HIGH RESOLUTION 3D ULTRASOUND IMAGING SYSTEM DEPLOYING A MULTIDIMENSIONAL ARRAY OF SENSORS AND METHOD FOR MULTIDIMENSIONAL BEAMFORMING SENSOR SIGNALS

Inventors: Stergiopoulos, Toronto (CA); Amar C. Dhanantwari, New York (CA)

Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of National Defence, Ottawa (CA)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 15 days.

Appl. No.: 09/718,516
Filed: Nov. 24, 2000

Foreign Application Priority Data
Nov. 24, 1999 (CA) 2290240

Int. Cl. 7 A61B 8/00
U.S. Cl. 600/443; 600/447; 128/916
Field of Search 600/437, 442, 600/443-447; 367/7, 11, 138, 135; 73/599, 631, 625

References Cited
U.S. PATENT DOCUMENTS
5,570,691 A 11/1996 Wright et al. 600/447
5,623,928 A 4/1997 Wright et al. 600/447
5,856,955 A 1/1999 Cole et al. 369/77.2
6,111,816 A 8/2000 Chiang et al. 367/138

OTHER PUBLICATIONS

An adaptive multidimensional beamformer having near-instantaneous convergence for ultrasound imaging systems deploying multidimensional sensor arrays is disclosed. In a first step, the multidimensional beamformer is decomposed into sub-apertures. Each sub-aperture is then again decomposed into two coherent subsets of circular and/or line array beamformers in different coordinate directions of the multidimensional array. Implementation of the multidimensional beamformer according to the present invention provides the basis for the 3D ultrasound imaging system according to the present invention comprising a compact multidimensional sensor array and a compact processing unit that is field deployable and generates high resolution three-dimensional images in real time. It is also possible to capture four-dimensional images, the fourth dimension being time and the resulting images forming a video image of a volume of a moving organ.

24 Claims, 19 Drawing Sheets
Fig. 4

Beamform each circular array

For each azimuth beam steering select beam time series from all circular arrays and form a vertical line array

Beamform each vertical line array and form azimuth-elevation beam-steering time series
INPUT

Output of fir filter provides downsampling continuous time series for all the N-sensors of an aperture

For Each Frequency BIN INDEX i

Downsampled continuous time series are segmented into a set of overlapped data sets. Their FFT is defined by:

\[X_{(m,j),n}(f_i) \]

Where:
- indexes \((m, j)\) refer to
- \(j=1,2,...,J\) The number of \(j\) overlapped segments required by the adaptive beamformer to converge
- \(m=1,2,...\) is the index for the output of the adaptive beamformer
- \(n=1,2,...,N\) is the sensor index
- \(i=1,2,...,M\) is the frequency bin index.

The percentage of overlap between segments is 50%

For each index \(m\)

Fig. 5a
Form the cross spectral density

\[R^m_{\nu,m(\nu,m,n)}(f) = \mathbb{E}\{x_{(m,n),\nu}(f) \cdot x_{(m,n+\Delta f),\nu}(f)\} \]

For each index \(m = 1, \ldots, M \), \(\nu = 1, \ldots, N \), \(j = 1, \ldots, J \)

Form the steered covariance matrix

\[\Phi^m_{\nu,m}(\Delta f, \nu, s) = \mu \Phi^{m-1}_{\nu,m}(\Delta f, \nu, s) + (1-\mu) \sum_{i \in \Delta f} T_i(\theta_s) \cdot R^m_{\nu,m(\nu,m,n)}(f_i) \cdot T_i^*(\theta_s) \]

\(s = 1, 2, \ldots, s \) is the index for the steering vector

\[T_i(\theta_s) \]

is the diagonal matrix of conventional steering vectors

OUTPUT

\[\xi_m(\theta_s, t) = \text{IFFT}\left[b(1, \theta_s)\right] \]

Output of adaptive beamformer provides continuous beam time series for

1. Temporal spectral analysis: narrowband and broadband processing
2. Matched filter processing

For \(m = 1, 2, \ldots \) concatenate \(\xi_0(t) \) in order to remove the adaptive filter response and to get S-continuous beam time series.

For each index \(m \)

Inversion of \(\Phi(\Delta f, \theta_s) \)

By using cholesky factorization

Estimate adaptive steering vectors

\[w(f, \Delta f, \theta_s) = \frac{\Phi(\Delta f, \theta_s)}{D(f, \theta_s)} \]

Form adaptive beams

\[b(f, \theta_s) = \sum_{n=1}^{N} w(n, \theta_s) \cdot X(f) \]
For each steering direction term, form an array composed of J directional sensors.

Beam separation equal to q-sensor spacings.

Sensor overlap between two successive sub-apertures.

Conventional beamforming generates S number of beams per sub-aperture in the (0-180) degrees sector.

Fig. 6
Circular array with M-sensors

Sub-Ap=1

Sub-Ap=2

Sub-Ap=3

For θ_s, azimuth beam steering. Select three beam time series (T-S) from the three sub-circular arrays and apply adaptive beamforming on three beam T-S with steering θ_s.

For $G=3$ generate three sub-circular-arrays with $(M-G+1)$ sensors on each sub-aperture. Beamform each sub-circular array.

Fig. 7
Beamform each one of the N sub-circular arrays

For each azimuth beam steering select beam time series from the (N-G+1) sub-circular arrays and form new beam-time series for θ_s and Φ_s

For each set of three beam times series θ_s, Φ_s, azimuth-elevation beam steering, apply adaptive beamforming

Output provides conventional beam time series for each azimuth & elevation. The process is repeated for the other 2 sub-apertures of the cylindrical array

Fig. 8
For each azimuth beam steering line array and form as sensors the continuous beam time series equivalent with those of the 2-D planar array beamformer.

Beamformed new vertical line array.
INPUT
Output of fir filter provides downsampling continuous time series for all the sensors of the cylindrical array.

For each sensor of \(r \)-th ring, SENSOR INDEX \(m \)

Downsampling continuous time series are segmented into a set of overlapped data sets. Their FFT is defined by:

\[
X_{(m,r)}(f) = \text{FFT}\{X_{(m,r)}(t)\}
\]

Where:
- \(j = 1,2,\ldots,J \) is the segments index
- \(m = 0,1,\ldots,M-1 \) is the sensor index for the \(r \)-th ring of the cylindrical array
- \(r = 0,1,\ldots,N-1 \) is the ring index
- \(i = 1,2,\ldots,I \) is the frequency bin index

The percentage of overlap between segments is 125%.

For each INDEX \(m \)

Circular Array Beamformer

\[
B_{r}(f_{0}, \theta_{s}) = \sum_{m=0}^{M-1} X_{(m,r)}(f_{0}) w_{m,s} \exp[j2\pi R_{z}(s-1) \sin \theta_{s} \cos \phi_{s} / c]
\]

Where:
- \(s = 1,2,\ldots,S \) is the index for the steering beam
- \(R_{z} = 2m/M, \theta_{s} = 2\pi s/M, \phi_{s} = m/w \) is the spatial shading window

Output provides continuous beam time series

\[
b_{r}(\theta_{s}, t) = \text{IFFT}\{B_{r}(f_{0}, \theta_{s})\}
\]

Discard overlap and concatenate segments in order to generate continuous time series for circular beamformers.

Line Array Beamformer

\[
B_{r}(f_{0}, \theta_{s}) = \sum_{r=0}^{N-1} B_{r}(f_{0}, \theta_{s}) w_{r,s} \exp[j2\pi r_{0} \cos \phi_{s} / c]
\]

Where:
- \(s = 1,2,\ldots,S \) is the index for the steering beam
- \(S \) is the total numbers of steering beams

Output provides continuous beam time series

\[
b_{r}(\theta_{s}, t) = \text{IFFT}\{B_{r}(f_{0}, \theta_{s})\}
\]

Discard overlap and concatenate segments in order to generate continuous time series for circular beamformers.

