(54) 实用新型名称
压力补偿阀及应用该阀的负载敏感液压系统、起重机

(57) 摘要
本实用新型公开一种压力补偿阀，包括阀体及内置于所述阀体内的阀芯，所述阀芯在所述阀体内滑动以连通或者断开其进油口和出油口；所述阀芯与所述阀体之间形成四个相对封闭的容腔，且所述阀体上设置有与各容腔连通的第一控制油进口、第二控制油进口、第一控制油出口和第二控制油出口；且与所述第一控制油进口和第一控制油出口连通的容腔内油液作用于所述阀芯形成向一侧滑动的趋势，与所述第二控制油进口和第二控制油出口连通的容腔内油液作用于所述阀芯形成向另一侧滑动的趋势。在此基础上，本实用新型还提供一种应用该压力补偿阀的负载敏感液压系统及起重机，以调节执行元件的流量，确保流量饱和时能够实现各执行元件的流量比例分配。
1. 压力补偿阀，包括阀体及内置于所述阀体内的阀芯，所述阀芯在所述阀体内滑动，以连通或者断开其进油口和出油口；其特征在于，所述阀芯与所述阀体之间形成四个相对封闭的容腔，且所述阀体上设置有与各容腔连通的第一控制油进口、第二控制油进口、第一控制油出口和第二控制油出口；且与所述第一控制油进口和第一控制油出口连通的容腔内油液作用于所述阀芯形成向一侧滑动的趋势，与所述第二控制油进口和第二控制油出口连通的容腔内油液作用于所述阀芯形成向另一侧滑动的趋势。

2. 根据权利要求1所述的压力补偿阀，其特征在于，在所述阀芯与阀体之间设置有弹性部件，所述弹性部件随着所述阀芯的轴向位移伸展或者回缩。

3. 根据权利要求1所述的压力补偿阀，其特征在于，所述第一控制油出口与所述出油口连通。

4. 负载敏感液压系统，包括：

液压泵，和

至少两个具有左、中、右三个工作位置的控制主阀，每个控制主阀处于左位或者右位时，其进油口与两个出油口之一导通，且每个控制主阀的两个负载反馈油口分别与所述液压泵的变量控制机构敏感腔连通，其特征在于，还包括：

至少两个如权利要求1至3中任一项所述的压力补偿阀，每个压力补偿阀相应设置在每个控制主阀与液压泵之间；且所述压力补偿阀的第一控制油出口与所述控制主阀的进油口连通，所述压力补偿阀的第二控制油出口与所述控制主阀的两个负载反馈油口分别连通；和

一第一减压阀，设置在所述液压泵的出油口与至少两个所述压力补偿阀的第一控制油进口之间的通路上；

至少两个第二减压阀，分别设置在所述液压泵的出油口与每个所述压力补偿阀的第二控制油进口之间的通路上。

5. 根据权利要求4所述的负载敏感液压系统，其特征在于，所述第一减压阀和第二减压阀均为电比例减压阀。

6. 根据权利要求5所述的负载敏感液压系统，其特征在于，还包括输出控制信号调节所述第一减压阀和第二减压阀的调定压力的控制器。

7. 根据权利要求6所述的负载敏感液压系统，其特征在于，还包括：

第一压力传感器，获取所述液压泵的变量控制机构敏感腔的进液压力并输出第一压力信号至所述控制器；和

第二压力传感器，获取所述液压泵的出液压力并输出第二压力信号至所述控制器；且所述控制主阀的操纵手柄输出手柄电信号至所述控制器，所述控制器根据所述第一压力信号和第二压力信号输出所述控制信号。

