(54) 发明名称
卫生薄页纸

(57) 摘要

本发明的主要课题在于提供一种卫生薄页纸，其由局部温度所致的手感变化较小。本发明的卫生薄页纸在有效成分中含有规定量的保湿剂、柔软剂和0.001～1.0重％亲水性高分子，且含有5～40重％薄页纸处理剂，所述薄页纸处理剂在常温下呈具有流动性的液态。
1. 一种卫生薄页纸，其特征在于，
 其含有5～40重量%薄页纸处理剂，
 其在湿度40% R.H.、温度25℃的条件下测定的弯曲刚性B值为0.03～0.07g • cm²/cm，水分率为4.5～6.0重量%。
 所述薄页纸处理剂在常温下呈具有流动性的液态，且含有70～100重量%有效成分，
 所述有效成分含有80.0～97.0重量%保湿剂、0.5～10.0重量%柔软剂和0.001～1.0重量%亲水性高分子。
 所述柔软剂从阴离子系表面活性剂、阳离子系表面活性剂、非离子系表面活性剂和两
 性离子系表面活性剂中选出。

2. 如权利要求1所述的卫生薄页纸，其中，在湿度70% R.H.、温度25℃的条件下测定的弯曲刚性B值为0.02～0.04g • cm²/cm，水分率为10.0～13.0重量%。
 并且，在湿度40% R.H.、温度25℃的条件下测定的弯曲刚性B值与在湿度70% R.H.、
 温度25℃的条件下测定的弯曲刚性B值之差为0.03～0.01g • cm²/cm。

3. 如权利要求1或2所述的卫生薄页纸，其中，按照以下A)～C)的步骤测定经时表面水分率之差，在经过3小时的时刻，经过5小时的时刻，经过22小时的时刻中的任一时刻，所述表面水分率之差均为4.5%以下，
 (A) 将试样在适当的温湿度条件下放置，使试样的表面水分率为12.0% ± 0.5%；
 (B) 步骤(A)后，立即将试样转移至温度25℃、湿度0% R.H.的恒温、恒湿环境下，测定
 经时表面水分率；
 (C) 计算出步骤(A)后测定的试样的表面水分率和经过预定时间的时刻的试样的表面
 水分率之差。
说明 书

卫生薄页纸

技术领域
[0001] 本发明涉及纸巾等卫生薄页纸，特别是含有包含保湿成分的薄页纸处理剂的卫生薄页纸。

背景技术
[0002] 已知亦被称为化妆水型的卫生薄页纸，其含有包含保湿成分的薄页纸处理剂。这种卫生薄页纸还被称作化妆水滋润面巾纸（lotion tissue），与湿润型的湿纸巾不同，其是非湿润状态，与通常的非保湿系的纸巾同样地使用。
[0003] 这种卫生薄页纸与非保湿系的薄页纸相比手感优异，其具有柔软感（柔らかさ感）、顺滑感（ぬめり感）、平滑感（滑らかさ感）、无粗糙感（きしみのなさ）、蓬松感（ふんわり感），对皮肤的刺激可以降低，多用于擦鼻涕或擦面处理用途。
[0004] 但是，现有产品中，根据其保湿成分的吸湿・排湿功能的不同，在环境的影响下手感、物性会发生变化。例如，根据所使用的地域、季节、室内环境，手感会发生变化，可能得不到所期望的手感。
[0005] 更具体地说，在低湿度环境下湿润感可能会降低，在高湿度环境下，撕裂强度、拉伸强度等强度可能会降低。
[0006] 并且，在某些使用环境下，收纳箱可能会吸收由所收纳的纸巾排出的水分而变湿，导致箱的强度降低，由于保存时叠放等也会导致箱变形破损。
[0007] 另外，现有产品中，考虑到使用场所的周边气氛（特别是干燥气氛），为了确保该状态下的手感，需要在卫生薄页纸中一定程度上过量含有薄页纸处理剂，这成为纸力降低的原因。
[0008] 另一方面，作为薄页纸处理剂，提出了由凝胶组合物构成的药剂，其难以直接均匀地包含在薄页纸中，需要通过加热或稀释等促进液化等复杂的工序或延长稀释水分的干燥时间。此外，涂布后的薄页纸由于纸力降低、涂布不均或凝胶表面进一步干燥而存在弯曲刚性、手感变化等问题。
[0009] 专利文献 1：日本专利 3950400 号公报
[0010] 专利文献 2：日本特开平 2007-203089 号公报

