wO 2008/097801 A2 |00 00 OO AR OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

International Bureau

(43) International Publication Date
14 August 2008 (14.08.2008)

) IO O T O

(10) International Publication Number

WO 2008/097801 A2

(51) International Patent Classification:
GOGF 9/44 (2006.01)

(21) International Application Number:
PCT/US2008/052603

(22) International Filing Date: 31 January 2008 (31.01.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
60/888,239 5 February 2007 (05.02.2007) US
(71) Applicant (for all designated States except US): SKY-
WAY SOFTWARE, INC. [US/US]; 208 S. Hoover Boule-

vard, Suite 100, Tampa, FL 33609 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RODRIGUEZ,
Jared [US/US]; 1120 W. Peninsular Street, Tampa, FL
33603 (US). KENNEDY, Jack [US/US]; 694 Chesapeake
Drive, Tarpon Springs, FL 34689 (US). WEAVER, Mike
[US/US]; 11785 106th Avenue North, Seminole, FL. 33778
(US).

(74) Agents: NORTON, Lisa, K. et al.; DLA Piper US LLP,
P.O. Box 9271, Reston, VA 20195 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(54) Title: METHOD AND SYSTEM FOR CREATING, DEPLOYING, AND UTILIZING A SERVICE

N

100

ENTERPRISE
DEVELOPMENT

INFRASTRUGTURE 135

EXECUTABLE
PROJECT
PACKAGE 101

MODEL | MQDEL |
DESIGNER

110 15

‘ i——
| 7 woDEL

SCHEMA

A2 -
RUNTIME
FRAMEWORK|
105 125

WODEL
oERLOVER FUNTIE |
120

-

[Sormvowe
| sERvices |
130

102

\

.
SERVICES

rSEE| [
o ‘Esa
! e |
‘ ENTERPI
P sy A

SEC. & |
‘mnecv |

= o
e o=
[2] %)=

TECHNOLOGY
INFRASTRUGTURES

FIGURE 1

(57) Abstract: A system and method of utilizing a service, comprising: designing the service in a visual modeling environment
such that low level machine centric and/or platform dependent programming language is not used, the service capable of being imple-

mented across an enterprise; and deploying the service in a plurality of technology infrastructures within the enterprise in a manner
that interacts with enterprise software and/or other technology infrastructures by tailoring the service for each such infrastructure.

WO 2008/097801 PCT/US2008/052603

TITLE
METHOD AND SYSTEM FOR CREATING, DEPLOYING, AND UTILIZING

A SERVICE
This application claims priority to U.S. provisional 60/888,239, filed on February 3,

2007, and entitled “Method and System for Creating, Deploying, and Utilizing a Service”,

which is herein incorporated by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

[0001] FIGURES 1-14 illustrate a system for creating, deploying, and utilizing a service
in a visual modeling environment, according to one embodiment of the invention.

[0002] FIGURES 15-25 illustrate methodology for creating, deploying, and utilizing a
service in a visual modeling environment, according to one embodiment of the invention.
[0003] EIGUR‘ES 26-46 illustrate screen shots for creating, deploying, and utilizing a

service in a visual modeling environment, according to one embodiment of the invention. -

DESCRIPTION OF EMBODIMENTS OF THE INVENTION

System Components

[0004] FIGURE 1 illustrates a system for creating a service in a visual modeling
environment, according to one embodiment of the invention. An enterprise 100 includes
enterprise development infrastructure 135 and an enterprise software environment 102. An
enterprise is an organization that utilizes various technologies. The enterprise development
infrastructure 135 creates an. executable project package 101 including generated software
services 130 and a runtime framework 125. The term “services” throughout this patent is

intended to refer to services, applications and/or software or the like. The executable project

WO 2008/097801 PCT/US2008/052603

package 101 is executed in the enterprise software environment 102. Within the enterprise
software eml/ironment 102, varioﬁs technology infrastructures 145 are scattered across the
enterprise 100. Technology infrastructures 145 execute the generated software services 130
in accordance with the runtime framework 125. At the same time, the generated software
services 130 are integrated with the enterprise ‘infrastructure 140. The enterprise
infrastructure 140 comprises software, such as security and directory services 141, service
registries 142, and enterprise service buses 143, designed to provide common services to
technology infrastructures 145. The technology infrastructures 145 include, for example,
applications servers 144, databases, 148, operating systems 146, and/or web servers 147.
[0005] The enterprise development infrastructure 135 creates service models. The service
models are created in a visual modeling environment, which is an environment of objects that
are simplified, easy to build or assemble, but still recognizable as a representation of the
original item being modeled. A visual modeling environment allows a user to create service
models using user interfaces, and does not require low level machine centric and/or platform
dependent programming language. Service models are executed as services 130 and are
capable of being implemented across an enterprise 100 of technology infrastructures 145, and
are executed at each technology infrastructure 145 in a manner that interacts with enterprise
infrastructure 140 or other technology infrastructures 145.

[0006]) The enterprise development infrastructure 135 includes a model schema 105, a
model designer 110, a model repository 115, and a model deployer 120, and a runtime
framework 125. The model schema 105 defines the'modeling language that is used to design
and implement service models. Thé model schema 105 is utilized by the model designer 110,
the model repository 115, and the model deployer 120. The model designer 110 creates
concrete instances of the model schema 105 that represent service models as designed by an

end user of the system. The model repository 115 stores these concrete instances in a version

WO 2008/097801 PCT/US2008/052603

control system designed to version the model information, and to make it available for use by
multiple service. designers. Thus, for example, a service model (or a part of a service
model) can be built, accessed, utilized, and/or edited by different users at the same time.
- Furthermore, the service model, as well as each element of the service model, can be
versioned independernitly of each other. The model repository 115 also makes these model
instances available to the model deployer 120 which converts them into generated
applications and services that are executable by the technology infrastructures 145. The
model designer 110 is the system component where service models are graphically designed
and implemented. The model repository 115 allows teams of users to collaborate on service
models and provides version control services as well. The model deployer 120 converts meta
data from the service models (from the model designer 1'10 or the model depository 115) into
code and deployment artifacts for the technology infrastructures 145 to employ. It also
compiles the service models and distributes them with their runtime framework 125 as
executable project package 101. The generated runtime service framework 125 is used by the
generated code of a service 130 during the execution of the service 130 at the technology

infrastructures 145.

The Model Schema

[0007]) FIGURE 2 illustrates various components of the model schema 105, according to
one embodiment of the invention. A domain 215 is a deployment concept that represents a
logical grouping of physical and virtual resources where executable packages 101 will
execute on technology infrastructures 145. The domain 215 includes representations of one
or more physical servers as well as one or more relational databases. The domain 215 model

represents data regarding these resources and is a logical description of those resources that

WO 2008/097801 PCT/US2008/052603

are used when generating an executable project_ package 101 which is tailored to run in the
target environments (e.g., technology infrastructures 145).

[0008]l A data source 205 is a representation of a relational database system that will be
used by a generated software service. The data source 205 includes the type of database, its
URL and port information, security etc. A server 210 is a representation of an application
server or runtime server where an executable project package 101 can execute in a
technology infrastructure 145. The server 210 meta-data includes information about the type
of server, the application server version, port configuration, and other meta-data that may be
required to tailor the generated software service to run on a particular server of the
technology infrastructure 145.

[0009] A deploy history 220 is a record of each deployment which includes the meta-data
of the domain at the time of each deployment. The deploy history 220 is utilized during the
deploy process to ensure that only changed items are deployed or reconfigured and is also
utilized to provide a mechanism to restore previous domain deployment configurations.
Ensuring that only changed items are deployed helps optimize the model driven environment.
The deploy history can also be used to restore previous deployment states from domain
models which were previously deployed. A deploy event 255 is a representation of one step
or a group of steps that occur during deployment. These deploy events can be viewed outside
of the model deployer 120 as a communication mechanism allowing external observers of the
deploy to detect the successful completion of deployment steps or their failure.

[0010] A service runtime registry or enterprise service bus 240, is a representation of a
class of enterprise software that is designed to manage executable project packages 101 at
runtime. Runtime registries act as a phone book or directory for enterprise software services
and sometimes also offer management and searching capabilities for services and their

descriptions and locations. Enterprise service buses normally incorporate the functionality of

WO 2008/097801 PCT/US2008/052603

a runtime registry but also provide an integration capability to incorporate existing enterprise
systemé into the enterprise service bus. Both technologies provide mechénismé to register
and l@ate software services. These technologies will be referred to in this document as
runtime registries. The domain 215 can be configured with one or more service runtime
‘registries 240 of varying types. A project 235 can be bound to one or:more service runtime
registries 240 in the domain 215. When the project 235 is deployed, the service runtime
registry 240 is updated with the location information and other meta-data about the project
package 101 that is deployed based on the project 235.

[0011] A project deploy 230 is a representation of a project 235 as it is configured to be
deployed within a particular domain 215. Each project 235 is made up of service models
245. A project 235 represents a collection of service models 245 that will be deployed
together. A project 235 can be thought of as an organizational element that helps to group
similar or related service models 245 into one package. A service model 245 represents a
collection of meta-data constructs that define the way a service model 245 should behave
when executing. Each service model 245 contains one or mote logic models 255, data
objects 260, GUI root 253, and user interface -web models 250 as well as other meta-data
concepts used to define software services and their implementations. Each data object 260
from each project 235 is linked to a data store 265. The service. models 245 and/or parts of
service models 245 can be utilized with other service models 245. Because model driven
design, model driven development, arid model driven deployment are combined with service
oriented architecture, the service models 245 can be verb oriented (i.e., action oriented) rather
than noun oriented (i.e., object. oriented). By breaking work down into smaller and smaller
service models 245, a level of flexibility in programming is provided that allows the
combinations and/or orchestrations of the service models 245 and/or parts of service models

245. In addition, the service models 245 and/or parts of service models 245 can be integrated

WO 2008/097801 PCT/US2008/052603

with existing technology assets like databases, existing Java code, and/or existing Web
servicers. Furthermore, one service model 245 and/or part of a service model 245 can call
another service model 245 and/df part of a servicé model 245, thereby allowing a service
designer to break up the logic into small, reusable pieces.

[0012] A logic model 255 is a model that describes the logical flow of execution for an
operation within a service model 245. A logic model 255 defines a set of input parameters,
output parameters, variables, and execution steps. The logic model 255 is the visual
representation of the execution path(s) for a specific operation within a service model 245.
Each logic model 255 contains one or more logic components 275 which simply help to
organize the logical flow of execution into smaller more manageable pieces. A logic
component 275 is a representation of a set of logic steps 285 which are executed together.
Logic components 275 are similar to subroutines in text based languages. A logic step 285 is
a representation of a specific set of executable instructions utilized to perform the work of the
operation within a logic model 255. Each logic step 285 can be a pluggable entity of a
particular type which controls the way that it is configured and customized within the model
designer 110 and eventually controls the type of code that is generated by the model deployer
120.

[0013] A data object 260 is a representation of a data model in that it describes a
combination of fields of specific names and types, and it further defines relationships
between other data objects 260. Data objects 260 are analogous to a Complex Type in XML
and many programming languagés. A data store 265 is a representation of a logical grouping
of instances of a certain type of data object 280. For example, if there is a data object 260
called Companies, there- may be a data store 265 for South American companies and another
for African Companies. A data store 265 represents a logical container of runtime data. An

exception 270 is a representation of some type or classification of error that may occur while

WO 2008/097801 PCT/US2008/052603

the project package 101 is operating. Users may define their own types of exceptions 270 to
report and acknowledge spéciﬁé system states 6r errors.

[0014] A web model 250 is a variant of a logic model which represents a set of execution
steps or logic steps but that is inherently designed to drive a user interface and the integration
of the user interface with execution logic and the other portions of a service model 245.
[0015] A GUI root 253 provides the capabilities to define Rich Internet Application and
service which can be created completely within a web model designer 325 (discussed later) or
on its own and which can include both synchronous and asynchronous page loading and
server communication styles while further providing drag and drop creation and
configuration of dynamic html and web based content. Each GUI root 253 also can also
contain any number of GUi‘ Pages 263 that define ‘the user interface to present. Each GUI root
253 also can also contain any number of GUI resources 254 that.can be embedded or utilized
in each GUI page 263, such as images, style sheets, flash movies, or any number of user
interface constructs.

[0016] A web service 290 is a representation of a specific instance of a web model which
is usually a piece of software logic that is available at a specific location and which performs
some function when invoked remotely through some standard invocation protocol. Each web
service 290 contains one or more web service methods 291. A web service method 291 is a
representation of a specific operation within a web service 290 and includes the definition of
the inputs and outputs of the web service 290 operation as well as its name.

[0017) A Java service 293 is a representation of a collection of Java classes 295 which
may be incorporated into the Java service 293. Each Java service 293 contains one or more
Java classes 295 each of which contain one or more Java methods 297. A Java method 297 is
a representation of a specific operation within a Java class 295 which is defined by its name,

its set of inputs and its output type.

WO 2008/097801 PCT/US2008/052603

The Model Designer

[0018] The model designer 110 is made up of se_veral systems that deliver an environment
capab]é of completely modeling services and applications. The model designer 110 is the
user interface used to visually create instances of the model schema 105. The model
designer 110 can provide a virtual file system for model storage as well as various other
services utilized during the design and implementation of service models. Entities in the
model schema can have their own “designer” which is responsible for creating a user
interface suitable for configuring that type of entity. The system provides a pluggable
architecture so that new entity “designers” may be configured and integrated within the
system.

