ES 2989984 T3

OFICINA ESPANOLA DE
PATENTES Y MARCAS

AR v ~
> é ESPANA @Nﬂmero de publicacion: 2 989 984
@Int. Cl.:

HO4N 19/30 ()
HO4N 19/70 ()
HO4N 19/463 ()
HO4N 19/573 (2014.01)
()
()
()

HO4N 19/172
HO4N 19/174
HO4N 19/187

®@ TRADUCCION DE PATENTE EUROPEA T3

Fecha de presentacién y nimero de la solicitud internacional: 06.10.2020 PCT/US2020/054452
Fecha y nimero de publicacion internacional: 04.02.2021 W021022271

Fecha de presentacién y nimero de la solicitud europea: 06.10.2020 E 20847068 (2)

Fecha y nimero de publicacion de la concesion europea: 31.07.2024 EP 4032293

Titulo: Evitacién de errores en la extraccion de subflujo de bits

Prioridad: @ Titular/es:

07.10.2019 US 201962911808 P HUAWEI TECHNOLOGIES CO., LTD. (100.0%)
Huawei Administration Building, Bantian,

s L Longgang District
t':rggzic?gnpgg'l'ga:a'?gn¥er_“e”°'°” en BOPI de la Shenzhen, Guangdong 518129, CN

28.11.2024 (@ Inventor/es:
WANG, YE-KUI

Agente/Representante:
PONS ARINO, Angel

AVisO:En el plazo de nueve meses a contar desde la fecha de publicacion en el Boletin Europeo de Patentes, de
la mencién de concesion de la patente europea, cualquier persona podra oponerse ante la Oficina Europea
de Patentes a la patente concedida. La oposicion debera formularse por escrito y estar motivada; sélo se
considerara como formulada una vez que se haya realizado el pago de la tasa de oposicién (art. 99.1 del
Convenio sobre Concesion de Patentes Europeas).

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

DESCRIPCION
Evitacion de errores en la extraccion de subflujo de bits
Campo técnico

La presente divulgacion se refiere, en general, a la codificacién de video, y se refiere, especificamente, a
mecanismos para prevenir errores cuando la extraccion de subflujos de bits se realiza en un flujo de bits
multicapa.

Antecedentes

La cantidad de datos de video necesarios para representar incluso un video relativamente corto puede ser
sustancial, lo que puede dar lugar a dificultades cuando los datos se van a transmitir o comunicar de otro modo
a través de una red de comunicaciones con capacidad de ancho de banda limitada. Por lo tanto, los datos de
video generalmente se comprimen antes de comunicarse a través de las redes de telecomunicaciones
modernas. El tamafio de un video también podria ser un problema cuando el video se almacena en un
dispositivo de almacenamiento debido a que los recursos de memoria pueden ser limitados. Los dispositivos
de compresién de video a menudo usan software y/o hardware en la fuente para la codificacion de los datos
de video antes de la transmisién o el almacenamiento, lo que reduce la cantidad de datos necesarios para
representar imagenes de video digital. Luego, los datos comprimidos son recibidos en el destino por un
dispositivo de descompresion de video que decodifica los datos de video. Con recursos de red limitados y
demandas cada vez mayores de mayor calidad de video, son deseables técnicas mejoradas de compresion y
descompresion que mejoren la relacién de compresioén con poco o ningln sacrificio en la calidad de la imagen.

El documento WO 2021/057869 A1 (HUAWEI Incorporated) divulga un indicador sps_video_parameter_set_id
para indicar si SPS hace referencia a VPS y un indicador GeneralLayerldx[nuh_layer_id] para indicar que la
capa actual es la capa de orden 0.

Document Versatile Video Coding (borrador 6)”, 15. El documento de la REUNION JVET; 3 al 12 de julio de
2019; GOTEMBURGO; (THE JOINT VIDEO EXPLORATION TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-
T 8G.16), no. JVET-02001-vE, 31 de julio de 2019, paginas 1-455, XP030293944 divulga el orden de las
unidades de NAL y las imagenes codificadas y su asociacion con las unidades de acceso a capas y las
unidades de evaluacion.

El documento AHG8/AHG17: Removing dependencies on VP from the decoding process of a non-scalable
bitstream”, 16. El documento de la REUNION JVET; 1-11 de octubre de 2019; GINEBRA; (THE JOINT VIDEO
EXPLORATION TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16), no. JVET-P0097, 24 de septiembre
de 2019, XP030216235 divulga la eliminacion de dependencias en VPS del proceso de decodificacién de un
flujo de bits no escalable.

Compendio

Las realizaciones de la presente invencion estan definidas por las reivindicaciones independientes. En las
reivindicaciones dependientes se presentan caracteristicas adicionales de la invencién. A continuacion, las
partes de la descripcidén y los dibujos que se refieren a realizaciones anteriores que no necesariamente
comprenden todas las caracteristicas para implementar realizaciones de la invencion reivindicada no se
representan como realizaciones de la invencion, sino como ejemplos Utiles para comprender las realizaciones
de la invencion.

Algunos sistemas de codificacién de video codifican secuencias de video en capas de imagenes. Las imagenes
en diferentes capas tienen diferentes caracteristicas. Por lo tanto, un codificador puede transmitir diferentes
capas a un decodificador dependiendo de las limitaciones del lado del decodificador. Para realizar esta funcién,
un codificador puede codificar todas las capas en un solo flujo de bits. Cuando se le solicita, el codificador
puede realizar un proceso de extraccién de subflujo de bits para eliminar informacién superflua del flujo de bits.
Esto resulta en un flujo de bits extraido que contiene solo los datos en la una o varias capas, solicitados por el
decodificador. Se puede incluir una descripciéon de cémo se relacionan las capas en un conjunto de parametros
de video (Video Parameter Set, VPS). Una capa de transmisién simultanea es una capa que esta configurada
para su visualizacién sin referencia a otras capas. Cuando una capa de transmisién simultanea se transmite a
un decodificador, el proceso de extraccién de subflujo de bits puede eliminar el VPS, ya que las relaciones de
capa no son necesarias para decodificar una capa de transmisiéon simultanea. Desgraciadamente, ciertas
variables en otros conjuntos de parametros pueden hacer referencia al VPS. Por lo tanto, eliminar el VPS
cuando se transmiten capas de transmisién simultanea puede aumentar la eficiencia de la codificacién, pero
también puede generar errores. El presente ejemplo incluye un mecanismo de codificacién de un SPS de una
manera que evita errores cuando se elimina un VPS de un flujo de bits codificado como parte de un proceso
de extraccion de subflujp de bits. El SPS contiene un sps_video_parameter_set id. El

2

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

sps_video_parameter_set_id indica un identificador del VPS que contiene relaciones de capa para la secuencia
de video. En un ejemplo, el sps_video_parameter_set_id se ajusta a cero cuando se elimina el VPS antes de
la transmision de un flujo de bits que contiene solo una capa de transmision simultanea. En otro ejemplo, los
SPS utilizados por las capas de transmisioén simultanea pueden contener un sps_video_parameter_set_id que
se ajusta a cero en el momento de la codificacion. En cualquier caso, cuando el sps_video_parameter_set_id
se ajusta a cero, las variables relacionadas con SPS que hacen referencia al VPS se ajustan en valores
predeterminados para evitar errores. Por ejemplo, un GeneralLayerldx[nuh_layer_id] indica un indice de capa
actual para una capa correspondiente (por ejemplo, la capa de transmisién simultanea). El
GenerallLayerldx[nuh_layer_id] se ajusta a, o se infiere que es cero, cuando el sps_video_parameter_set_id es
cero. Como ejemplo adicional, un indicador de capa independiente de VPS para el
GenerallLayerldx[nuh_layer_id] (vps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]]) se almacena en
el VPS y especifica si una capa con indice GeneralLayerldx[nuh_layer_id] utiliza prediccién entre capas. La
prediccion entre capas no se utiliza para capas de transmisidon simultdnea. Por lo tanto, el
vps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]] se ajusta a, o se infiere que es, uno, para indicar
que no hay prediccion entre capas cuando el sps_video parameter_set_id esta ajustado a cero. De esta
manera, se evitan errores cuando se elimina un VPS de un flujo de bits antes de la transmisién de una capa
de transmisién simultanea. Como resultado, se incrementa la funcionalidad del codificador y del decodificador.
Ademas, la eficiencia de la codificacién aumenta al eliminar con éxito un VPS innecesario de un flujo de bits
que incluye solo una capa de transmision simultanea, lo que reduce el uso de recursos de procesador, memoria
y/o sefializacién de red, tanto en el codificador como en el decodificador.

Estas y otras caracteristicas se comprenderan mas claramente a partir de la siguiente descripcion detallada
tomada junto con los dibujos y reivindicaciones que la acompanan.

Breve descripcion de los dibujos

Para una comprensiéon mas completa de esta divulgaciéon se hace referencia a continuacién a la siguiente
descripcién breve, tomada junto con los dibujos adjuntos y la descripcion detallada, en donde nimeros de
referencia iguales representan partes iguales.

La figura 1 es un diagrama de flujo de un método de ejemplo de codificacién de una sefial de video.

La figura 2 es un diagrama esquematico de un sistema de codificacién y decodificacion (cédec) de ejemplo
para codificacion de video.

La figura 3 es un diagrama esquematico que ilustra un codificador de video de ejemplo.
La figura 4 es un diagrama esquematico que ilustra un decodificador de video de ejemplo.

La figura 5 es un diagrama esquematico que ilustra un decodificador de referencia hipotético (Hypothetical
Reference Decoder, HRD) de ejemplo.

La figura 6 es un diagrama esquematico que ilustra una secuencia de video multicapa de ejemplo configurada
para prediccién entre capas.

La figura 7 es un diagrama esquematico que ilustra un flujo de bits de ejemplo.
La figura 8 es un diagrama esquematico de un dispositivo de codificacion de video de ejemplo.

La figura 9 es un diagrama de flujo de un método de ejemplo de codificacién de una secuencia de video
multicapa en un flujo de bits para soportar la eliminacién del conjunto de parametros de video (VPS) durante
la extraccion del subflujo de bits para capas de transmision simultanea.

La figura 10 es un diagrama de flujo de un método de ejemplo para decodificar una secuencia de video de un
flujo de bits que incluye una capa de transmisién simultanea extraida de un flujo de bits multicapa donde se ha
eliminado un VPS durante la extraccion del subflujo de bits.

La figura 11 es un diagrama esquematico de un sistema de ejemplo para codificar una secuencia de video
multicapa en un flujo de bits para soportar la eliminacién de VPS durante la extraccién del subflujo de bits para
capas de transmisién simultanea.

Descripcién detallada

Debe comprenderse desde el principio que, aungque a continuacién se proporciona una realizacién ilustrativa
de una o mas realizaciones, los sistemas y/o procedimientos descritos pueden implementarse usando cualquier
numero de técnicas, ya sean conocidas actualmente o existentes. La divulgacion no debe de ninguna manera

3

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

estar limitada a las implementaciones ilustrativas, dibujos, y técnicas ilustradas a continuacion, que incluyen
los disefios e implementaciones ejemplares ilustrados y descritos en la presente memoria, sino que pueden
modificarse dentro del alcance de las reivindicaciones adjuntas.

La invencion se divulga en las figuras 7, 9y 10 y en los pasajes correspondientes de la descripcion. Las otras
partes de la descripcion, a menos que proporcionen mas detalles sobre las caracteristicas de las
reivindicaciones, tienen como objetivo definir el dominio técnico de la invencion o proporcionar ejemplos.

Los siguientes términos se definen de la siguiente manera a menos que se utilicen en un contexto contrario en
la presente memoria. Especificamente, las siguientes definiciones pretenden proporcionar claridad adicional a
la presente divulgacién. Sin embargo, los términos pueden describirse de manera diferente en diferentes
contextos. En consecuencia, las siguientes definiciones deben ser consideradas como un complemento y no
deben ser consideradas como limitantes de ninguna otra definicién de las descripciones proporcionadas para
dichos términos en la presente memoria.

Un flujo de bits es una secuencia de bits que incluye datos de video que se comprimen para su transmision
entre un codificador y un decodificador. Un codificador es un dispositivo que esta configurado para emplear
procesos de codificacion para comprimir datos de video en un flujo de bits. Un decodificador es un dispositivo
que esta configurado para emplear procesos de decodificacion para reconstruir datos de video a partir de un
flujo de bits, para su visualizacion. Una imagen es una matriz de muestras de luma y/o una matriz de muestras
de croma que crean un fotograma o un campo del mismo. Una imagen que se esta codificando o decodificando
puede denominarse imagen actual para mayor claridad de la explicacién. Una imagen codificada es una
representacion codificada de una imagen que comprende unidades de capa de abstraccion de red (Network
Abstraction Layer, NAL) de capa de codificacién de video (Video Coding Layer, VCL) con un valor particular
de identificador de capa de cabecera de unidad de NAL (nuh_layer_id} dentro de una unidad de acceso (Access
Unit, AU) y que contiene todas las unidades del arbol de codificacion (Coding Tree Unit, CTU) de la imagen.
Una imagen decodificada es una imagen producida aplicando un proceso de decodificacion a una imagen
codificada. Una unidad de NAL es una estructura de sintaxis que contiene datos en forma de carga util de
secuencia de bytes sin procesar (Raw Byte Sequence Payload, RBSP), una indicacién del tipo de datos, e
intercalados segun se desee con bytes de prevencion de emulacion. Una unidad de NAL de VCL es una unidad
de NAL codificada para contener datos de video, tal como un segmento codificado de una imagen. Una unidad
de NAL no de VCL es una unidad de NAL que contiene datos que no son de video, tales como sintaxis y/o
parametros que soportan la decodificacion de datos de video, la realizacién de comprobaciones de conformidad
u otras operaciones. Una capa es un conjunto de unidades de NAL de VCL que comparten una caracteristica
especifica (por ejemplo, una resolucién, velocidad de fotogramas, tamafio de imagen, etc. comunes) como lo
indica el ID (identificador) de capa y las unidades de NAL no de VCL asociadas. Un identificador de capa de
cabecera de unidad de NAL (nuh_layer_id) es un elemento de sintaxis que especifica un identificador de una
capa que incluye una unidad de NAL.

Un decodificador de referencia hipotético (Hypothetical Reference Decoder, HRD) es un modelo de
decodificador que actla sobre un codificador que comprueba la variabilidad de los flujos de bits producidos
mediante un proceso de codificacion, para verificar la conformidad con restricciones especificadas. Una prueba
de conformidad de flujo de bits es una prueba para determinar si un flujo de bits codificado cumple con un
estandar, tal como la codificacion de video versatil (Versatile Video Coding, VVC). Un conjunto de parametros
de video (VPS) es una estructura de sintaxis que contiene parametros relacionados con un video completo.
Un conjunto de parametros de secuencia (Sequence Parameter Set, SPS) es una estructura de sintaxis que
contiene elementos de sintaxis que se aplican a cero 0 mas secuencias de video de capa codificadas (Coded
Layer Video Sequences, CLVS) completas. Un identificador de conjunto de parametros de video de SPS
(sps_video_parameter_set_id) es un elemento de sintaxis que especifica un identificador (ID) de una referencia
de VPS por parte de un SPS. Un indice de capa general (GeneralLayerldx[i]} es una variable derivada que
especifica un indice de una capa i correspondiente. Por lo tanto, una capa actual con un ID de capa de la capa
de nuh tiene un indice especificado por GeneralLayerldx[nuh_layer_id]. Un indice de capa actual es un indice
de capa correspondiente a una capa que se esta codificando o decodificando. Un indicador de capa
independiente de VPS (vps_independent_layer_flag[i]) es un elemento de sintaxis que especifica si una capa
i correspondiente utiliza prediccion entre capas. Por lo tanto, el vps_independent_layer_flag
[GeneralLayerldx[nuh_layer_id]] especifica si una capa actual utiliza prediccion entre capas. La prediccion entre
capas es un mecanismo de codificacién de bloques de valores de muestra en una imagen actual en una capa
actual basandose en una o varias imagenes de referencia de una capa diferente (por ejemplo, y en la misma
unidad de acceso). Una unidad de acceso (AU) es un conjunto de imagenes codificadas en diferentes capas
que estan todas asociadas con el mismo tiempo de salida. Un identificador de conjunto de parametros de VPS
(vps_video_parameter_set_id) es un elemento de sintaxis que proporciona un ID para un VPS como referencia
para otros elementos/estructuras de sintaxis. Una secuencia de video codificada es un conjunto de una o mas
imagenes codificadas. Una secuencia de video decodificada es un conjunto de una o mas imagenes
decodificadas.

En la presente memoria se utilizan las siguientes siglas: Unidad de acceso (AU), Bloque de arbol de codificacion
4

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

(Coding Tree Block, CTB), Unidad de arbol de codificacién (CTU), Unidad de codificacién (Coding Unit, CU),
Secuencia de video de capa codificada (CLVS), Inicio de secuencia de video de capa codificada (Coded Layer
Video Sequence Start, CLVSS), Secuencia de video codificada (Coded Video Sequence, CVS), Inicio de
secuencia de video codificada (Coded Video Sequence Start, CVSS), Equipo conjunto de expertos en video
(Joint Video Experts Team, JVET), Decodificador de referencia hipotético (HRD), Conjunto de mosaicos con
restriccion de movimiento (Motion Constrained Tile Set, MCTS), Unidad de transferencia méaxima (Maximum
Transfer Unit, MTU), Capa de abstraccién de red (NAL), Conjunto de capas de salida (Output Layer Set, OLS),
Punto de operacién (Operation Point, OP), Recuento de orden de imagenes (Picture Order Count, POC), punto
de acceso aleatorio (Random Access Point, RAP), Carga util de secuencia de bytes sin procesar (RBSP),
conjunto de parametros de secuencia (SPS), Conjunto de parametros de video (VPS), codificacion de video
versatil (VVC).

Se pueden emplear muchas técnicas de compresién de video para reducir el tamarfio de los archivos de video
con una pérdida minima de datos. Por ejemplo, las técnicas de compresion de video pueden incluir la
realizacion de predicciones espaciales (por ejemplo, dentro de una imagen) y/o predicciones temporales (por
ejemplo, entre imagenes) para reducir o eliminar la redundancia de datos en secuencias de video. Para la
codificacion de video basada en bloques, un segmento de video (por ejemplo, una imagen de video o una
parte de una imagen de video) se puede dividir en bloques de video, que también pueden denominarse bloques
de arbol, bloques de arbol de codificacion (CTB), unidades de arbol de codificacién (CTU), unidades de
codificacion (CU) y/o nodos de codificacion. Los bloques de video en un segmento intracodificado (I} de una
imagen se codifican usando prediccién espacial con respecto a muestras de referencia en blogues vecinos en
la misma imagen. Los bloques de video en un segmento de prediccion (P) unidireccional o prediccion
bidireccional (B) intercodificado de una imagen se pueden codificar empleando prediccién espacial con
respecto a muestras de referencia en bloques vecinos en la misma imagen, o prediccién temporal con respecto
a muestras de referencia en otras imagenes de referencia. Las imagenes pueden denominarse fotogramas y/o
imagenes, y las imagenes de referencia pueden denominarse fotogramas de referencia y/o imagenes de
referencia. La prediccién espacial o temporal da como resultado un bloque predictivo que representa un bloque
de imagenes. Los datos residuales representan diferencias de pixel entre el bloque de imagenes original y el
bloque predictivo. En consecuencia, un bloque intercodificado se codifica segin un vector de movimiento que
apunta a un bloque de muestras de referencia que forman el bloque predictivo, y los datos residuales indican
la diferencia entre el bloque codificado y el bloque predictivo. Un bloque intracodificado se codifica de acuerdo
con un modo de intracodificacién y con los datos residuales. Para una mayor compresion, los datos residuales
pueden transformarse del dominio de pixel a un dominio de transformacion. Estos dan como resultado
coeficientes de transformacion residuales, que pueden cuantificarse. Los coeficientes de transformacion
cuantificados pueden disponerse inicialmente en una matriz bidimensional. Los coeficientes de transformacion
cuantificados se pueden escanear para producir un vector unidimensional de coeficientes de transformacion.
Se puede aplicar codificacién entrépica para lograr una compresion ain mayor. Estas técnicas de compresion
de video se explican con mayor detalle a continuacién.

Para garantizar que un video codificado se pueda decodificar con precision, el video se codifica y decodifica
de acuerdo con los estandares de codificacion de video correspondientes. Los estandares de codificacion de
video incluyen el segmento de Normalizacién de la Unién Internacional de Telecomunicaciones (ITU) (ITU-T)
H.261, el Grupo de expertos en peliculas cinematograficas (MPEG)-1 Parte 2 de la Organizacion Internacional
de Normalizacién/Comisién Electrotécnica Internacional (ISO/IEC), ITU-T H.262 o ISO/IEC MPEG-2 Parte 2,
ITU-T H.263, ISO/IEC MPEG-4 Parte 2, Codificacién de video avanzada (Advanced Video Coding, AVC),
también conocida como ITU-T H.264 o ISO/IEC MPEG-4 Parte 10, y Codificacién de video de alta eficiencia
(High Efficiency Video Coding, HEVC), también conocida como ITU-T H.265 o0 MPEG-H Parte 2. AVC incluye
extensiones como Codificacion de video escalable (Scalable Video Coding, SVC), Codificacién de video
multivista (Multiview Video Coding, MVC) y Codificacién de video multivista més profundidad (Multiview Video
Coding plus Depth, MVC+D), y AVC tridimensional (3D) (3D-AVC). HEVC incluye extensiones tales como
HEVC escalable (Scalable HEVC, SHVC), HEVC multivista (Multiview HEVC, MV-HEVC) y HEVC 3D (3D-
HEVC). El equipo conjunto de expertos en video (JVET) de la ITU-T e ISO/IEC ha comenzado a desarrollar un
estandar de codificacion de video denominado Codificacién de Video Versatil (VVC). VVC estd incluido en un
Borrador de trabajo (Working Draft, WD), que incluye JVET-02001-v14.

Algunos sistemas de codificacién de video codifican secuencias de video en capas de imagenes. Las imagenes
en diferentes capas tienen diferentes caracteristicas. Por lo tanto, un codificador puede transmitir diferentes
capas a un decodificador dependiendo de las limitaciones del lado del decodificador. Para realizar esta funcién,
un codificador puede codificar todas las capas en un solo flujo de bits. Cuando se le solicita, el codificador
puede realizar un proceso de extraccién de subflujo de bits para eliminar informacién superflua del flujo de bits.
Esto resulta en un flujo de bits extraido que contiene solo los datos en la una o varias capas, solicitados por el
decodificador. Se puede incluir una descripciéon de cémo se relacionan las capas en un conjunto de parametros
de video (Video Parameter Set, VPS). Una capa de transmisién simultanea es una capa que esta configurada
para su visualizacién sin referencia a otras capas. Cuando una capa de transmisién simultanea se transmite a
un decodificador, el proceso de extraccién de subflujo de bits puede eliminar el VPS, ya que las relaciones de
capa no son necesarias para decodificar una capa de transmisiéon simultanea. Desgraciadamente, ciertas

5

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

variables en otros conjuntos de parametros pueden hacer referencia al VPS. Por lo tanto, eliminar el VPS
cuando se transmiten capas de transmisién simultanea puede aumentar la eficiencia de la codificacién, pero
también puede generar errores.

en la presente memoria se divulga un mecanismo de codificacién de un conjunto de parametros de secuencia
(SPS) de una manera que evita errores cuando se elimina un VPS de un flujo de bits codificado, como parte
de un proceso de extraccion de subflujo de bits. EI SPS contiene un identificador de VPS de SPS
(sps_video_parameter_set_id). El sps_video_parameter_set_id indica un identificador del VPS que contiene
relaciones de capa para la secuencia de video. En un ejemplo, el sps_video_parameter_set_id se ajusta a cero
cuando se elimina el VPS antes de la transmision de un flujo de bits que contiene solo una capa de transmision
simultanea. En otro ejemplo, los SPS utilizados por las capas de transmision simultanea pueden contener un
sps_video_parameter_set_id que se ajusta a cero en el momento de la codificacion. En cualquier caso, cuando
el sps_video_parameter_set_id se ajusta a cero, las variables relacionadas con SPS que hacen referencia al
VPS se ajustan en valores predeterminados para evitar errores. Por ejemplo, un indice de capa general
correspondiente a un identificador de capa de cabecera de unidad de capa de abstraccién de red (NAL) (ID de
capa de nuh) (GeneralLayerldx[nuh_layer_id]) indica un indice de capa actual para una capa correspondiente
(por ejemplo, la capa de transmisién simultanea). El GeneralLayerldx[nuh_layer_id] se ajusta a, o se infiere
que es, cero cuando el sps_video_parameter_set id es cero. Como ejemplo adicional, un indicador de capa
independiente de VPS para el GeneralLayerldx[nuh_layer_id]
(vps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]]) se almacena en el VPS y especifica si una capa
con indice GeneralLayerldx[nuh_layer_id] utiliza prediccién entre capas. La prediccién entre capas no se utiliza
para capas de transmision simultanea. Por lo tanto, el
vps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]] se ajusta a, o se infiere que es, uno, para indicar
que no hay prediccion entre capas cuando el sps_video parameter_set_id esta ajustado a cero. De esta
manera, se evitan errores cuando se elimina un VPS de un flujo de bits antes de la transmisién de una capa
de transmisién simultanea. Como resultado, se incrementa la funcionalidad del codificador y del decodificador.
Ademas, la eficiencia de la codificaciéon aumenta al eliminar con éxito un VPS innecesario de un flujo de bits
que incluye solo una capa de transmision simultanea, lo que reduce el uso de recursos de procesador, memoria
y/o sefializacién de red, tanto en el codificador como en el decodificador.

La figura 1 es un diagrama de flujo de un método operativo 100 de ejemplo, de codificacién de una sefial de
video. Especificamente, una sefial de video se codifica en un codificador. El proceso de codificacién comprime
la sefial de video empleando diversos mecanismos para reducir el tamafio del archivo de video. Un tamario de
archivo mas pequefio permite que el archivo de video comprimido se transmita a un usuario, al tiempo que se
reduce la sobrecarga de ancho de banda asociada. Luego, el decodificador decodifica el archivo de video
comprimido para reconstruir la sefial de video original para su visualizacion por un usuario final. El proceso de
decodificacién refleja de manera general el proceso de codificacion para permitir que el decodificador
reconstruya coherentemente la sefial de video.

En la etapa 101, la sefial de video se introduce en el codificador. Por ejemplo, la sefial de video puede ser un
archivo de video sin comprimir almacenado en la memoria. Como ejemplo adicional, el archivo de video puede
capturarse mediante un dispositivo de captura de video, tal como una camara de video, y ser codificado para
soportar la transmisién en continuo del video. El archivo de video puede incluir tanto un componente de audio
como un componente de video. El componente de video contiene una serie de fotogramas de imagenes que,
cuando se ven en secuencia, dan la impresion visual de movimiento. Los fotogramas contienen pixeles que se
expresan en términos de luz, denominados en la presente memoria componentes de luma (0 muestras de
luma), y color, denominados componentes de croma (0 muestras de color). En algunos ejemplos, los
fotogramas también pueden contener valores de profundidad para soportar la visualizacion tridimensional.

En la etapa 103, el video se divide en bloques. La divisién incluye subdividir los pixeles de cada fotograma en
bloques cuadrados y/o rectangulares para su compresioén. Por ejemplo, en la codificaciéon de video de alta
eficiencia (HEVC) (también conocida como H.265 y MPEG-H Parte 2), el fotograma se puede dividir primero
en unidades de arbol de codificacion (CTU), que son blogues de un tamafio predefinido (por ejemplo, sesenta
y cuatro pixeles por sesenta y cuatro pixeles). Las CTU contienen muestras de luma y croma. Se pueden
emplear arboles de codificacién para dividir las CTU en bloques y luego subdividir recursivamente los bloques
hasta que se consigan configuraciones que soporten codificacién adicional. Por ejemplo, los componentes de
luma de un fotograma pueden subdividirse hasta que los bloques individuales contengan valores de iluminacion
relativamente homogéneos. Ademas, los componentes de croma de un fotograma pueden subdividirse hasta
que los bloques individuales contengan valores de color relativamente homogéneos. En consecuencia, los
mecanismos de division varian dependiendo del contenido de los fotogramas de video.