发明内容
[0011] 于是，本发明的主要课题在于提供一种卫生薄页纸，其由湿度等所致的手感变化较小。
[0012] 解决上述课题的本发明及其作用效果如下。
[0013] 〈技术方案 1 所述的发明〉
[0014] 一种卫生薄页纸，其特征在于，
[0015] 其含有 5 ～ 40 重量 % 薄页纸处理剂，
[0016] 其在湿度 40 % R.H., 温度 25 ℃ 的条件下测定的弯曲刚性 B 值为 0.03～
0.07 g cm^{-2} cm, 水分为 4.5 ~ 6.0 重量%。

[0017] 所述薄页纸处理剂在常温下呈具有流动性的液态，且含有 70 ~ 100 重量%有效成分。

[0018] 所述有效成分含有 80.0 ~ 97.0 重量%保湿剂、0.5 ~ 10.0 重量%柔软剂和 0.001 ~ 1.0 重量%亲水性高分子。

[0019] 所述柔软剂从阴离子系表面活性剂、阳离子系表面活性剂、非离子系表面活性剂和两性离子系表面活性剂中选出。

[0020] < 技术方案 2 所述的发明 >

[0021] 如技术方案 1 所述的卫生薄页纸，其中，在湿度 70% R.H.、温度 25℃的条件下测定的弯曲刚性 B 值为 0.02 ~ 0.04 g cm^{-2} cm, 水分为率 10.0 ~ 13.0 重量%。

[0022] 并且，在湿度 40% R.H.、温度 25℃的条件下测定的弯曲刚性 B 值与在湿度 70% R.H.、温度 25℃的条件下测定的弯曲刚性 B 值之差为 0.03 ~ 0.01 g cm^{-2} cm。

[0023] < 技术方案 3 所述的发明 >

[0024] 如技术方案 1 或 2 所述的卫生薄页纸，其中，按照以下 (A) ~ (C) 的步骤测定经时表面水分率之差，在经过 3 小时的时刻、经过 5 小时的时刻、经过 22 小时的时刻中的每一时刻，所述表面水分率之差均为 4.5% 以下。

[0025] (A) 将试样在适当的温湿度条件下放置，使试样的表面水分率为 12.0% ± 0.5%。

[0026] (B) 步骤 (A) 后，立即将试样转移至温度 25℃、湿度 0% R.H. 的恒温恒湿环境下，测定经时表面水分率。

[0027] (C) 计算出步骤 (A) 后测定的试样的表面水分率和经过预定时间的时刻的试样的表面水分率之差。

[0028] 根据以上的本发明，能够提供一种卫生薄页纸，其由周边环境的湿度等所导致的手感变化较小。

附图说明

[0029] 图 1 是表示本发明的实施例和现有例、比较例在高湿度环境下的感官评价结果的曲线图。

[0030] 图 2 是表示本发明的实施例和现有例、比较例在低湿度环境下的感官评价结果的曲线图。

[0031] 图 3 是表示本发明的实施例和现有例、比较例的经时表面水分率的变化结果的曲线图

具体实施方式

[0032] 以下对本发明的实施方式进行详细说明。

[0033] [结构例]

