PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

GOGF 13/00 A2

(11) International Publication Number:

(43) International Publication Date:

WO 99/59072

18 November 1999 (18.11.99)

(21) International Application Number: PCT/US99/09490

(22) International Filing Date: 29 April 1999 (29.04.99)

(30) Priority Data:

09/075,047 8 May 1998 (08.05.98) (SN

(71) Applicant: SONY ELECTRONICS INC. [US/US]; 1 Sony
Drive, Park Ridge, NY 07656 (US).

(72) Inventors: LUDTKE, Harold, A.; 3587 Townsquare Drive, San
Jose, CA 95127 (US). FAIRMAN, Bruce; 275 Martinez
Road, Woodside, CA 94062 (US). SMYERS, Scott, D.;
6170 Manusco Street, San Jose, CA 95120 (US).

(74) Agents: HAVERSTOCK, Thomas, B. et al.; Haverstock &
Owens LLP, Suite 420, 260 Sheridan Avenue, Palo Alto,
CA 94306 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,
GE, GH, GM, HR, HU, ID, IL, IN, IS, IP, KE, KG, KP,
KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, §],
SK, SL, TJ, T™, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG,
ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: MEDIA MANAGER FOR CONTROLLING AUTONOMOUS MEDIA DEVICES WITHIN A NETWORK ENVIRONMENT
AND MANAGING THE FLOW AND FORMAT OF DATA BETWEEN THE DEVICES

(57) Abstract

A media manager provides data flow management
and other services for client applications on devices coupled
together within a network. Preferably, these devices are
coupled together within an IEEE 1394-1995 serial bus
network. A device control module is generated for each
available device for providing an abstraction for all of
the capabilities and requirements of the device including
the appropriate control protocol, physical connections and
connection capabilities for the device. The media manager
also manages the flow and format of data transfers between
the devices on the network. Through an interface, a
user accesses the media manager and enters functions
which are to be completed using the devices coupled
together on the network. If the appropriate devices are
available, the media manager controls and manages the
completion of the requested task. If the appropriate
devices are not available, but the required subdevices are
available in multiple devices, the media manager forms
a virtual device from subdevices in muitiple devices in
order to complete the requested task. Once the appropriate
devices and subdevices are assigned to a task, the media
manager determines if the data to be transmitted needs
to be converted from one format into another format.
If necessary, the media manager will also control the
format conversion during the data transfer operation. The
media manager also provides network enumeration and
registry searching capabilities for client applications to find
available services, physical devices and virtual devices.

' APPLICATION INTERFACE
USER-LEVEL APPLICATION o |8
LOCAL
MESSENGER [92
EVENT
54 -8 — 62
[ET SERVICE AR
MANAGER REGISTRY P
5% 60 BROADCAST
DEVICE CONTROL SERVICE MANAGER
MODULES (DCM) MODULES 16
NETWORK
b4 <66 MESSENGER
DATAFLOW TRANSACTION
MANAGER MARAGER
68 10
DATA FORMAT
i BUS MANAGER :
7] {1394, TCPAP, ETC.
GRAPHICS i
MANAGER :
|
| HAL AND HOST OPERATING SYSTEM 58
[camera | | wr | [seTTopeox]
10 12 13

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
M
CN
Cu
CzZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Tceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
D
TG
TJ
™
TR
T
UA
uG
us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 99/59072 PCT/US99/09490
MEDIA MANAGER FOR CONTROLLING AUTONOMOUS
MEDIA DEVICES WITHIN A NETWORK ENVIRONMENT AND
MANAGING THE FLOW AND FORMAT OF DATA BETWEEN THE DEVICES

FIELD OF THE INVENTION:

The present invention relates to the field of managing applications and devices
within a network environment. More particularly, the present invention relates to the field
of managing the operation of and the communication between devices within a network

environment.

BACKGROUND OF THE INVENTION:
The IEEE 1394-1995 standard, "1394-1995 Standard For A High Performance

Serial Bus," is an international standard for implementing an inexpensive high-speed serial
bus architecture which supports both asynchronous and isochronous format data transfers.
Isochronous data transfers are real-time transfers which take place such that the time
intervals between significant instances have the same duration at both the transmitting and
receiving applications. Each packet of data transferred isochronously is transferred in its
own time period. An example of an ideal application for the transfer of data isochronously
would be from a video recorder to a television set. The video recorder records images and
sounds and saves the data in discrete chunks or packets. The video recorder then transfers
each packet, representing the image and sound recorded over a limited time period, during
that time period, for display by the television set. The IEEE 1394-1995 standard bus
architecture provides multiple channels for isochronous data transfer between applications.
A six bit channel number is broadcast with the data to ensure reception by the appropriate
application. This allows multiple applications to simultaneously transmit isochronous data
across the bus structure. Asynchronous transfers are traditional data transfer operations
which take place as soon as possible and transfer an amount of data from a source to a
destination.

The IEEE 1394-1995 standard provides a high-speed serial bus for interconnecting
digital devices thereby providing a universal /O connection. The IEEE 1394-1995
standard defines a digital interface for the applications thereby climinating the need for an

application to convert digital data to analog data before it is transmitted across the bus.

10

15

20

25

30

WO 99/59072 PCT/US99/09490

Correspondingly, a receiving application will receive digital data from the bus, not analog
data, and will therefore not be required to convert analog data to digital data. The cable
required by the IEEE 1394-1995 standard is very thin in size compared to other bulkier
cables used to connect such devices. Devices can be added and removed from an IEEE
1394-1995 bus while the bus is active. If a device is so added or removed the bus will
then automatically reconfigure itself for transmitting data between the then existing nodes.
A node is considered a logical entity with a unique address on the bus structure. Each
node provides an identification ROM, a standardized set of control registers and its own
address space.

Media devices are being equipped with network interfaces allowing them to become
part of a network such as the IEEE 1394-1995 serial bus network. In a home audio/video
network incorporating such autonomous media devices it is possible that one or more such
devices will be coupled together in a network with a personal computer, settop box or
other device including a microprocessor. Currently, there is a lack of available interfaces
and control applications which will efficiently manage the interaction and operation of the
autonomous devices within such a network configuration. What is needed is an interface
which allows a controlling device within a network configuration to efficiently control
communications between the devices and the operation of the devices within the network.
What is further needed is an interface which allows a controlling device within a network
configuration to maximize the availability of devices within a network for completion of

tasks and operations.

SUMMARY OF THE INVENTION:

A media manager provides data flow management and other services for client
applications on devices coupled together within a network. Preferably, these devices are
coupled together within an IEEE 1394-1995 serial bus network. A device control module
is generated for each available device for providing an abstraction for all of the capabilities
and requirements of the device including the appropriate control protocol, physical
connections and connection capabilities for the device. The media manager also manages
the flow and format of data transfers between the devices on the network. Through an
interface, a user accesses the media manager and enters functions which are to be

completed using the devices coupled together on the network. If the appropriate devices

10

15

20

25

30

WO 99/59072 PCT/US99/09490
are available, the media manager controls and manages the completion of the requested
task. If the appropriate devices are not available, but the required subdevices are available
in multiple devices, the media manager forms a virtual device from subdevices in multiple
devices in order to complete the requested task. Once the appropriate devices and
subdevices are assigned to a task, the media manager determines if the data to be
transmitted needs to be converted from one format into another format. If necessary, the
media manager will also control the format conversion during the data transfer operation.
The media manager also provides network enumeration and registry searching capabilities

for client applications to find available services, physical devices and virtual devices.