OUTPUT

Passive
- Narrowband
- Broadband
- Spectral analysis

Active
- Matched filter

Fig. 10a
INPUT

Output of fir filter provides downsampled continuous time series for all the sensors of the cylindrical array

For each sensor of \(r \)-th ring, SENSOR INDEX \(m \)

Downsampled continuous time series are segmented into a set of overlapped data sets. Their FFT is defined by:

\[
X_{(m,j),r}(f_i) = \text{FFT}\{X_{(m,j),r}(t_i)\}
\]

Where:
- \(j=1,2,\ldots,J \) is the segments index
- \(m=0,1,\ldots,M-1 \) is the sensor index for the \(r \)-th ring of the cylindrical array
- \(r=0,1,\ldots,N-1 \) is the ring index
- \(i=1,2,\ldots,I \) is the frequency bin index

The percentage of overlap between segments is 125%

Circular Array Beamformer

\[
B_r(f_i,\theta_s) = \sum_{m=0}^{M-1} X_{(m,j),r}(f_i)w_{m,r}\exp[j2\pi R(f_i)\sin(\theta_s \cos(\theta_r)/c)]
\]

Where:
- \(s=1,2,\ldots,S \) is the index for the steering beam
- \(\theta_r=2\pi r/M \) is the spatial shading window
- \(\theta_s=2\pi s/S \) is the frequency bin index

Output provides continuous beam time series

\[
b_r(\theta_s,t) = \text{IFFT}\{B_r(f_i,\theta_s)\}
\]

Discard overlap and concatenate segments in order to generate continuous time series for circular beamformers

Fig. 10b
Line Array Beamformer

$$B_r(f_i, \theta_s, \phi_s) = \sum_{r=0}^{N-1} B_r(f_i, \theta_s) w_r \exp\{j2\pi f_r \delta_z \cos \phi / c\}$$

Where: $s = 1, 2, \ldots, S$ is the index for the steering beam
S is the total numbers of steering beams

Output provides continuous beam time series

$$b_r(\theta_s, t_i) = \text{IFFT} [B_r(f_i, \theta_s)]$$

Discard overlap and concatenate segments in order to generate continuous time series for circular beamformers

Fig. 10c
FORMATION OF SUB-APERTURES FOR A MULTI-DIMENSIONAL ARRAY OF SENSORS

The sub-aperture formation is based on decomposing the multi-dimensional beamformer into coherent sets of line and/or circular beamformers.

Generic structure decomposing the 3-D beamformer of 3-D sub-apertures into coherent sub-sets of line and circular array beamformers.

CONVENTIONAL BEAMFORMING
Output provides continuous beam time series

Where:
- \(g=1,2,\ldots,G \) is the sub-aperture index
- \(i=1,2,\ldots,I \) is the index for the time samples
- \(\theta \) and \(\phi \) are the azimuth and elevation angles of steering

ADAPTIVE BEAMFORMER
From the \(G \) sub-apertures the beam time series having the same steering direction represent \(G \) direction sensor \((\theta_s, \phi_s)\).

Time series of a line array provides the above directional time series at the input of the adaptive beamformer and generates number of adaptive beams with steering directions centered at \((\theta_{s}, \phi_{s})\) for \(s=1,2,\ldots,S \).

OUTPUT PROVIDES CONTINUOUS ADAPTIVE BEAM TIME SERIES

Fig. 11a
FORMATION OF SUB-APERTURES FOR A MULTI-DIMENSIONAL ARRAY OF SENSORS

The sub-aperture formation is based on decomposing the multi-dimensional beamformer into coherent sets of line and/or circular beamformers.

Generic structure decomposing the 3-D beamformer of 3-D sub-apertures into coherent sub-sets of line and circular array beamformers.

CONVENTIONAL BEAMFORMING

Output provides continuous beam time series

\[B_g(t_i, \theta, \phi) \]

Where:
- \(g = 1, 2, ..., G \) is the sub-aperture index
- \(i = 1, 2, ..., I \) is the index for the time samples
- \(\theta \) and \(\phi \) are the azimuth and elevation angles of steering.

Fig. 11b
ADAPTIVE BEAMFORMER

From the G sub-apertures the beam time series having the same steering direction represent G direction sensor.

Time series of a line array provide the above directional time series at the input of the adaptive beamformer and generates number of beams with steering direction centered at \((\theta_s, \phi_s)\) for \(s=1, 2, \ldots, S\).

OUTPUT PROVIDES CONTINUOUS ADAPTIVE BEAM TIME SERIES

Fig. 11c
ACTIVE BEAM PATTERN

Fig. 12
Simulated matched filter results for ultrasound applications of conventional adaptive & synthetic aperture beamformers and for fm type of pulses. Results provide a quantitative assessment of image resolution for the proposed adaptive beamformers.

Fig. 13
Array of Sensors/Transducers

Main Components of CPU Functionality for Ultrasound Imaging System

- SIGNAL PROCESSOR
- DATA MANAGER
- DISPLAY SUB-SYSTEM

Custom Made A/DC 128-Channels 45 MHz/channel

Computer Workstation Adaptive BeamFormer 3D Visualization Display

Fig. 14
HIGH RESOLUTION 3D ULTRASOUND IMAGING SYSTEM DEPLOYING A MULTIDIMENSIONAL ARRAY OF SENSORS AND METHOD FOR MULTIDIMENSIONAL BEAMFORMING SENSOR SIGNALS

FIELD OF THE INVENTION
This invention relates to the field of ultrasound imaging systems. In particular, the present invention relates to field deployable 3D ultrasound imaging systems providing high resolution images in real time.

BACKGROUND OF THE INVENTION
Ultrasound sensing and imaging technology provides a powerful tool for non-invasive imaging for treatment assessment and for minimally invasive surgery. Unlike CT scanners and MRIs, ultrasound imaging systems are compact and much cheaper to manufacture. These advantages allow use of ultrasound imaging systems in mobile units such as an ambulance or a helicopter. In general, victims of accidents, disasters or wars need immediate assessment and treatment in order to save their lives. For example, deployment of compact ultrasound imaging systems in mobile units allows on site imaging for treatment assessment during transport to provide live saving information for later surgery in a hospital or even providing information for minimally invasive surgery within the mobile unit. Therefore, it would be highly advantageous to provide a compact field-deployable 3D ultrasound imaging system for mobile units and field hospitals for immediate imaging of victims on accident sites, in disaster areas or in war zones.

However, state of the art ultrasound imaging systems suffer from very poor image resolution due to the very small size of sensor arrays of compact systems. Therefore, such systems do not provide images having a satisfying resolution for treatment assessment or surgery. In order to improve image quality it is necessary to deploy a large number of sensors in a compact multidimensional array to provide significant improvements in array gain for signals embedded in partially correlated noise fields. Partially correlated noise fields are caused, for example, by non-linear propagation characteristics of the human body and result in aberration effects and fuzziness in reconstructed images. The improvements in array gain result in image resolution improvements and minimization of the aberration effects.

An overview of the state of the art in adaptive and synthetic aperture beamformers is given in “Implementation of Adaptive and Synthetic Aperture Processing Schemes in Integrated Active-Passive Sonar Systems”, Proceedings of the IEEE, 86(2), pp. 358-397, February, 1998 by S. Stroganov. The algorithm has been designed to increase the signal-to-noise ratio for improved target detection and to provide simultaneously parameter estimates such as frequency, time delay, Doppler shift and bearing for incorporation into algorithms localising, classifying and tracking acoustic signals.

Unfortunately, implementation of adaptive beamformers in modern ultrasound systems comprising multi-dimensional arrays with hundreds of sensors requires very large amounts of memory and very large processing capabilities for real time data processing making their application for field-deployable systems impossible. To implement adaptive beamformers using current computer technology, the concept of partially adaptive beamformer design has been developed. The partially adaptive beamformer reduces the number of degrees of freedom, associated with the beamforming process, lowering the computational require-
ments and improving response time. Unfortunately, due to the reduction of the number of degrees of freedom the partially adaptive beamformers cannot converge to an optimum solution as fully adaptive beamformers. Therefore, the partially adaptive beamformers cannot make substantial use of multidimensional arrays deployed in ultrasound systems in order to improve array gain and to provide images with high resolution.

It is, therefore, an object of the invention to overcome the problems associated with the implementation of adaptive beamformers in modern ultrasound imaging systems comprising multidimensional sensor arrays.