En la etapa 105, se emplean diversos mecanismos de compresion para comprimir los bloques de imagenes
divididos en la etapa 103. Por ejemplo, se puede emplear interprediccién y/o intraprediccion. La interprediccion
esta disefiada para aprovechar el hecho de que los objetos en una escena comun tienden a aparecer en
fotogramas sucesivos. En consecuencia, no es necesario describir repetidamente un bloque que representa
un objeto en un fotograma de referencia, en fotogramas adyacentes. Especificamente, un objeto, tal como una

6

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

mesa, puede permanecer en una posicion constante en varios fotogramas. Por lo tanto, la mesa se describe
una vez y los fotogramas adyacentes pueden hacer referencia al fotograma de referencia. Se pueden emplear
mecanismos de coincidencia de patrones para hacer coincidir objetos en multiples fotogramas. Ademas, los
objetos en movimiento pueden representarse en multiples fotogramas, por ejemplo debido al movimiento del
objeto o al movimiento de la camara. Como ejemplo particular, un video puede mostrar un automévil que se
mueve por la pantalla en varios fotogramas. Se pueden emplear vectores de movimiento para describir dicho
movimiento. Un vector de movimiento es un vector bidimensional que proporciona un desplazamiento desde
las coordenadas de un objeto en un fotograma hasta las coordenadas del objeto en un fotograma de referencia.
Por lo tanto, la interprediccién puede codificar un bloque de imagenes en un fotograma actual como un conjunto
de vectores de movimiento que indican un desplazamiento de un bloque correspondiente en un fotograma de
referencia.

La intraprediccion codifica bloques en un fotograma comun. La intraprediccién aprovecha el hecho de que los
componentes de luma y croma tienden a agruparse en un fotograma. Por ejemplo, una mancha de verde en
una parte de un arbol tiende a ubicarse adyacente a manchas de verde similares. La intraprediccién emplea
multiples modos de prediccion direccional (por ejemplo, treinta y tres en HEVC), un modo plano y un modo de
corriente continua (DC). Los modos direccionales indican que un bloque actual es similar/igual que las muestras
de un bloque vecino en la direccién correspondiente. El modo plano indica que una serie de bloques a lo largo
de una fila/columna (por ejemplo, un plano) se puede interpolar en funcién de los bloques vecinos en los bordes
de la fila. El modo plano, en efecto, indica una transicion suave de luz/color a través de una fila/columna
empleando una pendiente relativamente constante en los valores que cambian. El modo de DC se emplea para
suavizar los limites e indica que un bloque es similar/igual que un valor promedio asociado con muestras de
todos los bloques vecinos asociados con las direcciones angulares de los modos de prediccion direccional. En
consecuencia, los bloques de intraprediccién pueden representar bloques de imagenes como diversos valores
de modo de prediccion relacional, en lugar de los valores reales. Ademas, los bloques de interprediccion
pueden representar bloques de imagenes como valores de vector de movimiento, en lugar de valores reales.
En cualquier caso, es posible que los bloques de prediccidn no representen exactamente los bloques de imagen
en algunos casos. Cualquier diferencia se almacena en bloques residuales. Se pueden aplicar
transformaciones a los bloques residuales para comprimir ain mas el archivo.

En la etapa 107, se pueden aplicar diversas técnicas de filtrado. En HEVC, los filtros se aplican segin un
esquema de filtrado en bucle. La prediccion basada en bloques explicada anteriormente puede dar como
resultado la creacién de imagenes en bloques en el decodificador. Ademas, el esquema de prediccion basado
en bloques puede codificar un bloque y luego reconstruir el bloque codificado para su uso posterior como
blogue de referencia. El esquema de filtrado en bucle aplica de manera iterativa filtros de supresion de ruido,
filtros de desbloqueo, filtros de bucle adaptativos y filiros de desplazamiento adaptativo de muestra (Sample
Adaptive Offset, SAO) a los bloques/fotogramas. Estos filtros mitigan dichos artefactos de bloqueo de modo
que el archivo codificado pueda ser reconstruido con precisién. Ademas, estos filtros mitigan los artefactos en
los bloques de referencia reconstruidos, de modo que sea menos probable que los artefactos creen artefactos
adicionales en bloques posteriores que se codifican en basandose en los bloques de referencia reconstruidos.

Una vez que la sefial de video ha sido dividida, comprimida y filtrada, los datos resultantes se codifican en un
flujo de bits en la etapa 109. El flujo de bits incluye los datos explicados anteriormente, asi como cualquier dato
de sefializaciéon deseado para soportar la reconstruccion adecuada de la sefial de video en el decodificador.
Por ejemplo, dichos datos pueden incluir datos de divisién, datos de prediccion, bloques residuales y diversos
indicadores que proporcionan instrucciones de codificacion al decodificador. El flujo de bits puede almacenarse
en la memoria para su transmisién hacia un decodificador, previa solicitud. El flujo de bits también puede
difundirse y/o multidifundirse hacia una pluralidad de decodificadores. La creacién del flujo de bits es un proceso
iterativo. En consecuencia, las etapas 101, 103, 105, 107 y 109 pueden ocurrir de manera continua y/o
simultanea en muchos fotogramas y bloques. El orden mostrado en la figura 1 se presenta para mayor claridad
y facilidad de explicacién, y no pretende limitar el proceso de codificacién de video a un orden particular.

El decodificador recibe el flujo de bits y comienza el proceso de decodificacion en la etapa 111.
Especificamente, el decodificador emplea un esquema de decodificacion entrdpica para convertir el flujo de
bits en la sintaxis y los datos de video correspondientes. El decodificador emplea los datos de sintaxis del flujo
de bits para determinar las divisiones para las tramas en la etapa 111. La division debe coincidir con los
resultados de la division del bloque en la etapa 103. A continuacién se describe la codificacion/decodificacion
entropica empleada en la etapa 111. El codificador toma muchas decisiones durante el proceso de compresion,
tales como seleccionar esquemas de divisién de bloques entre varias opciones posibles, basandose en el
posicionamiento espacial de los valores en la o las imagenes de entrada. Sefializar las opciones exactas puede
emplear una gran cantidad de bins. Tal como se utiliza en la presente memoria, un bin es un valor binario que
se trata como una variable (por ejemplo, un valor de bit que puede variar dependiendo del contexto). La
codificacion entrépica permite al codificador descartar cualquier opcién que claramente no sea viable para un
caso particular, dejando un conjunto de opciones permitidas. Luego, a cada opcién permitida se le asigna una
palabra de cédigo. La longitud de las palabras de cédigo se basa en el nimero de opciones permitidas (por
ejemplo, un bin para dos opciones, dos bins para tres o cuatro opciones, etc.). Luego, el codificador codifica la

7

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

palabra de codigo para la opcién seleccionada. Este esquema reduce el tamafio de las palabras de codigo, ya
que las palabras de codigo son tan grandes como se desee para indicar de manera Unica una seleccién de un
pequefio subconjunto de opciones permitidas, en lugar de indicar de manera Unica la seleccion de un conjunto
potencialmente grande de todas las opciones posibles. Luego, el decodificador decodifica la seleccion
determinando el conjunto de opciones permitidas, de manera similar, al codificador. Determinando el conjunto
de opciones permitidas, el decodificador puede leer la palabra de cédigo y determinar la seleccién realizada
por el codificador.

En la etapa 113, el decodificador realiza la decodificacién de bloques. Especificamente, el decodificador
emplea transformaciones inversas para generar bloques residuales. Luego, el decodificador emplea los
bloques residuales y los bloques de prediccion correspondientes para reconstruir los bloques de imagenes de
acuerdo con la divisién. Los bloques de prediccion pueden incluir tanto bloques de intraprediccién como
bloques de interprediccién generados en el codificador en la etapa 105. Los bloques de imagenes reconstruidos
se colocan a continuacion en fotogramas de una sefial de video reconstruida de acuerdo con los datos de
division determinados en la etapa 111. La sintaxis para la etapa 113 también puede sefialarse en el flujo de
bits mediante codificacion entrépica tal como se explicé anteriormente.

En la etapa 115, el filtrado se realiza en los fotogramas de |a sefial de video reconstruida de una manera similar
a la etapa 107 en el codificador. Por ejemplo, se pueden aplicar filiros de supresiéon de ruido, filtros de
desbloqueo, filtros de bucle adaptativo y filtros de SAO a los fotogramas, para eliminar artefactos de bloqueo.
Una vez filtrados los fotogramas, la sefial de video puede enviarse a una pantalla en la etapa 117 para su
visualizacion por un usuario final.

La figura 2 es un diagrama esquematico de un sistema de codificacion y decodificacién (cédec) 200 de ejemplo,
para codificacion de video. Especificamente, el sistema de cdédec 200 proporciona funcionalidad para soportar
la implementaciéon del método operativo 100. El sistema de cddec 200 esta generalizado para representar
componentes empleados tanto en un codificador como en un decodificador. El sistema de cédec 200 recibe y
divide una sefial de video como se explica con respecto a las etapas 101 y 103 en el método operativo 100, lo
que da como resultado una sefial de video dividida 201. A continuacion, el sistema de cédec 200 comprime la
sefial de video dividida 201 en un flujo de bits codificado cuando actia como un codificador, tal como se explica
con respecto a las etapas 105, 107 y 109 en el método 100. Cuando actiia como decodificador, el sistema de
c6dec 200 genera una sefial de video de salida a partir del flujo de bits, tal como se explica con respecto a las
etapas 111, 113, 115y 117 en el método operativo 100. El sistema de cddec 200 incluye un componente de
control del codificador general 211, un componente de cuantificacién y escalado de transformacién 213, un
componente de estimacion de intra-imagen 215, un componente de prediccién de intra-imagen 217, un
componente de compensacién de movimiento 219, un componente de estimacién de movimiento 221, un
componente de escalado y transformacion inversa 229, un componente de analisis de control de filtro 227, un
componente de filtros en bucle 225, un componente de memoria intermedia de imagenes decodificadas 223 y
un componente de formateo de cabecera y codificacién aritmética binaria adaptativa al contexto (Context
Adaptive Binary Arithmetic Coding, CABAC) 231. Dichos componentes estan acoplados como se muestra. En
la figura 2, las lineas continuas indican el movimiento de datos a codificar/decodificar mientras que las lineas
discontinuas indican el movimiento de datos de control que controlan el funcionamiento de otros componentes.
Todos los componentes del sistema de cédec 200 pueden estar presentes en el codificador. El decodificador
puede incluir un subconjunto de los componentes del sistema de codec 200. Por ejemplo, el decodificador
puede incluir el componente de prediccién de intra-imagen 217, el componente de compensacion de
movimiento 219, el componente de escalado y transformacion inversa 229, el componente de filtros en bucle
225y el componente de memoria intermedia de imagenes decodificadas 223. Estos componentes se describen
a continuacion.

La sefial de video dividida 201 es una secuencia de video capturada que ha sido dividida en bloques de pixeles
mediante un arbol de codificacion. Un arbol de codificacién emplea diversos modos de divisién para subdividir
un bloque de pixeles en bloques de pixeles mas pequefios. Estos bloques se pueden subdividir ain mas en
bloques mas pequefios. Los blogues pueden denominarse nodos en el arbol de codificacién. Los nodos
principales mas grandes se dividen en nodos secundarios mas pequefios. El nimero de veces que se subdivide
un nodo se denomina profundidad del nodo/arbol de codificacién. Los bloques divididos pueden ser incluidos
en unidades de codificacion (Coding Units, CU) en algunos casos. Por ejemplo, una CU puede ser una subparte
de una CTU que contiene un bloque de luma, uno o mas bloques de croma de diferencia roja (Cr) y uno o mas
bloques de croma de diferencia azul (Cb) junto con las instrucciones de sintaxis correspondientes para la CU.
Los modos de divisién pueden incluir un arbol binario (Binary Tree, BT), un arbol triple (Triple Tree, TT) y un
arbol cuadruple (Quad Tree, QT) empleados para dividir un nodo en dos, tres o cuatro nodos secundarios,
respectivamente, de diferentes formas segin los modos de division empleados. La sefial de video dividida 201
se envia al componente de control del codificador general 211, al componente de escalado y cuantificacién de
transformacién 213, al componente de estimacion de intra-imagen 215, al componente de analisis de control
de filtro 227 y al componente de estimacién de movimiento 221, para su compresion.

El componente de control del codificador general 211 esté configurado para tomar decisiones relacionadas con
8

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

la codificacion de las imagenes de la secuencia de video en el flujo de bits segun las restricciones de la
aplicacion. Por ejemplo, el componente de control del codificador general 211 gestiona la optimizacién de la
velocidad de bits/tamafio del flujo de bits frente a la calidad de reconstruccion. Dichas decisiones se pueden
tomar basandose en la disponibilidad de espacio de almacenamiento/ancho de banda y en las solicitudes de
resolucion de imagen. El componente de control del codificador general 211 también gestiona la utilizacién de
la memoria intermedia a la luz de la velocidad de transmision, para mitigar los problemas de insuficiencia y
desbordamiento de la memoria intermedia. Para gestionar estos problemas, el componente de control del
codificador general 211 gestiona la division, la prediccién y el filtrado por parte de los otros componentes. Por
ejemplo, el componente de control del codificador general 211 puede aumentar dinamicamente la complejidad
de la compresién, para aumentar la resolucion y aumentar el uso de ancho de banda, o disminuir la complejidad
de la compresion, para disminuir la resolucion y el uso de ancho de banda. Por lo tanto, el componente de
control del codificador general 211 controla los otros componentes del sistema de cédec 200 para equilibrar la
calidad de reconstruccion de la sefial de video con las cuestiones de la velocidad de bits. El componente de
control del codificador general 211 crea datos de control, que controlan el funcionamiento de los otros
componentes. Los datos de control también se envian al componente de formateo de cabecera y CABAC 231
para ser codificados en el flujo de bits para indicar parametros para su decodificacién en el decodificador.

La sefial de video dividida 201 también se envia al componente de estimacién de movimiento 221 y al
componente de compensacion de movimiento 219, para interprediccion. Un fotograma o segmento de la sefial
de video dividida 201 se puede dividir en miltiples bloques de video. El componente de estimacién de
movimiento 221 y el componente de compensacién de movimiento 219 realizan una codificacién interpredictiva
del bloque de video recibido en relaciéon con uno o méas bloques en uno o mas fotogramas de referencia, para
proporcionar una prediccién temporal. El codificador 200 de video puede realizar varias pasadas de
codificacion, por ejemplo, para seleccionar un modo de codificacién apropiado para cada bloque de datos de
video.

La unidad de estimacion de movimiento 221 y la unidad de compensacién de movimiento 219 pueden estar
altamente integradas, pero se ilustran por separado con fines conceptuales. La estimacién de movimiento,
realizada por la unidad de estimacién de movimiento 221, es el proceso de generar vectores de movimiento
que estiman el movimiento para bloques de video. Un vector de movimiento, por ejemplo, puede indicar el
desplazamiento de un objeto codificado con respecto a un bloque predictivo. Un bloque predictivo es un bloque
que coincide estrechamente con el bloque que se va a codificar, en términos de diferencia de pixel. Un bloque
predictivo también puede denominarse bloque de referencia. Dicha diferencia de pixel puede determinarse
mediante la suma de la diferencia absoluta (Sum of Absolute Difference, SAD), la suma de la diferencia
cuadratica (Sum of Square Difference, SSD) u otras métricas de diferencia. HEVC emplea varios objetos
codificados, incluida una CTU, bloques de arbol de codificacion (CTB) y varias CU. Por gjemplo, una CTU se
puede dividir en varios CTB, que luego se pueden dividir en varios CB para su inclusion en las CU. Una CU
puede codificarse como una unidad de prediccién (Prediction Unit, PU) que contiene datos de prediccién y/o
una unidad de transformacion (Transform Unit, TU) que contiene datos residuales transformados para la CU.
El componente de estimacién de movimiento 221 genera vectores de movimiento, PU y TU utilizando un
andlisis de distorsion de velocidad como parte de un proceso de optimizacion de distorsién de velocidad. Por
ejemplo, el componente de estimacién de movimiento 221 puede determinar multiples bloques de referencia,
multiples vectores de movimiento, etc. para un bloque/fotograma actual, y puede seleccionar los bloques de
referencia, vectores de movimiento, etc. que tengan las mejores caracteristicas de distorsion de velocidad. Las
mejores caracteristicas de distorsion de velocidad equilibran tanto la calidad de la reconstruccion de video (por
ejemplo, la cantidad de datos perdidos por compresién) con la eficiencia de codificacién (por ejemplo, el tamafio
de la codificacion final).

En algunos ejemplos, el sistema de cdédec 200 puede calcular valores para posiciones de pixel sub-enteras de
imagenes de referencia almacenadas en el componente de memoria intermedia de imagenes decodificadas
223. Por ejemplo, el codificador 200 de video puede interpolar valores de posiciones de un cuarto de pixel,
posiciones de un octavo de pixel u otras posiciones fraccionarias de pixel, de la imagen de referencia. Por lo
tanto, la unidad de estimacién de movimiento 221 puede realizar una busqueda de movimiento con respecto a
posiciones de pixel completas y posiciones de pixel fraccionarias, y generar un vector de movimiento con
precision de pixel fraccionaria. El componente de estimacion de movimiento 221 calcula un vector de
movimiento para una PU de un bloque de video en un segmento intercodificado comparando la posicién de la
PU con la posicion de un bloque predictivo de una imagen de referencia. El componente de estimacion de
movimiento 221 envia el vector de movimiento calculado como datos de movimiento al componente de
formateo de cabecera y CABAC 231 para codificacién y movimiento, al componente de compensacién de
movimiento 219.

La compensaciéon de movimiento, realizada por el componente de compensacién de movimiento 219, puede
implicar la obtencion o generacion del bloque predictivo basandose en el vector de movimiento determinado
por el componente de estimacion de movimiento 221. De nuevo, el componente de estimacién de movimiento
221 y el componente de compensacion de movimiento 219 pueden estar integrados funcionalmente, en
algunos ejemplos. Tras la recepcién del vector de movimiento para la PU del bloque de video actual, el

9

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

componente de compensacién de movimiento 219 puede ubicar el bloque predictivo al que apunta el vector de
movimiento. A continuaciéon, se forma un bloque de video residual restando los valores de pixeles del bloque
predictivo de los valores de pixel del bloque de video actual que se esta codificando, formando valores de
diferencia de pixel. En general, el componente de estimacion de movimiento 221 realiza una estimacién de
movimiento relativa a los componentes de luma, y el componente de compensacion de movimiento 219 utiliza
vectores de movimiento calculados basandose en los componentes de luma tanto para los componentes de
croma como para los componentes de luma. El bloque predictivo y el bloque residual se reenvian al
componente de escalado y cuantificacion de transformacién 213.

La sefial de video dividida 201 también se envia al componente de estimacién de intra-imagen 215 y al
componente de prediccion de intra-imagen 217. Al igual que con el componente de estimacién de movimiento
221 y el componente de compensacién de movimiento 219, el componente de estimacién de intra-imagen 215
y €l componente de prediccién de intra-imagen 217 pueden estar altamente integrados, pero se ilustran por
separado con fines conceptuales. El componente de estimacion de intra-imagen 215 y el componente de
prediccion de intra-imagen 217 intrapredicen un bloque actual con respecto a los bloques en un fotograma
actual, como alternativa a la interprediccion realizada por el componente de estimacién de movimiento 221 y
el componente de compensacién de movimiento 219 entre fotogramas, tal como se describié anteriormente.
En particular, la unidad de intraprediccién 215 puede determinar un modo de intraprediccién para ser utilizado
para codificar un bloque actual. En algunos ejemplos, el componente de estimaciéon de intra-imagen 215
selecciona un modo de intraprediccion apropiado de codificacién de un bloque actual a partir de multiples
modos de intraprediccién probados. Los modos de intraprediccion seleccionados se reenvian a continuacion
al componente de formateo de cabecera y CABAC 231 para su codificacion.

Por ejemplo, el componente de estimacion de intra-imagen 215 calcula valores de distorsion de velocidad
utilizando un analisis de distorsion de velocidad para los diversos modos de intraprediccién probados, y
selecciona el modo de intraprediccién que tiene las mejores caracteristicas de distorsién de velocidad entre los
modos probados. El analisis de distorsion de velocidad determina de manera general una cantidad de distorsién
(o error) entre un bloque codificado y un bloque original sin codificar que fue codificado para producir el bloque
codificado, asi como una velocidad de bits (es decir, una cantidad de bits) utilizada para producir el bloque
codificado. El componente de estimacion de intra-imagen 215 calcula relaciones a partir de las distorsiones y
velocidades para los diversos bloques codificados, para determinar qué modo de intraprediccion presenta el
mejor valor de distorsion de velocidad para el bloque. Ademas, el componente de estimacién de intra-imagen
215 puede configurarse para la codificacion de bloques de profundidad de un mapa de profundidad usando un
modo de modelizacién de profundidad (Depth Modeling Mode, DMM) basado en la optimizacion de la distorsion
de velocidad (Rate-Distortion Optimization, RDO).

El componente de prediccién de intra-imagen 217 puede generar un bloque residual a partir del bloque
predictivo basandose en los modos de intraprediccion seleccionados determinados por el componente de
estimacion de intra-imagen 215 cuando esta implementado en un codificador, o lee el bloque residual del flujo
de bits cuando esta implementado en un decodificador. El bloque residual incluye la diferencia de valores entre
el bloque predictivo y el bloque original, representado como una matriz. A continuacion, el bloque residual es
reenviado al componente de escalado y cuantificacion de transformacion 213. El componente de estimacion
de intra-imagen 215 y el componente de prediccién de intra-imagen 217 pueden funcionar tanto en
componentes de luma como de croma.

El componente de cuantificacion y escalado de transformacion 213 esta configurado para comprimir ain mas
el bloque residual. El componente de escalado y cuantificacion de transformacién 213 aplica una transformada,
tal como una transformada de coseno discreta (Discrete Cosine Transform, DCT), una transformada de seno
discreta (Discrete Sine Transform, DST) o una transformada conceptualmente similar, al bloque residual,
produciendo un bloque de video que comprende valores de coeficientes de transformacién residuales. También
podrian usarse transformadas de ondicula, transformadas de enteros, transformadas de subbanda u otros tipos
de transformadas. La transformada puede convertir la informacion residual de un dominio de valor de pixel en
un dominio de transformada, tal como un dominio de la frecuencia. El componente de escalado y cuantificacion
de transformacién 213 también esta configurado para escalar la informacion residual transformada, por ejemplo
basandose en la frecuencia. Dicho escalado implica aplicar un factor de escala a la informacion residual de
modo que se cuantifique informacién de frecuencia diferente con diferentes granularidades, lo que puede
afectar a la calidad visual final del video reconstruido. El componente de cuantificacién y escalado de
transformacién 213 también esta configurado para cuantificar los coeficientes de transformacién para reducir
aun mas la velocidad de bits. El proceso de cuantificacion puede reducir la profundidad de bits asociada con
algunos o todos los coeficientes. El grado de cuantificacién puede modificarse ajustando un parametro de
cuantificacién. En algunos ejemplos, el componente de cuantificacion y escalado de transformacion 213 puede
entonces realizar un escaneo de la matriz que incluye los coeficientes de transformacién cuantificados. Los
coeficientes de transformacion cuantificados se envian al componente de formateo de cabeceray CABAC 231
para ser codificados en el flujo de bits.

El componente de escalado y transformacion inversa 229 aplica una operacion inversa del componente de
10

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

escalado y cuantificacién de transformacion 213 para soportar la estimacién de movimiento. El componente de
escalado y transformacioén inversa 229 aplica escalado, transformacion y/o cuantificacion inversa para
reconstruir el bloque residual en el dominio de pixel, por ejemplo, para su uso posterior como bloque de
referencia que puede convertirse en un bloque predictivo para otro blogue actual. El componente de estimacion
de movimiento 221 y/o el componente de compensaciéon de movimiento 219 pueden calcular un blogue de
referencia sumando el bloque residual nuevamente a un bloque predictivo correspondiente para su uso en la
estimacion de movimiento de un bloque/fotograma posterior. Se aplican filtros a los bloques de referencia
reconstruidos para mitigar los artefactos creados durante el escalado, la cuantificacién y la transformacién. De
lo contrario, dichos artefactos podrian causar predicciones inexactas (y crear artefactos adicionales) cuando
se predicen bloques posteriores.

El componente de analisis de control de filtro 227 y el componente de filtros en bucle 225 aplican los filtros a
los bloques residuales y/o a los bloques de imagenes reconstruidos. Por ejemplo, el bloque residual
transformado del componente de escalado y transformacion inversa 229 se puede combinar con un blogue de
prediccion correspondiente del componente de prediccidn de intra-imagen 217 y/o el componente de
compensacioén de movimiento 219, para reconstruir el bloque de imagenes original. Luego, los filtros se pueden
aplicar al bloque de imagenes reconstruido. En algunos ejemplos, los filiros pueden aplicarse a los bloques
residuales. Como con otros componentes en la figura 2, el componente de analisis de control de filtro 227 y el
componente de filtros en bucle 225 estan altamente integrados y pueden implementarse juntos, pero se
representan por separado con fines conceptuales. Los filtros aplicados a los bloques de referencia
reconstruidos se aplican a regiones espaciales particulares e incluyen multiples parametros para ajustar cémo
se aplican dichos filtros. El componente de analisis de control de filtro 227 analiza los bloques de referencia
reconstruidos para determinar dénde se deben aplicar dichos filtros, y ajusta los parametros correspondientes.
Dichos datos se reenvian al componente de formateo de cabecera y CABAC 231 como datos de control de
filtro, para su codificacion. El componente de filtros en bucle 225 aplica dichos filtros basandose en los datos
de control de filtro. Los filtros pueden incluir un filtro de desbloqueo, un filtro de supresion de ruido, un filiro de
SAOQ y unfiltro de bucle adaptativo. Dichos filtros se pueden aplicar en el dominio espacial/de pixel (por ejemplo,
en un blogque de pixeles reconstruido) o en el dominio de la frecuencia, segin el ejemplo.

Cuando funciona como un codificador, el bloque de imagenes reconstruido filtrado, el bloque residual y/o el
bloque de prediccion se almacenan en el componente de memoria intermedia de imagenes decodificadas 223
para su uso posterior en la estimacion del movimiento, tal como se explicé anteriormente. Cuando funciona
como decodificador, el componente de memoria intermedia de imagenes decodificadas 223 almacena y
reenvia los bloques reconstruidos y filtrados hacia una pantalla, como parte de una sefial de video de salida.
El componente de memoria intermedia de imagenes decodificadas 223 puede ser cualquier dispositivo de
memoria capaz de almacenar bloques de prediccion, bloques residuales y/o blogues de imagenes
reconstruidos.