BRIEF DESCRIPTION OF THE DRAWINGS:

Figure 1 illustrates an IEEE 1394-1995 serial bus network including a video
camera, a video cassette recorder. a computer. a television and settop box.

Figure 2 illustrates a block diagram of a hardware system resident in each device
implementing the media manager of the present invention.

Figure 3 illustrates a block diagram of the architecture of the media manager
platform of the present invention.

Figure 4 illustrates a detailed block diagram of the architecture of the media
manager platform of the present invention.

Figure 5 illustrates a flow diagram of the steps involved in setting up and data
transfer between two devices using the media manager of the present invention.

Figure 6 illustrates a flow diagram followed by a client application during startup.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT:

The media manager of the present invention provides data flow management and
other services for physical devices within a network. A physical device is a product sold
as a separate component by a vendor. Examples of physical devices include televisions,
video cassette recorders, personal computers, video cameras, CD-Rom players and the like.
Many other examples are also well known and commercially available. Each physical
device includes a number of subdevices. For example, a typical commercially available
video camera includes multiple subdevices, implementing different functionalities, such as

the camera and the video player.

1
(9%
'

10

15

25

30

WO 99/59072 PCT/US99/09490

Preferably, these physical devices are coupled together within an IEEE 1394-1995
serial bus network. A device control module (DCM) is generated for each available device
and subdevice. Each DCM provides an abstraction for all of the capabilities and
requirements of each physical device, including the appropriate control protocol, physical
connections and connection capabilities for the device. The media manager also manages
the flow and format of data transfer operations between the physical devices on the
network, including converting the data into a different format during the data transfer
operation.

Through an interface, a user accesses the media manager and enters functions and
tasks which are to be completed using the physical devices within the network. If the
appropriate physical devices are available and are not otherwise being used, the media
manager controls and manages the completion of the requested task. If the appropriate
physical devices are not available, the media manager attempts to create a virtual device
from available subdevices or components within devices in order to complete the requested
task. Once the appropriate physical devices and/or subdevices are assigned to a task. the
media manager determines if the data to be transmitted needs to be converted from the
format of the source device to the format of the receiving device. If a conversion is
necessary, the media manager also controls that operation while controlling the data
transfer operation.

Figure 1 illustrates an exemplary system including a video camera 10, a video
cassette recorder 12, a computer 14, a settop box 13 and a television 11 connected together
by the IEEE 1394-1995 cables 15, 16 and 18. The IEEE 1394-1995 cable 16 couples the
video camera 10 to the video cassette recorder 12, allowing the video camera 10 to send
data to the video cassette recorder 12 for recording. The IEEE 1394-1995 cable 18 couples
the video cassette recorder 12 to the computer 14, allowing the video cassette recorder 12
to send data to the computer 14 for display. The IEEE 1394-1995 cable 15 couples the
settop box 13 to the computer 14. The settop box 13 is also coupled to the television 11
by the cable 17.

This configuration illustrated in Figure 1 is exemplary only. It should be apparent
that an audio/video network could include many different combinations of physical
components. The physical devices within such an IEEE 1394-1995 network are

autonomous devices, meaning that in an IEEE 1394-1995 network, as the one illustrated in

-4

10

15

20

25

30

WO 99/59072 PCT/US99/09490
Figure 1, in which a computer is one of the devices, there is not a true "master-slave"
relationship between the computer and the other devices. In many IEEE 1394-1995
network configurations, a computer may not even be present. Even in such configurations,
the devices within the network are fullv capable of interacting with each other on a peer
basis.

A block diagram of a hardware system resident in the managing device for
implementing the media manager of the present invention is illustrated in Figure 2. In the
hardware system illustrated in Figure 2, a printed circuit board 20 is coupled to a user
interface 30. The printed circuit board 20 includes a central processing unit (CPU) 22
coupled to system memory 24 and to an I/O bus interface 26 by the system bus 28. The
use of the term *CPU’ is not intended to imply that such a system must be a general
purpose computing circuit. Rather, this circuit could be implemented with a general
purpose controller or special purpose circuit. The user interface 30 is also coupled to the
system bus 28. The user interface 30 is subsystem specific, but preferably includes at least
an infrared remote control device and a display. Alternatively, the user interface 30 also
includes other I/0 devices for communicating with a user of the subsystem.

In the preferred embodiment of the present invention, the media manager is
included within a device such as a television or a computer with display, in order to
facilitate smooth interaction with the user. However, it should be apparent that the media
manager of the present invention can also be implemented on any other capable device
which includes the components necessary for providing an interface to the user. In order
to implement the media manager of the present invention, each component in which it is
implemented will include a hardware system such as the system illustrated in Figure 2.
The CPU 22 within such a device is used to execute the application program instructions.
The media manager of the present invention is then used to manage communications and
operations within the network. The user accesses the media manager through the interface
provided at the controlling device. Through this interface the user can monitor the
operation and status of the network and the devices within the network. The user can also
control the devices and request tasks to be completed through this interface. An example
of these tasks include playing a recorded tape on the VCR 12 and displaying the output
from the VCR 12 on the television 11. The media manager of the present invention also

manages data transfer operations and tasks requested at the individual devices.

10

20

[\
wn

30

WO 99/59072 PCT/US99/09490

A block diagram of the architecture of the media manager platform of the present
invention is illustrated in Figure 3. This architecture is divided into a so-called upper
portion 32 and a lower portion 34. The lower portion 34 preferably includes the IEEE
1394-1995 bus interface and functionality support across the most common commercial
operating systems currently available. The upper portion 32 includes components which
bring together the underlying IEEE 1394-1995 bus support and add in a number of features
and enhancements which are provided to the client applications and therefore to the user.
The upper portion 32 includes the block 46, which provides specific design and
implementation for higher level IEEE 1394-1995 bus support, and the block 48, which
includes and provides interfaces to the various client applications. The lower portion 34
includes the blocks 40, 42 and 44 which provide support for the most common operating
systems, including Windows 95®, Macintosh® and Aperios™ operating systems,
respectively. Support for any general operating system, such as OS9, is also provided.
The lower portion 34 also includes the block 38, which provides the common layer of
IEEE 1394-1995 support, and the blocks 36 which provide the actual physical IEEE 1394-
1995 bus interfaces to other devices coupled to the controlling device.

The media manager platform provides an open and flexible architecture in order to
efficiently integrate personal computers and other autonomous devices into a network
configuration and effectively manage the necessary data transfer operations between those
devices. The lower portion 34 of the architecture has been designed to support the
underlying technology at the lowest levels, which allows the higher levels to support more
general modules and functional descriptions.

A more detailed block diagram of the architecture of the media manager platform of
the present invention is illustrated in Figure 4. The multimedia or user-level application 48
sits at the top of the architecture and makes use of the services provided by the media
manager. The multimedia application 48 is an application or other client of the media
manager platform of the present invention. The architectural components within the media
manager manage the protocol specifics and export a simpler programming interface up to
the application 48. Issues such as timing, buffer management. bus management and
communication protocol are hidden behind these simple functional interfaces. The
application 48 also has access to the lower layers of the architecture and will of course be

able to communicate directly with the hardware adaptation layer (HAL) and the host

-6 -

10

15

20

30

WO 99/59072 PCT/US99/09490

operating system 58. The host operating system is coupled to the other devices within the
network, such as the camera 10, the VCR 12 and the settop box 13. For illustration
purposes, in this configuration the media manager of the present invention is implemented
on the computer system 14 of Figure 1.