[0019] FIGURE 3 illustrates the model designer 110, according to one embodiment of the
invention. The domain designer 305, which will be described in more detail below, provides
an interface where various deployment domains can be modeled including collections of
servers, data sources, and projects representing a logical or physical software execution
center providing the ability to dynamically bind the virtual service design with the physical
software implementation strategy. The data object designer 310, which will be described in
more detail below, is used to visually design one or more data objects each of which
represents the meta data for a complex type that would be used within the service model.
Data objects normally represent tangible entities within the system design like companies or
employees and have fields and relationships with each other. The data object designer 310 is
capable of creating and describing any data model. The data store designer 315, which will
be described in more detail below, is used to visually design data stores which are logical
definitions of storage areas for a certain type of data objects. Each data object can have one

or more data stores. The data store abstraction is used within the logic model designer 320

WO 2008/097801 PCT/US2008/052603

and the web model designer 325Vto" ‘in'tefact"wi'tvh‘ ﬂié underlying persistence framework of the
project package 101 when it is deployed. The logic model designer 320, which will be
described in more detail below, provides the interface needed to design logic models in a
completely graphical environment. Within the logic model designer 320 users can design
service operations and their implementation details. The web model designer 325, which will
be described in more detail below, can serve as the variable container, interface flow
controller and logic layer for all user interfaces created within the GUI designer 327.. The
GUI designer 327 provides the capabilities to define a Graphical User Interface page, screen
or portion of a page or screen and can be created completely within the web model designer
320 or can be created separately. The GUI designer 527 can include both synchronous and
asynchronous page loading and.server communication styles while further providing drag and
drop creation and configuration of dynamic html and web based content in a graphical
interface. The web model designer 325 can incorporate a GUI designer 327. The GUI
designer 327 can also be created separately. Each of the designers is built to plug into the
model designer plugin interface 355, which acts as an extension point for the addition of new
modeling concepts and designers. The model designer plugin interface 355 is responsible for
creating and managing the list of model designers that are plugged into the model designer
environment. The modeling environment and the deployment are capable of being extended
and/or customized. The model can be extended and/or customized by the model designer
plugin interface 355. The discovery designer 360 is responsible for managing a set of
designers that are tailored for the discovery and integration of external technologies and
enterprise infrastructures. The discovery designer 360 manages the relational database
management system (RDBMS) designer 340, the web service designer 335 and the Java
service designer 330. The RDBMS designer 340 is used to connect to existing enterprise data

sources and to provide an user interface that allows a service designer to incorporate the data

WO 2008/097801 PCT/US2008/052603

from that database into their service. This is accomplished by inspecting the meta data that is
provided by the database including the table definitions and field definitions within each
table, and creating data objects within the service model which represent those tables. These
data objects are later tailored during the deployment step to automatically synchronize with
the data source providing a sophisticated integration with existing relational data within the
modeling environment. The Java service designer (330) provides a similar interface but is
responsible for discovering existing Java classes and methods and importing and
incorporating those classes and methods into the service model. The Java service designer
enables the use of existing Java code within the executing software service. The web service
designer 335 provides the salﬁe functionality for web services allowing the service designer
to discover and incorporate existing web services by incorporating the definition of that web
service as it is described by a WSDL file. WSDL stands for web service definition language
and is an XML standard for describing a web service. The web service designer utilizes the
WSDL document to build a linkage to the web service for use in the generated software
service. This allows the linkage of existing software services to new software services
through the discovery engine. Finally, existing web services can be located in many ways but
will often be located by searching an enterprise service bus or runtime registry. The
discovery designer 360 is responsible for receiving the meta data related to the item(s) being
discovered as detailed above, and converting that meta data into models which represent the
external integration points, including web services, Java services and relational databases. In
one embodiment, a model debugger 365 can be responsible for translating debug information
from an executing software service back into the software model so that the steps of
execution, variable values, and other standard debug information can be reviewed within the
model designer as an aid to finding and correcting logical errors in the model. The

dependency engine 370 (see 450) is responsible for providing and maintaining a list of

10

WO 2008/097801 PCT/US2008/052603

dependencies between various components in the domain model and service models. The
dependency engine providés the capabiklity to \deploy only changed objects and their
dependencies, as well as providing a visual representation of dependencies to users of the
model designer 110, including the domain designer 305. The model access engine 375 is
responsible for controlling access to the service model and domain model. This layer grants
or prohibits access to modifications to models based on password protection which can be
added to the service model to control modifications to the model, even after it has been
distributed to a 3" party. In one embodiment, the locking and access layer can also enforce
the security of the model if it is created and managed within the model repository 115. The
validation engine 380 (see 455) is responsible for validating the domain model and the
service model to ensure that there are no errors or issues ‘in the design or implementation of
the model that would result in errors or issues in generated software services 130. In one
embodiment, the model is XML-based (i.e., anyone can access it). In another embodiment,
the model can be stored in.a proprietary format and can use an import/export engine 382.
The import/export engine 382 can be responsible: for moving the service model(s) in and out
of the platform as XML. This capability allows the service models to be stored and managed
outside the model designer so that they can be distributed or archived. The virtual file system
384 can act as a linkage between the model designer and the persistence engine that is used to
store the service model and the domain model. The virtual file system can act like a file
system but can be extended to persist models to a relational database or other form of
persistence. The model persistence layer 386 can be responsible for actually storing and
retrieving the service models and domain models and making them available to the virtual
file system. The model persistéence layer can be implemented as either a database or

operating system file system.

11

WO 2008/097801 PCT/US2008/052603

[06020] Domain Designer 305. F IGURllti.-'tvl ;illﬁstrates details of the domain designer 305,
according to one embodiment, of the invention. The domain designer 305 provides a visual
modeling environment for creating and managing instances of the domain object from the
model schema definition 105 and provides a generic designer system which allows new
domain object types to be added to the system and configured and managed within the
domain designer 305. The major modeling concepts for each domain are security, projects,
data sources, service registry and servers. Each domain defined within the domain designer
305 represents a physical or logical set of systems where project packages 101 may run and
the resources that are bound to the applications and services that are generated to run within a
domain. The domain security designer 405 provides an interface for declaring the details of
the security system that is utilized within the deploy domain. When the domain is deployed,
each application and service will be configured to interact with the host security systems for
role based authentication. The project deploy designer 410 provides an interface for
specifying which projects and services should be deployed within a given domain. Each
project is bound to a specific server and each of the data objects are linked to a specific data
source. The project deploy designer 410 captures information about where the model
deployer 120 should retrieve the model data from and also contains information about the
way that the project should be deployed. The data source designer 415 allows for the
creation of one or more definitions of physical data sources or databases that will be utilized
by projects and services deployed within a specific domain. The data source configuration
includes database connection information as well as the database type, driver etc. Each data
source can be bound within the domain to one or more projects and services allowing the data
objects defined in those projects to be late bound to a particular data source. The server
designer 420 is used to create and configure representations of physical machines that are

capable of receiving the deployed projects and services from the model deployer 120 and

12

WO 2008/097801 PCT/US2008/052603

making them available for execution. The server &e’signer 420 captures information about the
physical machine, the type of application server and infrastructure available on the machine,
and other pieces of information needed to tailor the generated software services 130 for the
deployed environment. The runtime registry/enterprise service bus designer 425 is used to
create a reference to a runtime registry or enterprise service bus that should be notified of the
services being deployed. The runtime registry/enterprise service bus designer 425 has an
interface which accepts information concerning the specific type of registry, the service
cataloging specification to utilize, as well as the projects to publish to a particular registry or
enterprise service bus.

[0021] The domain object designer int_erféce 435 provides an extension point for the
creation and addition of new domain concepts which are peers to data source and project;
deploy. The domain object designer plugins 430 are the set of domain object designers that
have been incorporated within the modeling environment through the domain object designer
interface 435. The model can be extended and/or customized by the domain object designer
interface 355. The repository integration engine 440 provides an extension point for the
domain designer 305 to integrate with version control systems to retrieve model data to be
deployed. The repository integration engine 440 interacts- directly with the model repository
115. The model can be extended and/or customized by the repository integration engine 440.
The deploy history engine 445 is responsible for providing and maintaining a record of each
deployment which includes the information from the domain which would be needed to
reconstitute any previously deployed configuration. The dependency engine 450 is
responsible for providing and maintaining a list of dependencies between various components
in the domain model and service models. The dependency engine provides the capability to
deploy only changed objects and their dependencies, as well as providing a visual

representation of dependencies to users of the domain designer 305. The validation engine

13

WO 2008/097801 PCT/US2008/052603

455 is responsible for validating the domain model and the service model to ensure that. there
are no errors or issues in the design or implementation of the model that would result in
errors or issues in generated sof:tv.x;éfe services 136. The virtual file system 460 acts as a
linkage between the model designer and the persistence engine that is used to store the
service model and the démain model. The virtual file system acts like a file system but can
be extended to persist models to a relational database or other form of persistence. The
model persistence layer 466 is responsible for actually storing and retrieving fhe service
models and domain models and making them available to the virtual file system. The model
persistence layer can be implemented as either a database or operating system file system.
[0022] Data Object Designer 310. FIGURE 5 illustrates details of the data object
designer 310, according to one embodiment of the invention. The data object designer 310 is
used to declare the meta-data for a déta dbject which represents the complex type definitions
within the modeling syntax of the system. Each data object is declared as having one name
505, a collection of fields 510 each with names and various types, as well as a set of
relationships 515 between itself and other data objects. Each relationship has a name on both
sides of the relationship.

[0023] Data Store Designer 315. FIGURE 6 illustrates details of the data store designer
315, according to one embodiment of the invention. The data store designer 315 is used to
declare and define a data store which is a logical storage location for a particular type of data
object. Each data object may have one or more data store. The data store is used within the
logic model and web'model to interact with the underlying persistence mechanisms that are
late bound to the project and service during the deploy phase. The data store therefore is an
layer of abstraction between the executing model and its physical system underpinnings. The

data store includes a name 605, and a data object 610.

14

WO 2008/097801 PCT/US2008/052603

[0024] Logic Model Designer 320. FIGURE 7 illustrates details of the logic model
designer 320, according to one embodiment of the invention. The logic model designer 320
contains the meta-data needed to model business logic within a service. Each logic model
designer 320 can have one or more component designers 764, which are described in more
detail below. Each logic model designer 320 has attributes which are general to the logic
model and all of the component designers 764 it contains. Attributes includes variables 754,
inputs 752, outputs 750, security 748, web service exposure 746, exceptions 720 and variable
references 744. Variables 754 are objects or values that are utilized within the logic model to
store information in a formulated way. Variables 754 may be standard raw types such as
“Integer” or “Decimal” or “Text” or “Image” or “Date” or they may also be data objects or
collections of data objects. A collection is a holder of more than one item of the same type.
It is analogous to an array. Inputs 752 are variables which originate from the invoker of the
logic model representing those values that can be passed to the logic model at execution time
as a running software service. Outputs 750 are the variables which will be returned to the
invoker of the logic model representing the response to the logic model execution. Security
748 is the configuration of whether or not the executors of the logic model should be
authenticated within the technology infrastructure which is hosting the executing software
service. Exceptions 720 are the possible errors which the logic model designer 320 may
encounter or throw to its caller when it executes. Web service exposure 746 can control
whether or not the logic model should be published as an operation of a web service. The
variable references 744 can show which components designers 764 use or reference any
given variable 754, input 752 or output 750.

[0025] Web Model Designer 325. FIGURE 8 illustrates elements of a web model
designer 325, according to one embodiment of the invention. A web model is a variant of a

logic model which represents one or more component designers 764 that are inherently

15

WO 2008/097801 PCT/US2008/052603

designed to drive a user interface and the integration of the user interface with execution
logic and the other portions of ‘a software service model. Each web model designer 325 can
have attributes which are general to the web model and all of the component designers 764 it
contains, this includes variables 866, security 864, f)ortlet exposure 862, default GUI page
263 and variable references 860, protocol attributes 861, and access attributes 862. When
using protocol attributes, the user can configure the web model designer to be accessed via
http, https, or any other standard protocol type. If the user selects https for the protocol all
access to GUI pages will be displayed securely in a web browser using encryption. The user
can also optionally configure the web model to be published as a WSRP portlet. The user can
also indicate that a web model cannot be directly accessed. In this case, web pages could be
included in other web pages that doAlallow direct aécess. The user can also indicate that a web
model requires authentication.

[0026] Every web model designer 325 can have one GUI page 263 designated as the
default. After the web model is deployed, an end user loads the web model by entering its
unique URL into a browser and the server loads the default GUI page 263. Variables 866 are
objects or values that are utilized within the logic' model to store information in a formulated
way. Variables 866 may be standard raw types like “Integer” or “Decimal” or “Text” or
“Image” or “Date” or they may also be data objects or collections of data objects. A
collection is a holder of more than one item of the same type. It is analogous to an array.
Security 864 is the configuration of whether executors of the web model should be
authenticated within the technology infrastructure which is hosting the executing software
service. The variable references 860 can show which component designers 764 use or
reference any given variable 866. Portlet exposure 862 can control whether or not the web
model should be published using the Web Service Remote Portlet (WSRP) or Java Service

Request (JSR) 168 specification for embedding that web model within a portal.

16

WO 2008/097801 PCT/US2008/052603

[0027] Comppnent Designer 764. Fiéuré 8A illustrates elements of a component designer
764, according to one embodiment of the invention. The component designer 764 can be
responsible for providing the user interface to model business logic. Each logic model
designer 320 and web ‘model designer 325 can have one or more component designers 764
which are utilized to break the visual model up into smaller discrete representations. The step
designer plugin(s) 8A8 can represent the pluggable layer of extension where new step types
and their “designers” can be plugged into the system. Thus, the model can be extended
and/or customized by the step designer plugins 8A8. Each step type can have a step designer
8A9 which is responsible for that step type’s visual configuration and the definition of the
code that will be output from the step.

[0028] Each component designer 764 can have a visual model flow 8A1 which is a visual
composition of the logic and execution paths for a given component. The visual flow model
can create a picture of the execution logic and provide a canvas for each logic step to be
represented and configured. The visual model flow can incorporate capabilities such as
threading 8A2 by allowing multiple lines of execution to be branched (branching 8A3) from a
single logic step. When branches of execution converge they are joined (joining 8A4) using
logical operators like (and, OR and XOR) which represent logical operators which control the
execution of each thread of logic. If two branches join with an AND join step, then the logic
execution will not be complete until both threads reach the join step. If the branches join
with an OR join step, then the logic execution will continue when either thread reaches the
join step. When an XOR step is used, the logic will continue as soon as one thread reaches
the join step, and the other thread will stop. immediately. Decision steps (8A5) can represent
points in the logical execution where some set of conditions can be checked to determine
whether to follow one of two paths in the logical execution. A decision range (8A6) can

represent multiple paths each of which may be followed if a given set of conditions are met.

17

WO 2008/097801 PCT/US2008/052603

Iteration (8A7) is the flow control concept that alléws each element of a “collection” to be
passed through a set of logic steps. In one embodiment, an execute SQL, a search data store,
a modify data store, a delete file, a read/write file, a commit transaction, a rollback
transaction, a throw exception, and a catch exception cal also be utilized. These components
are described below with respect to FIGURE 8A. In one embodiment, the component
designer 764 or the web model designer 325 ¢an dictate the next page to display. In another
embodiment, the web page dictates the next page to display. In the embodiment where the
component designer 320 dictates the next page to display, each component can have a setting
for a next component. The next component is the component that will be loaded after the
current one. This allows a user to ¢reate logical flows. in their user interfaces; that is, to
designate one part of a user interface to follow another part. Every web model can have one
component designated as the default component. After the web model is deployed, an end
user can load the web model by entering its unique URL ‘into a browser and the server can
load the default component.

[0029] In an additional embodiment, the web model designer can dictate the next page to
display. The web model designer can provide an interface that allows a user to build and
organize components to form a web application. An example of such a user interface is set
forth in FIGURE 26. As illustrated in FIGURE 26, users can add 2605 and remove 2610
steps to a component designer or GUI designer and wizards can be provided that enable the
user to configure these steps without writing any codes. For example, as illustrated in
FIGURE 26A, a user can add a “send email” step to a component that will sent an email
when executed. A wizard for the “send email” step can provide entry fields for the user to
designate the email recipient, subject and text of the message. Each step type within the
component designer can be optionally configured through a wizard driven interface, through

direct code manipulation, or through proporting manipulation. The flow of execution within

18

WO 2008/097801 PCT/US2008/052603

a component designer is determined by the w.iring of steps together to perform complex
business logic. Such flows can be connected in through the GUI designer 327 to a web page
for invocation before and/or after the display of the page to create complex web flows.