El componente de formateo de cabecera y CABAC 231 recibe los datos de los diversos componentes del
sistema de cédec 200, y codifica dichos datos en un flujo de bits codificado para su transmision hacia un
decodificador. Especificamente, el componente de formateo de cabecera y CABAC 231 genera diversas
cabeceras de codificacién de datos de control, tales como datos de control general y datos de control de filtro.
Ademas, los datos de prediccion, incluidos los datos de intraprediccién y de movimiento, asi como los datos
residuales en forma de datos de coeficientes de transformacién cuantificados, estan todos codificados en el
flujo de bits. El flujo de bits final incluye toda la informacién deseada por el decodificador para reconstruir la
sefial de video dividida 201 original. Dicha informacién también puede incluir tablas de indice de modos de
intraprediccion (también denominadas tablas de mapeo de palabras de codigo), definiciones de contextos de
codificacion para diversos bloques, indicaciones de los modos de intraprediccién mas probables, una indicaciéon
de informacién de divisién, etc. Dichos datos pueden ser codificados empleando codificacion entropica. Por
ejemplo, la informacion puede codificarse empleando codificacién de longitud variable adaptativa al contexto
(Context Adaptive Variable Length Coding, CAVLC), CABAC, codificacién aritmética binaria adaptativa al
contexto basada en sintaxis (Syntax-based context-adaptive Binary Arithmetic Coding, SBAC), codificacién
entropica de particién de intervalo de probabilidad (Probability Interval Partitioning Entropy, PIPE) u otra técnica
de codificacién entrépica. Después de la codificacion entrépica, el flujo de bits codificado puede transmitirse a
otro dispositivo (por ejemplo, un decodificador de video) o archivarse para su posterior transmisién o
recuperacion.

La figura 3 es un diagrama de bloques que ilustra un codificador 300 de video de ejemplo. El codificador 300
de video puede emplearse para implementar las funciones de codificacién del sistema de cédec 200 y/o
implementar las etapas 101, 103, 105, 107 y/o 109 del método operativo 100. El codificador 300 divide una
sefial de video de entrada, dando como resultado una sefial de video dividida 301, que es sustancialmente
similar a la sefial de video dividida 201. A continuacion, la sefial de video dividida 301 es comprimida y
codificada en un flujo de bits mediante componentes del codificador 300.

Especificamente, la sefial de video dividida 301 se reenvia a un componente de prediccion de intra-imagen
317 para intraprediccién. El componente de prediccion de intra-imagen 317 puede ser sustancialmente similar

11

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

al componente de estimacion de intra-imagen 215 y al componente de prediccion de intra-imagen 217. La sefial
de video dividida 301 también se envia a un componente de compensacién de movimiento 321 para
interprediccion basada en bloques de referencia en un componente de memoria intermedia de imagenes
decodificadas 323. El componente de compensacién de movimiento 321 puede ser sustancialmente similar al
componente de estimacion de movimiento 221 y al componente de compensacion de movimiento 219. Los
bloques de prediccién y los bloques residuales del componente de prediccion de intra-imagen 317 y el
componente de compensacién de movimiento 321 se envian a un componente de transformacion y
cuantificaciéon 313 para la transformacién y cuantificacion de los bloques residuales. EI componente de
transformacién y cuantificacion 313 puede ser sustancialmente similar al componente de transformacioén y
cuantificacion 213. Los bloques residuales transformados y cuantificados y los bloques de prediccion
correspondientes (junto con los datos de control asociados) se reenvian a un componente de codificacion
entropica 331 para su codificacién en un flujo de bits. El componente de codificacion entrépica 331 puede ser
sustancialmente similar al componente de formateo de cabecera y CABAC 231.

Los bloques residuales transformados y cuantificados y/o los bloques de prediccidén correspondientes también
se reenvian desde el componente de transformacién y cuantificacion 313 a un componente de transformacion
y cuantificacion inversa 329, para su reconstruccion en bloques de referencia para su uso por el componente
de compensacién de movimiento. 321. El componente de transformacion inversa y cuantificacion 329 puede
ser sustancialmente similar al componente de escalado y transformacion inversa 229. Los filtros en bucle en
un componente de filtros en bucle 325 también se aplican a los bloques residuales y/o a los bloques de
referencia reconstruidos, dependiendo del ejemplo. El componente de filtros en bucle 325 puede ser
sustancialmente similar al componente de analisis de control de filtro 227 y al componente de filtros en bucle
225. El componente de filtros en bucle 325 puede incluir multiples filtros, tal como se explica con respecto al
componente de filtros en bucle 225. A continuacion, los bloques filtrados son almacenados en un componente
de memoria intermedia de imagenes decodificadas 323 para su uso como bloques de referencia por parte del
componente de compensacién de movimiento 321. El componente de memoria intermedia de imagenes
decodificadas 323 puede ser sustancialmente similar al componente de memoria intermedia de imagenes
decodificadas 223.

La figura 4 es un diagrama de bloques que ilustra un decodificador 400 de video de ejemplo. El decodificador
400 de video puede emplearse para implementar las funciones de decodificacion del sistema de cddec 200 y/o
implementar las etapas 111, 113, 115 y/o 117 del método operativo 100. El decodificador 400 recibe un flujo
de bits, por ejemplo de un codificador 300, y genera una sefial de video de salida reconstruida basada en el
flujo de bits, para su visualizacién por parte de un usuario final.

El flujo de bits es recibido por un componente de decodificacion entropica 433. El componente de decodificacion
entropica 433 esta configurado para implementar un esquema de decodificacion entrépica, tal como
codificacion CAVLC, CABAC, SBAC, PIPE u otras técnicas de codificacion entrdpica. Por ejemplo, el
componente de decodificacién entrépica 433 puede emplear informacion de cabecera para proporcionar un
contexto para interpretar datos adicionales codificados como palabras de cédigo en el flujo de bits. La
informacién decodificada incluye cualquier informacién deseada para decodificar la sefial de video, tal como
datos de control general, datos de control de filtro, informacion de divisién, datos de movimiento, datos de
prediccion y coeficientes de transformacién cuantificados de bloques residuales. Los coeficientes de
transformacién cuantificados se envian a un componente de cuantificacion y transformacion inversa 429 para
su reconstruccion en bloques residuales. El componente de transformacion inversa y cuantificacion 429 puede
ser similar al componente de transformacion inversa y cuantificacion 329.

Los bloques residuales reconstruidos y/o los bloques de prediccion se reenvian al componente de predicciéon
de intra-imagen 417 para su reconstruccion en bloques de imagenes basandose en operaciones de
intraprediccion. El componente de prediccion de intra-imagen 417 puede ser sustancialmente similar al
componente de estimacion de intra-imagen 215 y al componente de prediccion de intra-imagen 217.
Especificamente, el componente de prediccion de intra-imagen 417 emplea modos de prediccién para localizar
un blogue de referencia en el fotograma y aplica un bloque residual al resultado para reconstruir bloques de
imagenes intrapredichos. Los bloques de imagen intrapredichos reconstruidos y/o los blogues residuales y los
datos de interprediccién correspondientes se reenvian a un componente de memoria intermedia de imagenes
decodificadas 423 a través de un componente de filiros en bucle 425, que puede ser sustancialmente similar
al componente de memoria intermedia de imagenes decodificadas 223 y al componente de filtros en bucle 225,
respectivamente. El componente de filtros en bucle 425 filtra los bloques de imagenes reconstruidos, los
bloques residuales y/o los bloques de prediccién, y dicha informaciéon se almacena en el componente de
memoria intermedia de imagenes decodificadas 423. Los bloques de imagenes reconstruidos a partir del
componente de memoria intermedia de imagenes decodificadas 423 se reenvian a un componente de
compensacion de movimiento 421 para interprediccion. El componente de compensacion de movimiento 421
puede ser sustancialmente similar al componente de estimacién de movimiento 221 y/o al componente de
compensacion de movimiento 219. Especificamente, el componente de compensaciéon de movimiento 421
emplea vectores de movimiento de un blogue de referencia para generar un bloque de prediccién, y aplica un
bloque residual al resultado para reconstruir un blogue de imagenes. Los bloques reconstruidos resultantes

12

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

también pueden reenviarse a través del componente de filtros en bucle 425 al componente de memoria
intermedia de imagenes decodificadas 423. El componente de memoria intermedia de imagenes decodificadas
423 continda almacenando bloques de imagenes reconstruidos adicionales, que pueden reconstruirse en
fotogramas por medio de la informacién de division. Dichos fotogramas también pueden ser colocados en una
secuencia. La secuencia se envia hacia una pantalla como una sefial de video de salida reconstruida.

La figura 5 es un diagrama esquematico que ilustra un ejemplo de HRD 500. Se puede emplear un HRD 500
en un codificador, tal como el sistema de cédec 200 y/o el codificador 300. El HRD 500 puede comprobar el
flujo de bits creado en la etapa 109 del método 100 antes de que el flujo de bits se reenvie a un decodificador,
tal como el decodificador 400. En algunos ejemplos, el flujo de bits puede ser reenviado de manera continua a
través del HRD 500 a medida que se codifica el flujo de bits. En el caso de que una parte del flujo de bits no
cumpla con las restricciones asociadas, el HRD 500 puede indicar dicho fallo a un codificador para hacer que
el codificador vuelva a codificar la seccién correspondiente del flujo de bits con diferentes mecanismos.

El HRD 500 incluye un programador de flujo hipotético (Hypothetical Stream Scheduler, HSS) 541. Un HSS
541 es un componente configurado para realizar un mecanismo de entrega hipotético. El mecanismo de
entrega hipotético se utiliza para comprobar la conformidad de un flujo de bits o un decodificador con respecto
a la temporizacién y el flujo de datos de un flujo de bits 551 introducido en el HRD 500. Por ejemplo, el HSS
541 puede recibir una salida de flujo de bits 551 desde un codificador y gestionar el proceso de prueba de
conformidad en el flujo de bits 551. En un ejemplo particular, el HSS 541 puede controlar la velocidad a la que
las imagenes codificadas se mueven a través del HRD 500 y verificar que el flujo de bits 551 no contiene datos
no conformes.

El HSS 541 puede reenviar el flujo de bits 551 a una CPB 543 a una velocidad predefinida. El HRD 500 puede
gestionar datos en unidades de decodificacién (Decoding Units, DU) 553. Una DU 553 es una Unidad de
Acceso (AU) o un subconjunto de una AU y unidades de capa de abstraccion de red (NAL) de capa no de
codificacion de video (VCL) asociadas. Especificamente, una AU contiene una o mas imagenes asociadas con
un tiempo de salida. Por ejemplo, una AU puede contener una sola imagen en un flujo de bits de una sola capa
y puede contener una imagen para cada capa en un flujo de bits de miltiples capas. Cada imagen de una AU
se puede dividir en partes, cada una de las cuales se incluye en una unidad de NAL de VCL correspondiente.
Por lo tanto, una DU 553 puede contener una o mas imagenes, uno o mas segmentos de una imagen o
combinaciones de los mismas. Ademas, los parametros utilizados para decodificar AU/DU, imagenes y/o
segmentos se pueden incluir en unidades de NAL no de VCL. Por lo tanto, la DU 553 contiene unidades de
NAL no de VCL que contienen datos necesarios para soportar la decodificacién de las unidades de NAL de
VCL en la DU 553. La CPB 543 es una memoria intermedia de primero en entrar, primero en salir, en el HRD
500. La CPB 543 contiene DU 553 que incluyen datos de video en orden de decodificacién. La CPB 543
almacena los datos de video para su uso durante la verificacion de conformidad del flujo de bits.

La CPB 543 reenvia las DU 553 a un componente de proceso de decodificacion 545. El componente del
proceso de decodificacién 545 es un componente que se ajusta al estandar de VVC. Por ejemplo, el
componente del proceso de decodificacion 545 puede emular un decodificador 400 empleado por un usuario
final. El componente del proceso de decodificacion 545 decodifica las DU 553 a una velocidad que puede ser
lograda mediante un decodificador de usuario final de ejemplo. Si el componente del proceso de decodificacion
545 no puede decodificar las DU 553 lo suficientemente rapido como para evitar un desbordamiento (o evitar
una insuficiencia de datos de la memoria intermedia) de la CPB 543, entonces el flujo de bits 551 no se ajusta
al estandar y debe ser codificado de nuevo.

El componente del proceso de decodificacion 545 decodifica las DU 553, lo que crea las DU decodificadas
555. Una DU 555 decodificada contiene una imagen decodificada. Las DU decodificadas 555 se reenvian a
una DPB 547. La DPB 547 puede ser sustancialmente similar a un componente de memoria intermedia de
imagenes decodificadas 223, 323 y/o 423. Para soportar la interprediccién, las imagenes que estan marcadas
para su uso como imagenes de referencia 556 que se obtienen de las DU decodificadas 555 se devuelven al
componente del proceso de decodificacion 545 para soportar una decodificacion adicional. La DPB 547 genera
la secuencia de video decodificada como una serie de imagenes 557. Las imagenes 557 son imagenes
reconstruidas que reflejan de manera general imagenes codificadas en el flujo de bits 551 por el codificador.

Las imagenes 557 se reenvian a un componente de recorte de salida 549. El componente de recorte de salida
549 esta configurado para aplicar una ventana de recorte de conformidad a las imagenes 557. Esto da como
resultado imagenes recortadas de salida 559. Una imagen recortada de salida 559 es una imagen
completamente reconstruida. En consecuencia, la imagen recortada de salida 559 imita lo que veria un usuario
final tras la decodificacién del flujo de bits 551. Por lo tanto, el codificador puede revisar las imagenes
recortadas de salida 559 para garantizar que la codificacién sea satisfactoria.

El HRD 500 se inicializa basandose en los parametros de HRD en el flujo de bits 551. Por ejemplo, el HRD 500
puede leer parametros de HRD de un VPS, un SPS y/o mensajes de SEI. EIl HRD 500 puede entonces realizar
operaciones de prueba de conformidad en el flujo de bits 551 basandose en la informacién de dichos

13

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

parametros de HRD. Como ejemplo especifico, el HRD 500 puede determinar uno o mas cronogramas de
entrega de CPB a partir de los parametros de HRD. Un programa de entrega especifica el tiempo para la
entrega de datos de video hacia y/o desde una ubicacion de memoria, tal como una CPB y/o un DPB. Por lo
tanto, un cronograma de entrega de la CPB especifica el tiempo para la entrega de AU, DU 553 y/o imagenes
hacia/desde la CPB 543. Cabe sefialar que el HRD 500 puede emplear cronogramas de entrega de DPB para
la DPB 547 que son similares a los cronogramas de entrega de CPB.

El video puede codificarse en diferentes capas y/u OLS para su uso por decodificadores con diferentes niveles
de capacidades de hardware, asi como para diferentes condiciones de red. Los cronogramas de entrega de la
CPB se seleccionan para reflejar estos problemas. En consecuencia, los subflujos de bits de capas superiores
se designan para condiciones 6ptimas de hardware y red y, por lo tanto, las capas superiores pueden recibir
uno o mas programas de entrega de CPB que emplean una gran cantidad de memoria en la CPB 543 y retrasos
cortos para las transferencias de las DU 553 hacia la DPB 547. Del mismo modo, los subflujos de bits de capa
inferior estan designados para capacidades limitadas del hardware del decodificador y/o malas condiciones de
la red. Por lo tanto, las capas inferiores pueden recibir uno 0 mas programas de entrega de CPB que emplean
una pequefia cantidad de memoria en la CPB 543 y retrasos mas largos para las transferencias de las DU 553
hacia la DPB 547. Los OLS, capas, subcapas o combinaciones de los mismos pueden entonces ser probados
de acuerdo con el cronograma de entrega correspondiente para garantizar que el subflujo de bits resultante se
pueda decodificar correctamente en las condiciones esperadas para el subflujo de bits. En consecuencia, los
parametros de HRD en el flujo de bits 551 pueden indicar los cronogramas de entrega de CPB asi como incluir
datos suficientes para permitir que el HRD 500 determine los cronogramas de entrega de CPB y correlacione
los cronogramas de entrega de CPB con los OLS, capas y/o subcapas correspondientes.

La figura 6 es un diagrama esquematico que ilustra una secuencia de video multicapa 600 de ejemplo,
configurada para prediccion entre capas 621. La secuencia de video multicapa 600 puede ser codificada
mediante un codificador, tal como el sistema de codec 200 y/o el codificador 300 y decodificada mediante un
decodificador, tal como el sistema de cédec 200 y/o el decodificador 400, por ejemplo, segin el método 100.
Ademas, un HRD, tal como el HRD 500, puede comprobar la conformidad estandar de la secuencia de video
multicapa 600. La secuencia de video multicapa 600 se incluye para representar una aplicacién de ejemplo
para capas en una secuencia de video codificada. Una secuencia de video multicapa 600 es cualquier
secuencia de video que emplea una pluralidad de capas, tal como la capa N 631 y la capa N+1 632.

En un ejemplo, la secuencia de video multicapa 600 puede emplear la prediccién entre capas 621. La
prediccion entre capas 621 se aplica entre las imagenes 611, 612, 613 y 614 y las imagenes 615, 616, 617 y
618 en diferentes capas. En el ejemplo mostrado, las imagenes 611, 612, 613 y 614 son parte de la capa N+1
632 y las imagenes 615, 616, 617 y 618 son parte de la capa N 631. Una capa, tal como la capa N 631 y/o la
capa N+1 632, es un grupo de imagenes que estan todas asociadas con un valor similar de una caracteristica,
tal como un tamafio, calidad, resolucién, relacién sefial/ruido similar, capacidad, etc. Una capa puede definirse
formalmente como un conjunto de unidades de NAL de VCL y unidades asociadas de NAL no de VCL. Una
unidad de NAL de VCL es una unidad de NAL codificada para contener datos de video, tal como un segmento
codificado de una imagen. Una unidad de NAL no de VCL es una unidad de NAL que contiene datos que no
son de video, tales como sintaxis y/o parametros que soportan la decodificacion de datos de video, la
realizacién de comprobaciones de conformidad u otras operaciones.

En el ejemplo mostrado, la capa N+1 632 esta asociada con un tamafio de imagen mayor que la capa N 631.
En consecuencia, las imagenes 611, 612, 613 y 614 en la capa N+1 632 tienen un tamafio de imagen mayor
(por ejemplo, mayor altura y ancho y, por lo tanto, mas muestras) que las imagenes 615, 616, 617 y 618 en la
capa N 631 en este gjemplo. Sin embargo, dichas imagenes pueden estar separadas entre la capa N+1 632 y
la capa N 631 por otras caracteristicas. Si bien solo se muestran dos capas, la capa N+1 632 y la capa N 631,
un conjunto de imagenes se puede separar en cualquier nimero de capas, segun las caracteristicas asociadas.
La capa N+1 632 y la capa N 631 también pueden indicarse mediante un Id de capa. Un Id de capa es un
elemento de datos asociado con una imagen e indica que la imagen es parte de una capa indicada. En
consecuencia, cada imagen 611-618 puede asociarse con un Id de capa correspondiente para indicar qué capa
N+1 632 o capa N 631 incluye la imagen correspondiente. Por ejemplo, un Id de capa puede incluir un
identificador de capa de cabecera de unidad de NAL (nuh_layer_id), que es un elemento de sintaxis que
especifica un identificador de una capa que incluye una unidad de NAL (por ejemplo, que incluye segmentos
y/o parametros de las imagenes en una capa). A una capa asociada con una calidad/tamafio de flujo de bits
inferior, tal como la capa N 631, se le asigna de manera general un Id de capa inferior y se le denomina capa
inferior. Ademas, a una capa asociada con una calidad/tamafio de flujo de bits superior, tal como la capa N+1
632, se le asigna de manera general un Id de capa superior y se la denomina capa superior.

Las imagenes 611-618 en diferentes capas 631-632 estan configuradas para ser mostradas como alternativa.
Como ejemplo especifico, un decodificador puede decodificar y mostrar la imagen 615 en el momento de
visualizacion actual si se desea una imagen mas pequefia, o el decodificador puede decodificar y mostrar la
imagen 611 en el momento de visualizacién actual si se desea una imagen mas grande. Por lo tanto, las
imagenes 611-614 en la capa superior N+1 632 contienen sustancialmente los mismos datos de imagen que

14

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

las imagenes correspondientes 615-618 en la capa inferior N 631 (a pesar de la diferencia en el tamafio de la
imagen). Especificamente, la imagen 611 contiene sustancialmente los mismos datos de imagen que laimagen
615, la imagen 612 contiene sustancialmente los mismos datos de imagen que la imagen 616, etc.

Las imagenes 611-618 se pueden codificar con referencia a otras imagenes 611-618 en la misma capa N 631
o N+1 632. Codificar una imagen en referencia a otra imagen en la misma capa da como resultado la
interprediccion 623. La interprediccion 623 se representa con flechas en linea continua. Por ejemplo, la imagen
613 puede codificarse empleando la interprediccién 623 usando una o dos de las imagenes 611, 612 y/o 614
en la capa N+1 632 como referencia, donde se hace referencia a una imagen para la interprediccién
unidireccional y/o se hace referencia a dos imagenes para la interprediccion bidireccional. Por ejemplo, la
imagen 617 puede codificarse empleando la interprediccion 623 usando una o dos de las imagenes 615, 616
y/o 618 en la capa N 631 como referencia, donde se hace referencia a una imagen para la interprediccién
unidireccional y/o se hace referencia a dos imagenes para la interprediccion bidireccional. Cuando se utiliza
una imagen como referencia para otra imagen en la misma capa al realizar la interprediccion 623, la imagen
puede denominarse imagen de referencia. Por ejemplo, la imagen 612 puede ser una imagen de referencia
utilizada para la codificacion de la imagen 613 segun la interprediccién 623. La interprediccién 623 también
puede denominarse prediccion de intra-capa en un contexto multicapa. Por lo tanto, la interprediccion 623 es
un mecanismo de codificacién de muestras de una imagen actual por referencia a muestras indicadas en una
imagen de referencia que es diferente de la imagen actual, donde la imagen de referencia y la imagen actual
estan en la misma capa.

Las imagenes 611-618 también se pueden codificar con referencia a otras imagenes 611-618 en diferentes
capas. Este proceso se conoce como prediccidon entre capas 621 y se representa mediante flechas
discontinuas. La prediccion entre capas 621 es un mecanismo de codificacion de muestras de una imagen
actual por referencia a muestras indicadas en una imagen de referencia, donde la imagen actual y la imagen
de referencia estan en diferentes capas y, por lo tanto, tienen diferentes ID de capa. Por ejemplo, una imagen
en una capa inferior N 631 se puede utilizar como imagen de referencia de codificacion de una imagen
correspondiente en una capa superior N+1 632. Como ejemplo especifico, la imagen 611 se puede codificar
con referencia a laimagen 615, segln la prediccion entre capas 621. En tal caso, la imagen 615 se utiliza como
imagen de referencia entre capas. Una imagen de referencia entre capas es una imagen de referencia utilizada
para la prediccién entre capas 621. En la mayoria de los casos, la prediccion entre capas 621 estéa restringida
de tal manera que una imagen actual, tal como la imagen 611, solo puede usar una o varias imagenes de
referencia entre capas que estan incluidas en la misma AU y que estan en una capa inferior, tal como la imagen
615. Cuando estan disponibles multiples capas (por ejemplo, mas de dos), la prediccion entre capas 621 puede
codificar/decodificar una imagen actual basandose en multiples imagenes de referencia entre capas en niveles
mas bajos que la imagen actual.

Un codificador de video puede emplear una secuencia de video multicapa 600 de codificacién de imagenes
611-618 a través de muchas combinaciones y/o permutaciones diferentes de interprediccién 623 y prediccion
entre capas 621. Por ejemplo, la imagen 615 puede codificarse segun una intraprediccién. Las imagenes 616-
618 pueden codificarse entonces segun la interprediccién 623 utilizando la imagen 615 como imagen de
referencia. Ademas, la imagen 611 puede codificarse segun la prediccién entre capas 621 utilizando la imagen
615 como imagen de referencia entre capas. Las imagenes 612-614 pueden codificarse entonces segin la
interprediccion 623 utilizando la imagen 611 como imagen de referencia. Por lo tanto, una imagen de referencia
puede servir como imagen de referencia de una sola capa y como imagen de referencia entre capas para
diferentes mecanismos de codificacién. Codificando imagenes de capa superior N+1 632 basadas en imagenes
de capa inferior N 631, la capa superior N+1 632 puede evitar el empleo de intraprediccién, que tiene una
eficiencia de codificacién mucho menor que la interprediccion 623 y la prediccion entre capas 621. Por lo tanto,
la baja eficiencia de codificacion de la intraprediccién puede limitarse a las imagenes mas pequefias/de menor
calidad y, por lo tanto, limitarse a codificar la menor cantidad de datos de video. Las imagenes utilizadas como
imagenes de referencia y/o imagenes de referencia entre capas pueden indicarse en entradas de una o varias
listas de imagenes de referencia contenidas en una estructura de lista de imagenes de referencia.

Cabe sefialar que las capas, tales como la capa N+1 632 y la capa N 631, pueden incluirse en conjuntos de
capas de salida (Output Layer Sets, OLS). Un OLS es un conjunto de una o mas capas, donde al menos una
capa es una capa de salida. Por ejemplo, la capa N 631 puede incluirse en un primer OLS y lacapa N 631y la
capa N-1 632 pueden incluirse ambas en un segundo OLS. Esto permite enviar diferentes OLS a diferentes
decodificadores, dependiendo de las condiciones del lado del decodificador. Por ejemplo, un proceso de
extraccion de subflujo de bits puede eliminar datos que no estan relacionados con un OLS objetivo de la
secuencia de video multicapa 600 antes de que el OLS objetivo se envie a un decodificador. Por lo tanto, se
puede almacenar una copia codificada de la secuencia de video multicapa 600 en un codificador (0 en un
servidor de contenidos correspondiente), y se pueden extraer varios OLS y enviarlos a diferentes
decodificadores previa solicitud.

Una capa de transmision simultdnea es una capa que no emplea la prediccion entre capas 621. Por gjemplo,
la capa N+1 632 se codifica con referencia a la capa N 631 basandose en la prediccion entre capas 621. Sin

15

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

embargo, la capa 631 no esta codificada con referencia a otra capa. Por lo tanto, la capa 631 es una capa de
transmision simultanea. Las secuencias de video escalables, tales como la secuencia de video multicapa 600,
emplean de manera general una capa base y una o mas capas de mejora que mejoran alguna propiedad de la
capa base. En la figura 6, la capa N 631 es una capa base. Una capa base se codifica de manera general
como una capa de transmision simultanea. También cabe sefialar que la figura 6 es ejemplar y no limitante ya
que las secuencias de video con multiples capas pueden usar muchas combinaciones/permutaciones
diferentes de dependencias. Un flujo de bits puede contener cualquier nimero de capas, y cualquier nimero
de dichas capas puede ser capas de transmisién simultanea. Por ejemplo, la prediccion entre capas 621 se
puede omitir por completo, en cuyo caso todas las capas son capas de transmision simultanea. Como ejemplo
adicional, las aplicaciones multivista muestran dos o mas capas de salida. Por lo tanto, una aplicacion de
multiples vistas incluye de manera general dos 0 mas capas base, que son capas de transmision simultanea,
y pueden incluir capas de mejora correspondientes a cada capa base.

Las capas de transmision simultanea pueden manejarse de manera diferente a las capas que usan la
prediccion entre capas 621. Por ejemplo, cuando se codifican capas que usan prediccidon entre capas 621, un
codificador deberia indicar el nimero de capas asi como las dependencias entre las capas, con el fin de
soportar la decodificaciéon. Sin embargo, dicha informacion se puede omitir para las capas de transmision
simultanea. Por ejemplo, la configuracién de la capa N+1 632 y la capa N 631 se puede indicar en un VPS, tal
como se explica con mas detalle a continuacién. Sin embargo, la capa N 631 puede decodificarse sin dicha
informacién. Por lo tanto, el VPS puede eliminarse de un flujo de bits correspondiente cuando solo se transmite
la capa N 631 a un decodificador. Sin embargo, esto puede crear errores si los parametros restantes en el flujo
de bits hacen referencia al VPS. Estas y otras cuestiones se explican con mayor detalle a continuacién.