The application interface object 50 serves as a proxy for the client application 48
within the media manager environment. An applications programming interface is
provided to allow the client applications 48 to access the basic services of the media
manager. Access to more detailed or specific functionality provided by certain
programming interfaces is also provided through the application interface object 50 which
provides the application 48 access to the local messenger 52.

The local messenger 52 is one component of the messaging system integrated into
the media manager. Preferably, this messaging system is the AV Messenger system. The
Jlocal messenger 52 is the central hub of communications between all objects on a given
node, when those objects exist in separate execution spaces. Essentially, the local
messenger 52 is the inter-application communication model which is provided by the host
operating system 58. The local messenger 52 is the bottleneck through which all messages
between software modules pass. To achieve scriptability, the local messenger 52 logs all
messages as they pass through, keeping an internal database of all messages and their
relevant data including address of destination, parameters, address of response and
optionally, a time stamp for time-based scripting.

The service registry 59 includes a reference to all addressable entities within the
media manager 71. This registry includes a reference for each device control module
(DCM) 56, the DCM Manager 54. the data flow manager 64, the transaction manager 66,
the data format manager 68, the bus manager 70 and the graphics manager 72. The service
registry 59 also contains any number of service modules 60, as will be described below.
The service registry 59 also contains a service registry database including references for all
of the objects that are local to its node and at specific times references to remote objects as
well. Each entry in the database refers to an addressable module and includes attached
attributes. some of which are common to all entries and others which are specific to a type
of module. Common attributes include such things as the module name and the local ID.
Module-specific attributes will vary by the type of module. Once the entry exists in the

service registry database, any number of attributes can be added to an entry. When a client

-7 -

10

15

20

25

WO 99/59072 PCT/US99/09490
application searches the database, the application specifies a set of attributes to match and
the service registry 59 searches the database, finding and returning all entries which match
the specified criteria. If multiple candidates are found during this search, the service
registry 59 will provide a list reference to the client application 48. The client application
can then examine each of the candidate items in the list, to determine the items of interest.

A client application 48 may have multiple outstanding search lists, each representing
the results of a different search criteria. When the client application 48 needs to update a
search list, in response to an event such as a bus reset in which different devices may be
available, the application 48 passes the list reference back to the service registry 59 when
making a search call. This allows the service registry 59 to update the existing list object.
rather than disposing of it and reallocating a new one.

The service modules 60 are modules which can be called to perform some set of
services. The service modules 60 perform a variety of services for client applications.
including such services as data format, transport and control protocol translation.

The DCM manager 54 is responsible for handling the group of DCMs 56 on its
local node or for the devices within the controlling device’s network. These
responsibilities include the tasks of discovering, instantiating and disposing of all possible
DCM candidates that are available to a given system. In addition, the DCM manager 54
communicates with other DCM managers on remote nodes, if any, to arbitrate for network-
wide device and subdevice resource allocation and management.

The DCM manager 54 works with the underlying operating system services to get a
raw list of available device node handies. The DCM manager 54 also provides an
application programming interface for the client application 48 to discover what
subdevices, represented by DCMs 56, or other services are available within the devices on
the network. A DCM 56 represents a device or subdevice available for allocation by the
DCM manager 54. A DCM 56 can represent a physical device or a virtual device formed
of subparts from different physical devices. The other available services are represented by
virtual DCMs 56, which will be discussed below. The available DCMs will be dynamic.
depending on the available physical devices on the IEEE 1394-1995 serial bus.

For each node, the DCM manager 54 does enough work to determine that it should
create a DCM 56. This is done for all media-related devices which will be managed under

the umbrella of the media manager of the present invention. For each media-related entity,

-8 -

10

15

20

25

30

WO 99/59072 PCT/US99/09490
the DCM manager 54 creates a generic DCM 56. Each DCM 56 then has the
responsibility to make itself more device-specific, as will be described below.

Device-specific DCMs provided from manufacturers can also be added into the
DCMs 56. Device-specific DCMs can come from a variety of sources including an
embedded read-only memory (ROM) within the device or some other storage mechanism
such as the header of a disc or tape. The device-specific DCM may also be downloaded
from an internet site or via a direct modem connection, if such capabilities are accessible to
the media manager, or supplied from a disk or other storage medium. These alternatives
are discussed in detail in the U.S. Patent Application serial No. _, filed on ___ and
entitled "A METHOD AND APPARATUS FOR INCLUDING SELF-DESCRIBING
INFORMATION WITHIN DEVICES," which is hereby incorporated by reference.

The DCM manager 54 is responsible for adding and disposing DCMs 56 at the
appropriate times, and notifying clients that DCMs 56 have been added or removed. The
DCM manager 54 is also responsible for coordinating complex services among multiple
DCMs 56. These complex services, such as command queuing of complex operations.
require the DCM manager 54 to coordinate with multiple DCMs 56 to carry out these
operations.

The DCMs 56 each provide a device modeling and control protocol abstraction
service by exporting a standardized interface for device control up to the client application
48. The programming interface for device control provided by the DCMs 56 is divided
into common A/V control and device-specific A/V control. The common A/V control
commands are common to virtually all devices having audio-visual capabilities. The basic
transport control functionality such as Play, Stop, Fast Forward and Rewind commands are
included here. The device-specific A/V control commands include features common to a
given category of A/V devices, such as the Record command for devices with recording
capability, and features that are specific to a certain model or group of devices. The
information for device-specific functionality can either be built into a device-specific DCM
which is embedded in the device itself, using the self-describing data structures mentioned
previously, or it can be downloaded as a software upgrade from the internet.

The media manager of the present invention employs protocol abstraction which
means that the programming interface between the modules and the application is the same,

regardless of the kind of device and the controlling protocol being used. Accordingly, the

- 9.

10

15

20

25

WO 99/59072 PCT/US99/09490
application will use the same source code and message to cause an IEEE 1394-1995 VCR
to record as it would use to cause a Video System Control Architecture (VISCA) VCR to
record. This is true for the common A/V control commands and the category-specific
control commands; features that are truly specific to a particular device will have a unique
programming interface.

The DCM 56 is the mechanism by which self-describing data from a device is
downloaded and presented to the user. This requires the DCM 56 to analyze the self-
describing information, by downloading and integrating modules and managing the
presentation of this information to the user through a host application. This allows a user
to configure and control both the well-known and device-specific functionality of devices
on the network through the media manager interface. The preferred presentation of user
interface data and access to custom functions of the device is described in the U.S.
Provisional Patent Application Serial No. 60/054,199, filed on July 30, 1997 and entitled
"METHOD FOR DESCRIBING THE HUMAN INTERFACE FEATURES AND
FUNCTIONALITY OF AV/C-BASED DEVICES," which is hereby incorporated by
reference.

Together, the DCM manager 54 and the DCMs 56 perform command queuing of
AV commands to be executed, allowing the DCM 56 to deal with all device peculiarities,
such as the need to perform a pre-roll to account for mechanical latency of a device. The
DCM manager 54 and the DCMs 56 in coordination with other parts of the media manager
also provide the ability to specify device control actions that are taken at specific times and
as the result of certain conditions.

The DCMs 56 make up a large part of the overall architecture of the media
manager of the present invention. The DCM 56 provides an abstraction for all of the
various pieces of technology that make up an audio-visual device, such as the control
protocol, physical connections and connection capabilities. A DCM 56 can also be created
which does not represent a physical device, but represents a virtual device comprising a
collection of functions or services that carry out a particular AV operation.