[0030] The system is preconfigured with many step types, including the following:
persistence steps 8A10, transaction management steps 8A14, exception handling steps 8A17,
and file and logging steps 8A20. The logic steps that can be configured are extendable
allowing new step types to be added to the system and configured within the model designer.
Together, the logic steps represent the specific operations that ¢an be taken within a logic
model or a web model. Complete software services and applications are created by
combining and configuring the various step types within the component designer 764. The
persistence steps 8A10 include modify data store 8A11, which can be configured to add or
remove data objects from data stores; search data store 8A12, which can be configured to
retrieve data objects from data stores using a visual query syntax or a structured query
language; and execute SQL 8A13, which can execute structured query language statements
against a data source and map the results to data objects, as well as any other step type that
may interact with a relational database. The persistence steps 8A10are designed to represent
the action of retrieving or storing data and ‘can be visually configured to perform any database
operation. The transaction management steps 8A14 include commit transaction 8A16 and
rollback transaction 8A15. Each step is implemented by a step designer 8A9 which provides
a graphical configuration designer for the step. The step designers 8A9 enforce transactional
consistency within the flow of the logic model and further enforces implied transactional
boundaries when logical flows branch into parallel paths. The placement of the commit step
specifies the point in the logical flow where the currently executing transaction should be
committed. When the commit operation occurs, all data modified within the transaction

boundary will be persisted to the underlying database. If there are any issues or errors the

19

WO 2008/097801 PCT/US2008/052603

transaction will be rolled back and none of the changes made within the current transaction
execution will be saved. A rollback transaction step 8A15 can be inserted at any point in the
logic model’s execution path and specifies that when that step is reached, that the current
transaction should be aborted and all data modifications should be ignored by the underlying
database. The exception handling steps 8A17 includes the catch exception step 8A19 and the
throw'exception step 8A18. The exception handling is model-based. Thus, the logic can be
designed so that how an exception is executed during runtime is based on the logic. The
catch exception step 8A19 can be configured to receive notification of one or many types of
exceptions including user defined exceptions and can then direct the flow of the component
designer 764 execution based on the type of exception that has been encountered. The catch
exception step 8A19 can also be configured to record the information about the exception
including the path to the step that threw the exception and the detail of the exception into one
or more variables. The throw exception step 8A18 can be configured to throw one type of
exception which may be a user defined exception and can dynamically bind information from
the executing component designer 764 into the exception which is thrown. The file and
logging steps 8A20 include the read/write file step 8A21, delete file step 8A22, and log info
step 8A23. The file and logging steps 8A20 can be configured to read and write information
from the file system where the generated software service 130 is running and can be
configured to utilize the file information within the component designer 764. The log info
step 8A23 can be configured so that the service integrates with an existing logging system
(e.g., the enterprise software and/or other technology infrastructures within the enterprise)
and can log execution information and variable information through the underlying logging
system. The log info step 8A23 can be configured to execute based on variable data from

within the component designer 764 or through standard preset logging levels.

20

WO 2008/097801 PCT/US2008/052603

[0031] GUI Designer 327. Figure 9 illustrates elements of a GUI designer 327, according
to one embodiment of the invention. The GUI Designer 327 enables the creation and
modification of the user interface for a web application. In one embodiment; this is a single
web page. In another embodiment, this can also be a small region of a web page. Web pages
are made up of many visual elements, such as images, forms, hyperlinks and buttons. These
elements are sometimes called web controls and they are made up of attributes and behaviors.
For example, a button has a text label. This is an attribute. And a button usually does
something when it is clicked. This is a behavior. When building a web application, a user
traditionally has to code these attributes and behaviors using programming and markup
languages like Java and HTML. But as with the steps in a component, the web model
designer 325 can provide wizards that allow users to create these elements without any
manual coding. Users can configure both the attributes and the behaviors of these elements
using these wizards, which are accessed from inside the web page editor.

The style editor 905 is an editor that lets users select style attributes such as text color and
font style. The events editor 910 is an editor that lets users configure what should happen
when certain events occur on their web controls. For example, a user could configure a
button click to send an email. The data binding editor 915 is an editor that lets users
configure assignments that are processed when. certain events occur on their web controls.
For example, a user could configure a button click to set a variable called color to ‘red.” The
condition editor 920 is an editor that lets users configure conditions that must be met in order
to display a web control. For example, a user could configure a button to display only when a
variable called Show Button is set to true. The others editors 925 are additional editors
which are pluggable to make configuration easier. For example, if a new tag is added that
contains an attribute that requires constrained data, a new editor could be plugged into the

framework to allow users to easily configure that attribute. The attribute customizers 930 are

21

WO 2008/097801 PCT/US2008/052603

simple Ul panels (whereas an editor could be vvery complex) that allow configuration of a
specific attribute of a tag. For example, a text tag has a size attribute that controls how big
the text box is on the web page. Thus, a user can configure the size using an attribute
customizer 930. The tag attributes 932 are attributes of a tag. Different tags have different
attributes that describe the tag. For example, a text tag has a size attribute that controls how
big the text field is on a web page. The custom tags 934 are specific markup strings that can
be inserted into a web page that will trigger certain procedures to be executed when the page
is being processed by the server before sending it to a web browser client. There are two
points of extension in this layer of the model designer. The GUI widget plugin 938 provides
an extension point where new custom tags 934 can be incorporated into the design
environment. Thus, the model can be extended and/or customized by the GUI widget plugin
938. Each custom tag 934 has a corresponding GUI widget designer 936. A GUI widget
designer 936 is a user interface component used to configure a particular custom tag 934.
Any new tag that is added may have a custom GUI widget designer 936 and all GUI widget
designers are integrated through the GUI widget plugin 938. The other point of extension is
the Ul scaffolding plugin 942 which is similar to the GUI widget plugin 938 but it is designed
to provide an integration point for adding a new scaffolding designer 940. Thus, the model
can be extended and/or customized by the UI scaffolding plugin 942. A scaffolding designer
940 is a user interface for designing a set of custom tags 934 at the same time. Each
scaffolding element represents a collection of tags put together to achieve a specific web user
interface effect. For example, a scaffolding designer 940 may walk a service modeler
through the configuration of a web form to edit a variable in a logic model. When the
scaffolding designer 940 is complete, rather than emitting one custom tag 934 into the html
page, it can emit all of the tags needed to accomplish this composite task. The entire

scaffolding infrastructure is designed to allow for the creation of complex web content using

22

WO 2008/097801 PCT/US2008/052603

custom designers while still allowing each custom tag to later be customized individually.
There are many packaged tags, such as button tags and text field tags. The tool palette
management 944 is a toolbar withl buttons that allows users to insert custom tags into their
document. Each button corresponds to a custom tag and clicking the button simply inserts
an unconfigured tag into the user’s document. To configure the tag with attribute
customizers and editors, a user simply double clicks on the tag once it has been dropped into
their document. The resource management 946 is a web page containing many resources such
as images and movies. The resource manager lets a user add resources to a project. These
resources are then available to the user when they configure certain custom tags, such as an
image tag. The state management 948 keepé track of open editor sessions and windows. The
GUI Editor Linkage 950 is a technical integration piece of the architecture that attaches to the
HTML editor and allows the model designer to control it. Different HTML editors require
different linkages. This allows for different HTML editors to be used within the model
designer 110 on a configurable basis.

[0032] In one embodiment, the GUI editor is pluggable, In another embodiment, the GUI
editor is not pluggable. In this case, an editor mediator can be used. An embedded HTML
editor mediator 952 is a mediator for the embedded HTML editor and brokers system level
messages between the model designer and the embedded HTML editor. The external HTML
editor mediator 954 is a mediator for the external HTML editor and brokers system level
messages between the model designer and an external HTML editor. The HTML editor
mediator 956 is how the model designer talks to an HTML editor. The GUI step designer
958 is a designer, or wizard, that allows a user to configure a HTML page that is part of a
generated application.

[0033]) Within the GUI designer 327, wizards are provided for a number of web controls,

including forms, labels, iterators, hypetlinks, text fields, buttons, checkboxes and layers.

23

WO 2008/097801 PCT/US2008/052603

Wizards. allow users to conﬁgure'the attributes of cor.ltrols' on.a web page such as buttons and
hyperlinks. Wizards also allow users to configure behaviors, or actions, associated with these
controls. Users can configure a set of actions and attach those actions to an event on a
control. For example, a button or click event can be configured to send an email or load
content into a web page. FIGURE 27 illustrates an example of a wizard. A variable 2705
can be selected. As explained above, variables are objects or values that are utilized within
the web model to store information in a formatted way. A character width 2710 and
character maximum length 2715 can be designated. In addition, a password field 2720 can be
designated. If the password checkbox is checked, the input field that is created in the HTML
form will have its “password” attribute set to true which will cause the Web Browser to
obfuscate the user input usually with “*” or some other character.

[0034] User interfaces are also provided to configure a variety of actions. There are two
that can enhance the functionality users can build into their web applications without dbing
manual coding: the load component action and the invoke server action. The load
component action loads a component into a layer on a web page without reloading the page.
A layer can be any element on a web page that has content in it. When a load component
action executes, a request is sent by the browser to the server for a component’s content. The
server loads and executes the steps in the requested component and then returns the user
interface defined in the GUI step of that component. Once the browser receives this content,
it inserts that content into the designated layer. The.load component action provides a way
for the browser to change content and update very specific regions of a web page without
reloading the entire page. In addition, the load component action does not require a
programmer to write any code (e.g., JavaScript, HTML, Java).

[0035] The invoke server action invokes a set of logic steps on the server called a server

action. Since actions are behaviors that get attached to elements on a web page, this allows

24

WO 2008/097801 PCT/US2008/052603

users to visually configure an element on a web page to execute functionality on the server.
A server action is a set of steps. ‘Server actions do not have GUI steps or next components.
A server action is invoked by configuring a web contfol to invoke it. For example, a user can
configure a button on a web page to invoke a server action. When that button is pressed, a
request is sent to the server for the server action to be executed. FIGURE 28 illustrates an
example of a server action within the server action designer 854. The server action designer
is a specialized component designer which is responsible for configuring a set of logic steps
which can be linked to a. user ‘interface element within the GUI designer 327. In 2820,
different server actions can be created. In this example, the send email action is chosen. In
2805, the process starts. In 2810, a log message step is chosen. In 2815, a send email step is
chosen which can be configured to send an email. Server actions can be invoked
asynchronously or synchronously. Ifa server action is invoked asynchronously, the page that
triggers its invocation is not reloaded. If a server action is invoked synchronously, the page
that triggers ‘its invocation is reloaded after the server action executes. Users can create
server actions in the same way they create components in the web model designer.

[0036] A web model can contain any number of variables. These variables can be
populated with data using steps in a component or server action. Users can also create web
forms in their web pages that will populate web model variables with user input. If a user
wants their web pages to interact with web model ‘variables, they must use custom controls.
For example, if a web model has a text variable called name and the user wants to display
that value on a web page, the custom control should be used. The user can drop this control
onto their page using the custom control toolbar and then configure the label to display the

value of name.

The Model Repository

25

WO 2008/097801 PCT/US2008/052603

[0037] FIGURE 10 sets forth the details of the; model repository 115, according to one
embodiment of the invention. The model repository 115 acts as a model based source control
facility for instances of the model schema 105 that are created and managed within the model
designer 110. The model repository 115 also acts as a source of information for the model
deployer 120 which synchronizes with tlie model repository 115 prior to a model being
deployed. A branch 1010 represents a path of development which can contain many
revisions of many objects which are managed and maintained separately from some other
path of devglopment. Each path is referred to as a branch 1010. A label 1015 is a name for a
collection of specific revisions of one or more objects that exists on one branch 1010. The
purpose of a label 1015 is to provide a logic name to a set of revisions usually representing
some state of development that should be easily recalled. For example, someone may create
a label called “FINAL RELEASE” representing the model schema 105 that were packaged
and distributed as the final build. A revision 1020 represents a specific version of an entity.
Each revision 1020 has a revision number 1030 and can be- associated with one or more
revision labels 1035 and can exist on only one branch 1010. Items contained within the
model repository may have dependencies on each other and so the model repository includes
a dependency engine 450. The dependency engine 450 is responsible for providing and
maintaining a list of dependencies between various components in the service models
contained within the model repository. A dependency 1045 is a logical representation of a
linkage between any two items. A dependency provider 1050 is simply any item in the
repository ‘which is involved in a dependency relationship with another item. The model
repository provides a security system which allows namied users to be granted or revoked
access to items within the repository. This is managed through a set of entitlements 1055. A

lock 1025 can be placed on any item within the model repository which will prevent

26

WO 2008/097801 PCT/US2008/052603

concurrent modifications to the same item by different users of the model repository. The

payload 1040 is the actual content or model that is stored with each revision.

Model Deployer
[0038] FIGURE 11 sets forth the details of a model deployer 120, according to one

embodiment of the invention. The system provides a model deployer 120 that is used convert
the meta-data from the model designer 110 into one or more deployable projects each with
their own set of services 130 and each generated in a form that is tailored to the server and
data sources that were configured in the domain. The model deployer contains a deploy
engine 1156 which is responsible for generating the deployable and executable software
service(s) based on the domain model and the service model(s) selected for each deploy
operation. The deploy history engine 1150 provides a record of each deployment which
includes the meta data of the domain at the time of each deployment. The deployment
history is utilized during the deploy process to ensure that only changed items are deployed
or reconfigured and is also utilized to provide a mechanism to restore previous domain
deployment configurations. The model deployer may retrieve the service model(s) that are
being deployed from the model repository by utilizing the repository integration engine 1148.
The repository integration engine 1148 provides an extension point for the deploy engine to
integrate with version control systems to retrieve model data to be deployed. Thus, the model
can be extended and/or customized by the repository integration engine 1148. The
dependency engine 1152 (see 370 & See.450) is responsible for providing and maintaining a
list of dependencies between various components in the domain model and service models.
The dependency engine provides the capability to deploy only changed objects and their
dependencies, as well as providing a visual representation of dependencies to users of the

model designer 110, including the domain designer 305. The validation engine 1154 (see 380

27

WO 2008/097801 PCT/US2008/052603

& see 455) is responsible for validating the AOmain-lmodel and the service model to ensure
that there are no errors or issues in the design or implementation of the model that would
result in errors or issues in generated software services 130. The Deploy Naming Services
1146 are responsible for managing the names that are used for all generated deployment
artifacts and ensuring that those names conform to the deployment environment where the
software service(s) will be executing. This includes the names used for generated relational
database tables, deployment packages, source code, etc. The deploy naming services ensure
that consistent names are utilized when translating from the names used in the visual model
to the names used in the deployed software service(s). The RDBMS services 1144 provide
the deploy engine with information that is needed about the relational databases that will be
utilized by the generated software service(s). This includes providing the appropriate
database creation and modification scripts for each database type, providing the association
between database column types and data object field types, etc. The deploy context services
1142 provide a common context for the deploy engine which can be accessed by each of the
components of the deploy engine to share information concerning the deployment. This
includes information about which project deploy is currently being deployed, which server
that pfoject is being deployed to, etc. The deploy context services 1142 are the hub for
information about the deployment. The model builder plugin 1140 is an extension point in
the model deployer which enables the addition of new modeling concepts and their
deployment. Thus, the model can be extended and/or customized by the model builder plugin
1140. The model designer interface 355 is the extension point that allows the model designer
to add new model concepts and to visually design those items within the model designer.
The model builder plugin 1140 provides the complimentary extension point for the model
deployer to enable the complete extension of modeling and deploying new concepts. The

system includes model builders for each of the model concepts that are included in the base