La figura 7 es un diagrama esquematico que ilustra un flujo de bits 700 de ejemplo. Por ejemplo, el flujo de bits
700 puede generarse mediante un sistema de codec 200 y/o un codificador 300, para decodificarlo mediante
un sistema de cédec 200 y/o un decodificador 400, segn el método 100. Ademas, el flujo de bits 700 puede
incluir una secuencia de video multicapa 600. Ademas, el flujo de bits 700 puede incluir diversos parametros
para controlar el funcionamiento de un HRD, tal como el HRD 500. Basandose en dichos parametros, el HRD
500 puede comprobar que el flujo de bits 700 cumple con los estandares antes de la transmisién hacia un
decodificador para su decodificacion.

El flujo de bits 700 incluye un VPS 711, uno o mas SPS 713, una pluralidad de conjuntos de parametros de
imagen (Picture Parameter Set, PPS) 715, una pluralidad de cabeceras de segmento 717 y datos de imagen
720. Un VPS 711 contiene datos relacionados con todo el flujo de bits 700. Por ejemplo, el VPS 711 puede
contener varios OLS, capas y/o subcapas relacionados con datos utilizados en el flujo de bits 700. Un SPS 713
contiene datos de secuencia comunes a todas las imagenes en una secuencia de video codificada contenida
en el flujo de bits 700. Por ejemplo, cada capa puede contener una o mas secuencias de video codificadas, y
cada secuencia de video codificada puede hacer referencia a un SPS 713 para los parametros
correspondientes. Los parametros en un SPS 713 pueden incluir tamafio de imagen, profundidad de bits,
parametros de herramientas de codificacion, restricciones de velocidad de bits, etc. Cabe sefialar que, si bien
cada secuencia se refiere a un SPS 713, un solo SPS 713 puede contener datos para multiples secuencias en
algunos ejemplos. El PPS 715 contiene parametros que se aplican a una imagen completa. Por lo tanto, cada
imagen de la secuencia de video puede hacer referencia a un PPS 715. Cabe sefialar que, si bien cada imagen
hace referencia a un PPS 715, un solo PPS 715 puede contener datos para multiples imagenes en algunos
ejemplos. Por ejemplo, se pueden codificar miltiples imagenes similares segun parametros similares. En tal
caso, un solo PPS 715 puede contener datos para imagenes similares. El PPS 715 puede indicar herramientas
de codificacién disponibles para segmentos en las imagenes correspondientes, parametros de cuantificacion,
compensaciones, etc.

La cabecera de segmento 717 contiene parametros que son especificos de cada segmento en una imagen.
Por lo tanto, puede haber una cabecera de segmento 717 por cada segmento en la secuencia de video. La
cabecera de segmento 717 puede contener informacién de tipo de segmento, recuentos de orden de imagenes
(POC), listas de imagenes de referencia, pesos de prediccién, puntos de entrada de mosaicos, parametros de
desbloqueo, etc. Cabe sefialar que en algunos ejemplos, un flujo de bits 700 también puede incluir una
cabecera de imagen, que es una estructura de sintaxis que contiene parametros que se aplican a todos los
segmentos de una sola imagen. Por esta razén, una cabecera de imagen y una cabecera de segmento 717
pueden usarse indistintamente en algunos contextos. Por ejemplo, ciertos parametros pueden ser movidos
entre la cabecera de segmento 717 y una cabecera de imagen dependiendo de si dichos parametros son
comunes a todos los segmentos en una imagen.

Los datos de imagen 720 contienen datos de video codificados segun interprediccién, prediccion entre capas
y/o intraprediccién, asi como datos residuales transformados y cuantificados correspondientes. Por ejemplo,
los datos de imagen 720 pueden incluir capas 723 y 724, imagenes 725 y 726 y/o segmentos 727 y 728. Una
capa 723 y 724 es un conjunto de unidades de NAL de VCL 741 que comparten una caracteristica especifica
(por ejemplo, una resolucién, velocidad de fotogramas, tamafio de imagen, etc. comunes) tal como se indica
mediante un ID de capa, tal como un nuh_layer_id 732, y unidades de NAL no de VCL 742 asociadas. Por

16

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

ejemplo, una capa 723 puede incluir un conjunto de imagenes 725 que comparten el mismo nuh_layer_id 732.
Asimismo, una capa 724 puede incluir un conjunto de imagenes 726 que comparten el mismo nuh_layer_id
732. Las capas 723 y 724 pueden ser sustancialmente similares, pero pueden contener contenido diferente.
Por ejemplo, las capas 723 y 724 pueden contener la capa N 631 y la capa N+1 632, respectivamente, de la
figura 6. Por lo tanto, un flujo de bits codificado 700 puede incluir multiples capas 723 y 724. Si bien solo se
muestran dos capas 723 y 724 para mayor claridad de la explicacion, se puede incluir cualquier nimero de
capas 723 y 724 en el flujo de bits 700.

Un nuh_layer_id 732 es un elemento de sintaxis que especifica un identificador de una capa 723 y/o 724 que
incluye al menos una unidad de NAL. Por ejemplo, una capa de menor calidad, conocida como capa base,
puede incluir el valor mas bajo de nuh_layer_id 732 con valores crecientes de nuh_layer_id 732 para capas de
mayor calidad. Por lo tanto, una capa inferior es una capa 723 o 724 con un valor menor de nuh_layer_id 732
Y una capa superior es una capa 723 o 724 con un valor mayor de nuh_layer_id 732. Los datos de las capas
723 y 724 se correlacionan basandose en el nuh_layer_id 732. Por ejemplo, los conjuntos de parametros y
datos de video pueden asociarse con un valor de nuh_layer_id 732 que corresponde a la capa mas baja 723
0 724 que incluye dichos conjuntos de parametros/datos de video. Por lo tanto, un conjunto de unidades de
NAL de VCL 741 son parte de una capa 723 y/o 724 cuando el conjunto de unidades de NAL de VCL 741
tienen todas un valor particular de nuh_layer_id 732.

Una imagen 725y 726 es una matriz de muestras de luma y/o una matriz de muestras de croma que crean un
fotograma o un campo del mismo. Por ejemplo, una imagen 725/726 es una imagen codificada que puede ser
generada para su visualizacion o ser utilizada para soportar la codificacién de otra u otras imagenes para su
emision. Las imagenes 725 y 726 son sustancialmente similares, pero la imagen 725 esté contenida en la capa
723 mientras que la imagen 726 esta contenida en la capa 724. Una imagen 725 y 726 contiene uno o mas
segmentos 727 y 728, respectivamente. Un segmento 727/728 puede definirse como un nimero entero de
mosaicos completos o un numero entero de filas consecutivas de unidades de arbol de codificacion (CTU)
completas (por ejemplo, dentro de un mosaico) de una imagen 725/726 que estan contenidas exclusivamente
en una sola unidad de NAL, como una unidad de NAL de VCL 741. Los segmentos 727 y los segmentos 728
son sustancialmente similares, excepto por que los segmentos 727 estan incluidos en las imagenes 725 y la
capa 723, mientras que los segmentos 728 estan incluidos en las imagenes 726 y la capa 724. Los segmentos
727/728 se dividen ademas en CTU y/o bloques de arbol de codificacion (CTB). Una CTU es un grupo de
muestras de un tamafio predefinido que puede dividirse mediante un arbol de codificacién. Un CTB es un
subconjunto de una CTU y contiene componentes de luma o componentes de croma de la CTU. Las CTU/CTB
se dividen ademas en bloques de codificacion basados en arboles de codificacion. Los bloques de codificacién
pueden luego ser codificados/decodificados segun mecanismos de prediccion.

Un flujo de bits 700 puede codificarse como una secuencia de unidades de NAL. Una unidad de NAL es un bin
de datos de video y/o sintaxis de soporte. Una unidad de NAL puede ser una unidad de NAL de VCL 741 o una
unidad de NAL no de VCL 742. Una unidad de NAL de VCL 741 es una unidad de NAL codificada para contener
datos de video, tales como datos de imagen 720 y una cabecera de segmento 717 asociada. Como ejemplo
especifico, cada segmento 727 y 728 y una cabecera de segmento 717 asociada se pueden codificar en una
sola unidad de NAL de VCL 741. Una unidad de NAL no de VCL 742 es una unidad de NAL que contiene datos
que no son de video, tales como sintaxis y/o parametros que soportan la decodificacién de datos de video, la
realizacién de comprobaciones de conformidad u otras operaciones. Por ejemplo, una unidad de NAL 742 no
de VCL puede contener un VPS 711, un SPS 713, un PPS 715, una cabecera de imagen u ofra sintaxis de
soporte. Por lo tanto, un flujo de bits 700 es una serie de unidades de NAL de VCL 741 y unidades de NAL no
de VCL 742. Cada unidad de NAL contiene un nuh_layer_id 732, que permite a un codificador o decodificador
determinar qué capa 723 o 724 incluye la unidad de NAL correspondiente.

Un flujo de bits 700 que incluye multiples capas 723 y 724 puede codificarse y almacenarse hasta que lo solicite
un decodificador. Por ejemplo, un decodificador puede solicitar una capa 723, una capa 724 y/o un OLS que
contenga multiples capas 723 y 724. En un ejemplo particular, la capa 723 es una capa base y la capa 724 es
una capa de mejora. También se pueden emplear capas adicionales en el flujo de bits 700. El codificador y/o
un servidor de contenido deben enviar solo las capas 723 y/o 724 al decodificador, que son necesarias para
decodificar la una o varias capas de salida solicitadas. Por ejemplo, cuando se usan capas para diferentes
tamafios de imagen, un decodificador que solicite el tamafio de imagen mas grande puede recibir el flujo de
bits 700 completo con ambas capas 723 y 724. Un decodificador que solicite el tamafio de imagen mas pequefio
puede recibir las Unicas capas 723. Un decodificador que solicita un tamarfio de imagen intermedio puede recibir
la capa 723 y otras capas intermedias pero no la capa mas alta 724 y, por lo tanto, no todo el flujo de bits.
También se puede utilizar el mismo enfoque para otras caracteristicas de la capa, tales como la velocidad de
fotogramas, la resolucién de la imagen, etc.

Se emplea un proceso de extraccion de subflujo de bits 729 para extraer un subflujo de bits 701 del flujo de
bits 700 para soportar la funcionalidad descrita anteriormente. Un subflujo de bits 701 es un subconjunto de
las unidades de NAL (por ejemplo, unidades de NAL no de VCL 742 y unidades de NAL de VCL 741) del flujo
de bits 700. Especificamente, un subflujo de bits 701 puede contener datos relacionados con una o mas capas,

17

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

pero no datos relacionados con otras capas. En el ejemplo mostrado, el subflujo de bits 701 contiene datos
relacionados con la capa 723, pero no datos relacionados con la capa 724. Por lo tanto, el subflujo de bits 701
contiene varios SPS 713, PPS 715, cabeceras de segmento 717 y datos de imagen 720 que incluyen capa
723, imagenes 725 y segmentos 727. El proceso de extraccién de subflujo de bits 729 elimina unidades NAL
basadas en nuh_layer_id 732. Por ejemplo, las unidades de NAL de VCL 741 y las unidades de NAL no de
VCL 742 asociadas solo con la capa superior 724 incluyen valores de nuh_layer_id 732 mas altos y, por lo
tanto, eliminando todas las unidades de NAL con los valores de nuh_layer_id 732 més altos se extrae la capa
inferior 723 y los parametros asociados. Cada unidad de NAL contiene un valor de nuh_layer_id 732 que es
menor o igual que el nuh_layer_id 732 de la capa mas baja que incluye la unidad de NAL para soportar el
proceso de extraccion de subflujo de bits 729. Cabe sefialar que un flujo de bits 700 y un subflujo de bits 701
pueden denominarse cada uno, de manera general, flujo de bits.

En el ejemplo mostrado, el subflujo de bits 701 incluye una capa de transmision simultanea (por ejemplo, una
capa base). Tal como se sefialé anteriormente, una capa de transmision simultanea es cualquier capa que no
utiliza prediccion entre capas. El VPS 711 contiene datos que describen la configuracion de las capas 723 y
724. Sin embargo, estos datos no son necesarios para decodificar una capa de transmisién simultanea, tal
como la capa 723. Por lo tanto, el proceso de extraccion de subflujo de bits 729 elimina el VPS 711 para
soportar una mayor eficiencia de codificacién cuando se extrae una capa de transmisién simultanea. Esto
puede causar problemas en algunos sistemas de codificacién de video. Especificamente, ciertos parametros
en el SPS 713 pueden hacer referencia al VPS 711. Cuando se elimina el VPS 711, es posible que el
decodificador y/o el HRD no sean capaces de resolver dichos parametros, ya que los datos a los que hacen
referencia dichos parametros ya no estan presentes. Esto puede provocar un error al realizar pruebas de
conformidad en el HRD en capas de transmision simultanea. Alternativamente, esto puede dar como resultado
errores impredecibles en un decodificador cuando se transmite una capa de transmisién simultanea para su
visualizacion en el decodificador.

La presente divulgacién aborda estos errores. Especificamente, el SPS 713 incluye un
sps_video_parameter_set_id 731. El sps_video_parameter_set_id 731 es un elemento de sintaxis que
especifica un ID de una referencia del VPS 711 por parte del SPS 713. Especificamente, el VPS 711 contiene
un vps_video_parameter_set_id 735, que es un elemento de sintaxis que proporciona un ID para el VPS 711
como referencia para otros elementos/estructuras de sintaxis. Cuando el VPS 711 esta presente, el
sps_video_parameter_set_id 731 se ajusta al valor de vps_video_parameter_set_id 735. Sin embargo, cuando
se usa el SPS 713 para una capa de transmisién simultanea, el sps_video_parameter_set_id 731 se ajusta a
cero. Dicho de otra manera, el sps_video_parameter_set_id 731, cuando es mayor que cero, especifica el valor
de vps_video_parameter_set_id 735 para el VPS 711 al que hace referencia el SPS 713. Cuando el
sps_video_parameter_set_id 731 es igual a cero, el SPS 713 no hace referencia a un VPS 711, y no se hace
referencia a ninglin VPS 711 cuando se decodifica cualquier secuencia de video de capa codificada que haga
referencia al SPS 713. Esto se puede lograr usando un SPS 713 separado para diferentes capas (por ejemplo,
un SPS para una capa de transmisién simultanea y otro SPS para una capa o capas que no son de transmisién
simultanea) o cambiando el valor de sps_video_parameter_set_id 731 durante el proceso de extraccion de
subflujo de bits 729. De esta manera, el sps_video_parameter_set_id 731 no hace referencia erroneamente a
un ID que no esté disponible cuando se elimina el VPS 711 durante el proceso de extraccion de subflujo de
bits 729.

Ademas, diversas variables que son obtenidas por el HRD y/o por el decodificador también hacen referencia a
parametros en el VPS 711. En consecuencia, dichas variables se ajustan a valores predeterminados cuando
el sps_video_parameter_set_id 731 se ajusta a cero. Esto garantiza que dichas variables puedan resolverse
adecuadamente a un valor procesable cuando se extrae el VPS 711 para capas de transmisién simultanea,
mientras sigue funcionando correctamente para flujos de bits multicapa. Por ejemplo, un decodificador y/o un
HRD pueden obtener un GeneralLayerldx]| i] basandose en un flujo de bits 700 y/o en un subflujo de bits 701.
Un indice de capa general (GeneralLayerldx]| i]} es una variable derivada que especifica un indice de una capa
i correspondiente. Por lo tanto, el GeneralLayerldx| i] se puede emplear para determinar un indice de capa de
una capa actual incluyendo el nuh_layer_id 732 de la capa actual como capa i en GeneralLayerldx[i]. Esto se
puede expresar como un indice de capa general correspondiente a un id de capa de nuh
(GeneralLayerldx[nuh_layer_id]). Por lo tanto, el GeneralLayerldx[nuh_layer_id] indica un indice de capa actual
para una capa correspondiente. Este proceso funciona correctamente para capas que no son de transmision
simultanea, tal como la capa 724, pero puede causar errores en la capa de transmision simultanea 723. En
consecuencia, el GeneralLayerldx[nuh_layer_id] se ajusta a, y/o se infiere que es, cero cuando el
sps_video_parameter_set_id 731 es cero (lo que indica una capa de transmisién simultanea).

Como ejemplo adicional, el VPS 711 puede contener un indicador de capa independiente de VPS
(vps_independent_layer_flag) 733. El vps_independent layer flag 733 especifica si las capas
correspondientes, tales como la capa 723 y/o 724, usan prediccidn entre capas. En consecuencia,
vps_independent_layer_flag [GenerallLayerldx[nuh_layer id]] especifica si una capa actual con indice
GenerallLayerldx[nuh_layer_id] utiliza predicciéon entre capas. Sin embargo, el VPS 711 que contiene el
vps_independent_layer_flag 733 no se envia al decodificador cuando la capa 723 enviada al decodificador es

18

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

una capa de transmisién simultanea. Por lo tanto, la referencia puede provocar un error. Sin embargo, las
capas de transmision simultanea no utilizan predicciéon entre capas. Por lo tanto, se puede inferir que el
vps_independent_layer_flag 733 para una capa de transmision simultanea es igual a uno, lo que indica que no
se usa ninguna prediccion entre capas para una capa correspondiente 723. Por lo tanto,
vps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]] se ajusta a/se infiere que es uno, para indicar que
no hay prediccién entre capas cuando el sps_video_parameter_set_id esta ajustado a cero. De esta manera,
se evitan errores cuando se elimina un VPS de un flujo de bits antes de la transmisién de una capa de
transmision simultanea, tal como la capa 723. Como resultado, se incrementa la funcionalidad del codificador
y del decodificador. Ademas, la eficiencia de la codificacion aumenta al eliminar con éxito un VPS innecesario
de un flujo de bits que incluye solo una capa de transmision simultanea, lo que reduce el uso de recursos de
procesador, memoria y/o sefializacién de red, tanto en el codificador como en el decodificador.

La informacion anterior se describe a continuacién con mas detalle en lo que sigue en la presente memoria. La
codificacion de video en capas también se conoce como codificacion de video escalable o codificacion de video
con escalabilidad. La escalabilidad en la codificacién de video se puede favorecer mediante el uso de técnicas
de codificacién multicapa. Un flujo de bits multicapa comprende una capa base (Base Layer, BL) y una 0 mas
capas de mejora (Enhancement Layer, EL). Ejemplos de escalabilidad incluyen escalabilidad espacial,
escalabilidad de calidad/relacién sefial a ruido (Signal to Noise Ratio, SNR), escalabilidad de multiples vistas,
escalabilidad de velocidad de fotogramas, etc. Cuando se utiliza una técnica de codificacién multicapa, una
imagen o una parte de la misma se puede codificar sin utilizar una imagen de referencia (intraprediccién), se
puede codificar haciendo referencia a imagenes de referencia que estan en la misma capa (interprediccién) y/o
se puede codificar haciendo referencia a imagenes de referencia que estan en otra u otras capas (prediccion
entre capas). Una imagen de referencia usada para la prediccién entre capas de la imagen actual se denomina
imagen de referencia entre capas (Inter-Layer Reference Picture, ILRP). La figura 6 ilustra un ejemplo de
codificacion multicapa para escalabilidad espacial en el que imagenes en diferentes capas tienen diferentes
resoluciones.

Algunas familias de codificacién de video brindan soporte para escalabilidad en uno o varios perfiles separados
de los uno o varios perfiles para la codificacién de una sola capa. La codificacién de video escalable (SVC) es
una extensién escalable de la codificacién de video avanzada (AVC) que brinda soporte para escalabilidades
espaciales, temporales y de calidad. Para SVC, se sefializa un indicador en cada macrobloque (MB) en las
imagenes de EL para indicar si el MB de EL se predice usando el bloque coubicado de una capa inferior. La
prediccion del bloque coubicado puede incluir textura, vectores de movimiento y/o modos de codificacion. Las
implementaciones de SVC no pueden reutilizar directamente implementaciones de AVC no modificadas en su
disefio. La sintaxis y el proceso de decodificacién de macrobloque de EL de SVC difieren de la sintaxis y el
proceso de decodificacion de AVC.

HEVC escalable (SHVC) es una extension de HEVC que proporciona soporte para escalabilidades espaciales
y de calidad. HEVC multivista (MV-HEVC) es una extensién de HEVC que brinda soporte para la escalabilidad
de mdltiples vistas. HEVC 3D (3D-HEVC) es una extensién de HEVC que brinda soporte para codificacion de
video 3D, que es mas avanzada y mas eficiente que MV-HEVC. La escalabilidad temporal puede incluirse
como parte integral de un codec de HEVC de una sola capa. En la extensién multicapa de HEVC, las imagenes
decodificadas utilizadas para la prediccién entre capas provienen solamente de la misma AU y se tratan como
imagenes de referencia a largo plazo (Long-Term Reference Picture, LTRP). A dichas imagenes se les asignan
indices de referencia en la una o varias listas de imagenes de referencia junto con otras imagenes de referencia
temporales en la capa actual. La prediccion entre capas (Inter-layer Prediction, ILP) se logra al nivel de unidad
de prediccién (PU) estableciendo el valor del indice de referencia para referirse a la una o varias imagenes de
referencia entre capas en la una o varias listas de imagenes de referencia. La escalabilidad espacial vuelve a
muestrear una imagen de referencia o parte de ella cuando una ILRP tiene una resolucién espacial diferente a
la imagen actual que se esté codificando o decodificando. El remuestreo de la imagen de referencia se puede
realizar a nivel de imagen o a nivel de bloque de codificacion.

VVC también puede soportar codificacion de video en capas. Un flujo de bits de VVC puede incluir varias
capas. Las capas pueden ser todas independientes entre si. Por ejemplo, cada capa se puede codificar sin
utilizar prediccién entre capas. En este caso, las capas también se denominan capas de transmision
simultanea. En algunos casos, algunas de las capas se codifican mediante ILP. Una indicador en el VPS puede
indicar si las capas son capas de transmisién simultdnea o si algunas capas usan ILP. Cuando algunas capas
utilizan ILP, la relacién de dependencia entre capas también se sefializa en el VPS. A diferencia de SHVC y
MV-HEVC, es posible que VVC no especifique los OLS. Un OLS incluye un conjunto especifico de capas,
donde una o mas capas del conjunto de capas se especifican como capas de salida. Una capa de salida es
una capa de un OLS que es generada. En algunas implementaciones de VVC, solo se puede seleccionar una
capa para decodificacion y emisién cuando las capas son capas de transmisién simultanea. En algunas
implementaciones de VVC, se especifica que todo el flujo de bits, incluidas todas las capas, se decodificara
cuando cualquier capa utilice ILP. Ademas, se especifica que ciertas capas entre las capas sean capas de
salida. Se puede indicar que las capas de salida son solo la capa mas alta, todas las capas o la capa mas alta
mas un conjunto de capas inferiores indicadas.

19

10

15

20

25

30

35

ES 2 989 984 T3

Los aspectos anteriores contienen ciertos problemas relacionados con la escalabilidad. El disefio de
escalabilidad en tales sistemas incluye perfil, escalonado y nivel (Profile, Tier, and Level, PTL) especificos de
cada capa, asi como operaciones de memoria intermedia de imagenes codificadas (Coded Picture Buffer, CPB)
especificas de cada capa. Se debe mejorar la eficiencia de la sefializacion de PTL. Se debe mejorar la eficiencia
de la sefializacién de los parametros de HRD a nivel de secuencia para subcapas. Se debe mejorar la
sefializacion de los parametros de DPB. Algunos disefios hacen que los flujos de bits de una sola capa se
refieran a los VPS. El rango de valores de num_ref_entries[][] en dichos disefios es incorrecto y provoca
errores inesperados en los decodificadores. El proceso de decodificacion en dichos disefios implica la
extraccion de subflujos de bits, lo que afiade una carga a las implementaciones de decodificador. Es posible
que el proceso de decodificacidn general para tales disefios no funcione para flujos de bits escalables que
contienen multiples capas con prediccidon entre capas. La obtencién del valor de la variable
NoOutputOfPriorPicsFlag en dichos disefios puede basarse en imagenes y no en AU. El mensaje de SEI de
anidamiento escalable en tales disefios debe simplificarse para aplicarse directamente a los OLS, en lugar de
a capas de los OLS, cuando nesting_ols_flag es igual a uno. Un mensaje de SEI anidado no escalable, cuando
payloadType (tipo de carga Util) es igual a cero (periodo de almacenamiento en memoria intermedia), uno
(temporizacion de la imagen) o ciento treinta (informacion de la unidad de decodificacion), se puede especificar
para que se aplique solo al OLS de orden 0.

En general, esta divulgacion describe diversos enfoques para la escalabilidad en la codificacién de video. Las
descripciones de las técnicas se basan en VVC. Sin embargo, las técnicas también se aplican a la codificacion
de video en capas basandose en otras especificaciones de cédec de video. Uno o méas de los problemas
mencionados anteriormente se pueden resolver de la siguiente manera. Especificamente, esta divulgacion
incluye métodos para mejorar el soporte de escalabilidad en la codificacion de video.

Las siguientes son diversas definiciones de ejemplo. Un OP puede ser un subconjunto temporal de un OLS,
identificado por un indice de OLS y un valor mas alto de Temporalld (Id temporal). Una capa de salida es una
capa de un OLS que es generada. Un OLS puede ser un conjunto de capas, donde una o mas capas del
conjunto de capas se especifican como capas de salida. Un indice de capa de OLS puede ser un indice de una
capa en un OLS a la lista de capas en el OLS. Un proceso de extraccion de subflujo de bits puede ser un
proceso especifico mediante el cual las unidades de NAL en un flujo de bits que no pertenecen a un conjunto
de destino, determinado por un indice de OLS objetivo y un Temporalld objetivo més alto, se eliminan del flujo
de bits, comprendiendo el subflujo de bits de salida las unidades NAL en el flujo de bits que pertenece al
conjunto de destino.

Un ejemplo de sintaxis de RBSP de conjunto de parametros de video es el siguiente.