8. 起重机，包括控制多个执行元件复合动作的液压系统，其特征在于，所述液压系统采用如权利要求4至7中任一项所述的负载敏感液压系统。
说明

压力补偿阀及应用该阀的负载敏感液压系统、起重机

技术领域

[0001] 本实用新型涉及工程机械技术，特别涉及一种压力补偿阀及应用该阀的负载敏感液压系统、起重机。

背景技术

[0002] 负载敏感技术在各种施工机械上应用较为广泛，主要原因在于其具有良好的节能性，液压系统能够根据系统需求提供相应的流量，系统所需流量不受负载压力的影响，并且当主阀在中位时，能够实现低压溢流，从而减小系统的功率损失。

[0003] 目前，随着社会发展节奏的加快，对于施工机械的要求不仅局限于节能、安全可靠等基本的工作性能。如何提高作业效率已成为优化设计的重点，特别是，合理进行复合工作台的设计。

[0004] 以工程起重机为例，其具有整机行走、上车回转、起重臂伸缩、起重臂变幅及吊钩升降等基本动作。为适应实际工况的需要，前述基本动作的复合可以有效地提高起重机的作业效率，从而大大缩短了工作时间，满足不同用户的要求。由于复合动作的工作原理是由一个泵同时给两个负载（比如，卷扬马达和变幅液压缸）提供高压油，因此，需要在液压油总流量一定的前提下，按执行元件的需求将油液提供给各负载。

[0005] 然而，对于实现复合动作的传统负载敏感系统（LADS系统）来说，在使用过程中存在一定的缺陷，例如：当系统要实现多个执行元件同时动作时，若液压泵供给的最大流量小于系统所需求的总流量，则负载敏感系统将会失去其负载敏感功能，无法实现流量的按需分配。尽管现有技术为克服上述缺陷，后续开发了 LUDV 液压系统和集成 AVR 功能的负载敏感系统；然而，上述方案也存在各自的不足：前者元件价格非常昂贵，大大提高了起重机的制造成本；后者流量分配不是按比例进行的，所以不能完全满足起重机液压系统的一些特殊操作要求，比如，起重机液压系统的保压性、微动性和复合动作等性能。

[0006] 有鉴于此，亟待针对现有负载敏感系统进行优化设计，以在可靠实现饱和流量按比例分配的基础上，有效控制制造成本，从而极大地提高起重机的整机性能。

实用新型内容

[0007] 针对上述缺陷，本实用新型解决的技术问题在于：提供一种压力补偿阀，以调节执行元件的流量，确保流量饱和时能够实现各执行元件的流量比例分配。在此基础上，本实用新型还提供一种应用该压力补偿阀的负载敏感液压系统及起重机。

[0008] 本实用新型提供的压力补偿阀，包括阀口及内置于所述阀体内的阀芯，所述阀芯在所述阀体内滑动以连通或断开所述进口油口和出油口；所述阀芯与所述阀体之间形成四个相对封闭的容腔，且所述阀芯上设置有与各容腔连通的第一控制油进口、第二控制油进口、第一控制油出口和第二控制油出口；所述第一控制油进口和第一控制油出口连通的容腔内油液作用于所述阀芯形成向一侧滑动的趋势，与所述第二控制油进口和第二控制油出口连通的容腔内油液作用于所述阀芯形成向另一侧滑动的趋势。
优选地，在所述阀芯与阀体之间设置有弹性部件，所述弹性部件随着所述阀芯的轴向位移伸展或者回缩。

优选地，所述第一控制油出口与所述出油口连通。

本实用新型提供的负载敏感液压系统，包括液压泵，至少两个具有左、中、右三个工作位置的控制主阀、至少两个如前述所述的压力补偿阀、第一减压阀和至少两个第二减压阀；其中，所述控制主阀处于左位或者右位时，其进油口与两个出油口之一导通，且所述控制主阀的两个负载反馈油口分别与所述液压泵的变量控制机构敏感腔连通；每个压力补偿阀相应设置于每个控制主阀与液压泵之间；且所述压力补偿阀的第一控制油出口与所述控制主阀的进油口连通，所述压力补偿阀的第二控制油出口与所述控制主阀的两个负载反馈油口分别连通；所述第一减压阀设置在所述液压泵的出油口与至少两个所述压力补偿阀的第一控制油出口之间的通路上；所述至少两个所述第二减压阀分别设置在所述液压泵的出油口与所述所述压力补偿阀的第二控制油出口之间的通路上。