Physical devices and subdevices are individually accessible pieces of hardware. The
media manager of the present invention uses accessible subdevices to support virtual
devices to add enhanced capability to a network of devices. The virtual devices are logical

entities which are combined from pieces of a variety of available components. Preferably,

- 10 -

10

20

WO 99/59072 PCT/US99/09490

the virtual devices are created automatically when necessary to complete a requested task.
Alternatively, the virtual devices are created dynamically by requesting the service from the
DCM manager 54.

An AV action is a pre-defined action or activity such as "watch television" or
"record a movie," or any set of user-defined actions involving the manipulation of devices
by using the DCMs 56. The actions can be recorded for later re-use by a user. An AV
action applications programming interface is a way of modeling common actions that are
performed with devices in an AV network. such as viewing a recorded show, viewing a
broadcast show. duplicating a tape and listening to a compact disk. For example, if a VCR
is located in an upstairs bedroom within a user’s house and is currently receiving a
broadcast through the tuner and displaying it on a television in the bedroom, the transport
mechanism within the VCR is not being used. If the user then desires to view a recorded
show on the television downstairs, the media manager of the present invention will allow
the user to place the video tape in the transport of the VCR in the bedroom and watch the
recorded show from the tape on the downstairs television. The data representing the
recorded show is transmitted from the upstairs VCR over the IEEE 1394-1995 serial bus
network to the downstairs television. This data transfer operation is controlled by the
media manager in the controlling device. Similar functions and virtual devices are
achieved with tuners, demuxers, transports, amplifiers, processors and other components
and subdevices. Accordingly, the user can maximize the functionality and capability of the
devices within the network using the media manager to control their operation.

The DCM manager 54 keeps track not only of what physical devices and subdevices
are being used, but also what virtual devices can be created from components and
subcomponents that are currently available. The DCM manager 54 does this for all of its
locally managed devices and for software services available on the host platform on which
it is executing. The DCM manager 54 also provides the programming interfaces for a
client application 48 to inquire about the virtual devices that can be created based on the
resources available on the network, as well as what AV actions can be currently performed.
The DCM manager 54 also ensures that virtual devices get added to the service registry 59
at the appropriate times.

The applications programming interface provided for the DCMs 56 is designed to

allow the client applications 48 to discover what features and capabilities are available

- 11 -

10

15

20

25

30

WO 99/59072 PCT/US99/09490
within the devices in the network and then work with those devices as necessary. This
programming interface includes device control, device management, connection
management and management of the self-describing device implementation. Each of the
DCMs 56 have the responsibility to convert from a generic DCM to a device or protocol
specific DCM by determining the type of device it is managing. This requires that the
DCM examine the self-describing device data from the device, if any is present, and
analyze any other information that may be available. The DCMs 56 also have the
responsibility to provide access to the self-describing device information data for the device
being managed, including the device image, a product name string and functional
descriptors to other devices and components. The DCM 56 is further responsible for
providing a consistent interface for device control, including the complex services such as
command queuing. Carrying out these commands requires coordination with the host
operating system 58 for device control protocol usage. including packaging, sending.
processing protocol-specific commands and responses via the protocol driver and other
operating system provided support mechanisms.

Each DCM 56 also monitors the device it is controlling and provides extended
notification support to the necessary components and applications. All normal events
generated by the device go through the DCM 56 for the appropriate device, to the event
manager 62 and to all interested client applications 48. In addition to supporting the AV/C
device notification events, many situations may not be supported explicitly in either the
AV/C protocol, in a given device or other control protocol. Depending on the capabilities
of the device and its control and communications protocols, it is possible to provide
extended support for such events which do not trigger actual event messages. The DCM

56 watches the device for this kind of activity and posts an event to the event manager 62.

Each DCM 56 is also responsible for managing themselves in terms of the outside
entities which are making use of the data from the device under their control and the
entities that are controlling them. This includes support for resource sharing and resource
queuing. Resource queuing allows an entity to reserve a busy DCM for its use, as soon as
the DCM 56 is available. As soon as the DCM 56 is available, it will then notify the

entity.

- 12 -

10

15

20

25

WO 99/59072 PCT/US99/09490

The DCMs 56 also preferably maintain a presence during environmental changes
allowing the DCM and clients to support both on-line and off-line states. This allows the
DCMs 56 to quickly re-establish the services of a device once it comes on-line again.

Within the media manager of the present invention, the DCMs 56 are responsible
for controlling the available devices and subdevices. The DCMs 56 provide access to the
capabilities of the device, both general and device-specific. In an alternate embodiment of
the present invention, each device, as part of the self-describing data, has an embedded
DCM. ensuring that the software is always available regardless of where the device is
taken. In a further alternate embodiment, the DCM for a specific device is obtained from
the device manufacturer or a third party over the internet or provided on a media device,
such as a floppy disk. In each of the above embodiments, the DCM 56, once downloaded
can be stored in a variety of locations. Preferably, the DCM 56 is stored on the device it
controls. However, the DCM 56 can also be stored in any appropriate location. In an
alternate embodiment of the present invention, the DCM 56 is written in common byte or
script code format, such as Java or Java Script, supported by the host platform. The DCM
56 is then uploaded to the host device and executed there.

The event manager 62 broadcasts all event notifications within the network to all
interested parties. The event manager 62 acts as a central location for all modules within
its node to register for notification when events occur in that node. The event manager 62
maintains an event notification list data structure which is a list of the defined event types
and the destination identifiers of all devices which have registered for notification of each
type of event. The devices each register with the event manager 62 for each event type
that is of interest to them, providing their client identifier and a token value to be passed
back to them when the event message is broadcast. An event is an actual occurrence of
some action and a message from a device which is addressed to multiple destinations.

The event manager 62 does not usually generate events, but accepts and broadcasts
events posted by other components with the media manager. When broadcasting events to
client applications 48 in remote nodes, the event manager 62 makes use of the broadcast
manager 74. The event manager 62 handles the interaction with the user and informs the
appropriate devices accordingly. The event manager 62 informs the DCMs 56 of what user
input is occurring through the interface at the control software level, so that the DCMs 56

can handle their physical devices appropriately. A DCM 56 controlling its device from a

- 13 -

10

15

20

25

30

WO 99/59072 PCT/US99/09490

remote location will need to receive messages indicating what the user is doing and will
need to send appropriate messages to its device. The event manager 62 supports the
execution of remote DCMs 56 by means of the messaging system and well-defined event
messages. The well-defined event messages include device administration, such as a
new_device message generated when a device is added to the network, and user interaction.
The user interaction messages support the preferred graphical user interface model as
described in the U.S. Provisional Patent Application Serial No. 60/054,199, filed on July
30. 1997 and entitled "METHOD FOR DESCRIBING THE HUMAN INTERFACE
FEATURES AND FUNCTIONALITY OF AV/C-BASED DEVICES," which is hereby
incorporated by reference. In addition to well-defined event messages, any two DCMs or
software modules can also define custom or private messages.

The graphics manager 72 manages the embedding of remote device controls into a
controlling application and supports the remote presentation of self-describing data
information by the DCMs 56. The graphics manager 72 provides a programming interface
that allows the DCMs 56 to arbitrate for screen space and to work within a shared graphics
environment. This allows the specific capabilities of a device to be presented to and
accessed by the user through the interface of the controlling software.

The data format manager 68 manages the format of the data flowing between
devices. This includes the ability to plug into the resident media manager for data format
conversion as part of the buffer management and data format process. Most of the data
format conversions are done transparently on behalf of the client application, based on
knowledge of the source and destination of the data. Other data transformations require the
client application 48 to set up a format conversion process. Preferably, the format
conversion is performed in-line while the data is being transmitted. Alternatively, the
format conversion is performed as either a pre or post processing task to transmission of
the data. The data format conversion services available on a given platform are stored in
the service registry 59. In addition to using the registry to find services, the data format
manager 68 is responsible for instantiating the service modules and registering them with
the service registry 59.