It is further an object of the invention to provide adaptive beamformers with near-instantaneous convergence for ultrasound imaging systems deploying line arrays, circular arrays, spherical arrays of sensors or any superposition of these types of arrays.

It is yet another object of the invention to provide a 3D ultrasound imaging system comprising a multidimensional sensor array for generating high resolution images in real time using an adaptive beamforming process that is field-deployable.

SUMMARY OF THE INVENTION

In accordance with the present invention there is provided, an adaptive multidimensional beamformer having near-instantaneous convergence for ultrasound imaging systems. Implementation of the multidimensional beamformer according to the present invention provides the basis for a 3D ultrasound imaging system according to the present invention comprising a compact multidimensional sensor array and a compact processing unit that is field deployable and generates high resolution images in real time or near real time.

In accordance with the present invention there is provided, a method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system comprising the steps of:

decomposing the multidimensional beamformer into two coherent subsets of circular array beamformers and/or line array beamformers, a first subset comprising subsequent beamformers in a first coordinate direction of the multidimensional array and a second subset comprising subsequent beamformers in a second other coordinate direction of the multidimensional array;

beamforming for a predetermined beam steering direction of data relating to the sensor time series by applying the subsequent beamformers of the first subset, each beamformer producing a beam time series; and,

beamforming for the predetermined beam steering direction each beam time series of the first subset of beamformers applying the subsequent beamformers of the second subset for the steered direction producing one beam time series for the beam steering direction.

In accordance with aspect of the present invention there is provided, a method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system using a sub-aperture configuration, the method comprising the steps of:

a) dividing the multidimensional beamformer into a plurality of subsequent sub-apertures;

b) decomposing each sub-aperture into two coherent subsets of circular array beamformers and/or line array beamformers, a first subset comprising subsequent beamformers in a first coordinate direction of the multidimensional array and a second subset comprising subsequent beamformers in a second other coordinate direction of the sub-aperture;

c) conventional beamforming each sub-aperture for a predetermined beam steering direction a Fourier transform of the sensor time series by applying the subsequent beamformers of the first subset each beamformer producing a beam time series;

d) conventional beamforming each sub-aperture for the predetermined beam steering direction the beam time series produced by the beamformers of step c) by applying the subsequent beamformers of the second subset for the steered direction producing one beam time series for the beam steering direction for each sub-aperture; and,

e) adaptive beamforming on line arrays, each line array comprising beam time series of different subsequent sub-apertures in one coordinate direction, providing one or more beam time series for the beam steering direction.

In accordance with another aspect of the present invention there is provided, a method for beamforming sensor time series provided by sensors of an ultrasound imaging system using a coherent broad band adaptive beamformer, the method comprising the steps of:

segmenting the continuous sensor time series into a set of overlapped data sets;

calculating a FFT of each overlapped data set producing a set of Fourier transforms of the overlapped data sets for different frequency bins;

forming a cross spectral density matrix from the Fourier transforms of the overlapped data sets for each frequency bin and each predetermined steering direction;

forming a steering covariance matrix using the cross spectral density matrix and a diagonal matrix of conventional steering vectors, one steering covariance matrix for each steering direction and a frequency band of interest;

inverting the steering covariance matrices;

estimating adaptive steering vectors by assuming stationarity across frequency bins of a frequency band of interest and considering an estimate of the steering covariance matrix being the same as a narrow band estimate for a center frequency of the frequency band of interest;

determining narrow band adaptive steering weights using the estimate of the adaptive steering vectors;

forming adaptive beams in frequency domain from the Fourier transform of the overlapped data sets and the adaptive steering weights;

forming adaptive beams in time domain through IFFT; and,

determining continuous beam time series by discarding overlap and concatenation of segments.

In accordance with the present invention there is further provided, a field deployable 3D ultrasound imaging system for producing high resolution 3D images of an object in real time, the ultrasound system comprising:

a source for emitting ultrasound waves;

a compact adaptive multidimensional sensor array for capturing reflections of the ultrasound waves, the ultrasound waves being reflected by different structures within the object, and for providing sensor time series indicative of the reflected ultrasound waves;

a compact processing unit for receiving the sensor time series produced by the multidimensional sensor array;

processing the sensor time series in order to produce continuous beamtime series by:

decomposing a multidimensional beamformer into sub-apertures comprising coherent subsets of circular array beamformers and/or line array beamformers;
conventional beamforming circular arrays; adaptive beamforming line arrays; and, reconstructing 3D images from the beam time series in real time; and, a display for displaying the reconstructed 3D images in real time.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the invention will now be described in conjunction with the following drawings, in which:

FIG. 1 is a simplified diagram of a compact field deployable ultrasound imaging system according to the invention;
FIG. 2 is a simplified diagram of a line array of sensors for an ultrasound imaging system;
FIG. 3 is a simplified diagram of a circular array of sensors for an ultrasound imaging system;
FIG. 4 is a simplified diagram of a cylindrical array of sensors for an ultrasound imaging system illustrating a decomposition concept according to the invention;
FIG. 5 is a simplified flow diagram of an adaptive beamformer according to the invention for an ultrasound imaging system;
FIG. 6 is a simplified diagram of a line array of sensors for an ultrasound imaging system illustrating an adaptive sub-aperture structure according to the invention;
FIG. 7 is a simplified diagram of a circular array of sensors for an ultrasound imaging system illustrating an adaptive sub-aperture structure according to the invention;
FIG. 8 is a simplified diagram of a cylindrical array of sensors for an ultrasound imaging system illustrating an adaptive sub-aperture structure according to the invention;
FIG. 9 is a simplified diagram of a planar array of sensors for an ultrasound imaging system illustrating an adaptive sub-aperture structure according to the invention;
FIG. 10 is a schematic diagram of a signal processing flow according to the invention for beamforming cylindrical arrays;
FIG. 11 is a schematic diagram of a signal processing for an adaptive sub-aperture structure for multidimensional arrays according to the invention;
FIG. 12 is a schematic diagram illustrating power of beam response to active CW pulses as function of steering angle for various types of beamformers;
FIG. 13 illustrates simulated matched filter results of various types of beamformers for ultrasound applications;
FIG. 14 is a simplified diagram of an ultrasound imaging system to assess image resolution improvements of an adaptive beamformer according to the invention; and,
FIG. 15 shows various 3D images of a fetus’ skull obtained by using state-of-the-art signal processing techniques and by applying the adaptive beamformer according to the present invention to the signals captured by a state-of-the-art ultrasound system.

DETAILED DESCRIPTION

FIG. 1 illustrates schematically a field deployable 3D ultrasound imaging system 100 according to the invention. An object 2 is irradiated by a source 4 emitting ultrasound waves. Different structures 3 within the object 2 reflect the ultrasound waves in different directions. The reflected ultrasound waves are then captured by a plurality of sensors 8 of a compact multidimensional—2D or 3D—sensor array 6. Output signals of the sensors 8 are transmitted via a communication link to a compact processing unit 12 such as a conventional computer workstation for processing. Reconstructed images are then displayed using display 14. Provision of high resolution images and compact design of the multidimensional sensor array 6 and the processing unit 12 for a field deployable ultrasound imaging system is made possible using an advanced beamforming process according to the present invention which will be disclosed in the following sections. The advanced beamforming process according to the present invention maximizes array gain and image resolution by effectively using all information provided by the sensor signals of the multidimensional sensor array 6. This effective use of the sensor signals allows to minimize the multidimensional sensor array 6, which is essential for the field deployable ultrasound imaging system 100. Furthermore, the advanced beamforming process according to the invention comprises a decomposition dividing a fully multidimensional beamformer into sub-sets of coherent processes which may be implemented on small size CPU’s integrated within a parallel configuration of existing computing architectures. Therefore, the advanced beamforming process according to the present invention is performed using the compact processing unit 12 of the field deployable ultrasound imaging system 100. Additional, use of a sub-aperture structure of the beamforming process provides near-instantaneous convergence of adaptive beamformers allowing real time applications of the ultrasound system according to the present invention.

As a result of the decomposition according to the invention the fully multidimensional beamforming process is reduced to beamforming processes for line and circular arrays.