优选地，所述第一减压阀和第二减压阀均为电比例减压阀。

优选地，还包括输出控制信号调节所述第一减压阀和第二减压阀的设定压力的控制器。

优选地，还包括第一压力传感器和第二压力传感器，其中，所述第一压力传感器获取所述液压泵的变量控制机构敏感腔的进油压力，并输出第一压力信号至所述控制器；所述第二压力传感器获取所述液压泵的出油压力，并输出第二压力信号至所述控制器；所述控制主阀的操纵手柄输出手柄电信号至所述控制器；所述控制器根据所述第一压力信号、第二压力信号和手柄电信号输出所述控制信号。

本实用新型提供的起重机，包括控制多个执行元件复合动作的液压系统，所述液压系统采用如前述所述的负载敏感液压系统。

与现有技术相比，本实用新型提供了一种可与控制主阀配合调节执行元件流量的压力补偿阀，该阀具有两个控制油进口和两个控制油出口，其中，与一组控制油进、出口连通的容腔内油液作用于阀芯的一侧，与另一组控制油进、出口连通的容腔内油液作用于阀芯的另一侧。这样，在一个控制油进口的压差作用下，阀芯保持在确定工作位置；此时，两个控制油出口之间的压差同样确定。

由于每个控制主阀而言，相应压力补偿阀的第一控制油出口与控制主阀的进油口连通，其第二控制油出口与控制主阀的两个负载反馈油口分别连通。在复合动作控制过程中，可通过控制压力补偿阀阀芯的两端压差，进而调节相应控制主阀的阀前阀后压差，从而在出现流速饱和现象时，能够对各执行元件同时进行可靠的流量比例控制。

本实用新型提供的负载敏感液压系统，采用减压阀调节输入至压力补偿阀的两个控制油进口的油液压力，使得阀芯保持在确定工作位置，以调整两个控制油出口之间的压差，具有设计合理可靠的特点。

本实用新型优选方案中的减压阀采用电比例减压阀，进而可通过控制器根据系统流量状况发出先导控制信号调整每个减压阀的协调值，以适应不同工作模式调整相应控制主阀的流量，满足具体工况的实际需求。因此，能进一步提高起重机液压系统节能性、微动性和复合动作性能，极大地提高了起重机的整机性能，具有较好的可操作性。

本实用新型提供的压力补偿阀适用于任何工程机械的复合动作负载敏感液压系
说明

附图说明

图1为具体实施方式中所述起重机的整体结构示意图；
图2为具体实施方式中所述压力补偿阀的工作原理图；
图3为具体实施方式中所述起重机的负载敏感液压系统的工作原理图。
图中：
液压泵10，压力补偿阀20，进油口21，出油口22，第一控制油进口23，第二控制油进口24，第一控制油出口25，第二控制油出口26，控制主阀30，第一减压阀40，第二减压阀50，第一压力传感器60，第二压力传感器70，控制器80。

具体实施方式

本实用新型的核心是提供一种压力补偿阀，调节执行元件的流量，确保流量结合时能实现各执行元件的流量比例分配。下面结合说明书附图具体说明本实施方式。

不失一般性，本文以起重机为例进行详细说明。

请参见图1，该图是本实施方式所述起重机的结构示意图。

该起重机具有底盘系统、吊臂系统、卷扬系统、动力系统及操纵系统等主要功能部件，并且整机行走、上车回转、起重臂伸缩、起重臂变幅及吊钩升降等基本动作能够复合动作。需要说明的是，前述各功能部件的自身结构及工作原理与现有技术相同，本领域的技术人员基于现有技术完全可以实现，故本文不再赘述。