The data flow manager 64 works with the bus manager 70 to provide services to
assist with routing data from source to destination, which may include many nodes in

between. In the event that the source and destination device involve different data types,

- 14 -

10

15

20

25

WO 99/59072 PCT/US99/09490
or are separated by a barrier, the data flow manager 64 will work with the data format
manager 68 and the service registry 59 to handle automatic or requested data translation
services as well. During the transfer of isochronous data, the data flow manager 64
provides buffer allocation and management services. Buffer management includes the
provision for a consistent notification mechanism to inform the client application when data
is available for processing. While isochronous data is flowing into the client application
48, various memory buffers are filled with the data. The data flow manager 64 informs the
client application 48 when each buffer is filled so that it can handle the data acquisition
process from the buffer. In addition, buffer management is simplified for client
applications by having the appropriate service modules partition memory in a manner that
is optimized for the data being captured. This includes separating the allocated memory
into scan line or frame-sized segments for a stream of video data or the optimum segment
sizes for raw audio and MIDI data.

A flow diagram of the steps involved in setting up a data transfer between two
devices using the media manager of the present invention is illustrated in Figure 5. The
method starts at the block 100. When a client application 48 desires to establish a
connection between two devices for a transfer of data, the application calls the
EstablishExternal Connection() method of one of the two DCMs 56 that represent the two
devices and passes the modulelD value of the other device’s DCM 56 as a parameter.
(Block 102) The DCM 56 that was called then calls the data flow manager 64 to assist
with making the connection and passes both the source and destination DCM moduleIDs as
parameters. (Block 104) The data flow manager 64 then analyzes the source and
destination IDs to determine that they are in different nodes. (Block 106) The data flow
manager 64 next obtains the topology map of the network from the bus manager 7 of the
source node. (Block 108) The data flow manager 64 then analyzes the topology map to
find the destination node and determine if it is on the topology map. (Block 110) If the
destination node is on the topology map. then the data flow manager 64 jumps to the Block
118 to determine the best route for the data transfer. If the destination node is not on the
topology map, then the data flow manager 64 obtains the destination DCM from the service
registry 59 in order to determine the transmission protocol for that node. (Block 112) The
data flow manager 64 then finds the appropriate transmission protocol service module and

sets up the appropriate conversion process. (Block 114) It is then determined if multiple

- 15 -

10

20

25

WO 99/59072 PCT/US99/09490
transports need to be bridged. (Block 116) If multiple transports do need to be bridged
then the data flow manager 64 jumps back to the Block 114 and obtains another transport
conversion module. Otherwise, the data flow manager 64 then analyzes the connection
paths to determine the best route for the data flow. (Block 118) The data flow manager
64 then analyzes the input data formats for the source and the destination nodes in order to
determine if a conversion is necessary. (Block 120) If a conversion is necessary, the data
flow manager 64 obtains the appropriate format converter from the service registry 59,
based on the input and output format and sets up the conversion process. (Block 122)
Otherwise, the data flow route is complete and the data transfer between the two devices
can begin. (Block 124)

The bus manager 70 abstracts the underlying device interconnection mechanism.
providing a common set of programming interfaces to describe the capabilities of the bus
architecture. In the preferred embodiment of the present invention, the devices are
connected by an IEEE 1394-1995 serial bus. For the IEEE 1394-1995 serial bus network,
the bus manager 70 resides on the top of the IEEE 1394-1995 HAL layer that is provided
by the host operating system 58. The bus manager 70 then helps to generalize the bus
management activities up to the media manager of the present invention. The bus manager
70 notifies the client applications 48 when bus reset activity occurs by sending out bus
reset notifications through the event manager 62 and providing complete information about
how the environment has changed. The client applications receiving this information are
provided with information about the devices which may have suddenly disappeared and the
devices which have suddenly become available after the bus reset.

The bus manager 70 also provides topology maps, speed maps and other
environment descriptions to client applications 48. Information from the topology map is
used to build a user interface that helps the user understand the connection of the devices
and how certain features may be used. This information is also used to provide automatic
data routing as described above in relation to the data flow manager 64. The speed map is
used to analyze the current connection scheme and to give the user helpful suggestions for
improving the performance of devices on the network by rearranging the way that devices
are connected. The bus manager 70 also provides atomic-level data communications

services for two nodes or software modules within the nodes, to send bytes to each other in

- 16 -

10

15

25

30

WO 99/59072 PCT/US99/09490
a preferred format or protocol. This protocol is built on top of those atomic
communications functions.

After a bus reset or change notification of the bus, the bus manager 70 assigns new
ID values to all devices which have just appeared and determines what devices have
disappeared. The bus manager 70 then invokes the DCM manager 54 to create new DCMs
56 for the devices which have just appeared and posts a bus change notification to the
event manager 62, which will notify all registered clients about the bus reset. This
notification provides enough information for the client applications 48 to determine what
devices have changed on the bus.

The transport adaptation modules 78 take care of packaging message data before it
is passed on to the HAL for actual transmission to the destination device. The HAL is at
the lowest layer of the media manager of the present invention. This layer provides a
common programming interface upward to clients such as the DCMs 56 and any other
entities that need to communicate with it. The transport adaptation modules 78 use the
atomic messaging functions of the bus manager 70, as described above.

As described above, the DCMs 56 provide a protocol abstraction service, by
exporting a standardized interface for device control up to the multimedia application 48.
The programming interface provided by these components is divided into a common
audio/video control level and a device-specific control level. The common audio/video
control level provides an interface for common commands, including the basic transport
control functionality, such as Play, Stop, Fast-Forward and Rewind commands. The
device-specific control level provides an interface for device-specific commands, including
features common to a given category of devices, such as Record for devices with recording
capability, and features which are specific to a certain device or group of devices. The
protocol abstraction service provided by the DCMs 56 ensures that the programming
interface between the modules and the application 48 is always the same, regardless of the
kind of device and the controlling protocol being used. This feature allows a great degree
of flexibility for the application and the user. The DCMs 56 also provide a user input
event abstraction model, so that client applications can display graphical user interface
elements and send standard user event messages to the DCM 56 as the user interacts with
the graphical user interface elements, as described in U.S. Provisional Patent Application

Serial No. 60/054,199, referred to above.

217 -

10

15

20

30

WO 99/59072 PCT/US99/09490

The media manager of the present invention provides data flow management and
other services. The media manager acts as an extension of the hosting operation system 58
and provides a variety of services to the other components of the media manager platform
as well as to the client application 48. The media manager manages and organizes the
DCMs 56. The media manager discovers and initializes the DCMs 56 which are
appropriate for the applications present, while disposing of the unnecessary DCMs 56. The
media manager follows a specific sequence each time the system is booted, or any time the
system could possibly change, such as when the IEEE 1394-1995 bus is reset. The media
manager also provides a wrapper around the particular dynamically linked library solution
that is used on the host operating system 58. This allows the best dynamically linked
library to be used to implement modules on a given operating system. while still
maintaining a consistent interface to outside applications.

The media manager is also responsible for managing the flow and format of data
transfer operations between the devices on the network. When managing the flow of data,
the media manager will allocate and manage the appropriate buffers in a fashion
independent of the operating system being used.