Video_parameter_set_rbsp() { Descriptor
vps_video_parameter_set_id u(4)
vps_max_layers_minus1 u(6)
vps_max_sub_layers_minus1 u(3)
si (vps_max_layers_minus1 > 0 && vps_max_sub_layers_minus1 > 0}

vps_all_layers_same_num_sub_layers_flag u(1)
si (vps_max_layers_minus1 > 0)
vps_all_independent_layers_flag u(1)
vps_num_ptls u(8)
para (i = 0; i < vps_num_ptls; i++) {
si (i>0)
pt_present flag[i] u(1)

si (vps_max_sub_layers_minus1 > 0 && vps_all_layers_same_num_sub_layers_flag)

ptl_max_temporal_id[i] u(3)

}

mientras (!byte_aligned()}

vps_ptl_byte_alignment_zero_bit /* igual a 0 */ u(1)

para (i = 0; i < vps_num_ptls; i++)

profile_tier_level(pt_present_flag[i], ptl_max_temporal_id[i]}

20

ES 2 989 984 T3

para(i = 0; i < TotaINumQlss; i++)

si (NumLayersInOls[i]> 1 && vps_num_ptls > 1)

ols_ptl_idx[i]

si (lvps_all_independent_layers_flag)

vps_num_dpb_params

si (vps_num_dpb_params > 0) {

same_dpb_size_output_or_nonoutput_flag

si (vps_max_sub_layers_minusi > 0)

vps_sub_layer_dpb_params_present_flag

}

para (i = 0; i <vps_num_dpb_params; i++) {

dpb_size_only_flag[i]

si (vps_max_sub_layers_minus1 > 0 && vps_all_layers_same_num_sub_layers_flag)

dpb_max_temporal_id[i]

dpb_parameters(dpb_size_only_flag[i 1, dpb_max_temporal_id[i
vps_sub_layer _dpb_params_present flag)

}

para (i = 0; i < vps_max_layers minus1 && vps_num_dpb_params > 1; i++) {

si (lvps_independent_layer_flag[i 1)

layer_output_dpb_params_idx[i]

si (LayerUsedAsRefLayerFlag[i] && !same_dpb_size_output_or_nonoutput_flag)

layer_nonoutput_dpb_params_idx[i]

}

general_hrd_params_present_flag

si (general_hrd_params_present_flag) {

num_units_in_tick

time_scale

general_hrd_parameters()

}

vps_extension_flag

si (vps_extension_flag)

mientras (more_rbsp_data ()}

vps_extension_data_flag

rbsp_trailing_bits()

}

Un ejemplo de sintaxis de RBSP de conjunto de parametros de secuencia es el siguiente.

seq_parameter_set_rbsp()} {

Descriptor

sps_decoding_parameter_set_id

sps_video_parameter_set_id

sps_max_sub_layers_minus1

sps_reserved_zero_4bits

sps_ptl_dpb_present_flag

si (sps_ptl_dpb_present_flag)

profile_tier_level(1, sps_max_sub_layers_minus1)

gdr_enabled_flag

sps_seq_parameter_set id

21

ES 2 989 984 T3

croma_format_idc

ue(v)

log2_max_pic_order_cnt_Isb_minus4

ue(v)

poc_msb_in_rap_pics_flag

u(1)

si (poc_msb_in_rap_pics_flag > 0)

poc_msb_len_minus1

ue(v)

si (sps_max_sub_layers_minus1 > 0))

sps_sub_layer_dpb_params_flag

si (sps_ptl_dpb_present flag)

dpb_parameters(0, sps_max_sub_layers_minus1, sps_sub_layer_dpb_params_flag)

para (i = (sps_sub_layer_ordering_info_present_flag? 0: sps_max_sub_layers_minus1);

i <= sps_max_sub_layers_minus1; i++) {

sps_max_dec_pic_buffering_minusi[i]

ue(v)

sps_max_num_reorder_pics[i]

ue(v)

sps_max_latency_increase_plusi[i]

ue(v)

}

long_term_ref pics_flag

sps_scaling_list_enabled_flag

general_hrd_parameters_present_flag

si (general_hrd_parameters_present flag } {

num_units_in_tick

time_scale

sub_layer_cpb_parameters_present_flag

si (sub_layer_cpb_parameters_present_flag)

general_hrd_parameters(0, sps_max_sub_layers_minus1)

sino

general_hrd_parameters(sps_max_sub_layers_minusi, sps_max_sub_layers_minus1)

}

vui_parameters_present_flag

si (vui_parameters_present_flag)

vui_parameters()

sps_extension_flag

si (sps_extension_flag)

mientras (more_rbsp_data ()}

sps_extension_data_flag

rbsp_trailing_bits()

}

Un ejemplo de sintaxis de parametros de DPB es el siguiente.

dpb_parameters(dpbSizeOnlyFlag, maxSublLayersMinus1, subLayerInfoFlag) {

Descriptor

para (i = (subLayerInfoFlag? 0: maxSubLayersMinus1);

i <= maxSubLayersMinus1; i++) {

max_dec_pic_buffering_minus1[i]

ue(v)

si (IdpbSizeOnlyFlag) {

max_num_reorder_pics[i]

ue(v)

22

ES 2 989 984 T3

max latency_increase_plusi[i]

ue(v)

}

Un ejemplo de sintaxis general de parametros de HRD es el siguiente.

general_hrd_parameters()

Descriptor

general_nal_hrd_params_present_flag

u1)

general_vcl_hrd_params_present_flag

u1)

si (general_nal_hrd_params_present_flag | | general _vcl_hrd_params_present_flag) {

decoding_unit_hrd_params_present_flag

si (decoding_unit_hrd_params_present _flag) {

tick_divisor_minus2

decoding_unit_cpb_params_in_pic_timing_sei_flag

}

bit_rate_scale

cpb_size_scale

si (decoding_unit_hrd_params_present_flag)

cpb_size_du_scale

}

si (vps_max_sub_layers_minusi > 0)

sub_layer_cpb_params_present_flag

si (TotaINumOilss > 1)

num_ols_hrd_params_minus1

hrd_cpb_cnt_minus1

para (i = 0; i <= num_ols_hrd_params_minus1; i++) {

si (vps_max_sub_layers_minus1 > 0 && vps_all_layers_same_num_sub_layers_flag)

hrd_max_temporal_id[i]

ols_hrd_parameters(hrd_max_temporal_id[i])

}

si (hum_ols_hrd_params_minus1 > 0)

para(i = 1; i < TotaINumQlss; i++)

ols_hrd_idx[1]

ue(v)

}

Un ejemplo de sintaxis de parametros de HRD de OLS es el siguiente.

ols_hrd_parameters(hrdMaxTid) {

Descriptor

firstSubLayer = sub_layer_cpb_params_present_flag? 0: hrdMaxTid

para(i = firstSublLayer; i <= hrdMaxTid; i++) {

fix_pic_rate_general flag[i]

si (!fixed_pic_rate_general_flag[i])

fixed_pic_rate_within_cvs_flag[i]

si (fixed_pic_rate_within_cvs_flag[i])

elemental_duration_in_tc_minusi[i]

sino, si (hrd_cpb_cnt_minus1 = = 0)

low_delay_hrd flag[i]

23

10

15

20

25

30

ES 2 989 984 T3

si (general_nal_hrd_params_present_ flag)

sublayer_hrd_parameters (i}

si (general_vcl_hrd_params_present_flag)

sub_layer_hrd_parameters(i)

Un ejemplo de sintaxis de parametros de HRD de subcapa es el siguiente.

sub_layer_hrd_parameters (subLayerld} { Descriptor
para(j = 0; j <= hrd_cpb_cnt_minus1;j++) {

bit_rate_value_minusi[subLayerld] [j] ue(v)

cpb_size_value_minus1[subLayerld][j] ue(v)

si (decoding_unit_hrd_params_present_flag)
cpb_size_value_minus1[subLayerld][j] ue(v)
bit_rate_value_minusi[subLayerld] [j] ue(v)

}

cbr_flag[subLayerld][j] u(1)

Un ejemplo de semantica de RBSP de conjunto de parametros de video es el siguiente. Un
vps_max_layers_minus1 + 1 especifica el nimero maximo permitido de capas en cada CVS en referencia al
VPS. Un vps_max_sublayers_minus1 + 1 especifica el nimero maximo de subcapas temporales que pueden
estar presentes en cada CVS en referencia al VPS. El valor de vps_max_sub_layers_minus1 puede estar en
el rango de cero a seis, inclusive. Un vps_all_layers_same_num_sub_layers_flag igual a uno especifica que el
numero de subcapas temporales es el mismo para todas las capas en cada CVS en referencia al VPS. Un
vps_all_layers_same_num_sub_layers_flag igual a cero especifica que las capas en cada CVS que hace
referencia al VPS pueden tener o no el mismo nimero de subcapas temporales. Cuando no esta presente, se
puede inferir que el valor de vps_all layers_same _num_sub_layers flag es igual a uno. Un
vps_all_independent_layers_flag igual a uno especifica que todas las capas en el CVS estan codificadas de
manera independiente sin utilizar prediccién entre capas. Un vps_all_independent_layers_flag igual a cero
especifica que una o mas de las capas en el CVS pueden usar prediccion entre capas. Cuando no esta
presente, se puede inferir que el valor de vps_all_independent_layers_flag es igual a uno. cuando el
vps_all_independent_layers_flag es igual a uno, se infiere que el valor de vps_independent_layer_flag[i] es
igual a uno. cuando el vps_all_independent_layers_flag es igual a cero, se infiere que el valor de
vps_independent_layer_flag[O] es igual a uno.

Un vps_direct_dependency_flag[i][j] igual a cero especifica que la capa con indice j no es una capa de
referencia directa para la capa con indice i. Un vps_direct_dependency_flag[i][j] igual a uno especifica que
la capa con indice | es una capa de referencia directa para la capa con indice i. cuando el
vps_direct_dependency_flag[i][j] no esta presente para iy j en el rango de cero a vps_max_layers_minus1,
inclusive, se infiere que el indicador es igual a cero. La variable DirectDependentLayerldx[i][j], que especifica
la capa de orden j dependiente directa de la capa de orden i, y |la variable LayerUsedAsRefLayerFlag| j], que
especifica si la capa con indice de capa j se utiliza como capa de referencia por cualquier otra capa, se puede
obtener de la siguiente manera:

24

10

15

20

25

30

35

ES 2 989 984 T3

para(i=0;1 <= vps_max_layers minusl; i++)
LayerUsedAsRell.averklag| j | = 0
para(i= 1.1 <vps_max layvers_minusl: i++)
si(tvps_independent_layver flag| i])
para(j=i—-Lk=0;3 >= 0;:j——)
si{ vps_direct_dependency flag{i][]j]){
DirectDependentLayerids| i || k++]=]
LayerUsedAsRefLayerFlag[j = 1
}

La variable GeneralLayerldx[i], que especifica el indice de capa de la capa con nuh_layer_Id igual a
vps_layer_id[i], se puede obtener de la siguiente manera:

para(i = 0; i <= vps_max_layers_minus1; i++) GeneralLayerldx[vps_layer_id[i]]=i

Un each_layer_is_an_ols_flag igual a uno, especifica que cada conjunto de capas de salida contiene solo una
capa, y cada capa en si en el flujo de bits es un conjunto de capas de salida, siendo la Unica capa incluida la
Unica capa de salida. Un each_layer_is_an_ols_flag igual a cero especifica que un conjunto de capas de salida
puede contener mas de una capa. Si vps_max_layers_minus1 es igual a cero, se infiere que el valor de
each_layer_is_an_ols_flag es igual a uno. De lo contrario, cuando el vps_all_independent_layers_flag es igual
a cero, se infiere que el valor de each_layer_is_an_ols_flag es igual a cero.

Un ols_mode_idc igual a cero especifica que el nimero total de OLS especificados por el VPS es igual a
vps_max_layers_minus1 + 1, el OLS de orden i incluye las capas con indices de capa de cero a i, inclusive, y
para cada OLS solo se genera la capa mas alta en el OLS. Un ols_mode_idc igual a uno especifica que el
numero total de OLS especificados por el VPS es igual a vps_max_layers_minus1 + 1, el OLS de orden i
incluye las capas con indices de capa de cero a i, inclusive, y para cada OLS se generan todas las capas del
OLS. Un ols_mode _idc igual a dos especifica que el nimero total de OLS especificados por el VPS se sefializa
explicitamente y para cada OLS se generan la capa mas alta y un conjunto de capas inferiores explicitamente
sefializadas en el OLS. El valor de ols_mode_idc puede estar en un rango de cero a dos, inclusive. cuando el
vps_all_independent layers_flag es igual a uno e each_layer_is_an_ols_flag es igual a cero, se infiere que el
valor de ols_mode_idc es igual a dos. Un num_output_layer_sets_minus1 + 1 especifica el nimero total de
OLS especificados por el VPS cuando ols_mode_idc es igual a dos.

La variable TotalNumOlss, que especifica el nimero total de OLS especificados por el VPS, se puede obtener
de la siguiente manera:
si{ vps max layvers minusl == 0)
TotalNumOlss = 1
8i no, si(each_fayer is_an ols flag || ols_mode_idc == 0 || ols_mode_idec == 1)
TotalNumOlss = vps_max_lavers_nunust + 1
$ino, si(ols_mode_idc ==2)
TotalNumOlss = num_output_laver sets_minusl + 1
Un layer_included flag[i][j] especifica si la capa de orden j (por ejemplo, la capa con nuh_layer_id igual a
vps_layer_id[j 1) estd incluida en el OLS de orden i cuando ols_mode idc es igual a dos. Un
layer_included_flag[i][j] igual a uno especifica que la capa de orden j esta incluida en el OLS de orden i. Un
layer_included_flag[i][j] igual a cero especifica que la capa de orden j no esta incluida en el OLS de orden i.
La variable NumLayersInOls[i], que especifica el nimero de capas en el OLS de orden i, y la variable

LayerldInQls[i][j], que especifica el valor de nuh_layer_id de la capa de orden j en el OLS de orden i, pueden
obtenerse de la siguiente manera:

25

10

15

20

25

ES 2 989 984 T3

NumLaversinOls{ ¢ 1= 1
LaverldinOls] O § 0 J= vps_laver_id| 0 |
paragi = 1.1 < TotalNumOlse, s+ 3 {
i cach laver iz an ols flag)¢
NumbaverslaOlsf 1 | = 1
LavertdlnOls| 1 [{ © }=vps_layer | 1]
vsing, si(ols mode de == 0 |] ols mode ide == 13§
NumLayersiaQls{ 1] =1+ 1
paral j =@ j < NumlaverstoOisf i | jo+)
LaverldinOdsf 1} 3 1 =vps_laver 1dij i

pralk=0,3=0k <= vps_max_lavers munusl: kKbt }
$i(laver included Oagli1{k1)
LayertdlnOls| i){ j++ | = vps_laver id{ k]
Numd.aversinOls] i | =}

S,

b3
1

La variable OlsLayerldx[i][j], que especifica el indice de capa OLS de la capa con nuh_layer_id igual a
LayerldInQls[i][j], se puede obtener de la siguiente manera:

paral i =0, 1 < TotalNomOlss; 1++)
para =0, { < NumbaversinOlsf 1 | j++)
OlsLayelds] 1 }f LayertdlnOlsf i} j 1=

La capa mas baja en cada OLS sera una capa independiente. En otras palabras, para cada i en el rango de
cero a TotalNumOlss - 1, inclusive, el valor de vps_independent_layer_flag[GeneralLayerldx[LayerldInOls[i][
0]]]seraigual a uno. Cada capa debe estar incluida en al menos un OLS especificado por el VPS. En otras
palabras, para cada capa con un valor particular de id de capa de nuh, nuh_layer_id, igual a uno de
vps_layer_id[k] para k en el rango de cero a vps_max_layers_minus1, inclusive, habra al menos un par de
valores de i y j, donde i estd en el rango de cero a TotalNumOlss - 1, inclusive, y j esta en el rango de
NumLayersInQls[i] - 1, inclusive, de tal manera que el valor de LayerldInOls[i][j] es igual a nuh_layer_|Id.
Cualquier capa de un OLS sera una capa de salida del OLS o una capa de referencia (directa o indirecta) de
una capa de salida del OLS.

Un vps_output_layer_flag[i][j] especifica si la capa de orden j en el OLS de orden i se genera cuando
ols_mode_idc es igual a dos. Un vps_output_layer flag[i] igual a uno especifica que se genera la capa de
orden j en el OLS de orden i. Un vps_output_layer_flag[i]igual a cero especifica que no se genera la capa de
orden | en el OLS de orden i. Cuando vps_all_independent layers flag es igual a uno vy
each_layer_is_an_ols_flag es igual a cero, se infiere que el valor de vps_output_layer_flag[i] es igual a uno.
La variable OutputLayerFlag[i][j], para la cual el valor uno especifica que se genera la capa de orden j en el
OLS de orden i, y el valor cero especifica que la capa de orden j en el OLS de orden i no se genera, se puede
obtener de la siguiente manera.

26

10

15

20

25

30

35

40

45

ES 2 989 984 T3

para(1= 1 < TolalNomOlss, i++) §
OutputLaverFlagf 1 }| NumLaversInOlsj1]-1]=1

para(§ = {;] < NumLayersinOlsf 1} — 1, j++)

si{ ols_mode ddef 1] == 0}
OutputbLavertFlagfi}{31] =0
sino, si(ols wode defi] == 1}

CutputLaverFlagf i ff 1 1= 1

sing, s oks_mode ddeli] == 2)

Cabe sefialar que un OLS de orden 0 contiene solo la capa mas baja (por ejemplo, la capa con nuh_layer_id
igual a vps_layer_id[0]} y para el OLS de orden 0 se genera la Unica capa incluida. Un vps_num_ptls especifica
el numero de estructuras de sintaxis de profile_tier_level() en el VPS. Un pt_present_flag[i] igual a uno
especifica que la informacion de perfil, nivel y restricciones generales estan presentes en la estructura de
sintaxis profile_tier_level() de orden i en el VPS. Un pt_present_flag[i] igual a cero especifica que la
informacién de perfil, nivel y restricciones generales no estd presente en la estructura de sintaxis
profile_tier_level() de orden i en el VPS. Se infiere que el valor de pt_present_flag[0] es igual a cero. Cuando
pt_present _flag[i] es igual a cero, se infiere que la informacién de perfil, nivel y restricciones generales para
la estructura de sintaxis profile_tier_level() de orden i en el VPS es la misma que para la estructura de sintaxis
profile_tier_level() de orden (i-1) en el VPS.

Un ptl_max_temporal_id[i] especifica el Temporalld de la representacién de subcapa mas alta para la cual la
informacién de nivel esta presente en la estructura de sintaxis profile_tier_level() de orden i en el VPS. El valor
de ptl_max_temporal_id[i] estara en el rango de cero a vps_max_sub_layers_minus1, inclusive. cuando el
vps_max_sub_layers_minus1 es igual a cero, se infiere que el valor de ptl_max_temporal_id[i] es igual a cero.
cuando el vps_max_sub_layers_minus1 es mayor que cero y vps_all_layers_same_num_sub_layers_flag es
igual a uno, se infiere que el valor de ptl_max_temporal_id[i] es igual a vps_max_sub_layers_minusi. Un
vps_ptl_byte_alignment_zero_bit debe ser igual a cero.

Un ols_ptl_idx[i] especifica el indice, a la lista de estructuras de sintaxis profile_tier_level(} en el VPS, de la
estructura de sintaxis profile_tier_level() que se aplica al OLS de orden i. Cuando esta presente, el valor de
ols_ptl_idx[i] debe estar en el rango de cero a vps_num_ptls - 1, inclusive. Cuando NumLayersInOls[i] es
igual a uno, la estructura de sintaxis profile_tier_level() que se aplica al OLS de orden i esta presente en el
SPS al que hace referencia la capa en el OLS de orden i. Un vps_num_dpb_params especifica el nimero de
estructuras de sintaxis dpb_parameters() en el VPS. El valor de vps_num_dpb_params estara en el rango de
cero a dieciséis, inclusive. Cuando no esta presente, se puede inferir que el valor de vps_num_dpb_params es
igual a cero. Un same_dpb_size_output_or_nonoutput_flag igual a uno especifica que no hay ninglin elemento

de sintaxis layer_nonoutput_dpb_params_idx[i] presente en el VPS. Un
same_dpb_size_output_or_nonoutput_flag igual a uno especifica que no hay ningin elemento de sintaxis
layer_nonoutput_dpb_params_idx[i] presente en el VPS. Se utiliza un

vps_sub_layer_dpb_params_present_flag para controlar la presencia de los elementos de sintaxis
max_dec_pic_buffering_minus1[], max_num_reorder_pics[] y max_latency_increase plusi[] en las
estructuras de sintaxis dpb_parameters() en el VPS. Cuando no estd presente, se infiere que
vps_sub_dpb_params_info_present_flag es igual a cero.

Un dpb_size_only_flag[i] igual a uno especifica que los elementos de sintaxis max_num_reorder_pics[] y
max_latency_increase_plus1[] no estan presentes en las estructuras de sintaxis de orden i dpb_parameters(
)} del VPS. Un dpb_size only flag[i] igual a uno especifica que los elementos de sintaxis
max_num_reorder_pics[] y max_latency_increase_plusi[] no estan presentes en las estructuras de sintaxis
de orden i dpb_parameters() del VPS. Un dpb_max_temporal id[i] especifica el Temporalld de la
representacion de subcapa mas alta para la cual los parametros de DPB pueden estar presentes en la
estructura de sintaxis dpb_parameters() de orden i en el VPS. El valor de dpb_max_temporal_id[i] debe estar
en el rango de cero a vps_max_sub_layers_minus1, inclusive. cuando el vps_max_sub_layers_minus1 es igual
a cero, se puede inferir que el valor de dpb_max_temporal_id[i] es igual a cero. cuando el

27

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

vps_max_sub_layers_minus1 es mayor que cero y vps_all_layers_same_num_sub_layers_flag es igual a uno,
se infiere que el valor de dpb_max_ temporal_id[i] es igual a vps_max_sub_layers_minusi. Un
layer_output_dpb_params_idx][i] especifica el indice, a la lista de estructuras de sintaxis dpb_parameters()
en el VPS, de la estructura de sintaxis dpb_parameters() que se aplica a la capa de orden i cuando es una
capa de salida en un OLS. Cuando esté presente, el valor de layer_output_dpb_params_idx[i] debera estar
en el rango de cero a vps_num_dpb_params - 1, inclusive.

Si vps_independent_layer_flag[i] es igual a uno, la estructura de sintaxis dpb_parameters() que se aplica a
la capa de orden i cuando es una capa de salida es la estructura de sintaxis dpb_parameters() presente en el
SPS mencionado por la capa. De lo contrario (vps_independent_layer_flag[i] es igual a uno), se aplica lo
siguiente. cuando el vps_num_dpb params es igual a uno, se infiere que el valor de
layer_output_dpb_params_idx[i] es igual a cero. La conformidad del flujo de bits puede requerir que el valor
de layer_output_dpb_params_idx[i] sea tal que dpb_size_only_flag[layer_output_dpb_params_idx[i]] sea
igual a cero.

Un layer_nonoutput_dpb_params_idx[i] especifica el indice, a la lista de estructuras de sintaxis
dpb_parameters() en el VPS, de la estructura de sintaxis dpb_parameters() que se aplica a la capa de orden
i cuando es una capa no de salida en un OLS. Cuando esté presente, el valor de
layer_nonoutput_dpb_params_idx[i] debera estar en el rango de cero a vps_num_dpb_params - 1, inclusive.
Si same_dpb_size_output_or_nonoutput_flag es igual a 1, se aplica lo siguiente. Si
vps_independent_layer_flag[i] es igual a uno, la estructura de sintaxis dpb_parameters() que se aplica a la
capa de orden i cuando es una capa de salida es la estructura de sintaxis dpb_parameters() presente en el
SPS mencionado por la capa. De lo contrario (vps_independent_layer_flag[i] es igual a uno), se infiere que el
valor de Layer_nonoutput_dpb_params_idx[i] es igual a Layer_output_dpb_params_idx[i]. De lo contrario
(same_dpb_size_output_or_nonoutput_flag es igual a cero), cuando el vps_num_dpb_params es igual a uno,
se infiere que el valor de layer_output_dpb_params_idx[i] es igual a cero.

Un general_hrd_params_present_flag igual a uno especifica que los elementos de sintaxis num_units_in_tick
(nimero de unidades en fictac) y time_scale (escala de tiempo) y la estructura de sintaxis
general_hrd_parameters()} estan presentes en la estructura de sintaxis de RBSP de SPS. Un
general_hrd_params_present_flag igual a cero especifica que los elementos de sintaxis num_units_in_tick y
time_scale y la estructura de sintaxis general_hrd_parameters()} no estan presentes en la estructura de sintaxis
de RBSP de SPS. Un num_units_in_tick es el nimero de unidades de tiempo de un reloj que funciona en la
frecuencia de time_scale hercios (Hz) que corresponde a un incremento (llamado tictac de reloj) de un contador
de tictacs de reloj. Un num_units_in_tick sera mayor que cero. Un tictac de reloj, en unidades de segundos, es
igual al cociente de num_units_in_tick dividido por time_scale. Por ejemplo, cuando la velocidad de imagen de
una sefial de video es veinticinco Hz, time_scale puede ser igual a 27.000.000 y num_units_in_tick puede ser
igual a 1.080.000 y, en consecuencia, un tictac de reloj puede ser igual a 0,04 segundos. Un time_scale es el
numero de unidades de tiempo que pasan en un segundo. Por ejemplo, un sistema de coordenadas de tiempo
que mide el tiempo usando un reloj de 27 MHz tiene un time_scale de 27.000.000. El valor de time_scale sera
mayor que cero.

Un vps_extension_flag igual a cero especifica que no hay elementos de sintaxis vps_extension_data_flag
presentes en la estructura de sintaxis de RBSP de VPS. Un vps_extension_flag igual a uno especifica que hay
elementos de sintaxis vps_extension_data flag presentes en la estructura de sintaxis de RBSP de VPS. Un
vps_extension_data_flag puede tener cualquier valor. Es posible que la presencia y el valor de
vps_extension_data_flag no afecten a la conformidad del decodificador con los perfiles. Los decodificadores
conformes pueden ignorar todos los elementos de sintaxis vps_extension_data_flag.

Un ejemplo de semantica de RBSP de conjunto de parametros de secuencia es el siguiente. Un RBSP de SPS
debe estar disponible para el proceso de decodificacién antes de ser referenciado, incluido en al menos una
unidad de acceso con Temporalld igual a cero, o proporcionado a través de medios externos, y la unidad de
NAL de SPS que contiene el RBSP de SPS debe tener un nuh_layer_id igual al valor de nuh_layer_id mas bajo
de las unidades de NAL de PPS que se refieren a la unidad de NAL de SPS. Todas las unidades de NAL de
SPS con un valor particular de sps_seq_parameter_set_id en un CVS deben tener el mismo contenido. Un
sps_decoding_parameter_set id, cuando es mayor que cero, especifica el valor de
dps_decoding_parameter_set id para el DPS al que hace referencia el SPS. cuando el
sps_decoding_parameter_set_id es igual a cero, el SPS no hace referencia a un DPS y no se hace referencia
a ningin DPS al decodificar cada CLVS que hace referencia al SPS. El valor de
sps_decoding_parameter_set_id debe ser el mismo en todos los SPS a los que hacen referencia las imagenes
codificadas en un flujo de bits.

Un sps_video_parameter_set id, cuando es mayor que cero, especifica el valor de
vps_video_parameter_set id para el VPS al que hace referencia el SPS. cuando el
sps_video_parameter_set_id es igual a cero, el SPS puede no hacer referencia a un VPS y no se hace
referencia a ningun VPS al decodificar cada CLVS que hace referencia al SPS, y se debe inferir que el valor

28

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

de GeneralLayerldx[nuh_layer id] es igual a cero, y se puede inferior que el valor de
vps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]] es igual a uno. cuando el
vps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]] es igual a uno, el SPS al que hace referencia un
CLVS con un valor de nuh_layer_id particular nuhLayerld tendrd un nuh_layer_id igual a nuhLayerld.

Un sps_max_sub_layers_minus1 + 1 especifica el nimero maximo de subcapas temporales que pueden estar
presentes en cada CVS al que hace referencia el SPS. El valor de sps_max_sub_layers_minus1 debe estar
en el rango de cero a vps_max_sub_layers_minus1, inclusive. Un sps_reserved_zero_4bits debe ser igual a
cero en los flujos de bits conformes. Se pueden reservar otros valores para sps_reserved_zero_4bits.

Un sps_ptl_dpb_present_flag igual a uno especifica que una estructura de sintaxis profile_tier_level() y una
estructura de sintaxis dpb_parameters() estan presentes en el SPS. Un sps_ptl_dpb_present_flag igual a cero
especifica que una estructura de sintaxis profile_tier_level() y una estructura de sintaxis dpb_parameters()
estan presentes en el SPS. El valor de sps_ptl_dpb present flag debe ser igual a
vps_independent_layer_flag[nuh_layer_id]. Sivps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]] es
igual a uno, la variable MaxDecPicBuffMinus1 se ajusta igual a
max_dec_pic_buffering_minus1[sps_max_sub_layers_minusi] en la estructura de sintaxis dpb_parameters()
en el SPS. De lo contrario, MaxDecPicBuffMinus1 se ajusta igual a
max_dec_pic_buffering_minus1[sps_max_sub_layers_minus1] en la estructura de sintaxis
layer_nonoutput_dpb_params_idx[GeneralLayerldx[nuh_layer_id]] - la estructura de sintaxis dpb_parameters(
} en el VPS. Un gdr_enabled_flag igual a uno especifica que las imagenes de GDR pueden estar presentes en
los CLVS que hacen referencia al SPS. Un gdr_enabled_flag igual a cero especifica que las imagenes de GDR
pueden estar presentes en los CLVS que hacen referencia al SPS.