28

WO 2008/097801 PCT/US2008/052603

system. The data store builder 1136 is responsible for converting the meta data from the
model that describes a data store into the artifacts which are needed to deploy and use a data
store. It is responsible for managing the generation of relational database scripts when
necessary as well as creating the code and deployment descriptors which are needed to persist
and store data objects at service execution time. The generated software services may utilize
a variety of persistence strategies to handle the physical storage of data, however each of
those strategies are managed beneath the data store which acts as: a platform neutral
implementation of the data storage arid retriéval. The data object builder 1134 is responsible
for generating the code and deployment artifacts needed for each data object. This includes
the low level source code for an in memory representation of the data object as well as the
source code representing the persisted version of the data object and the deployment
descriptors or configuration needed to register the data object with the runtime technology
infrastructure. The exception builder 1132 is responsible for creating the source code and
configuration information needed to implement a user defined exception which can be
utilized in the executing software services. The generated exception is a concrete extension
to the exception type that is defined for the hosting technology infrastructure ensuring that
exceptions which are generated from. within the executing software service may be escalated
to the technology infrastructure for reporting and management. The logic model builder 1130
is responsible for converting the logic model into the specific implementation of the logic
defined within the logic model. The logic model builder 1130 is responsible for the creation
of the machine level source code and deployment and configuration information needed to
implement the logic in the executing software service within the hosting technology
infrastructure. The generated code includes an execution engine, variable declarations, and
emitted code for each step as well as emitted code for the flow of execution as it was

designed within the logic model designer. The web model builder 1138 is similar to the logic

29

WO 2008/097801 PCT/US2008/052603

model builder and it constructs vefy'sirfxilér cdlde. The web model builder is also responsible
for the generation of the user interface code which can be implemented as HTML as well as
dynamic web content as prescribed by the hosting technology infrastructure. Resources like
images and Java script, which are required for each web model are also delivered and
packaged by the web model builder. Each logic step type in the system has a corresponding
logic step builder which is responsible for generating the source code for a particular step
type while merging the design time configuration information as it was entered within the
model designer. The logic step builder interface 1128 acts as an extension point where new
logic step types can be plugged in and incorporated into the model deployer. This extension
point acts in. unison with the step designer plugins 852. Thus, the model can be extended
and/or customized by the logic step builder interface 1128. The modify data store step
builder 1108 is designed to emit code for the target platform which is capable of adding or
removing information from a data store which may be backed by a variety of persistence
mechanisms. The generated code for the data store step merges the information regarding
which data store and which variables from the logic model to includé in the modification to
the data store. The search data store step 1106 generates code which is capable of retrieving
information from a data store using a variety of query strategies which include structured
query language (SQL), XPath, as well as other translations of visually modeled criteria for
limiting the set of data objects returned from the executing search data store step. The
execute SQL step builder 1104 emits code which is designed to transcribe user configured
SQL syntax to be executed against a particular data source and then retrieves the result of the
execution and populates the data into the variables of the executing logic model as configured
within the logic model utilizing the execute SQL step designer. The read file step builder
1116 generates code which can load binary information from the hosting technology

infrastructures file system at a specific file location which may be variable or statically

30

WO 2008/097801 PCT/US2008/052603

defined. The binary file content is stored in a logic model variable or field for use within the
executing software service. The write file step builder 1114 emits code which can store
binary data into a file on the hosting technology infrastructures file system pushing
information which is available at execution time as a logic model variable. The delete file
step builder 1112 generates code which is capable of removing a file from the file system.
The read directory step builder 1110 emits code which can _reaci the list of files available
within a specific file system director and -place the list of files in a logic model variable for
use within the executing software service. The catch exception step builder 1124 emits code
which is designed to detect an exception which has occurred during the execution of the logic
model. The code 6aptures the information concerning the exception and places the
information in the logic model variables as configured within the catch exception step
designer inside the model designer. The code is further configured to catch only those
exception types that were defined to be caught within the model designer for each catch
exception step. The throw exception step builder 1122 emits code which will generate an
exception of the type which was conﬁgured within the throw exception step designer and will
incorporate information from the executing logic model and software service as defined in
the service model. The generated. code utilizes the exception handling mechanisms of the
hosting: technology platform. The rollback transaction step builder 1120 emits code which
will cause the transaction associated with the executing logic model to abandon its changes
and rollback to the state that existed on the database prior to the beginning of the transaction.
The commit transaction step builder 1118 emits code which is designed to commit the
transaction associated with the executing logic model and ensures that each of the database
modifications which were made within that transaction boundary are all implemented
together and successfully. The GUI step builder 1126 is responsible for generating the user

interface code that was designed with each GUI step. The GUI step code may be

31

WO 2008/097801 PCT/US2008/052603

implemented as HTML and a combination of dynamic web content pages as prescribed by
the target technology infrastructure. The GUI stép builder may also create and store the
resources needed by the GUI step in a file or format requisite for the target technology

platform and user interface execution environment.

Generated Services and Runtime Component

[0039] FIGURE 12 sets forth details of the generated software services 130 and runtime
framework 125, according to one embodiment of the invention. Each project is generated as
a deployable and executable package which is completely independent of the model designer
110 and model deployer 120. The executable package contains all of the generated services
130 and runtime framework 125 for the package. The executable and deployable package
can include the following components: runtime logic framework 1210 (where is responsible
for the control of all application logic) and runtime web framework 1205 (which is
responsible for all of the web based runtime execution).

[0040] The runtime framework 125 is the common set of executable software components
that are common to all generated services 130. This runtime framework 125 is platform
dependant (i.e., dependent on technology infrastructures 145) and provides a common set of
interfaces to the generated code for standard execution services like transaction management,
security, etc. The runtime web framework 1205 is the portion of the runtime framework 125
that is designed to drive the web layer execution of the generated services 130. The runtime
logic framework 1210 is the portion of the runtime framework 125 that is designed to drive
the execution of the logic of the generated services 130. Collective generated services 130
includes a series of individual generated services 1225. The generated services 1225 are the
final result of the services 130 that are defined in the model designer 110 and deployed using

the model deployer 120. The generated services 1225 are the ‘user defined, dynamically

32

WO 2008/097801 PCT/US2008/052603

generated portion of the runtime which utilize the runtime framework 1215 to execute
application logic and user interfaces. The registry integration framework 1245 is responsible
for providing connectivity and a standard registration interface for a wide variety of runtime
registries for services 130 as ‘well as enterprise service buses. The registry integration
framework 1245 is pluggable so that new extensions may be created to integrate the
generated services 1225 with one or more systems which are designed to receive information
about services 130 as they become available for use. Thus, the model can be extended and/or
customized by the registry integration framework 1245. The generated service initializer
1220 is generated with each generated service 1225 and it includes the information and
executable(s) that are required to utilize the registry integration framework 1245 to register
the service 130 with one or more systems. The information needed to connect to the registry
or enterprise service bus is provided during the design of the domain within the model
designer 110 and is utilized to create the generated service initializer 1220.

[0041] Runtime Web Framework 1205. FIGURE 13 sets forth details of the runtime web
framework 1205, according to one embodiment of the invention. The runtime web
framework 1205 is made up of several major components which are utilized by the generated
services 1225 while executing and delivering the user interface portion. FIGURE 13
describes components of the runtime web framework 1205, according to one embodiment of
the invention. The application server 1399 represents the execution environment of the
technology infrastructure 145 where the services 130 are deployed and running. Application
servers 1399 can provide low level services to running applications' which range from
persistence management to naming services. A web server 1395 can be responsible for the
low level implementations of the web interface and execution. These services can include
low level HTTP Protocol and Connection management as well as thread management and

session management. Web controllers 1355 can receive requests from the executing web

33

WO 2008/097801 PCT/US2008/052603

application running on web server 1395 as it exists within a web browser. For example, there
is a web controller 1355 responsible for receiving form data from the web browser.

[0042] Buffering 1350 is responsible for managing the request and response information
as it is sent and received through the web server 1395 back and forth to and from the web
browser. The flow controller 1345 is responsible for dynamically determining the visual flow
of execution from the end.users perspective. The flow controller 1345 utilizes the meta-data
captured in the model designer 110 to determine the correct flow of the user interface
experience based on the actions and the events of the end user interaction. The tag processor
1340 refers to the execution engine where the dynamic web page is being processed and
loaded. This may be in the form of a generated Java server page in a Java environment or an
active server page in a .NET based environment. The tag handler(s) 1335 are responsible for
the implementation of tags which are utilized to design and implement the web interface.
Each tag represents a web control or some reusable and configurable user interface concept.
Each tag has a corresponding tag processor which is the runtime implementation of that tag’s
behavior in the generated service 1225.

[0043] The event processor 1315 is responsible for receiving web events that are
generated by the end user within the web browser and responding to those web events
through logic and web execution based on the design of the service 130 as it was modeled
within the model designer 110. Actions 1310 répresent the specific and discrete steps that
can be taken when an end user on generates some type of an event through their use of the
user interface. Custom actions can be defined and utilized within the model designer 110.
The Java Script generator 1305 is responsible for dynamically generating the Java Script that
is utilized and interpreted on the web browser to implement the web layer of the generated
service 1225. Java Script is a standard scripting language that can be interpreted by most

web browsers and executed within the web browsers. The include handler 1320 is the

34

WO 2008/097801 PCT/US2008/052603

server component that knows how to process an include tag. The include tag allows a user to
include one component inside of another. This allows for the modular construction of a web
site. For example, a user could have a header component that contains the content that should
be displayed on top of every page. The user could use an include tag to accomplish this. The
include handler would insert the header component wherever the server encounters an include
tag that references it. The button handler 1325 is the server component that knows how to
generate the HTML required to render a button on a web page. The button handler is invoked
whenever a button tag is encountered on a page as the server processes it. The layer handler
1330 is the server component that knows how to generate the HTML required to render a
layer on a web page. A layer is a region that you can apply style to. For example, you could
make all the text in a layer bold by applying the bold style to the layer.

[0044] The registry 1360 is a lookup service that knows where all objects are deployed.
This service is used extensively in a deployed application to find resources. For example, if
one web page includes another web page that is in another project, the location of that web
page in the registry will be looked up. The registry 1360 can be configured to utilize
information from the runtime registries that are included within the deployment domain. This
allows the executing software service to incorporate and integrate .at execution time with a
runtime registry and/or enterprise service bus. The runtime libraries 1390 are code libraries
that are used by the applications. The model factory 1375 creates instances of the models
that a user has designed, after an application is deployed.. Once a model has been created by
the model factory, it is stored in a cache 1380 so that the same model can be used across
multiple requests. Security applications 1385 have access to security services that only
permit access to authorized individuals. The distributed processing services 1366 are
responsible for the coordination of execution when one web model includes other web

components which may be located within the same physical infrastructure or may be

35

WO 2008/097801 PCT/US2008/052603

executing remotely. The distributed processing services 136 utilize the proxy service 1370 to
allow interactive requests and responses to be distributed across various web servers by
acting as a proxy for the request and then forwarding the request to the remote server. When
the remote server responds, the response 4is received at the proxy layer and handled in the
distributed processing service 1366.

[0045] Runtime Logic Framework 1210. FIGURE 14 sets forth details of the runtime
logic framework 1210, according to one embodiment of the invention. The runtime logic
framework 1210 is made up of several components which are ‘utilized by the generated
services 1225 to execute the logical. steps that were defined within the model designer 110
and deployed from the model deployer 120. The runtime logic framework 1210 provides the
execution services needed to achieve transaction management, flow control, security
integration as well as other types of standard services.

[0046] An application server 1490 represents the execution environment where the
services associated ‘with runtime framework 125 are deployed and running. Application
servers 1490 normally provide low level services to running applications which range from
persistence management to naming services. A generated logic model 1435 is the executable
form of the logic model designer 320 as it was designed within the model designer 110. The
generated logic model 1435 contains the executable code required to implement each step in
the model and the entry point methods needed to expose the logic model to external
consumers. Each generated logic model 1435 contains a state machine 1430 which is
responsible for controlling the execution flow. The state machine 1430 is a translation of the
visual flow that is designed within the model designer 110 into a machine which is capable of
implementing that flow including multithreading, branching, joining, conditional execution,

and iteration.

36

WO 2008/097801 PCT/US2008/052603

[0047] Step handlers 1425 are pluggable and extendable portions responsible for the
implementation of each step type. Thus, the model can be extended and/or customized by the
step handlers 1425. Each logic step type has a corresponding logic step handler 1425 which
is invoked dynamically when the step is executed by the state machine 1430. Step handlers
1425 enable the design, development and deployment of complete systems and services
within the visual model environment. A multitude of pre-built step types are delivered. In
addition, the extension and integration of new logic step types, API invocation and web
service invocation step types can be utilized.

[0048] Persistence step handlers 1405 are responsible for interacting with various types of
persistence mechanisms that may be utilized within the generated services 1225. The
persistence step handlers 1405 can be configured to store, search, remove and update
information through the persistence layer of the application server 1490 or they may also be
configured to bypass the application server 1490 and go directly to. one of the relational
databases that have béen configured as a data source in the domain. The file and logging step
handlers 1410 are responsible for general input and output routines and are also responsible
for integrating with the logging mechanisms provided with the application server’s 1490
execution environment. The transaction control step handlers 1415 are responsible for
implementing the code needed to commit and rollback transactions and to integrate with the
transaction control systems provided by the application server’s 1490 runtime environment if
one is provide. The exception handling step handlers 1420 provide the executable logic that
is required to properly route and configure user deﬁnéd and system exceptions within the
executing environment.

[0049] The runtime logic framework contains a set of runtime libraries 1485 which are
prepackaged libraries of software or services which are capable of being utilized within the

target technology infrastructure which are normally provided by third parties to the base

37

WO 2008/097801 PCT/US2008/052603

system and which may be classified as licenséd technologies and or open source utilities
which may be necessary for the operation of the generated software services. These libraries
may include database drivers and general utilities and minimize the amount of generated code
required for each software service. The runtime libraries may also include software
definitions which were configured by the service designer as being required by their service
model during execution. The persistence layer 1445 provides the super classes and
implementations of the lower level integration with the persistence infrastructure of the target
technology infrastructure. These persistence classes include code responsible for storing and
retrieving data as well a pluggable architecture for interacting with various database types.
The persistence layer provides utility methods for executing query language commands to
each database type as well as formatting and other database specific utilities. The persistence
layer 1445 interacts directly with one or more physical relational databases 1440. The
distributed processing services 1480 are responsible for the coordination of execution when
one software service invokes another software service which may be located within the same
physical infrastructure or may be executing remotely.