FIG. 2 illustrates a linear sensor array 20 comprising N sensors 8 with uniform sensor spacing δ receiving a plane wave signal 22 with a direction of propagation θ: \(x_n(t) = e^{j2\pi n(\theta - \delta t)/c} \) for \(n = 1, \ldots, N \). \(\theta \) and \(\delta \) are sensor time series produced by the N sensors 8 indicative of the received plane wave signal 22. For the plane wave signal 22 arriving at the angle \(\theta \) the sensor time series are expressed by \(x_n(t) = x_0(t + nT/\theta) \), wherein \(T/\theta \) is a time delay between the sensor time series of two adjacent sensors given by \(T/\theta = \delta \cos(\theta)/c \) with \(\cos(\theta) \) being a propagation speed of the plane wave signal 22 in a medium of interest.

The plane wave signal response of the N—sensor line array 20 is expressed by

\[
\mathbf{b}(f, 0) = \mathbf{D}(\mathbf{f}, 0) \mathbf{x}(f) \equiv \mathbf{E}(f) \mathbf{B}(\mathbf{f}, 0) \mathbf{x}(f),
\]

wherein * denotes a complex conjugate transpose. \(\mathbf{X}(f) \) is a vector of the Fourier transform of \(x_n(t) \) for a frequency bin \(f \) of interest. \(\mathbf{D}(\mathbf{f}, 0) \) is a steering vector having, for example, its \(n^{th} \) phase term for the plane wave signal 22 at an angle \(\theta \), being expressed by \(d_n(f, 0) = e^{j2\pi (n-1) \delta \cos(\theta)/c} \), wherein \(\theta \) is a beam steering direction angle. The beam power pattern \(P(f, 0) \) is then obtained by \(P(f, 0) = |\mathbf{B}(f, 0)\mathbf{X}(f)|^2 \). Side lobe structures resulting from the Fourier transformation of discontinuities in the signals, also called Gibbs effect, may be suppressed by applying different weights during the Fourier transformation—called shading—at the expense of an increased beam width. Angular response of the line array is ambiguous with respect to the angle \(\theta \), responding equally to targets at angle \(\theta \), and \(-\theta \), wherein \(\theta \) varies over the range \([0, \pi] \).

FIG. 3 illustrates a circular sensor array 30 comprising N sensors 8 distributed uniformly on a ring with radius R. The N sensors are receiving a plane wave signal 22 arriving at an
azimuth angle \(\theta \) and an elevation angle \(\phi \) as shown in FIG. 2. The \(N \) sensors \(8 \) produce sensor time series \(x_n(t) \) for each sensor \(n=1, \ldots, N \) at a fixed time \(t \). The plane wave signal response of the circular array sensor \(30 \) is then expressed by:

\[
B(\theta_0, \phi) = D(\theta_0, \phi) W(\theta_0) e^{j2\pi f(t-\delta) N/M, \mu=0,1, \ldots, M-1}
\]

Equation (2) shows that the Fourier transform of the sensor time series \(x_n(t) \) for a fixed frequency bin \(f \) is a steering vector \(D(\theta_0, \phi) \) of the circular sensor array, with \(\theta_0 \) and \(\phi \) being the steering angles. The steering vector \(D(\theta_0, \phi) \) is a complex exponential function of the frequency bin \(f \) and the steering angles \(\theta_0 \) and \(\phi \). The function \(W(\theta_0) \) is a diagonal matrix with diagonal elements being zero and diagonal terms being weights of a spatial window to reduce side lobe structure.

Referring to FIG. 4, a decomposition process of a cylindrical array beamformer into coherent sub-sets of linear and circular array beamformers according to the invention is shown. A cylindrical sensor array \(40 \) is shown in FIG. 4 to comprise \(N \) sensors \(8 \), where \(N \) is the number of circular sensor arrays \(30 \) and \(M \) is the number of sensors \(8 \) on each circular sensor array \(30 \), which is the number of linear sensor arrays \(20 \). Angular response of the cylindrical sensor array \(40 \) at a steered direction at \((\theta_0, \phi) \) is indicated as follows:

\[
B(f, \theta_0, \phi) = \sum_{m=1}^{M} \sum_{n=1}^{N} w_{n,m} X_n(f) e^{j2\pi f t_0 N/M, \mu=0,1, \ldots, M-1}
\]

Equation (3) expresses the cylindrical array beamformer comprising a product of two summations, the first being a linear array beamformer and the second being a circular array beamformer. According to the invention, a beamforming process for a cylindrical array as expressed by equation (4) is decomposed into two steps as shown in FIG. 4. In a first step, circular array beamforming is performed for each of the \(N \) sensor circular sensor arrays \(30 \), each comprising \(M \) sensors \(8 \), to produce \(N \) beam time series outputs. In a second step linear array beamforming is performed on the \(N \) beam time series outputs of the first step producing one beam time series for the steered direction. The same process is then repeated for other beam steering directions of interest. Alternatively, the process is reversed performing line array beamforming first.

The decomposition process according to the invention based on equation (5) substantially facilitates cylindrical array beamforming. The number of mathematical operations and the amount of memory required to perform these operations are substantially reduced by expressing the cylindrical beamformer as a product of two sums, instead of a double summation as expressed by equation (3). It, therefore, eliminates the need for very large memory and very fast CPU’s for real time system applications. This allows applications of the invention to a much simpler design and incorporation of multidimensional arrays using currently available computer technology such as a conventional computer workstation in the compact processing unit \(12 \).

As is evident, the circular and linear array beamformers resulting from the decomposition process according to the invention may be executed in parallel allowing optimal execution of the beamforming operations using computer with parallel processors substantially enhancing performance of the beamforming process. This allows real time applications of the ultrasound imaging system \(100 \) using current available computer technology within the compact processing unit \(12 \).

Furthermore, because equation (4) is directly derived from equation (3) without further assumptions, the decomposed cylindrical array beamforming process according to the invention does not include a loss in the number of degrees of freedom. Therefore, the decomposed cylindrical array beamforming process according to the invention converges to an optimum solution as expressed by equation (3). Another advantage of the decomposition process according to the invention is a much simpler design and incorporation of three-dimensional spatial windows. A non-uniform shading window may be applied for each circular array beamformer to improve angular response with respect to azimuth angle \(\theta \). A uniform shading window may then be applied to the line array beamformer to improve angular response with respect to elevation angle \(\phi \). Of course, other types of shading windows or combinations may be applied.

Decomposition processes for planar and spherical arrays are very similar to the decomposition process for the cylindrical array described above. Detailed descriptions of these processes are published in A. Tawfik and S. Stergiopoulos: “A Generic Processing Structure Decomposing the Beamforming Process of 2-D & 3-D Arrays of Sensors into Sub-Set of Coherent Processes”, submitted to IEEE, J. Oceanic Eng., July, 1997. Of course, the decomposition according to the invention may also be applied to sensor arrays other than cylindrical, planar and spherical arrays.

The beamforming process expressed by equations (1) and (2) for linear array sensors \(20 \) and circular sensor arrays \(30 \), respectively, is a time delay beamforming estimator being basically a spatial filter. However, optimum beamforming requires beamforming filter coefficients to be chosen based
on characteristics of noise received by the sensor array in order to optimize sensor array response. Algorithms for optimum beamforming using characteristics of noise received by the sensor array are called adaptive beamformers. Beamforming filter coefficients of these algorithms are chosen based on a covariance matrix of correlated noise received by the sensor array. However, if the knowledge of the noise’s characteristic is inaccurate, performance of the adaptive beamformer will degrade significantly and may even result in cancellation of a desired signal. Therefore, it is very difficult to implement useful adaptive beamformers in real time operational systems. Furthermore, for post processing such as matched filter processing the adaptive beamformer has to provide coherent beam time series. In particular, the matched filter processing requires near-instantaneous convergence of the beamformer producing a continuous beam time series correlating with a reference signal.