与现有技术相比，本方案的主要区别点在于该起重机负载敏感系统中所使用的压力补偿阀。请一并参见图2，该图示出了该压力补偿阀的工作原理图；当然，基于该原理图可以实现具有相应功能的压力补偿阀，为节省篇幅本文为提供该阀的结构示意图。

该压力补偿阀20包括阀体及内置于阀体内的阀芯（原理图中未具体示出），阀芯在阀体内滑动以连通或者断开其进油口21和出油口22。即，该阀有两个工作位置，如图所示，左位状态下，其进油口21和出油口22连通，右位状态下，其进油口21和出油口22断开。当然，左、右的导通状态也可以反向设置，不局限于图中所示。

此外，该阀体上还设置有四个油口：第一控制油进口23，第二控制油进口24，第一控制油出口25和第二控制油出口26，分别与阀芯与阀体之间形成四个相对封闭的容腔连通。其中，与第一控制油进口23和第一控制油出口25连通的容腔内油液作用于阀芯形成向一侧滑动的动趋势，与第一控制油进口24和第二控制油出口26连通的容腔内油液作用于阀芯形成向另一侧滑动的驱动趋势。也就是说，其中，与一组控制油进口、出口连通的容腔内油液作用于阀芯的一侧，与另一组控制油进口、出口连通的容腔内油液作用于阀芯的另一侧。显然，在两个控制油出口的压差作用下，阀芯保持在确定工作位置；此时，两个控制油出口之间的压差同样确定。如此设计，可通过调节两个控制油出口的压差调整两个控制油出口之间的压差。

当然，在阀芯与之间设置有弹性部件，以便于弹性部件随着所述阀芯的轴向位移伸展或者回缩，从而提供阀芯的复位作用力。

此外，优选地，第一控制油出口25与出油口22连通，以控制压力补偿阀的下游侧。
的压力油路。实际上，第一控制油出口 25 与出油口 22 的连通关系可以采用阀外连通的方式实现，也可以采用阀内连通的方式的实现，只要满足使用需要均在本申请请求保护的范围内。

[0035] 请参见图 3，该图为起重机用负载敏感液压系统的工作原理图。

[0036] 该负载敏感液压系统采用如前所述的流量补偿阀 20。

[0037] 与现有负载敏感液压系统相同的是，该系统包括液压泵 10，两个具有左、中、右三个工作位置的控制主阀 30，其中，每个控制主阀 30 处于左位或者右位时，其进油口 P 与第一出油口 A 或者第二出油口 B 导通，以建立系统压力油路与相应执行元件工作油口之间的连通，比如，伸缩臂油缸的两腔，或者上车回转马达的两工作油口，或者卷扬马达的两工作油口等。同样，每个控制主阀 30 的第一负载反馈油口 C1 和第二负反馈油口 C2 分别与液压泵 10 的变量控制机构敏感腔连通，即与液压泵 10 的 X 口连通，使其压力参量发生变化，根据系统需求提供相应的流量，系统所需流量不受负载压力的影响，并且当主阀在中位时，能够实现低压溢流，从而减小系统的功耗损失。

[0038] 与两个控制主阀 30 对应设置两个如前所述的流量补偿阀 20，其中，每个流量补偿阀 20 相应设置在每个控制主阀 30 与液压泵 10 之间，即流量补偿阀 20 的进油口 21 与系统压力油路连通。出油口 22 与控制主阀 30 的进油口 P 连通，且流量补偿阀 20 的第一控制油出口 25 与控制主阀 30 的进油口 P 连通，压力补偿阀 20 的第二控制油出口 26 与控制主阀 30 的第一负载反馈油口 C1 和第二负反馈油口 C2 分别连通。