[0050] The distributed processing services provide a mechanism to look up services which
have been deployed and are available and further coordinates their invocation and the results
of the invocation. The registry layer 1475 provides a set of classes which can interact with a
runtime registry which provides the location of software services. The software services may
be configured to interact with one or more runtime registries and can be configured to both
publish their own service information and to retrieve other services information from these
registries through the registry integration layer. The model can be extended and/or
customized by the registry layer 1475. The web services layer 1470 provides the
infrastructure needed to handle inbound web service requests and route them to the

appropriate software service. The cache 1465 provides object caching to the executing

38

WO 2008/097801 PCT/US2008/052603

software services and is responsible for synchronizing data objects which are held in memory
as variables in logic models. The ¢ache provides performance enhancements as well as data
synchronization services. The expression evaluator 1460 layer is tesponsible for converting
expressions like variable assignments and logical comparisons of data during service
execution. The security layer 1455 is responsible for interacting with the security systems of
the technology infrastructure where the software services are executing to provide
information and authentication to the executing logic model. This includes the set of roles
that a logged in user may be in or whethér the logic model is being executed by an
authenticated or unauthenticated user. The model factory 1450 is responsible for creating and
managing instances of the logic models that are utilized within a generated sofiware service.
The model factory ensures that each instance of a logic model that is executed has been

properly configured and created prior to being used.

Methodology
[0051}] FIGURE 15 illustrates a method of creating, deploying, and utilizing a service,

according to one embodiment of the invention. In 1505, the service is designed in a visual
modeling environment such that low level machine centric and/or platform dependent
programniing language is not used. The service is capable of being implemented across an
enterprise. In 1510, the service is deployed in a plurality of technology infrastructures within
the enterprise by tailoring the service for each technology infrastructure. More details
regarding 1510 are described below with reference to FIGURE 18. In 1515, the service is
executed at each technology infrastructure in a manner that interacts with enterprise software
or other technology infrastructures. More details regarding 1515 are described below with

reference to FIGURE 23.

39

WO 2008/097801 PCT/US2008/052603

Designing the Service
[0052] FIGURE 16 illustrates details of designing the service 1505, according to. one

embodiment of the invention. In 1605, a user interface is provided to create a project which
is a top level of organization and deployment within the enterprise. The project has a name
and a collection of services 130 which are the executable endpoints defined within the
project. FIGURE 29 illustrates a Company Management project 2905.

[0053) In 1610, once the project has been created, services within the project which
contain the implementation details can be created (e.g., by a service designer). FIGURE 29
illustrates an Employee Service 2910 within a Company Management project 2905.
Implementation details can include data objects, data stores, exception definitions, logic
models, and web models. The creation of each of these implementation details is described
below. Each service 130 represents a collection of these items that are grouped together
logically and that can be accessed when the model deployer 120 deploys the project and its
services 130.

[0054] In 1615, data objects are created. Data Objects are definitions of complex types in
modeling language and are analogous to complex types in XML, or structures in many
programming languages. Data objects can be created in the system through the system
interface by defining each field and relationship, or by discovering the data object definitions
from other sources. These sources may include relational database schema, XML schema,
programming object models, etc. Data objects define -the nouns of the system, such as
employee and company, and are meant to allow service modelers to define their data model
using terms that are meaningful to the enterprise or services that they are designing. FIGURE
30 illustrates data objects Employees 3005, Location 3010, and Biography 3015. Each data

object can also contain fields with names and types.

40

WO 2008/097801 PCT/US2008/052603

[0055] In 1620, data stores are created. Data stores are databases or logical storage areas
for data objects. Data Stores represent and extrapolation of the persistence engine that is
utilized in the running Service to persist data. FIGURE 30 illustrates data stores All
Employees 3020, All Biographies 3025, and North American Locations 3030. Once a Data
Store has been created in the Model Designer, it can be used within a logic model through
various logic steps to add, update, search-and remove data from the database.

[0056] In 1625, exception(s) are created. An exception is a user definition that may be
utilized within logic models and web models to design systems to detect and respond to error
conditions or exception states in a way that is dynamic and configurable within the logic
models and web models. FIGURE 30 illustrates an Invalid Employee Exception 3035. After
creating a user defined exception, a service designer can then implement logic to create and
detect instances of that exception type.

[0057] In 1630, a logic model is created. The logic model is the visual representation of
an operation of a service 130. Logic models can represent specific implementation details for
the logic of the service 130 being designed. Logic models can define inputs, outputs,
variables, exceptions, and dependencies (i.e., one or more logic components which represent
the logical steps of execution). Thus, for example, FIGURE 31 illustrates a logic model
named Store Employee Data 3101, which is defined to take three inputs: Employee In 3105,
Biography In 3110, and Location In 3115. FIGURE 31 also has tabs for info, inputs, outputs,
variable, exceptions, and dependencies. FIGURE.31A is a screen shot illustrating the info
panel. The info panel in the logic model designer contains general configuration controls to
allow modelers to give each logic model a name and description and to specify common
attributes, such as whether or not to expose the logic model as a web service. FIGURE 31B
is a screen shot illustrating the inputs tab, which is where inputs to the logic model can be

defined. Inputs are variables in the logic model which can be defined and set outside of the

41

WO 2008/097801 PCT/US2008/052603

logic model and then passed into the logic model when it is executed. FIGURE 31C is a
screen shot illustrating the variables tab. Variables are named holders of information or
values which are utilized by an executing logic model. These values can be utilized in any of
the logic model steps. FIGURE 3D is a screen shot illustrating the outputs tab. Outputs are
the values that will be returned to the caller of the executing logic model. Outputs normally
represent the outcome or result of some type of logical operations or processing. FIGURE
31E is a screen shot illustrating the exceptions tab. The exceptions tab allows users to
configure the set of exceptions that each logic model could potentially throw as a result of its
processing. FIGURE 31F is a screen shot illustrating the dependencies tab. The
dependencies tab shows which logic steps and logic components are using which variables.
This simplifies the process of determining the set of steps that may heed to change when a
variable is modified or deleted or when the logical flow needs to be changed. Once a logic
model has been defined, the service 130 can expose the logic model as an operation which
can be executed discretely within the generated service 130. Thus, for example, FIGURE 32
illustrates a logic component named Check Employee 3205, which is designed to validate the
data passed in the input called Employee In 3105 and to throw a new Invalid Employee
Exception 3210 if the data is not valid. This demonstrates the use of user defined exceptions
within the logic model. Once a logic model has been defined, a logic component can be
created with steps that are designed to persist the data (i.e., save the data in the system)
passed into the logic model after validating the data to ensure it is correct. Thus, for t;,xample,
in FIGURE 33, if there is not an exception in 3305, the employee data is persisted 3310, and
the transaction is committed in 3315. If the employee data is invalid or if there are any
exceptions, the transaction is rolled back in 3320 and the exception is logged in 3325.

[0058] The invocation of the logic model can be either internal to the system through logic

model to logic model invocations or web model to logic model invocations. The invocation

42

WO 2008/097801 PCT/US2008/052603

can also be external through web service operation interfaces and endpoints that can be
automatically generated by the model deployer 120.

[0059] In 1635, a web model is created. The web model contains the details of the user
interface design as well as the design of the logic that is performed when various user
interface elements are utilized or rendered. .A web model is very similar to a logic model.
However, it is specifically tailored to represent the meta-data needed to automatically
generate the web user interface portion of the service. FIGURE 34 illustrates a web mode for
the Employee Service. A default component Main 3405 is created to display all employees in
the enterprise. The Main component 3405 contains a collection searcher step that loads all of
the employee records from the database and puts them in a web model variable called All
Employees. In addition, as illustrated in the example of FIGURE 35, the user is allowed to
open a user interface (UT) editor 3505 to build a web page that displays the employees in the
All Employees web model variable 3510.

[0060] Additional functionality is available. For example, as illustrated in FIGURE 36,
the user can use a data grid wizard (i.e., web control template) to build a section of the web
page that displays all of the employee records in the All Employees web model variable. The
user can choose the collection All Employees 3605 from a drop down list, indicate the width
3620, check the paginate box 3610, and indicate 10 records per page 3615, causing ten
employee records at a time 'to be displayed. In FIGURE 37, the user can select which
employee fields to display on the web page. In FIGURE 38, the user can create another
component called Edit Employee 3805, which contains a form that allows users to edit
information about an employee. FIGURE 39 illustrates an edit employee form. The user
chooses to edit the data object Employee 3905. The user can choose the location and
alignment 3910 of the data, the label style 3915, and the field style 3920. In FIGURE 40, the

user can select the fields to show in the employee form. FIGURE 41 allows the user to name

43

WO 2008/097801 PCT/US2008/052603

a hyperlink that can be clicked to edit the employee record. The user chooses the event to be
On Click 4140. The action is chosen to be Load Component 4105. The component is Edit
Employee 4110. The Layer is Display Employee 4115. The user can indicate in checkbox
* 4120 that the service 130 should continue to the next action even if an error occurs. Another
action is chosen to be Change Visibility 4125. The user can designate that for this action,
certain elements should be hidden 4130, and certain elements should be displayed 4135.
[0061] In 1640, the project model, which includes the logié and web model, is added and
synchronized to the model repository 115. The model repository offers standard version
management and version control facilities for the project models produced with model
designer 110. The model repository 115 also provides a location where the model deployer
120 can retrieve project model information for use during the deploy phase. FIGURE 42
illustrates Repository 4205, and the project model Company Management 4210. A security
feature 4115 can be utilized. More details concerning this action are described below with
regard to FIGURE 17.
[0062] In 1645, a domain is created. Users can create and manage domains, which represent
the physical system resources that will be utilized to execute the executable project package
101. For example, an enterprise may have one domain called Quality Assurance where they
use the Model Deployer 120 to deploy a certain version of a project model that represents
new development that must be tested. They may also define a domain called Production
where the previously tested version of a project model is deployed for use by the end user
community. The domain can contain one or more packages 101, data sources and project
models. Thus, for example, FIGURE 43 illustrates a. domain to deploy the Company
Management project model 4305. Within this domain, there are three data sources 4310,
4315, and 4320 each bound to one of the data objects 4325, 4330, or 4335, and each

representing an XA compatible database system. An XA compatible database system is one

44

WO 2008/097801 PCT/US2008/052603

which can support transactions which span multiple physical and logical databases allowing
all of the systems to either commit or rollback their changes in unison, ensuring that changes
are either made successfully to all databases or to none of the databases. This capability for
the management of transactions is described as being ACID in that the following
characteristics of the transaction are maintained: atomicity, cons'istency, isolation, and
durability.

[0063] In 1650, a data source is created. A data source is a specific instance (e.g., copy)
of a database that can be used by the package 101 that is generated by the model deployer
120. Each domain may have many data sources and each project model may also have many
data sources. Some project models may utilize no data source because their packages 101 do
not persist any data. FIGURE 44 is an example of creating a data source. The following
fields are included: database name 4405, URL connection 4410, driver class, 4415, XA data
source class 4420, user name 4425, and password 4430, maximum number of connections
4435, maximum number of connections 4440, and whether or not to deploy as a XA data
source 4445.

[0064] In 1655, a server is created. With the domain, the service designer 110 can create
one or more servers (e.g., application servers) representing the physical machine location and
resources that would house the generated project model and its services 130 in the technology
infrastructure 145. FIGURE 45 illustrates an example of creating a server. The following
fields are included: DNS naine or IP address 4505, which represents the network location
that the machine can be reached at through TCP/IP; HTTP port 4510, which specifies. which
port the HTTP service is available on. This is the port that the web server will respond to
HTTP Requests on; SSL port 4515, which is the secure socket layer port which the web
server will respond to secure web communications on; JNDI port 4520, which represents the

port the Java naming and director service may listen on; DNS name or IP address of SMTP

45

WO 2008/097801 PCT/US2008/052603

server 4525, which represents the address of the email server; JDK home directory 4530,
which represents the location of the Java development kit which may be utilized as part of the
deployment when deploying to a Java enabled technology infrastructure; runtime data source
4535, which represents the data source which will be used to store execution data that is
needed by the executing software service, but that is not user defined. This includes
information about the current state of execution and shared variable state.

[0065] In 1660, the project model is added to the domain. Once the Domain has been
configured, the service designer 110 can add one or more project model to the domain so that
they can be validated and deployed by the model deployer 120. The project models are
added by finding them within the model repository 115, and selecting the branch or label that
should be deployed. This helps ensure that model deployments are from specific versions of
project models. FIGURE 46 is an example of adding the project models to a domain. The
project source 4605 can be selected. The project 4610, and the version 4615, can also be
selected.

[0066] Adding Project Model to Model Repository 1640. FIGURE 17 illustrates details
of adding the project model to the model repository 1640, according to one embodiment of
the invention. In 1705, validation of the project model is completed. In 1710, the security of
the project model is checked. In 1715, the project model is checked for name collisions. In
1720, the project model is checked to validate that the version being committed is the most
recent version, and not a historical version that has already been overwritten. In 1725, a
revision level designation is created. In 1730, locking is resolved by relinquishing any locks
on the model that is being committed In 1735 the payload is saved. The payload is the model
which is being versioned and committed. In 1740, the dependencies between the item being
committed and other items in the repository are resolved and stored with the dependency

engine. In. 1745, an extension point is invoked which allows custom repository handlers to be

46

WO 2008/097801 PCT/US2008/052603

written and invoked when ever an item is persisted and committed in the repository. This
allows other systems to manage and monitor the contents of the repository enabling a wide
set of integration options. In 1750, it is determined if there are more objects in the project

model. If yes, the process returns to 1715 and repeats. If not, the process ends in 1755.

Deploying the Service

[0067] FIGURE 18 illustrates details of deploying the service 1510, according to one
embodiment of the invention. In 1805, the domain is deployed. In 1810, the model deployer
120 synchronizes the project model from the model repository 115. In 1815, the model
deployer 1820 builds the project 125. In 1820, the model deployer 120 delivers the services
130 and the framework 125 of the executable project package 101 to the technology
infrastructures 145 so the services can be executed.

[0068) Building the Project Mode 1815. FIGURE 19 illustrates details of the model
deployer building the projéct model 1815, according to one embodiment of the invention. In
1905, the user configures the domain by creating one or more data sources and configuring
one or more servers. At least one project is also added to the domain. The project is
configured to utilize the data source(s) and is targeted to one of the configured servers. These
steps represent the linkage of the service Model to the domain Model. In 1910, the
dependencies are analyzed by having the model deployer 120 request dependency data to
make sure the domain contains all projects that are dependent on one another. A domain
cannot be deployed if there is an unresolved dependency. In 1915, the service models are
retrieved from the model repository 120. Model projects inside a domain can be stored in
separate repositories. All of the service models in the domain’s projects are retrieved. This
includes data objects, data stores, Java services, web services, web models and logic models.