Se utiliza un sps_sub_layer_dpb_params_present_flag para controlar la presencia de elementos de sintaxis
max_dec_pic_buffering_minusi[i], max_num_reorder_pics[i] y max_latency_increase_plusi[i] en las
estructuras de sintaxis de dpb_parameters() en el SPS. Cuando no estd presente, se infiere que
sps_sub_dpb_params_info_present_flag es igual a cero. Un long_term_ref pics_flag igual a cero especifica
que no se utiliza ningin LTRP para la interpredicciéon de ninguna imagen codificada en el CLVS. Un
long_term_ref_pics_flag igual a uno especifica que los LTRP se pueden utilizar para la interprediccién de una
0 mas imagenes codificadas en el CLVS.

Un ejemplo de semantica general de perfil, escalonado y nivel es el siguiente. Una estructura de sintaxis
profile_tier_level(} proporciona informacién de nivel y, opcionalmente, informacién de perfil, nivel, subperfil e
informacién de restricciones generales (indicada como informacién de PT). Cuando la estructura de sintaxis
profile_tier_level(} se incluye en un DPS, OlsIinScope es el OLS que incluye todas las capas en todo el flujo
de bits que hace referencia al DPS. Cuando la estructura de sintaxis profile_tier_level() se incluye en un VPS,
OlsInScope es uno o mas OLS especificados por el VPS. Cuando la estructura de sintaxis profile_tier_level()
se incluye en un SPS, OlsInScope es el OLS que incluye solo la capa que es la capa mas baja entre las capas
que hacen referencia al SPS, que debe ser una capa independiente.

Un general_profile_idc indica un perfil al que se ajusta OlsInScope. Un indicador de nivel general especifica el
contexto de nivel para la interpretacion de general_level_idc. Un num_sub_profiles especifica el nimero de
elementos de sintaxis general_sub_profile_idc[i]. Un general_sub_profile_idc[i] indica el metadato de
interoperabilidad de orden i registrado. Un general_level_idc indica un nivel al que se ajusta OlsinScope. Cabe
sefialar que un valor mayor de general_level_idc indica un nivel mas alto. El nivel maximo sefializado en el
DPS para OlsInScope puede ser mayor que el nivel sefialado en el SPS para un CVS contenido en OlsInScope.
También cabe sefialar que cuando OlsIinScope se ajusta a multiples perfiles, general_profile_idc debe indicar
el perfil que proporciona el resultado decodificado preferido o la identificacion de flujo de bits preferida, segun
lo determine el codificador. También se debe tener en cuenta que cuando la estructura de sintaxis
profile_tier_level() se incluye en un DPS y los CVS de OlsinScope se ajustan a diferentes perfiles,
general_profile_idc y nivel_idc deben indicar el perfil y el nivel de un decodificador que es capaz de decodificar
OlsInScope.

Un sublayer_level_present flag[i] igual a uno especifica que la informacién de nivel esta presente en la
estructura de sintaxis profile_tier_level() para la representacion de subcapa con Temporalld igual a i. Un
sublayer_level_present_flag[i] igual a cero especifica que la informacién de nivel no esta presente en la
estructura de sintaxis profile_tier_level() para la representacién de subcapa con Tempralld igual a i. Un
ptl_alignment_zero_bits debe ser igual a cero. La semantica del elemento de sintaxis sub_layer_level idc[i]
es, aparte de la especificacién de la inferencia de valores no presentes, la misma que la del elemento de
sintaxis general_level_idc, pero se aplica a la representacién de subcapa con Temporalld igual a i.

Un ejemplo de semantica de parametros de DPB es el siguiente. La estructura de sintaxis
dpb_parameters(maxSubLayersMinus1, subLayerinfoFlag) proporciona informacién sobre el tamafio de DPB,
el nimero maximo de reordenamiento de imagenes y la latencia maxima para cada CLVS del CVS. Cuando
se incluye una estructura de sintaxis dpb_parameters() en un VPS, el VPS especifica los OLS a los que se

29

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

aplica la estructura de sintaxis dpb_parameters(). Cuando se incluye una estructura de sintaxis
dpb_parameters() en un SPS, la estructura de sintaxis dpb_parameters(} se aplica al OLS que incluye solo la
capa que es la capa mas baja entre las capas que hacen referencia al SPS, que sera una capa independiente.

Un max_dec_pic_buffering_minus1[i] + 1 especifica, para cada CLVS del CVS, el tamafio maximo requerido
de la memoria intermedia de imagenes decodificadas en unidades de memorias intermedias de
almacenamiento de imagenes cuando Htid es igual a i. El valor de max_dec_pic_buffering_minusi[i] debe
estar en el rango de 0 a MaxDpbSize - 1, inclusive. Cuando i es mayor que cero,
max_dec_pic_buffering_minus1[i] debe ser mayor o igual que max_dec_pic_buffering_minusi[i- 1]. Cuando
max_dec_pic_buffering_minusi[i] no esta presente para i en el rango de cero a maxSubLayersMinus1 - 1,
inclusive, debido a que subLayerinfoFlag es igual a cero, se infiere que max_dec_pic_buffering_minusi[i] es
igual a max_dec_pic_buffering_minus1[maxSubLayersMinus1].

Un max_num_reorder_pics| i] especifica, para cada CLVS del CVS, el nimero maximo permitido de imagenes
del CLVS que pueden preceder a cualquier imagen en el CLVS en orden de decodificacion y seguir a esa
imagen en orden de salida cuando Htid es igual a i. El valor de max_num_reorder_pics| i] debe estar en el
rango de cero a max_dec pic_buffering_minus1[i], inclusive. Cuando i es mayor que cero,
max_num_reorder_pics[i] debe ser mayor o igual que max_num_reorder pics[i - 1]. Cuando
max_num_reorder_pics[i] no esta presente para i en el rango de cero a maxSublLayersMinus1 - 1, inclusive,
debido a que sublLayerinfoFlag es igual a cero, se infiere que max_num_reorder_pics[i] es igual a
max_num_reorder_pics[maxSublLayersMinus1].

Se utiliza un max_latency_increase_plus1[i] distinto de cero para calcular el valor de MaxLatencyPictures| i],
que especifica, para cada CLVS del CVS, el nimero maximo de imagenes en el CLVS que pueden preceder a
cualquier imagen en el CLVS en orden de salida y seguir a esa imagen en orden de decodificacion cuando Htid
es igual a i. Cuando max_latency_increase_plus1[i] no es igual a cero, el valor de MaxLatencyPictures[i] se
puede especificar de la siguiente manera.

MaxLatencyPictures| i | = max_num_reorder pics| i+ max latency increase pluslfi]—1
Cuando max_latency_increase_plus1[i] es igual a 0, no se expresa ningln limite correspondiente.

El valor de max_latency_increase_plusi[i] debe estar en el rango de cero a doscientos treinta y dos menos
dos, inclusive. Cuando max_latency_increase plusi1[i] no estd presente para i en el rango de cero a
maxSublLayersMinus1 - 1, inclusive, debido a que sublLayerinfoFlag es igual a cero, se infiere que
max_latency_increase_plusi[i] es igual a max_latency_increase_plus1[maxSublLayersMinus1].

Un ejemplo de semantica general de parametros de HRD es el siguiente. La estructura de sintaxis
general_hrd_parameters() proporciona los parametros de HRD utilizados en las operaciones de HRD. Un
num_ols_hrd_params_minus1 + 1 especifica el nimero de estructuras de sintaxis ols_hrd_parameters()
presentes en la estructura de sintaxis general_hrd_parameters(). El valor de num_ols_hrd_params_minus1
debe estar en el rango de cero a sesenta y tres, inclusive. Cuando TotalNumOlss es mayor que uno, se infiere
que el valor de num_ols_hrd_params_minus1 es igual a cero. El hrd_cpb_cnt_minus1 + 1 especifica el nimero
de especificaciones de CPB alternativas en el flujo de bits del CVS. El valor de hrd_cpb_cnt_minus1 debe estar
en el rango de cero a treinta y uno, inclusive. Un hrd_max_temporal_id[i] especifica el Temporalld de la
representacion de subcapa mas alta para la cual los parametros de HRD estan contenidos en la estructura de
sintaxis layer_level_hrd_parameters() de orden i. El valor de hrd_max_temporal_id[i] debe estar en el rango
de cero a vps_max_sub_layers_minus1, inclusive. cuando el vps_max_sub_layers_minus1 es igual a cero, se
infiere que el valor de hrd_max_temporal_id[i] es igual a cero. Un ols_hrd_idx[i] especifica el indice de la
estructura de sintaxis ols_hrd_parameters() que se aplica al OLS de orden i. El valor de ols_hrd_idx][[i] debe
estar en el rango de cero a num_ols_hrd_params_minus1, inclusive. Cuando no esta presente, se infiere que
el valor de ols_hrd_idx[[i] es igual a cero.

Un ejemplo de semantica de estructura de lista de imagenes de referencia es el siguiente. La estructura de
sintaxis ref_pic_list_struct(listldx, rplsldx) puede estar presente en un SPS o en una cabecera de segmento.
Dependiendo de si la estructura de sintaxis se incluye en una cabecera de segmento o en un SPS, se aplica
lo siguiente. Si esta presente en una cabecera de segmento, la estructura de sintaxis ref_pic_list_struct(listldx,
rplsldx) especifica la lista de imagenes de referencia listldx de la imagen actual (la imagen que contiene el
segmento). De lo contrario (presente en un SPS), la estructura de sintaxis ref_pic_list_struct(listldx, rplsldx)
especifica un candidato para la lista de imagenes de referencia listldx, y el término imagen actual en la
semantica especificada en el resto de este apartado se refiere a cada imagen que tiene uno o0 mas segmentos
que contienen ref_pic_list_idx[listidx] equivalen a un indice en la lista de estructuras de sintaxis
ref_pic_list_struct(listldx, rplsldx) incluidas en el SPS, y estan en un CVS que hace referencia al SPS. Un
num_ref_entries[listldx][rplsldx] especifica el nimero de entradas en la estructura de sintaxis
ref_piclist_struct(listidx, rplsidx). El valor de num_ref_entries[listldx][rplsldx] debe estar en el rango de cero
a MaxDecPicBuffMinus1 + catorce, inclusive.

30

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

Un ejemplo de proceso de decodificacion general es el siguiente. La entrada a este proceso es un flujo de bits
BitstreamToDecode (flujo de bits a decodificar). El resultado de este proceso es una lista de imagenes
decodificadas. El proceso de decodificacion se especifica de tal manera que todos los decodificadores que se
ajustan a un perfil y nivel especificados producen imagenes de salida decodificadas recortadas, numéricamente
idénticas, al invocar el proceso de decodificacion asociado con ese perfil para un flujo de bits conforme a ese
perfil y nivel Cualquier proceso de decodificacion que produzca imagenes de salida decodificadas recortadas,
idénticas a las producidas por el proceso descrito en este documento (con el orden de salida correcto o el
tiempo de salida correcto, segun se especifica), se ajusta a los requisitos del proceso de decodificacion.

Para cada AU de IRAP en el flujo de bits, se aplica lo siguiente. Si la AU es la primera AU en el flujo de bits en
orden de decodificacion, cada imagen es una imagen de actualizacién de decodificacion instantanea
(Instantaneous Decoding Refresh, IDR), o cada imagen es la primera imagen de la capa que sigue a una unidad
de NAL de fin de secuencia en orden de decodificacion, la variable NolncorrectPicOutputFlag se ajusta a uno.
De lo contrario, si la variable HandleCraAsCbsStattFlag se ajusta a un valor para la AU,
HandleCraAsCvsStartFlag se ajusta a un valor proporcionado por un mecanismo externo vy
NolncorrectPicOutputFlag se ajusta a HandleCraAsCvsStartFlag. De lo contrario, HandleCraAsCbsStattFlag y
NolncorrectPicOutputFlag se ajustan en cero.

Para cada AU de actualizacién de decodificacion gradual (Gradual Decoding Refresh, GDR) en el flujo de bits,
se aplica lo siguiente. Sila AU es la primera AU en el flujo de bits en orden de decodificaciéon o cada imagen
es la primera imagen de la capa que sigue a un final de unidad de NAL de secuencia en orden de decodificacion,
la variable NolncorrectPicOutputFlag se ajusta a uno. De lo contrario, si hay algliin mecanismo externo
disponible para ajustar la variable HandleGdrAsCvsStartFlag a un valor para la AU, HandleGdrAsCvsStartFlag
se ajusta al valor proporcionado por el mecanismo externo y NolncorrectPicOutputFlag se ajusta a
HandleGdrAsCvsStartFlag. De lo contrario, HandleCraAsChbsStattFlag y NolncorrectPicOutputFlag se ajustan
a cero. Las operaciones anteriores, tanto para imagenes de IRAP como para imagenes de GDR, se utilizan
para la identificacién de los CVS en el flujo de bits. La decodificacion se invoca repetidamente para cada imagen
codificada en BitstreamToDecode en orden de decodificacion.

Un proceso de decodificacion de ejemplo para la construccion de listas de imagenes de referencia es el
siguiente. Este proceso se invoca al comienzo del proceso de decodificacion para cada segmento de una
imagen no de IDR. Las imagenes de referencia se abordan a través de indices de referencia. Un indice de
referencia es un indice de una lista de imagenes de referencia. Cuando se decodifica un segmento I, no se
utiliza ninguna lista de imagenes de referencia para decodificar los datos del segmento. Cuando se decodifica
un segmento P, solo se utiliza la lista de imagenes de referencia 0 (por ejemplo, RefPicList[0]} para decodificar
los datos del segmento. Cuando se decodifica un segmento B, tanto la lista de imagenes de referencia 0 como
la lista de imagenes de referencia 1 (por ejemplo, RefPicList[1]} se utilizan para decodificar los datos del
segmento.

Las siguientes restricciones se aplican a la conformidad del flujo de bits. Para cada i igual a cero o uno,
num_ref_entries[i][Rplsldx[i]] no debe ser menor que NumRefldxActive[i]. La imagen a la que hace
referencia cada entrada activa en RefPicList[0] o RefPicList[1] debe estar presente en la DPB y debe tener
un Temporalld menor o igual que el de la imagen actual. La imagen a la que hace referencia cada entrada en
RefPicList] 0] o RefPicList[1] no debe ser la imagen actual y debe tener non_reference_picture_flag igual a
cero. Una entrada de imagen de referencia a corto plazo (Short Term Reference Picture, STRP) en RefPicList]
0] o RefPicList] 1] de un segmento de una imagen y una entrada de imagen de referencia a largo plazo (LTRP)
en RefPicList[0] o RefPicList[1] del mismo segmento o de un segmento diferente de la misma imagen no
debe hacer referencia a la misma imagen. No debe haber ninguna entrada de LTRP en RefPicList{ 0] o
RefPicList[1] para la cual la diferencia entre PicOrderCntVal de la imagen actual y PicOrderCntVal de la
imagen a la que hace referencia la entrada sea mayor o igual a doscientos veinticuatro.

Sea setOfRefPics el conjunto de imagenes Unicas a las que hacen referencia todas las entradas en RefPicList]
0] que tienen el mismo nuh_layer_id que la imagen actual y todas las entradas en RefPicList[1] que tienen el
mismo nuh_layer_id que la imagen actual. El nimero de imagenes en setOfRefPics debe ser menor o igual
que MaxDecPicBuffMinus1 y setOfRefPics debe ser el mismo para todos los segmentos de una imagen.
Cuando la imagen actual es una imagen de acceso a subcapa temporal por etapas (Step-wise Temporal
Sublayer Access, STSA), no debe haber ninguna entrada activa en RefPicList[0] o RefPicList[1] que tenga
Temporalld igual al de la imagen actual. Cuando la imagen actual es una imagen que sigue, en orden de
decodificacién, a una imagen de STSA que tiene Temporalld igual al de la imagen actual, no habra ninguna
imagen que tenga Temporalld igual al de la imagen actual incluida como entrada activa en RefPicList [0] 0
RefPicList[1] que precede a la imagen de STSA en orden de decodificacion.

La imagen a la que hace referencia cada entrada de imagen de referencia entre capas (ILRP) en RefPicList[0
] o RefPicList[1] de un segmento de la imagen actual estard en la misma unidad de acceso que la imagen
actual. La imagen a la que hace referencia cada entrada de ILRP en RefPicList[0] o RefPicList[1] de un

31

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

segmento de la imagen actual estara presente en la DPB y tendra un nuh_layer_id menor que el de la imagen
actual. Cada entrada de ILRP en RefPicList[0] o RefPicList[1] de un segmento debe ser una entrada activa.

Un ejemplo de especificacion de HRD es el siguiente. EI HRD se utiliza para comprobar la conformidad del
flujo de bits y del decodificador. Se utiliza un conjunto de pruebas de conformidad de flujo de bits para verificar
la conformidad de un flujo de bits, al que se hace referencia como flujo de bits completo, denominado flujo de
bits completo. El conjunto de pruebas de conformidad de flujo de bits sirve para probar la conformidad de cada
OP de cada OLS especificado por el VPS.

Para cada prueba, se aplican las siguientes etapas ordenadas en el orden indicado, seguidas de los procesos
descritos después de estas etapas en este apartado. Un punto de operacién bajo prueba, denominado
targetOp, se selecciona seleccionando un OLS objetivo con un indice de OLS opOlsldx y un valor de
Temporalld mas alto, opTid. El valor de opOQlsldx esta en el rango de cero a TotalNumOlss - 1, inclusive. El
valor de opTid esta en el rango de cero a vps_max_sub capas menosi, inclusive. Cada par de valores
seleccionados de opQOlsldx y opTid sera tal que el subflujo de bits que es la salida al invocar el proceso de
extraccion del subflujo de bits con EntireBitstream, opOlsldx y opTid como entradas satisfaga las siguientes
condiciones. Hay al menos una unidad de NAL de VCL con nuh_layer_id igual a cada uno de los valores de
nuh_layer_id en LayerldInQOls[opOlsldx] en BitstreamToDecode. Hay al menos una unidad de NAL de VCL
con Temporalld igual a opTid en BitstreamToDecode.

Si las capas en targetOp incluyen todas las capas en entireBitstream y opTid es igual o mayor que el valor de
Temporalld mas alto entre todas las unidades de NAL en entireBitstream, BitstreamToDecode se configura
para que sea idéntico a entireBitstream. De lo contrario, BitstreamToDecode se configura como salida
invocando el proceso de extraccion de subflujo de bits con entireBitstream, opOlsldx y opTid como entradas.
Los valores de TargetOlsldx y Htid se ajustan iguales a opOlsldx y opTid, respectivamente, de targetOp. Se
selecciona un valor de Scldx. El Scldx seleccionado estara en el rango de cero a hrd_cpb_cnt_minus1,
inclusive. Una unidad de acceso en BitstreamToDecode asociada con mensajes de SEI del periodo de
almacenamiento en memoria intermedia (presentes en TargetLayerBitstream o disponibles a través de
mecanismos externos) aplicables a TargetOlsldx se selecciona como el punto de inicializaciéon de HRD y se
denomina unidad de acceso cero para cada capa en el OLS de destino.

Las etapas posteriores se aplican a cada capa con el indice de capa de OLS TargetOlsLayerldx en el OLS de
destino. La estructura de sintaxis ols_hrd_parameters() y la estructura de sintaxis sublayer_hrd_parameters()
aplicables a BitstreamToDecode se seleccionan de la siguiente manera. Se selecciona la estructura de sintaxis
ols_hrd_parameters() de orden ols_hrd_idx[TargetOlsldx]en el VPS (o proporcionada a través de un
mecanismo externo). Dentro de la estructura de sintaxis ols_hrd_parameters() seleccionada, si
BitstreamToDecode es un flujp de bits de Tipo |, se selecciona la estructura de sintaxis
sub_layer_hrd _parameters(Htid) que sigue inmediatamente a la condicibn si se selecciona
(general_vcl_hrd_params_present_flag) y la variable NalHrdModeFlag se ajusta a cero. De lo contrario
(BitstreamToDecode es un flujo de bits de Tipo 11}, la estructura de sintaxis sub_layer_hrd_parameters(Htid)
que sigue inmediatamente se selecciona la condicién si (general_vcl_ hrd_params_present_flag) (en este caso
la variable NalHrdModeFlag se ajusta a cero) o la condicién si (general_nal_hrd_params_present_flag) (en
este caso la variable NalHrdModeFlag se ajusta a 1). Cuando BitstreamToDecode es un flujo de bits de Tipo Il
y NalHrdModeFlag es igual a cero, todas las unidades de NAL no de VCL, excepto las unidades de NAL de
datos de relleno, y todos los elementos de sintaxis leading_zero_8bits, zero_byte,
start_code_prefix_one_3bytes y trailing_zero_8bits que forman un flujo de bytes a partir del flujo de unidades
de NAL, cuando estan presentes, se descartan de BitstreamToDecode y el flujo de bits restante se asigna a
BitstreamToDecode.

Cuando el indicador hrd _params_present de la unidad de decodificacién es igual a uno, la CPB esta
programada para funcionar ya sea al nivel de la unidad de acceso (en cuyo caso la variable
DecodingUnitHrdFlag se ajusta a cero) o al nivel de la unidad de decodificacién (en cuyo caso la variable
DecodingUnitHrdFlag se ajusta a uno). De lo contrario, DecodingUnitHrdFlag se ajusta a cero y la CPB esta
programada para funcionar al nivel de unidad de acceso.

Para cada unidad de acceso en BitstreamToDecode a partir de la unidad de acceso cero, se selecciona el
mensaje de SEI del periodo de almacenamiento en memoria intermedia (presente en BitstreamToDecode o
disponible a través de mecanismos externos) que estad asociado con la unidad de acceso y se aplica a
TargetOlsldx, se selecciona el mensaje de SE| de temporizacion de imagen (presente en BitstreamToDecode
o disponible a través de mecanismos externos) que esta asociado con la unidad de acceso y se aplica a
TargetOlsldx, y cuando DecodingUnitHrdFlag es igual a uno y
Decoding_unit_cpb_params_in_pic_timing_sei_flag es igual a cero, se seleccionan los mensajes de SEI de
informacién de la unidad de decodificacién de (presentes en BitstreamToDecode o disponibles a través de
mecanismos externos) que estan asociados con unidades de decodificacion en la unidad de acceso y se
aplican a TargetOlsldx.

32

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

Cada prueba de conformidad incluye una combinacién de una opcién en cada una de las etapas anteriores.
Cuando hay mas de una opcién para una etapa, para cualquier prueba de conformidad particular solo se elige
una opcién. Todas las combinaciones posibles de todas las etapas forman el conjunto completo de pruebas de
conformidad. Para cada punto de operacién bajo prueba, el nimero de pruebas de conformidad del flujo de
bits que se realizaran es igual a n0 * n1 * n2 * n3, donde los valores de n0, n1, n2 y n3 se especifican de la
siguiente manera: n1 es igual a hrd_cpb_cnt _minus1 + 1; n1 es el nimero de unidades de acceso en
BitstreamToDecode que estan asociadas con mensajes de SEI del periodo de almacenamiento en memoria
intermedia y n2 se obtiene de la siguiente manera. Si BitstreamToDecode es un flujo de bits de Tipo I, n0 es
igual a uno. De lo contrario (BitstreamToDecode es un flujo de bits de Tipo 1}, n0 es igual a dos. n3 se obtiene
de la siguiente manera. Si decoding_unit_hrd_params_present_flag es igual a cero, n3 es igual a uno. En caso
contrario, n3 es igual a dos.

El HRD contiene un extractor de flujo de bits (opcionalmente presente), una memoria intermedia de imagenes
codificadas (CPB), un proceso de decodificacion instantdnea, una memoria intermedia de imagenes
decodificadas (Decoded Picture Buffer, DPB) que conceptualmente contiene una sub-DPB para cada capa, y
recorte de salida. Para cada prueba de conformidad de flujo de bits, el tamafio de CPB (nimero de bits) es
CpbSize] Htid]] Scldx], y los parametros de DPB max_dec pic_buffering_minusi[Htid],
max_num_reorder_pics| Htid] y MaxLatencyPictures[Htid] para cada capa se encuentran o se obtienen a partir
de la estructura de sintaxis dpb_parameters() que se aplica a la capa dependiendo de si la capa es una capa
independiente y si la capa es una capa de salida del OLS de destino.

El HRD puede funcionar de la siguiente manera. El HRD se inicializa en la unidad de decodificacion cero,
estando tanto la CPB como cada sub-DPB de la DPB configuradas para que estén vacias (el estado de llenado
de la sub-DPB para cada sub-DPB se ajusta igual a cero). Después de la inicializacién, el HRD no puede ser
reinicializado mediante mensajes de SEI posteriores al periodo de almacenamiento en memoria intermedia.
Los datos asociados con las unidades de decodificacion que fluyen hacia cada CPB de acuerdo con un
cronograma de llegada especifico son entregados por el programador de flujo hipotético (HSS). Los datos
asociados con cada unidad de decodificacién se eliminan y decodifican instantaneamente mediante el proceso
de decodificacion instantanea en el momento de eliminacion de la CPB de la unidad de decodificacion. Cada
imagen decodificada se coloca en la DPB. Una imagen decodificada se elimina de la DPB cuando la imagen
decodificada ya no es necesaria para la referencia de interprediccion y ya no es necesaria para la salida.

Una operacion de ejemplo de la memoria intermedia de imagenes decodificadas es la siguiente. Estas
especificaciones pueden aplicarse independientemente a cada conjunto de parametros de la memoria
intermedia de imagenes decodificadas (DPB) seleccionado. La memoria intermedia de imagenes decodificadas
incluye conceptualmente sub-DPB, y cada sub-DPB contiene memorias intermedias de almacenamiento de
imagenes para el almacenamiento de imagenes decodificadas de una capa. Cada una de las memorias
intermedias de almacenamiento de imagenes puede contener una imagen decodificada que se marca como
utilizada como referencia 0 se conserva para una salida posterior. Los procesos descritos en la presente
memoria se aplican secuencialmente y se aplican de manera independiente para cada capa, comenzando
desde la capa mas baja en el OLS, en orden creciente de valores de nuh_layer_id de las capas en el OLS.
Cuando estos procesos se aplican para una capa particular, solo se ve afectada la sub-DPB de esa capa
particular. En las descripciones de estos procesos, la DPB se refiere a la sub-DPB para la capa particular, y la
capa particular se denomina capa actual.

En la operacién del DPB de temporizacién de salida, las imagenes decodificadas con PicOutputFlag igual a
uno en la misma unidad de acceso se generan consecutivamente en orden ascendente de los valores de
nuh_layer_id de las imagenes decodificadas. Sea la imagen n y la imagen actual la imagen codificada o la
imagen decodificada de la unidad de acceso n para un valor particular de nuh_layer_id, en donde n es un
numero entero no negativo. La eliminaciéon de imagenes de la DPB antes de decodificar la imagen actual se
produce de la siguiente manera. La eliminacién de imagenes de la DPB antes de la decodificacion de laimagen
actual (pero después de analizar sintacticamente la cabecera del primer segmento de la imagen actual) ocurre
sustancialmente de manera instantanea en el momento de la eliminacién de la CPB de la primera unidad de
decodificacién de la unidad de acceso n (que contiene la imagen actual) y continGia de la siguiente manera.