In adaptive beamforming, beamformer response is optimized to contain minimum contributions due to noise and signals arriving from directions other than a direction of a desired signal. For the optimization, it is desired to find a linear filter vector \(\mathbf{w}(f) \) which is a solution to a constraint minimization problem that allows signals from a desired direction to pass with a specified gain. The minimization problem is expressed as follows:

\[
\min_{\mathbf{w}(f)} \sum_{n} \mathbf{R}(f) \mathbf{w}(f)^H \mathbf{R}(f) \mathbf{w}(f) \quad \text{subject to} \quad \mathbf{w}(f)^H \mathbf{R}(f) \mathbf{w}(f) = 1.
\]

(5)

\(\mathbf{R}(f) \) is the conventional steering vector based on equation (1). \(\mathbf{R}(f) \) is a spatial correlation matrix of received sensor time series with elements \(R_{mn}(f) = \{x_m(f) x_n(f)\} \), wherein \(\{\ldots\} \) denotes an expectation operator and \(\delta_{mn} \) is sensor spacing between the \(n \)-th and \(m \)-th sensor. The solution of the minimization problem is expressed by

\[
\mathbf{w}(f) = \mathbf{R}^{-1}(f) \mathbf{R}(f) \mathbf{w}(f).
\]

(6)

Equation (6) provides adaptive steering vectors for beamforming signals received by a \(N \)-sensor array. In frequency domain an adaptive beam at a steering angle \(\theta_0 \) is then defined by

\[
\mathbf{H}(f, \theta_0) = \mathbf{R}^{-1}(f) \mathbf{H}(f, \theta_0).
\]

(7)

corresponding to conventional beams expressed by equation (1).

In “Bearing Estimation of Multiple Broadband Sources using Steered Covariance Matrices”, IEEE Trans. Acoust. Speech, Signal Proc., ASSP-37, pp. 1481–1494, 1989, J. Krolik and D. N. Singewer have shown that convergence time for a broadband source location is reduced by using a space-time statistic called steered covariance matrix (STCM). This method achieves significantly shorter convergence times than other algorithms based on a narrowband cross spectral density matrix (CSDM) as taught by B. Van Veen and K. Buckley in: “Beamforming: A Versatile Approach to Spatial Filtering”, IEEE ASSP Mag., pp. 4–24, 1988, without sacrificing spatial resolution. The number of statistical degrees of freedom available to estimate the STCM is approximately the product of time and bandwidth \(T \times B \) compared to an observation time \(T \times M/F \), where \(F \) is a sampling frequency in CSDM methods. This provides an improvement of approximately \(B \) which is the size of a broadband source bandwidth, in convergence time.

Output of a conventional beamformer in frequency domain is expressed by equation (1). A corresponding output of the STCM in time domain is then expressed as the weighted sum of steered sensor outputs

\[
\mathbf{y}(t, \theta_0) = \left\{ a_n \mathbf{w}(f_n, \theta_0) \right\}_{n=1}^{N}.
\]

(8)

Since \(\mathbf{y}(t, \theta_0) \) is a fast Fourier transformation (FFT) of \(\mathbf{B}(f, \theta_0) \) continuous beam time sequences are obtained from the output of a frequency domain beamformer using fast Fourier transformation (FFT) and fast convolution procedures. Using the beamformer output an expected broadband beam power \(B(\theta) \) is given by:

\[
B(\theta) = \mathbf{E} \left\{ \mathbf{H}(f, \theta_0)^H \mathbf{R}(f, \theta_0) \mathbf{H}(f, \theta_0) \right\} \mathbf{h}.
\]

(9)

wherein the vector \(\mathbf{h} \) includes weights for spatial shading. The term

\[
\Phi(\theta) = \mathbf{E} \left\{ \mathbf{H}(f, \theta_0)^H \mathbf{H}(f, \theta_0) \right\}
\]

(10)

is defined as the STCM in time domain and is assumed to be independent of \(t \) in stationary conditions. Supposing that \(X(f) \) is the Fourier transform of the sensor time series and assuming that the sensor time series are approximately band limited a vector of steered sensor outputs \(\mathbf{x}(t, \theta) \) is expressed by

\[
\mathbf{x}(t, \theta) = \sum_{k=1}^{K} T_k(f_k, \theta) \mathbf{x}(f_k) \exp(j2\pi f_k t).
\]

(11)

The STCM follows then directly from the above equations as

\[
\Phi(f, \theta) = \sum_{k=1}^{K} T_k(f_k, \theta) \mathbf{R}(f_k, \theta) T^*(f_k, \theta).
\]

(12)

wherein the index \(k=1, \ldots, K \) refers to frequency bins in a band of interest \(\Delta f \) and \(R(f_k) \) is the CDSM for the frequency bin \(f_k \).

In steered minimum variance algorithms (STMV) a spectral estimate of broadband spatial power is given by:

\[
B(\theta) = \left| \Phi(\Delta f, \theta) \right|^2.
\]

(13)

However, estimates of \(B(\theta) \) according to equation (14) do not provide coherent beam time series because they represent the broadband beam power output of an adaptive process. Therefore, according to the invention the estimation process of the STMV has been modified to determine complex coefficients of \(\Phi(\Delta f, \theta) \) for all frequency bins in a frequency band of interest.

The STMV algorithm is used in its original form to generate an estimate of \(\Phi(\Delta f, \theta) \) for all frequency bands \(\Delta f \) of a received signal. Assuming stationarity across the fre-
11

quency bins of a band Δf the estimate of the STMV is considered to be approximately the same as a
narrowband estimate $\Phi(f,0)$ for a center frequency f_0 of the band Δf. Narrowband adaptive coefficients are then derived from

$$w(f_0,0) = \frac{\Phi(f_0, \Delta f, \theta)}{D(f_0, \Phi(f_0, \Delta f, \theta))}.$$ \hspace{1cm} (15)

Phase variations of $w(f_0,0)$ across the frequency bins $i=1,2,\ldots,H$ are modeled by

$$w_i(f_0,0)=\exp\left\{2\pi f_0 \Psi_i(\Delta f,0)\right\},$$ \hspace{1cm} (16)

wherein $\Psi_i(\Delta f,0)$ is a time delay term derived from

$$\Psi_i(\Delta f,0)=\frac{\Psi_i(N_0,0)}{\omega_i n_i}.$$ \hspace{1cm} (17)

Using the adaptive steering weights $w_i(\Delta f,0)$, provided by equation (16), adaptive beams are formed by

$$b_i(\theta, \Delta f)=\sum_{n=0}^{N-1} w_i(f_0,0) R_{nf}(n).$$ \hspace{1cm} (18)

FIG. 5 shows schematically the processing steps of the STMV beamformer discussed above. First the sensor time series are segmented, overlapped and transformed into frequency domain using FFT. In a following step the STCM is determined based on equations (10) and (13). The STCM is then inverted using Cholesky factorization and in order to determine an estimation of the adaptive steering vectors according to equation (15). The adaptive steering vectors are then integrated in the frequency domain forming adaptive beams. Finally, adaptive beams in time domain are then formed through IFFT

$$b_i(\theta, \Delta f)=\text{IFFT}\left\{b_i(\theta, \Delta f)\right\},$$ \hspace{1cm} (19)

wherein overlap and concatenation of segments are discarded to form a continuous beam time series.

Matrix inversion is a major issue for implementing adaptive beamformers in real time applications. Standard numerical methods for solving systems of linear equations can be applied to solve for the adaptive weights. The numerical methods include:

Cholesky factorization of the covariance matrix $R(f)$. This allows the linear system to be solved by backsubstitution in terms of the received data vector.

QR decomposition of the received vector $X(f)$ which includes conversion of a matrix to upper triangular form via rotations. The QR decomposition method has better stability than the Cholesky factorization but requires twice as much computational effort.

SVD (Singular Value Decomposition) method. The SVD method is the most stable factorization technique but requires three time more computational effort than the QR decomposition method.

For the adaptive beamforming process according to the present invention Cholesky factorization and QR decomposition techniques have been applied. No noticeable differences in performance concerning stability have been found between these methods. Of course, for real time applications the fastest algorithm is preferred.