[0034] 本发明的卫生薄页纸优选为 2 张以上的薄页纸（以下也称为原纸片）层积而成的层结构。层积的原纸片的张数没有特别限定，例如可以适当变为 2 张、3 张、4 张或 4 张以上的多张。特别地，由于适于用作纸巾而优选 2 张或 3 张。但是，本发明并不限于具有层积结构的形态。
[0035] [薄页纸]

[0036] 另一方面，对构成发的卫生薄页纸的薄页纸（原纸片）的原料纸浆选没有特别限定。可以判断卫生薄页纸的用途来选择适宜的原料纸浆。作为原料纸浆，可以选用例如木材纸浆、非木材纸浆、合成纸浆、旧纸纸浆等中适当选择一种或数种来使用，更具体地说，可以选用木浆（GP）、石磨木磨浆（SGP）、木片磨木浆（RPG）、压力木磨浆（PGW）、预热木片磨木浆（TMP）、化学热木片磨木浆（CTMP）、漂白化学机械木浆木浆（BCTMP）等机械纸浆（MP）；化学机械纸浆（CGP）、半化学浆（SCP）、阔叶树漂白硫酸盐法木浆（LBKP）、针叶树漂白硫酸盐法木浆（NBKP）等硫酸盐纸浆（KP）；亚硫酸（AP）、亚硫酸纸浆（SP）、溶解纸浆（DP）等化学纸浆（CP）；以尼龙、人造丝、聚酯、聚乙烯醇（PVA）等为原料的合成纸浆；脱墨纸浆（DIP）、废纸浆（WP）等旧纸纸浆；造浆纸（TP）；以棉花、亚麻、麻、黄麻、马尾拉麻、苎麻等为原料的破布纸浆，以及纸浆、茶茅纸浆、甘蔗渣纸浆、竹纸浆、麻、竹片纸浆等纸质纸浆；韧皮纸浆等辅助纸浆等中适当选择一种或数种来使用。

[0037] 特别地，将原料纸浆制成手纸、纸巾时，优选 NBKP 和 LBKP 的组合。虽也可以适当配合旧纸纸浆，但从手感等方面考虑，仅由 NBKP 和 LBKP 构成即可，这种情况下混合比例为 NBKP = 30 : 70 ~ 50 : 50 为宜，特别优选 NBKP : LBKP = 40 : 60。

[0038] 纸浆纤维等原料经过例如公知的抄纸工序（具体地说，网部、压榨部、干燥部，施胶压榨，压光部）等制成纸基。

[0039] 进行该抄纸时，可以添加例如分散剂，氢氧化钠，氨水等 pH 调节剂，消泡剂，防腐剂，荧光染料，防粘剂，耐水化剂，流变改性剂，增液剂（步留まり向上剂）等适宜的化学药品。

[0040] [弯曲刚性]

[0041] 另一方面，本发明的卫生薄页纸优选作为柔软感和蓬松感的指标的弯曲刚性为 0.03 ~ 0.07g • cm²/1cm。此处本发明所谓的弯曲刚性是如下的值；在上述湿度、温度条件下将四折的纸巾剪裁成 10cm×10cm，以其作为测定试样，利用 KES-FB2-S（KATO TECH 株式会社制造）对纵向和横向分别进行测定，测定的平均值即为弯曲刚性。需要说明的是，弯曲刚性的值越小，可以将柔软感、蓬松感评价得越高。

[0042] 此外，本发明的卫生薄页纸在湿度 70% R. H. 、温度 25°C 的条件下测定的弯曲刚性与在湿度 40% R. H. 、温度 25°C 的条件下测定的弯曲刚性之差为 0.03 ~ 0.01g • cm²/1cm。优选为 0.025 ~ 0.015g • cm²/1cm。

[0043] 本发明的卫生薄页纸具有的特征是，基于上述湿度和温度的弯曲刚性之差小，而且由周边湿度和温度所致的手感的变化极小。

[0044] [水分率]