Se invoca el proceso de decodificacion para la construccién de la lista de imagenes de referencia, y se invoca
el proceso de decodificacién para el marcado de imagenes de referencia. Cuando la AU actual es una AU de
inicio de secuencia de video codificada (CVSS) que no es AU cero, se aplican las siguientes etapas ordenadas.
La variable NoOutputOfPriorPicsFlag se obtiene para el decodificador bajo prueba de la siguiente manera. Si
el valor de pic_width_max_in_luma_samples, pic_height_max_in_luma_samples, chroma_ format_idc,
separate_colour_plane_flag, bit_depth_luma_minus8, bit_depth_chroma_minus8 0]
max_dec_pic_buffering_minus1[Htid] obtenido para cualquier imagen en la AU actual es diferente del valor de
pic_width_in_luma_samples, pic_height in_luma_samples, chroma format idc, separate_colour_plane_flag,
bit_depth_luma_minus8, bit_depth_chroma_minus8 o0 max_dec_pic_buffering_minus1[Htid], respectivamente,
obtenidos para la imagen anterior en el mismo CLVS, el decodificador sometido a prueba puede ajustar
NoOutputOfPriorPicsFlag a uno, independientemente del valor de no_output_of prior_pics_flag. Aunque en

33

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

estas condiciones puede ser preferible ajustar NoOutputOfPriorPicsFlag igual a no_output_of prior_pics_flag,
en este caso el decodificador bajo prueba puede ajustar NoOutputOfPriorPicsFlag a uno. De lo contrario,
NoOutputOfPriorPicsFlag se ajusta a no_output_of prior_pics_flag.

El valor de NoQutputOfPriorPicsFlag obtenido para el decodificador bajo prueba se aplica para el HRD, de tal
manera que cuando el valor de NoOutputOfPriorPicsFlag es igual a uno, todas las memorias intermedias de
almacenamiento de imagenes en la DPB se vacian sin generar las imagenes que contienen, y el estado de
llenado de la DPB se ajusta a cero. Cuando se cumplen las dos condiciones siguientes para cualquier imagen
k en la DPB, todas esas imagenes k en la DPB se eliminan de la DPB. La imagen k puede marcarse como no
utilizada como referencia, o la imagen k puede tener un PictureOutputFlag igual a cero o un tiempo de salida
de DPB es menor o igual al tiempo de eliminacién de la CPB de la primera unidad de decodificacion (indicada
como unidad de decodificacion m) de la actual imagen n, donde DpbQutputTime[k] es menor o igual que
DuCpbRemovalTime[m]. Por cada imagen que se elimina de la DPB, el estado de llenado de la DPB se reduce
en uno.

El funcionamiento de la orden de salida de DPB puede ser el siguiente. Estos procesos pueden aplicarse
independientemente a cada conjunto de parametros de la memoria intermedia de imagenes decodificadas
(DPB) seleccionados. La memoria intermedia de imagenes decodificadas incluye conceptualmente varias sub-
DPB, y cada sub-DPB contiene memorias intermedias de almacenamiento de imagenes para el
almacenamiento de imagenes decodificadas de una capa. Cada una de las memorias intermedias de
almacenamiento de imagenes puede contener una imagen decodificada que se marca como utilizada como
referencia o se conserva para una salida posterior. Se invoca el proceso para la salida y eliminaciéon de
imagenes de la DPB antes de decodificar la imagen actual, seguido por la invocacién del proceso para marcar
y almacenar la imagen decodificada actual, y finalmente seguido por la invocacion del proceso para cambios
adicionales. Estos procesos se aplican de manera independiente para cada capa, comenzando desde la capa
mas baja en el OLS, en orden creciente de los valores de nuh_layer_id de las capas en el OLS. Cuando estos
procesos se aplican para una capa particular, solo se ve afectada la sub-DPB de esa capa particular.

En la operacién de la DPB de temporizacion de salida, las imagenes decodificadas con PicOutputFlag igual a
uno en la misma unidad de acceso se generan consecutivamente en orden ascendente de los valores de
nuh_layer_id de las imagenes decodificadas. Sea la imagen n y la imagen actual la imagen codificada o la
imagen decodificada de la unidad de acceso n para un valor particular de nuh_layer_id, en donde n es un
numero entero no negativo. La salida y eliminacion de imagenes de la DPB se describe a continuacion.

La generacion y eliminacion de imagenes de la DPB antes de la decodificacién de la imagen actual (pero
después de analizar la cabecera del primer segmento de la imagen actual) ocurre sustancialmente de manera
instantanea cuando la primera unidad de decodificacién de la unidad de acceso que contiene la imagen actual
se elimina de la CPB, y continda de la siguiente manera. Se invoca el proceso de decodificacion para la
construccion de la lista de imagenes de referencia, y se invoca el proceso de decodificacién para el marcado
de imagenes de referencia. Si la AU actual es una AU de CVSS que no es AU cero, se aplican las siguientes
etapas ordenadas. La variable NoOutputOfPriorPicsFlag se obtiene para el decodificador bajo prueba de la
siguiente manera. Si el valor de pic_width_max_in_luma_samples, pic_height max_in_luma_samples,
chroma_format_idc, separate_colour_plane_flag, bit_depth_luma_minus8, bit depth_chroma_minus8 o
max_dec_pic_buffering_minus1[Htid] obtenido para cualquier imagen en la AU actual es diferente del valor de
pic_width_in_luma_samples, pic_height_in_luma_samples, chroma format idc, separate colour_plane_flag,
bit_depth_luma_minus8, bit_depth_chroma_minus8 o max_dec_pic_buffering_minus1[Htid], respectivamente,
obtenidos para la imagen anterior en el mismo CLVS, el decodificador sometido a prueba puede ajustar
NoOutputOfPriorPicsFlag a uno, independientemente del valor de no_output_of prior_pics_flag.

Aunque en estas condiciones puede ser preferible ajustar NoOutputOfPriorPicsFlag igual a
no_output_of prior_pics flag, en este caso el decodificador bajo prueba puede ajustar
NoOutputOfPriorPicsFlag a wuno. De lo contrario, NoOutputOfPriorPicsFlag se ajusta a
no_output_of prior_pics_flag. El valor de NoOutputOfPriorPicsFlag obtenido para el decodificador sometido a
prueba se aplica al HRD de la siguiente manera. Si NoOutputOfPriorPicsFlag es igual a uno, todas las
memorias intermedias de almacenamiento de imagenes en la DPB se vacian sin salida de las imagenes que
contienen y el estado de llenado de la DPB se ajusta a cero. De lo contrario (NoOutputOfPriorPicsFlag es igual
a cero), todas las memorias intermedias de almacenamiento de imagenes que contienen una imagen marcada
como no necesaria para la salida y no utilizada como referencia, se vacian (sin salida), y todas las memorias
intermedias de almacenamiento de imagenes que no estan vacias en la DPB se vacian invocando
repetidamente un cambio en el contador y el estado de llenado de la DPB se ajusta a cero.

De lo contrario (la imagen actual no es una imagen de CLVSS), todas las memorias intermedias de
almacenamiento de imagenes que contienen una imagen que estan marcadas como no necesarias para la
salida y no utilizadas como referencia, se vacian (sin salida). Por cada memoria intermedia de almacenamiento
de imagenes que se vacia, el estado de llenado de la DPB se reduce en uno. Cuando una o mas de las
siguientes condiciones son verdaderas, el proceso de cambio en el contador se invoca repetidamente mientras

34

10

15

20

25

30

35

40

45

50

55

60

ES 2 989 984 T3

se disminuye aln mas el estado de llenado de la DPB en uno por cada memoria intermedia de almacenamiento
de imagenes adicional que se vacia, hasta que ninguna de las siguientes condiciones sea verdadera. La
cantidad de imagenes en la DPB que estan marcadas como de salida necesaria es mayor que
max_num_reorder_pics[Htid]. max_latency_increase_plus1[Htid] no es igual a cero y hay al menos una imagen
en la DPB que estd marcada como de salida necesaria, para la cual la variable asociada PicLatencyCount es
mayor o igual que MaxLatencyPictures[Htid]. El nimero de imagenes en la DPB es mayor o igual que
max_dec_pic_buffering_minus1[Htid] + 1.

En un ejemplo, pueden producirse cambios en el contador adicionales de la siguiente manera. Los procesos
especificados pueden ocurrir sustancialmente de manera instantdnea cuando la (ltima unidad de
decodificacién de la unidad de acceso n que contiene la imagen actual se elimina de la CPB. Cuando laimagen
actual tiene PictureOutputFlag igual a uno, para cada imagen en la DPB que esta marcada como de salida
necesaria y sigue a la imagen actual en el orden de salida, la variable asociada PicLatencyCount se ajusta a
PicLatencyCount + 1. También se aplica lo siguiente. Si la imagen decodificada actual tiene PictureOutputFlag
igual a uno, la imagen decodificada actual se marca como de salida necesaria y una variable asociada
PicLatencyCount se ajusta a cero. De lo contrario (la imagen decodificada actual tiene PictureQutputFlag igual
a cero), la imagen decodificada actual se marca como de salida no necesaria.

Cuando una o mas de las siguientes condiciones son verdaderas, el proceso de cambio en el contador se
invoca repetidamente hasta que ninguna de las siguientes condiciones sea verdadera. La cantidad de
imagenes en la DPB que estan marcadas como de salida necesaria es mayor que
max_num_reorder_pics[Htid]. max_latency_increase_plus1[Htid] no es igual a cero y hay al menos una imagen
en la DPB que estd marcada como de salida necesaria, para la cual la variable asociada PicLatencyCount es
mayor o igual que MaxLatencyPictures[Htid].

El proceso de cambio en el contador incluye las siguientes etapas ordenadas. La imagen o imagenes que se
envian primero se seleccionan como las que tienen el valor mas pequefio de PicOrderCntVal de all_pictures
en la DPB marcado como de salida necesaria. Cada una de estas imagenes, en orden ascendente de
nuh_layer_id, se recorta, utilizando la ventana de recorte de conformidad para la imagen, la imagen recortada
se genera y la imagen se marca como de salida no necesaria. Cada memoria intermedia de almacenamiento
de imagenes que contiene una imagen marcada como no utilizada como referencia y que fue una de las
imagenes recortadas y producidas se vacia, y el estado de llenado de la sub-DPB asociada se reduce en uno.
Para dos imagenes cualesquiera, picA y picB, que pertenecen al mismo CVS y se generan mediante el proceso
de cambio en el contador, cuando picA se genera antes que picB, €l valor de PicOrderCntVal de picA es menor
que el valor de PicOrderCntVal de picB.

Un ejemplo de proceso de extraccion de subflujo de bits es el siguiente. Las entradas a este proceso son un
flujo de bits inBitstream, un indice de OLS objetivo targetOlsldx y un valor mas alto de Temporalld de destino
tldTarget. La salida de este proceso es un subflujo de bits outBitstream. La conformidad del flujo de bits puede
requerir que, para cualquier flujo de bits de entrada, un subflujo de bits de salida que sea la salida de este
proceso con el flujo de bits, targetOlsldx sea igual a un indice de la lista de OLS especificada por el VPS, y
tldTarget sea igual a cualquier valor en el rango de cero a seis, inclusive, como entradas, y que satisfaga las
siguientes condiciones sera un flujo de bits conforme. El subflujo de bits de salida contiene al menos una unidad
de NAL de VCL con una nuh_layer_ id igual a cada uno de los valores de nuh_layer id en
LayerldinQls[targetOlsldx]. El subflujo de bits de salida contiene al menos una unidad de NAL de VCL con
Temporalld igual a tldTarget. Un flujo de bits conforme contiene una o0 més unidades de NAL de segmento
codificadas con Temporalld igual a cero, pero no tiene que contener unidades de NAL de segmento codificadas
con nuh_layer_id igual a cero.

El subflujo de bits de salida Outbitstream se obtiene de la siguiente manera. El flujo de bits outBitstream esta
configurado para que sea idéntico al flujo de bits inBitstream. Todas las unidades de NAL con Temporalld
mayor que tldTarget se eliminan de outBitstream. Todas las unidades de NAL con un nuh_layer_id no incluido
en la lista, LayerldinOls[targetOlsldx] se eliminan de outBitstream. Todas las unidades de NAL de SEI que
contienen un mensaje de SE| anidado escalable que tiene nesting_ols_flag igual a uno y no hay ninguin valor
de i en el rango de cero a nesting_num_olss_minus1, inclusive, de tal manera que NestingOlsldx[i] es igual a
targetOlsldx se eliminan de outBitstream. Cuando targetOlsldx es mayor que cero, todas las unidades de NAL
de SEI que contienen un mensaje de SEIl anidado no escalable con payloadType igual a cero (periodo de
almacenamiento en memoria intermedia), uno (temporizacién de la imagen) o ciento treinta (informacién de la
unidad de decodificacion), se eliminan de outBitstream.

Un ejemplo de sintaxis de mensaje de SE| de anidamiento escalable es el siguiente.

scalable_nesting (payloadSize) { Descriptor

nesting_ols_flag u(1)

35

10

15

20

25

30

35

40

ES 2 989 984 T3

si (nesting_ols_flag) {

nesting_num_olss_minus1 ue(v)
para (i = 0; i <= nesting_num_olss_minus1; i++)
nesting_ols_idx_delta_minusi[i] ue(v)
}sino{
nesting_all_layers_flag u(1)
si ('nesting_all_layers_flag) {
nesting_num_layers_minus1 ue(v)
para (i = 1; i <= nesting_num_layers_minus1; i++)
nesting_layer_id[i] u(6)
1
1
nesting_num_seis_minus1 ue(v)

mientras(!byte_aligned(})

nesting_zero_bit_/*iguala 0 */ u(1)

para (i = 0; i <= nesting_num_seis_minus1; i++)

sei_message()

}

Un ejemplo de semantica de carga (til de SEI general es el siguiente. Lo siguiente se aplica a las capas
aplicables u al OLS de mensajes de SEl anidados no escalables. Para un mensaje de SEI anidado no
escalable, cuando payloadType es igual a cero (periodo de almacenamiento en memoria intermedia), uno
(temporizacién de imagen) o ciento treinta (informacién de la unidad de decodificacién), el mensaje de SEI
anidado no escalable se aplica solo al OLS de orden 0. Para un mensaje de SEl anidado no escalable, cuando
payloadType es igual a cualquier valor entre VclAssociatedSeilist, el mensaje de SEI anidado no escalable se
aplica solo a la capa para la cual las unidades de NAL de VCL tienen nuh_layer_id igual al nuh_layer_id de la
unidad de NAL de SEI que contiene el mensaje de SEI.

La conformidad del flujo de bits puede requerir que se apliquen las siguientes restricciones al valor de
nuh_layer_id de las unidades de NAL de SEI. Cuando un mensaje de SEl anidado no escalable tiene un tipo
de carga util igual a cero (periodo de almacenamiento en memoria intermedia), uno (temporizacion de imagen)
o ciento treinta (informacién de la unidad de decodificacion), la unidad de NAL de SEI que contiene el mensaje
de SEI anidado no escalable debe tener un nuh_layer_id igual a vps_layer_id[0]. Cuando un mensaje de SEI
anidado no escalable tiene payloadType igual a cualquier valor entre VclAssociatedSeilist, la unidad de NAL
de SEI que contiene el mensaje de SE| anidado no escalable debe tener nuh_layer_id igual al valor de
nuh_layer_id de la unidad de NAL de VCL asociada con la unidad de NAL de SEI. Una unidad de NAL de SEI
que contiene un mensaje de SEI anidado escalable debe tener un nuh_layer_id igual al valor mas bajo del
nuh_layer_id de todas las capas a las que se aplica el mensaje de SEl anidado escalable (cuando
nesting_ols_flag del mensaje de SEI anidado escalable es igual a cero) o el valor mas bajo de nuh_layer_id de
todas las capas en los OLS a los que se aplica el mensaje de SEI anidado escalable (cuando nesting_ols_flag
del mensaje de SEI anidado escalable es igual a uno).

Un ejemplo de semantica de mensaje de SEI anidado escalable es el siguiente. El mensaje de SEI anidado
escalable proporciona un mecanismo para asociar mensajes de SEl con OLS especificos o con capas
especificas. Un mensaje de SEl anidado escalable contiene uno o mas mensajes de SEI. Los mensajes de
SEI contenidos en el mensaje de SEI anidado escalable también se denominan mensajes de SE| anidados
escalables. La conformidad con el flujo de bits puede requerir que se apliquen las siguientes restricciones al
contenido de mensajes de SEl en un mensaje de SEI anidado escalable.

Un mensaje de SEI que tiene un tipo de carga (til igual a ciento treinta y dos (hash de imagen decodificada) o
ciento treinta y tres (anidamiento escalable) puede no estar contenido en un mensaje de SEI de anidamiento
escalable. Cuando un mensaje de SEl anidado escalable contiene un mensaje de SEl de periodo de
almacenamiento en memoria intermedia, temporizaciéon de imagen o informacién de unidad de decodificacién,
el mensaje de SEI de anidamiento escalable no debe contener ninglin otro mensaje de SEI con tipo de carga
Gtil no igual a cero (periodo de almacenamiento en memoria intermedia), uno (temporizacion de imagen), o
ciento treinta (informacion de la unidad de decodificacion).

La conformidad del flujo de bits puede requerir que se apliquen las siguientes restricciones al valor de

36

10

15

20

25

30

35

40

45

ES 2 989 984 T3

nal_unit_type de la unidad de NAL de SEI que contiene un mensaje de SEI anidado escalable. Cuando un
mensaje de SE| anidado escalable contiene un mensaje de SEI que tiene un tipo de carga (til igual a cero
(periodo de almacenamiento en memoria intermedia), uno (temporizacién de la imagen), ciento treinta
(informacién de la unidad de decodificacion), ciento cuarenta y cinco (indicacion de RAP dependiente) o ciento
sesenta y ocho (informacion del campo de trama), la unidad de NAL de SEI que contiene el mensaje de SEI
anidado escalable debe tener un nal_unit_type igual a PREFIX_SEI_NUT.

Un nesting_ols_flag igual a uno especifica que los mensajes de SEl anidados escalables se aplican a OLS
especificos. Un nesting_ols_flag igual a cero especifica que los mensajes de SEIl anidados escalables se
aplican a capas especificas. La conformidad del flujo de bits puede requerir que se apliquen las siguientes
restricciones al valor de nesting_ols_flag. Cuando el mensaje de SEl de anidamiento escalable contiene un
mensaje de SEl que tiene un tipo de carga util igual a cero (periodo de almacenamiento en memoria
intermedia), uno (temporizacién de la imagen) o ciento treinta (informacién de la unidad de decodificacion), el
valor de nesting_ols_flag debe ser igual a uno. Cuando el mensaje de SE| de anidamiento escalable contiene
un mensaje de SEI que tiene payloadType igual a un valor en VclAssociatedSeilist, el valor de nesting_ols_flag
debe ser igual a cero. El nesting_num_olss_minus1 + 1 especifica el nimero de OLS a los que se aplican los
mensajes de SEl anidados escalables. El valor de nesting_num_olss_minus1 debe estar en el rango de 0 a
TotalNumOlss - 1, inclusive.

Se utiliza un nesting_ols_idx_delta_minus1[i] para obtener la variable NestingOlsldx[i] que especifica el
indice de OLS del OLS de orden i al que se aplican los mensajes de SE| anidados escalables cuando
nesting_ols_flag es igual a uno. El valor de nesting_ols_idx_delta_minus1[i] debe estar en el rango de cero a
TotalNumOlss menos dos, inclusive. La variable NestingQOlsldx[i] se puede obtener de la siguiente manera.

si(i == 0)
NestingOlsldx[1] = nesting_ols idx delta minusiii|]
sino
NestingOlsldx] i | = NestingOlsldx] i — 1 { + nesting_ols_idx_delta minus1]i]+ 1
Un nesting_all_layers_flag igual a uno especifica que los mensajes de SE| anidados escalables se aplican a
todas las capas que tienen un nuh_layer_id mayor o igual que el nuh_layer_id de la unidad de NAL de SElI
actual. Un indicador de anidacién de todas las capas igual a cero especifica que los mensajes de SEl anidados
escalables pueden o no aplicarse a todas las capas que tienen un nuh_layer_id mayor o igual que el
nuh_layer_id de la unidad de NAL de SEI actual. Un nesting_num_olss_minus1 + 1 especifica el nimero de
capas a las que se aplican los mensajes de SE| anidados escalables. El valor de nesting_num_layers_minus1
debe estar en el rango de cero a vps_max_layers_minus1 - GeneralLayerldx[nuh_layer_id], inclusive, donde
nuh_layer_id es el nuh_layer_id de la unidad de NAL de SEl actual. Un nesting_layer_id[i] especifica el valor
de nuh_layer_id de la capa de orden i a la que se aplican los mensajes de SEI anidados escalables cuando

nesting_all_layers_flag es igual a cero. El valor de nesting_layer_id[i] debe ser mayor que el nuh_layer_id,
donde el nuh_layer_id es el nuh_layer_id de la unidad de NAL de SEI actual.

Cuando nesting_ols_flag es igual a cero, la variable NestingNumLayers, que especifica el nimero de capas a
las que se aplican los mensajes de SEI anidados escalables, y la lista NestingLayerld[i] para i en el rango de
cero a NestingNumLayers - 1, inclusive, especificando la lista de valores nuh_layer_id de las capas a las que
se aplican los mensajes de SE| anidados escalables, se puede obtener de la siguiente manera, donde
nuh_layer_id es el nuh_layer_id de la unidad de NAL de SEl actual si (nesting_all_layers_flag) {

NestingNumLavers = vps_max_lavers minusi + 1 ~ GeneralLayerldx| ouh laver id |
para (1 =031 < NestingNumLayers; i ++)

NestingLayerld[1 7= vps_layer id[GeneralLaverldx[nuh layer id]+1]

NestingNumLayers = nesting’ num_Jlayers._minugl + 1
para(i=0: 1 < NestingNumbLayers; 1 ++)
NestingLaverld] 1 {=(1 ==0)7nuh laver id: nesting layer id[1]
3
Un nesting_num_seis_minus1 + 1 especifica el nimero de mensajes de SEI anidados escalables. El valor de

37

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

nesting_num_seis_minus1 debe estar en el rango de cero a sesenta y tres inclusive. El nesting_zero_bit debe
ser igual a cero.

La figura 8 es un diagrama esquematico de un dispositivo de codificacién de video 800 de ejemplo. El
dispositivo de codificacion de video 800 es adecuado para implementar los ejemplos/realizaciones divulgados
tal como se describen en la presente memoria. El dispositivo de codificacién de video 800 comprende puertos
de flujo descendente 820, puertos de flujo ascendente 850 y/o unidades transceptoras (Tx/Rx) 810, incluidos
transmisores y/o receptores para comunicar datos de flujo ascendente y/o de flujo descendente a través de
una red. El dispositivo de codificacion de video 800 también incluye un procesador 830 que incluye una unidad
l6gica y/o unidad central de procesamiento (CPU) para procesar los datos, y una memoria 832 para almacenar
los datos. El dispositivo de codificacion de video 800 también puede comprender componentes eléctricos,
Opticos a eléctricos (OE), eléctricos a épticos (EO), y/o componentes de comunicacién inalambrica acoplados
a los puertos de flujo ascendente 850 y/o a los puertos de flujo descendente 820 para comunicacion de datos
a través de redes de comunicacion eléctricas, Opticas o inalambricas. El dispositivo de codificacion de video
800 también puede incluir dispositivos de entrada y/o salida (E/S) 860 para comunicar datos hacia y desde un
usuario. Los dispositivos de E/S 860 pueden incluir dispositivos de salida, tales como una pantalla para mostrar
datos de video, altavoces para generar datos de audio, etc. Los dispositivos de E/S 860 también pueden incluir
dispositivos de entrada, tales como un teclado, ratén, rueda de desplazamiento, etc., y/o interfaces
correspondientes para interactuar con tales dispositivos de salida.

El procesador 830 esta implementado mediante hardware y software. El procesador 830 puede implementarse
como uno o mas chips de CPU, nucleos (por ejemplo, como un procesador multinicleo), una matriz de puertas
programable en campo (Field-Programmable Gate Array, FPGA), circuitos integrados de aplicacion especifica
(Application Specific Integrated Circuit, ASIC), y procesadores de sefiales digitales (Digital Signal Processor,
DSP). El procesador 830 esta en comunicacion con los puertos de flujo descendente 820, Tx/Rx 810, los
puertos de flujo ascendente 850 y la memoria 832. El procesador 830 comprende un médulo de codificacion
814. El moédulo de codificacion 814 implementa las realizaciones divulgadas descritas en la presente memoria,
tales como los métodos 100, 900 y 1000, que pueden emplear una secuencia de video multicapa 600, un flujo
de bits 700 y/o un subflujo de bits 701. El médulo de codificacion 814 también puede implementar cualquier
otro método/mecanismo descrito en la presente memoria. Ademas, el médulo de codificacién 814 puede
implementar un sistema de codec 200, un codificador 300, un decodificador 400 y/o un HRD 500. Por ejemplo,
el médulo de codificacién 814 puede emplearse para codificar, extraer y/o decodificar un flujo de bits que
incluye una capa de transmision simultanea y ningin VPS. Ademas, el médulo de codificacién 814 puede
emplearse para ajustar y/o inferir diversos elementos y/o variables de sintaxis para evitar errores basandose
en referencias a un VPS que se extrae como parte de una extraccion de subflujo de bits. En consecuencia, €l
médulo de codificacion 814 puede configurarse para realizar mecanismos para abordar uno o mas de los
problemas explicados anteriormente. Por lo tanto, el médulo de codificacién 814 hace que el dispositivo de
codificacion de video 800 proporcione funcionalidad adicional y/o eficiencia de codificacién al codificar datos
de video. Por lo tanto, el médulo de codificacién 814 mejora la funcionalidad del dispositivo de codificacion de
video 800 asi como aborda problemas que son especificos de las técnicas de codificacion de video. Ademas,
el médulo de codificacion 814 efectia una transformacién del dispositivo de codificacién de video 800 a un
estado diferente. Alternativamente, el médulo de codificacién 814 puede implementarse como instrucciones
almacenadas en la memoria 832 y ejecutadas por el procesador 830 (por ejemplo, como un producto de
programa informatico almacenado en un medio no transitorio).

La memoria 832 comprende uno o mas tipos de memoria tales como discos, unidades de cinta, unidades de
estado s6lido, memoria de solo lectura (Read Only Memory, ROM), memoria de acceso aleatorio (Random
Access Memory, RAM), memoria flash, memoria ternaria direccionable por contenido (Ternary Content-
Addressable Memory TCAM), memoria estatica de acceso aleatorio (Static RAM, SRAM), etc. La memoria 832
puede usarse como un dispositivo de almacenamiento de datos de desbordamiento, para almacenar
programas cuando dichos programas se seleccionan para su gjecucion, y para almacenar instrucciones y datos
que se leen durante la ejecucion del programa.

La figura 9 es un diagrama de flujo de un método de ejemplo 900 de codificacién de una secuencia de video
multicapa en un flujo de bits, tal como un flujo de bits 700, para soportar la eliminacién del VPS 711 durante un
proceso de extraccion de subflujo de bits 729 para capas de transmisién simultanea. El método 900 puede ser
empleado por un codificador, tal como un sistema de cédec 200, un codificador 300 y/o un dispositivo de
codificacion de video 800 al realizar el método 100. Ademas, el método 900 puede funcionar en un HRD 500
y, por lo tanto, puede realizar pruebas de conformidad en una secuencia de video multicapa 600 y/o una capa
extraida de la misma.