In 1920, the run optimizer analyzes the domain and determines what has changed since the

47

WO 2008/097801 PCT/US2008/052603

last successful deployment of the domain. In 1925, it is determined whether or not the
deployer can simply update the User Interface files or whether the Logic has changed which
will require code generation. In 1930, the domain data and objects associated with each
project model are validated by the model deployer 120 by inspecting every aspect of the
service model and the domain model and verifying that all required configuration data has
been provided and that all dependencies have been resolved. The dependency engine is
utilized to make sure that all dependent services are included in the same deployment
domain, and if there are any missing dependencies, they will be described in a deployment
message. The dependency engine inspects the attributes of the model to derive the linkages
between various service model constructs. For example, if a logic model defines a variable
called currentCompany and sets the type of the variable to be the data object company, there
will now be a dependency between the logic model and the data object. If the logic model is
deployed in a domain where the company data object is not configured to be deployed, it will
result in a deployment exception. In 1935, the model deployer 120 tests connections to each
data source and server referenced in the domain. In 1940, the model deployer 120 builds the
project model and exceptions by generating the code for all data objects in the domain and
any user defined exceptions. In 1945, the model deployer 120 builds the data source
definition and configuration scripts for any data source that is configured within the domain.
In 1950, the mode! deployer 120 builds the SQL scripts to create the database tables backing
any of the persisted data objects in the domain. In 1955, the model deployer 120 builds any’
configuration files or scripts needed to configure the security services of the targeted
technology infrastructures 145 as well as any security configuration information that is
needed by the deployed services 130 for dynamic runtime security ‘integration. In 1960, the
model deployer 120 registers a domain service: that provides debugging services for the

domain. In 1965, the model deployer builds any configuration files or property files that are

48

WO 2008/097801 PCT/US2008/052603

needed to dynamically configure the generated services 130 when they are deployed. These
property files contain information about the deploy environment and the nature of the
technology infrastructure that will host the generated software service. In 1970, the model
deployer 120 builds XML files containing all of the information needed by each project to
find and communicate with other projects in the domain. Each ‘project deployment will
contain an XML file with its location specific information in it. When the project is activated
(e.g. deployed), it sends this information to the domain registry. Once the registry has the
information for a project, other projects in the domain can ask the registry for the location of
other projects in the domain. In 1975, the model deployer 120 saves all of the JAR files
backing any Java Services in a project. These JAR files will be packaged in the EAR file
created for the project. In 1980, web services are transformed into Java services when they
are discovered.

[0069] In 1981, the model deployer 120 generates the source code for all of the web models
and logic models in the domain. For each logic model, a logic code file is created that
incorporates the meta-data that was captured by the model designer 120 regarding the flow of
execution and definition of the logic model. For each web model, a logic code file is created
that incorporates the data that was captured by the model designer 120 regarding the flow of
execution as well as the logical steps to be executed based on. the end ‘users interaction with
the generated web interfaces. Each component within the web model is generated as a
dynamic web page that is targeted for the supporting software platform where the service 130
will run. The dynamic web page contains the implementation of the User Interface that was
designed with each Component.

[0070) Building of Models 1981. FIGURE 20 illustrates details of the building of the
models, set forth in 1981 of FIGURE 19, according to one embodiment of the invention. In

2005, the model deployer 120 deploys the project model. This step creates the working space

49

WO 2008/097801 PCT/US2008/052603

for generating and deploying the project’s services. and establishes a deploy context which is
used by the deploy engine- to coordinate the deployment activities. In 2010, the model
deployer 120 deploys the service(s) 130. Since each project may have one or more services,
this step repeats until each service has been generated. The model deployer uses the meta-
data from the service to create the code that is used to invoke the service and expose the
service as a web service if so configured in the model designer. In 2013, the file for the logic
model is generated. Each service may contain many logic models and many web models and
so this step repeats for each model in the service. The file that is generated is the source code
file where the logic components and logic steps will be translated into methods and code
within this file. In 2020, common logic is built which represents the generated source code
which is independent of any logic step. This includes the general execution methods and
initialization methods. In 2025, the state machine for logic execution is built, which is the
code that controls the flow of execution for the logic model. The state machine is a low level
machine language interpretation of the visual execution flow as it was designed within the
logic model designer. The state machine implements code that moves the execution state
from one method to another until the execution is complete. In 2030, the model deployer
utilizes a template based mechanism to build the code for each step. The data that was
captured within the model designer 110 is merged with the code template that is required for
the target technology infrastructures 145 by the logic step builder. In one embodiment, the
logic step builder can be configured to build code for any step type as well as custom step
types defined outside of the enterprise. For the transaction step, the model deployer 120
utilizes the logic step builder to generate the code needed to interact with the generated
runtime services framework 125. For the rollback transaction step, the model deployer 120
utilizes the logic step builder to generate the code needed to interact with the generated

runtime services and framework to rollback the current transaction when this step is

50

WO 2008/097801 PCT/US2008/052603

encountered. For the throw exception step, the model deployer 120 utilizes the logic step
builder to generate the code needed. to interact with the generated runtime services framework
125 to throw the type of exception that was defméd to be thrown in the model designer 110.
The code is designed to populate the exception object with the information that was requested
in the model designer 110. For the catch exception step, the model deployer 120 utilizes the
logic step builder to generate the code needed to interact with the generated runtime services
framework 125 to catch the type of exception(s) that were defined to be caught in the model
designer 110. The code is designed to record the exception information that was requested in
the model designer 110 when the step was configured. In 2035, deployment artifacts are
generated. The deployment artifacts include deployment descriptors and configuration files
that are necessary to register the generated logic model within the target technology
infrastructure, which hosts the executing software service. Many systems require deployment
descriptors which detail the naming and dependencies between -executing code members.
Some require configuration information to control remote availability of executing code
members, etc. In 2040, the model deployer 120 utilizes the logic step builder to generate the
dynamic web page that was designed within the model designer 110 for the GUI step. If
necessary, in 2050, the model deployer 120 will generate any of the resources that the page
used during design including images, style sheets, etc. In 2050, if necessary, the generated
web page is configured with all of the scripting functions and controls needed to implement
the events and actions as designed. In 2045, the model deployer 120 utilizes the logic step
builder to return to 2030 to generate the code for all other step types including those that are
predefined in the system as well as those that are incorporated to the system through an
extension. In 2099, the process ends.

[0071] Referring to FIGURE 19, In 1982, if the model is exposed as a web service or web

sefvices. for remote portlets (WSRP), a WSRP descriptor file is generated for it. This file

51

WO 2008/097801 PCT/US2008/052603

describes the service and how a remote web service client or portlet container can connect to
and invoke the service. In 1983, the model deployer 120 builds a service initializer for each
generated service 130 which is responsible for the initialization activities required by the
generated runtime services framework 125 that is packaged with each generated project
model. For example, the initializer is responsible for publishing service information to the
enterprise service buses and the runtime registries that are configured in the domain. In 1984,
the model deployer 120 compiles all of the source files that were generated for each project
model. Each project model has its own unique package name, so the classes will be
organized by project model. In 1985, the model deployer 120 appends project level meta-
data to the registry bindings which are used to register the services 130 with each generated
project model to the enterprise service buses and runtime registries that are configured with
the domain. More details are provided concerning this operation with regard to FIGURE 21.
In 1986, the model deployer 120 builds the top level descriptors needed for each project
model. Each project model is packaged and deployed as a separate application in its own
deployable file, The model deployer 120 tailors the descriptor generation to the target
technology infrastructure 145. More details are provided concerning operation 1986 with
regard to FIGURE 22. In 1987, it is determined if there are any more project models. If yes,
the process returns to 1955 and repeats. If no, the process moves to 1988, and the domain is
packaged and prepared for final delivery to the target technology infrastructures 145. The
model deployer 120 can have a pluggable packager architecture. It can have a separate
packaging class for each supported application server and platform. In 1989, the model
deployer 120 delivers the domain to the target technology infrastructures 145. In one
embodiment, this only happens for automatic deploys. For scripted deploys, the model

deployer 120 skips the delivery. In 1990, the process ends.

52

WO 2008/097801 PCT/US2008/052603

[0072] FIGURE 21 illustrates the details of registering a project model, as set forth in 1985
of FIGURE 19, according to one embodiment of the invention. In 2105, a list of registries
and enterprise service buses is obtained. In 2110, thé generated services 130 are configured
and deployed with information that can be used to automatically register and de-register the
services 130 as they become available in the domains. In 2115, service data for each service
in the project model is loaded. In 2120, the model deployer 120 will generate and package
the information needed to register ‘the services 130 with one or more runtime registries or
enterprise service buses when the project model loads into memory and can optionally de-
register the service 130 when the project model becomes unavailable in the domain. In 2125,
the initializer is updated with the details of the ESB or registry so that the deployed project
will contain the configuration files and executable files needed to publish information to that
registry. In 2130, it is determined if there are more registries. If so, the process returns to
2110 and repeats.

[0073] FIGURE 22 illustrates details of building descriptors, as set forth in 1986 of FIGURE
19, according to one embodiment of the invention. In 2205, the target environment in which
service 130 is to be deployed is determined. In 2210, the logic model data is loaded. In
2215, the model deployer 120 will generate the deployment descriptors and other deployment
artifacts that are needed to configure and deploy the generated project model and its services.
The deployment artifacts include deployment descriptors- and -configuration files that are
necessary to register the generated data objects and logic models as well as the other
generated items that are included with the software services within the ‘target technology
infrastructure which hosts the executing software service. Many systems require deployment
descriptors which detail the naming and dependencies between executing code members.
Some require configuration information to control remote availability of executing code

members, etc. This step is responsible for determining the appropriate configuration

53

WO 2008/097801 PCT/US2008/052603

modifications that are required to deploy services 130 within a fault tolerant environment. In
2220, it is determined whether the deployment is a clustered deployment. A clustered
environment is an énvironment where system resources and software services are delivered
within a technology infrastructure which ensures redundancy of execution and fail over of
service invocations in the event of a catastrophic loss of operating resources or downed
environment. A clustered deployment includes cluster aware configurations as well as fail-
over preferences and load balancer URL configuration options. When deploying to a fault
tolerant environment the deployment must be configured to iintegrate with the components of
the underlying technology infrastructure which manages redundancy and fail over. This
configuration may be specialized for each generated artifact and is specific to each
technology platform. If it is a clustered (i.e., fault tolerant) deployment, in 2230, the cluster
configuration is generated. In 2225, the deployment package is updated.

[0074] FIGURE 23 illustrates details of executing the service, as set forth in 1515 of
FIGURE 15, according to one embodiment of the invention. In 2305, available project
models and services are received. In 2310, runtime registries and enterprise service buses are
notified that the generated software services have become available and information about the
software services is automatically published to the runtime registries and enterprise service
buses which were configured within the domain model. The information that is published to
the registry and the protocol and standard used in the publishing is configurable and
customizable within the system. In 2315, the runtime is executed.

[0075) FIGURE 24 illustrates details of executing the runtime, as set forth in 2315 of
FIGURE 23, according to one embodiment of the invention. When the runtime is executed,
the web browser and web server interact to provide a dynamic user interface that can be
utilized by the user. A dynamic user interface refers to the capability of being able to change

the interface at the browser without interacting with the web server. In 2405, the user clicks

54

WO 2008/097801 PCT/US2008/052603

the button to execute the service 130. In 2410, server action is invoked. The generated
service user interface is preconfigured to invoke the web controller responsible for manager
the invocation of server actions which are actions that are implemented as a set of execution
steps in the web model. In 2415, the runtime web layer loads the generated instance of the
web model and then proceeds to bind any data from the web browser that is being used to set
the variables of the web model prior to the execution of the server action. In 2420, the data
that was sent in from the web browser as a part of the HTTP request is bound into the
variables of the logic model or web model that is being executed so that those new variable
values can be included in processing of the logic. In 2425, the web runtime requests the logic
runtime to execute the logic steps that were specified in the web model during the design
phase. The logic tier loads the server action as it was defined and executes the logic steps
that it contains. The server action can be configured to invoke other logic models as well as
executing its own steps.

[0076] Following the invocation of the server action, the load component action 2430 will
be executed and will cause one of the UL components from a web model to be dynamically
loaded into the web page. The load component action is the second action that was designed
within the model designer to be performed when a user clicks on this button. Each user
interface event can trigger many actions. The load component action 2430 invokes the
scripting language that was generated into the HTML page by the model deployer to make an
HTTP request to the executing software service to load a specific web model component.
The HTTP request reaches the web. tier that is packaged as a part of the runtime services
framework to receive this request. The web tier first checks to the component to determine
whether the request is for a component in the same project and software service or whether
the request is for a component in a separate project and software service which may be

located on a separate physical system 2445. If the component is not local, in 2450, its URL is

55

WO 2008/097801 PCT/US2008/052603

requested from the runtime registry which has been configured to work with this software
service. The web tier then forwards ‘the request to the appropriate server in 2455. If the
component is local, in 2460, the tier loads the web model into memory and initializes that
web model instance for use. The web tier then retrieves information that was sent with the
HTTP request that represents values being passed into the software service from a web
browser form or hyperlink and binds that data in 2465 to the variables that are being utilized
in'the web model. Once set, these variables will effect the execution and outcome of the web
model. In 2470, the web tier requests that the web model execute the pre-steps of the web
component. The pre-steps are the logic steps that occur prior to the GUI step in the web
component. In.2475, the web tier loads the content of the GUI step by invoking the dynamic
web page as it was generated by the model deployer. The dynamic web page may include
static and dynamic content and may utilize the variables of the web model to generate its
content. The dynamic web page represents the GUI step as it was configured and designed
within the GUI step designer 958. The page may contain one or more custom tags 934 which
are injected into the dynamic page as representations of the GUI widgets 936 that were
configured in the GUI widget designer(s) 936. As the web tier loads the dynamic web page,
its tags are processed and each tag’s tag handler is invoked at 2480. Once the dynamic
content has been created in the web tier, the content is returned to the browser in 2485. In
2490, the content is received by the web browser and then inserted by the load component
handler into the layer on the web page that was designated when des;ignin'g the load
component action in the model designer. In 2435, the load component action completes its
execution by changing the visibility of the layer where the content was loaded. This is
achieved using the visibility flag or style on that layer as prescribed by the HTML
specification(s). In 2440, the dynamic content: is made visible to the end user through the

web browser interface.

56

WO 2008/097801 PCT/US2008/052603

[0077]) FIGURE 25 illustrates details of the request logic tied to execute pre-steps, as set
forth in 2470 of FIGURE 24. In 25035, the state machine is initialized. Once initialized, the
state machine will guide the execution of the logic model and will control the flow of
execution as it was designed in the model designer 110. In 2510, the generated logic model
loads each step as defined and controlled by the state machine. In 2515, the step execution is
set up by preparing the variables that will be used by the step and creating the data that will
be passed té the step handler that represents the translation of the details configured in the
step designer from within the model designer. In 2520, the transaction is started. In 2525, the
data is loaded, and all of the information required by the step handler is pushed into a data
bean which is an object designed to hold the information required by each step type and step
handler. In 2530, the generated logic model invokes the step handler for the current step.
Each step type has a corresponding step handler which is a class that does the work
associated with each step type. The variable data and execution context are passed to each
step handler which then incorporates that information into its execution. The information that
will be passed to the step handler is determined during the design phase within the step
designer which is a sub component of the logic model or web model designer which is a sub
component of the model designer. In 2535, the state machine is incremented to the next
appropriate state. The state of the logical execution model is dependent on the logical flow as
it was designed within the model designer and the state machine is generated and executed as
code that is a translation of that execution path. The state machine determines which method
will be invoked next while the logic model or web model are executing. In 2540, after
invoking each step handler, the generated logic model will validate the transaction state and
determine whether or not there are any errors or exceptions and validate that the transaction
has not been rolled back. The state machine is updated in either case to either move the

execution forward or route the exception to the appropriate exception handling step as

57

WO 2008/097801 PCT/US2008/052603

defined in the logic model. In 2545, it is determined if there are any additional steps. If yes,

the process returns to 2510 and repeats. If no, the process moves to 2550 and ends.