The media manager also provides high-level protocol management of the IEEE
1394-1995 bus environment. In order to fully support dynamic device actions such as hot
plugging up to the user level, the applications and devices need to be aware of changes to
the IEEE 1394-1995 bus environment. The media manager through the bus manager 70
and the event manager 62 is responsible for informing the applications and devices that bus
reset activity has occurred on the IEEE 1394-1995 bus. by sending out bus reset
notifications and providing complete information about how the environment has changed.
The media manager also provides topology maps and other environment descriptions to the
applications and devices also through the bus manager 70. The topology map illustrates
the connections between devices within the IEEE 1394-1995 network. Information derived
from the topology map is used to build a human interface which helps the user understand
how the devices are connected and how certain features may be used.

The application service modules 60 provide a level of services between the host
operating system 58 and the application 48 in order to provide basic functionality for the
application 48 independent of the specific operating system being used. This functionality

includes providing memory allocation and disposal routines which are more robust than the

.18 -

10

15

20

WO 99/59072 PCT/US99/09490

basic functions available in most operating systems and providing device configuration and
control modules which are self-contained, stand-alone modules for providing all user
interface and interaction management when invoked.

The transport adaptation modules 78 provide a common programming interface to
the device control modules 50 and to the application 48, taking care of bringing the
protocol capabilities up through the host operating system 58. The internal design and
implementation of the system level interface block 50 takes advantage of the specific host
operating system architecture being used in order to realize the IEEE 1394-1995 functions
available to the application 48.

The media manager platform of the present invention includes the DCMs 56. the
application service modules 60 and the system level interface for IEEE 1394-1995 bus
protocol provided by the transport adaptation modules 78. During normal operation. the
application 48 will communicate with all of these components. When communicating with
the DCMs 56, the application 48 will use a single programming interface. When
communicating with the application service modules 60, the application will also use a
single programming interface.

A client application 48, as described above and illustrated in Figures 3 and 4, is an
entity which resides above all the other components in terms of the architecture of the
media manager platform of the present invention. For the completion of a majority of its
required tasks, the application 48 will communicate with the DCMs 56 and the application
service modules 60 which are present via the local messenger. For the times when it is
necessary, the application 48 has access to the lower levels of the architecture through the
host operating system 58.

Upon startup of the client application 48, the client application 48 must initialize
and register with the media manager. The client application 48 initializes the media
manager in order to make sure that the media manager is up and running and ready to
serve the application 48. The client application 48 registers with the media manager in
order to give the media manager all of the necessary information for interaction with the
application 48 and to register itself with the messaging system. When starting up.
generally an application 48 must make sure that the host operating system has been

initialized, that a minimum level of services are available and that it has the necessary

- 19 -

10

15

20

25

WO 99/59072 PCT/US99/09490
amount of memory available to run. These steps are performed for the application by the
media manager after the application 48 initializes the media manager.

When starting up, a client application 48 follows the steps illustrated in the flow
chart of Figure 6. The application 48 starts up at the step 140. After starting up, the
application 48 initializes the media manager. In the preferred embodiment of the present

invention the application initializes the media manager by making the following call:

err = SMM _Initialize

When initialized, the media manager will allocate the necessary memory and system
services to support the application 48.

After initialization of the media manager is complete, the application 48 then
registers with the media manager at the step 144. This step of registering allows the
application 48 to provide the media manager with specific information that the media
manager will need in order to properly support the application 48. For example, the
application 48 must provide the address of a callback routine for notification of significant
events related to the environment, including IEEE 1394-1995 bus resets, asynchronous
transaction completion and triggers when memory buffers have been filled with a specified
amount of isochronous data. The step of registering is completed by the following

nstruction:

SonyErrorResultType SMM_RegisterClient (SMMClientldentifierType* the
ClientID.

SMMBusEventNotificationUPP clientBusEventNotificationCallback, void*

clientBusEventCallbackData);

The parameter theClientID is a unique identifier created by the media manager for the
application. In future communication with the media manager, the application 48 will be
required to pass this identifier back in, such as when it is closing down and unregistering
with the media manager. The parameter clientBusEventNotificationCallback is an
appropriately formatted reference to the callback function that the application 48 will

implement. The application 48 is not required to implement such a callback function if the

-20 -

W

10

15

20

WO 99/59072 PCT/US99/09490
application 48 does not need to know about dynamic changes which may occur to the
network environment. If the application 48 does not implement this callback function. then
the application will pass a NIL value for this parameter.

The parameter clientBusEventCallbackData can be any value that the application 48
will require access to in the callback routine. Normally, this value will be a pointer to a
block of memory such that when the media manager invokes the callback function, it will
pass this value back to the client application 48, allowing the application 48 to then access
global storage or other appropriate data.

To complete the step of registering with the media manager, the application 48 must

also implement the notification callback function using the following interface:

pascal void (*SMMBusEventNotificationProcPtr)(void *clientData,
SMMBusEventType busEventIndicator, SMMBusEventRecPtr busEventInfo):

The parameter clientData is the clientBusEventCallbackData parameter that was
passed in to the registration function. The parameter busEventIndicator is an enumerated
data type which indicates what kind of event the application is being notified of. The
specified events include a bus reset, when a device is plugged into or unplugged from the
network, the completion of an asynchronous transaction and when a specified buffer is full
during an isochronous transfer of data. The parameter busEventinfo provides a data
structure that contains relevant information for the particular event.

After completing the step of registering with the media manager, the application 48
then will obtain the available DCMs 56 at the step 146. By obtaining the available DCMs
56, the application 48 will know the other types of devices which are coupled within the
network. This step is composed of a series of sub-steps. An iterative callback model is
used as the method of data transfer for transferring the data to the application 48. The
client application 48 first gives the media manager an address of a callback function. The
application 48 then enters a loop and repeatedly requests information about the next
module from the media manager until there are nc remaining DCMs. The media manager
prepares a data structure with the necessary information and transfers it to the application
48 via the callback function. Once the information about each specific DCM 56 is

received, the application 48 then copies the information which it requires. This process is

-21 -

10

15

20

25

30

WO 99/59072 PCT/US99/09490
repeated until all of the available DCMs 56 have been received by the application 48.
Within an alternate embodiment of the present invention, the client application queries the
system registry, requesting a handle to each of the available DCMs 56.

The preferred callback function which the application 48 must implement to obtain

the available DCMs 56 is defined as follows:

void DevicelnfoCallbackRoutine(void *userData, SMMDevicelndexType

devicelndex, SonyAvDeviceRecPtr devicelnfo)

The parameter userData of the callback function is the means of transferring data between
the media manager and the application 48. The application 48 will define its own data
structure, allocate the memory for one of these structures and pass the address of that
structure to the media manager. That address is then passed back in this callback function
allowing the application 48 to access that data structure for the purpose of copying
information into it.

The parameter devicelndex of the callback function is the index value of the loop
which the application 48 enters to obtain information about the available DCMs 56. The
Joop is bounded by the number of available DCMs 56. This parameter is passed back to
the application 48 in the callback function so that the application 48 can save this
parameter along with the other information passed into the callback function. This index
value is useful in other calls to the media manager by the application 48, when inquiring
about a specific DCM 56. In addition, this index value will be used when notifying the
application 48 that a device has disappeared after it was unplugged or disconnected from
the network. The application 48 will store this index value for each DCM 56 within a
dedicated field in its private data structure.