[0039] 第一减压阀 40 设置在液压泵 10 的出油口与压力补偿阀 20 的第一控制油出口 23 之间的通路上，同样，与两个控制主阀 30 对应设置两个第二减压阀 50，且分别设置在液压泵 10 的出油口与每个流量补偿阀 20 的第二控制油出口 24 之间的通路上。如此设计，采用减压阀调节输入至压力补偿阀 20 的两个控制油出口的油液压力，使得其阀芯保持在确定工作位置，以调整两个控制油出口之间的压差，这样，在复合动作控制过程中，当出现流量饱和现象时，可根据需要通过减压阀的调定压力调整，从而通过控制压力补偿阀阀芯的两端压力差，调节相应控制主阀的阀前阀后压差，能够对各执行元件同时进行可靠的流量比例控制。

[0040] 本方案中，第一减压阀 40 和第二减压阀 50 均为比值比例减压阀，以便于根据控制信号调节其调定压力。

[0041] 特别需要说明的是，对于减压阀调定压力进行调节，可以采用操作者手动操纵的方式。当然，也可以根据系统的实时参数进行自动控制。具体地，本方案还可以通过第一压力传感器 60 和第二压力传感器 70；其中，第一压力传感器 60 获取液压泵 10 的变量控制机构敏感腔的液压压力，并输出第一压力信号至控制器 80；第二压力传感器 70 获取液压泵 10 的出液压压力，并输出第二压力信号至控制器 80。同时，控制主阀 30 的操纵手柄（图中未示出）输出手柄电信号至控制器 80；工作过程中，控制器 80 根据第一压力信号、第二压力信号和手柄电信号输出控制信号，以调节第一减压阀 40 或者相应第二减压阀 50。具体地，可根据实际条件进行预设工作模式的设定，以及各工作模式下各执行元件的优先级，这样，在选定的工作模式下，控制器 80 根据实时获取的第一压力信号、第二压力信号及手柄电信号输出待调的减压阀，从而调节复合动作某个或某几个执行元件的工作流量，在出现流量饱和现象时，也能够实现各执行元件的流量比例分配。
显然，本文仅指出两个执行元件复合动作的实施例，前述控制主阀 30 和压力补偿器 20 及第二减压阀 50 的数量与执行元件一一对应设置。实际上，上述部件可根据该工作原理根据实际复合动作元件的数量相应设置。

1. 单个执行元件动作

单个执行元件动作时，不存在流量饱和现象，则控制器不输出控制命令，第一减压阀 40 、第二减压阀 50 均处于关闭状态，则压力补偿器 20 的压差 AP 为一定值（节流主阀前后的压差为一定值，即 F/ΔP），此时，进入执行元件的流量只由控制主阀 30 的开口大小决定。

2. 多个执行元件复合动作 I

多个执行元件进行复合动作时，若总需求流量小于液压泵所能提供的最大流量，则压力补偿器 20 无需要调节其压差 AP，在此工况下，各执行元件的运动速度只由各个节流主阀的开口大小决定。当然，也可以通过选择工况，使控制器 80 发出控制信号调节第一减压阀 40 、第二减压阀 50 打开，并根据需要调节相应的调压压力，以控制压力补偿器 20 的压差设定值 AP，从而进一步对进入执行元件的流量进行调节。也就是说，可使进入执行元件的流量不仅受控主阀 30 开口大小的影响，而且还随压力补偿器 20 压差 ΔP 值的改变而改变，优先选作某些执行元件的速度。

3. 多个执行元件复合动作 II

多个执行元件进行复合动作时，若总需求流量超过液压泵所能提供的最大流量，即出现流量饱和现象；此时，负载敏感液压系统根据实时获取的信号确定上述状态，从而启动控制器 80 去控制第一减压阀 40 、第二减压阀 50 的开口度，进而调节压力补偿器 20 的压差 ΔP，使得进入相应执行元件的流量不同程度的减小，从而避免出现流量饱和现象。也就是说，通过改变电比例减压阀的控制电，可以实现进入各执行元件的流量按比例分配，进而实现对各执行元件速度的比例控制。

以上所述仅是本实用新型的优选实施方式，应当指出，对于本技术领域的普通技术人员来说，在不脱离本实用新型原理的前提下，还可以做出若干改进和润饰，这些改进和润饰也视为本实用新型的保护范围。
图 3