[0045] 另一方面，本发明的卫生薄页纸在湿度 40% R. H. 、温度 25°C 的条件下测定的水分率为 4.5 ~ 6.0wt%。

[0046] 并且，在湿度 70% R. H. 、温度 25°C 的条件下测定的水分率为 10.0 ~ 13.0wt %。

[0047] 进而，优选上述湿度范围内水分率之差小于 8.0wt%。需要说明的是，水分率是将测定试样放置在测定环境中 24 小时后测定的值，水分率的定义为 : 水分率（wt%） = [(湿（湿重）后的重量）/（绝干（绝乾）时的重量）-1]×100。

[0048] 另外，本发明的卫生薄页纸按照以下的（A） ~ （C）的步骤测定的经时表面水分率
之差在经过3小时的时刻、经过5小时的时刻、经过22小时的时刻中的任一时刻均为4.5%以下。当表面水分率之差为4.5%以下时，由湿度等所导致的手感变化小这一效果会变得充分
且可靠。需要说明的是，技术方案1或2所述的发明中，实现了本条件——4.5%以下的表
面水分率差。

(0049) （A）将试样在适当的温湿度条件（例如湿度25℃，湿度50% R.H.的恒温，恒湿环
境）下放置24小时左右，使试样的表面水分率为12.0%±0.5%。此处的表面水分率可以
利用Sanko电子制造的纸-瓦楞纸水分计（纸・ダンボール水分计）KG-100i等水分计来
进行测定。

(0050) （B）接下来，在步骤（A）后，立即将试样转移至温度25℃，湿度0% R.H.的恒温、恒
湿环境下，例如转移至保存于恒温室内的干燥器内，经时地使用上述水分率计测定表面水
分率。需要说明的是，干燥器内的湿度通过在干燥器内放入湿度计来确认。作为湿度计，可
以使用例如亲和测定株式会社制造的“ST-4圆柱4.5cm”。

(0051) （C）计算出步骤（A）后测定的试样的表面水分率和经过预定时间的时刻的试样的
表面水分率之差。

(0052) [干燥拉伸强度]

(0053) 另一方面，本发明的卫生薄页纸优选干燥拉伸强度在纵向为120～350cN/25mm。
更优选为140～310cN/25mm。

(0054) 此处，本发明的所谓干燥拉伸强度是利用Minebea株式会社制造的“万能拉伸压
缩试验机TG-200N”测定的值。

(0055) 干燥拉伸强度小于120cN/25mm时，会导致操作中断纸，而干燥拉伸强度超过350cN/mm时，会导致柔软度等使用感恶化。

(0056) 该干燥拉伸强度可以通过在制造原纸片时向抄纸原料中添加干燥纸力增强剂
（干燥纸力剂）等调整起皱率来进行适当调整。需要说明的是，起皱率表示（（制纸时干
燥机的圆周速度）-（卷筒圆周速度））/（制纸时干燥机的圆周速度）×100。

(0057) [薄页纸处理剂]

(0058) 另一方面，本发明的卫生薄页纸含有5～40重量%后述的具有预定组成目的薄页纸
处理剂。卫生薄页纸由复数张薄页纸层积而成的情况下，只要构成的薄页纸之中至少表背
（表里）的任意一张薄页纸含有5～40重量%薄页纸处理剂即可。

(0059) 薄页纸处理剂的含量不足5重量%时，不能充分发挥表面的光滑度等手感的改善
效果，薄页纸处理剂的含量超过40重量%时，会导致强度降低导致断纸。

(0060) 另一方面，本发明的特征的薄页纸处理剂含有70～100重量%后述的有效成分。
有效成分不足70%时，不能发挥充分的效果。此处，有效成分以外的成分是水。

(0061) 本发明中，所述有效成分是保湿剂、柔软剂、亲水性高分子。在有效成分中的混合
比如如下：保湿剂80.0～97.0重量%，柔软剂0.5～10.0重量%，亲水性高分子0.001～1.0重量%。