Another major concern for implementing adaptive beamforming in real time applications is the requirement of knowledge of second order statistics for the noise field, derived from equations (10) and (13). These statistics are usually not known but can be estimated from the received data by averaging a large number of independent samples of the covariance matrix $R(f)$. With K being the effective number of statistically independent samples of $R(f)$ and N being the number of sensors 8 the variance of the second order statistics for the noise field—the adaptive beam output power estimator detection statistic—is inversely proportional to ($K-N+1$). Theoretical estimations as well as empirical observations suggest that K has to be four times greater than N in order to get coherent beam time series at the output of the adaptive beamformer. For arrays with a large number of sensors implementation of adaptive beamformers as statistically optimum beamformers requires averaging a very large number of independent samples of $R(f)$, which is not applicable in real time systems. A solution to this problem is updating the covariance matrix using an exponential window in the form of a time varying adaptive estimation of $R(f)$ at time t. The time varying adaptive estimation is the exponentially time averaged estimator—geometric forgetting algorithm—at time t:

$$R_i(t)=(1-\mu)R_i(t-1)+\mu R_i(t),$$ \hspace{1cm} (2)

wherein μ is a smoothing factor ($0<\mu<1$) implementing exponentially weighted time averaging.

Implementation of an adaptive beamformer with a large number of adaptive weights for a large number of sensors requires very long convergence periods eliminating dynamical characteristics of the adaptive beamformer to detect time varying characteristics of a received signal of interest. This limitation can only be avoided by reducing the number of adaptive weights. A reduction of the number of adaptive weights is achieved by introducing a sub-aperture processing scheme according to the present invention.

FIG. 6 illustrates a sub-aperture configuration for a line array 20 of sensors 8. The line array is divided into a plurality of overlapping sub-arrays. In a first stage the sub-arrays are beamformed using a conventional beamformer generating a number of sets of beams equal to the number of sub-arrays for each steering direction. In a second stage adaptive beamforming is performed on each set of beams steered in a same direction in space but each beam belonging to a different sub-array. A set of beams is equivalent to a line array consisting of directional sensors steered at a same direction with sensor spacing being equal to space separation between two contiguous sub-arrays and with the number of sensors being equal to the number of sub-arrays. FIG. 7 illustrates a sub-aperture configuration for a circular array 30 with M sensors 8 according to the invention.

A first circular sub-aperture consists of first $M-G+1$ sensors with $n=1,2,\ldots,M-G+1$, wherein n is a sensor index and G is the number of sub-apertures. A second circular sub-aperture consists of $M-G+1$ sensors with $n=2,3,\ldots,M-G+2$. Sub-aperture formation is continued until a last sub-aperture then consists of $M-G+1$ sensors with $n=G,G+1,\ldots,M$. In a first stage each circular sub-aperture is beamformed using a conventional beamformer generating G sets of beams for each steering direction. The second stage includes adaptive beamforming on a set of beams steered in a same direction in space but each belonging to a different circular sub-aperture. FIG. 7 illustrates these sub-aperture steps for G=3.

Referring to FIG. 8, a sub-aperture configuration for a cylindrical array 40 according to the invention is shown. The cylindrical array 40 comprises N sensors 8, wherein N is the number of circular rings and M is the number of sensors on each ring. Formation of sub-apertures is performed as follows:

A first sub-aperture consists of the first (N-G+1) rings with $n=1,2,\ldots,N-G+1$ being a ring index and G being the number of sub-apertures. In each ring a first set of M-G+1
sensors, with \(m=1,2, \ldots, M-G+1 \) being a sensor index for each ring, is selected. The first sub-aperture forms a cylindrical array cell \(42 \), indicated by small circles in the upper right picture of FIG. 8. Conventional beamforming is then applied to the cylindrical array cell \(42 \) using the decomposition process according to the invention as described above. For a given steering direction comprising azimuth angle \(\theta \), and elevation angle \(\phi \), the multidimensional sub-aperture beamformer provides beam time series \(b_{g=2}(t, \theta, \phi) \) with subscript \(g=1 \) indicating the first sub-aperture.

A second sub-aperture consists of a subsequent set of \((N-G+1) \) rings with \(n=2,3, \ldots, N-G+2 \). In each ring a first set of \(M-G+1 \) sensors is selected. The selected sensors then form a second sub-aperture cylindrical array cell. Again conventional beamforming is then applied and for a given steering direction the multidimensional sub-aperture beamformer provides beam time series \(b_{g=2}(t, \theta, \phi) \) with subscript \(g=2 \) indicating the second sub-aperture.

Sub-aperture formation is continued until a last sub-aperture then consists of a subsequent set of \((N-G+1) \) rings with \(n=N-G+1, \ldots, N \). In each ring a last set of \(M-G+1 \) sensors is selected. The active beamformer is then applied and for a given steering direction the multidimensional sub-aperture beamformer provides beam time series \(b_{g=2}(t, \theta, \phi) \) with subscript \(g=G \) indicating the last sub-aperture.

A second stage of beamforming comprises an adaptive beamformer on a line array consisting of, for example, \(G=3 \) beam time series \(b_{g=1,2, \ldots, G}(t, \theta, \phi) \), as shown in FIG. 8. For a given pair of azimuth and elevation steering angles \((\theta, \phi) \), the cylindrical adaptive beamforming process is reduced to a line array beamformer. The adaptive line array beamformer comprises three beam time series \(b_{g=1,2,3}(t, \theta, \phi) \) with spacing \(\delta=2(2\pi/M+\delta_\theta)^{-1/2} \) between two contiguous sub-aperture cylindrical cells, wherein \(2\pi/M \) is the sensor spacing on each ring and wherein \(\delta_\theta \) is the distance between each ring along the \(\theta \)-axis of the cylindrical array \(40 \). The adaptive line array beamformer provides one or more adaptive beam time series with steering centered on the pair of azimuth and elevation steering angles \((\theta, \phi) \).

Because of the very small number of degrees of freedom in each sub-aperture the adaptation process experiences near-instantaneous convergence. Furthermore, the multidimensional sub-aperture beamforming process according to the invention may include a wide variety of adaptive noise cancellation techniques such as MVDR and GSC as discussed in:

Furthermore, the sub-aperture configuration according to the invention is applicable to other multidimensional arrays such as planar \(M-G+1 \) and spherical \(M-G+1 \) arrays. Decomposition, sub-aperture formation as well as implementation of adaptive beamformers for planar and spherical arrays are similar to corresponding steps for cylindrical arrays discussed above. In particular, for planar arrays, formation of sub-apertures is based on the sub-aperture adaptive concept for line arrays as illustrated in FIG. 9. Similarly, formation of sub-apertures for spherical arrays is based on the sub-aperture adaptive concept of circular arrays.

FIG. 10 illustrates schematically the modular structure of the signal processing flow for a 3D cylindrical array of an ultrasound imaging system according to the invention. Line and circular array beamformers are implemented as Finite Impulse Response (FIR) filters. Reconfiguration of the different processing modules in FIG. 10 allows application of the signal processing flow to a variety of ultrasound imaging systems with, for example, line, planar or spherical sensor arrays.

A first processing module \(50 \) includes partitioning of time series received from a sensor array, computation of an initial spectral FFT of the partitioned time series, selection of a frequency band of interest via band-pass FIR filters and downsampling. The output of module \(50 \) comprises a continuous time series at a reduced sampling rate.

Second module \(52 \) and third module \(53 \) comprising circular array and line array beamformers provide continuous directional beam formation and time-varying spatial filtering via circular convolution. Segmentation and overlap of an input of the beamformers takes care of wraparound errors due to fast-convolution signal processing operations. The overlap is equal the effective FIR filter’s length.

Module \(54 \) is used for processing echoes obtained from active ultrasound applications.

Module \(56 \) includes final processing steps of a temporal spectral analysis.

Finally, data normalization processing schemes are used to map output results into a dynamic range of display devices. In the module \(56 \) use of verniers and the temporal spectral analysis—incorporating segment overlap, windowing and FFT coherent processing—provide narrow band results for all the beam time series. Normalization and OR-ing are final processing steps before displaying the output results.

In the active module \(54 \) application of a matched filter—or replica correlator—on the beam time series provides broadband processing. This allows detection of echoes as a function of range and bearing for reference waveforms transmitted by active transducers of ultrasound systems.

