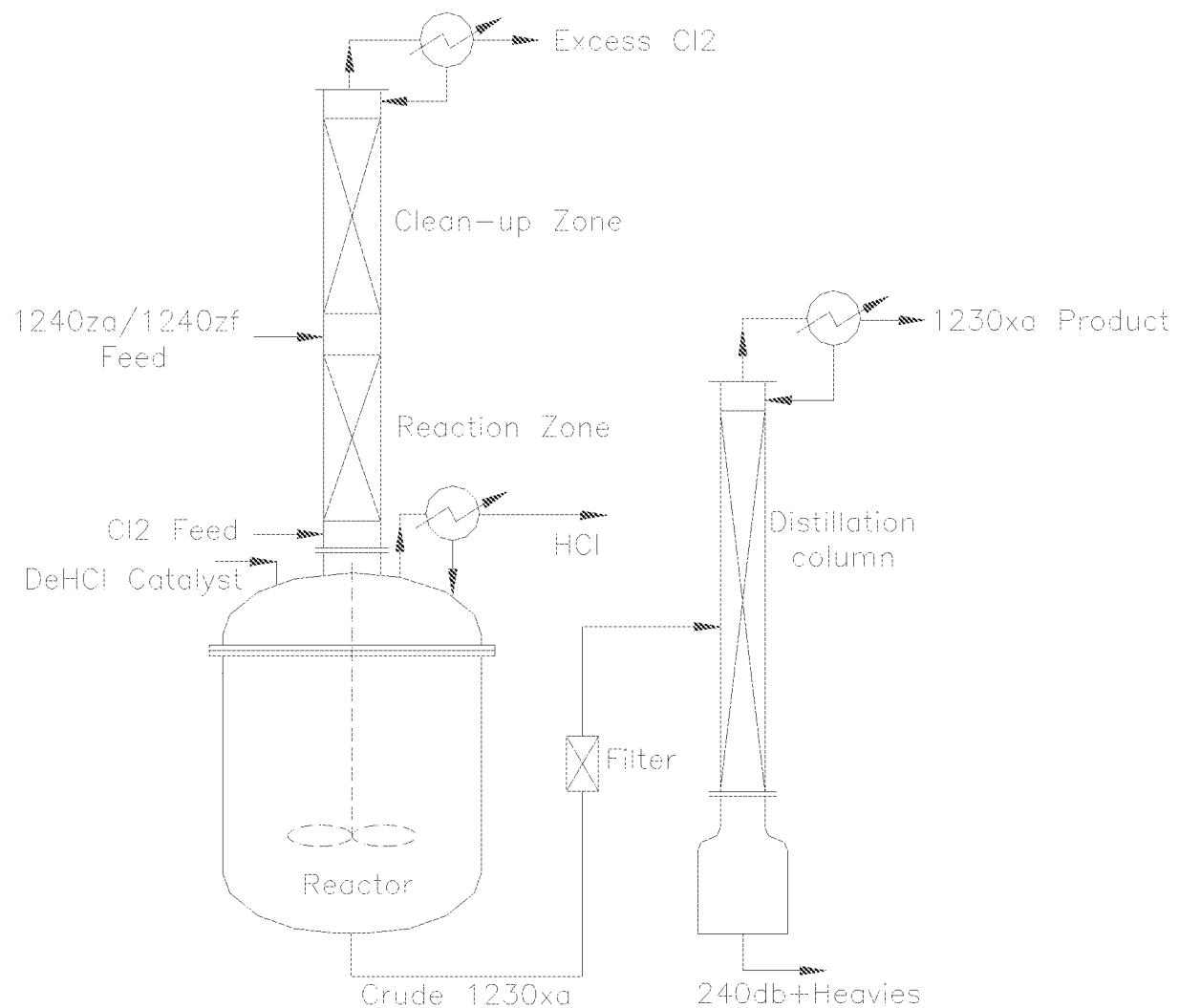


FIGURE 1

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2014/016873

A. CLASSIFICATION OF SUBJECT MATTER

C07C 17/25(2006.01)i, C07C 17/383(2006.01)i, C07C 21/04(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07C 17/25; C07C 17/24; E01J 1/10; C07C 21/04; C07C 17/26; C07C 17/23; C07C 17/383Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: 1,1,2,3-tetrachloropropene, 1,1,3-trichloropropene, 3,3,3-trichloropropene, catalyst, preparation, reaction column

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2012-0035402 A1 (RICHARD L. WILSON et al.) 09 February 2012 See the whole document .	1-10
A	US 04650914 A (SCOTT S. WOODARD) 17 March 1987 See the whole document .	1-10
A	US 03926758 A (LOWELL R. SMITH) 16 December 1975 See the whole document .	1-10
A	US 2009-0216055 A1 (RICHARD L. WILSON et al.) 27 August 2009 See the whole document .	1-10
A	US 2012-0289751 A1 (MASATOSHI NOSE et al.) 15 November 2012 See the whole document .	1-10
A	US 8258355 B2 (DANIEL C. MERKEL et al.) 04 September 2012 See the whole document .	1-10

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
05 June 2014 (05.06.2014)Date of mailing of the international search report
08 June 2014 (08.06.2014)Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701,
Republic of Korea
Facsimile No. +82-42-472-7140Authorized officer
LEE, Sun Hwa
Telephone No. +82-42-481-5603

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2014/016873

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2012-0035402 A1	09/02/2012	CA 2708643 A1 CN 101903312 A EP 2231565 A1 EP 2231565 B1 EP 2687504 A2 EP 2687504 A3 JP 2011-507877 A TW 200936538 A US 2009-216055 A1 US 2013-012743 A1 US 8115038 B2 US 8487146 B2 US 8614363 B2 WO 2009-085862 A1	09/07/2009 01/12/2010 29/09/2010 05/03/2014 22/01/2014 05/03/2014 10/03/2011 01/09/2009 27/08/2009 10/01/2013 14/02/2012 16/07/2013 24/12/2013 09/07/2009
US 04650914 A	17/03/1987	EP 0131560 A1 EP 0131560 B1 JP 02-047969 B JP 1627737 C JP 60-036429 A KR 10-1985-0001144 A US 04535194 A	16/01/1985 12/08/1987 23/10/1990 28/11/1991 25/02/1985 16/03/1985 13/08/1985
US 03926758 A	16/12/1975	None	
US 2009-0216055 A1	27/08/2009	CA 2708643 A1 CN 101903312 A EP 2231565 A1 EP 2231565 B1 EP 2687504 A2 EP 2687504 A3 JP 2011-507877 A TW 200936538 A US 2012-035402 A1 US 2013-012743 A1 US 8115038 B2 US 8487146 B2 US 8614363 B2 WO 2009-085862 A1	09/07/2009 01/12/2010 29/09/2010 05/03/2014 22/01/2014 05/03/2014 10/03/2011 01/09/2009 09/02/2012 10/01/2013 14/02/2012 16/07/2013 24/12/2013 09/07/2009
US 2012-0289751 A1	15/11/2012	CN 102630221 A EP 2504299 A1 JP 2013-511470 A WO 2011-065574 A1	08/08/2012 03/10/2012 04/04/2013 03/06/2011
US 8258355 B2	04/09/2012	CN 101754941 A EP 2167449 A1 EP 2167449 A4 JP 2010-534679 A	23/06/2010 31/03/2010 13/03/2013 11/11/2010

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2014/016873Patent document
cited in search reportPublication
datePatent family
member(s)Publication
date

KR 10-2010-0063022 A 10/06/2010
US 2009-0030249 A1 29/01/2009
WO 2009-015304 A1 29/01/2009