(0062) 柔软剂可以使用三酰胺酸盐、磺酸盐系、硫酸酯盐系、磷酸酯等系的表面活性剂等
，优选烷基磷酸酯盐。并且，作为保湿剂，可以以任意的组合使用甘油、双甘油、丙二醇、1,3-丁二醇
等多元醇：山梨糖醇、葡萄糖、木糖醇、麦芽糖醇、麦芽糖醇、甘露醇、海藻糖等糖类；二醇系药剂及其衍生物；乳酸、乙二醇、聚乙烯醇等高级醇；液体石蜡、胶原蛋白、水解胶原蛋白、水解角蛋白、水解丝蛋白、神经酰胺等。通过使用这些，能够提高薄页纸的柔软性和保湿性。

[0063] 另外，本发明中，所述亲水性高分子是在热水或冷水中溶解、分散或膨润的高分子化合物，可以使用动物系、植物系、微生物系、多糖系等的天然高分子；淀粉衍生物（可溶性淀粉、羧化淀粉、黏合剂、二醋淀粉（ブレチチツシユシ））、糊精、阳离子化淀粉等）、纤维素衍生物（纤维素、甲基纤维素、乙基纤维素、羧甲基纤维素、羟乙基纤维素等）等半合成高分子；（甲基）丙烯酸胺系聚合物；N-取代（甲基）丙烯酰胺系聚合物；N-乙烯基（甲基）酰胺系聚合物；（甲基）丙烯酸（盐）系聚合物；（甲基）丙烯酰胺系聚合物、聚乙烯基、聚乙烯基胺、聚环氧乙烷、聚乙烯基吡啶、聚丙胺等合成高分子中的任意物质，从环境卫生问题的方面出发，优选直接与人体接触时安全性也优异、容易废弃等自然分解性优异的天然高分子，其中优选水溶性多糖类，水溶性多糖类可以举出阿拉伯胶、黄原胶、结冷胶、难消化性糊精、玉米黄胶、甘露胶、瓜尔胶、瓜尔豆胶分解物，支链淀粉、水溶性玉米纤维、半纤维素、低分子半纤维素、刺槐豆胶、魔芋葡甘露聚糖、凝胶多糖、聚乙烯氧烷等水溶性中性多糖类；低分子硫酸卡拉胶、琼脂、果胶、褐藻糖胶、紫菜聚糖、琼脂胶、壳聚糖胶、结冷胶、黄原胶等水溶性酸性多糖类；壳聚糖、聚半乳糖胶、水溶性壳多糖等水溶性碱性多糖类。特别优选水溶性中性多糖类，因为这些中性多糖类在分子中不具有酸性基团，碱性基团，并且不必担心出现异味和色调变化，不必担心pH值导致的水溶性降低，不必担心与离子性物质形成络合物而产生沉淀等。这些亲水性高分子化合物可以使用1种或混合使用2种以上。由于亲水性高分子化合物可以吸收保持自重的数十倍至数百倍的水，能够抑制处理纸所含有的水分的湿度环境所致的变化，从而能够减少薄页纸的手感变化。

[0064] 亲水性高分子小于0.001％时，相对于湿度环境变化的手感维持效果可能会降低，超过1.0重量％时，薄页纸硬化而失去柔韧性，可能导致手感恶化。

[0065] 制备薄页纸处理剂时，重要的是不使其凝胶化。若处理剂凝胶化而陷入丧失了流动性的状态，则处理剂在保存一输送时的处理性变差，在涂布至薄页纸的涂布工序中需要使其液态化的加热操作等，这样是不经济、低效率的，并且，涂布后的薄页纸由于涂布不均或凝胶表面干燥而表现出粗糙感，使手感恶化。于是，为了不使处理剂凝胶化，例如，可以用醇等易于凝胶化的高交联度的高分子化合物适量分解后，使酶失活，得到保持了保水性的亲水性高分子化合物，由此得到具有流动性的液态物，或者进一步向该分解物中适量混合低分子量的糖类，得到提高了保水性、具有流动性的液态物。并且，对于某些亲水性高分子化合物的种类，会由于酸、碱、特定的离子或糖类、其他亲水性高分子化合物等的存在而凝胶化，或是作为热历史所致的滞后现象（ヒステリシス現象）而发生行为的变化或凝胶化，因此需要在掌握所选择的亲水性高分子化合物自身的特性的基础上适当调整其他成分、比例和添加量，得到具有流动性的液态物。