Conclusion

[0078] While various embodiments of the present invention have been described above, it
should be understood that they have been presented by way of example, and not limitation. It
will be apparent to persons skilled in the relevant art(s) that various changes in form and
detail can be made therein without departing from the spirit and scope of the present
invention. In fact, after reading the above description, it will be apparent to one skilled in the
relevant art(s) how to implement the invention in alternative embodiments. Thus, the present
invention should not be limited by any of the above-described exemplary embodiments.
[0079] In addition, it should be understood that the figures, examples, and screen shots,
which highlight the functionality and advantages of the present invention, are presented for
example purposes only. The architecture of the present invention is sufficiently flexible and
configurable, such that it may be utilized in ways other than that shown in the accompanying
figures, examples, and screen shots.

[0080] Further, the purpose of the Abstract of the Disclosure is to enable the U.S. Patent
and Trademark Office and the public generally, and especially the scientists, engineers and
practitioners in the art who are not familiar with patent or legal terms or phraseology, to
determine quickly from a cursory inspection the nature and essence of the technical
disclosure of the application. The Abstract of the Disclosure is not intended to be limiting as

to the scope of the present invention in any way.

58

WO 2008/097801 PCT/US2008/052603

WHAT 1S CLAIMED IS

1. A method of utilizing a service, comprising:

a.

b.

designing the service in a visual modeling environment such that low level
machine centric and/or platform dependent programming language is not.used,
the service capable of being implemented across an enterprise; and

deploying the service in a plurality of technology infrastructures in a manner
that interacts with enterprise software and/or other technology infrastructures

within the enterprise by tailoring the service for each such infrastructure.

2. The method of Claim 1, wherein the capabilities of the service comprise:

a.

b.

g.
h.

transaction control;

fault tolerance;

exception handling;

logic execution

logging integration;

runtime registry publication;
enterprise service bus publication;

or any combination thereof.

3. The method of Claim 1, wherein the service allows interaction of multiple supporting

software platforms within atomicity, consistency, isolation, and durability: (ACID)

based transactions.

4. The method of Claim 1, wherein the service is capable of being deployed in a fault

tolerant environment,

5. The method of Claim 1, wherein the service is capable of model-based exception

handling.

59

WO 2008/097801 PCT/US2008/052603

6. The method of Claim 1, wherein the service is capable of logging integration with the
enterprise software and/or the other technology infrastructures within the enterprise.
7. The method of Claim 1, wherein the service is capable of being published to runtime
registries and/or enterprise service buses.
8. The method of Claim 1, wheréin the technical infrastructure of the deployment
environment is capable of being extended and/or customized such that:
a. any type of technical environments can be plugged into the deployment
environment for use; and/or
b. multiple technical infrastructures can be plugged into the deployment
environment simultaneously for use.
9. The method of Claim 1, wherein the modeling environment is capable of being
extended.and/or customized such that:
a. new components can be plugged into the modeling environment to enable the
creation and modification of new entities within the model; and/or-
b. new componeiits can be plugged into the modeling environment to enable the
generation, of source code by the modeling environment
10. The method of Claim 10, 'wherein the service utilizes Rich Internet application
capabilities.
11. The method of Claim 10, wherein the Rich Internet application capabilities comprise.
rich dynamic user interfaces.
12. The method of Claim 11, wherein the rich dynamic user interfaces are: synchronous
and/or asynchronous.

13. A method of utilizing a service, comprising:

60

WO 2008/097801 PCT/US2008/052603

a. designing a service in a visual modeling environment such that low level
machine centric and/or platform dependent programming language is not used,
the service utilizing Rich Internet application capabilities; and

b. deploying the service in a plurality of technology infrastructures in a manner
that utilizes the Rich Internet application capabilities by tailoring the service
for each such infrastructure.

14. The method of Claim 13, wherein the Rich Internet application capabilities comprise
rich dynamic user interfaces.
15. The method of Claim 14, wherein the rich dynamic user interfaces are:
a. synchronous; and/or
b. asynchronous.
16. The method of Claim 1, wherein only changed items in the service are deployed.
17. The method of Claim 1, wherein previous deployment states from previously
deployed services are capable of being restored.
18. The method of Claim 1, wherein the service is validated to check for errors and/or
issues in design and/or implementation.
19. The method of Claim 1, wherein dependencies between various components in
services are provided in the visual modeling environment.
20. The method of Claim 1, wherein the service is tailored to the technology
infrastructure where the service is executed.
21. The method of Claim 1, wherein different versions of the service and/or a part of the
service can be built, accessed, utilized, and/or edited by the user.
22. The method of Claim 1, wherein the different users can build, utilize, access, and/or

edit the service and/or a part of the service at the same time.

61

WO 2008/097801 PCT/US2008/052603

23. The method of Claim 1, wherein the service and/or a part of the service can be
combined and/or orchestrated with other services and/or parts of the service in the
visual modeling environment.

24. The method of Claim 1, wherein the designing comprises:

a. creating a project model, the project model including a project name and the
service; and

b. creating a runtime framework representing a location and resources of a
technology infrastructure which will receive a project created from the project
model.

25. The method of Claim 24, wherein the service includes implementation details,
comprising:

a. adata object;

b. a data store;

c. an exception definition;

d. alogic model;

€. aweb model; or

f. any combination thereof.

26. The method of claim 24, wherein the deploying comprises:

a. building a project utilizing the project model;

b. delivering the project to technology infrastructure utilizing the runtime
framework.

27. A system for utilizing a service, comprising a computer with an application for:

a. designing the service in a visual modeling environment such that low level
machine centric and/or platform dependent programming language is not used,

the service capable of being implemented across an enterprise; and

62

WO 2008/097801 PCT/US2008/052603

b. deploying the service in a plurality of technology infrastructures in a manner
that interacts with enterprise software and/or other technology infrastructures
within the enterprise by tailoring the service for each such infrastructure.

28. The system of Claim 27, wherein the.enterprise class capabilities comprise:

a. transaction control;

b. fault tolerance;

c. exception handling;

d. logging integration;

€. runtime registry publication; or

f. enterprise service bus publication; or

g. logic execution; or

h. any combination thereof.

29. The system of Claim 27, wherein the serv,ice. allows interaction of multiple supporting
software platforms within atomicity, consistency, isolation, and durability (ACID)
based transactions.

30. The system of Claim 27, wherein the service is capable of being deployed in a fault
tolerant environment.

31. The system of Claim 27, wherein the service is capable of model-based exception
handling.

32. The system of Claim 27, wherein the service is capable of logging integration with the
existing enterprise system and/or other technology infrastructures.

33. The system of Claim 27, wherein the service is capable of being published to runtime
registries and/or enterprise service buses.

34. The system of Claim 27, wherein the modeling environment and the deployment are

capable of being extended and/or customized.

63

WO 2008/097801 PCT/US2008/052603

35. The system of Claim 27, wherein the service utilizes Rich Internet application
capabilities.
36. The system of Claim 35, wherein the Rich Internet application capabilities comprise
rich dynamic user interfaces.
37. The system of Claim 36, wherein the rich dynamic user interfaces are:
a. synchronous; and/or
b. asynchronous.
38. A system of utilizing a service, comprising a computer with an application for:

a. designing a service in a visual modeling environment such that low level
machine centric and/or platform dependent programming language is not used,
the service utilizing Rich Internet application capabilities; and

b. deploying the service in a plurality of technology infrastructures in a manner
that utilizes the Rich Internet application capabilities by tailoring the service
for each such infrastructure.

39. The system of Claim 38, wherein the Rich Internet application capabilities comprise
rich dynamic user interfaces.
40. The system of Claim 39, wherein the rich dynamic user interfaces are:
a. synchronous; and/or
b. asynchronous.
4]. The system of Claim 27, wherein the designing comprises:

a. creating a project model utilizing the project model including a project name
and the service; and

b. creating a runtime framework representing a location and resources of a

technology infrastructure which will receive the project model.

64

WO 2008/097801 PCT/US2008/052603

42. The system of Claim 41, wherein the service includes implementation details,
comprising:
a. adata object;
b. a data store;
c. an exception definition;
d. alogic model;
e. aweb model; or
f. any combination thereof.
43. The system of claim 40, wherein the deploying comprises
a. building a project utilizing the project model;
b. delivering the project model to the technology infrastructure utilizing the
runtime framework.
44. The system of Claim 27, wherein only changed items in the service are deployed.
45. The system of Claim 27, wherein previous deployment states from previously
deployed services are capable of being restored.
46. The system of Claim 27, wherein the service is validated to check for errors and/or
issues in design or implementation.
47. The system of Claim 27, wherein dependencies between various components in
services are provided in the visual modeling environment.
48.The system of Claim 27, wherein the service is tailored to the technology
infrastructure where the service is executed.
49, The system of Claim 27, wherein different versions of the service and/or a part of the
service can be built, utilized, accessed, and/or edited by the user.
50. The system of Claim 27, wherein the different users can build, utilize, access, and/or

edit the service and/or a part of the service at the same time.

65

WO 2008/097801 PCT/US2008/052603

51. The system of Claim 27, wherein the service and/or a part of the service can be
combined and/or orchestrated with other services and/or parts of the service in the
visual modeling environment.

52. The method of Claim 21, wherein different parts of the service can be versioned
independently of each other.

53. The system of Claim 49, wherein different parts of the service can be versioned

independently of each other.

66

WO 2008/097801 PCT/US2008/052603

1/54
100\
ENTERPRISE
DEVELOPMENT
INFRASTRUCTURE 135 EXECUTABLE
' PROJECT
PACKAGE 101
MODEL MODEL - MODEL
DESIGNER REPOSITORY DEPLOYER - FRR;\UMNETVIC?)ERK
110 115 120 e
4 + f
A Y GENERATED
SCHEMA FRAMEWORK o
105 125
A
102
GEN. :
SOFTWARE SEC. & SERVICE cob
- »| | DIRECT. REG.
SERVICES 143
141 142
130
A ENTERPRISE
INFRASTRUCTURE 140
APP. WEB
SERVER || DS o8 | serv.
144 Al 147
TECHNOLOGY
INFRASTRUCTURES
145

WO 2008/097801 PCT/US2008/052603
2/54
FIGURE 2
105
Domain
215
A A A A 4
Data Source Server Deploy History [| Deploy Event
205 210 220 225
Y
Project Deploy ; Y .
Service Registry /
230
ESB
v 240
Project
235
\4 y A\ 4
Service Web Service | | Java Service
Models 290 293
245 . _
L 2 v
Web Service Java Class
Method 295
291 -
2
Java Method
297
» Web Logic Data Data .
GUI Root Model || Model | | Object | | Store | |PXSeRHOn
250 255 260 265 T
; A
J 1 Logic Relationship
GUl Component 280
GUI Pages | | o 275 o
263 esources v
T 254
Logic Step
285

WO 2008/097801 PCT/US2008/052603
3/54
FIGURE 3
110 \
Java Service

Designer

330

Web Service

Designer

335
RDBMS Data Store
Designer Designer

340 315
Discovery Domain | | Data Object | | Logic Model | [Web Model GUI Model
Designer Designer Designer Designer Designer Designer | | Debugger

360 305 310 320 325 327 365

Model Designer Plugin Interface
355
Validation Engine Access Engine Dependency Engine || Import / Export Engine
380 375 370 382
Virtual File System
384

Model Persistence

386

WO 2008/097801 PCT/US2008/052603
4/54
FIGURE 4
305 \

Dome%ln PrOcht Data Source Server Ru'l}tlme
Security Deploy . . Registry /
g . Designer Designer h
Designer Designer 415 490 ESB Designer

405 410 — — 425
Domain Object Designer Plugins
430
Domain Object Designer Interface
435
Repository Deploy Histo Dependenc
Integration p 0y Fstory pendency Validation Engine
. Engine Engine
Engine 445 450 455
440 — -
Virtual File System
460

Model Persistence
466

WO 2008/097801 PCT/US2008/052603
5/54
FIGURE 5
310
Name Fields Relationships
205 310 315

WO 2008/097801 PCT/US2008/052603

6/54

FIGURE 6

315
N

Name Data Object
605 610

WO 2008/097801

320

7/54

FIGURE 7

Variable
References
744

Outputs
750

Inputs
752

Component Designer
764

Variables
754

Security
748

PCT/US2008/052603
Web Service Exceptions
Exposure 720
746 o

WO 2008/097801 PCT/US2008/052603
8/54
FIGURE 8
Variable
References
860
Component . . Portlet Protocol Access
Designer Vaglg‘gles Se; g;:ty Exposure GU21 GI;ag © Attributes Attributes
764 = = 862 . 861 862

PCT/US2008/052603

8Al

WO 2008/097801
9/54
764
N FIGURE 8A
Iteration
8A7
D;::;:n Execute SQL Log Info
8A6 8A13 8A23
.. Search Data Commit Catch .
Degc:;on Store Transaction Exception De;i;g tle
— 8A12 8A16 8A19 _
Toini Modify Rollback Throw Read/Write
c;;;l::g DataStore Transaction Exception File
— 8A1l 8A15 8A18 8A21
. Persistence Transaction Exception File & Logging
Branching Steps Mansiie:‘em Handling Steps Steps
§A3 8A10 8AM 8A17 8A20
Threading Step Designers
- 8A2 8A9
Vlsua; Flow Step Designer Plugins
.Model A8

WO 2008/097801 PCT/US2008/052603
10/54
FIGURE 9
327
Style Events Data Binding | | Condition ,
Editor Editor Editor Editor O;I;e;s
905 910 915 920 —
Attribute Customizers
930
Tag Attributes
932
Tool Palette
Custgr;Tags Management
234 944
. Resource
GUI Widget Designers Scaffolding Designers Management
936 940 046
GUI Widget Plugin UI Scaffolding Plugin State Management
GUI Editor Linkage
950
Embedded HTML Editor Mediator External HTML Editor Mediator
952 954
HTML Editor Mediator
956
GUI Step Designer

958

WO 2008/097801 PCT/US2008/052603

11/54
FIGURE 10
11 5\A
v
Dependency Branch Entitlement
1045 1010 1055
A 4 \4
Depen?lency Label
Provider 1015
1050 I
Revision
1020
|
Lock Revision Revisions Payload
1025 Number Labels 1040
E— 1030 1035 E—

WO 2008/097801 PCT/US2008/052603

12/54

FIGURE 11

120

N

Read Directory Commit Transaction
1110 1118
Execute SQL Delete File Rollback Transaction
1104 1112 1120
Exception Search Data Store Write File Throw Exception
Builder 1106 1114 1122
1132 Modify DataStore Read File Catch Exception GUI Step
Builder Logic Step Builder
1134 1128
Data. Store Logic Model Builder Web Model Builder
Builder 1130 1138
1136 I —
Model Builder Plugin
1140
Deploy Context Services
1142
RDBMS Services
1144
Deploy Naming Services
1146
Repp sitory . Deploy Hlstory Dependency Engine Validation Engine
Integration Engine Engine 1152 1154
1148 1150 —= =
Deploy Engine
1156

WO 2008/097801

PCT/US2008/052603
13/54
FIGURE 12
125
Gener.a ted Generated Generated Generated Generated
Service ., .) .
Initializer Service Service Service Service
1230 1225 1225 1225 1225
Registry ‘]
Integration Runtime Web Framework Runtime Logic Framework
Framework 1205