El método 900 puede comenzar cuando un codificador recibe una secuencia de video y determina codificar
esa secuencia de video en un flujo de bits multicapa, por ejemplo basandose en la entrada del usuario. En la
etapa 901, el codificador codifica imagenes codificadas en un conjunto de unidades de NAL de VCL en el flujo
de bits. Por ejemplo, el codificador puede codificar las imagenes de la secuencia de video en una o mas capas,
y codificar las capas en un flujo de bits multicapa. Por tanto, el flujo de bits comprende una o mas capas. Una

38

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

capa puede incluir un conjunto de unidades de NAL de VCL con el mismo Id de capa y unidades asociadas de
NAL no de VCL. Como ejemplo especifico, las unidades de NAL de VCL pueden estar asociadas con una capa
identificada por/que tiene un nuh_layer_id. Especificamente, un conjunto de unidades de NAL de VCL son
parte de una capa cuando todas las unidades de NAL de VCL tienen un valor particular de nuh_layer_id. Una
capa puede incluir un conjunto de unidades de NAL de VCL que contienen datos de video de imagenes
codificadas, asi como cualquier conjunto de parametros utilizado de codificacién de dichas imagenes. Dichos
parametros pueden estar incluidos en un VPS, SPS, PPS, cabecera de imagen, cabecera de segmento u otro
conjunto de parametros o estructura de sintaxis. Como ejemplo especifico, el codificador puede codificar en el
flujo de bits un SPS que incluye sps_video_parameter_set_id. Una o mas de las capas pueden ser capas de
salida. Las capas que no son una capa de salida se denominan capas de referencia, y estan codificadas para
soportar la reconstruccion de la una o varias capas de salida, pero dichas capas de soporte no estan destinadas
a la salida en un decodificador. De esta manera, el codificador puede codificar diversas combinaciones de
capas para su transmisién a un decodificador previa solicitud. La capa se puede transmitir seguin se desee
para permitir que el decodificador obtenga una representacion diferente de la secuencia de video dependiendo
de las condiciones de la red, las capacidades del hardware y/o la configuracion del usuario. En el presente
ejemplo, al menos una de las capas es una capa de transmision simultanea que no utiliza prediccion entre
capas.

En la etapa 903, un HRD que opera en el codificador puede realizar un conjunto de pruebas de conformidad
de flujo de bits en las capas para garantizar la conformidad con VVC u otros estandares. Por ejemplo, el HRD
puede obtener un sps_video_parameter_set_id de un SPS. El sps_video_parameter_set_id especifica un valor
de vps_video parameter set id de un VPS al que hace referencia el SPS cuando el
sps_video_parameter_set_id es mayor que cero. Ademas, el SPS no hace referencia a un VPS y no se hace
referencia a ningin VPS al decodificar cada secuencia de video de capa codificada que hace referencia al SPS
cuando el sps_video_parameter_set_id es igual a cero. En consecuencia, el sps_video_parameter_set_id se
ajusta a cero y/o se infiere que es cero cuando el sps_video_parameter_set id se obtiene de un SPS al que
hace referencia una secuencia de video de capa codificada contenida en una capa de transmision simultanea.

El HRD puede ajustar y/o inferir un GeneralLayerldx[nuh_layer_id] para que sea igual a cero cuando el
sps_video_parameter_set_id es igual a cero. El GeneralLayerldx[nuh_layer_id] es igual a, y por ello indica, un
indice de capa actual para una capa correspondiente. Por lo tanto, el indice de capa actual para una capa de
transmision simultdnea se ajusta o se infiere que es cero. Ademas, el HRD puede inferir que un valor de
vps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]] es igual a uno cuando el
sps_video_parameter_set_id es igual a cero. Especificamente, un vps_independent layer_flag [i] esta
contenido en un VPS y puede ajustarse a cero para indicar que una capa de orden i usa prediccién entre capas,
0 ajustarse a uno para indicar que la capa de orden i no usa prediccién entre capas. En consecuencia,
vps_independent_layer_flag [GenerallLayerldx[nuh_layer id]] especifica si una capa actual con indice
GenerallLayerldx[nuh_layer_id] utiliza prediccion entre capas. Cuando la capa actual es una capa de
transmision simultanea, se omite el VPS y no se emplea la predicciéon entre capas. En consecuencia, la
inferencia de un valor de uno cuando el sps_video_parameter_set_id es igual a cero garantiza que la capa de
transmision simultanea funcione correctamente en el HRD y durante la decodificacién, evitando al mismo
tiempo una referencia al VPS, que se extrae durante la extraccion del flujo de bits para las capas de transmision
simultanea. Por lo tanto, la inferencia evita errores de extraccién de subflujo de bits que de otro modo ocurririan
cuando se elimina el VPS para una capa de transmisién simultdnea. Luego, el HRD puede decodificar laimagen
codificada de las unidades de NAL de VCL en la capa de transmisién simultanea basandose en el SPS, el
sps_video_parameter_set id, el GenerallLayerldx[nuh_layer_id] y/o el
vps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]] para producir una imagen decodificada. Por lo
tanto, el HRD puede verificar si la capa de transmision simultanea del flujo de bits multicapa se ajusta al flujo
de bits sin errores inesperados causados por la omisién del VPS para las capas de transmisién simultanea.

En la etapa 905, el codificador puede almacenar el flujo de bits para comunicacién hacia un decodificador
previa solicitud. El codificador también puede realizar una extraccion de subflujo de bits para obtener la capa
de transmisién simultanea, y transmitir el flujo de bits/subflujo de bits hacia el codificador segun se desee.

La figura 10 es un diagrama de flujo de un método 1000 de ejemplo de decodificacion de una secuencia de
video de un flujo de bits, tal como un subflujo de bits 701, que incluye una capa de transmisién simultanea
extraida de un flujo de bits multicapa, tal como el flujo de bits 700, donde se ha eliminado un VPS 711 durante
un proceso de extraccion de subflujo de bits 729. El método 1000 puede ser empleado por un decodificador,
tal como un sistema de codec 200, un decodificador 400 y/o un dispositivo de codificacion de video 800 cuando
se realiza el método 100. Ademas, el método 1000 puede emplearse en una secuencia de video multicapa
600, o una capa extraida de la misma, cuya conformidad ha sido comprobada por un HRD, tal como el HRD
500.

El método 1000 puede comenzar cuando un decodificador comienza a recibir un flujo de bits que contiene una
secuencia de video codificada en una capa de transmisién simultdnea extraida de un flujo de bits multicapa,
por ejemplo como resultado del método 900. En la etapa 1001, el decodificador recibe un flujo de bits que

39

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

comprende una capa de transmisién simultdnea extraida de un flujo de bits multicapa mediante un codificador
u otro servidor de contenido intermedio. La capa de transmision simultanea contiene una secuencia de video
de capa codificada que incluye un conjunto de imagenes codificadas. Por ejemplo, el flujo de bits comprende
imagenes codificadas donde cada imagen codificada esta incluida en un conjunto de una o mas unidades de
NAL de VCL asociadas con la capa de transmisién simultanea identificada por/que tiene un nuh_layer_id. Una
capa puede incluir un conjunto de unidades de NAL de VCL con el mismo Id de capa y unidades asociadas de
NAL no de VCL. Por ejemplo, una capa puede incluir un conjunto de unidades de NAL de VCL que contienen
datos de video de imagenes codificadas, asi como cualquier conjunto de parametros utilizado de codificaciéon
de dichas imagenes. Por lo tanto, el conjunto de unidades de NAL de VCL es parte de la capa cuando el
conjunto de unidades de NAL de VCL tiene un valor particular de nuh_layer_id. La capa de transmision
simultanea también es una capa de salida y no emplea prediccion entre capas. El flujo de bits también
comprende un SPS que incluye sps_video_parameter_set_id. El sps_video_parameter_set_id especifica un
valor de un vps_video parameter_set id de un VPS al que hace referencia el SPS cuando el
sps_video_parameter_set_id es mayor que cero. Ademas, el SPS no hace referencia a un VPS y no se hace
referencia a ningin VPS al decodificar cada secuencia de video de capa codificada que hace referencia al SPS
cuando el sps_video_parameter_set_id es igual a cero. En consecuencia, el sps_video_parameter_set_id se
ajusta a cero y/o se infiere que es cero cuando el sps_video_parameter_set id se obtiene de un SPS al que
hace referencia una secuencia de video de capa codificada contenida en una capa de transmisién simultanea.
Ademas, el flujo de bits no contiene un VPS cuando el flujo de bits contiene solo una capa de transmisién
simultanea.

En la etapa 1003, el decodificador puede ajustar y/o inferir un GeneralLayerldx[nuh_layer_id] para que sea
igual a cero cuando el sps_video_parameter_set_id es igual a cero. El GeneralLayerldx[nuh_layer_id] es igual
a, y por ello indica, un indice de capa actual para una capa correspondiente. Por lo tanto, el indice de capa
actual para una capa de transmisién simultanea se ajusta o se infiere que es cero.

En la etapa 1005, el decodificador puede ajustar/inferir que un valor de
vps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]] es igual a uno cuando el
sps_video_parameter_set_id es igual a cero. Especificamente, un vps_independent_layer_flag [i] esta
contenido en un VPS y puede ajustarse a cero para indicar que una capa de orden i usa prediccién entre capas,
0 ajustarse a uno para indicar que la capa de orden i no usa prediccién entre capas. En consecuencia,
vps_independent_layer_flag [GenerallLayerldx[nuh_layer id]] especifica si una capa actual con indice
GenerallLayerldx[nuh_layer_id] utiliza prediccion entre capas. Cuando la capa actual es una capa de
transmision simultanea, se omite el VPS y no se emplea la predicciéon entre capas. En consecuencia, la
inferencia de un valor de uno cuando el sps_video_parameter_set_id es igual a cero garantiza que la capa de
transmision simultdnea funcione correctamente durante la decodificacion, evitando al mismo tiempo una
referencia al VPS, que se extrae durante la extraccion del flujo de bits para las capas de transmisién simultanea
y, por lo tanto, no se recibe en el decodificador. Por lo tanto, la inferencia evita errores de extraccién de subflujo
de bits que de otro modo ocurririan cuando se elimina el VPS para una capa de transmisién simultéanea.

En la etapa 1007, el decodificador puede decodificar la imagen codificada de las unidades de NAL de VCL en
la capa de transmisiéon simultdnea basandose en el SPS, en el sps_video parameter_set id, en el
GenerallLayerldx[nuh_layer_id] y/o en el vps_independent_layer_flag [GeneralLayerldx[nuh_layer_id]] para
producir una imagen decodificada. El decodificador puede entonces reenviar la imagen decodificada para su
visualizacion como parte de una secuencia de video decodificada en la etapa 1009.

La figura 11 es un diagrama esquematico de un sistema 1100 de ejemplo para codificar una secuencia de
video multicapa en un flujo de bits 700 para soportar la eliminacién del VPS 711 durante el proceso de
extraccion del subflujo de bits 729 para capas de transmisidon simultanea. El sistema 1100 puede
implementarse mediante un codificador y un decodificador tal como un sistema de cédec 200, un codificador
300, un decodificador 400 y/o un dispositivo de codificacién de video 800. Ademas, el sistema 1100 puede
emplear un HRD 500 para realizar pruebas de conformidad en una secuencia de video multicapa 600, un flujo
de bits 700 y/o un subflujo de bits 701. Ademas, el sistema 1100 puede emplearse al implementar el método
100, 900 y/o 1000.

El sistema 1100 incluye un codificador de video 1102. El codificador de video 1102 comprende un médulo de
codificacién 1103 para la codificacion de una imagen codificada y un SPS en un flujo de bits, en donde la
imagen codificada esta codificada en un conjunto de unidades de NAL de VCL, en donde las unidades de NAL
de VCL estan asociadas con una capa que tiene un nuh_layer id, y en donde el SPS incluye un
sps_video_parameter_set_id. El codificador de video 1102 comprende ademas un médulo de HRD 1105 para
realizar un conjunto de pruebas de conformidad del flujo de bits en el flujo de bits estableciendo un
GenerallLayerldx[nuh_layer_id] igual a cero cuando el sps_video_ parameter_set id es igual a cero, y
decodificando la imagen codificada de las unidades de NAL de VCL basandose en el
GenerallLayerldx[nuh_layer_id] para producir una imagen decodificada. El codificador de video 1102
comprende ademas un médulo de almacenamiento 1106 para almacenar el flujo de bits para la comunicacién
hacia un decodificador. El codificador de video 1102 comprende ademas un médulo de transmisiéon 1107 para

40

10

15

20

25

30

35

ES 2 989 984 T3

transmitir el flujo de bits hacia un decodificador de video 1110. El codificador de video 1102 puede configurarse
ademas para realizar cualquiera de las etapas del método 900.

El sistema 1100 también incluye un decodificador de video 1110. El decodificador de video 1110 comprende
un médulo de recepcién 1111 para recibir un flujo de bits que comprende un SPS y una imagen codificada, en
donde el SPS incluye un sps_video_parameter_set_id, y en donde la imagen codificada esta en un conjunto
de unidades de NAL de VCL asociadas con una capa que tiene un nuh_layer_id. El decodificador de video
1110 comprende ademas un moédulo de configuracién 1113, para ajustar un GeneralLayerldx[nuh_layer_id]
igual a cero cuando el sps_video_parameter_set _id es igual a cero. El decodificador de video 1110 comprende
ademas un médulo de decodificaciéon 1115 para decodificar la imagen codificada de las unidades de NAL de
VCL basandose en el GeneralLayerldx[nuh_layer_id] para producir una imagen decodificada. El decodificador
de video 1110 comprende ademas un médulo de reenvio 1117 para reenviar la imagen decodificada para su
visualizacion como parte de una secuencia de video decodificada. El decodificador de video 1110 puede estar
configurado ademas para realizar cualquiera de los pasos del método 1000.

Un primer componente esta acoplado directamente a un segundo componente cuando no hay componentes
intervinientes, excepto por una linea, una traza u otro medio, entre el primer componente y el segundo
componente. El primer componente esta acoplado indirectamente a un segundo componente cuando hay
componentes intervinientes distintos de una linea, una traza u otro medio, entre el primer componente vy el
segundo componente. El término “acoplado” y sus variantes incluye tanto el acoplamiento directo como €l
acoplamiento indirecto. El uso del término “aproximadamente” significa un rango que incluye +10% del nimero
siguiente, a menos que se indique o contrario.

También debe comprenderse que las etapas de los métodos ejemplares expuestos en la presente memoria no
necesariamente deben realizarse en el orden descrito, y el orden de las etapas de tales métodos debe
comprenderse como meramente ejemplar. Asimismo, se pueden incluir etapas adicionales en tales métodos,
y ciertas etapas se pueden omitir o combinar, en métodos coherentes con diversas realizaciones de la presente
divulgacion.

Si bien en la presente divulgacion se han proporcionado varias realizaciones, se puede comprender que los
sistemas y métodos divulgados podrian incorporarse en muchas otras formas especificas. Los presentes
ejemplos deben considerarse como ilustrativos y no restrictivos, y la intencién no es limitarse a los detalles
proporcionados en la presente memoria. Por ejemplo, los diversos elementos o componentes podrian estar
combinados o integrados en otro sistema, o ciertas caracteristicas podrian omitirse o no implementarse.

El alcance de la invencién esta definido por las reivindicaciones adjuntas.

41

10

15

20

25

30

35

40

45

50

55

60

65

ES 2 989 984 T3

REIVINDICACIONES
1. Un método implementado por un decodificador, comprendiendo el método:

recibir (1001), por el decodificador, un subflujo de bits que comprende un conjunto de parametros de secuencia,
SPS, y una imagen codificada, en donde el SPS incluye un identificador de conjunto de parametros de video
de SPS, sps_video_parameter_set_id, en donde la imagen codificada estd en un conjunto de capas de
codificacion de video, VCL, unidades de capa de abstraccion de red, NAL, asociadas con una capa que tiene
un identificador de capa de cabecera de unidad de NAL, nuh_layer_id, y en donde el subflujo de bits se obtiene
mediante un proceso de extraccion de subflujo de bits realizado en un flujo de bits multicapa, siendo el proceso
de extraccién de subflujo de bits un proceso mediante el cual las unidades de NAL en el flujo de bits multicapa
que no pertenecen a un conjunto de objetivos especificado se eliminan del flujo de bits multicapa de tal manera
que el subflujo de bits comprende las unidades de NAL que pertenecen al conjunto objetivo;

en donde el sps_video_parameter_set_id especifica un valor de un identificador de conjunto de parametros de
VPS, vps_video_parameter_set_id, cuando es mayor que cero; el SPS no hace referencia a un VPS y no se
hace referencia a ningtin VPS cuando se decodifica cada secuencia de video de capa codificada que hace
referencia al SPS cuando el sps_video_parameter_set_id es igual a cero;

ajustar (1003), por parte del decodificador, un indice de capa general correspondiente a nuh_layer_id,
GenerallLayerldx[nuh_layer_id], igual a cero cuando el sps_video_parameter_set_id es igual a cero, en donde
GenerallLayerldx[nuh_layer_id] es igual a un indice de capa actual;

inferir (1005), por el decodificador, que un valor de un indicador de capa independiente del conjunto de

parametros de video, VPS, para el GeneralLayerldx[nuh_layer_id],
vps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]], es igual a uno cuando el
sps_video_parameter_set_id es igual a cero; especificando
vps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]] que la capa con indice

GenerallLayerldx[nuh_layer_id] no utiliza prediccion entre capas cuando tiene un valor igual a uno; y

decodificar (1007), por parte del decodificador, la imagen codificada de las unidades de NAL de VCL basandose
en el GeneralLayerldx[nuh_layer_id] para producir una imagen decodificada.

2. El método de la reivindicacién 1, en donde el conjunto de unidades de NAL de VCL es parte de la capa
cuando el conjunto de unidades de NAL de VCL tienen todas un valor particular de nuh_layer_id.

3. Un dispositivo de codificacién de video que comprende:

un procesador (830), un receptor (810) acoplado al procesador (830), una memoria (832) acoplada al
procesador (830), y un transmisor (810) acoplado al procesador (830), en donde el procesador (830), el
receptor (810), la memoria (832) y el transmisor (810) estan configurados para realizar el método de cualquiera
de las reivindicaciones 1y 2.

4. Un medio no transitorio legible por ordenador, que comprende un producto de programa informatico para
uso por un dispositivo de codificacién de video, comprendiendo el producto de programa informatico
instrucciones ejecutables por ordenador almacenadas en el medio no transitorio legible por ordenador, de tal
manera que cuando son ejecutadas por un procesador hacen que el dispositivo de codificacién de video realice
el método de cualquiera de las reivindicaciones 1y 2.

5. Un decodificador, que comprende:

un medio de recepcion (1111) para recibir un subflujo de bits que comprende un conjunto de parametros de
secuencia, SPS, y una imagen codificada, en donde el SPS incluye un identificador de conjunto de parametros
de video de SPS, sps_video_parameter_set_id, y en donde la imagen codificada esta en un conjunto de
unidades de capa de codificacion de video, VCL, capa de abstraccién de red, NAL, asociadas con una capa
que tiene un identificador de capa de cabecera de unidad NAL, nuh_layer_id, y en donde el subflujo de bits se
obtiene mediante un proceso de extraccién de subflujo de bits realizado en un flujo de bits multicapa, siendo el
proceso de extraccion de subflujo de bits un proceso mediante el cual las unidades de NAL en el flujo de bits
multicapa que no pertenecen a un conjunto objetivo especificado se eliminan del flujo de bits multicapa de tal
manera que el subflujo de bits comprende las unidades de NAL que pertenecen al conjunto objetivo;

en donde el sps_video_parameter_set_id especifica un valor de un identificador de conjunto de parametros de
VPS, vps_video_parameter_set_id, cuando es mayor que cero; el SPS no hace referencia a un VPS y no se
hace referencia a ningin VPS cuando se decodifica cada secuencia de video de capa codificada que hace
referencia al SPS cuando el sps_video_parameter_set_id es igual a cero;

42

10

15

ES 2 989 984 T3

un medio de ajuste (1113) para ajustar un indice de capa general correspondiente al nuh_layer id,
GenerallLayerldx[nuh_layer_id], a cero cuando el sps_video parameter_set id es igual a cero, donde
GenerallLayerldx[nuh_layer_id] es igual a un indice de capa actual; y

un medio de decodificacion (1115), para decodificar la imagen codificada de las unidades de NAL de VCL
basandose en el GeneralLayerldx[nuh_layer_id] para producir una imagen decodificada,

y estando configurado el decodificador para inferir que un valor de un indicador de capa independiente del

conjunto de parametros de video, VPS, para GeneralLayerldx[nuh_layer_id],
vps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]], es igual a uno cuando el
sps_video_parameter_set_id es igual a cero; especificando el
vps_independent_layer_flag[GeneralLayerldx[nuh_layer_id]] que la capa con indice

GenerallLayerldx[nuh_layer_id] no usa prediccion entre capas cuando tiene un valor igual a uno.

6. El decodificador de la reivindicacion 5, en donde el decodificador esta configurado ademas para realizar el
método de cualquiera de las reivindicaciones 1y 2.

43

ES 2 989 984 T3

Decodificador

104
Cadificador 101
/,w’*‘
Seftal de video de entrada
§ Cm
¥ o
Division de blogue
FREN
. .
Compresion de bloque
§ 107
¥ o
Filtrado
100
¥
Fiujo de bits
FIG. 1

44

Determinar divisionss

i

Decodificacitn de blogue

i

g

Filtrado

4

Sefial de video de salida

s
s

208

ES 2 989 984 T3

, 211
\& et
Control del Conirol genaral
» codificador
general . " -
sy T {Coeficientes de transformaciin cuantfficados
e 213 . ,
P Ul o A ; (&) Escalada y
j Escaato y transformacion | 229
Sefal de video :{C} » cuantificacion de |- — — »f____JVeISa
ot . v
dividida & Jiatransformacion ¥
: el
z "
: T }
: Yoo ¥ v..¥
o . .y ~ . i §
: Eifg?ggg;“ Andlisisde |7
mira- } »] RIS
; N - control de filtro BRI Pt
. 2 | Fomaten de
PR @ intrapradiccion | cabeceray
Ee s CABAC
PN Control de fitro /‘
H L
: Y ¥ {
3 Prediceion de . /
intra-imagen e o e K /
] Filtros en bucle / . ¥
; ! Flujodebits
. ¢
;Yw Compensacion ;! codificado
e movimiante i
T Fy Movimisnio ;/
k
Estimacic Memoria intermedia Sehal de
M o 'mf'ﬁsgm “ doimagenes b video
€ movirt decodificadas de salida
s A p
o W 273

FIG. 2

45

300

ES 2 989 984 T3

Codificador
301 313 Flujo de bits
M"—J -N"""
Sefial de vidso TN Transformacion | Codificacion
dividida 7 yo " entropica
& cuantificacion
‘ <
331
Prediceitn de Transformacion
A fnverss
infra-imagen
~ ’ y A
X~ L cuantificacion 329
Cf\ 317 antitic A
¥
™~ , s
o Compensacion | S
da movimiento
F 328
T o
321 e i
A Filiros en bucls

Hiemoria inlermedia

doimagenes &
decodificadas
e
323
FIG. 3

46

408

Flujc de bits

" Derodificacién

gntropica

ES 2 989 984 T3

Decodificador

k.4

429 N

433

L
T

421

AN

Compensacion
de movimisnio

Transformacion
fnversa
¥
cuantificacion

417

AN

Frediccion
da infra-imagen

D

423
e

Memoria intermedia
de imagenes
decodificadas

Sefial

de video

H
H
§
¥ desaida

FIGL 4

47

Filtros en bugle

ES 2 989 984 T3

Decodificador de referencia hipotético

500

Programador de flujo hipotético

551 <1 Flujo de bits

h

Ve 543

Memoria intermedia de imagenes codificadas

/i Unidades de decodificacion

553
e 45
S Proceso de decodificacion
Imagenes s __— S
de referencia 555 ‘ Unidades de decodificacion decodificadas
556 -~ e 547
Memoria intermedia de imagenes decodificadas
557 /i Imagenes
, 549
Recorte de salida /

550 /iftmégenes recortadas de salida

FIG. 5

48

ES 2 989 984 T3

600

611 613 613 614

Capa > » >
Mot
632
* 3 +
; | i
; i ! t
i i s i
} z § i
z i } !
s i)
: j ; !
i s { i
s : | }
| } } §
e » S
Capa N
yd N ~ N AN
&31 815 616 617 518
621 623
& 3
xff /
Piedscmon Inferpradicoion ——te
enire capas
4
i
|
Fir. 6

49

ES 2 989 984 T3

Flfo de hits
\ 711 713 715 717 728
VP8 5p8 R Labecsra Datos de imagen
de ssgmento
/ 3 , A
/ / 723 M\
i e Gapa | Capa
/ sps_video_parameter set id ’) \
/ . 7358 736
{:%S“_inﬁepenﬁmt}aycr_ﬁag el 333 rd / A
: vps_video_parameter_set_id ™7 ' Imagenes | Imagsnes
- /
E 771 78 \
N\ [/
mlt fayer 8 Seameniosl S
243 e gmentos; Segmenins
/ 741
Unidades de NAL node VCL Unidades da NAL de VCL

s Extraccion de
701 subfiujo de bits

bl
[

1

Subﬂuio de bits

713 718 717 720
Y N AN N
SPS PR Cabecera Datos de imagen
de segmento
k‘\ / Capa &\ 73 \\
SRAL ; /
' PO 2 54
sps_video_parameter_set_id ; Imagenes
Segmentosy” 727
FIG. 7

50

ES 2 989 984 T3

846

Dispositive de codificacion de video

; " 460
Dispositivos
deES b7

AN &

> Procesador
g0

A 810
| yd | Médulo de s / |

codificacion

| o |

214

Memoria

Puertos de lPuertas de
flujo descendente flujo ascendente

F1G. 8

51

ES 2 989 984 T3

900

Codificar una imagen codificada en un conjunio de unidades de NAL de VCL 901
en un flujo de bits. Las unidades de NAL de VCL estan asociadas con una /
capa que tiene un nuh_layer_id. Codificar en el flujo de bits un SPS que incluye
sps_video_parameter_set_id.

|
|

Realizar un conjunto de pruebas de conformidad de fiujo de bits en el flujo de
bits ajustando GeneralLayerldxinuh_fayer_id} igual a cero cuando 903
sps_video_parameter_set_id es igual a cero, infiriendo que un valor de un / o
vps_independeni_layer_flag [Generallayeridx]nuh_layer_id]] es igual a unc
cuando sps_video_parameter_set_id es igual a cero; y decodificar fa imagen
codificada de las unidades de NAL de VCL basandose en &l
Generallayerldx[nub_layer_id] para producir una imagen decodificada.

=,

|
|

/ GUS
Almacenar el flujo de bits para la comunicacion hacia un decodificador,

FIG. §

52

ES 2 989 984 T3

1000

Recibir un flujo de bits que comprende un SPS que incluye un / 1001
sps_video_parameter_sef_id y ura imagen codificada en un conjunto de
unidades de NAL de VCL asociadas con una capa que tiene un nuh_layer_id.

i

|
4,

163
Ajustar un Generallayeridx{nuh_layer_id] igual a cero cuando /
sps_video_parameter_set_id es igual a cero.

h

inferir que un valor de un / 1003
vps_independent_layer_flag[Generallayerldx] nuh_layer_id]} es igual a uno
cuando sps_video_parameter_set_id es igual a cero,

|
|

¥

10067
Decodificar fa imagen codificada de las unidades de NAL de VCL basandose /
en el GeneralLayerldx fnuh_layer_id} para producir una imagen decodificada.

%

1009
Reenviar la imagen decodificada para mostrarla como parte de una secuencia /
de video decodificada,

FIG. 10

53

1100

ES 2 989 984 T3

1392\

Codificador
de vi
ie video / (103
Codificacion

1108

S

<) 1108

Almacenarmiento HRD /
Y

N

L7
Transmisor 4

~ £11]
Receptor }7
_ PR
Ajuste
!
3
s 1115
Dacodificacion
|
, o 1IV?
Reenvia 3
Decodificador
de video
FIG, 11

54

	Page 1 - ABSTRACT/BIBLIOGRAPHY
	Page 2 - DESCRIPTION
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - CLAIMS
	Page 43 - CLAIMS
	Page 44 - DRAWINGS
	Page 45 - DRAWINGS
	Page 46 - DRAWINGS
	Page 47 - DRAWINGS
	Page 48 - DRAWINGS
	Page 49 - DRAWINGS
	Page 50 - DRAWINGS
	Page 51 - DRAWINGS
	Page 52 - DRAWINGS
	Page 53 - DRAWINGS
	Page 54 - DRAWINGS