[0066] 另一方面，可以通过利用已知的涂布、冲压机、喷雾涂布机的适当的涂布/涂抹方法，将本发明的薄页纸处理剂包含于薄页纸中。特别是本发明的薄页纸处理剂可以使粘度为100～500mPα·sec，因此利用高速在线印刷的涂布/涂抹是适合的，特别优选利用在线凹版印刷的涂布/涂抹。

[0067] 在该利用在线凹版印刷的涂布/涂抹的情况下，涂布量优选12～20g/m²。
[0068] [基重（米克）]

[0069] 另一方面，本发明的卫生薄页纸的基重可以根据其用途适宜调整，优选整体为20 ～ 80g/m²，优选为26 ～ 40g/m²。为层积结构时，各层为10 ～ 40g/m²，优选为12 ～ 20g/m²。若不足10g/m²，则虽然从柔软度改善的方面出发是优选的，但难以适应确保能够耐用的充分强度，并且，若超过40g/m²，则会变得过硬，肌肤触感变差。该范围作为卫生薄页纸的用途在制成纸巾时是特别适合的。需要说明的是，基重基于JIS P 8124的基重测定方法测定。

[0070] [纸厚]

[0071] 纸厚也可以根据卫生薄页纸的用途适宜调整。纸巾的情况下优选为60 ～ 250μm。若纸厚不足60μm，则虽然从柔软度改善的方面出发是优选的，但难以适应确保作为纸巾的强度。并且，若超过250μm，则纸巾的肌肤触感恶化，同时在使用时会产生僵硬感。需要说明的是，为层积结构时，构成各层的原纸片的纸厚不必都统一。

[0072] 作为纸厚的测定方法，在JIS P 8111的条件下，使用表盘式测厚仪（厚度测定器）“PEACOCK G型”（尾崎制作所制造）进行测定。具体地说，确认柱塞（ブランジャー）与测定台之间没有杂质、灰尘等，然后将柱塞下放在测定台上，移动所述刻度盘式测厚仪的刻度校正零点，然后抬起柱塞，将试样（例如手纸）置于试验台上，缓缓放下柱塞，读取此时的显示值，此时，仅放置柱塞于试样。需要说明的是，纸厚为测定10次得到的平均值。

[0073] 本发明的卫生薄页纸的拉伸强度依照JIS P 8113 的拉伸试验方法进行。其中，在JIS P 8111规定的标准条件下在纵向和横向剪裁成25mm的尺寸。

[0074] [层剥离强度]

[0075] 制成层积结构的情况下，原纸片的层剥离强度[cN/50mm]优选为5 ～ 100cN/50mm。低于5cN/50mm时，则原纸片彼此的粘合变得不充分，会被非故意地剥离，超过100cN/50mm时，则作为卫生薄页纸的肌肤触感变得过硬。层剥离强度的测定方法依照JIS P 8113的拉伸试验方法进行。其中，在JIS P 8111规定的标准条件下在纵向剪裁成50mm的尺寸。剪裁后，将试样纵向剥离，相对于剥离试验用测力传感器（TG200N, Minebea社制造），将剥离的一方固定在上侧的夹具上，将另一方固定在下侧的夹具上，其间隔为8cm。然后在垂直方向上以100mm/分钟的速度拉伸，进一步剥离5cm剥离，则测定此时尚的强度。