The parameter devicelnfo of the callback function is a pointer to a data structure
labeled SonyAVDeviceRec, in which the media manager stores the DCMs 56 for retrieval
by the application 48. The format of this data structure is known to both the application
48 and the media manager. Once a DCM 56 is stored within this data structure, the
application 48 will then copy the appropriate information from the data structure to its own

private data structure. The data structure SonyAvDeviceRec is defined in Table 1 below:

-2 -

10

—
wh

20

WO 99/59072 PCT/US99/09490

TABLE
typedef struct SonyAVDeviceRec
unsigned long devicelD; /ISMMDevicelDType?
unsigned long busGeneration;

SONY_ DeviceModuleRefType controlModuleReference;
unsigned long reservedl;

unsigned long reserved2;

} SonyAVDeviceRec, *SonyAVDeviceRecPtr, **SonyAVDeviceRecHdl;

The parameter devicelD is the identifier of a DCM 56 and correspondingly of a
device. This identifier is used by the application 48 whenever it wants to communicate
with a DCM 56 or when the application 48 requests services from the media manager
regarding a specific device.

The parameter busGeneration is a value which changes after each bus reset action.
After each bus reset, when devices are added or removed, certain information about the bus
and the connected devices will change. Each time that the IEEE 1394-1995 bus is reset,
the value of the parameter busGeneration is updated.

The parameter controlModuleReference is a reference to the DCM 56 that is
associated with the specified device. This reference is used when the application 48
requires the media manager to act on its behalf in transactions with the module.

The application 48 will next request that the media manager generate a list of
available DCMs 56 and the number of modules within that list using the following function

call:

SonyErrorResultType SMM_FindDeviceControlModules (SMMDeviceListRefType*

theDeviceList, unsigned long deviceAttributes, short* numAVDevices)

The parameter theDeviceList includes the address where the list of available DCMs 56 is
stored and is generated and returned by the media manager. The application will declare a

local variable of this type and pass the address of that variable to this function.

[\
[OS]
[l

10

15

20

25

30

WO 99/59072 PCT/US99/09490

The parameter deviceAttributes includes a set of bitwise flags which the application
48 uses to specify the types of DCMs 56 which should be returned. For example, the
application 48 may only wish to know about the active devices connected to the network.
Whén certain flag values are specified the media manager will filter the list for only the
devices meeting the criteria, before the list is returned to the application 48. The
application 48 can specify that the list include all identifiable devices, only devices that are
up and running, only devices that are plugged in but have their power switch turned off or
only snoozing devices.

The parameter numAVDevices includes the number of DCMs 56 in the list that is
returned to the application 48. The application 48 uses this number as the upper boundary
of the iteration loop to obtain the DCMs 56.

The application 48 prepares the callback function address and then enters a loop to
repeatedly call the media manager until the information on all of the DCMs 56 within the
list is obtained. On each pass through the loop, the application 48 makes one call to the

following function:

pascal SonyErrorResultType SMM_GetDeviceControlModulelnfo
(SMMDeviceListRefType theDeviceList, SMMDevicelndexType whichDevice,
unsigned long reserved, SMMDeviceControlModulelteratorUPP

theDeviceListCallbackFunction, void *userData)

The parameter theDeviceList is the list reference that was returned from the function call
FindAllDeviceControlModules(). The parameter whichDevice specifies which of the
DCMs 56 that the application 48 is requesting information about. The parameter
theDeviceListCallbackFunction includes the prepared callback function address. The
parameter userData is a reference to an application-defined data structure. This reference is
passed back to the application 48 in the callback routine and the application 48 will then
transfer any needed information from the media manager to this data structure.

The entire preferred sequence of the step to obtain the available DCMs 56 is listed
in Table IT below:

-4 -

5

10

15

20

25

30

40

45

WO 99/59072 PCT/US99/09490

TABLE II

SMMDeviceListRefType theDeviceList = NULL;

if (nil != theDeviceList)
err = SMM_FindAllDeviceControlModules(&theDeviceList, kActiveDevices + klnactiveDevices,
&gNumAVDevices);

if (noErr == etr)

!
1

g¢AVDeviceList = NewHandle(0);
//Prepare the callback function for the media manager:
theDevicelnfoCallback = NewSMMDeviceControlModulelteratorProc(DeviceInfoCallbackRoutine);
if ((nil != theDeviceInfoCallback) && (nil {= gAVDeviceList))
{
!
for(loop = 0; loop < gNumAVDevices; loop++)

{
err = SMM_ GetDeviceControlModuleInfo (theDeviceList, loop, 0,

theDevicelnfoCallback, g¢AVDeviceList),

}

DisposeRoutineDescriptor(theDeviceInfoCallback);

err = -1;

}

void DevicelnfoCallbackRoutine (void *userData, SMMDevicelndexType devicelndex, SonyAVDeviceRECPtr
devicelnfo)

{
//Copy any information that I care about from the devicelnfo data structure
/lover to my private data referenced by userData:

(myPrivateRecordPtr) userData->devicelD = devicelnfo->devicelD;

After the available DCMs 56 are obtained by the application 48, the application 48
will then obtain device specific information at the step 68. The DCM information returned
by the media manager is system level information which includes the unique identifier for
each device and protocol-specific information such as the bus generation for the IEEE
1394-1995 devices. In order to obtain the device specific information such as status,
descriptive name string and an image of the device, the application 48 must communicate
with the device through the appropriate DCM 56. By completing the steps illustrated in
Figure 6 and described above, the application 48 will have completed its startup routine
and is now ready for operation.

While the application 48 is operating it will be handling user and system level
events and messages including receiving control inputs, as well as messages from other

processes, the host operating system and the media manager.

225 -

10

WO 99/59072 PCT/US99/09490

The present invention has been described in terms of specific embodiments
incorporating details to facilitate the understanding of principles of construction and
operation of the invention. Such reference herein to specific embodiments and details
thereof is not intended to limit the scope of the claims appended hereto. It will be
apparent to those skilled in the art that modifications may be made in the embodiment
chosen for illustration without departing from the spirit and scope of the invention.
Specifically, it will be apparent to those skilled in the art that while the preferred
embodiment of the present invention is used to manage devices coupled together within an
IEEE 1394-1995 serial bus structure, the present invention can also be implemented to

manage devices within other bus structures.

o

AN (8]

SN Wi

(D]

[US]

\S]

('S

WO 99/59072 PCT/US99/09490
CLAIMS

We Claim:

1. A method of managing operation of and communication between a network
of devices for completing a task comprising the steps of:
a. determining appropriate devices and subdevices required for completion of
the task, wherein virtual devices are formed from available subdevices if
appropriate devices are not available for completion of the task: and

b. instructing the appropriate devices and subdevices to complete the task.

2. The method as claimed in claim 1 further comprising the step of maintaining
a control module for each device in the network, wherein the control module includes the
capabilities of the device and any subdevices within the device and further wherein the

control module is responsible for control of the device.

3. The method as claimed in claim 2 further comprising the step of controlling

data flow between the appropriate devices and subdevices.

4. The method as claimed in claim 3 further comprising the steps of:

a. obtaining a topology map of the devices within the network; and

b. determining a best route for the data flow by analyzing the topology map.
5. The method as claimed in claim 4 further comprising the step of converting

the data flowing between the appropriate devices and subdevices into a proper format, if

necessary.

6. The method as claimed in claim 5 further comprising the step of providing

an interface to a user through which the task to be completed is requested.

7. The method as claimed in claim 6 wherein the control module provides user

interface data to an application and responds to user events from the application.

-7 -

]

o

w EaN (o) O el ~ (@) W &~ (]

(0%

WO 99/59072 PCT/US99/09490

8. The method as claimed in claim 7 wherein the network is an IEEE 1394

serial bus network.

9. The method as claimed in claim 7 wherein the control module resides in a

remote device and is downloaded to a host device for execution.

10. The method as claimed in claim 7 wherein the control module resides in a

local device and is executed from a native environment within the local device.