Referring to FIG. 11, a schematic diagram of a signal processing flow for the sub-aperture configuration of multidimensional arrays according to the invention is shown. Module \(60 \) includes formation of sub-apertures according to the invention. In a next step, sensor time series of each sub-aperture are beamformed in module \(62 \) using a conventional beamformer for multidimensional arrays according to the invention as shown in FIG. 10 providing a beam time series for each sub-aperture. A second stage of beamforming is performed in module \(64 \). The second stage includes adaptive beamforming of the beam time series obtained in module \(62 \). The adaptive beamformer provides one or more adaptive beam time series with steering centered on same azimuth and elevation angles as the conventional beams.

The signal processing flow for the sub-aperture configuration of multidimensional arrays as shown in FIG. 11 may be incorporated in modules \(52 \) and \(53 \) of the signal processing flow shown in FIG. 10.

In another embodiment of signal processing according to the invention the time-aperture shaped beamformer is combined with a synthetic aperture beamformer—ETAM algorithm—for further improvement of the image resolution. The synthetic aperture beamformer provides sensor...
time series corresponding to a synthesized sensor array comprising a larger number of sensors than the real—physical—sensor array used for providing input sensor time series to the synthetic aperture beamformer. Details concerning the synthetic aperture beamformer are disclosed in U.S. Pat. No. 4,930,111 issued to Sullivan E. D. and Stergiopoulos S. in 1990. In a first step the sensor time series are processed using the synthetic aperture beamformer and are provided as input to the sub-aperture adaptive beamformer. Alternatively, this method may be used to obtain a satisfying image resolution when smaller sensor arrays are deployed in compact ultrasound imaging systems.

The sub-aperture adaptive beamformer according to the invention has been tested with simulated as well as with real data sets in order to demonstrate that it achieves near instantaneous convergence and, therefore, provides output beamtime series having sufficient temporal coherence and correlate with the reference signal. Provision of output beamtime series having sufficient temporal coherence is essential for matched filter processing or temporal spectral analysis in passive and active ultrasound imaging systems. Referring to FIG. 12, the power of beam response to active CW pulses as a function of steering angle for various types of beamformers—conventional beamformer on a 48 sensor planar array (1); sub-aperture adaptive beamformer according to the invention on a 48 sensor planar array (2); synthetic aperture (ETAM algorithm) beamformer extending a physical 48 sensor planar array into a synthetic 144 sensor planar array (3); combined synthetic aperture and sub-aperture adaptive beamformer according to the invention on a 48 sensor planar array (4); and, conventional beamformer on a 144 sensor planar array (5)—is shown. As is apparent from the results presented in FIG. 12, the sub-aperture adaptive beamformer according to the invention provides an angular resolution similar to a conventional beamformer applied on a three times larger planar array. Further improvements to angular resolution are obtained by combining the sub-aperture adaptive beamformer with the synthetic aperture beamformer according to the invention as shown in FIG. 12 at the expense of more computational effort being involved in the beamforming process.

Furthermore, the sub-aperture adaptive beamformer according to the invention has been tested with synthetic data sets including broadband FM pulses with a repetition rate of a few minutes to demonstrate the efficiency of the sub-aperture adaptive beamformer according to the invention to achieve near-instantaneous convergence in order to provide coherent beamtime series for the broadband FM pulses. This is necessary to test, because adaptive processing schemes require at least a few iterations to converge to an optimum solution. The output beamtime series have been processed using a matched filter and their arrangement as GRAMs provides a waterfall display of ranges (depth) as a function of beam-steering as shown in FIG. 13. For each beamformer the horizontal axis includes 20 steering beams in a 10-degrees angular sector centered in a 20 degree look-direction. The vertical axis represents time delay or depth penetration of the signal within a human body. Thus, the detected echoes along the vertical axis of each window shown in FIG. 13 represent reflections from simulated objects such as organs. From left in FIG. 13 the different beamformers used are: a conventional beamformer on a 48 sensor array; a sub-aperture adaptive beamformer according to the invention on a 48 sensor array; a synthetic aperture (ETAM algorithm) beamformer extending a physical 48 sensor array into a synthetic 144 sensor array; a combined synthetic aperture and sub-aperture adaptive beamformer according to the invention on a 48 sensor array; and, a conventional beamformer on a 144 sensor array. As is obvious, the conventional beamformer applied on the 48 sensor array—first window on the left in FIG. 13—has failed to resolve the two echoes. This represents the performance characteristic of current state-of-the-art ultrasound imaging systems. The following three windows in FIG. 13 show results of the adaptive beamformers according to the invention applied to a 48 sensor array. As is evident, in all three windows two echoes are clearly visible. The resolution of the adaptive beamformers according to the invention is comparable to the resolution of a conventional beamformer applied on a three times larger sensor array as shown in the window on the right in FIG. 13.

In order to demonstrate the improvement, the adaptive beamformer according to the present invention has been implemented within a general purpose ultrasound imaging system for medical diagnostic applications as shown in FIG. 14. The system comprises: a line array 20 of 32 sensors 8, a state-of-the-art signal processing unit 72, a custom-made A/D converter with 12 bit and 45 MHz sampling frequency per channel, and a computer workstation 76 for adaptively beamforming the sensor time series provided by the line array 20 and for image reconstruction and for 3D visualization. FIG. 15 shows typical 3D images of a fetus’ skull. The two top images and the bottom left image have been obtained using state-of-the-art ultrasound systems and signal processing whereas the bottom right image has been obtained by applying the adaptive beamformer according to the present invention to the signals captured by a state-of-the-art ultrasound system. As is evident, application of the adaptive beamformer according to the present invention substantially enhances the image resolution.

Further enhancement of the image resolution is obtained by applying the adaptive beamformer according to the present invention to multidimensional—2D or 3D—sensor arrays allowing better angular resolution of the signals during the beamforming process.

As shown by the results presented in FIGS. 12, 13 and 15 the adaptive beamformer according to the present invention achieves near-instantaneous convergence and enhances image resolution substantially. Therefore, the adaptive beamformer is highly advantageous for applications in ultrasound imaging and may be implemented into existing ultrasound systems for improving image resolution. In a preferred embodiment the adaptive beamformer according to the invention is used to provide a compact field-deployable ultrasound system for providing high resolution images in real time. This is achieved by applying the adaptive beamformer on signals obtained from compact multidimensional arrays and using a sub-aperture structure reducing the degrees of freedom within each sub-aperture thus minimizing the computational effort for beamforming multidimensional arrays. Therefore, the beamforming process requires only a conventional workstation and is performed in real time.

Of course, numerous other embodiments may be envisaged without departing from the spirit and scope of the invention.

What is claimed is:

1. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system comprising the steps of:
 decomposing the multidimensional beamformer into two coherent subsets of circular array beamformers and/or line array beamformers, a first subset comprising sub-
sequent beamformers in a first coordinate direction of the multidimensional array and a second subset comprising subsequent beamformers in a second other coordinate direction of the multidimensional array; beamforming for a predetermined beam steering direction of data relating to the sensor time series by applying the subsequent beamformers of the first subset, each beamformer producing a beam time series, and, beamforming for the predetermined beam steering direction each beam time series of the first subset of beamformers applying the subsequent beamformers of the second subset for the steered direction producing one beam time series for the beam steering direction.

2. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system as defined in claim 1, wherein the multidimensional sensor array is a planar array.

3. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system as defined in claim 1, wherein the multidimensional sensor array is a cylindrical array.

4. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system as defined in claim 1, wherein the multidimensional sensor array is a spherical array.

5. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system as defined in claim 1, wherein the subsets of beamformers of each coordinate direction are executed in parallel.

6. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system as defined in claim 1, comprising weights of a three-dimensional spatial window to suppress sidelobe structures.

7. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system as defined in claim 1, wherein the multidimensional beamformer comprising a double summation of terms in two different coordinate directions of the multidimensional array is transformed into a product of two summations, each summation comprising terms in one coordinate direction of the multidimensional array.

8. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system as defined in claim 1, wherein the beamformers of the subsets are adaptive beamformers.

9. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system as defined in claim 1, wherein non-uniform shading windows are applied to the beamformers of a subset of beamformers.

10. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system as defined in claim 1, wherein the line and circular array beam formers are implemented as Finite Impulse Response (FIR) filters for spatial filtering via circular convolution.

11. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system as defined in claim 1, comprising broadband processing of the beam time series for each steering direction using a matched filter for detection of echoes as a function of range and bearing.

12. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system using a sub-aperture configuration, the method comprising the steps of:
 a) dividing the multidimensional beamformer into a plurality of sub-apertures;
 b) decomposing each sub-aperture into two coherent subsets of circular array beamformers and/or line array beamformers, a first subset comprising subsequent beamformers in a first coordinate direction of the multidimensional array and a second subset comprising subsequent beamformers in a second other coordinate direction of the sub-aperture;
 c) conventional beamforming each sub-aperture for a predetermined beam steering direction a Fourier transform of the sensor time series by applying the subsequent beamformers of the first subset each beamformer producing a beam time series;
 d) conventional beamforming each sub-aperture for the predetermined beam steering direction the beam time series produced by the beamformers of step c) by applying the subsequent beamformers of the second subset for the steered direction producing one beam time series for the beam steering direction for each sub-aperture; and,
 e) adaptive beamforming on line arrays, each line array comprising beam time series of different sub-apertures in one coordinate direction, providing one or more beam time series for the beam steering direction.

13. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system using a sub-aperture configuration as defined in claim 12, wherein the multidimensional sensor array is a planar array.

14. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system using a sub-aperture configuration as defined in claim 12, wherein the multidimensional sensor array is a cylindrical array.

15. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system using a sub-aperture configuration as defined in claim 12, wherein the multidimensional sensor array is a spherical array.

16. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system using a sub-aperture configuration as defined in claim 12, the method comprising MVDR adaptive noise cancellation.

17. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system using a sub-aperture configuration as defined in claim 12, the method comprising GSC adaptive noise cancellation.

18. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system using a sub-aperture configuration as defined in claim 12, wherein the adaptive beamformer is combined with a synthetic aperture beamformer.

19. A method for multidimensional beamforming sensor time series provided by sensors deployed in a multidimensional array of an ultrasound imaging system using a sub-
aperture configuration as defined in claim 12, wherein the sensor time series are beamformed in real time.

A method for beamforming sensor time series provided by sensors of an ultrasound imaging system using a coherent broad band adaptive beamformer, the method comprising the steps of:

- segmenting the continuous sensor time series into a set of overlapped data sets;
- calculating a FFT of each overlapped data set producing a set of Fourier transforms of the overlapped data sets for different frequency bins;
- forming a cross spectral density matrix from the Fourier transforms of the overlapped data sets for each frequency bin and each predetermined steering direction;
- forming a steering covariance matrix using the cross spectral density matrix and a diagonal matrix of conventional steering vectors, one steering covariance matrix for each steering direction and a frequency band of interest;
- inverting the steering covariance matrices;
- estimating adaptive steering vectors by assuming stationarity across frequency bins of a frequency band of interest and considering an estimate of the steering covariance matrix being the same as a narrow band estimate for a center frequency of the frequency band of interest;
- determining narrow band adaptive steering weights using the estimate of the adaptive steering vectors;
- forming adaptive beams in frequency domain from the Fourier transform of the overlapped data sets and the adaptive steering weights;

forming adaptive beams in time domain through IFFT;

and,

determining continuous beam time series by discarding overlap and concatenation of segments.

A method for beamforming sensor time series provided by sensors of an ultrasound imaging system using a coherent broad band adaptive beamformer as defined in claim 20, wherein the steering covariance matrices are inverted using Cholesky factorization.

A method for beamforming sensor time series provided by sensors of an ultrasound imaging system using a coherent broad band adaptive beamformer as defined in claim 20, wherein the steering covariance matrices are inverted using QR decomposition.

A method for beamforming sensor time series provided by sensors of an ultrasound imaging system using a coherent broad band adaptive beamformer as defined in claim 20, wherein the steering covariance matrices are inverted using SVD (Singular Value Decomposition) method.

A method for beamforming sensor time series provided by sensors of an ultrasound imaging system using a coherent broad band adaptive beamformer as defined in claim 20, wherein the steering covariance matrices are updated using a time varying adaptive estimation, the time varying adaptive estimation being an exponentially time averaged estimator.

* * * * *
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 3.
Line 11, the word "modem" should read -- modern --;

Column 5.
Lines 23 to 25, the figure caption "FIG. 5 is a simplified flow diagram of an adaptive beamformer according to the invention for an ultrasound imaging system;" should read

-- FIG. 5a is a simplified flow diagram of an adaptive beamformer according to the invention for an ultrasound imaging system comprising the steps of segmenting the sensor time series and transforming same into frequency domain;

FIG. 5b is a simplified flow diagram of an adaptive beamformer according to the invention for an ultrasound imaging system for determining an estimation of the adaptive steering vectors; --;
Lines 39 to 41, the figure caption "FIG. 10 is a schematic diagram of a signal processing flow according to the invention for beamforming cylindrical arrays;" should read

-- FIG. 10a is a schematic diagram of a signal processing flow according to the invention for beamforming cylindrical arrays;

FIG. 10b is a schematic diagram of a signal processing flow according to the invention for beamforming cylindrical arrays illustrating a circular array beamformer;

FIG. 10c is a schematic diagram of a signal processing flow according to the invention for beamforming cylindrical arrays illustrating a linear array beamformer; --;

Lines 42 to 44, the figure caption "FIG. 11 is a schematic diagram of a signal processing for an adaptive sub-aperture structure for multidimensional arrays according to the invention;" should read
-- FIG. 11a is a schematic diagram of a signal processing for an adaptive sub-aperture structure for multidimensional arrays according to the invention;

FIG. 11b is a schematic diagram of a modul of the signal processing for an adaptive sub-aperture structure for multidimensional arrays according to the invention shown in Fig. 11a;

FIG. 11c is a schematic diagram of another modul of the signal processing for an adaptive sub-aperture structure for multidimensional arrays according to the invention shown in Fig. 11a; --
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 6.
Line 40, the term “X_n” after the equal sign should read -- x_n --;

Column 7.
Line 7, equation (2) * $B(f, \theta_s, \phi_i) = \frac{\partial}{\partial f} \left(f(\theta_s, \phi_i) \right) \text{weight} \overline{X}(f)$ should read
--- $B(f, \theta_s, \phi_i) = \frac{\partial}{\partial f} \left(f(\theta_s, \phi_i) \right) \overline{X}(f)$ --;

Line 28, the expression “comprises sensors 8” wherein $N=NM$ with N being the number” should read -- comprises sensors 8, wherein $N=NM$ with N being the number --;
Line 39, the term “$W_{r,m}$” should read -- $w_{r,m}$ --;
Line 41, the term “$X(f)$” should read -- $X(f)$ --;
Line 43, the term “$D(f, \theta_s, \phi_i)$” should read -- $D(f, \theta_s, \phi_i)$ --;
Line 64, the term “$W_{2,m}$” should read -- $w_{2,m}$ --;

Column 10.
Line 51, the term “$k = l, l+1, \ldots, l+H$” should read -- $k = l, l+1, \ldots, l+H$ --;

Column 11.
Line 11, the term “$i = l, l+1, \ldots, l+H$” should read -- $i = l, l+1, \ldots, l+H$ --;
Line 22, the expression “FIG. 5 shows” should read -- FIG. 5a and 5b show --;
Line 25, the end of the sentence “using FFT.” should read -- using FFT, shown in Fig. 5a, --;
Line 25, the expression “In a following step the STCM” should read -- In a following step, shown in Fig. 5b, the STCM --;

Column 12.
Line 18, the equation * $R^k(f_i) = \pi R^{k-1}(f_i) + (1-\mu)\overline{X}(f_i)$” should read
--- $R^k(f_i) = \pi R^{k-1}(f_i) + (1-\mu)\overline{X}(f_i)$ --;

Line 18, the numeral “(2)” should read -- (20) --;
Line 61, the expression “comprises NM sensors 8” should read -- comprises N=NM sensors 8 --;
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 14,
Line 6, the expression “FIG. 10 illustrates” should read -- FIGS. 10a, 10b and 10c illustrate --;
Line 11, the expression “FIG. 10” should read -- FIG. 10a --.

Signed and Sealed this Eighth Day of July, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office