[0076] 实施例

[0077] 以下为了确认本发明的效果，举出本发明的实施例和现有例进行说明。需要说明的是，实施例、现有例、比较例中使用的薄页纸处理剂和试样如下。

[0078] 〈薄页纸处理剂〉

[0079] 实施例1和2中使用的薄页纸处理剂是由保湿剂（甘油）83.0重量％、柔软剂（烷基磷酸酯盐）1.9重量％、亲水性高分子（水溶性中性多糖类）0.1重量％、水15.0重量％组成的粘度为230mPa·sec（25℃）的液态物。

[0080] 现有例1和2中使用的薄页纸处理剂是由保湿剂（甘油）88.1重量％、柔软剂（烷基磷酸酯盐）1.9重量％、水10.0重量％组成的粘度为210mPa·sec（25℃）的液态物。

[0081] 比较例1～4中使用的试样是市面销售的化妆水滋润面巾纸。

[0082] 使用实施例1、现有例1、比较例1～4对周边环境与手感以及与弯曲刚性之间的关系进行试验，对其结果进行说明。

[0083] 〈试验1：感官评价〉
[0084] 对于本发明的试样（实施例 1）和现有产品（现有例 1），在高湿度环境（湿度 70% R.H. 程度）和低湿度环境（湿度 40% R.H. 程度）下进行感官评价。

[0085] 如表 1 所示，本发明例的薄页纸处理剂含量为 20 重量%、现有例 1 的薄页纸处理剂含量为 23 重量%。

[0086] 结果见图 1 和图 2。

[0087] 需要说明的是，对“湿润感”、“柔软感”、“顺滑感”、“平滑感”、“无粗涩感”、“蓬松感”进行感官评价。评价方法中，以现有例为基准的 3 分，与之比较，将本发明例用 5 级来评价。图中的分数为 100 人的平均值。

[0088] 由图 1 和图 2 可知，本发明例中，无论是高湿度环境下还是低湿度环境下，感官评价均高于现有例 1。由此可以理解，本发明例的手感好而不受周边环境的影响。

[0089] < 试验 2：弯曲刚性 >

[0090] 对于本发明的试样（实施例 1）和现有例 1、比较例 1 ～ 4，在温度 25℃、湿度 40% R.H. 的环境下和湿度 25℃、湿度 70% R.H. 环境下测定弯曲刚性，对其差进行评价。并且还测定水分率。

[0091] 弯曲刚性的测定利用 KES-FB2-S (KATO TECH 株式会社制造) 测定。

[0092] 试样的尺寸为 10cm × 10cm。结果列于下述表 1。

[0093] [表 1]

<table>
<thead>
<tr>
<th>薄页纸处理剂含量 (wt%)</th>
<th>实施例 1</th>
<th>现有例 1</th>
<th>比较例 1</th>
<th>比较例 2</th>
<th>比较例 3</th>
<th>比较例 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>弯曲刚性 (g·cm²/cm)</td>
<td>40% R.H.</td>
<td>0.058</td>
<td>0.071</td>
<td>0.071</td>
<td>0.075</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>70% R.H.</td>
<td>0.035</td>
<td>0.034</td>
<td>0.045</td>
<td>0.048</td>
<td>0.038</td>
</tr>
<tr>
<td>弯曲刚性差</td>
<td>0.023</td>
<td>0.037</td>
<td>0.026</td>
<td>0.026</td>
<td>0.037</td>
<td>0.038</td>
</tr>
<tr>
<td>水分率 (wt%)</td>
<td>40% R.H.</td>
<td>4.9</td>
<td>4.8</td>
<td>4.4</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>70% R.H.</td>
<td>11.8</td>
<td>11.5</td>
<td>10.9</td>
<td>10.1</td>
<td>9.9</td>
</tr>
</tbody>
</table>

[0095] 如表 1 所示，对于本发明的实施例 1，其在 40% R.H. 环境下和 70% R.H. 环境下的弯曲刚性之差与现有例 1、比较例 1 ～ 4 相比格外小。特别可以确认，低湿度环境下的柔软度优异。

[0096] 由以上的试验 1 和 2 可知，本发明的手感优异，而且无论是低湿度环境下还是高湿度环境下均具有优异的手感，并且由于周边湿度的差异所导致的柔软度的变化也小。

[0097] 因此，根据本发明，能够提供一种卫生薄页纸，其柔软性等手感提高而不受环境影响，而且其由于周边湿度的差异所导致的手感的差异也较小。

[0098] 使用实施例 2、现有例 2、比较例 5 对经时表面水分率之差如何发生变化进行测定。其中，比较例 5 为使用上述比较例 1 的试样。

[0099] 测定时，首先将各样的试样在温度 25℃、湿度 50% R.H. 的恒温、恒湿环境下放置 24 小时左右，如表 2 所示调整试样的表面水分率。表面水分率的测定使用 Sanko 电子制造的纸 - 瓦楞纸水分计 KG-1001。

[0100] 接下来，测定表面水分率后，立即将各试样转移至保存于温度 25℃的恒温室内的干燥器内（内部湿度 0% R.H.），使用上述水分率计经时 (overtime) 测定表面水分率。测定结果如表 2 和图 3（曲线图）所示。其中，图 3 的曲线图中，纵轴为表面水分率 (%)，横
表 2

<table>
<thead>
<tr>
<th>经过时间(Elapsed time) (min)</th>
<th>实施例 2 (%)</th>
<th>现有例 2 (%)</th>
<th>比较例 5 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11.9</td>
<td>11.8</td>
<td>11.8</td>
</tr>
<tr>
<td>30</td>
<td>11.3</td>
<td>10.6</td>
<td>10.4</td>
</tr>
<tr>
<td>60</td>
<td>10.3</td>
<td>9.2</td>
<td>9.1</td>
</tr>
<tr>
<td>90</td>
<td>9.7</td>
<td>8.7</td>
<td>8.5</td>
</tr>
<tr>
<td>120</td>
<td>9.5</td>
<td>8.3</td>
<td>8.2</td>
</tr>
<tr>
<td>150</td>
<td>9.2</td>
<td>8.1</td>
<td>8.1</td>
</tr>
<tr>
<td>180</td>
<td>9.1</td>
<td>7.9</td>
<td>7.6</td>
</tr>
<tr>
<td>210</td>
<td>9.0</td>
<td>7.8</td>
<td>7.5</td>
</tr>
<tr>
<td>240</td>
<td>9.0</td>
<td>7.7</td>
<td>7.4</td>
</tr>
<tr>
<td>270</td>
<td>8.9</td>
<td>7.6</td>
<td>7.4</td>
</tr>
<tr>
<td>300</td>
<td>8.8</td>
<td>7.5</td>
<td>7.2</td>
</tr>
<tr>
<td>330</td>
<td>8.7</td>
<td>7.5</td>
<td>7.1</td>
</tr>
<tr>
<td>1320</td>
<td>7.4</td>
<td>5.9</td>
<td>5.6</td>
</tr>
</tbody>
</table>

该结果表明，关于本发明的实施例 2，在直至 22 小时的测定中，表面水分率的减少为 4.5% 以下。与此相对，关于现有例 2 和比较例 5，表面水分率的降低显著。得到了可判断保水性差的结果。

因此可以说，本发明的卫生薄页纸的保水性优异，该保水性是影响经时的手感变化的要因。

工业实用性

本发明的卫生薄页纸可用于纸巾，该纸巾用于擦拭用途，特别用于身体的擦拭用途以及擦面用途等。
高湿度条件下（70%）的感官评价结果

图 1

高湿度条件下（40%）的感官评价结果

图 2
经时水分率的变化

图 3