11. The method as claimed in claim 7 wherein the control module resides in a

local device and is uploaded to a host device for execution.

12. An apparatus for contrelling operation of and communication between a

network of devices comprising:

a. an interface circuit for communicating with the devices within the network;
and
b. a control circuit coupled to the interface circuit for determining appropriate

devices and subdevices required for completion of the task and instructing
the appropriate devices and subdevices to complete the task, wherein virtual
devices are formed from available subdevices if appropriate devices are not

available for completion of the task.

13. The apparatus as claimed in claim 12 further comprising a plurality of
control modules, each representing a device in the network. wherein each control module
includes capabilities of a corresponding device and any subdevices within the
corresponding device and further wherein the control module is responsible for control of

the device.

14. The apparatus as claimed in claim 13 further comprising a bus manager
circuit coupled to the control circuit and to the interface circuit for obtaining a topology
map of the devices within the network and determining a best route for data flow between

the appropriate devices and subdevices by analyzing the topology map.

-8 -

(o8]

AN N

WO 99/59072 PCT/US99/09490
15. The apparatus as claimed in claim 14 wherein the control circuit also
converts the data flowing between the appropriate devices and subdevices into a proper

format if data conversion is necessary.

16. The apparatus as claimed in claim 15 wherein the network is an IEEE 1394

serial bus network.

17. A method of managing operation of and communication between a network
of devices comprising the steps of:

a. maintaining a control module for each device in the network, wherein the
control module includes the capabilities of the device and any subdevices
within the device and further wherein the control module is responsible for
control of the device;

b. providing an interface to a user through which a task to be completed is
requested by the user;

c. determining appropriate devices and subdevices required for completion of
the task by searching the control modules; and

d. completing the task by instructing appropriate control modules to provide

instructions to the appropriate devices and subdevices.

18. The method as claimed in claim 17 further comprising the steps of:
a. determining if the appropriate devices and subdevices are currently available
for completion of the task; and
b. forming virtual devices from available subdevices of the devices within the
network for completion of the task when the appropriate devices and

subdevices are not currently available.

19. The method as claimed in claim 18 further comprising the step of

controlling data flow between the appropriate devices and subdevices.

- 29 .

LI

(L TN A

(%)

No RN N) T A B S

10
11
12

U2

20.

22,

WO 99/59072 PCT/US99/09490

The method as claimed in claim 19 further comprising the steps of:
obtaining a topology map of the devices within the network; and

determining a best route for the data flow by analyzing the topology map.

The method as claimed in claim 20 further comprising the steps of:
determining if conversion of data flowing between the appropriate devices
and subdevices is necessary; and

converting the data flowing between the appropriate devices and subdevices

into a proper format if data conversion is necessary.

The method as claimed in claim 21 wherein the network is an IEEE 1394

serial bus network.

23.

An apparatus for controlling operation of and communication between a

network of devices comprising:

24.

a.

a plurality of control modules, each representing a device in the network,
wherein each control module includes capabilities of a corresponding device
and any subdevices within the corresponding device and further wherein the
control module is responsible for control of the device;

an interface for communicating with a user, wherein a task to be completed
is requested by the user through the interface; and

a control circuit coupled to the plurality of control modules, to the network
and to the display for determining appropriate devices and subdevices
required for completion of the task by searching the control modules and
completing the task by instructing appropriate control modules to provide

instructions to the appropriate devices and subdevices.

The apparatus as claimed in claim 23 wherein the control circuit also

determines if the appropriate devices and subdevices are currently available for completion

of the task and forms virtual devices from available subdevices to complete the task when

the appropriate devices and subdevices are not currently available.

o

w2

(U]

o

(OS]

WO 99/59072 PCT/US99/09490

25. The apparatus as claimed in claim 24 wherein the control circuit further

controls data flow between the devices within the network.

26. The apparatus as claimed in claim 25 further comprising a bus manager
circuit coupled to the control circuit for obtaining a topology map of the devices within the

network and determining a best route for the data flow by analyzing the topology map.

27. The apparatus as claimed in claim 26 wherein the control circuit also
converts the data flowing between the appropriate devices and subdevices into a proper

format if data conversion is necessary.

28. The apparatus as claimed in claim 27 wherein the control circuit implements
pre-defined actions allowing users to access basic functionality of the devices in the

network.

29. The apparatus as claimed in claim 28 wherein the control circuit also

monitors and records user activity and creates custom, user-defined actions.

30. The apparatus as claimed in claim 27 wherein the network is an IEEE 1394

serial bus network.

WO 99/59072 PCT/US99/09490

1/6

13

10 15

17
16 18 (

12

Fig. 1 14

WO 99/59072

= , U
/0 BUS INTERFACE
b
%
o
B ¥
Y
SYSTEM |, — 28
MEMORY
Y
i
\
30— USER INTERFACE OR OTHER 1/0

Fig. 2

PCT/US99/09490

WO 99/59072

3/6

CLIENT APPLICATIONS (VIDEQ EDITORS, MEDIA CATALOGERS, ...)

PCT/US99/09490

— 48

SPECIFIC DESIGN AND IMPLEMENTATION FOR HIGHER LEVEL 1394 SUPPORT — 46 N

2
A
WNDOWS 95 | 40 WCOS | g APERIOS |44
1394 SUPPORT 1394 SUPPORT 1394 SUPPORT
COMMON LAYER OF 1394 SUPPORT —3
1304 HARDWARE | | 1394 HARDWARE | | 1304 HARDWARE | | 1394 HARDIWARE — 36

Fig. 3

WO 99/59072 PCT/US99/09490

4/b
APPLICATION INTERFACE -
USER-LEVEL APPLICATION o B
LOCAL
MESSENGER [2
NET |
5 58 e 62
oM SERVICE
MANAGER REGISTRY 74
5 60 BROADCAST
DEVICE CONTROL SERVICE MANAGER
MODULES (DOM) MODULES 6
i - NETWORK
64 66 MESSENGER
DATA FLOW TRANSACTION 78
MANAGER MANAGER TRANSPORT
et}
DATA FORMAT
L BUS MANAGER .
Py | 1394, TCP/IP, ETC.
GRAPHICS |
MANAGER :
|
HAL AND HOST OPERATING SYSTEM — 58
CAMERA VCR SETTOP BOX
(((
10 1 13

Fig. 4

WO 99/59072 PCT/US99/09490

5/6

(__START)—100

| CALL ESTABLISH EXTERNAL CONNECTION () METHOD OF DEVICE r—102

[CALL DATA FLOW MANAGER |—104

| ANALYZE SOURCE AND DESTINATION IDs 106

| OBTAIN TOPOLOGY MAP 108

. 10
DESTINATION NODE ON™~>YES

10POLOGY MAP

[OBTAIN MODULE WITH DESTINATION ID FROM SERVICE REGISTRY |—112

[OBTAIN TRANSMISSION PROTOCOL SERVICE MODULE FOR CONVERSION |—114

YES

-
[DETERMINE BEST ROUTE }—118

CONVERSION N

NECESSARY

| OBTAIN APPROPRIATE FORMAT CONVERTER |—122

| DATA FLOW ROUTE IS COMPLETE |—124

Fig. 5

WO 99/59072

0/6
CSTHRT 140
I INITIALIZE MEDIA MANAGER 142
| REGISTER WITH MEDIA MANAGER 144
| OBTAIN AVAILABLE DEVICE CONTROL MODULES 146
| OBTAIN DEVICE SPEGIFIC INFORMATION —148

Fig. 6

PCT/US99/09490

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