1245

1210

130

125

WO 2008/097801 PCT/US2008/052603
14/54
1205 FIGURE 13
JavaScript
Generator
1305
<D
Actions P 5 ﬁl
1310 PR R R
S o)
= £ >
Event Processor — ;A
1315
Tag Handlers
1335
Tag Processor Registry Model Factory
1340 1360 1375
Flow Controller ?;Zt;ls);fd Cache
1345 aee 1380
Buffering Proxy Security
1350 1370 1385
Web Controllers Runtime Libraries
1355 1390
Web Server
1395
Application Server
1399

WO 2008/097801 PCT/US2008/052603

15/54
FIGURE 14
1210
\ Model Factory
1450
Security
1455
Expression
g N a & Evaluator
E 53) 7 S 1460
5 ||%2lzgl2s
e E Cache
2B al|S el 2 1465
s LDl e ST 2
o —Hg|55 o 2
A ER(ERERE ~
2 STl g T |aT Web Services
iz = g § Databases 1470
~ - /M 1440
Registry
'Step Handlers 1475
1425
. Distributed
Persistence Processing
State Machine 1445 1480
1430 =
' Runtime Libraries
Generated Logic Model 1485
1435
Application Server
1490

WO 2008/097801

16/54

FIGURE 15

1500

‘ 1505
N .,
Design

1510

Deploy

1515

Runtime

PCT/US2008/052603

WO 2008/097801

1505

I

1605
\

1610

1615

1620

1625

1630

1635

PCT/US2008/052603

17/54
FIGURE 16
1640
) Add Project Model
Create Project r to Model
Repository
Y
1645
Create One. Or Create Domain
More Services
v v
1650
Create Data Create Data
Objects Source
Y Y ,
1655
Create Data Create Server
Stores
v Y |
1660
Create Exception. Add Project To
Definitions Domain
Y
Create Logic
Model
v
Create Web

Model

WO 2008/097801

1640

I

1705

N

1710

AN

1715

1720
1725

1730

FIGURE 17
3
Save Payload.
Validate
v v
. . Update
Ch) :
Check Security Dependencies
v
Invoke
Integration
Check For
Name
Collisions
v
Up to Date
Check End
v
Create
Revision
v
Resolve
Locking
1

PCT/US2008/052603

1735

1740

1745

WO 2008/097801

1510

I

1805

1810

1815

1820

19/54

FIGURE 18

Deploy Domain

Model Deployer
Synchronizes
Model From

Repository

Model Deployer
Builds Project

Model Deployer
Delivers
Executables

PCT/US2008/052603

WO 2008/097801 PCT/US2008/052603
20/54

1815\ FIGURE 19

1905 907\ 1908 D0main 1909+
\ User Configures |
Domain Project / Datasource // Server /
1910
Analyze 1945 } . 970 v
\ Dependencies 198{
Build Build Registry Compile
l Datasources Entries P
1915 I ‘ i I
\ Fetch Core Data 1953 1975 1985 '
Build SQL ™| Biild Java N : :
_ . Register Project
¢ Scripts Services
1920 I
\ Run Optimizer 1983
1932 o ‘ Build
Build Web Descriptors
Services
N N 1987
y
1981 { More
~N .
Configure Build Models Projects?
Security
N 1960 - v 1988 y
Validate Domain | =7 1982 N
. N
Register Build WSRP Package Domain
J’ Debugger
1935
N Test N y 1983 v 1989 J
Connectivity N N
¢ Build Properties Build Initializer Deliver Drop
1940 .
“_[uild Data Model | [1990
& Exceptions N End
I

21/54

FIGURE 20

2055
N

PCT/US2008/052603

2060 . Service

Logic
‘ Model
I

2065

WO 2008/097801
1981 \
2005
: \ Model Deployer
Deploys Project
2010
\ Model Deployer
Deploys Service
L 2
2015
U Generate file for
Logic Model Code
v
2020\ Build Common
Logic Source
v
2025 Build State
N Machine for Logic
Execution
\ 4
2030

N\ |Build Code for Each Step

T
A 4

.| Generate Deployment
Artifacts

<

2045

2099

2050

Generate Ul Page

More Steps

WO 2008/097801

1985

N\

2105

2110

2115

2120

22/54

FIGURE 21

Get List of Registries
and ESB’s for Project

Load
Registry
Plugin Adapter for
Registry Type

Y

Load
Service Meta Data
for Each Service
in Project

Y

Generate
Registry Specific
Integration Stub

I

Update Initializer

More
Registries

PCT/US2008/052603

WO 2008/097801 PCT/US2008/052603

23/54

1986 FIGURE 22

2205
Determine Target

Deploy Environment

v

. | Load Logic Model
Meta-data

v

2210

2215

_ | Generate Deployment
Descriptors

2230

2220

Generate Cluster
Configuration

Clustered
Deployment

\

2225

N Update Deployment
Packages

WO 2008/097801 PCT/US2008/052603
24/54

1515 \ FIGURE 23

2305

N Generated
Projects and
Services
Available

2310 Y

Runtime
Registries and
ESP’s are notified

Y

2315

Runtime executed

WO 2008/097801 PCT/US2008/052603

25/54
2315
\ FIGURE 24
2405
\
User Clicks
Button
2410 2430 2435
\ \ \/
Invoke Server Load > "l_"o'g'gl.e
. Component. Visibility
Action . .
L Action 2490 2720 Action
\ \ v
Insert Content || Make Layer
Info Layer Visible
* Web Browser
HTTP over
TCP/TP
2415 \ 2445 2460\ 2485\ Application
: - Server
Load Web Is Local Load Web | |Return Content iky way Web
Model omponant? Model to Browser 1er
2420 2450 - i
\ v \ 2465 \ 2480 \
. Lookup . Process
Bind Data Component in Bind Data Custom Tags
Registry '
2425 12455 2470 2475 1t
\ y \ \ A \
Requst Logic | [Forward Action Request Logic Load GUI
Tier to Execute| |to Appropriate Tier to Execute Step
Steps Server Pre Steps
|

WO 2008/097801

2470

N\

2505

2510
2515
2520

2525

2530

Initialize State
Machine

26/54

FIGURE 25

Load Current
Step

A

Setup Step
Execution
Context

Start
Transaction

I

Load Data
Bean

I
y

2535

Check
Transactions
and Exceptions

Increment State
Machine

A

Invoke Step
Handler

PCT/US2008/052603

WO 2008/097801 PCT/US2008/052603

27/54

FIGURE 26

2 sompadosd i~

fcssc dins

4'ficaq_gemo
Famaln

“proxy
\proxy_demo
iitooltip

Br “itnollip_demo._

. -1 SUOmY BAIag

e

A i
7
L

7 PR -
s A _ i 5& ; \%g;é}zg t?g 1'% o R o Rt

VCI Vst sl i i an thediaiat) G g TR BN Ml A g
J_ —-—g-y‘-‘“;(;&s,liﬂxdﬂﬁﬁh WhE ‘;r Uy ;_zgm?t(}(;?;n ;}‘? ;_‘ LAYV At Tt (G SN ."‘5{% e
£ v::'*‘ﬁ (1iis t i ":’ i Fﬂ ‘@Slﬁ¥ ety yif % 3 % A5 ‘1 4 }é}' A et Qé’j"!
A6 4 ‘:." ,:J.GH 3, ALt " :ﬁf{z' ¢ iR L] i AP : h} ¥ #i ruvx.g.‘fn

WO 2008/097801

28/54

FIGURE 26A

Construct Message
‘Construct a message using the avai»lab‘le process variables

5"*"

lkpm}!:..m ;wr:
pi B

e

rli)u»

PCT/US2008/052603

WO 2008/097801 PCT/US2008/052603

29/54

FIGURE 27

o

]

5%"”?)

Set Editable
Evernts.

WO 2008/097801 PCT/US2008/052603

30/54

FIGURE 28

Resaurces
Rresinig g

WO 2008/097801 PCT/US2008/052603

31/54

EIGURE 29

Companyhlanagment

All Objects

S

WO 2008/097801

32/54

FIGURE 30

PCT/US2008/052603

i

CompanyManagment
EmbloyeeSenvice

& Invalid Employee Ex!
J All Biographies
tz3 All Employees
kg North American Loc
12 Biography
-1 Employee
1.2 | ocation

005 12

i

{
Companylilanagment
’ 4

o
e

™

All. Employees

3010

!

w

O
2

N R
iography ~
i
3

!
H
i
N

\ p .
"Mojtlf American Locations

L5
-7 K

& 3035

Invalid Employee éxcepﬁcn

Location

WO 2008/097801

33/54

FIGURE 31

PCT/US2008/052603

dAddress?.

Q—-st. @

b 'St'up Ko

¢

11,
| Inputs |

Employeein

Biographyln

Bioaraphy

|locationin

Locatien

o 3
X' L

c ' : . i1 '

; N ; N oo

WO 2008/097801

34/54

FIGURE 31A

’ﬂﬂ m’n X

PCT/US2008/052603

. "[Company Managerment

Description
B 7 U A EF B I3

et

T L R e P e

T

oY

“WVED ACCessS ™
[F).Publishy as Web Service

prs;

* Ccmmunicaﬂans rowcol'

@“'"" | OurTes

WO 2008/097801

35/54

FIGURE 31B

PCT/US2008/052603

NI
EAVAE

iy &
pﬂons}ﬁbependen_c_!gi

XNERIP n
87

03y

I TaiTey

Texd

Hihype!

G cougction®!

Text

N A R B T e I N EU R T TV ROV AN A
~Rl

WO 2008/097801 PCT/US2008/052603

36/54

FIGURE 31C

: leadﬂma
texiData

WO 2008/097801 PCT/US2008/052603
37/54

FIGURE 31D

ma

A
e T

e
A

L
FA LT

WO 2008/097801

38/54

FIGURE 31E

PCT/US2008/052603

This ‘t:pio_'dej_' lﬁrqws_‘lhefol‘lqwﬁng exceptions:

[Edit Coligction’or Data Store Exception
Object 1o XML Exceptwn
Send E-Mail Excepuon

- Exceptions thrown-from the Model thatare not'in the list are
thrown as "UnknownExceptions®. i

| memave |
L= X

—
Yrowi meu R IR LIV A L

WO 2008/097801 PCT/US2008/052603
39/54

FIGURE 31F

‘Outputs | variables] Exe

Selecta Variable or Input

WO 2008/097801 PCT/US2008/052603

40/54

FIGURE 32

WO 2008/097801 PCT/US2008/052603

41/54

FIGURE 33

WO 2008/097801 PCT/US2008/052603

42/54

FIGURE 34

FARUIT T e

Suop Iy RNDS.

3

i

. . . ,(‘ 3 » el
S SR R
e R éﬁ'}; R, ‘5 sl e e #f?«'&% %’L lﬁf‘:&‘{ ‘\g\s{‘. Sk
] : el : i 7

iy

g
ERIDEN

WO 2008/097801 PCT/US2008/052603

43/54

FIGURE 35

C, (allemployees)

Name

S A I Y e s

: %[allemployees name] : %[allemployees address]%

T T L T L

Showing 1 - 10 of 100 items found
CJ previous | nextPage 1 2 3 4 (allemployees)

WO 2008/097801 PCT/US2008/052603

44/54

FIGURE 36

Basic Properties
Configure the basic properties of your data grid.

TR A
SRIO YT
5

(01

o

B2 R iR
:!(;(ff ol

i1

TELICEL BT
@ﬁ&ﬁw;@

AL S SAIR NN

WO 2008/097801 PCT/US2008/052603

45/54

FIGURE 37

Ceonfigure Columns

Configure the columns and headers of your data grid.

i

Address

A e SR
AR T 3 . X AL 32 4 Neoett
e e o

WO 2008/097801 PCT/US2008/052603

46/54

FIGURE 38

Fan
I¥ £y 0
}’1 LS
3y -;%
i ﬂﬁ{’vu R

GO
IR

WO 2008/097801 PCT/US2008/052603

47/54

FIGURE 39

Basic Properties
Configura the basic properties of your Data Objact antry form.

Basic Propt

WO 2008/097801 PCT/US2008/052603

48/54

FIGURE 40

Configure Columns
Configure the columns and headers of your structure entry form.

TR

Address

.»,,

“%Qf!‘m f? E{ 'r’; L

WO 2008/097801 PCT/US2008/052603

49/54

FIGURE 41

Events
Configure events and the actions to take when each event fires.

Events

Assighments)

5 2
e | R e AL
Advanced Properties B # N SR R e R R ‘m.u.m. S

10 Component [editemployee

Set Display Concitibns
Summary o Laer: |displavempioyee i 4115
' [7] Continue to next action evan if an error occurs. 41 20 i

mﬂmmmn— [RETTLATE e A% iy 5y LIRS W}l .1 ! ‘1?" 2

g Change Visibility v?:% SR E‘ﬂ%@%&ﬁ '%ﬁé%ﬁ“ 2
sE .mrrjm ’25.r @413()% i g}i&&
Hide These: [Enter or Select an Element Q i

Show These: | ;displayempluyee ri& 41 35

WO 2008/097801

50/54

FIGURE 42

PCT/US2008/052603

Security’ CompanyMana.
gment

4215 4210

WO 2008/097801 PCT/US2008/052603

51/54

FIGURE 43

EﬁPhw
i&-fg CompanyManagment
&-[FZ] Skyway Project :

Y

/
-

i

>

’
/
T s

e
A e

!/
/
4

ES
w
N
[4)]

¢
é\.»)
A

T

on Domain

b

<

o,

~

I
=0

T,

e

o

o

-~

@

o

c

<

4% o

Demao nstfr;ati

2

L

b

4315

e

1]
Rl EmployeeSenice
. &

4310 S ST ‘<>§ 4330

'; TS el ‘@ w
s_@ Data Object Group
4335 '

; Data Object Group: o

T e

FE s

Data Mapping Model
s

WO 2008/097801 PCT/US2008/052603

52/54

FIGURE 44

Datasource Configuration
Enter the configuration paraméters for the datasource.

)U_dbc.postgfesq f

I AN SR
SR
torg.postgresql.Driver
AT

A DT

O

ban

P
i
2

WO 2008/097801 PCT/US2008/052603

53/54

FIGURE 45

¥ Kol

Configure Server

Configure:the JBoss server and select the datasource for the Skyway Runtime.

":,n“:." LR :’3&{‘ 3!;3’3‘)%’{}3;;«@%%;!
{'»v l‘;“’]df‘é\?‘é W %}}1 :ﬁf’ ﬂ)u::{} 477

riph il 56
it

o

- : I S e
e e R R T
Select Deploym et ASLSARA T Satainaiitaianat s sl it

18443
. LAAOT Y,

Configure Clu B T ‘rﬁ AT T

¢ - [.f{}-' "ﬂl\ﬁlmﬁb ECRTE 4 g&?fgiﬂ i

C:/Skyway5.0/c { 4530
an e T : '

ég Please selact adatasource

o

WO 2008/097801 PCT/US2008/052603

54/54

FIGURE 46

Select Project
Select the source of the projects, the project, and optionally its version. W

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings

