IMMUNE MODULATORY COMPOUNDS AND METHODS

Abstract: The present invention relates to nucleic acids encoding novel polypeptides that modulate immune responses as well as corresponding recombinant vectors and host cells comprising said vectors. The invention also encompasses the above mentioned polypeptides, derivatives thereof, antibodies directed against said polypeptides and corresponding hybridoma cell lines. Furthermore, the invention is directed at pharmaceutical compositions comprising the above mentioned nucleic acids, vectors, polypeptides and/or antibodies. In addition, the present invention is directed to a method of identifying a compound that modulates a cell response, and a method of treating and/or preventing a disease in a mammal wherein said disease benefits from an enhanced or reduced immune response. A further aspect provides a method of producing a polypeptide, nucleic acid, vector or antibody according to the invention.

Published:
— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
IMMUNE MODULATORY COMPOUNDS AND METHODS

TECHNICAL FIELD OF THE INVENTION

5 The present invention relates to nucleic acids encoding novel polypeptides that modulate immune responses as well as corresponding recombinant vectors and host cells comprising said vectors. The invention also encompasses the above mentioned polypeptides, derivatives thereof, antibodies directed against said polypeptides and corresponding hybridoma cell lines. Furthermore, the invention is directed at pharmaceutical compositions comprising the above mentioned nucleic acids, vectors, polypeptides and/or antibodies. In addition, the present invention is directed to a method of identifying a compound that modulates a cell response, and a method of treating and/or preventing a disease in a mammal, wherein said disease benefits from an enhanced or reduced immune response. A further aspect provides a method of producing a polypeptide, nucleic acid, vector or antibody according to the invention.

BACKGROUND OF THE INVENTION

T cell lymphocytes (T cells) and B cell lymphocytes (B cells) are the primary cells of the specific immune system. Both are involved in acquired immunity and the complex interaction of these cell types is required for the expression of the full range of immune responses. T cells are specific for foreign antigens and the number of specific T cells must increase enormously in response for specific host defense.

25 The T cell response depends on two discrete receptor-ligand recognition events. The major event is the interaction of T cell receptors (TCRs) on the surface of the T cells with peptide-
major histocompatibility complexes (pMHC) that are displayed on the surface of the antigen-presenting cell (APC) such as macrophages and dendritic cells. However, in the absence of a further costimulatory signal, the TCR-pMHC interaction alone is insufficient for producing complete T cell activation and may result in either apoptotic death or prolonged unresponsiveness of the responding T cell (Lenschow D.J. et al., (1996) Immunity 5, 285-93).

It is the interaction of a family of related costimulatory receptors with their respective ligands that furnishes the second costimulatory signals which are required for efficient T cell activation. Moreover, a second, complementary set of costimulatory receptors also provide negative signals that reduce the immune response and as such function to maintain the peripheral T cell tolerance to protect against autoimmunity (Nishimura H. et al., (1999) Immunity 11, 141-151; Nishimura H. et al., (2001) Science 291, 319-322; Greenwald R.J. et al., (2001) Immunity 14, 145-155).

Well known costimulatory ligands are the B7-1 (CD80) and B7-2 (CD86) molecules. Both belong to the immunoglobulin (Ig) superfamily, their extracellular regions being composed of a membrane distal Ig variable (IgV) domain and a membrane proximal Ig constant (IgC) domain. Said ligands bind CD28 and CTLA-4 that are expressed on T lymphocytes and are the best characterized costimulatory receptors (Linsley, P. S. et al., (1990) Proc. Natl. Acad. Sci. USA 87, 5031-5035; Linsley P. S. et al., (1991) J. Exp. Med. 174, 561-569).

CD28 is constitutively expressed on T cells and induces IL-2 secretion and T cell proliferation after binding by a costimulatory ligand (June, C. H. et al. (1990) Immunol. Today 11, 211-216). CTLA-4 is homologous to CD28 and occurs on T cells following activation (Freemann G. J. et al. (1992) J. Immunol. 149, 3795-3801). CTLA-4 has a
significantly higher affinity for B7-1 than CD28 has and appears to inhibit rather than enhance T cell responses.

The B7 independence of some antigen-induced T-cell responses indicates the presence of additional B7-like co-stimulators. A number of further B7-like molecules have been identified.

B7-H1 (B7 homolog 1) shares about 25% amino acid identity and a similar overall structure with B7-1 and B7-2 (Dong H. et al. (1999) Nature Med. 5, 1365-1369). B7-H1-Ig fusion protein costimulates T cell growth and enhances mixed lymphocyte responses to alloantigens. Interaction of B7-H1 with a putative receptor on T cells preferentially induces secretion of interleukin 10 (IL-10) and interferon γ (IFN-γ) in the presence of an antigenic signal. In vitro binding assay indicate that B7-H1 does not bind to the receptors CD28 or CTLA-4 or the inducible costimulator (ICOS) (Hutloff A. et al. (1999) Nature 397, 263-266). A recent study suggested that PD-1 (Ishida Y. et al. (1992) EMBO J. 11, 3887-3895), a CTLA-4-like molecule, is a receptor for B7-H1 (Freeman G. J. et al. (2000) J. Exp. Med. 192, 1027-1034).

A further member of the B7 family is B7-H3, which was identified by bioinformatical analysis (Chapoval A. I. et al. (2001) Nature Immunol. 2, 269-274; WO 02/10187 A1). B7-H3 binds a putative counter-receptor on activated T cells that is distinct form CD28, CTLA-4, ICOS and PD-1. Interaction of B7-H3 and its T cell counter-receptor induces proliferation of both CD4+ and CD8+ T cells and enhances the induction of cytotoxic T cells (CTLs). Additionally B7-H3-Ig fusion protein selectively increases production of IFN-γ.

Another member of the B7 superfamily recently described is B7-H4 (Sica G. L. et al. (2003) Immunity 18, 849-861; also known as B7S1 (Durbaka V.R. (2003) Immunity 18, 863-873; B7x (Watanabe N. (2003) Nat. Immunol. 7, 670-679) which has been described as being a negative regulator of T cell activation. The putative counter receptor is BTLA, an immunoglobulin domain-containing glycoprotein expressed during activation of T cell and on T helper cell.

Although CD28-B7-mediated costimulation is essential for the activation of naive T cells, it is usually not required for memory and effector T cell responses (Schweitzer A. N. et al. (1998) J. Immunol. 161, 2762-2771), suggesting that more complex regulatory pathways exist that involve additional receptor-ligand interactions. This idea was supported by the identification of additional costimulatory receptor-ligand pairs, such as inducible costimulator (ICOS)-B7-H2 (Hutloff A. et al. (1999) Nature 397, 263-266; Swallow M. M. et al. (1999) Immunity 11, 423-432; Yoshinaga S. K. et al. (1999) Nature 402, 827-832) and
PD-1-PD-L (Ishida Y. et al. (1992) EMBO J. 11, 3887-3895; Freeman G. J. et al. (2000) J. Exp. Med. 192, 1027-1034; Latchman Y. et al. (2001) Nature Immunol. 2, 261-268; Tseng S. Y. et al. (2001) J. Exp. Med. 193, 839-846). The interaction between ICOS, a CD28 and CTLA-4 homolog (24% and 17% identity, respectively), and B7-H2, a B7 homolog (about 20% sequence identity with B7-1 and B7-2), stimulates both CD4⁺ and CD8⁺ T cell responses. In contrast to the positive signal that ICOS-B7-H2 interaction delivers to T cells, the engagement of PD-1 on T cells by its PD-L ligands present on APCs and other nonlymnoïd cells is responsible for the delivery of inhibitory signals to the responding T cell. These inhibitory signals are important for both, the maintenance of self-tolerance and the down-regulation of T cell activity at sites of immune activation. Using ICOS-deficient mice it was demonstrated that ICOS is required for humoral immune responses after immunization with several antigens (Dong C. et al. (2001) Nature 409, 97-101; Dong C. et al. (2001) J. Immunol. 166, 3659-3662). Moreover, ICOS-deficient mice show greatly enhanced susceptibility to experimental autoimmune encephalomyelitis, thus suggesting that ICOS plays a protective role in inflammatory autoimmune diseases. Thus, members of the B7 costimulator family are important regulators in the immune response.

B lymphocytes (also referred to as B cells) mature within the bone marrow and leave the marrow expressing a unique antigen-binding membrane receptor. The B-cell receptor is a membrane-bound immunoglobulin glycoprotein. When a B cell encounters the antigen for which its membrane-bound antibody is specific, the cell begins to divide very rapidly; its progeny differentiate into memory B cells and effector cells called plasma cells. Memory B cells have a longer lifespan and continue to express membrane-bound antibody with the same specificity as the original parent cell. Plasma cells do not produce membrane-bound antibody but instead produce the antibody in a form that can be secreted. In the adult mouse, T and B lymphocytes are produced continuously either in the primary lymphoid organs or
by peripheral cell division, the total number of T and B cells however remains constant. The mechanisms that determine the number of peripheral lymphocytes are poorly understood, but it is likely that population sizes are conditioned by multiple influences. The ensemble of stimulatory or inhibitory cellular interactions, growth factors, antigen etc. that condition cell survival and/or cell growth are referred to as resources (Freitas A. A. et al. (1995) Eur. J. Immunol. 25, 1729-38), cells sharing common resources belonging to the same “niche”. The homeostatic control of cell numbers suggests that resources are present in limited amounts, and that lymphocyte populations must compete for survival signals (Freitas A. A. et al. (1995) Eur. J. Immunol. 25, 1729-38; Freitas A. A. et al. (1996) Eur. J. Immunol. 26, 2640-49). Evaluation of cell populations in different lines of mutant mice indicates that B- and T-cell numbers are independently regulated. The number of mature B-cells is similar in normal mice of in mice which lack T cells (TcR ko) (Mombaerts P. et al. (1992) Nature 360, 225-231), and the number of T cells is similar in normal mice and in mice that lack B cells (μMT ko) (Kitamura D et al. (1991) Nature 350, 423-426). It is believed that survival of newly produced B cell is determined not only by the direct interactions between each B cell and its ligand, but is also conditioned by the presence of other B lymphocytes, that compete for limited resources (Agenes F. et al. (1997) Eur. J. Immunol. 27, 1801-07). In chimeras reconstituted with mixtures of bone marrow (BM) cells from normal and B-cell deficient donors, the number of pre-B cells produced was strictly dependent on the size of the immature stem-cell compartment. Moreover, the per-cell rates of pre-B cell division and of B-cell production were constant and independent of the number of peripheral mature B cells, suggesting the absence of regulatory feedback loops between the central and the peripheral B-cell compartments (Agenes F. et al. (1997) Eur. J. Immunol. 27, 1801-07). The size of peripheral B-cell pool was not determined by the number of immediate precursor cells or the rate of B-cell production. Mice with diminished numbers of pre-B cells and reduced rate of bone marrow B-cell production could generate full sized peripheral B-cell compartment
(Tanchot C. et al. (1997) Immunology 9, 331-337). In B-cell deficient chimeras generated by injecting variable ratios of BM cells from B-cell deficient μMT donors and competent BM cells from normal mice, it was found that the number of activated IgM-secreting B cells was constant and independent of the number of pre-B and mature B-cells (Agenes F. et al. (1997) Eur. J. Immunol. 27, 1801-07). These results indicate that the number of activated B cells is not a constant fraction of the number of resting B cells, but must represent an autonomous B-cell compartment with different homeostatic controls. The independent homeostatic regulation of the resting and activated B-cell compartements allow the immune system to favour as a first priority, the maintenance of normal serum IgM and IgG levels.

In summary, B cell and T cell responses depend on multiple and complex interdependent events. Because of its key role in immunity, B cell and T cell regulation is a major target for treating and/or preventing a large variety of diseases that require or benefit from an enhanced or reduced immunity, e.g. autoimmune diseases including type I diabetes and multiple sclerosis, asthma, arthritis, myasthenia gravis, lupus erythematosus, pemphigus, psoriasis, colitis or rejection of transplanted organs, such as xenotransplants, immuno deficiency diseases, and cancer. Therefore, there is a strong need for compounds capable of modulating the complex B cell and T-cell responses for the purpose of treating and preventing numerous disorders in mammals. The present invention provides new compounds and methods for such a medical treatment. This and other objects of the present invention, as well as additional inventive features, will be apparent from the detailed description provided herein.
SUMMARY OF THE INVENTION

The present invention provides isolated, and preferably purified, nucleic acids encoding polypeptides that modulate immune responses. Moreover, the present invention relates to nucleic acid operably linked to a promoter, recombinant vectors comprising said nucleic acids, and host cell comprising said vectors.

The invention also encompasses polypeptides encoded by said nucleic acids and functional derivatives thereof, antibodies directed against said polypeptides and hybridoma cell lines for producing said antibodies. The invention further encompasses cell lines transfected to express said antibodies.

Furthermore, the invention is directed at pharmaceutical compositions comprising the above mentioned nucleic acids, vectors, polypeptides and/or antibodies.

In addition, one aspect of the invention is directed at the above mentioned nucleic acids, vectors, peptides and/or antibodies for use as a medicament as well as for the preparation of a medicament for modulating the immune system, preferably for treating and/or preventing autoimmune diseases including type I diabetes and multiple sclerosis, asthma, arthritis, psoriasis, myasthenia gravis, lupus erythematosus, pemphigus, colitis or rejection of transplanted organs such as xenotransplants, immuno deficiency diseases, and cancer.

Another aspect of the present invention is directed at a method for identifying a compound that modulates an immune response, which method comprises: (i) contacting either B cells and/or T cells with a polypeptide according to the invention in the absence or presence of a compound of interest; and (ii) comparing the B cell and/or T cell response in the absence of
said compound of interest with the B cell and/or T cell response in the presence of said compound of interest.

Still further provided by the present invention is a method of treating and/or preventing a disease in a mammal, wherein said disease is selected from autoimmune diseases and diseases that benefit from an enhanced or reduced immune response, preferably type I diabetes and multiple sclerosis, asthma, arthritis, myasthenia gravis, lupus erythematosus, pemphigus, psoriasis, colitis or rejection of transplanted organs such as xenotransplants, immuno deficiency diseases, and cancer, which method comprises administering to the mammal a therapeutically effective amount of a nucleotide, vector, polypeptide or antibody according to the invention. Furthermore, since the present invention is also preferably related to modulation of antibody and B cell responses in vivo, a method of treating and/or preventing a disease in a mammal is provided, wherein said disease is selected from autoimmune diseases mediated by antibodies including , preferably consisting of, myasthenia gravis, lupus erythematosus, pemphigus, and rejection of xenotransplants, which method comprises administering to the mammal a therapeutically effective amount of a nucleotide, vector, polypeptide or antibody according to the invention. Moreover, since the present invention is also preferably related to modulation of T cell responses in vivo, a method of treating and/or preventing a disease in a mammal is provided, wherein said disease is selected from autoimmune diseases including , and preferably consisting of, type I diabetes and multiple sclerosis, asthma, arthritis, psoriasis, colitis or rejection of transplanted organs such as xenotransplants, immuno deficiency diseases, and cancer, which method comprises administering to the mammal a therapeutically effective amount of a nucleotide, vector, polypeptide or antibody according to the invention.
In view of the foregoing, the present invention also provides a method of producing a polypeptide according to the invention, wherein a host cell of the present invention is cultured to produce said polypeptides.

Similarly provided is a method of producing an antibody according to the present invention, wherein a hybridoma cell line of the present invention is cultured to produce said antibodies or wherein a cell line transfected to express said antibodies is cultured.

BRIEF DESCRIPTION OF THE FIGURES AND SEQUENCES

Fig. 1A is a line graph showing the proliferative response of purified murine B cells activated by different concentration of mB7-H5-Fc fusion protein in the absence or presence of different concentration of goat anti-mouse IgM antibody (coated onto tissue culture well plates).

Fig. 1B is a line graph showing the proliferative response of purified murine B cells activated by different concentration of mouse γ-globuline in the absence or presence of different concentration of goat anti-mouse IgM antibody (coated onto tissue culture well plates).

Fig. 2A is a bar graph showing the negative regulation of the proliferative response of purified murine CD4+ and CD8+ T cells activated by anti-CD3 monoclonal antibody (coated onto tissue culture well bottoms using concentration of 0.5 μg/ml) and co-coated by either control mouse γ-globuline, mB7-H6-Fc fusion protein, or mB7-H5-Fc fusion protein. Proliferation was measured after 72 hours. Thesa data are representative of more than three independent experiments.
Fig. 2B is a bar graph showing the negative regulation of the proliferative response of purified murine CD4+ and CD8+ T cells activated by 0.5 μg/ml anti-CD3 monoclonal antibody, different concentration of anti-CD28 monoclonal antibody and of mB7-H6-Fc fusion protein, mPD-L1-Fc fusion protein, or mPD-L2-Fc fusion protein, each coated onto tissue culture well bottoms using a concentration of 5 μg/ml. As control mouse γ-globulin was used. Proliferation was measured after 72 hours.

Fig 3A depicts the disequilibrated homeostatic control of the isotype switched B cells following mB7-H5-Fc fusion protein administration. The bar graph shows the percentage of isotype switched B cells of CD19 positive cells. The experimental groups, that obtained mB7-H5-Fc fusion protein showed a fivefold upregulation compared to the control group.

Fig 3B depicts the disequilibrated homeostatic control of the lymphocytes following mB7-H5-Fc fusion protein administration. The bar graph shows the percentage of the following groups, isotype switched B cells, naïve mature B cells and T cell, macrophages, granulocytes and the rest. The analysis was performed by staining of lymphocyte surface markers and FACS.

Fig. 4A depicts the disequilibrated homeostatic control of the lymphocytes following mB7-H5-Fc fusion protein administration. The bar graph shows the percentage of the following groups, isotype switched B cells, naïve mature B cells and T cell, macrophages, granulocytes and the rest. The analysis was performed by staining of lymphocyte surface markers and FACS.
Fig. 4B depicts the downregulation of the Qβ specific B cells evoked by the administration of mB7-H5-Fc fusion protein in vivo. The bar graph shows the percentage of the Qβ specific B cells of isotype switched B cells for the different experimental groups.

Fig. 5A depicts the downregulation of the Qβ specific isotype switched B cells evoked by the administration of mB7-H6-Fc fusion protein. The bar graph shows the percentage of the Qβ specific B cells of isotype switched B cells for the different experimental groups.

Fig. 5B depicts the downregulation of the number of Qβ specific antibody forming cells (AFC) evoked by the administration of mB7-H6-Fc fusion protein. The bar graph shows the numbers of Qβ specific AFC per 10^6 splenocytes.

DETAILED DESCRIPTION OF THE INVENTION

1. DEFINITIONS

Animal: As used herein, the term "animal" is meant to include, for example, humans, sheep, elks, deer, mule deer, minks, mammals, monkeys, horses, cattle, pigs, goats, dogs, cats, rats, mice, birds, chicken, reptiles, fish, insects and arachnids.

Antibody: As used herein, the term "antibody" refers to molecules which are capable of binding an epitope or antigenic determinant. The term is meant to include whole antibodies and antigen-binding fragments thereof, including single-chain antibodies. Most preferably the antibodies are human antigen binding antibody fragments and include, but are not limited to, Fab, Fab', and F(ab')2, Fd, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv) and fragments comprising either a V_L or V_H domain. The
antibodies can be from any animal origin including birds and mammals. Preferably, the antibodies are human, murine, rabbit, goat, guinea pig, camel, horse or chicken. As used herein, "human" antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin libraries or from animals transgenic for one or more human immunoglobulins and that do not express endogenous immunoglobulins, as described, for example, in U.S. Patent No. 5,939,598 by Kucherlapati et al. The term "antibody" may further include humanized antibodies wherein the antigen-binding parts of the humanized antibody are derived from a non-human species and the remaining parts of the humanized antibody display a human amino acid sequence.

Derivative: The term "derivative", as used herein, means that the amino acid sequence of any of the polypeptides encompassed by the present invention is preferably at least 50%, more preferably at least 80%, and even more preferably at least 90%, and most preferably at least 95% identical to the polypeptide sequence encoded by any of the nucleic acids according to the invention, preferably at least 50%, more preferably at least 80%, and even more preferably at least 90%, and most preferably at least 95% identical to the polypeptide sequence of hsB7-H4LV (SEQ ID NO:2), hsB7-H4LV(ECD) (SEQ ID NO:4), hsB7-H5 (SEQ ID NO:6), hsB7-H5(ECD) (SEQ ID NO:8), mB7-H5 (SEQ ID NO:10), mB7-H5(ECD) (SEQ ID NO:12), mB7-H6 (SEQ ID NO:14), mB7-H6(ECD) (SEQ ID NO:16), hsB7-H6 (SEQ ID NO:42), or hsB7-H6(ECD) (SEQ ID NO:44). ECD means extracellular domain of the polypeptides of the invention.

The term "functional derivative" refers to polypeptide derivatives that are fully functional in comparison to any of the polypeptide sequences (i) hsB7-H4LV (SEQ ID NO:2), (ii) hsB7-H4LV(ECD) (SEQ ID NO:4), (iii) hsB7-H5 (SEQ ID NO:6), (iv) hsB7-H5(ECD) (SEQ ID NO:8), (v) mB7-H5 (SEQ ID NO:10), (vi) mB7-H5(ECD) (SEQ ID NO:12), (vii) mB7-H6
(SEQ ID NO:14), (viii) mB7-H6(ECD) (SEQ ID NO:16), (ix) hsB7-H6 (SEQ ID NO: 42), or (x) hsB7-H6(ECD) (SEQ ID NO: 44) or which retain at least some, preferably at least 20%, more preferably at least 50%, and most preferably at least 90% of the biological activity of any of (i) to (x). Moreover, the term functional derivative preferably encompasses a functional fragment, variant (e.g., structurally and functionally similar to any of the proteins of (i) to (x) and has at least one functionally equivalent domain), analog (e.g., a protein or fragment thereof substantially similar in function to any one of the proteins of (i) to (x) or fragment thereof), chemical derivative (e.g., contains additional chemical moieties, such as polyethyleneglycol and derivatives thereof), or peptidomimetic (e.g., a low molecular weight compound that mimics a polypeptide in structure and/or function (see, e.g., Abell, *Advances in Amino Acid Mimetics and Peptidomimetics*, London: JAI Press (1997); Gante, *Peptidimetica – massgeschneiderte Enzyminhibitoren Angew. Chem. 106: 1780-1802 (1994); and Olson et al., *J. Med. Chem. 36: 3039-3049 (1993)*) of any of the above mentioned polypeptides (i), (ii), (iii), (iv), (v), (vi), (vii), (viii), (ix) or (x). In a further preferred embodiment of the present invention, said functional derivative of (i), (ii), (iii), (iv), (v), (vi), (vii), (viii), (ix) or (x) is a fusion molecule or fusion protein thereof. It is understood that polypeptides, fusion proteins, fusion molecules and protein complexes coupled with the polypeptides or functional polypeptide derivatives are also preferably encompassed by the term “functional polypeptide derivative”. Preferably, a functional polypeptide of the invention or a derivative thereof is capable of modulating an immune response, preferably B cell and/or T cell activation.

Effective Amount: As used herein, the term "effective amount" refers to an amount necessary or sufficient to realize a desired biologic effect. An effective amount of the composition would be the amount that achieves this selected result, and such an amount could be determined as a matter of routine by a person skilled in the art. For example, an
effective amount for treating an immune system deficiency could be that amount necessary
to cause activation of the immune system, resulting in the development of an antigen
specific immune response upon exposure to antigen. The term is also synonymous with
"sufficient amount."

The effective amount for any particular application can vary depending on such factors as
the disease or condition being treated, the particular composition being administered, the
size of the subject, and/or the severity of the disease or condition. One of ordinary skill in
the art can empirically determine the effective amount of a particular composition of the
present invention without necessitating undue experimentation.

Functional: The term "functional", as used herein, relates to the ability of the nucleic acids
and/or polypeptides of the invention to modulate immune response, in particular T cell and
B cell response. "Non-functional polypeptides do not modulate T or B cell response but may
also be useful, e.g. in that they may be used to produce antibodies that bind functional and/or
non-functional polypeptides according to the invention.

Fusion: As used herein, the term "fusion" refers to the combination of amino acid sequences
of different origin in one polypeptide chain by in-frame combination of their coding
nucleotide sequences. The term "fusion" explicitly encompasses internal fusions, i.e.,
insertion of sequences of different origin within a polypeptide chain, in addition to fusion to
one of its termini.

Isolated and purified nucleic acid: The term "isolated and purified nucleic acid" as used
herein means a nucleic acid free of the genes that flank the gene of interest in the genome of
an organism in which the gene of interest naturally occurs. The term therefore includes a
recombinant nucleic acid incorporated into a vector, into an autonomously replicating plasmid or virus, or into the genomic nucleic acid sequence of a prokaryote or eukaryote. It also includes a separate nucleic acid molecule such as a cDNA; a genomic fragment; a fragment produced by polymerase chain reaction (PCR); a restriction fragment; a DNA, RNA, or PNA encoding a non-naturally occurring protein, fusion protein, or fragment of a given protein; or a nucleic acid which is a degenerate variant of a naturally occurring nucleic acid. In addition, it includes a recombinant nucleotide sequence that is part of a hybrid gene, i.e. a gene encoding a fusion protein. Also included is a recombinant nucleic acid that encodes a polypeptide according to SEQ ID NOs: 2, 6, 10, 14, 42 or a functional derivative thereof, or that encodes the extracellular domain according to SEQ ID NOs: 4, 8, 12, 16, 44 or a functional derivative thereof. From the above it is clear that an isolated and purified nucleic acid does not include a restriction fragment containing all or part of a gene that flanks the gene of interest in the genome of the organism in which the gene of interest naturally occurs. Furthermore, an isolated and purified nucleic acid does not mean a nucleic acid present among hundreds to millions of other nucleic acid molecules within, for example, total cDNA or genomic libraries or genomic DNA or RNA restriction digests in, for example, a restriction digest reaction mixture or an electrophoretic gel slice.

Immune response: As used herein, the term "immune response" refers to a humoral immune response and/or cellular immune response leading to the activation or proliferation of B- (B cell response) and/or T-lymphocytes (T cell response), dendritic cells, macrophages, and/or antigen presenting cells. "Immunogenic" refers to an agent used to stimulate the immune system of a living organism, so that one or more functions of the immune system are increased and directed towards the immunogenic agent. An "immunogenic polypeptide" is a polypeptide that elicits a cellular and/or humoral immune response, whether alone or linked
to a carrier in the presence or absence of an adjuvant. Preferably, antigen presenting cell may be activated.

A substance which "modulates" an immune response refers to a substance in which an immune response is observed that is enhanced, greater or intensified or reduced or weakened or deviated in any way with the addition of the substance when compared to the same immune response measured without the addition of the substance. For example, the lytic activity of cytotoxic T cells can be measured, e.g. using a 51Cr release assay, in samples obtained with and without the use of the substance during immunization. The amount of the substance at which the CTL lytic activity is enhanced as compared to the CTL lytic activity without the substance is said to be an amount sufficient to enhance the immune response of the animal to the antigen. In a preferred embodiment, the immune response is enhanced or reduced by a factor of at least about 2, more preferably by a factor of about 3 or more. The amount or type of cytokines secreted may also be altered. Alternatively, the amount of antibodies induced or their subclasses may be altered.

Nucleic acid: As used herein, the term "nucleic acid" refers to an isolated, and preferably purified, nucleic acid, wherein said nucleic acid is selected from the group consisting of: (i) a nucleic acid comprising at least one of the nucleic acid sequences listed in SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 41, and 43; (ii) a nucleic acid having a sequence of at least 80 % identity, preferably at least 90 % identity, more preferred at least 95 % identity, most preferred at least 98 % identity with any of the nucleic acid sequences listed in SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 41, or 43; (iii) a nucleic acid that hybridizes to a nucleic acid of (i) or (ii); (iv) a nucleic acid, wherein said nucleic acid is derivable by substitution, addition and/or deletion of, preferably at least one nucleotide, more preferably up to 50 nucleotides, and even more preferably up to 100 nucleotides of, one of the nucleic acids of (i), (ii) or
(iii); and (v) a fragment of any of the nucleic acids of (i), (ii), (iii), or (iv), that hybridizes to a nucleic acid of (i).

Hybridization: The term “nucleic acid” or “fragment of a nucleic acid that hybridizes” with one of the other nucleic acids, for example with one of the nucleic acids having a sequence of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 41, or 43 or any of the nucleic acids of the invention, indicates a nucleic acid sequence that hybridizes under stringent conditions with a counterpart of a nucleic acid having the features described hereinabove in (i) to (v). For example, hybridizing may be performed at 68°C in 2x SSC or according to the protocol of the dioxygenine-labeling-kits of the Boehringer (Mannheim) company. A further example of stringent hybridizing conditions is, for example, the incubation at 65°C overnight in 7% SDS, 1% BSA, 1mM EDTA, 250 mM sodium phosphate buffer (pH 7.2) and subsequent washing at 65°C with 2x SSC; 0.1% SDS.

Percent identity: The term “percent identity” as known to the skilled artisan and used herein indicates the degree of relatedness among 2 or more nucleic acid molecules that is determined by agreement among the sequences. The percentage of “identity” is the result of the percentage of identical regions in 2 or more sequences while taking into consideration the gaps and other sequence peculiarities.

The identity of related nucleic acid molecules can be determined with the assistance of known methods. In general, special computer programs are employed that use algorithms adapted to accommodate the specific needs of this task. Preferred methods for determining identity begin with the generation of the largest degree of identity among the sequences to be compared. Computer programs for determining the identity among two sequences comprise, but are not limited to, the GCG-program package, including GAP (Devereux et
al., Nucleic Acids Research 12 (12):387 (1984); Genetics Computer Group University of
Wisconsin, Madison, (WI); BLASTP, BLASTN, and FASTA (Altschul et al., J. Molec.
Biol 215:403/410 (1990)). The BLAST X program can be obtained from the National Center
for Biotechnology Information (NCBI) and from other sources (BLAST handbook, Altschul
et al., NCB NLM NIH Bethesda, MD 20894). Also, the well-known Smith-Waterman
algorithm can be used for determining identity.

Preferred parameters for sequence comparison comprise the following:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison matrix</td>
<td>Matches = +10, mismatch 0</td>
</tr>
<tr>
<td>Gap penalty:</td>
<td>50</td>
</tr>
<tr>
<td>Gap length penalty:</td>
<td>3</td>
</tr>
</tbody>
</table>

The gap program is also suited to be used with the above-mentioned parameters. The above
mentioned parameters are standard parameters (default) for nucleic acid comparisons.

Further exemplary algorithms, gap opening penalties, gap extension penalties, comparison
matrix, including those in the program handbook, Wisconsin-package, version 9, September
1997, can also be used. The selection depends on the comparison to be done and further,
whether a comparison among sequence pairs, for which GAP or Best Fit is preferred, or
whether a comparison among a sequence and a large sequence databank, for which FASTA
or BLAST is preferred, is desired.
Polypeptide: As used herein, the term "polypeptide" refers to a molecule composed of monomers (amino acids) linearly linked by amide bonds (also known as peptide bonds). It indicates a molecular chain of amino acids and does not refer to a specific length of the product. Thus, peptides, dipeptides, tripeptides, oligopeptides and proteins are included within the definition of polypeptide. This term is also intended to refer to post-expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations, and the like. A recombinant or derived polypeptide is not necessarily translated from a designated nucleic acid sequence. It may also be generated in any manner, including chemical synthesis.

The term “isolated and purified polypeptide" as used herein refers to a polypeptide or a peptide fragment which either has no naturally-occurring counterpart (e.g., a peptidomimetic), or has been separated or purified from components which naturally accompany it, e.g., in tissue such as pancreas, liver, lung, spleen, ovary, testis, muscle, joint tissue, neural tissue, gastrointestinal tissue, or body fluids such as blood, serum or urine. Preferably, a polypeptide is considered “isolated and purified" when it makes up for at least 60 % (w/w) of a dry preparation, thus being free from most naturally-occurring polypeptides and/or organic molecules with which it is naturally associated. Preferably, a polypeptide of the invention makes up for at least 80%, more preferably at 90%, and most preferably at least 99% (w/w) of a dry preparation. Chemically synthesized polypeptides are by nature "isolated and purified" within the above context.

An isolated polypeptide of the invention may be obtained, for example, by extraction from a natural source (e.g., from human tissues or body fluids); by expression of a recombinant nucleic acid encoding the peptide; or by chemical synthesis. A polypeptide that is produced in a cellular system being different from the source from which it naturally originates is
“isolated and purified”, because it is separated from components which naturally accompany it. The extent of isolation and/or purity can be measured by any appropriate method, e.g., column chromatography, polyacrylamide gel electrophoresis, HPLC analysis, NMR spectroscopy, gas liquid chromatography, or mass spectrometry. Preferably, polypeptides according to the invention are selected from the group consisting of: (i) hsB7-H4LV (SEQ ID NO:2); (ii) hsB7-H5 (SEQ ID NO:6); (iii) mb7-H5 (SEQ ID NO:10); (iv) mb7-H6 (SEQ ID NO:14); (v) hsB7-H6 (SEQ ID NO: 42) and (vi) a functional derivative of (i), (ii), (iii), (iv) or (v). Further preferred are the above mentioned polypeptides hsB7-H4LV, hsB7-H5, mb7-H5, mb7-H6 and hsB7-H6 that are derived by conservative substitutions. Conservative substitutions typically include substitutions within the following groups: glycine and alanine; valine, isoleucine, and leucine; aspartic acid and glutamic acid; asparagines, glutamine, serine and threonine; lysine histidine and arginine; and phenylalanine and tyrosine.

Immune response: As used herein, “the term immune response” includes T cell-mediated and/or B-cell mediated immune responses that are influenced by modulation of T cell costimulation. Exemplary immune responses include B cell responses (e.g., antibody production) T cell responses (e.g., cytokine production, and cellular cytotoxicity) and activation of cytokine responsive cells, e.g., macrophages.

Modulation: As used herein, the term “modulation” with respect to immune responses includes either down-modulation, i.e. meaning a reduction in any one or more immune responses and up-modulation, i.e. meaning an increase in any one or more immune responses. It will be understood that up-modulation of one type of immune response may lead to a corresponding down-modulation in another type of immune response.
T cell response: As used herein, the term "T cell response" refers to a cellular T cell response leading to the activation or proliferation of T-lymphocytes, e.g. a response by an increase in the number of T cells, by a change in the composition of molecules within or on the surface of T cells, by T cell migration, by a change in the lifespan of a T cell, or by a change of the quality and/or in the quantity of molecules released by T cells. T cells and T-lymphocytes, as used herein, are used interchangeably. Increased IgG responses are also reflecting enhanced T cell responses since IgG responses are dependent on the presence of T help cells.

A substance, e.g. a polypeptide, a nucleic acid, or a vector of the invention, which "modulates" a T cell response refers to a substance in which a T cell response is observed that is greater or intensified or reduced or weakened or deviated in any way with the addition of the substance when compared to the same response measured without the addition of the substance. In addition, as used herein, a substance that modulates a T cell response is understood to indicate a substance that causes a T cell to respond to the contact of said substance to said T cell, e.g. respond by an increase in the number of T cells, by a change in the composition of molecules within or on the surface of T cells, or by a change of the quality and/or in the quantity of molecules released by T cells. Preferably, a substance, e.g. a polypeptide according to the invention, “co-stimulates” a T cell upon contacting a cell-surface molecule on a T cell, thereby enhancing a response of said T cell. A T cell response that results from a costimulatory interaction will be greater than said response in the absence of the substance. The response of the T cell in the absence of the co-stimulatory substance can be no response or it can be a response significantly lower than in the presence of the co-stimulatory substance. It is understood that the modulation of a T cell response incudes an effector, helper, or suppressive response. For example, the lytic activity of cytotoxic T cells can be measured, e.g. using a 51Cr release assay, in samples obtained with and without the
use of the substance during immunization. The amount of the substance at which the CTL lytic activity is enhanced as compared to the CTL lytic activity without the substance is said to be an amount sufficient to enhance the immune response of the animal to the antigen. The amount or type of cytokines secreted may also be altered. Alternatively, the amount of antibodies induced or their subclasses may be altered.

Treatment: As used herein, the terms "treatment", "treat", "treated" or "treating" refer to prophylaxis and/or therapy. When used with respect to an infectious disease, for example, the term refers to a prophylactic or therapeutic treatment which increases the resistance of a subject to infection with a pathogen or, in other words, decreases the likelihood that the subject will become infected with the pathogen or will show signs of illness attributable to the infection, as well as a treatment after the subject has become infected in order to fight the infection, e.g., reduce or eliminate the infection or prevent it from becoming worse. When used with respect to an autoimmune disease, for example, the term refers to a prophylactic or therapeutic treatment which decreases the likelihood that the subject will develop an autoimmune disease or will show signs of illness attributable to the autoimmune disease, as well as a treatment after the subject has developed an autoimmune disease in order to fight the disease, e.g., enhance self-tolerance of the subject and prevent the immune system of the subject from mistakenly attacking and destroying own body-tissue. By "treating" is meant the slowing, interrupting, arresting or stopping of the progression of a disease or condition and does not necessarily require the complete elimination of all disease symptoms and signs. "Preventing" is intended to include the prophylaxis of a disease or condition, wherein "prophylaxis" is understood to be any degree of inhibition of the time of onset or severity of signs or symptoms of the disease or condition, including, but not limited to, the complete prevention of the disease or condition.
One, a, or an: When the terms "one," "a," or "an" are used in this disclosure, they mean "at least one" or "one or more," unless otherwise indicated.

As will be clear to those skilled in the art, certain embodiments of the invention involve the use of recombinant nucleic acid technologies such as cloning, polymerase chain reaction, the purification of DNA and RNA, the expression of recombinant proteins in prokaryotic and eukaryotic cells, etc. Such methodologies are well known to those skilled in the art and can be conveniently found in published laboratory methods manuals (e.g., Sambrook, J. et al., eds., Molecular Cloning, A Laboratory Manual, 2nd. edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989); Ausubel, F. et al., eds., Current Protocols in Molecular Biology, John H. Wiley & Sons, Inc. (1997)). Fundamental laboratory techniques for working with tissue culture cell lines (Celis, J., ed., Cell Biology, Academic Press, 2nd edition, (1998)) and antibody-based technologies (Harlow, E. and Lane, D., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1988); Deutscher, M.P., "Guide to Protein Purification," Meth. Enzymol. 128, Academic Press San Diego (1990); Scopes, R.K., Protein Purification Principles and Practice, 3rd ed., Springer-Verlag, New York (1994)) are also adequately described in the literature, all of which are incorporated herein by reference.

2. COMPOSITIONS AND METHODS FOR MODULATING IMMUNE RESPONSE

The present invention is relates to, at least in part, on the surprising and unexpected finding of human and mouse nucleic acid molecules encoding novel polypeptides that modulate immune responses and on the functional characterization of the polypeptides encoded by said nucleic acids.
In view of this finding, the present invention provides an isolated, and preferably purified, nucleic acid, wherein said nucleic acid is selected from the group consisting of: (i) a nucleic acid comprising, or preferably consisting essentially of, or preferably consisting of, at least one of the nucleic acid sequences listed in SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 41, and 43; (ii) a nucleic acid having a sequence of at least 80 % identity, preferably at least 90 % identity, more preferred at least 95 % identity, most preferred at least 98 % identity with any of the nucleic acid sequences listed in SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 41, or 43; (iii) a nucleic acid that hybridizes to a nucleic acid of (i) or (ii); (iv) a nucleic acid, wherein said nucleic acid is derivable by substitution, addition and/or deletion of, preferably at least one nucleotide, more preferably up to 50 nucleotides, and even more preferably up to 100 nucleotides of, one of the nucleic acids of (i), (ii) or (iii); and (v) a fragment of any of the nucleic acids of (i), (ii), (iii), or (iv), that hybridizes to a nucleic acid of (i).

In a further embodiment, the invention provides an isolated, and preferably purified, polypeptide comprising, or preferably consisting essentially of, or preferably consisting of a polypeptide sequence encoded by a nucleic acid of the invention. The preferred polypeptide sequences encoded by the nucleic acids according to the invention are the hsB7-H4LV (SEQ ID NO:2), hsB7-H4LV(ECD) (SEQ ID NO:4), hsB7-H5 (SEQ ID NO:6), hsB7-H5(ECD) (SEQ ID NO:8), mb7-H5 (SEQ ID NO:10), mb7-H5(ECD) (SEQ ID NO:12), mb7-H6 (SEQ ID NO:14), mb7-H6(ECD) (SEQ ID NO:16), hsB7-H6 (SEQ ID NO:42) and the hsB7-H6(ECD) (SEQ ID NO: 44). These polypeptides are encoded by separate genes. The hsB7-H4LV polypeptide, the hsB7-H5 and hsB7-H6 polypeptide are human paralogues, whereas the mb7-H5 and mb7-H6 polypeptide are the mouse ortholog of the human hsB7-H5 and hsB7-H6 polypeptide, respectively. In a preferred embodiment, the nucleic acid of the invention encodes a protein that is capable of modulating an immune response, preferably a B cell and/or T cell response.
Moreover, in a preferred embodiment, the nucleic acids of the present invention also code for functional and non-functional derivatives of the above mentioned polypeptides. Preferably, the nucleic acid of the invention is a DNA, a RNA or a PNA.

The nucleic acid molecules according to the invention may be prepared synthetically by methods well-known to the skilled person, but also may be isolated from suitable DNA libraries and other publicly-available sources of nucleic acids and subsequently may optionally be mutated. The preparation of such libraries or mutations is well-known to the person skilled in the art.

In a preferred embodiment, the nucleic acid molecules of the invention are cDNA, genomic DNA, synthetic DNA or RNA, either double-stranded or single-stranded (i.e., either a sense or an antisense strand). In certain embodiments at least some of the nucleotide residues of the nucleic acids (sense or antisense) may be made resistant to nuclease degradation and these can be selected from residues such as phosphorothioates and/or methylphosphonates. The antisense nucleic acids as hereinbefore described can advantageously be used as pharmaceuticals, preferred pharmaceutical applications being for the manufacture of a medicament for the prophylaxis or treatment of autoimmune diseases including type I diabetes and multiple sclerosis, asthma, arthritis, psoriasis, colitis or rejection of transplanted organs, immuno deficiency diseases, and cancer. Since the present invention is also related to modulation of antibody and B cell responses in vivo, autoimmune diseases mediated by antibodies may be particular attractive targets for therapeutic intervention. Therefore, further preferred pharmaceutical applications being for the manufacture of a medicament for the prophylaxis or treatment of autoimmune diseases mediated by antibodies including myasthenia gravis, which is mediated by antibodies specific for acetylcholine receptor;
arthritis typically induced by antibodies specific for collagen and other proteins; lupus erythematosus, being a lethal auto-immune disease, mediated by antibodies specific for DNA; pemphigus where antibodies specific for demsosomes cause blistering of the skin. In all of these disease-conditions, lowering specific antibody titers result in reduced disease. Thus, in particular, modulation of B cell homeostasis by application of soluble B7-H5 or B7-H5 fusion molecules or antibodies directed against B7-H5 is a very preferred embodiment of the invention to reduce disease. Additional antibody mediated diseases include rejection of xenotransplants and. Fragments of these molecules, which are encompassed within the scope of the invention, may be produced by, for example, the polymerase chain reaction (PCR) or generated by treatment with one or more restriction endonucleases. A ribonucleic acid (RNA) molecule may be produced by in vitro transcription.

In a preferred embodiment, a nucleic acid according to the present invention encodes a polypeptide that is capable of modulating an immune response, preferably a B cell and/or T cell response.

As used herein, a polypeptide that modulates an immune response, preferably a B cell and/or a T cell response is understood to indicate a polypeptide that causes a B cell and/or T cell to respond to the contact of said polypeptide to said B cell and/or T cell, e.g. respond by an increase in the number of B cell and/or T cells, by a change in the composition of molecules within or on the surface of B cell and/or T cells, or by a change of the quality and/or in the quantity of molecules released by B cell and/or T cells.

Preferably, a polypeptide according to the invention “co-stimulates” a B cell and/or T cell upon contacting a cell-surface molecule on a B cell and/or T cell, thereby enhancing a
response of said B cell and/or T cell. A B cell and/or T cell response that results from a
costimulatory interaction will be greater than said response in the absence of the
polypeptide. The response of the B cell and/or T cell in the absence of the co-stimulatory
polypeptide can be no response or it can be a response significantly lower than in the
presence of the co-stimulatory polypeptide. It is understood that the modulation of a immune
response incudes an effector, helper, or suppressive response.

Exemplary "co-stimulatory" ligands include B7-1, B7-2, B7-H1, B7-H2, B7-H3, hsB7-
H4LV, hsB7-H5, mB7-H5, mB7-H6, hsB7-H6, 4-1BB, OX40L, and herpes virus entry
mediator (HVEM). "Co-stimulatory" compounds may provide an "activating stimulus" by,
e.g. enhancing intracellularly an activating signal received by a T cell through the antigen
specific T cell receptor (TCR). An activating stimulus can be sufficient to elicit a detectable
response in a T cell. However, a T cell usually requires co-stimulation (e.g., by hsB7-H4LV
or hsB7-H5 or mB7-H5 or mB7-H6 polypeptide) in order to respond detectably to the
activating stimulus. Examples of activating stimuli include, without being limited to,
antibodies that bind to the TCR or to a polypeptide of the CD3 complex that is physically
associated with the TCR on the T cell surface, alloantigens, or an antigenic peptide bound to
a MHC molecule. Similar co-stimulatory receptors exist in B cells and myeloid cells such as
CD21 or Fc_RI.

Exemplary "inhibitory" compounds for T cells include B7-1, B7-2, PD-L1, PD-L2, B7-H4,
hsB7-H4LV, hsB7-H5, mB7-H5, mB7-H6, and hsB7-H6. "Inhibitory" compounds may
provide and "inhibitory signal" by transmitting a signal via an inhibitory receptor (e.g.,
CTLA-4, PD-1, and/or BTLA) molecule on an immune cell. Such a signal antagonizes a
signal via the TCR (e.g., via a TCR, CD3, BCR, or Fc molecule) and can result, e.g., in
inhibition of: second messenger generation; proliferation; or effector function in the
immune cell, e.g., reduced phagocytosis, antibody production, or cellular cytotoxicity, or the failure of the immune cell to produce mediators (such as cytokines (e.g., IL-2) and/or mediators of allergic responses); or development of anergy. Similar inhibitory receptors exist in B cells, NK cells and myeloid cells. Such receptors include CD22, NK-inhibitory receptors, and Fc_RIIB.

In a further aspect the present invention provides new polypeptides. Preferably, said polypeptides are encoded by a nucleic acid according to the invention.

Preferably, polypeptides according to the invention are selected from the group consisting of: (i) hsB7-H4LV (SEQ ID NO:2), (ii) hsB7-H4LV(ECD) (SEQ ID NO:4), (iii) hsB7-H5 (SEQ ID NO:6), (iv) hsB7-H5(ECD) (SEQ ID NO:8), (v) mB7-H5 (SEQ ID NO:10), (vi) mB7-H5(ECD) (SEQ ID NO:12), (vii) mB7-H6 (SEQ ID NO:14), (viii) mB7-H6(ECD) (SEQ ID NO:16), (ix) hsB7-H6 (SEQ ID NO: 42), (x) hsB7-H6(ECD) (SEQ ID NO: 44) and (xi) a functional derivative of (i), (ii), (iii), (iv), (v), (vi), (vii), (viii), (ix) or (x).

In a further preferred embodiment of the present invention, said functional derivative of (i), (ii), (iii), (iv), (v), (vi), (vii), (viii), (ix) or (x) is a fusion molecule or fusion protein thereof. Co-stimulatory ligands are usually membrane bound and activate their counter-receptors by cross-linking. Thus, recombinant monovalent forms of co-stimulatory ligands fail to productively engage their receptors and may function as antagonists. In contrast, multivalent fusion molecules of co-stimulatory ligands (such as e.g. Fc fusion molecules) are therefore usually capable of triggering the respective co-stimulatory receptors. Thus, multivalent fusion molecules of activatory co-stimulatory ligands enhance responses by lymphocytes while multivalent fusion molecules of inhibitory co-stimulatory ligands inhibit responses of lymphocytes.
Since B7-H6 was surprisingly found to be an inhibitory receptor, multivalent fusion molecules (as the Fc fusion molecule used here) of B7-H6 are ideal substances to inhibit T cell response. Such fusion molecules may be used as drugs for therapy of T cell mediated diseases, such as T cell-mediated autoimmunity, including, and preferably, multiple sclerosis, arthritis, colitis, inflammatory bowel disease, Crohn’s disease, type I diabetes and psoriasis. Rejection of transplanted organs is another preferred disease preventable by such drugs. In addition, chronic inflammatory diseases caused by infection or allergens, such as asthma, are preferred target diseases for such a drug. Recombinant monovalent forms of costimulatory ligands or monovalent fusion molecules antagonize the function of their natural, cell bound counterparts. Since B7-H6 naturally inhibits T cell responses, a monovalent form of B7-H6 or monovalent fusion molecules will inhibit the inhibition thereby enhancing T cell responses. Treatment with monovalent forms of B7-H6 or monovalent fusion molecules may therefore effectively enhance T cell responses against cancer or during chronic viral infections. Application of monovalent forms of B7-H6 or monovalent fusion molecules may be particularly effective during periods of vaccination, in particular if co-delivered with the vaccine.

B7-H5 was surprisingly found to trigger proliferation of B cells and production of antibodies. Monovalent forms of B7-H5 or monovalent fusion molecules may therefore be useful for the treatment of autoimmune diseases caused by antibodies, including arthritis (arthritis may be caused by T cells, antibodies or both), Myasthenia gravis, pemphigus or lupus erythematosus. Rejection of xenotransplants is also caused in part by antibodies and treatment with monovalent forms of B7-H5 or monovalent fusion molecules may therefore inhibit this rejection. Diseases characterized by excessive proliferation of B cells, such as
cancer caused by B cell lymphomas, in particular Hogkin-lymphoma, may also be treatable with monovalent forms of B7-H5 or monovalent fusion molecules.

Further preferred are the above mentioned polypeptides hsB7-H4LV, hsB7-H5, mB7-H5, mB7-H6 and hsB7-H6 that are derived by conservative substitutions. Conservative substitutions typically include substitutions within the following groups: glycine and alanine; valine, isoleucine, and leucine; aspartic acid and glutamic acid; asparagines, glutamine, serine and threonine; lysine histidine and arginine; and phenylalanine and tyrosine.

In a further preferred embodiment, the present invention is directed to a functional polypeptide or a derivative thereof that is capable of modulating an immune response, preferably a B cell and/or T-cell response, more preferably B cell and/or T cell activation.

In a further aspect, the present invention provides nucleic acids, wherein said isolated, and preferably purified, nucleic acid is operably linked to a promoter, preferably linked to a promoter selected from the group consisting of the MCK promoter, the RSV promoter, the CMV promoter, a tetracycline-regulatable promoter, a doxycycline-regulatable promoter, and a promoter capable of being recognized by RNA-dependent RNA polymerase. Said operably linked nucleic acids can be used for, e.g. vaccination.

Preferably, the isolated, and preferably purified, nucleic acid is in the form of a recombinant vector, preferably a viral vector. The selection of a suitable vector and expression control sequences as well as vector construction is within the ordinary skill in the art. Preferably, the viral vector is selected from the group consisting of an adeno-associated viral vector, a retroviral vector, a Herpes simplex viral vector, a lentiviral vector,
a Sindbis viral vector, or a Semliki forest viral vector. Preferably, the isolated, and preferably purified, nucleic acid encoding and expressing the protein or polypeptide is operably linked to a promoter selected from the group consisting of the MCK promoter, the CMV promoter, a tetracycline-regulatable promoter, and a doxycycline-regulatable promoter.

Suitable vectors are reviewed in Kay et al., *Nature Medicine* 7: 33-40 (2001); Somia et al., *Nature Reviews* 1: 91-99 (2000); and van Deutekom et al., *Neuromuscular Disorders* 8: 135-148 (1998). Preferably, the viral vector is an adenoviral vector (preferred examples are described in Acsadi et al., *Hum. Gene Ther.* 7(2): 129-140 (1996); Quantin et al., *PNAS USA* 89(7): 2581-2584 (1992); and Ragot et al., *Nature* 361 (6413): 647-650 (1993)), an adeno-associated viral vector (preferred examples are described in Rabinowitz et al., *Curr. Opin. Biotechnol.* 9(5): 470-475 (1998)), a retroviral vector (preferred examples are described in Federico, *Curr. Opin. Biotechnol.* 10(5): 448-453 (1999)), a Herpes simplex viral vector (see, e.g., Latchman, Gene 264(1): 1-9 (2001)), a lentiviral vector, a Sindbis viral vector, or a Semliki forest viral vector. Suitable promoters for operable linkage to the isolated and purified nucleic acid are known in the art. Preferably, the isolated and purified nucleic acid encoding the protein is operably linked to a promoter selected from the group consisting of the muscle creatine kinase (MCK) promoter (Jaynes et al., *Mol. Cell Biol.* 6: 2855-2864 (1986)), the cytomegalovirus (CMV) promoter, a tetracycline-regulatable promoter (Gossen et al., *PNAS USA* 89: 5547-5551 (1992)), and a doxycycline-regulatable promoter (Gossen et al. (1992), *supra*). Vector construction, including the operable linkage of a coding sequence with a promoter and other expression control sequences, is within the ordinary skill in the art.
The present invention provides recombinant expression vectors capable of replicating in a host cell, comprising one or more vector sequences and a nucleic acid sequence of the invention. In a preferred embodiment, said recombinant vector is capable of producing a polypeptide according to the invention. The construct for use as a pharmaceutical is also provided, as well as its use for the manufacture of a medicament for the prophylaxis or treatment of autoimmune diseases including, and preferably consisting of, type I diabetes and multiple sclerosis, asthma, arthritis, psoriasis, colitis or rejection of transplanted organs, immuno deficiency diseases, and cancer as well as, preferably, for the prophylaxis or treatment of autoimmune diseases mediated by antibodies including, and preferably consisting of, myasthenia gravis, arthritis, lupus erythematosus, pemphigus, and rejection of xenotransplants.

Therefore, in a further aspect of the present invention, a pharmaceutical composition is provided comprising a recombinant vector in accordance with the present invention and a pharmacologically acceptable carrier.

An additional aspect of the present invention discloses host cells comprising a nucleic acid according to the invention, preferably transformed to produce polypeptides of the present invention. In a preferred embodiment, the host cell of the invention comprises the recombinant vector of the invention, said vector comprising a nucleic acid according to the invention and said vector being capable of producing a polypeptide of the invention. Preferred host cells are eukaryotic cells, more preferably insect cells or mammalian cells.

Another aspect of the present invention relates to antibodies that specifically bind any of the polypeptide according to the invention. Of particular interest are monoclonal antibodies that block the interaction of the polypeptides according to the intervention with their receptors.
Alternatively, a mixture of monoclonal antibodies recognizing non-overlapping epitopes may be used. Such antibodies recognizing non-overlapping epitopes are able to simultaneously bind to the polypeptide according to the invention (i.e. there is no competition for binding). A person skilled in the art may therefore easily be able to identify such antibodies.

Preferably, said antibodies bind to the hsB7-H4LV, hsB7-H5, mB7-H5, mB7-H6, or hsB7-H6 polypeptides of SEQ ID NOs: 2, 6, 10, 14, and/or 42, even more preferably to the extracellular domain of these polypeptides, namely to the amino acid sequences of SEQ ID NOs: 4, 8, 12, 16, and/or 44.

The antibodies may be polyclonal or monoclonal antibody. As used herein, the term “antibody” refers not only to whole antibody molecules, but also to antigen-binding fragments, e.g., Fab, F(ab’)2, Fv, and single chain Fv fragments. Also included are chimeric antibodies, preferably humanized antibodies.

It is understood that an antibody of the present invention that “binds specifically” to a polypeptide of the present invention does not bind substantially to B7-1, B7-2, B7-H1, B7-H2, B7-H3, PD-L2 or B7S1 (Durbaka V. R. et al. (2003) Immunity 18, 863-873).

In a preferred embodiment said antibody of the invention inhibits the capability of the polypeptides of the present invention to modulate immune responses, preferably B cell responses, T cell responses, or B cell and T cell responses. Co-stimulatory ligands regulate responses of lymphocytes by engaging costimulatory receptors on these lymphocytes. Monoclonal antibodies directed against costimulatory ligands therefore may inhibit the interaction of the costimulatory ligand with its receptor and thereby antagonizes its
function. Since B7-H6 naturally inhibits T cell responses, a monoclonal antibody directed against B7-H6 will inhibit the inhibition thereby enhancing T cell responses. Treatment with monoclonal antibodies against B7-H6 may therefore effectively enhance T cell responses against cancer or during chronic viral infections. Application of monoclonal antibodies against B7-H6 may be particularly effective during periods of vaccination, in particular if co-delivered with the vaccine. B7-H5 was surprisingly found to trigger proliferation of B cells and production of antibodies. Monoclonal antibodies against B7-H5 and blocking the interaction of B7-H5 with its receptor(s) may therefore be useful for the treatment of autoimmune diseases caused by antibodies, including arthritis (arthritis may be caused by T cells, antibodies or both), Myasthenia gravis, pemphigus or lupus erythematosus. Rejection of xenotransplants is also caused in part by antibodies and treatment with monoclonal antibodies against B7-H5 may therefore inhibit this rejection. Diseases characterized by excessive proliferation of B cells, such as cancer caused by B cell lymphomas, in particular Hogkin-lymphoma, may also be treatable with monoclonal antibodies against B7-H5.

Monoclonal antibodies, more preferably humanized antibodies of the present invention are preferred. The preparation of monoclonal antibodies and humanization thereof is within the ordinary skill in the art. An antibody specific for the polypeptide of the invention can be easily obtained by immunizing an animal with an immunogenic amount of the polypeptide. Therefore, an antibody recognizing a particular polypeptide embraces both polyclonal antibodies and antisera which are obtained by immunizing an animal, and which can be confirmed to recognize the polypeptide of this invention by Western blotting, ELISA, immunostaining or other routine procedure known in the art.

It is well known that if a polyclonal antibody can be obtained by sensitization, a monoclonal antibody is secreted by the hybridoma, which may be obtained from the lymphocytes of the

According to the invention, an "antibody" also embraces an active fragment thereof. An active fragment means a fragment of an antibody having activity of antigen-antibody reaction. Specifically named, these are active fragments, such as F(ab')2, Fab', Fab, and Fv. For example, F(ab')2 results if the antibody of this invention is digested with pepsin, and Fab results if digested with papain. Fab' results if F(ab')2 is reduced with a reagent such as 2-mercaptoethanol and alkylated with monoiodoacetic acid. Fv is a mono active fragment where the variable region of heavy chain and the variable region of light chain are connected with a linker. A chimeric antibody is obtained by conserving these active fragments and substituting the fragments of another animal for the fragments other than these active fragments. In particular, humanized antibodies are envisioned.
Thus, in the above respect, hybridoma cell lines expressing antibodies or cell lines transfected to express said antibodies that specifically bind a polypeptide of the invention present a further aspect. Preferably, hybridoma cell lines expressing monoclonal antibodies of the invention are provided.

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier. In a preferred embodiment such pharmaceutical compositions may consist of at least one of the following: (i) a functional polypeptide, a functional polypeptide derivative, a nucleic acid or recombinant vector encoding/expressing a functional polypeptide or a functional polypeptide derivative, an antibody of the present invention, or mimetics, agonists, antagonists or inhibitors of the functional polypeptide, all of the present invention, and (ii) a pharmaceutically acceptable carrier (or excipient).

In a further aspect of the present invention, a pharmaceutical composition comprising a nucleic acid according to the invention and a pharmaceutically acceptable carrier is provided. In another aspect, the present invention provides for a pharmaceutical composition a vector according to the invention and a pharmaceutically acceptable carrier. Moreover, in again a further aspect, the present invention provides a pharmaceutical composition comprising an antibody according to the invention and a pharmaceutically acceptable carrier.

Suitable carriers or excipients are well-known in the art. A carrier or excipient may be a solid, semi-solid or liquid material which may serve as a vehicle or medium for the active ingredient. One of ordinary skill in the art in the field of preparing compositions can readily select the proper form and mode of administration depending upon the particular
characteristics of the product selected, the disease or condition to be treated, the stage of the disease or condition, and other relevant circumstances (Remington’s Pharmaceutical Sciences, Mack Publishing Co. (1990)). The proportion and nature of the pharmaceutically acceptable carrier or excipient are determined by the solubility and chemical properties of the pharmaceutically active compound being selected, the chosen route of administration, and standard pharmaceutical practice. The pharmaceutical preparation may be adapted for oral, parenteral or topical use and may be administered to the patient in the form of tablets, capsules, suppositories, solution, suspensions, or the like. The pharmaceutically active compounds of the present invention, while effective themselves, can be formulated and administered in the form of their pharmaceutically acceptable salts, such as acid addition salts or base addition salts, for purposes of stability, convenience of crystallization, increased solubility, and the like.

Another aspect of the present invention is directed at at least one of the following: a functional polypeptide, a functional polypeptide derivative, a nucleic acid or recombinant vector encoding/expressing a functional polypeptide or a functional polypeptide derivative, or an antibody according to the present invention for use as a medicament. Moreover, in another aspect, the present invention provides for a nucleic acid in accordance with the invention for use as a medicament. Furthermore, in again a further aspect, the present invention provides a recombinant vector in accordance with the present invention for use as a medicament.

With respect to the vectors of the present invention, to ensure effective transfer of the vectors of the present invention, it is preferred that about 1 to about 5,000 copies of the vector according to the invention be employed per cell to be contacted, based on an approximate number of cells to be contacted in view of the given route of administration,
and it is even more preferred that about 3 to about 300 pfu enter each cell. However, this is merely a general guideline, which by no means precludes use of a higher or lower amount, as might be warranted in a particular application, either in vitro or in vivo. The actual dose and schedule can vary depending on whether the composition is administered in combination with other compositions, e.g., pharmaceutical compositions, or depending on interindividual differences in pharmacokinetics, drug disposition, and metabolism. Similarly, amounts can vary in in vitro applications depending on the particular type of cell or the means by which the vector is transferred. One skilled in the art easily can make any necessary adjustments in accordance with the necessities of the particular situation. Also in view of the above, the present invention provides an isolated and purified nucleic acid encoding the above-described protein or polypeptide, optionally in the form of a recombinant viral vector.

In a further aspect, the present invention encompasses the use of at least one of the following: a functional polypeptide, a functional polypeptide derivative, a nucleic acid or recombinant vector encoding/expressing a functional polypeptide or a functional polypeptide derivative, or an antibody according to the present invention for the preparation of a medicament for modulating the immune response. Moreover, in another aspect, the present invention provides for a nucleic acid in accordance with the invention for the preparation of a medicament for modulating the immune response. Furthermore, in again a further aspect, the present invention provides a recombinant vector in accordance with the present invention for the preparation of a medicament for modulating the immune response.

Preferably the above mentioned compounds, e.g. a functional polypeptide, a functional polypeptide derivative, a nucleic acid or recombinant vector encoding/expressing a functional polypeptide or a functional polypeptide derivative, or an antibody according to
the present invention, a nucleic acid or a recombinant vector in accordance with the invention, are used for the preparation of a medicament for treating and/or preventing autoimmune diseases including, and preferably consisting of, type I diabetes and multiple sclerosis, asthma, arthritis, psoriasis, colitis or rejection of transplanted organs, immuno-deficiency diseases, and cancer as well as, preferably, for the prophylaxis or treatment of autoimmune diseases mediated by antibodies including, and preferably consisting of, myasthenia gravis, arthritis, lupus erythematosus, pemphigus, and rejection of xenotransplants.

In a further preferred embodiment, the present invention relates to a method of identifying a compound that inhibits an immune response. The method involves (i) providing a test compound; (ii) culturing the compound, together with one or more functional polypeptides and/or functional polypeptide derivatives according to the invention, and a B cell or a T cell, or a B cell or a T cell activating stimulus together; and (iii) determining whether the test compound inhibits an immune response.

The invention also embodies a method of identifying a compound that enhances an immune response. The method involves: (i) providing a test compound; (ii) culturing the compound, together with one or more functional polypeptides and/or functional polypeptide derivatives according to the invention, and a B cell or a T cell, or a B cell or a T cell activating stimulus together; and (iii) determining whether the test compound enhances the response of the T cell to the stimulus, as an indication that the test compound enhances an immune response.

A "B cell activating stimulus", as used herein, may, for example, be an antibody that binds to CD40. Alternatively, the stimulus may be an anti-IgM antibody or a CD154 molecule.
A "T cell activating stimulus", as used herein, may, for example, be an antibody that binds
to a T cell receptor or a CD3 polypeptide. Alternatively, the stimulus may be an alloantigen
or an antigenic peptide bound to a major histocompatibility complex (MHC) molecule on
the surface of an antigen presenting cell (APC). The APC can be transfected or transformed
with a nucleic acid encoding one or more functional polypeptides and/or functional
polypeptide derivatives according to the invention and the functional polypeptide and/or
functional p

An additional aspect of the present invention encompasses also an ex vivo method. The
method can also be an ex vivo procedure that, for example, involves: (i) providing a
recombinant cell which is the progeny of a cell obtained from the mammal and which has
been transfected of transformed ex vivo with one or more nucleic acids encoding the first co-
stimulatory polypeptide and the one or more additional polypeptides so that the cell
expresses the first co-stimulatory polypeptide and the one or more additional co-stimulatory
polypeptides; and (ii) administering the cell to the mammal. Alternatively, the ex vivo
procedure may involve: (i) providing a first recombinant cell which is the progeny of a cell
obtained from the mammal and which has been transfected or transformed ex vivo with a
nucleic acid encoding the first co-stimulatory polypeptide; providing one or more additional
recombinant cells each of which is the progeny of a cell obtained from the mammal and each
of which has been transfected or transformed ex vivo with a nucleic acid encoding one of the
additional one or more co-stimulatory polypeptides; and (ii) administering the first cell and
the one or more additional cells to mammal. The recombinant cells used in the any of the ex
vivo methods may be antigen presenting cells (APC) and they may express the first co-
stimulatory polypeptide and/or the one or more additional co-stimulatory polypeptides on
their surface. Prior to the administering, APC may be pulsed with an antigen or an antigenic
peptide. In addition, the cell obtained from the mammal may be a tumor cell. In any of the
above methods of co-stimulating a B cell, a T cell, or a B cell and a T cell, the mammal may be suspected of having, for example, an immunodeficiency disease, an inflammatory condition, or an autoimmune disease.

Another important aspect of the present invention relates to a method of treating and/or preventing a disease in a mammal, wherein said disease is selected from autoimmune diseases and diseases that benefit from an enhanced or reduced immune response, preferably type I diabetes and multiple sclerosis, asthma, arthritis, psoriasis, colitis or rejection of transplanted organs, immuno deficiency diseases, and cancer as well as, preferably, selected from autoimmune diseases mediated by antibodies including, and preferably consisting of, myasthenia gravis, arthritis, lupus erythematosus, pemphigus, and rejection of xenotransplants, which method comprises administering to the mammal a therapeutically effective amount of an inventive polypeptide, a functional polypeptide, a functional derivative of a polypeptide, a nucleic acid and/or recombinant vector encoding/expressing an inventive polypeptide, a functional polypeptide and/or a functional derivative of a polypeptide according to the invention.

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of an inventive polypeptide, a functional polypeptide, a functional derivative of a polypeptide, a nucleic acid and/or recombinant vector encoding/expressing an inventive polypeptide, a functional polypeptide and/or a functional derivative of a polypeptide according to the invention. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline,
dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The compounds to be administered may be administered by any suitable route of administration as known in the art, such as orally, e.g., in the form of a tablet or capsule, subcutaneously, transdermally, rectally, intravenously, intramuscularly, intra-arterially, intramedullary, intrathecally, intraventricularly, intraperitoneally, intranasally, enterally, topically, sublingually, parenterally, e.g., by injection and the like. Preferably, the compound is administered by intramuscular injection. Alternatively, the polypeptide compounds may be administered by the administration of a nucleic acid encoding and expressing said polypeptide. Suitable routes of administering nucleic acids are also known in the art. One of ordinary skill in the art will readily appreciate that one route may have a more immediate effect than another route.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.
For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or yophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

Preferably, the above mentioned compounds for therapy are administered by intravenous or local application, e.g. into a tumor.

When a recombinant vector is administered said vector is selected from the group consisting of an adenoviral vector, an adeno-associated viral vector, a retroviral vector, a *Herpes simplex* viral vector, a lentiviral vector, a *Sindbis* viral vector, or a *Semliki forest* viral vector.

The determination of a “therapeutically effective amount” is well within the capability of those skilled in the art. For any compound, the therapeutically effective amount can be estimated initially either in cell culture assays or in an appropriate animal model. The
animal model is also used to achieve a desirable concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective amount refers to that amount of active agent which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals (e.g., ED50, the dose therapeutically effective in 50% of the population; and LD50, the dose lethal to 50% of the population). The dose ratio between therapeutic and toxic effects is the therapeutic index, and it can be expressed as the ratio, LD50/ED50. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.

The exact dosage may be chosen by the individual physician in view of the patient to be treated. Dosage and administration can be adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Additional factors which may be taken into account include the severity of the disease state (e.g. tumour size and location); age, weight and gender of the patient; diet; time and frequency of administration; drug combination(s); reaction sensitivities; and tolerance/response to therapy. Long acting pharmaceutical compositions can be administered on a daily basis, every 3 to 4 days, every week, or once every two weeks, depending on half-life and clearance rate of the particular formulation.
The mammal may be a guinea pig, dog, cat, rat, mouse, horse, cow, sheep, monkey or chimpanzee. Preferably, the mammal is a human.

A further aspect of the present invention is directed to a method of producing a polypeptide, nucleic acid, or vector according to the invention, wherein a host cell of the invention is cultured and said polypeptide, nucleic acid, or vector is purified. In particular, said method of producing a polypeptide, nucleic acid, or vector of the invention comprises the steps of: (i) providing a host cell of the invention, (ii) culturing said host cell under conditions suitable for expression of said polypeptide, said nucleic acid, or said vector of the invention; and (iii) isolating said polypeptide, nucleic acid, or vector of the invention from said host cell.

In a further aspect of the present invention, a method is provided for producing an antibody according to the invention, said method comprising the steps of: (i) providing a hybridoma cell of the invention or a cell line transfected to express said antibody, (ii) culturing said hybridoma cell or said cell line transfected to express said antibody under conditions suitable for expression of said antibody of the invention; and (iii) isolating said antibody from said hybridoma cell or said cell line.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one or ordinary skill in the art to which this invention pertains. Preferred methods and materials are described below, although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention.
EXAMPLES

The following examples serve to illustrate further the present invention and are not intended to limits its scope in any way.

SHORT SUMMARY

Using a novel PCR-based strategy, the inventors have identified four cDNA sequences (SEQ ID NOS: 1, 5, 9, 13, and 41) corresponding to five genes encoding novel B7-related molecules (hsB7-H4LV, hsB7-H5, mB7-H5, mB7-H6 and hsB7-H6) (SEQ ID NOS: 2, 6, 10, 14, 42).

Translation of the cDNA sequences indicated the five polypeptides encoded by the five cDNA molecules are type I transmembrane proteins of 315 amino acids (hsB7-H4LV), 430 amino acids (hsB7-H5), 428 amino acids (mB7-H5), 280 amino acids (mB7-H6) and 399 amino acid (hsB7-H6), each containing two immunoglobulin (Ig) domains except mB7-H6 contains only one, a transmembrane (TM) and a cytoplasmic domain (IC).

EXAMPLE 1

Database search for B7-related genes

Protein sequences of both human and mouse B7 family members including CD80, CD86, B7-H1, B7-H2 and B7-H3 were used for BLAST® (Basic Local Alignment Search Tool) searches. The standard protein-protein BLAST (blastp) similarity search program was used with default values except for the following options: Matrix: BLOSUM 62, Gap costs:
Existence 11 and Extension 1 and no low complexity filter. The BLAST results were further screened for hypothetical proteins, unknown proteins and proteins containing the text “similar to” in the definition of the database entry.

These protein sequences were subjected to a further analysis for the occurrence of a catalogue of different features such as particular domains and specified intrinsic features which are included in the SMART (a Simple Modular Architecture Research Tool) programm (Letunic I. et al (2002) Nucleic Acid Res. 30, 242-244). SMART allows the identification and annotation of genetically mobile domains and the analysis of domain architectures. The sequences were analyzed for the following criteria, the existence of a signal peptide at the N-terminus, two tandem Ig-domains, transmembrane domain, a short cytoplasmic domain, the absence of a SPRY domain (after SPIa and the Ryanodine receptor) (also called heptad structure and B30.2 domain) at the C-terminal portion of the cytoplasmic domain. Furthermore, the membrane distal Ig domain must belong to the immunoglobulin V-type whereas the membrane proximal Ig domain should belong to the C-type family or at least be an Ig-like domain. The immunoglobulin V-type domain contributes to the noncovanlent dimer interface (Ikemizu S. et al. (2000) Immunity 12, 51-60). More recently, two independent crystallographic analyses provided the first structural description of the CTLA-4-B7 costimulatory complex (Schwartz J. C. et al. (2001) Nature 410, 604-608; Stamper C. C. et al. (2001) Nature 410, 608-611). The complex showed the involvement of the Ig V-type domain of human B7-2 in receptor-binding. Therefore, the distal Ig domain must belong to the Ig V-type domain.

Five potential hypothetical cDNA sequences were obtained with the above searches which either completely or partially met the criteria for the above described B7 family members.
One result of the bioinformatical analysis was a hypothetical protein (Accession number XP_087714) which met all terms. The nucleic acid sequence of said hypothetical protein was confirmed by analysis of independent reverse transcription-polymerase chain reaction (RT-PCR) products from human normal spleen poly(A)+ RNA and also human testis total RNA as described in example 2. This sequence (SEQ ID NO:1) is designated hsB7-H4LV and encodes a putative 315 amino acids (aas) protein and shares identity in its predicted extracellular receptor-binding domains with human CD80 (18%), CD86 (21%), B7-H1 (18%), B7-H2 (18%), B7-H3 (29%) (see Fig. 1).

The putative hsB7-H4LV protein contains a signal peptide in its NH₂-terminus ranging from 1-35 aas, a single extracellular Ig domain (E-value 2.70e-06) ranging form 44-151 aas, a single extracellular Ig-like domain (E-value 3.00e-13) ranging from 159-244 aas, a transmembrane region ranging from 258-277 aas, and a 38-aas cytoplasmic tail (SEQ ID NO: 2).

A second hypothetical protein (Accession number XP_087460) was found which contains the particular Ig domains and a signal peptide. However, the transmembrane domain and cytoplasmic tail is missing. The amino acid sequence of XP_087460 was used for a homology search using an EST database. The obtained homologue EST sequences were aligned and the consensus sequence was used to complete the C-terminus of XP_087460. Thereby a virtual cDNA, designated hsB7-H5 (SEQ ID NO: 5), was designed and its existence was confirmed by RT-PCR (as described in example 4). This sequence (SEQ ID NO: 5) encodes a putative 430 aas protein (SEQ ID NO: 6) and shares an identity in its predicted extracellular receptor-binding domain with human CD80 (18%), CD86 (24%), B7-H1 (18%), B7-H2 (17%), B7-H3 (22%), B7-H4 (19%) (Table 1).
The putative hsB7-H5 protein contains a signal peptide in its NH$_2$-terminus ranging form 1-15 aas, a single extracellular Ig V-type domain (E-value 6.97e-03) ranging from 28-142 aas, a single extracellular Ig C2-type domain (E-value 2.37e-05) ranging from 155-221 aas, a transmembrane region ranging from 245-267 aas, and a 163-aas cytoplasmic tail (SEQ ID NO: 6)

The third hypothetical protein was a putative mouse orthologue (Acc. No.: XM_156112) of XP_087460 which was found using the standard protein-protein BLAST (blastp) similarity search program and the IgG domains of the XP_087460 as query sequence in the NCBI database. However, this mouse orthologue was a hypothetical protein and the integrity of the 5' end and 3' end had to be experimentally confirmed. A search for ESTs (expressed sequence tags) using the derived amino acid sequence of mB7-H5 as query resulted in several identical hits coding for the IgG domain regions whereas the N-terminus and C-terminus showed no similarity to the found ESTs. An alignment of the hsB7-H5 and its mouse orthologue XM_156112 showed a variation within the 5'end and 3' end. Therefore, with the help of the mouse EST database sequences, mouse genomic database sequences, and hsB7-H5, a virtual mouse orthologue of hsB7-H5 cDNA was designed (Fig. 3). The sequence of this virtual mouse orthologue, designated mB7-H5 (SEQ ID NO: 9), encodes a putative 428 aas protein (SEQ ID NO: 10) and is 89% identical to hsB7-H5. The existence of mB7-H5 was confirmed by RT-PCR and DNA sequencing (as described in example 6).

The putative mB7-H5 protein contains a signal peptide in its NH$_2$-terminus ranging from 1-23 aas, a single extracellular Ig V-type domain ranging from 39-122 aas, a single extracellular Ig C2-type domain ranging from 156-222 aas, a transmembrane region ranging from 240-262 aas, and a 166-aas cytoplasmic tail (SEQ ID NO: 10).
In a similar approach the sequence encoding mB7-H6 protein was found. The existence of the mB7-H6 was confirmed by RT-PCR and DNA sequencing (as described in example 8). This sequence (SEQ ID NO: 13) encodes a putative 280 aas protein (SEQ ID NO: 14) and shares an identity in its predicted extracellular receptor-binding domain with mouse CD80 (16%), CD86 (14%), B7-H1 (18%), B7-H2 (19%), B7-H3 (20%), B7-H5 (17%) (see Fig. 1). The putative mB7-H6 protein contains a signal peptide in its NH$_2$-terminus ranging from 1-20 aas, however only a single extracellular Ig V-type domain ranging from 34-115 aas, a transmembrane region ranging from 188-210 aas, and a 70-aas cytoplasmic tail (SEQ ID NO: 14).

The hsB7-H6 protein was found by a standard protein-protein BLAST (blastp) similarity search using the mB7-H6 as query sequence. The existence of the hsB7-H6 was confirmed by RT-PCR and DNA sequencing (as described in example 19). This sequence (SEQ ID NO: 41) encodes a putative 399 aas protein (SEQ ID NO: 42) and shares an identity in its predicted extracellular receptor-binding domain with human CD80 (20%), CD86 (19%), B7-H1 (17%), B7-H2 (20%), B7-H3 (21%), B7-H4 (18%) and B7-H5 (20%) (see Fig. 1). The putative hsB7-H6 protein contains a signal peptide in its NH$_2$-terminus ranging from 1-19 aas, a single extracellular Ig V-type domain ranging from 36-115 aas, a single extracellular Ig C2-type domain ranging from 157-218 aas, a transmembrane region ranging from 284-303 aas, and a 105-aas cytoplasmic tail (SEQ ID NO: 42).

Table 1: Percentage of identity on amino acid level of the ectodomain of different B7-family members of human (h) and mouse (m) species.
<table>
<thead>
<tr>
<th></th>
<th>mC D80</th>
<th>hC D86</th>
<th>mC D86</th>
<th>hB7-H1</th>
<th>mB7-H1</th>
<th>hB7-H2</th>
<th>mB7-H2</th>
<th>hB7-H3</th>
<th>mB7-H3</th>
<th>hB7-H4</th>
<th>hB7-H5</th>
<th>mB7-H5</th>
<th>hB7-H6</th>
<th>mB7-H6</th>
</tr>
</thead>
<tbody>
<tr>
<td>hCD80</td>
<td>48</td>
<td>26</td>
<td>23</td>
<td>20</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>mC D80</td>
<td>29</td>
<td>26</td>
<td>23</td>
<td>21</td>
<td>22</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>19</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>hCD86</td>
<td>56</td>
<td>18</td>
<td>23</td>
<td>20</td>
<td>26</td>
<td>23</td>
<td>24</td>
<td>21</td>
<td>24</td>
<td>22</td>
<td>19</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mC D86</td>
<td>20</td>
<td>20</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>26</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>20</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hB7-H1</td>
<td></td>
<td>70</td>
<td>21</td>
<td>22</td>
<td>29</td>
<td>29</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>17</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mB7-H1</td>
<td>22</td>
<td>22</td>
<td>29</td>
<td>29</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>17</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hB7-H2</td>
<td></td>
<td>48</td>
<td>30</td>
<td>29</td>
<td>19</td>
<td>19</td>
<td>20</td>
<td>19</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mB7-H2</td>
<td></td>
<td></td>
<td>28</td>
<td>27</td>
<td>18</td>
<td>20</td>
<td>21</td>
<td>21</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hB7-H3</td>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td>29</td>
<td>22</td>
<td>23</td>
<td>21</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mB7-H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>23</td>
<td>23</td>
<td>21</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hB7-H4L V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>19</td>
<td>18</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>hB7-H5</td>
<td></td>
<td>89</td>
<td>20</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>mB7-H5</td>
<td></td>
<td>21</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>hB7-H6</td>
<td></td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLE 2

Molecular cloning of the human hsB7-H4LV

For the cDNA synthesis 5 μg human testis total RNA, purchased from CLONTECH Laboratories, Inc. Palo Alto, CA (Cat. No. 64027-1), and 0.5 μg human normal spleen poly(A)+ RNA, purchased from Invitrogen life technologies, USA, (Cat. No. D6117-15), were used. The 1st strand cDNA was synthesized in a reaction containing 50 mM Tris-HCl, pH 8.3, 75 mM KCl, 3 mM MgCl₂, 10 mM dithiothreitol, 500 μM dATP, dCTP, dGTP, dTTP, 25 μg/ml oligo(dT)12-18, 40 Units RNaseOUT (Invitrogen life technologies, Cat. No. 10777-019), and 200 Units SUPERSCRIPT™ II RNase H⁻ reverse transcriptase (Invitrogen life technologies, Cat. No. 18064-022) in a total volume of 20 μl at 42°C for 1 hour. Following the reverse transcription the reaction was terminated by incubation at 85°C for 5 minutes. To remove the complementary RNA prior to PCR the cDNA was treated with 2 units of RNase H at 37°C for 30 minutes.

The cDNA sequence of B7-H4LV containing the complete open reading frame was amplified by PCR. The PCR was performed using either the normal spleen cDNA or the testis cDNA as template as well as the High Fidelity PCR System composed of a unique enzyme mix containing thermostable Taq DNA polymerase, a proofreading polymerase (Roche, Cat. No. 1 732 650), and the primers LV43-XM087714f (5'-TGC TGA CGA GAG ATG GTG G-3') (SEQ ID NO: 25) and LV44-XM087714b (5'-CCA CAG CCT TTA GAT GAC GG-3') (SEQ ID NO: 26). The PCR product (968 base pairs) of B7-H4LV obtained from the testis cDNA was cloned into pGEM-T plasmid using T4 DNA ligase (Promega, Cat. No. A3600). After ligation the plasmid was used to transform competent E. coli strain XL1-Blue. The nucleic acid sequence of B7-H4LV (SEQ ID NO:1) was verified by DNA sequencing of two independent clones.
EXAMPLE 3

Preparation and purification of soluble (secreted) form of hsB7-H4LV protein

Production of soluble hsB7-H4LV

In order to produce large amount of soluble hsB7-H4LV, a plasmid encoding a secreted form of B7-H4LV fused to the Fc constant region of human IgG1 or a FLAG tagged rat comp pentamerisation domain was introduced into eukaryotic cell and hsB7-H4LV expressing cells were selected using geneticin.

In more detail, a DNA fragment encoding a secreted form of hsB7-H4LV was constructed by polymerase chain reaction (PCR) as follow: The original hsB7-H4LV cDNA clone in pGEM-T (SEQ ID NO:1) was used as template. The PCR reaction was performed using the High Fidelity PCR System composed of unique enzyme mix containing termostable Taq DNA polymerase and a proofreading polymerase (Roche, Cat. No. 1 732 650), and 10 picomoles each of a sense and an antisense oligonucleotide primer in a final volume of 50 microliters. The sense oligonucleotide primer, designated LV49-XM087714f, had the sequence 5’-GGG GGT ACC TGC TGA CGA GAG ATG GTG-3’ (SEQ ID NO: 27) and contained the recognition site for the restriction enzyme KpnI (GGTACC), the strong translation initiation site (GAGAGATGG), and was identical to the hsB7-H4LV cDNA from nucleotides 2 to 20 (SEQ ID NO:1). The antisense designated LV48-XM087714b had the sequence 5’-CGG CTA GCC CGG GTA CGA ACA CGT C-3’ (SEQ ID NO: 28) and contained the recognition site for the restriction enzyme NheI (GCTAGC) to fuse to the Fc constant region of human IgG1 and was identical, in an antisense orientation, to the hsB7-H4LV cDNA from nucleotides 750 to 766 (SEQ ID NO:1).
The PCR reaction was performed on a Hybaid programmable thermal cycler with 5 cycles of 94°, 30 sec, 57°, 45 sec, 68°, 70 sec, and 25 cycles of 94°, 30 sec, 68°, 70 sec and a final cycle of 72°, 7 min. The resulting PCR product extending from hsB7-H4LV nucleotide 2-766 was flanked by restriction sites. In the cell, this DNA encoded a secreted form of the hsB7-H4LV protein from methionine amino acid 1 to glycine amino acids 251 (SEQ ID NO: 1). The PCR product was cloned into pGEM-T and the sequence was confirmed by sequencing both strands.

The plasmid DNA was digested with KpnI and NheI and the insert containing the nucleic acid molecule encoding for the extracellular domain (ECD) of hsB7-H4LV (SEQ ID NO: 3) was ligated into each pCEP-SP-Xa1-Fc* and pCEP-comp-FL-C expression vector. Both vectors were derivatives of the episomal mammalian expression vector pCEP4 (Invitrogen), carrying the Epstein-Barr Virus replication origin (oriP) and nuclear antigen (encoded by the EBNA-1 gene) to permit extrachromosomal replication, and contained a Puromycin selection marker in place of the original Hygromycin B resistance gene.

The pCEP-SP-Xa1-Fc* is an expression vector that contained a KpnI cloning site downstream of the strong cytomegalovirus (CMV) promoter, a NheI cloning site upstream of the Factor X protease recognition site flanking the N-terminus of the Fc constant region of the human IgG1 and a SV40 poly(A) signal necessary for expression in mammalian cells. In addition, the vector contained the EBNA, origin of replication, ampicillin resistance gene, puromycin resistance gene for the selection of cells producing the fusion protein. The resulting plasmid, pCEP-hsB7-H4LV(ECD)-Fc (SEQ ID NO: 17), drove the expression of a B7-H4LV (ECD) - Fc domain fusion protein under the control of a CMV promoter.
The pCEP-comp-FL-C was identical to pCEP-SP-Xa1-Fc* except that the nucleic acid sequence encoding for SP-Xa1-Fc* part was replaced by nucleic acid sequences encoding for the rat pentamerization domain containing FLAG (FL) tag at the C terminus. The resulting plasmid pCEP-hsB7-H4LV (ECD)-comp-FL-C (SEQ ID NO: 18) drove the expression of hsB7-H4LV (ECD) fused to the C-terminal FLAG tagged rat comp pentamerisation domain under the control of a CMV promoter.

Expression of the hsB7-H4LV (ECD) - Fc domain and the hsB7-H4LV (ECD) - comp-Flag domain fusion protein was performed in EBNA cells (Invitrogen). One day before transfection, 5x10^6 EBNA cells were plated onto a 10cm tissue culture plate. Cells were then transfected with pCEP-hsB7-H4LV (ECD)-Fc (SEQ ID NO: 17), or pCEP-hsB7-H4LV (ECD)-comp-FL-C (SEQ ID NO: 18) using Lipofectamin Plus (Invitrogen), incubated one day, and subjected to selection in the presence of 1 μg/ml puromycin. After 24 hours of selection, puromycin-resistant cells were transferred to a Poly-L-Lysine coated 15 cm tissue culture plate and grown to confluency. Medium was replaced by serum-free medium and the supernatant containing the hsB7-H4LV (ECD)-Fc fusion protein or hsB7-H4LV (ECD)-comp-FL-C fusion protein, respectively, was collected every 3 days.

Pooled supernatants of hsB7-H4LV (ECD)-Fc fusion protein expressing cells were filtered through a 0.22 μM Millex GV sterile filter (Millipore) and applied to a protein A-sepharose column. The column was washed with 5 column volumes of 20 mM Tris pH 8.0, 150 mM NaCl, and bound protein was eluted with citrate-phosphate buffer pH 3.6. 1 ml fractions were collected in tubes containing 0.1 ml of 0.5 M Na2HPO4 for neutralization. Positive fractions were identified by SDS-PAGE and pooled. The buffer was exchanged with phosphate-buffered saline (PBS) by ultrafiltration through Ultrafree Biomax 10k
(Millipore). The purified protein in PBS was then filtered through 0.22 μM Millex GV sterile filters (Millipore) and stored at 4°C.

Pooled supernatants of hsB7-H4LV(ECD)-comp-FLAG fusion protein expressing cells were filtered through a 0.22 μM Millex GV sterile filter (Millipore) and applied to an affinity column containing ANTI-FLAG M2-agarose (Sigma, Cat. No.: A2220). The column was washed with 10 column volumes of phosphate-buffered saline (PBS) and bound FLAG fusion protein was eluted with five one-column volumes of a solution containing 100 μg/ml FLAG peptide (Sigma, Cat No.: F3290) in TBS. 1 ml fractions were collected and positive fractions were identified by SDS-PAGE and pooled. The buffer and free FLAG peptides were exchanged with phosphate-buffered saline (PBS) by ultrafiltration through Ultrafree Biomax 10k (Millipore). The purified protein in PBS was then filtered through 0.22 μM Millex GV sterile filters (Millipore) and stored at 4°C.

EXAMPLE 4

Molecular cloning of the human hsB7-H5

For the cDNA synthesis 5 μg human testis total RNA purchased from CLONTECH Laboratories, Inc. Palo Alto, CA (Cat. No. 64027-1) was used. The 1st strand cDNA was synthesized in a reaction containing 50 mM Tris-HCl, pH 8.3, 75 mM KCl, 3 mM MgCl₂, 10 mM dithiothreitol, 500 μM dATP, dCTP, dGTP, dTTP, 25 μg/ml oligo(dT)12-18, 40 Units RNaseOUT (Invitrogen life technologies, Cat. No. 10777-019), and 200 Units SUPERSCRIPT™ II RNase H⁻ reverse transcriptase (Invitrogen life technologies, Cat. No. 18064-022) in a total volume of 20 μl at 42°C for 1 hour. Following the reverse transcription the reaction was terminated by incubation at 85°C for 5 minutes. To remove the
complementary RNA prior to PCR the cDNA was treated with 2 units of RNase H at 37°C for 30 minutes.

The cDNA sequence of hsB7-H5 containing the complete open reading frame was amplified by PCR. The PCR was performed using the testis cDNA as template, High Fidelity PCR System composed of a unique enzyme mix containing termostable Taq DNA polymerase and a proofreading polymerase (Roche, Cat. No. 1 732 650), and the primers LV50-XP087460f (5’-TTT CCA TCT GAG GCA AGA AG-3’) (SEQ ID NO: 29) and LV60-hsB7-H5b (5’-TTC CTC ATG TCC TAT ACC AAG G-3’) (SEQ ID NO: 30). The PCR product of hsB7-H5 obtained from the testis cDNA was cloned into pGEM-T plasmid using T4 DNA ligase (Promega, Cat. No. A3600). No PCR product was detected using brain and spleen derived cDNA. After ligation the plasmid was used to transform competent E. coli strain XL1-Blue. The nucleic acid sequence of hsB7-H5 (SEQ ID NO: 5) was verified by DNA sequencing of two independent clones.

EXAMPLE 5

Preparation and purification of soluble (secreted) form of hsB7-H5 protein

Production of soluble hsB7-H5

In order to produce large amount of soluble hsB7-H5, a plasmid encoding a secreted form of hsB7-H5 fused to the Fc constant region of human IgG1 or the FLAG tagged rat comp pentamerisation domain was introduced into eukaryotic cell and hsB7-H5 expressing cells were selected using geneticin.

In more detail, a DNA fragment encoding a secreted form of hsB7-H5, designated B7-H5 (ECD), was constructed by polymerase chain reaction (PCR) as follow: The full length
hsB7-H5 cDNA clone in pGEM-T (described in example 4) was used as template. The PCR reaction was performed using the High Fidelity PCR System composed of a unique enzyme mix containing thermostable Taq DNA polymerase and a proofreading polymerase (Roche, Cat. No. 1 732 650), and 10 picomoles each of a sense and an antisense oligonucleotide primer in a final volume of 50 microliters. The sense oligonucleotide primer, designated LV56-sec-hsB7-H5f, had the sequence 5’- GG GGT ACC ATG TCT CTG GTG GAA CTT TTG C -3’ (SEQ ID NO: 31) and contained the recognition site for the restriction enzyme KpnI (GGTACC), the strong translation initiation site (GTACATG) and was identical to the hsB7-H5 cDNA from nucleotides 175 to 196 (SEQ ID NO:5). The antisense designated LV57-sec-hsB7-H5b had the sequence 5’- C GGC TAG CCC AAT GTT CCT GGG CTG G -3’ (SEQ ID NO: 32) and contained the recognition site for the restriction enzyme NheI (GCTAGC) to fuse to the Fc constant region of human IgG1 or comp-FLAG domain and is identical, in an antisense orientation, to the B7-H5 cDNA from nucleotides 876 to 893 (SEQ ID NO:5).

The PCR reaction was performed on a Hybaid programmable thermal cycler with 5 cycles of 94°, 30sec, 58°, 45 sec, 72°, 70 sec, and 25 cycles of 94°, 30 sec, 72°, 70 sec and a final cycle of 72°, 7 min. The resulting PCR product which extended from hsB7-H5 nucleotide 175-893 was flanked by restriction sites. In the cell, this DNA encodes a secreted form of the hsB7-H5 protein from methionine amino acid 1 to glycine amino acid 240 (SEQ ID NO:5). The PCR product was cloned into pGEM-T and the sequence confirmed by sequencing both strands.

The plasmid DNA was digested with KpnI and NheI and the insert, containing the nucleic acid molecule encoding for the extracellular domain (ECD) of hsB7-H5 (SEQ ID NO: 7), was ligated into each pCEP-SP-Xa1-Fc* and pCEP-comp-FL-C expression vector. Both
vectors were derivatives of the episomal mammalian expression vector pCEP4 (Invitrogen), carrying the Epstein-Barr Virus replication origin (oriP) and nuclear antigen (encoded by the EBNA-1 gene) to permit extrachromosomal replication, and contained a Puromycin selection marker in place of the original Hygromycin B resistance gene.

The pCEP-SP-Xa1-Fc* is an expression vector that contains a KpnI cloning site downstream of the strong cytomegalovirus (CMV) promoter, a NheI cloning site upstream of the Factor X protease recognition site flanking the N-terminus of the Fc constant region of the human IgG1 and a SV40 poly(A) signal necessary for expression in mammalian cells. In addition, the vector contains the EBNA, origin of replication, ampicillin resistance gene, puromycin resistance gene for the selection of cells producing the fusion protein. The resulting plasmid pCEP-hsB7-H5(ECD)-Fc (SEQ ID NO: 19) drove the expression of a hsB7-H5 (ECD) - Fc domain fusion protein under the control of a CMV promoter.

The pCEP-comp-FL-C was identical to pCEP-SP-Xa1-Fc* except that the nucleic acid sequence encoding for SP-Xa1-Fc* part was replaced by nucleic acid sequences encoding for the rat comp pentamerization domain fused with a C-terminal FLAG tag. The resulting plasmid pCEP-hsB7-H5(ECD)-comp-FL-C (SEQ ID NO: 20) drove the expression of a hsB7-H5 (ECD) fused to “comp” pentamelerizaion domain containing FLAG (FL) tag at the C terminus under the control of a CMV promoter.

Expression and purification of the hsB7-H5 (ECD) - Fc domain and the hsB7-H5 (ECD) - comp-Flag domain fusion protein were performed according detailed descriptions in example 3.
EXAMPLE 6

Molecular cloning of the mouse B7-H5

For the PCR cDNA libraries of different mouse tissues (e.g. brain, spleen, liver, lung) cloned into the pDEL expression vector were used as template.

The cDNA sequence of mB7-H5 containing the complete open reading frame was amplified by PCR. The PCR was performed using pDEL library containing mouse liver cDNA as template, High Fidelity PCR System composed of a unique enzyme mix containing thermostable Taq DNA polymerase and a proofreading polymerase (Roche, Cat. No. 1 732 650), and the primers JS7-mB7-H5f (5'- atg act cgg cgg cgc tc-3') (SEQ ID NO: 33) and JS8-mB7-H5r (5'- cta tac cag gga ccc tgc tgc ac-3') (SEQ ID NO: 34). The PCR product of mB7-H5 obtained from the liver cDNA was cloned into pCR II TOPO plasmid using T4 DNA ligase. No PCR product was detected using brain and spleen derived cDNA. After ligation the plasmid was used to transform competent E. coli strain XL1-Blue. The nucleic acid sequence of mB7-H5 (SEQ ID NO: 9) was verified by DNA sequencing of four independent clones.

EXAMPLE 7

Preparation and purification of soluble (secreted) form mB7-H5 protein

Production of soluble mB7-H5

In order to produce large amounts of soluble mB7-H5, a plasmid encoding a secreted form of mB7-H5 fused to the Fc constant region of human IgG1 or the FLAG tagged rat comp pentamerisation domain was introduced into eukaryotic cell and hsB7-H5 expressing cells were selected using geneticin.
In more detail, a DNA fragment encoding a secreted form of mB7-H5, designated mB7-H5 (ECD), was constructed by polymerase chain reaction (PCR) as follow: The full length mB7-H5 cDNA clone in pCR II TOPO (described in example 6) was used as template. The PCR reaction was performed using the High Fidelity PCR System composed of a unique enzyme mix containing thermostable Taq DNA polymerase and a proofreading polymerase (Roche, Cat. No. 1 732 650), and 10 picomoles each of a sense and an antisense oligonucleotide primer in a final volume of 50 microliters. The sense oligonucleotide primer, designated MST-1mB7-H5for, had the sequence 5'-GGG GTA CCA TCA TCT GGC GGC GCT CC-3' (SEQ ID NO: 35) and contained the recognition site for the restriction enzyme KpnI (GGTACC), the strong translation initiation site (GTACCATG) and was identical to the mB7-H5 cDNA from nucleotides 64 to 81 (SEQ ID NO:9). The antisense designated MST-2mB7-H5rev had the sequence 5'-GGG CTA GCA CGG GTG AGA TAA CCT GGA G-3' (SEQ ID NO: 36) and contained the recognition site for the restriction enzyme NheI (GCTAGC) to fuse to the Fc constant region of human IgG1 or comp-FLAG domain and is identical, in an antisense orientation, to the mB7-H5 cDNA from nucleotides 751 to 768 (SEQ ID NO:9).

The PCR reaction was performed on a Hybaid programmable thermal cycler with 5 cycles of 94°, 30 sec, 58°, 45 sec, 72°, 70 sec, and 25 cycles of 94°, 30 sec, 72°, 7 sec and a final cycle of 72°, 7 min. The resulting PCR product which extended from mB7-H5 nucleotide 64-768 was flanked by restriction sites. In the cell, this DNA encodes a secreted form of the mB7-H5 protein from methionine amino acid 1 to prolin amino acid 235 (SEQ ID NO:9). The PCR product was cloned into pGEM-T and the sequence confirmed by sequencing both strands.
The plasmid DNA was digested with KpnI and NheI and the insert, containing the nucleic acid molecule encoding for the extracellular domain (ECD) of mB7-H5 (SEQ ID NO: 11), was ligated into each pCEP-SP-Xa1-Fc* and pCEP-comp-FL-C expression vector. Both vectors were derivatives of the episomal mammalian expression vector pCEP4 (Invitrogen), carrying the Epstein-Barr Virus replication origin (oriP) and nuclear antigen (encoded by the EBNA-1 gene) to permit extrachromosomal replication, and contained a Puromycin selection marker in place of the original Hygromycin B resistance gene.

The pCEP-SP-Xa1-Fc* is an expression vector that contains a KpnI cloning site downstream of the strong cytomegalovirus (CMV) promoter, a NheI cloning site upstream of the Factor X protease recognition site flanking the N-terminus of the Fc constant region of the human IgG1, and a SV40 poly(A) signal necessary for expression in mammalian cells. In addition, the vector contains the EBNA, origin of replication, amplicin resistance gene, puromycin resistance gene for the selection of cells producing the fusion protein. The resulting plasmid pCEP-mB7-H5(ECD)-Fc (SEQ ID NO: 21) drives expression of the mB7-H5 (ECD) - Fc domain fusion protein under the control of a CMV promoter.

The pCEP-comp-FL-C was identical to pCEP-SP-Xa1-Fc* except that the nucleic acid sequence encoding for SP-Xa1-Fc* part was replaced by nucleic acid sequences encoding for comp pentamerization domains containing a C-terminal Flag tag. The resulting plasmid pCEP-mB7-H5-comp-FL-C (SEQ ID NO: 22) drives expression of mB7-H5 (ECD) fused to rat “comp” pentamerization domain containing FLAG (FL) tag at the C terminus under the control of a CMV promoter.
Expression and purification of the mB7-H5 (ECD) - Fc domain and the mB7-H5 (ECD) - comp-Flag domain fusion protein were performed according detailed descriptions in example 3.

EXAMPLE 8

Molecular cloning of the mouse B7-H6

For the cDNA synthesis 4 µg mouse macrophage total RNA was used. The total RNA was obtained by using RNeasy MiniPrep (Qiagen; Cat. No. 74104) and isolated mouse macrophages. The 1st strand cDNA was synthesized in a reaction containing 50 mM Tris-HCl, pH 8.3, 75 mM KCl, 3 mM MgCl₂, 10 mM dithiothreitol, 500 µM dATP, dCTP, dGTP, dTTP, 25 µg/ml oligo(dT)12-18, 40 Units RNaseOUT (Invitrogen life technologies, Cat. No. 10777-019), and 200 Units SUPERSCRIPT™ II RNase H' reverse transcriptase (Invitrogen life technologies, Cat. No. 18064-022) in a total volume of 20 µl at 42°C for 1 hour. Following the reverse transcription the reaction was terminated by incubation at 85°C for 5 minutes. To remove the complementary RNA prior to PCR the cDNA was treated with 2 units of RNase H at 37°C for 30 minutes.

The cDNA sequence of mB7-H6 containing the complete open reading frame was amplified by PCR. The PCR was performed using either the mouse macrophage derived cDNA as template as well as the High Fidelity PCR System composed of a unique enzyme mix containing thermostable Taq DNA polymerase, a proofreading polymerase (Roche, Cat. No. 1 732 650), and the primers LV80-mC18f (5'-GTA GCT TCA AAT AGG ATG GAG-3') (SEQ ID NO: 37) and LV81-mC18b (5'-AAA CTG TGT TCA GCA GGC AG-3') (SEQ ID NO: 38). The PCR product (867 base pairs) of mB7-H6 obtained from the mouse macrophage cDNA was cloned into pGEM-T plasmid using T4 DNA ligase (Promega, Cat.
No. A3600). After ligation the plasmid was used to transform competent E. coli strain XL1-Blue. The nucleic acid sequence of mB7-H6 (SEQ ID NO:13) was verified by DNA sequencing of four independent clones.

EXAMPLE 9

Preparation and purification of soluble (secreted) form of mB7-H6 protein

Production of soluble mB7-H6

In order to produce large amount of soluble mB7-H6 protein, a plasmid encoding a secreted form of mB7-H6 fused to the Fc constant region of human IgG1 or the FLAG tagged rat comp pentamerisation domain was introduced into eukaryotic cell and mB7-H6 expressing cells were selected using geneticin.

In more detail, a DNA fragment encoding a secreted form of mB7-H6, designated mB7-H6 (ECD) (SEQ ID NO: 15), was constructed by polymerase chain reaction (PCR) as follow: The full length mB7-H6 cDNA clone in pGEM-T easy (described in example 8) was used as template. The PCR reaction was performed using the High Fidelity PCR System composed of a unique enzyme mix containing thermostable Taq DNA polymerase and a proofreading polymerase (Roche, Cat. No. 1 732 650), and 10 picomoles each of a sense and an antisense oligonucleotide primer in a final volume of 50 microliters. The sense oligonucleotide primer, designated LV82-mC18f, had the sequence 5'G CTC ATC AG -3' (SEQ ID NO: 39) and contained the recognition site for the restriction enzyme KpnI (GGTACC), the strong translation initiation site (CCAGGATGG) and was identical to the mouse mB7-H6 cDNA from nucleotides 13 to 31 (SEQ ID NO:7). The antisense designated LV83-mC18b had the sequence 5'- GGC TAG CAG GTT CCT CCC
TGA AC -3' (SEQ ID NO: 40) and contained the recognition site for the restriction enzyme NheI (GCTAGC) to fuse to the Fc constant region of human IgG1 or comp-FLAG domain and is identical, in an antisense orientation, to the mB7-H6 cDNA from nucleotides 557 to 574 (SEQ ID NO:13).

The PCR reaction was performed on a Hybaid programmable thermal cycler with 5 cycles of 94°, 30 sec, 50°, 45 sec, 72°, 60 sec, and 25 cycles of 94°, 30 sec, 72°, 70 sec and a final cycle of 72°, 7 min. The resulting PCR product which extended from mB7-H6 nucleotide 13-574 was flanked by restriction sites. In the cell, this DNA encodes a secreted form of the mB7-H6 protein from methionine amino acid 1 to leucin amino acid 186 (SEQ ID NO:15). The PCR product was cloned into pGEM-T easy and the sequence confirmed by sequencing both strands.

The plasmid DNA was digested with KpnI and NheI and the insert, containing the nucleic acid molecule encoding for the extracellular domain (ECD) of mB7-H6 (SEQ ID NO: 15), was ligated into each pCEP-SP-Xa1-Fc* and pCEP-comp-FL-C expression vector. Both vectors were derivatives of the episomal mammalian expression vector pCEP4 (Invitrogen), carrying the Epstein-Barr Virus replication origin (oriP) and nuclear antigen (encoded by the EBNA-1 gene) to permit extrachromosomal replication, and contained a Puromycin selection marker in place of the original Hygromycin B resistance gene.

The pCEP-SP-Xa1-Fc* is an expression vector that contains a KpnI cloning site downstream of the strong cytomegalovirus (CMV) promoter, a NheI cloning site upstream of the Factor X protease recognition site flanking the N-terminus of the Fc constant region of the human IgG1 and a SV40 poly(A) signal necessary for expression in mammalian cells. In addition, the vector contains the EBNA, origin of replication, ampicillin resistance gene, puromycin
resistance gene for the selection of cells producing the fusion protein. The resulting plasmid pCEP- mB7-H6 (ECD)-Fc (SEQ ID NO:23) drove the expression of a mB7-H6 (ECD) - Fc domain fusion protein under the control of a CMV promoter.

The pCEP-comp-FL-C was identical to pCEP-SP-Xa1-Fc* except that the nucleic acid sequence encoding for SP-Xa1-Fc* part was replaced by nucleic acid sequences encoding for the rat comp pentamerization domain fused with a C-terminal FLAG tag. The resulting plasmid pCEP- mB7-H6 (ECD)-comp-FL-C (SEQ ID NO:24) drove the expression of a mB7-H6 (ECD) fused to “comp” pentamerizaion domain containing FLAG (FL) tag at the C terminus under the control of a CMV promoter.

Expression and purification of the mB7-H6 (ECD) - Fc domain and the mB7-H6 (ECD) - comp-Flag domain fusion protein protein were performed according detailed descriptions in example 3.

EXAMPLE 10

Molecular cloning of the human B7-H6

For the cDNA synthesis 4 µg human spleen polyA+ RNA (Cat No. 6542-1, Clontech Laboratories, Inc.) was used. The 1st strand cDNA was synthesized in a reaction containing 50 mM Tris-HCl, pH 8.3, 75 mM KCl, 3 mM MgCl₂, 10 mM dithiothreitol, 500 µM dATP, dCTP, dGTP, dTTP, 25 µg/ml oligo(dT)12-18, 40 Units RNaseOUT (Invitrogen life technologies, Cat. No. 10777-019), and 200 Units SUPERSCRIPT™ II RNase H reverse transcriptase (Invitrogen life technologies, Cat. No. 18064-022) in a total volume of 20 µl at 42°C for 1 hour. Following the reverse transcription the reaction was terminated by
incubation at 85°C for 5 minutes. To remove the complementary RNA prior to PCR the cDNA was treated with 2 units of RNase H at 37°C for 30 minutes.

The cDNA sequence of human B7-H6 containing the complete open reading frame was amplified by PCR. The PCR was performed using spleen derived cDNA as template as well as the High Fidelity PCR System composed of a unique enzyme mix containing thermostable Taq DNA polymerase, a proofreading polymerase (Roche, Cat. No. 1 732 650), and the primers B76-1 (5' - AGG AGG CTG GAA GAA AGG AC-3') (SEQ ID NO: 47) and B76-2 (5' - CCC CCG GCA GAG ATA CTA-3') (SEQ ID NO: 48). The PCR product (1466 base pairs) of hsB7-H6 obtained from the mouse spleen cDNA was cloned into pCR II Topo plasmid using T4 DNA ligase (Promega, Cat. No. A3600). After ligation the plasmid was used to transform competent E. coli strain XL1-Blue. The nucleic acid sequence of hsB7-H6 (SEQ ID NO: 41) was verified by DNA sequencing of four independent clones.

EXAMPLE 11

Preparation and purification of soluble (secreted) form of human B7-H6 protein

Production of soluble hsB7-H6

In order to produce large amount of soluble mB7-H6 protein, a plasmid encoding a secreted form of hsB7-H6 fused to the Fc constant region of human IgG1 or the FLAG tagged rat comp pentamerisation domain was introduced into eukaryotic cell and hsB7-H6 expressing cells were selected using geneticin.
In more detail, a DNA fragment encoding a secreted form of hsB7-H6, designated hsB7-H6 (ECD) (SEQ ID NO: 43), was constructed by polymerase chain reaction (PCR) as follow: The full length hsB7-H6 cDNA clone (described in example 19) was used as template. The PCR reaction was performed using the High Fidelity PCR System composed of a unique enzyme mix containing termostable Taq DNA polymerase and a proofreading polymerase (Roche, Cat. No. 1 732 650), and 10 picomoles each of a sense and an antisense oligonucleotide primer in a final volume of 50 microliters. The sense oligonucleotide primer, designated B76-3, had the sequence 5’- GGT ACC GCC ACC ATG GGG ATC TTA CTG GGC CT -3’ (SEQ ID NO: 49) and contained the recognition site for the restriction enzyme KpnI (GGTACC), the strong translation initiation site (GCCACCATGG) and was identical to the human hsB7-H6 cDNA from nucleotides 6 to 25 (SEQ ID NO: 41). The antisense designated B76-4 had the sequence 5’- GCT AGC TTT CCT GGC CCA GCA CT -3’ (SEQ ID NO: 50) and contained the recognition site for the restriction enzyme NheI (GCTAGC) to fuse to the Fc constant region of human IgG1 or comp-FLAG domain and is identical, in an antisense orientation, to the hsB7-H6 cDNA from nucleotides 828 to 845 (SEQ ID NO: 41).

The PCR reaction was performed on a Hybid programmable thermal cycler with 5 cycles of 94°, 30 sec, 50°, 45 sec, 72°, 60 sec, and 25 cycles of 94°, 30 sec, 72°, 70 sec and a final cycle of 72°, 7 min. The resulting PCR product which extended from hsB7-H6 nucleotide 6-845 was flanked by restriction sites. In the cell, this DNA encodes a secreted form of the hsB7-H6 protein from methionine amino acid 1 to lysine amino acid 280 (SEQ ID NO: 42). The PCR product was confirmed by sequencing.

The DNA was digested with KpnI and NheI and the insert, containing the nucleic acid molecule encoding for the extracellular domain (ECD) of hsB7-H6 (SEQ ID NO: 43), was
ligated into each pCEP-SP-Xa1-Fc* and pCEP-comp-FL-C expression vector. Both vectors were derivatives of the episomal mammalian expression vector pCEP4 (Invitrogen), carrying the Epstein-Barr Virus replication origin (oriP) and nuclear antigen (encoded by the EBNA-1 gene) to permit extrachromosomal replication, and contained a Puromycin selection marker in place of the original Hygromycin B resistance gene.

The pCEP-SP-Xa1-Fc* is an expression vector that contains a KpnI cloning site downstream of the strong cytomegalovirus (CMV) promoter, a NheI cloning site upstream of the Factor X protease recognition site flanking the N-terminus of the Fc constant region of the human IgG1 and a SV40 poly(A) signal necessary for expression in mammalian cells. In addition, the vector contains the EBNA, origin of replication, ampicillin resistance gene, puromycin resistance gene for the selection of cells producing the fusion protein. The resulting plasmid pCEP- hsB7-H6 (ECD)-Xa1-Fc* (SEQ ID NO: 46) drove the expression of a hsB7-H6 (ECD) - Fc domain fusion protein under the control of a CMV promoter.

The pCEP-comp-FL-C was identical to pCEP-SP-Xa1-Fc* except that the nucleic acid sequence encoding for SP-Xa1-Fc* part was replaced by nucleic acid sequences encoding for the rat comp pentamerization domain fused with a C-terminal FLAG tag. The resulting plasmid pCEP- hsB7-H6 (ECD)-comp-FL-C (SEQ ID NO: 45) drove the expression of a hsB7-H6 (ECD) fused to “comp” pentamerization domain containing FLAG (FL) tag at the C terminus under the control of a CMV promoter.

Expression and purification of the hsB7-H6 (ECD) - Fc domain and the hsB7-H6 (ECD) - comp-Flag domain fusion protein protein were performed according detailed descriptions in example 3.
EXAMPLE 12

Expression of hsB7-H4LV, hsB7-H5, mB7-H5, mB7-H6, hsB7-H6 mRNA.

The tissue distribution of the hsB7-H4LV mRNA was investigated by northern blot analysis and RT-PCR. For the northern blot radiolabeled RNA probes were used. The cDNA of human hsB7-H4LV, cloned into pGEM-T vector (described in example 3), and digested with KpnI restriction enzyme was used as template. KpnI restriction enzyme cuts 415 bp upstream of the stop codon. The in vitro synthesis of the RNA probe for hsB7-H4LV and human β-actin was performed according to the protocol of the instruction manual (Strip-EZ™ RNA SP6 Kit, Ambion; Cat No.: 1360BI) using SP6 polymerase. Free nucleotides were removed from radiolabeled DNA probes using Microspin G-25 columns (Amersham Pharmacia Biotech Inc.; Cat No.: 27-5226-01). Radiolabeled probes diluted in ULTRAhyb™ hybridization solution (Ambion; Cat No.: 8670) were added to the prehybridized blot and incubated 18 hours at 68°C. The hybridization buffer was discarded and the blot was washed twice 5 min in 2x SSC, 0.1% SDS at room temperature and then twice 15 min in 0.1x SSC, 0.1% SDS at 68°C. Northern blot was exposed to Kodak imaging for 1 week at -70°C and developed using Agfa CP100.

Northern blot analysis using poly(A) enriched RNA from different adult human tissues revealed one hsB7-H4LV mRNA of approximately 3.8kb. The highest level of hsB7-H4LV mRNA was observed in lung and a band of markedly lower intensity was found with RNA from thymus, kidney, skeletal muscle and placenta. Traces of hsB7-H4LV mRNA were detected in heart, pancreas, liver, and spleen, whereas no transcript was found in brain. To compare integrity and amount of RNA, a radiolabeled probe of β-actin was used for an identical northern blot. Similar conditions persisted for RNA derived from brain, placenta,
heart, kidney, lung, spleen, and thymus. A rather low RNA amount was found in skeletal muscle, pancreas and liver.

For the RT-PCR analysis 0.5ug of mRNA or 5 ug of total RNA of different tissues or cell lines were used as template for the cDNA synthesis. The cDNA synthesis was performed according to the protocol described in example 2 using SUPERSCRiPT™ II RNase H reverse transcriptase (Invitrogen life technologies, Cat. No. 18064-022). Alternatively Cytos in house pDEL libraries of different tissues and cell types were used as template.

The PCR for hsB7-H4LV was performed according to the protocol described in example 2. The highest amounts of specific PCR product were observed in testis, whereas low amounts were obtained from spleen. No PCR product was observed in brain.

The PCR for hsB7-H5 was performed according to the protocol described in example 4. The highest amounts of specific PCR product were observed in testis. No PCR product was observed in brain and spleen.

The PCR for mB7-H5 was performed according to the protocol described in example 6. The highest amounts of specific PCR product were observed in lung, liver, brain, kidney, spinal cord, whereas lower amounts were obtained from naïve spleen, activated spleen, naïve dendritic cells, activated dendritic cells, lymphnodes, stomach, gut, ovaries and heart. No PCR product was observed in skeletal muscle, thymus, A20 cell line and C2C12 cell line.

The PCR for mB7-H6 was performed according to the protocol described in example 8. The highest amounts of specific PCR product were observed in activated dendritic cells, macrophages, lung and liver whereas lower amounts were obtained from naïve dendritic
cells. No PCR product was observed from naïve B-cells, activated B-cells, T_{h1}-cells, T_{h2}-
cells, EL-4 T-cell line, A20 cell line and C2C12 cell line.

The PCR for hsB7-H6 was performed according to the protocol described in example 10. A
specific PCR product was obtained in human spleen.

EXAMPLE 13

Stimulation of B cell proliferation but not T cell proliferation by mouse B7-H5

To investigate the role of mB7-H5 as a positive regulator of B cell activation a B cell
proliferation assay was performed. In this assay purified B cells are stimulated by
immobilized mB7-H5-Fc fusion protein in the presence or absence of immobilized anti-IgM
antibody. Spleen from naïve mice were taken and passed through 70 μm Nylon cell strainer
(Cat No. 352350; Falcon) to obtain splenocytes. The B cells were purified using the
antibody against CD45R (B220) MACS beads system (Milteny Biotec, Auburn, California).
For proliferation assays, purified B cell (2 x 10^5 cells/well in triplicate) were cultured in 96-
well flat-bottom plates, that were pre-coated at 4°C overnight with 75 μl/well with 0, 2.5, 5,
10 or 20 μg/μl of mB7-H5-Fc fusion protein (described in example 7) or mouse gamma
globuline (Cat No. 015-000-002, Jackson ImmunoResearch Laboratories, Inc.) in the
presence of 0, 0.25 or 0.5 μg/μl of goat anti mouse IgM (Fab')2 (Cat No. 115-006-075;
Jackson ImmunoResearch Laboratories, Inc.) diluted in PBS. For measurement of B cell
proliferation, the plates were cultured for 60 to 72 h and [³H]-thymidine (1 μCi/well) was
added 8 to 10 h prior to harvesting of the cultures. [³H]-thymidine incorporation was
measured with a MicroBeta Trilux Liquid Scintillation counter (Wallac, Turku, Finland). B
cell proliferation was measured by [³H]-thymidine incorporation. Immobilized mB7-H5-Fc
fusion protein resulted in a significantly higher B cell proliferation (Fig. 1A) compared to
mouse gamma globuline (Fig. 1B). The positive regulatory effect of mB7-H5-Fc fusion protein on B cell proliferation is dose dependent and showed a co-stimulatory effect in combination with immobilized goat anti-mouse IgM antibody (Fig 1A). These data indicate that mB7-H5 acts as positive regulator of B cell proliferation and shows co-stimulation in combination with other proliferative compounds, e.g. goat anit-mouse IgM. As mB7-H5 can induce B cell proliferation in an antigen independent manner, it may play an important role in the regulation of the B cell homeostasis. Note that B7-H5 did not influence T cell proliferation in vitro.

EXAMPLE 14

B7-H6 negatively modulates T cell proliferation but not B cell proliferation

To investigate the role of mB7-H6 in T cell activation, a co-stimulation- and inhibition assays were performed. In these assays purified T cells were stimulated by immobilized anti-CD3 antibody in the presence of immobilized mB7-H6-Fc fusion protein. Spleen from naïve mice were taken and passed through 70 μm Nylon cell strainer (Cat No. 352350; Falcon) to obtain splenocytes. The T cells were purified using the antibody against CD4/8 MACS beads system (Milteny Biotec, Auburn, California). For co-stimulation and inhibition assays, purified T cell (2 x 10⁵ cells/well in triplicate) were cultured in 96-well flat-bottom plates, that were pre-coated at 4°C overnight with 75 μl/well with indicated concentration of mouse anti-CD3 epsilon chain antibody NA/LE (145-2C11; BD Bioscience, Pharmigen, San Diego, California) in the presence of indicated concentrations of mB7-H6-Fc fusion protein (described in example 9) or control proteins, such as antibody against mouse CD28 NA/LE (37.51; BD Bioscience, Pharmigen, San Diego, California), recombinant mouse B7-H1/Fc chimera (Cat No. 1019-B7; R&D Systems, Inc.), recombinant mouse PD-L2/Fc chimera
(Cat No. 1022-PL; R&D Systems, Inc.) and mouse gamma globuline (Cat No. 015-000-002, Jackson ImmunoResearch Laboratories, Inc.). For measurement of T cell proliferation, the plates were cultured for 60 to 72 h and $[^3]H\text{-thymidine (1 µCi/well)}$ was added 8 to 10 h prior to harvesting of the cultures. $[^3]H\text{-thymidine incorporation was measured with a MicroBeta Trilux Liquid Scintillation counter (Wallac, Turku, Finland). T cell proliferation was measured by }[^3]H\text{-thymidine incorporation. In the co-stimulation assay, immobilized mB7-H6-Fc fusion protein resulted in a fivefold reduction of T cell proliferation compared to anti-CD3 antibody alone or plus mouse IgG and mB7-H5-Fc fusion protein (Fig. 2A). Anti-CD28 antibody as a positive control for T cell co-stimulation, showed a clear co-stimulatory effect. These data show that mB7-H6 can inhibit TCR mediated proliferation. T cells activated via T cell receptor plus CD28 using anti-CD3 and anti-CD28 antibodies show a threefold reduction in their proliferation in the presence of immobilized mB7-H6-Fc fusion protein compared to mouse IgG (Fig. 2B). The effect of PD-L1-Fc or PD-L2-Fc fusion proteins, two known negative regulators of T cell activation, was significantly less compared to mB7-H6-Fc. These results show that mB7-H6 is a strong negative regulatory of T cell activation. Note that B cell proliferation was not affected in vitro by B7-H6.

EXAMPLE 15

Administration of mB7-H5-Fc fusion protein affected the B cells homeostasis in vivo

The mB7-H5-Fc fusion protein (example 7) was used to inject mice three times. The injection of the mB7-H5-Fc fusion protein resulted in a 5 times increase of isotype switched B cells (CD19+, IgD- & IgM-) compared with control mice obtained human IgG1 κ antibody and a twofold increase of total IgM and IgG serum levels.
The mice used in this experiment were 6-18 weeks old female C57Bl6. Groups of four mice were injected i.p. with 500 μg of mB7-H5-Fc fusion protein, or alternatively human IgG1κ (Cat No. I-5154; Sigma-Aldrich Chemie Gmbh, Steinheim, Germany) on days -1, 1 and 3. At day 4 the mice were anesthetized by methoxyflurane inhalation and retrobulbar blood letting was performed to obtain serum for total IgM and IgG determinations. At day 10 the mice were anesthetized by methoxyflurane inhalation and retrobulbar blood letting was performed. The mice were sacrificed by cervical dislocation and spleen was dissected from each animal. Splenocytes were obtained by passing through 70 μm Nylon cell strainer (Cat No. 352350; Falcon). Three color staining of the splenocytes was performed to analyse the ratio of isotype switched B cells, naïve mature B cells and T cell, macrophages, granulocytes.

a) Detection of spleen-derived isotype switched B cells (CD19+, IgD- and IgM-), naïve mature B cells (CD19+, IgD+ and IgM+) and T cells, macrophages, granulocytes (CD4+, CD8+ and CD11b+) by a three colour staining using FACS. 2 x 10⁶ splenocytes from each mouse were used for the analysis. Fc receptors of splenocytes were blocked using rat anti-mouse CD16/CD32 (Fc gamma II/III receptor) monoclonal antibodies (Cat No. 01241A; BD Bioscience, Pharmigen, San Diego, California). Splenocytes were washed and incubated 20 min. at 4°C in an antibody solution mix containing rat anti-mouse CD19-PE monoclonal antibody (Cat No. 557399; BD Bioscience, Pharmigen, San Diego, California), rat anti-mouse IgD-FITC monoclonal antibody (Cat No. 553439; BD Bioscience, Pharmigen, San Diego, California), goat anti-mouse IgM-FITC μ chain specific antibody (Cat No. 115-095-020; Jackson ImmunoResearch Laboratories, Inc.), rat anti-mouse CD8a-FITC (Ly-2) monoclonal antibody (Cat No. 553031; BD Bioscience, Pharmigen, San Diego, California), rat anti-mouse CD4-FITC (L3T4) monoclonal antibody (Cat No. 557307; BD Bioscience, Pharmigen, San Diego, California) and rat anti-mouse CD11b-FITC monoclonal antibody
(Cat No. 553310; BD Bioscience, Pharmigen, San Diego, California). Splenocytes were washed, resuspended in FACS buffer (2% FCS, 0.05% NaN3 in PBS) containing 1 µg/ml PI and analysed. For the groups of mB7-H5-Fc the percentage of isotype switched B-cells (CD19+, IgD- and IgM-) was fivefold increased compared to control and naïve mice, respectively (Fig 3A). On the other hand the percentage of naïve mature B cells (CD19+, IgD+ and IgM+) were significantly reduced (p < 0.02) (Fig 3B) and the percentage of T cell, macrophages, and granulocytes were increased. These observations were in accordance with the positive regulatory effect on B cell proliferation (example 13). However it is not clear if mB7-H5 play a role in the differentiation of B cells and/or in the division of B cells. In summary B7-H5 might play an important role in the regulation of B cell homeostasis. This observation is insofar surprising as the B and T lymphocytes are produced continuously either in the primary lymphoid organs or by peripheral cell division, however the total number of T and B cells remain constant. The mechanisms that determine the number of peripheral lymphocytes are poorly understood. mB7-H5 might be the first member of a novel family regulating the B cell homeostasis in mice.

b) Measurement of total IgM and IgG serum levels at day 4 and 10 of the different experimental groups. For the measurement 96-well F96 MaxiSorp Nunc-Immunoplates (Cat No. 442404; Nalge Nunc International), that were pre-coated at 4°C overnight with serum of each mice, diluted 1:600 in 0.1 M NaHCO₃ pH 9.6 (in triplicates) were used. Plates were washed four times with PBS-Tween20 and background was reduced by incubating plates 2 h at 37°C in blocking buffer (2% BSA (Cat No. A-3803; Sigma) in PBS-Tween20). Plates were washed five times and 1:1000 diluted detection antibody (anti mouse IgM HRPO-coupled (Cat No. A8786; Sigma) and anti mouse IgG HRPO coupled (Cat No. A3673; Sigma), respectively) was incubated for 1 h at room temperature. Plated were washed five times with PBS-Tween20 and detection was performed using OPD substrate solution (0.066
M Na$_3$HPO$_4$, 0.035 M citric acid pH5.0 containing 10 mg OPD (Cat No. 78446; Fluka) and 8 μl of 30% H$_2$O$_2$ (Cat No. 95302; Fluka) per 25ml) and 5% H$_2$SO$_4$ in H$_2$O as stop solution. The absorbance was measured using ELISA reader (BioRad Benchmark) at 450 nm and for calculation of arithmetic means and standard error of the mean (SEM) EXCEL software (MS Office; Microsoft) was used. The serum levels of total IgM and IgG are at least twofold increased for the group of mice obtained mB7-H5-Fc fusion protein compared to the group obtained a control protein or to naïve mice (Table 2). Except at day 4 the total IgG serum levels are for all three groups the same. However this is in accordance to the fact the IgG response is following the IgM response and appears at later time points. This data is in accordance with the positive regulatory effect of mB7-H5-Fc on B cell proliferation observed in vitro. Thus mB7-H5 might be a novel member of a molecule family which is involved in the regulation of the B cell homeostasis.

Table 2: Average of total IgM or IgG serum levels

<table>
<thead>
<tr>
<th></th>
<th>Absorption (OD450 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total IgM</td>
</tr>
<tr>
<td></td>
<td>Day 4</td>
</tr>
<tr>
<td>Experiment al group</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.148 ± 0.001</td>
</tr>
<tr>
<td>mB7-H5-Fc</td>
<td>0.278 ± 0.009</td>
</tr>
<tr>
<td>Naïve</td>
<td>0.157 ± 0.023</td>
</tr>
</tbody>
</table>

EXAMPLE 16

Administration of mB7-H5-Fc fusion protein and additional Qβ immunization modulated Qβ specific B cell *in vivo*
The mB7-H5-Fc fusion protein (example 7) was used to inject mice three times. The injection of the mB7-H5-Fc fusion protein and additional Qβ immunization resulted in a twofold increase of isotype switched B cells (CD19+, IgD- & IgM-) and total IgM and IgG serum levels compared to control mice. In contrast the Qβ-specific humoral immune response was reduced at least twofold. mB7-H5 injection affected T cell independent IgM responses similarly as T cell dependent IgG responses. This suggests that mB7-H5 directly acts on B cells (Bachmann M. F. and Kundig T. M. (1994) Curr. Opin. Immunol. 6, 320-6), which is consistent with the in vitro results (Example 13).

The mice used in this experiment were 6-18 weeks old female C57Bl6. Groups of five mice were injected i.p. 500 μg of mB7-H5-Fc fusion protein, or alternatively mouse adiponectin-Fc fusion protein (Acrp16-Fc) on days -1, 1 and 3. On day 0 an additional injection of 50 μg wildtype Qβ s.c. was done. At day 10 the mice were anesthetized by methoxyflurane inhalation and retrobulbar blood letting was performed. The mice were sacrificed by cervical dislocation and spleen was dissected from each animal. Splenocytes were obtained by passing through 70 μm Nylon cell strainer (Cat No. 352350; Falcon). Four color staining of the splenocytes was performed to analyse the ratio of Qβ-specific B cells, isotype switched B cells, naïve mature B cells and T cell, macrophages, granulocytes. Further an antibody-forming cell assay (AFC) and ELISA specific for Qβ were performed.

a) Detection of spleen-derived Qβ-specific B cells, isotype switched B cells (CD19+, IgD- and IgM-), naïve mature B cells (CD19+, IgD+and IgM+) and T cells, macrophages, granulocytes (CD4+, CD8+ and CD11b+) by a four colour staining using FACS. 2 x 10⁶ splenocytes from each mouse were used for the analysis. Splenocytes were resuspended with 3 μg/ml wildtype Qβ in FACS buffer (2% FCS, 0.05% NaN₃ in PBS) and incubated 30 min at 4°C. Fc receptors of splenocytes were blocked using rat anti-mouse CD16/CD32 (Fc
gamma II/III receptor) monoclonal antibodies (Cat No. 01241A; BD Bioscience, Pharmigen, San Diego, California). Splenocytes were washed, resuspended in rabbit anti- Qβ serum diluted 1:400 in FACS buffer and incubated 30 min at 4°C. After two washing steps the splenocytes were resuspended in an antibody solution mix containing rat anti-mouse CD19-PE monoclonal antibody (Cat No. 557399; BD Bioscience, Pharmigen, San Diego, California), rat anti-mouse IgD-FITC monoclonal antibody (Cat No. 553439; BD Bioscience, Pharmigen, San Diego, California), goat anti-mouse IgM-FITC μ chain specific antibody (Cat No. 115-095-020; Jackson ImmunoResearch Laboratories, Inc.), rat anti-mouse CD8a-FITC (Ly-2) monoclonal antibody (Cat No. 553031; BD Bioscience, Pharmigen, San Diego, California), rat anti-mouse CD4-FITC (L3T4) monoclonal antibody (Cat No. 557307; BD Bioscience, Pharmigen, San Diego, California) and rat anti-mouse CD11b-FITC monoclonal antibody (Cat No. 553310; BD Bioscience, Pharmigen, San Diego, California) and incubated for 20 min at 4°C. Splenocytes were washed, resuspended in FACS buffer containing 1 μg/ml PI and analysed. For the groups of mB7-H5-Fc the percentage of isotype switched B-cells (CD19+, IgD- and IgM-) was increased at least twofold compared to control and naïve mice respectively (Fig 4A). Further the naïve mature B cells (CD19+, IgD+ and IgM+) were significantly reduced (p < 0.02) (Fig 4A). On the other hand the Qβ-specific B cells were depleted by at least twofold (Fig. 4B). These results were consistently with the observation that mB7-H5 is an upregulator of B-cell proliferation in vitro, made in example 15.

b) mB7-H5-Fc administration reduced the number of Qβ-specific antibody-forming cells. 24-well plates were pre-coated with 25 μg/ml wildtype Qβ in 0.1 M NaHCO₃ pH 9.6 overnight at 4°C and blocked for 2 h at room temperature using 2 % BSA (Cat No. A3803, Sigma) in PBS. Plates were washed three times with PBS-Tween20 and once with cell culture medium. The splenocytes were resuspended to 5 x 10⁶ cells/ml and plated in dilution
serie 1:5 per well. Following 5 h incubation at 37°C the plates were washed five times with PBS-Tween20 and incubated with goat anti-mouse IgG antibody (Cat No. AT-2306-2; EY Laboratories) diluted 1:1000 in 2% BSA/PBS overnight at room temperature. After washing the plates were incubated with donkey anti-goat IgG-AP coupled (Cat No. 705-055-147; Jackson ImmunoResearch Laboratories, Inc.) 3 h at 37°C. For the color reaction 1ml/well of substrate solution containing 4 parts of alkaline buffer solution (Cat No.; Sigma Diagnostic Inc., St Louis, USA) containing 1mg/ml BCIP 5-Bromo-4-chloro-3-indolylphosphate p-toluidine salt (Cat No. 16670; Fluka BioChemika) and 1 part 3% Agarose in H₂O. Dots were counted and normalized to 10⁶ cells per well. For calculation of arithmetic means and standard error of the mean (SEM) EXCEL software (MS Office; Microsoft) was used. The QB specific antibody-forming cells were decreased at least by a factor of three in the group of mice obtained mB7-H5-Fc fusion protein compared to the control group (Table 3). This result is in accordance with the reduction of QB specific B cells described in example 16a. The QB specific B cell detected using AFC assay reflecting B cell secreting specific antibodies such as plasma cells. On the other hand QB specific B cell detected via flow cytometry as in example 16a reflecting B memory cells. The data indicated a clear reduction of the humoral immune response.

Table 3: QB specific antibody forming cells

<table>
<thead>
<tr>
<th></th>
<th>Dots per 10⁶ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arithmetic mean</td>
</tr>
<tr>
<td>Experimental group</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>133</td>
</tr>
<tr>
<td>mB7-H5-Fc</td>
<td>37</td>
</tr>
<tr>
<td>Naïve</td>
<td>0</td>
</tr>
</tbody>
</table>
c) Measurement of Qβ specific IgM and IgG antibody titers in serum at day 10. For the measurement 96-well F96 MaxiSorp Nunc-Immunoplates (Cat No. 442404; Nalge Nunc International), that were pre-coated at 4°C overnight with 3 μg/ml wildtype Qβ (batch Qx 2.2; Cytos Biotechnology AG, Schlieren) in 0.1 M NaHCO₃ pH 9.6 were used. Plates were washed four times with PBS-Tween20 and background was reduced by incubating plates 2 h at 37°C in blocking buffer (2% BSA (Cat No. A-3803; Sigma) in PBS-Tween20). The serum was diluted in serum dilution buffer (2% BSA, 1% FCS in PBS-Tween20. Every sample was analyzed in duplicates and lowest serum dilution was 1:40. Twofold dilution steps were done and incubated for 2 h at room temperature on ELISA plate shaker (Heidolph Titramax 100). Plates were washed five times and 1:1000 diluted detection antibody (anti mouse IgM HRPO-coupled (Cat No. A8786; Sigma) and anti mouse IgG HRPO coupled (Cat No. A3673; Sigma), respectively) was incubated for 1 h at room temperature. Plated were washed five times with PBS-Tween20 and detection was performed using OPD substrate solution (0.066 M Na₂HPO₄, 0.035 M citric acid pH5.0 containing 10 mg OPD (Cat No. 78446; Fluka) and 8 μl of 30% H₂O₂ (Cat No. 95302; Fluka) per 25ml) and 5% H₂SO₄ in H₂O as stop solution. The absorbance was measured using ELISA reader (BioRad Benchmark) at 450 nm and for calculation of arithmetic means and standard error of the mean (SEM) EXCEL software (MS Office; Microsoft) was used. The Qβ specific IgM and IgG antibody titers were threefold reduced for the group, that obtained mB7-H5-Fc compared with the control group (Table 4). This result was in accordance with the reduction of Qβ specific antibody forming cells observed in Example 16b. Note that IgM and IgG titers are similarly affected, indicating that mB7-H5 acts directly on B cells.

Table 4: Qβ specific IgM and IgG antibody titers at day 10

<table>
<thead>
<tr>
<th>Serum dilution giving half maximal Absorption (OD450 nm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental group</td>
<td>IgM</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Control</td>
<td>1452 ± 56</td>
</tr>
<tr>
<td>mB7-H5-Fc</td>
<td>482 ± 28</td>
</tr>
<tr>
<td>Naïve</td>
<td>116 ± 18</td>
</tr>
</tbody>
</table>

d) Measurement of total IgM and IgG serum levels at day 10 in the different experimental groups. For the measurement 96-well F96 MaxiSorp Nunc-Immunoplates (Cat No. 442404; Nalge Nunc International), that were pre-coated at 4°C overnight with serum of each mice, diluted 1:600 in 0.1 M NaHCO₃ pH 9.6 (in triplicates) were used. Plates were washed four times with PBS-Tween20 and background was reduced by incubating plates 2 h at 37°C in blocking buffer (2% BSA (Cat No. A-3803; Sigma) in PBS-Tween20). Plates were washed five times and 1:1000 diluted detection antibody (anti mouse IgM HRPO-coupled (Cat No. A8786; Sigma) and anti mouse IgG HRPO coupled (Cat No. A3673; Sigma), respectively) was incubated for 1 h at room temperature. Plated were washed five times with PBS-Tween20 and detection was performed using OPD substrate solution (0.066 M Na₂HPO₄, 0.035 M citric acid pH5.0 containing 10 mg OPD (Cat No. 78446; Fluka) and 8 μl of 30% H₂O₂ (Cat No. 95302; Fluka) per 25ml) and 5% H₂SO₄ in H₂O as stop solution. The absorbance was measured using ELISA reader (BioRad Benchmark) at 450 nm and for calculation of arithmetic means and standard error of the mean (SEM) EXCEL software (MS Office; Microsoft) was used. The serum levels of total IgM and IgG were twofold increased for the group that obtained mB7-H5-Fc fusion protein compared to control group or naïve mice (Table 5).

Table 5: Total IgM and IgG serum levels at day 10

<table>
<thead>
<tr>
<th>Absorption (OD450 nm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>Total IgM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>group</th>
<th>0.189 ± 0.014</th>
<th>0.342 ± 0.030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.320 ± 0.020</td>
<td>0.630 ± 0.021</td>
</tr>
<tr>
<td>mB7-H5-Fc</td>
<td>0.120 ± 0.003</td>
<td>0.330 ± 0.022</td>
</tr>
</tbody>
</table>

Thus the administration of mB7-H5-Fc fusion protein leaded to shift in the balance of the numbers of different lymphocytes. The reduced Qβ specific immune response observed in the different assays might be a secondary effect, which is the consequence of an increased number of isotype switched B cells. The mechanisms which regulate the total number of T and B cells are poorly understood. In summary mB7-H5 may act as a regulator of B cell homeostasis and modulator of the specific B cell response.

EXAMPLE 17

Administration of mB7-H6-Fc fusion protein and additional Qβp33xNKpt immunization in mice: *in vivo* reduction of T cell responses

The mB7-H6-Fc fusion protein (example 9) was used to inject mice three times. The injection of the mB7-H6-Fc fusion protein and additional Qβp33xNKpt immunization resulted in a reduction of the immune response compared to control mice. The mice used in this experiment were 6-18 weeks old female C57Bl6. Groups of three mice were injected i.p. 500 μg of mB7-H6-Fc fusion protein, or alternatively human IgG1κ (Cat No. I-5154; Sigma-Aldrich Chemie GmbH, Steinheim, Germany) on days -1, 1 and 3. On day 0 an additional injection of 50 μg Qβp33xNKpt (short form) s.c. was done. At day 4 the mice were anesthetized by methoxyflurane inhalation and retrobulbar blood letting was performed to obtain serum for Qβ specific antibody and total IgM and IgG antibody level determinations. At day 10 the mice were anesthetized by methoxyflurane inhalation and
retrobulbar blood letting was performed. The mice were sacrificed by cervical dislocation and spleen was dissected from each animal. Splenocytes were obtained by passing through 70 μm Nylon cell strainer (Cat No. 352350; Falcon). Four color staining of the splenocytes was performed to analyse the ratio of Qβ-specific B cells, isotype switched B cells, naïve mature B cells and T cell, macrophages, granulocytes. Further a Qβ specific antibody-forming cell assay and ELISA were performed. To monitor the T cell response a Gp33-H2-D^b-tetramer staining of blood lymphocytes and an intracellular interferon-γ staining of in vitro Qβ or p33 stimulated T cells were performed.

a) To investigate the role of mB7-H6 in the modulation of the CTL response, 3 drops of fresh blood was mixed in FACS buffer (2% FCS in PBS, 5 mM EDTA, pH 8.0) to detect p33 specific T cells by FACS analysis. The lymphocytes were incubated in Gp33-H2-D^b-tetramer-PE for 10 min. at room temperature. Rat anti-mouse CD8a (Ly2)-APC monoclonal antibody (Cat No. 553035; BD Bioscience, Pharmigen, San Diego, California) was added and the incubation was prolonged for 30 min at 4°C. The lymphocytes were washed in FACS buffer and resuspended in 10% FACS™ Lysing solution (Cat No. 349202; BD Bioscience, California). The lymphocytes were washed and resuspended in FACS buffer for FACS analysis. For the group obtained mB7-H6-Fc fusion protein a twofold reduction of the p33 specific T cells was observed compared to control group (Table 6). This data was consistent with the negative regulation of T cell activation observed in vitro (Fig. 2A and 2B). The reduction of the p33 specific T cells may be explained by the downregulation of the T cell response after mB7-H6-Fc fusion protein administration.

Table 6: Percentage of p33 specific T cells

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>Average % gated (± SEM)</th>
</tr>
</thead>
</table>

b) To investigate the role of mB7-H6 in the modulation of the T_H response, 2.5 × 10⁶ splenocytes from immunized mice were added to 96 well flat bottom plates and placed on ice. Anti CD11c MACS beads systems (Milteny Biotec, Auburn, California) purified mouse dendritic cells (DC) were pulsed either with 20 µg/ml Qβ or 2 µM p33 peptide for 2 h at 37°C. Pulsed DCs were added to the splenocytes and incubated for 2 h at 37°C. 2.5 µg/well BrefeldinA was added and incubation prolonged for 6h. The cell were resuspended in FACS buffer (2% FCS, 0.05% NaN₃ in PBS) and incubated in rat anti-mouse CD8-FITC monoclonal antibody (Cat No. 553031; BD Bioscience, Pharmigen, San Diego, California) for 20 min on ice. Cells were washed with FACS buffer and resuspended in 4% formalin in PBS. The fixed cell were washed, resuspended with rat anti-mouse Interferon-γ-APC monoclonal antibody (Cat No. 554413; BD Bioscience, Pharmigen, San Diego, California) in 0.5% saponin, FACS buffer and incubated for 30 min. at room temperature. The cells were washed and FACS analysis was performed. For the group of mB7-H6-Fc fusion protein a reduction of the percentage of Interferon-γ producing CD8 positive T cells was observed compared with control mice (Table 7). Thus mB7-H6 induced a downregulation of the T_H response <i>in vivo</i>.

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>% of CD8/Qβ (± SEM)</th>
<th>% of CD8/p33 (± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.41 ± 0.14</td>
<td>0.45 ± 0.12</td>
</tr>
<tr>
<td>mB7-H6-Fc</td>
<td>0.25 ± 0.08</td>
<td>0.31 ± 0.12</td>
</tr>
</tbody>
</table>
Qβ induces T_h cell independent IgM antibodies followed by T_h cell dependent IgG responses. Thus, reduced IgM responses upon immunization with Qβ reflect impaired B cell responses while reduced IgG responses along with normal IgM responses indicates reduced T helper cell (Bachmann M. F. and Kundig T. M. (1994) Curr. Opin. Immunol. 6, 320-6).

c) Detection of spleen-derived Qβ-specific B cells, isotype switched B cells (CD19+, IgD- and IgM-), naïve mature B cells (CD19+, IgD+and IgM+) and T cells, macrophages, granulocytes (CD4+, CD8+ and CD11b+) by a four colour staining using FACS. 2 x 10^6 splenocytes from each mouse were used for the analysis. Splenocytes were resuspended with 3 μg/ml Qβ in FACS buffer (2% FCS, 0.05% NaN3 in PBS) and incubated 30 min at 4°C. Fc receptors of splenocytes were blocked using rat anti-mouse CD16/CD32 (Fc gamma II/III receptor) monoclonal antibodies (Cat No. 01241A; BD Bioscience, Pharmigen, San Diego, California). Splenocytes were washed, resuspended in rabbit anti- Qβ serum diluted 1:400 in FACS buffer and incubated 30 min at 4°C. After two washing steps the splenocytes were resuspended in an antibody solution mix containing rat anti-mouse CD19-PE monoclonal antibody (Cat No. 557399; BD Bioscience, Pharmigen, San Diego, California), rat anti-mouse IgD-FITC monoclonal antibody (Cat No. 553439; BD Bioscience, Pharmigen, San Diego, California), goat anti-mouse IgM-FITC μ chain specific antibody (Cat No. 115-095-020; Jackson ImmunoResearch Laboratories, Inc.), rat anti-mouse CD8a-FITC (Ly-2) monoclonal antibody (Cat No. 553031; BD Bioscience, Pharmigen, San Diego, California), rat anti-mouse CD4-FITC (L3T4) monoclonal antibody (Cat No. 557307; BD Bioscience, Pharmigen, San Diego, California) and rat anti-mouse CD11b-FITC monoclonal antibody (Cat No. 553310; BD Bioscience, Pharmigen, San Diego, California) and incubated for 20 min at 4°C. Splenocytes were washed, resuspended in FACS buffer containing 1 μg/ml PI and analysed. For the groups of mB7-H6-Fc the percentage of isotype
switched B-cells (CD19+, IgD- and IgM-) was slightly reduced compared to control. The number of naïve mature B cells (CD19+, IgD+ and IgM+) and the T cells, macrophages and granulocytes remained unaffected. On the other hand the Qβ-specific B cells of the mice, that obtained mB7-H6-Fc fusion protein, were threefold reduced compared to the control mice (Fig. 5A). The lymphocytes homeostasis was not significantly altered by the administration of mB7-H6-Fc fusion protein, and control protein. In comparison the administration of mB7-H5-Fc fusion protein induced a shift in the lymphocyte homeostasis (see example 15 and 16). Therefore this reduction of the percentage of Qβ-specific B cells can not be explained by an increase of isotype switched B cells. In fact, the inhibitory effect of mB7-H6 on T cell activation most likely contribute to this reduction of Qβ-specific B cells.

d) In order to study the role of mB7-H6 on antibody secreting cells, a Qβ-specific IgG antibody forming cell assay (AFC) was performed. mB7-H6-Fc administration reduced the number of isotype switched Qβ-specific antibody-forming cells. 24-well plates were pre-coated with 25 µg/ml Qβ in 0.1 M NaHCO3 pH 9.6 overnight at 4°C and blocked for 2 h at room temperature using 2 % BSA (Cat No. A3803, Sigma) in PBS. Plates were washed three times with PBS-Tween20 and once with cell culture medium. The splenocytes were resuspended to 5 x 10⁶ cells/ml and plated in dilution serie 1:5 per well. Following 5 h incubation at 37°C the plates were washed five times with PBS-Tween20 and incubated with goat anit-mouse IgG antibody (Cat No. AT-2306-2; EY Laboratories) diluted 1:1000 in 2% BSA/PBS overnight at room temperature. After washing the plates were incubated with donkey anti-goat IgG-AP coupled (Cat No. 705-055-147; Jackson ImmunoResearch Laboratories, Inc.) 3 h at 37°C. For the color reaction 1ml/well of substrate solution containing 4 parts of alkaline buffer solution (Cat No.221; Sigma Diagnostic Inc., St Louis, USA) containing 1mg/ml BCIP 5-Bromo-4-chloro-3-indolylphosphate p-toluidine salt (Cat
No. 16670; Fluka BioChemika) and 1 part 3% Agarose in H₂O. Dots were counted and normalized to 10⁶ cells per well. For calculation of arithmetic means and standard deviation EXCEL software (MS Office; Microsoft) was used. The QB specific antibody-forming cells were decreased fourfold in the group of mice, that obtained mB7-H6-Fc fusion protein compared to the control mice (Fig. 5B). This result was in agreement with the observation made for QB specific B cells (see example 17c, Fig. 5A) and in fact also confirmed the reduction Tₙ response (Example 17b).

e) Since the QB specific B memory cells (example 17c) and plasma cells (example 17d) showed a significant reduction for the group that obtained mB7-H6-Fc fusion protein compared to control group QB specific IgM and IgG antibody titers in serum at day 4 and 10 were measured. The assay was performed according to detailed description in example 16c. QB specific IgM and IgG antibody titers at day 10 were about threefold reduced for the group, that obtained mB7-H6-Fc compared with the control group (Table 8). In contrast the QB specific IgM antibody titer at day 4 was only marginally reduced. Thus mB7-H6 plays a role as a negative regulator of the Tₙ cell dependent Ig response in vivo. Thus, normal IgM responses along with reduced IgG responses indicate reduced T help. These results were congruent with the observation, that mB7-H6 acts as a negative modulator of T cell activation in vitro (see Example 14).

Table 8: QB specific IgM and IgG antibody titers

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>IgM Day 4</th>
<th>IgM Day 4</th>
<th>IgG Day 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>676 ± 87</td>
<td>158 ± 7</td>
<td>4250 ± 539</td>
</tr>
<tr>
<td>mB7-H6-Fc</td>
<td>461 ± 27</td>
<td>151 ± 2</td>
<td>1515 ± 157</td>
</tr>
<tr>
<td>Naïve</td>
<td>99 ± 31</td>
<td>156 ± 11</td>
<td>339 ± 334</td>
</tr>
</tbody>
</table>
f) Measurement of total IgM and IgG serum levels at day 4 and 10 in different experimental groups. The assay was performed according to detailed description in example 15a. No significant difference was observed for the serum levels of total IgM or IgG at day 4 or 10 (Table 9). Thus the B cell homeostasis was not affected by the administration of any of the proteins.
Table 9: Total IgM and IgG serum levels

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>Absorption (OD450 nm)</th>
<th>Total IgM</th>
<th>Day 4</th>
<th>Day 10</th>
<th>Total IgG</th>
<th>Day 4</th>
<th>Day 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td>0.220 ± 0.014</td>
<td>0.236 ± 0.025</td>
<td>0.631 ± 0.057</td>
<td>0.667 ± 0.053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mB7-H6-Fc</td>
<td></td>
<td>0.292 ± 0.039</td>
<td>0.265 ± 0.018</td>
<td>0.628 ± 0.053</td>
<td>0.862 ± 0.072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naïve</td>
<td></td>
<td>0.219 ± 0.023</td>
<td>0.307 ± 0.027</td>
<td>0.699 ± 0.026</td>
<td>0.730 ± 0.120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In summary the role mB7-H6 as negative regulator of T cell activation can explain the phenotype observed in vivo after administration of mB7-H6-Fc fusion protein. Already the strong inhibitory effect observed in vitro indicated the potential as negative regulator. Due to this property of mB7-H6 a significant downregulation of the immune response could be observed in vivo.

EXAMPLE 18

Co-stimulatory effect of hsB7-H4LV on lymphocyte proliferation

To test whether hsB7-H4LV co-stimulates the proliferation of B cells and/or T cells, a co-stimulation assay is performed. In this assay purified B cells and/or T cells are stimulated by immobilized anti-human IgM and/or anti-CD3 antibody in the presence of immobilized B7-H4LV-Fc fusion protein. The proliferation of B cells and/or T cells is determined by [3H]thymidine-incorporation after 72 hours of incubation. B7-H4LV-Fc fusion protein modulates lymphocyte proliferation in a dose-dependent fashion in the presence of a suboptimal dose of anti-human IgM and/or anti-CD3 antibody (coated onto the tissue culture plate).
EXAMPLE 19

Stimulation of B cell proliferation by human B7-H5

To test whether hsB7-H5 is a positive regulator of B cell proliferation, a B cell proliferation assay is performed (according to detailed description in example 13). In this assay purified human B cells are stimulated by immobilized anti-human IgM antibody in the presence of immobilized hsB7-H5-Fc or hsB7-H5-compFLAG fusion protein. The proliferation of B cells is determined by $[^3H]$-thymidine-incorporation after 72 hours of incubation. The hsB7-H5 fusion protein increases B cell proliferation in a dose-dependent fashion in the presence of a suboptimal dose of anti-human IgM antibody (coated onto the tissue culture plate).

EXAMPLE 20

Inhibitory effect of hsB7-H6 on T cell proliferation

To test whether hsB7-H6 inhibites the proliferation T cells, a co-stimulation and inhibition assay is performed (according to detailed description in example 14). In these assays purified human T cells are stimulated by immobilized anti-CD3 antibody in the presence of immobilized hsB7-H6-Fc or hsB7-H6-compFLAG fusion protein (see example 11). The proliferation of T cells is determined by $[^3H]$-thymidine-incorporation after 72 hours of incubation. hsB7-H6 fusion proteins modulate lymphocyte proliferation in a dose-dependent fashion in the presence of a suboptimal dose of anti-CD3 antibody and/or anti-CD28 antibody (coated onto the tissue culture plate).

EXAMPLE 21
Expression cloning of counter receptor of the novel B7-family members

To search for potential counter-receptors for hsB7-H4, mB7-H5, hsB7-H5, mB7-H6, and hsB7-H6, respectively, expression cloning screens are performed. For the screening the Fc or compFLAG fusion protein (described in example 3, 5, 7, 9, or 11) are used as bait. The expression cloning screenings for the corresponding counterreceptor are performed for example as described in the patent US 6524792.

EXAMPLE 22

In vivo modulation of the acetylcholine receptor specific lymphocyte response

To demonstrate a role of mB7-H5 and mB7-H6 in antibody mediated autoimmune diseases in mice the experimental autoimmune myasthenia gravis (EAMG) is used. C57BL/6 mice are immunized with 20 μg of acetylcholine receptor (AChR) in CFA emulsion. Mice are injected i.p. with 500 μg of purified mB7-H5 protein, mB7-H6 protein, or control protein on days 0 and 3 after immunization. One group of mice is euthanized seven days after immunization, and lymph node cells (LNC) are collected. LNC are cultured with no antigen, AChR, or AChR α-chain peptide α_{146-162}. Proliferation is measured by [³H]thymidine incorporation. Second group of mice is boosted on day 30 with 20 μg of AChR in CFA and are injected i.p. with 500 μg of purified mB7-H5 protein, mB7-H6 protein, or control protein, respectively, on days 30 and 33 after immunization. These mice are assessed for the characteristic symptoms of EAMG, such as muscle weakness. Sera are collected on days 14 and 44 after the first immunization for the measurement of anti AChR antibody. At termination, LNC are collected, and their proliferative and cytokine responses to AchR and dominant peptide α_{146-162} are assessed in vitro.
EXAMPLE 23

Immunologic effects of B7-H5 and B7-H6 therapy in the systemic lupus erythematosus mouse model

To determine the immunologic effect of mB7-H5, and mB7-H6 therapy the systemic lupus erythematosus mouse model is used. Five to six month old (NZB x NZW) F₁ mice are treated with continuous administration of mB7-H5, mB7-H6, and control protein. Mice are followed up clinically, and their spleens are studied at intervals for B and T cell numbers and subsets and frequency of anti- doublestranded DNA (anti-dsDNA)-producing B cells. T cell-dependent immunity is assessed by studying the humoral response to Qβp33xNKpt antigen. Female (NZB x NZW) F₁ mice are maintained in a conventional animal housing facility. In detail mice are treated at the age of 20 weeks or 26 weeks with 500 µg of purified mB7-H5 protein, mB7-H6 protein, control protein, or no protein given intraperitoneally weekly for 6 month until age 46 weeks. Prior to treatment, mice are randomized into treatment groups. Mice are bled every 2-4 weeks and anti-dsDNA antibody titers are determined by ELISA. Urine is tested for proteinuria by dipstick (Multistick; Fisher, Pittsburgh, PA) every 2 weeks. At different time groups of the experimental groups are sacrificed and ELISpot assays for DNA-specific anti-IgM and anti-IgG forming cells is done. The spleen cells are analyzed by flow cytometry for B and T cell markers using different antibodies. Mice are followed up until death.

All of the references cited herein, including patents, patent applications, and publications, are hereby incorporated in their entireties by reference.
While this invention has been described with an emphasis upon preferred embodiments, variations of the preferred embodiments can be used, and it is intended that the invention can be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications encompassed within the spirit and scope of the invention as defined by the claims.
1. An isolated nucleic acid, wherein said nucleic acid is selected from the group consisting of:

 (i) a nucleic acid comprising at least one of the nucleic acid sequences listed in SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 41, and 43;

 (ii) a nucleic acid having a sequence of at least 80% identity, preferably at least 90% identity, more preferred at least 95% identity, most preferred at least 98% identity with any of the nucleic acid sequences listed in SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 41, and 43;

 (iii) a nucleic acid that hybridizes to a nucleic acid of (i) or (ii);

 (iv) a nucleic acid, wherein said nucleic acid is derivable by substitution, addition and/or deletion of one of the nucleic acids of (i), (ii) or (iii);

 (v) a fragment of any of the nucleic acids of (i) to (iv), that hybridizes to a nucleic acid of (i).

2. The nucleic acid according to claim 1, wherein said nucleic acid is a DNA, a RNA or a PNA.

3. The nucleic acid according to any one of claims 1 or 2, wherein said nucleic acid encodes a polypeptide that is capable of modulating an immune response, wherein preferably said immune response is a T cell response, a B cell response, or a T cell and a B cell response.

4. An isolated polypeptide comprising a polypeptide sequence encoded by a nucleic acid according to any one of claims 1 to 3.
5. The polypeptide according to claim 4, wherein said polypeptide sequence is selected from the group consisting of:
 (i) hsB7-H4LV (SEQ ID NO:2);
 (ii) hsB7-H4LV(ECD) (SEQ ID NO:4);
 (iii) hsB7-H5 (SEQ ID NO:6);
 (iv) hsB7-H5(ECD) (SEQ ID NO:8);
 (v) mB7-H5 (SEQ ID NO:10);
 (vi) mB7-H5(ECD) (SEQ ID NO:12);
 (vii) mB7-H6 (SEQ ID NO:14);
 (viii) mB7-H6(ECD) (SEQ ID NO:16);
 (ix) hsB7-H6 (SEQ ID NO:42);
 (x) hsB7-H6(ECD) (SEQ ID NO:44) and;
 (xi) a functional derivative of (i), (ii), (iii), (iv), (v), (vi), (vii), (viii), (ix), or (x).

6. The polypeptide according to any one of claims 4 or 5, wherein said polypeptide is capable of modulating an immune response, wherein preferably said immune response is a T cell response, a B cell response, or a T cell and a B cell response.

7. A recombinant vector, comprising a nucleic acid according to any one of claims 1 to 3.

8. A recombinant vector, wherein said recombinant vector is capable of producing a polypeptide according to any one of claims 4 to 6.
9. A host cell comprising a nucleic acid according to any one of claims 1 to 3.

10. An antibody that specifically binds a polypeptide according to any one of claims 4 to 6.

11. An antibody directed against a polypeptide according to any one of claims 4 to 6, wherein said antibody inhibits the polypeptides capability to modulate an immune response.

12. A hybridoma cell line, expressing an antibody that specifically binds a polypeptide according to any one of claims 4 to 6.

13. A transfected cell line capable of expressing the antibody according to any one of claims 10 to 11.

14. A pharmaceutical composition comprising a polypeptide according to any one of claims 4 to 6 and a pharmaceutically acceptable carrier.

15. A pharmaceutical composition comprising an antibody according to any one of claims 10 to 11 and a pharmaceutically acceptable carrier.

16. A polypeptide according to any one of claims 4 to 6 for use as a medicament.

17. An antibody according to any one of claims 10 to 11 for use as a medicament.
18. Use of a polypeptide according to any one of claims 4 to 6 for the preparation of a medicament for modulating the immune response.

19. Use of a polypeptide according to any one of claims 4 to 6 for the preparation of a medicament for treating and/or preventing autoimmune diseases including, and preferably consisting of, type I diabetes and multiple sclerosis, asthma, arthritis, myasthenia gravis, arthritis, lupus erythematosus, pemphigus, psoriasis, colitis or rejection of transplanted organs, rejection of xenotransplants, immuno deficiency diseases, and cancer.

20. Use of an antibody according to any one of claims 10 to 11 for the preparation of a medicament for treating and/or preventing autoimmune diseases including, and preferably consisting of, type I diabetes and multiple sclerosis, asthma, arthritis, myasthenia gravis, arthritis, lupus erythematosus, pemphigus, psoriasis, colitis or rejection of transplanted organs, rejection of xenotransplants, immuno deficiency diseases, and cancer.

21. A method of identifying a compound that modulates an immune response, which method comprises:

(i) contacting a B cell and/or T cell with a polypeptide according to any one of claims 4 to 6 in the absence or presence of a compound of interest;

(ii) comparing the immune response in the absence of said compound of interest with the immune response in the presence of said compound of interest.
22. The method of claim 21, wherein the contacting step (i) is performed by contacting B cells, T cells, or B cells and T cells, with cells expressing said polypeptide, with a polypeptide that is matrix-bound, or with a free polypeptide.

23. A method of treating and/or preventing a disease in a mammal, wherein said disease is selected from autoimmune diseases and diseases that benefit from an enhanced or reduced immune response, preferably type I diabetes and multiple sclerosis, asthma, arthritis, psoriasis, colitis or rejection of transplanted organs, immuno deficiency diseases, or cancer, which method comprises administering to the mammal a therapeutically effective amount of the polypeptide according to any one of claims 4 to 6.

24. A method of producing the polypeptide according to any one of claims 4 to 6, said method comprising the steps of:

(i) providing the host cell according to claim;

(ii) culturing said host cell under conditions suitable for expression of said polypeptide; and

(iii) isolating said polypeptide from said host cell.

25. A method of producing the antibody according to any one of claims 10 to 11, said method comprising the steps of:

(i) providing the hybridoma cell according to claim 12 or a cell line transfected to express said antibody according to claim 13;

(ii) culturing said hybridoma cell or said cell line under conditions suitable for expression of said antibody; and

(iii) isolating said antibody from said hybridoma cell or said cell line.
Figure 1B

mouse gamma globuline

25000
20000
15000
10000
5000
0

0 2.5 5 10 20 ug/ml

cpm
Figure 2A

T cell costimulation assay

- mB7-H6-Fc
- mouse IgG
- mB7-H5-Fc

Controls (w/o)

CD28

ug/ml

5
10
20

20000
16000
12000
8000
4000
0

cpm
Summary of different cell populations

![Bar chart showing the percentage of different cell populations](chart.png)

- Isotype switched B cells
- IgM pos., IgD pos.
- T-cell, M'phages, Gr'cytes

Figure 3B
Summary of different cell populations

Figure 4A
Q-beta specific B-cells

experimental group

control mB7-H5-Fc naive

% pos.

Figure 4B
NEW PA035WO_sequence listing[1].ST25

SEQUENCE LISTING

Cytos Biotechnology AG
Bachmann, Martin
Vogt, Lorenz

Immune Modulatory Compounds and Methods

PA035WO

60/408,233
2002-09-06
60/449,583
2003-02-26
50

PatentIn version 3.2

CDS

(15) .. (959)

actgctgacg agag atg gtt gc gtc ctc tca gtc tcc cca gac tcc ttg aag
Met Val Asp Leu Ser Val Ser Pro Asp Ser Leu Lys

1 5 10

cca gta tca tgg acc agc agt ctt gtt ttc ctc atg cac ctc ttc ctc
Pro Val Ser Leu Thr Ser Ser Leu Val Phe Leu Met His Leu Leu Leu

15 20 25

ctt cag cct ggg gag ccg agc tca gag gtc aag gtt cta ggc cct gag
Leu Gln Pro Gly Glu Pro Ser Gln Val Lys Val Leu Gly Pro Glu

30 35 40

tat ccc att ctc gcc ctc gtt ggg gag gag gtt ttc ccc tgc cac
Tyr Pro Ile Leu Ala Leu Val Gly Glu Val Glu Phe Pro Cys His

45 50 55 60

tat cgg cca cag ctc gat gcc cag cta cca atg gag att cgc tgg ttc cgg
Leu Trp Pro Gin Leu Asp Ala Gin Gin Met Glu Ile Arg Trp Phe Arg

65 70 75

agt cag acc ttc aat gtt gta cag ctc tac cag gag cag cag gag ctc
Ser Gin Thr Phe Asn Val Val His Leu Tyr Gin Glu Gin Glu Leu

80 85 90

cct ggc agg cag atg ccc ggc ttc cgg aac agg acc aag tgg gtc aag
Pro Gly Arg Gin Met Asp Phe Arg Asn Arg Thr Lys Leu Val Lys

95 100 105

gac gac ctc tgg ggc aca tat ggc tgc ctc ctc cac gac aac ttc
Asp Asp Ile Ala Tyr Gly Ser Val Leu Leu His Ser Arg Phe

110 115 120

ccc tct gac aag ggc aca tat ggc tgc ctc ctc cac tcc gac aac ttc
Pro Ser Asp Lys Gly Thr Tyr Gly Cys Arg Phe His Ser Asp Phe

125 130 135 140

tct ggc gaa gct ctc tgg gaa ctc gag gta gca ggg ctc ggc tca gac

1
NEW PA035WO_sequence listing[1].ST25

Ser Gly Glu Ala Leu Trp Glu Leu Glu Val Ala Gly Leu Gly Ser Asp
145 150 155

cct cac ctc tcc ctt gag ggc ttc aag gaa gga ggc att cag ctc aag
Pro His Leu Ser Glu Gly Phe Lys Glu Gly Gly Ile Gln Leu Arg
160 165 170

cct aga tcc agt ggc tgg tac ccc aag cct aag gtt cag tgg aag gac
Leu Arg Ser Ser Gly Trp Tyr Pro Lys Pro Lys Gly Glu Leu Arg Asp
175 180 185

cac cag gga cag tgc ctc cct cca gag ttt gaa ggc atc gtc tgg gat
His Gln Gly Gln Cys Leu Pro Pro Glu Phe Glu Ala Ile Val Trp Asp
190 195 200

gcc cag gac ctc ctt agt ctc ctt gag aca tct gtt gtt gtc cga gcg gga
Ala Gln Asp Leu Phe Ser Leu Glu Thr Ser Val Val Val Arg Ala Gly
205 210 215 220

gcc ctc agc aat gtt ccc tcc atc cag aat ctc ctt ggc cag cag
Ala Leu Ser Asn Ser Val Ser Val Val Ser Thr Val Val Val Asp Arg Ala Gly
225 230 235

aag aag gag tgg gtc cag ata gca gac gtt ttc gta ccc gga gcc
Lys Lys Gly Leu Val Val Val Val Leu Gln Ile Ala Asp Val Phe Val Pro Gly Ala
240 245 250

tct gcc tgg aag agc gcg ttc gcg acc ctc cgg ctc ctc cgg aag gga cag
Ser Ala Trp Lys Ser Ala Leu Phe Val Ala Thr Leu Leu Val Val Val Val Val
255 260 265

cgc gcc gcg ctc gcg ctc gcg gcc cgc ctc cgg aag cag cgg aag aag cag
Leu Ala Ala Leu Ala Leu Gly Val Leu Arg Lys Gln Arg Arg Ser Arg
270 275 280

gaa aag ctt agg aag cag gcg gag aag aag gcc aag aga ctt ggt gag cgg gga cag
Glu Arg Leu Leu Arg Lys Ala Glu Lys Arg Gln Gly Glu Arg Gly Glu
285 290 295 300

ggc gtt ctc ccc gcc cca ctt ccc aca cca ccc gcc cgc ctc atc
Gly Val Leu His Ala Pro Ala Gln Val Pro Lys Pro Ala Val Ile
305 310 315

taaaggtgt g

<210> 2
<211> 315
<212> PRT
<213> homo sapiens

<400> 2

Met Val Asp Leu Ser Val Ser Pro Asp Ser Leu Lys Pro Val Ser Leu
1 5 10 15

Thr Ser Leu Val Phe Leu Met His Leu Leu Leu Gln Pro Gly
20 25 30

Glu Pro Ser Ser Glu Val Lys Val Leu Gly Pro Glu Tyr Pro Ile Leu
35 40 45

Ala Leu Val Gly Glu Glu Val Glu Phe Pro Cys His Leu Trp Pro Gln
50 55 60
<213> homo sapiens

<220>
<221> CDS
<222> (22) .. (780)

<400> 3
 gggggtacct gctgacgaga g atg gtc gac ctc tca gtc tcc cca gac tcc
 Met Val Asp Leu Ser Val Ser Pro Asp Ser
 1 5 10
 ttg aag cca gta tgg ctg acc agc agt ctt gcc ttc ctg ctc atg cac ctc
 Leu Lys Pro Val Ser Thr Ser Ser Leu Val Phe Leu Met His Leu
 15 20 25
 ctc ctc ctt cac cct ggg gag ccc agc tca gag gtc aag gtc cta ggc
 Leu Leu Leu Gln Pro Gly Glu Pro Ser Ser Glu Val Lys Pro Leu Gly
 30 35 40
 cct gag tat ccc att ctg gcc ctc gtc ggg gag gag ggt gag ctc ccg
 Pro Glu Tyr Pro Ile Leu Ala Leu Val Gly Glu Glu Val Phe Pro
 45 50 55
 tgc cac cta tgg cca cag ctg gat gcc cag caa atg gag atc cgc tgg
 Cys His Leu Trp Pro Gln Leu Asp Ala Gln Glu Met Glu Ile Arg Trp
 60 65 70
 ttc cgg gtt gcc ctg gtt cca cag ttc aat gct gta gtc ctg cag gac cag
 Phe Arg Ser Glu Thr Pro Asn Val Val His Leu Tyr Gln Glu Gln Gln
 75 80 85 90
 gag ctc cct ggc agg cag ctg gtt gcc cag gag agg cag cag cag cag
 Glu Leu Pro Gly Arg Glu Gln Met Ser Gln Asp Pro Ala Phe Asn Arg
 95 100 105
 gtc aag gac gac att gcc tat ggc agc gtt gtc ctg cag ctt cac agc
 Val Lys Asp Asp Ile Ala Tyr Gly Ser Val Val Leu Gln Leu His Ser
 110 115 120
 atc atc ccc tct gac aag ggc aca tat ggc tgc cag ttc cac tcc gac
 Ile Ile Pro Ser Asp Lys Gly Thr Tyr Gln Arg Cys Arg Phe His Ser Asp
 125 130 135
 aac ttc tct ggc gag gct ctc tgg gaa ctg gag gta gca ggg ctg gcc
 Asn Phe Ser Gly Ala Leu Trp Leu Glu Glu Val Ala Gly
 140 145 150
 tca gac cct cac ttc tct gaa gga ggg ggc aag gaa ggc att cag
 Ser Asp Pro His Leu Ser Leu Gly Phe Lys Gly Gln Gly Phe
 155 160 165
 cgg gtt ctc aga tcc aag ggc aag cct aag att gag gtt ctc tgg
 Leu Arg Leu Arg Ser Ser Gly Tyr Pro Lys Val Glu Trp
 175 180 185
 aga gag cac cag gga cag tgg ctt cct cca gag ttt gaa ggc aat gtc
 Arg Asp His Glu Gln Cys Leu Pro Pro Glu Phe Glu Ala Ile Val
 190 195 200
 tgg gac gcc cag ctc aat gtt gcc ctt tcc gcc ctg ctc aat gcc aat
 Trp Asp Ala Glu Asp Leu Phe Ser Leu Glu Thr Ser Val Val Arg
 205 210 215
 gcc gac gcc ctc aat gtt gcc ctt tcc gcc atc ctc ttc ctc ctc ctc
 Ala Gly Ala Leu Ser Asn Val Ser Val Val Ile Glu Asn Leu Leu
 220 225 230
<table>
<thead>
<tr>
<th>210</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>253</td>
</tr>
<tr>
<td>212</td>
<td>PRT</td>
</tr>
<tr>
<td>213</td>
<td>homo sapiens</td>
</tr>
<tr>
<td>400</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Met</th>
<th>Val</th>
<th>Asp</th>
<th>Leu</th>
<th>Ser</th>
<th>Val</th>
<th>Ser</th>
<th>Pro</th>
<th>Asp</th>
<th>Ser</th>
<th>Leu</th>
<th>Lys</th>
<th>Pro</th>
<th>Val</th>
<th>Ser</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thr</th>
<th>Ser</th>
<th>Leu</th>
<th>Val</th>
<th>Phe</th>
<th>Leu</th>
<th>Met</th>
<th>His</th>
<th>Leu</th>
<th>Leu</th>
<th>Leu</th>
<th>Leu</th>
<th>Gln</th>
<th>Pro</th>
<th>Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glu</th>
<th>Pro</th>
<th>Ser</th>
<th>Ser</th>
<th>Glu</th>
<th>Val</th>
<th>Lys</th>
<th>Val</th>
<th>Leu</th>
<th>Gly</th>
<th>Pro</th>
<th>Glu</th>
<th>Tyr</th>
<th>Pro</th>
<th>Ile</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ala</th>
<th>Leu</th>
<th>Val</th>
<th>Gly</th>
<th>Glu</th>
<th>Glu</th>
<th>Val</th>
<th>Glu</th>
<th>Phe</th>
<th>Pro</th>
<th>Cys</th>
<th>His</th>
<th>Leu</th>
<th>Trp</th>
<th>Pro</th>
<th>Gln</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leu</th>
<th>Asp</th>
<th>Ala</th>
<th>Gln</th>
<th>Gln</th>
<th>Met</th>
<th>Glu</th>
<th>Ile</th>
<th>Arg</th>
<th>Trp</th>
<th>Phe</th>
<th>Arg</th>
<th>Ser</th>
<th>Gln</th>
<th>Thr</th>
<th>Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asn</th>
<th>Val</th>
<th>Val</th>
<th>His</th>
<th>Leu</th>
<th>Tyr</th>
<th>Glu</th>
<th>Gln</th>
<th>Gln</th>
<th>Gln</th>
<th>Gln</th>
<th>Gln</th>
<th>Leu</th>
<th>Pro</th>
<th>Gly</th>
<th>Arg</th>
<th>Gln</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Met</th>
<th>Pro</th>
<th>Ala</th>
<th>Phe</th>
<th>Arg</th>
<th>Asn</th>
<th>Arg</th>
<th>Thr</th>
<th>Lys</th>
<th>Leu</th>
<th>Val</th>
<th>Lys</th>
<th>Asp</th>
<th>Asp</th>
<th>Ile</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>105</td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tyr</th>
<th>Gly</th>
<th>Ser</th>
<th>Val</th>
<th>Leu</th>
<th>Gln</th>
<th>Leu</th>
<th>His</th>
<th>Ser</th>
<th>Ile</th>
<th>Ile</th>
<th>Pro</th>
<th>Ser</th>
<th>Asp</th>
<th>Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>120</td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gly</th>
<th>Thr</th>
<th>Tyr</th>
<th>Gly</th>
<th>Cys</th>
<th>Arg</th>
<th>Phe</th>
<th>His</th>
<th>Ser</th>
<th>Asp</th>
<th>Asn</th>
<th>Phe</th>
<th>Ser</th>
<th>Gly</th>
<th>Glu</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>135</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leu</th>
<th>Trp</th>
<th>Glu</th>
<th>Leu</th>
<th>Glu</th>
<th>Val</th>
<th>Ala</th>
<th>Gly</th>
<th>Leu</th>
<th>Gly</th>
<th>Ser</th>
<th>Asp</th>
<th>Pro</th>
<th>His</th>
<th>Leu</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>

| Leu | Glu | Gly | Phe | Lys | Glu | Gly | Gly | Gly | Ile | Gln | Leu | Arg | Leu | Arg | Ser | Ser |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 165 | 170 | 175 |

<table>
<thead>
<tr>
<th>Gly</th>
<th>Trp</th>
<th>Tyr</th>
<th>Pro</th>
<th>Lys</th>
<th>Pro</th>
<th>Lys</th>
<th>Val</th>
<th>Gln</th>
<th>Trp</th>
<th>Arg</th>
<th>Asp</th>
<th>His</th>
<th>Gln</th>
<th>Gly</th>
<th>Gln</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>185</td>
<td>190</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cys</th>
<th>Leu</th>
<th>Pro</th>
<th>Pro</th>
<th>Glu</th>
<th>Phe</th>
<th>Glu</th>
<th>Ala</th>
<th>Ile</th>
<th>Val</th>
<th>Trp</th>
<th>Asp</th>
<th>Ala</th>
<th>Gln</th>
<th>Asp</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>195</td>
<td>200</td>
<td>205</td>
<td></td>
</tr>
</tbody>
</table>
NEW PA035WO_sequence listing[1].ST25

Phe Ser Leu Glu Thr Ser Val Val Val Arg Ala Gly Ala Leu Ser Asn
 210 215 220

Val Ser Val Ser Ile Gln Asn Leu Leu Leu Ser Gln Lys Lys Glu Leu
 225 230 235 240

Val Val Gln Ile Ala Asp Val Phe Val Pro Gly Leu Ala
 245 250

<210> 5
<211> 1905
<212> DNA
<213> homo sapiens

<220>
<221> CDS
<222> (175) .. (1464)

<400> 5

ccgcaagtctg tgagaaagag gcccctcttc agatgaatgg ataaagaaaa tgcaggacat
 60
atggggggag gagcacaagat ggcgcgaatag gaacagctcc ggtctacagc tcccaggttg
 120
agcgacacag aagacaggtg atttctgtga ttccatctga ggcaagaaga ataa atg
 177
Met

 tct ctg gtg gaa ctt ttg ctg tgg tgg aac tgc ttt tct aga act ggt
 225
Ser Leu Val Glu Leu Leu Leu Trp Trp Asn Cys Phe Ser Arg Thr Gly
 5
 10
 15

gtt gca gca tcc ctg gaa gtg tca gag agc cct ggg agt atc cag gtg
 273
Val Ala Ala Ser Leu Glu Val Ser Glu Ser Pro Gly Ser Ile Gln Val
 20
 25
 30

gcc cgg ggt cag aca gca gtc ctg ccc tgc act ttc act acc agc gct
 321
Ala Arg Gly Glu Thr Ala Val Leu Pro Cys Thr Phe Thr Thr Ser Ala
 35
 40
 45

gcc ctc att aac ctc aat gtc att tgg atg gtc act cct ctc tcc aat
 369
Ala Leu Ile Asn Leu Asn Val Ile Trp Met Val Thr Pro Leu Ser Asn
 50
 55
 60
 65

gcc aac caa cct gaa cag gtc atc ctg tat cag ggt gga cag atg ttt
 417
Ala Asn Pro Glu Ile Leu Tyr Gln Gly Gly Glu Met Phe
 70
 75
 80

gat ggt gcc cgg ttc cac ggt agg gta gga ttt aca gcc acc atg
 465
Asp Gly Ala Pro Arg Phe His Gly Arg Val Phe Thr Gly Thr Met
 85
 90
 95

cca gct acc aat gtc tct atc ttc att aat aac act cag tta tca gac
 513
Pro Ala Thr Asn Val Ser Ile Phe Ile Asn Thr Gln Leu Ser Asp
 100
 105
 110

act gcc acc tac cag tgc ctg gtc aac aac ctt cca gac ata ggg gcc
 561
Thr Gly Thr Tyr Gln Cys Leu Val Asn Asn Leu Pro Asp Ile Gly Gly
 115
 120
 125

agg aac att ggg gtc acc ctc aca gtg tta gtt ccc cct tct gcc
 609
Arg Asn Ile Gly Val Thr Gly Leu Thr Val Val Pro Pro Ser Ala
 130
 135
 140
 145

cca cac tgc caa atc caa gga tcc cag gat att ggc age gat gtc atc
 657
NEW PA035WO_sequence listing[1].ST25
Val Met Val Pro Ala Gln Ser Arg Ala Gly Ser Leu Val
425 430

1534
tggggagtg cgggaaagaa acacctccct ataattatat tagttaaatg cacaagaag
1594
aagcagtgc tgctctcttg ccacaatag ctgtaaaatg gactgaaagt cttgatatcg
1654
aadacttlct tcaccacacaa agatgtctgt ggattttcgt caggcttcaa gatgtgcca
1714
gccaaggaag aagatacaag agcagaaaag tagtaaatg cacaagaag ccacagtgc gcacagatgg
1774

gctttgctt catgccctac ttataattt ttaagagatt aaagtgcag atggagttta
1834

1894

1905

<210> 6
<211> 430
<212> PRT
<213> homo sapiens

<400> 6

Met Ser Leu Val Glu Leu Leu Leu Trp Trp Asn Cys Phe Ser Arg Thr
1 5 10 15

Gly Val Ala Ala Ser Leu Glu Val Ser Gly Ser Pro Gly Ser Ile Gln
20 25 30

Val Ala Arg Gly Gln Thr Ala Val Leu Pro Cys Thr Phe Thr Thr Thr Ser
35 40 45

Ala Ala Leu Ile Asn Leu Asn Val Ile Trp Met Val Thr Pro Leu Ser
50 55 60

Asn Ala Asn Gln Pro Glu Gln Val Ile Leu Tyr Gln Gly Gln Met
65 70 75 80

Phe Asp Gly Ala Pro Arg Phe His Gly Arg Val Gly Phe Thr Gly Thr
85 90 95

Met Pro Ala Thr Asn Val Ser Ile Phe Ile Asn Asn Thr Gin Leu Ser
100 105 110

Asp Thr Gly Thr Tyr Gln Cys Leu Val Asn Asn Leu Pro Asp Ile Gly
115 120 125

Gly Arg Asn Ile Gly Val Thr Gly Leu Thr Val Leu Val Pro Pro Ser
130 135 140

Ala Pro His Cys Gin Ile Gin Gly Ser Gin Asp Ile Gly Ser Asp Val
145 150 155 160

Ile Leu Leu Cys Ser Ser Gly Glu Gly Ile Pro Arg Pro Thr Tyr Leu
NEW PA035WO_sequence listing[1].ST25

165 Trp Glu Lys Leu Asp Asn Thr Leu Lys Leu Pro Pro Thr Ala Thr Gln
180 Asp Gln Val Gln Gly Thr Val Thr Arg Asn Ile Ser Ala Leu Ser
195 Ser Gly Leu Tyr Gln Cys Val Ala Ser Asn Ala Ile Gly Thr Ser Thr
210 Cys Leu Leu Asp Leu Gln Val Ile Ser Pro Gln Pro Arg Asn Ile Gly
225 Leu Ile Ala Gly Ala Ile Gly Thr Gly Ala Val Ile Ile Ile Phe Cys
245 Ile Ala Leu Ile Leu Gly Ala Phe Phe Tyr Trp Arg Ser Lys Asn Lys
260 Glu Glu Glu Glu Glu Ile Pro Asn Glu Ile Arg Glu Asp Asp Leu
275 Pro Pro Lys Cys Ser Ser Ser Ala Lys Ala Phe His Thr Glu Ile Ser Ser
290 Ser Asp Asn Thr Leu Thr Ser Ser Asn Ala Tyr Asn Ser Arg Tyr
305 Trp Ser Asn Pro Lys Val His Arg Asn Thr Glu Ser Val Ser His
325 Phe Ser Asp Leu Gly Gln Ser Phe Ser Phe His Ser Gly Asn Ala Asn
340 Ile Pro Ser Ile Tyr Ala Asn Gly Thr His Leu Val Pro Gly Gln His
355 Lys Thr Leu Val Val Thr Ala Asn Arg Gly Ser Ser Pro Gln Val Met
370 Ser Arg Ser Asn Gly Ser Val Ser Arg Lys Pro Arg Pro Pro His Thr
385 His Ser Tyr Thr Ile Ser His Ala Thr Leu Glu Arg Ile Gly Ala Val
405 Pro Val Met Val Pro Ala Gln Ser Arg Ala Gly Ser Leu Val
420 <210> 7
425
430
NEW PA035WO_sequence listing[1].ST25

<211> 735
<212> DNA
<213> homo sapiens

<220>
<221> CDS
<222> (9)...(734)

<400> 7
gggggtacc atg tct ctg gtt gaa ctg gta ttc tgg gac tgc ttc 50
Met Ser Leu Val Glu Leu Leu Leu Thr Trp Asn Cys Phe Ser
1
aga act ggt gtt gca gca tcc ctg gaa gtt tca gag agc cct ggg a 98
Arg Thr Gly Val Ala Ser Leu Glu Val Ser Glu Ser Pro Gly Ser
15
atc cag gtt gcc cgg ggt cag aca gca gtc ctc gca tgc act ttc act 146
Ile Gln Val Ala Arg Gly Glu Thr Ala Val Pro Cys Thr Pro
30
acc ago tgt gcc ctc att aac ctc aat gtt att tgg atg gtc act cct 194
Thr Ser Ala Ala Leu Ile Asn Leu Asn Val Ile Trp Met Val Thr Pro
50
ctc tcc aat ggc aac caa cct gaa cag gtc att cag tta cag gtt gga 242
Leu Ser Asn Ala Asn Glu Pro Gln Val Ile Leu Tyr Gln Gly Gly
70
cag atg ttt gat ggt gcc cgg ttc cac gtt ggg gag gta gga ttc aca 290
Gln Met Phe Asp Gly Pro Arg Phe His Gly Arg Val Phe Thr
85
ggc acc atg cca gct acc aat gtc tct ttc atc ttc att aac act cag 338
Gly Thr Met Pro Ala Thr Asn Val Ser Ile Phe Ile Asn Thr Gln
100
tta tca gac act gcc acc tac cag tgc ctc gtc aac aac ctt cca gac 386
Leu Ser Asp Thr Gly Thr Tyr Gln Cys Leu Val Asn Asp Leu Pro Asp
120
ata ggg ggg agg aac att ggg gtc acc ggt tct aca gtt tta gtt ccc 434
Ile Gly Arg Asn Tyr Caa Caa Caa Caa Gaa Tcc Cag Gtt Att Ggc Ggc
130
cct tct gcc cca cac tgc caa ctc gaa tcc cac gat att ggc agc 482
Pro Ser Ala Pro His Cys Glu Glu Ser Gly Ser Gly Ser Ile Ser Ala
150
gat gtc atc ctg tgt aac tca gag gaa ggc att cct cga cca act 530
Asp Val Ile Leu Leu Cys Ser Ser Glu Glu Gly Ile Pro Arg Pro Thr
160
tac ctt ttg gag aag tta gac aat acc ctc aaa cta ctc cca aca gct 578
Tyr Leu Trp Glu Lys Asp Pro Thr Leu Lys Val Leu Pro Pro Thr Ala
180
act cac gac cag gtc cac gga aca aar gcc aac atc aca gag aat cgg 626
Thr Gln Asp Glu Val Gln Gly Thr Val Thr Arg Asn Ile Ser Ala
195
cct tca gtc ctt tgt cac gtc gtt gct tct aat gct att ggc a 674
Leu Ser Ser Gly Leu Tyr Gln Cys Val Ala Ser Asn Ala Ile Gly Thr
210
agc acc tgt ctt ctg gat ctc cag gtt att tca ccc cag ccc agg aac 722
Ser Thr Cys Leu Leu Asp Leu Glu Val Ile Ser Pro Gly Pro Arg Asn
10
NEW PA035WO_sequence listing[1].ST25

```
att ggg cta gcc g
Ile Gly Leu Ala
```

<210> 8
<211> 242
<212> PRT
<213> homo sapiens

<400> 8

```
Met Ser Leu Val Glu Leu Leu Leu Trp Trp Asn Cys Phe Ser Arg Thr
1     5      10     15

Gly Val Ala Ala Ser Leu Glu Val Ser Glu Ser Pro Gly Ser Ile Gln
20    25    30

Val Ala Arg Gly Gln Thr Ala Val Leu Pro Cys Thr Phe Thr Thr Ser
35   40     45

Ala Ala Leu Ile Asn Leu Asn Val Ile Trp Met Val Thr Pro Leu Ser
50  55  60

Asn Ala Asn Gln Pro Glu Gln Val Ile Leu Tyr Gln Gly Gln Gln Met
65  70   75   80

Phe Asp Gly Ala Pro Arg Phe His Gly Arg Val Gly Phe Thr Gly Thr
85  90  95

Met Pro Ala Thr Asn Val Ser Ile Phe Ile Asn Asn Thr Gln Leu Ser
100 105  110

Asp Thr Gly Thr Tyr Gln Cys Leu Val Asn Asn Leu Pro Asp Ile Gly
115 120 125

Gly Arg Asn Ile Gly Val Thr Gly Leu Thr Val Leu Val Pro Pro Ser
130 135 140

Ala Pro His Cys Gln Ile Gln Gly Ser Gln Asp Ile Gly Ser Asp Val
145 150 155 160

Ile Leu Leu Cys Ser Ser Glu Glu Gly Ile Pro Arg Pro Thr Tyr Leu
165 170 175

Trp Glu Lys Leu Asp Asn Thr Leu Lys Leu Pro Pro Thr Ala Thr Gln
180 185 190

Asp Gln Val Gln Gly Thr Val Thr Ile Arg Asn Ile Ser Ala Leu Ser
195 200 205

Ser Gly Leu Tyr Gln Cys Val Ala Ser Asn Ala Ile Gly Thr Ser Thr
210 215 220 225
```
NEW PA035WO_sequence listing[1].ST25

Cys Leu Leu Asp Leu Gln Val Ile Ser Pro Gln Pro Arg Asn Ile Gly
225 230 235 240

Leu Ala

<210> 9
<211> DNA
<212> Mus musculus

<220>
<221> CDS
<222> (64) (1347)

<400> 9
cctacgctgc taacccgtcc gcccaggagc ccggcgacgc ccgggtccccc ccggcgctcc 60

ggc atg act cgg cgg cgc tcc gct cgg gcg tcc tgg ctc gtc tgg tcg 108
Met Thr Arg Arg Arg Ser Ala Pro Ala Ser Trp Leu Leu Val Ser

cct gtc ctc ggt gtc gca aca tcc ctc gaa gtc gtc gag agc cca ggc aet 156
Leu Leu Gly Val Ala Thr Ser Leu Glu Val Ser Glu Ser Pro Gly Ser

ctg gtc gag gcc ccg ggc cag aca gca gtc ctc ccc tgc gcc ttc tcc 204
Val Gin Val Ala Arg Gly Gin Thr Ala Val Leu Pro Cys Ala Phe Ser

acc aat gct gcc ctc ctc aac ctc aat gtc att tgg aat gtc att ccc 252
Thr Ser Ala Ala Leu Leu Asn Leu Val Ile Trp Met Val Ile Pro

cct gcc ctc ctc aac ctc aat gcc aac ctc aat gtc att ctt tat cag ggt gga 300
Leu Ser Asn Ala Asn Gin Pro Glu Val Ile Tyr Gin Gly Gly

caa atg ttt gac ggc gcc tcc cgg ttc cac ggg aag gta gga ttt acc 348
Gln Met Phe Asp Gly Ala Leu Arg Phe His Gly Arg Val Gly Phe Thr

ggc acc atg cct gct acc aat gtc tcc atc ttc atc aat aac aca cag 396
Gly Thr Met Pro Ala Thr Asn Val Ser Ile Phe Ile Asn Asn Thr Gin

cct gtc gat acg ggc acg tac cag tgc ttc gat gaa ctt cca gac 444
Leu Ser Asp Thr Tyr Gly Gin Val Leu Asn Leu Pro Asp

aga ggc gag aac atc ggg gtc act ggc ctc aca gtt tta gtc ccc 492
Arg Gly Gly Arg Asn Ile Gly Val Thr Leu Thr Val Leu Val Pro

cct tct gct cca cag ctc cca gaa tcc cag ctc ggc aat 540
Pro Ser Ala Pro Gin Cys Leu Val Leu Asn Gly Ser Gin Asp Leu Gly Ser

gac gtc atc ctt ctc gta gat gaa ggc atc cct cgg ccc acg 588
Asp Val Ile Leu Leu Cys Ser Ser Gly Gin Ile Pro Arg Pro Thr

tac ctt tgg gag aat tta gat aat acg ctc aag cta cct cca aca ggc 636
NEW PA035WO_sequence listing[1].ST25

Tyr Leu Trp Glu Lys Leu Asp Asn Thr Leu Lys Leu Pro Pro Thr Ala
180 185 190

act cag gac cag gtc cag gga aca gtc acc acc gtc aat atg act ccc
Thr Glu Asp Glu Val Glu Gly Thr Val Thr Ile Arg Asn Ile Ser Ala
195 200 205

ctc tct tcc ggt ctc ctc ctc cag ggt gct gtt ctt ggt gtt gct gtt
Leu Ser Gly Leu Tyr Glu Val Ala Ser Asn Ala Ile Gly Thr
210 215 220

agc acc tgg ctc cgc ctt ctc cgc cgc ctc ctc ctc cgc ctc ctc cgc
Ser Thr Cys Leu Leu Asp Leu Glu Val Ile Ser Pro Glu Pro Arg Ser
225 230 235

<210> 10
<211> 428

agc cag gta ata atc agt ggc ggc ggc ggc acc ggt gct gtt ctt ctc
Val Gly Val Ile Ala Gly Ala Val Gly Thr Gly Ala Val Leu Ile Val
240 245 250 255

atc gtc ctt gca cta att tca ggg ggc ggg gtc gaa gaa att cct aat gaa
Ile Cys Leu Ala Leu Ile Ser Gly Ala Phe Phe Tyr Trp Arg Ser Lys
260 265 270

aac aag gag gag gag gag gag gaa aat ctt aat gaa aat aat aat gag gat
Asn Lys Glu Glu Glu Glu Pro Asn Asn Glu Ile Arg Glu Asp
275 280 285

agt ctt cct cct aat ttt aat cgc ctc ccc ccc ctc ccc ctc ccc ccc ccc
cac acg cac cgg ctt ctc aac acg act ctc ctc ctc aac acg act ctc
Asp Leu Pro Pro Lys Cys Ser Ser Ala Lys Ala Phe His Thr Glu Ile
290 295 300

ccc ccc ccc ccc ctc aat aat ctc aat ctc aat aat ctc aat ctc aat
ccc ccc ccc ccc ctc aat aat ctc aat ctc aat aat ctc aat ctc aat
Ser Ser Ser Ser Glu Asp Asn Thr Leu Thr Ser Ser Asn Thr Tyr Asn Ser
305 310 315

cga tac tgg aac aac cca aca aca aca cgg gag tgg tgc
Arg Tyr Trp Asn Asn Pro Lys Pro His Arg Thr Glu Ser Phe
320 325 330 335

cac cac ttc act cgc tgc gtc ctc ctc ctc ctt ggc aat gca gtt atc
Sac His Phe Ser Asp Leu Arg Glu Ser Phe Ser Gly Ala Val Ile
340 345 350

cca tca att tat gca aat ggg aac gat cat ctt gtt gtt gtt
Pro Ser Ile Tyr Ala Asn Gly Asn His Leu Val Leu Gly Pro His Lys
355 360 365

act ctc cta ctc ctc
cct gtt ctc ctc
Thr Leu Val Val Thr Ala Asn Arg Gly Ser Ser Pro Glu Val Leu Pro
370 375 380

agg aac aat ggt tca gtc aac agg aag ctc tgg cct cca cac act cat
Arg Asn Asp Val Val Glu Ser Val Asp Lys Pro Trp Pro Glu His Thr His
385 390 395

tcc tac ctc atc gtt gat aac gtt ctc ctc gtt gtt gtt ccg
Ser Tyr Thr Val Ser Glu Met Thr Leu Glu Arg Ile Gly Ala Val Pro
400 405 410 415

gtc atg gtt ctc ctc
cgc ctc ctc
Val Met Val Pro Ala Glu Ser Arg Ala Gly Ser Leu Val
420 425

1395

gaggaaacca tggtcagaag agaataaag gagcgcct

<210> 10
<211> 428
Met Thr Arg Arg Arg Ser Ala Pro Ala Ser Trp Leu Leu Val Ser Leu
1 5 10 15
Leu Gly Val Ala Thr Ser Leu Glu Val Ser Glu Ser Pro Gly Ser Val
20 25 30
Gln Val Ala Arg Gly Gln Thr Ala Val Leu Pro Cys Ala Phe Ser Thr
35 40 45
Ser Ala Ala Leu Leu Asn Leu Asn Val Ile Trp Met Val Ile Pro Leu
50 55 60
Ser Asn Ala Asn Gln Pro Glu Gln Val Ile Leu Tyr Gln Gly Gly Gln
65 70 75 80
Met Phe Asp Gly Ala Leu Arg Phe His Gly Arg Val Gly Phe Thr Gly
85 90 95
Thr Met Pro Ala Thr Asn Val Ser Ile Phe Ile Asn Asn Thr Gln Leu
100 105 110
Ser Asp Thr Gly Thr Tyr Gln Cys Leu Val Asn Asn Leu Pro Asp Arg
115 120 125
Gly Gly Arg Asn Ile Gly Val Thr Gly Leu Thr Val Leu Val Pro Pro
130 135 140
Ser Ala Pro Gln Cys Gln Ile Gln Gly Ser Gln Asp Leu Gly Ser Asp
145 150 155 160
Val Ile Leu Leu Cys Ser Ser Glu Glu Gly Ile Pro Arg Pro Thr Tyr
165 170 175
Leu Trp Glu Lys Leu Asp Asn Thr Leu Lys Leu Pro Pro Thr Ala Thr
180 185 190
Gln Asp Gln Val Gln Gly Thr Val Thr Ile Arg Asn Ile Ser Ala Leu
195 200 205
Ser Ser Gly Leu Tyr Gln Cys Val Ala Ser Asn Ala Ile Gly Thr Ser
210 215 220
Thr Cys Leu Leu Asp Leu Gln Val Ile Ser Pro Gln Pro Arg Ser Val
225 230 235 240
Gly Val Ile Ala Gly Ala Val Gly Thr Gly Ala Val Leu Ile Val Ile
245 250 255
NEW PA035WO_sequence listing[1].ST25

Cys Leu Ala Leu Ile Ser Gly Ala Phe Phe Tyr Trp Arg Ser Lys Asn 260
Lys Glu Glu Glu Glu Glu Ile Pro Asn Glu Ile Arg Glu Asp Asp 275
Leu Pro Pro Lys Cys Ser Ser Ala Lys Ala Phe His Thr Glu Ile Ser 290
Ser Ser Glu Asn Thr Leu Thr Ser Ser Asn Thr Tyr Asn Ser Arg 305
Tyr Trp Asn Asn Pro Lys Pro His Arg Asn Thr Glu Ser Phe Asn 325
His Phe Ser Asp Leu Arg Glu Ser Phe Ser Gly Asn Ala Val Ile Pro 340
Ser Ile Tyr Ala Asn Gly Asn His Leu Val Leu Gly Pro His Lys Thr 355
Leu Val Val Thr Ala Asn Arg Gly Ser Ser Pro Gln Val Leu Pro Arg 370
Asn Asn Gly Ser Val Ser Arg Lys Pro Trp Pro Gln His Thr His Ser 385
Tyr Thr Val Ser Gln Met Thr Leu Glu Arg Ile Gly Ala Val Pro Val 405
Met Val Pro Ala Gln Ser Arg Ala Gly Ser Leu Val 420

<210> 11
<211> 723
<212> DNA
<213> Mus musculus

<220>
<221> CDS
<222> (9) (722)

<400> 11

```
GGGTTACC ATG ACT CGG CGC GCC TCC GCT CGG GCC TCC TGG CTG TCC GTC
Met Thr Arg Arg Arg Ser Ala Pro Ala Ser Trp Leu Leu Val 1 5 10
```

```
TCG CTG TGT GTC GCA ACA TCC CTG GAA GTG TCC GAG AGC CCA GGC
Ser Leu Leu Gly Val Ala Thr Ser Leu Glu Val Ser Glu Ser Pro Gly 15 20 25 30
```

```
AGT GTC CAG GTC GCC GGC CAG ACA GCA GCA GTC CTC CCC TGC GCC TTC
Ser Val Gln Val Ala Arg Gly Gln Thr Ala Val Leu Pro Cys Ala Phe 35 40 45
```
NEW PA035WO_sequence listing[1].ST25

tcc acc akg gct gcc ctc cag aac ctc aat gtc att tgg atg gtc att 194
Ser Thr Ser Ala Ala Leu Leu Asn Asn Val Ile Trp Met Val Ile
 50 60

ccc ctc ccc aat gca aac cag ccc gaa cag gtc att ctt tat cag gtt 242
Pro Leu Ser Asn Ala Asn Gln Pro Glu Gln Val Ile Leu Tyr Gln Gly
 65 75

gga caa atg ttt gac ggc ctc cgg ttc cac ggg agg gta gga ttt 290
Gly Gln Met Phe Asp Gly Ala Leu Arg Phe His Gly Arg Val Gly Phe
 80 90

acc ggc acc atg cct gct acc aat gtc tcg atc ttc aat aac aca 338
Thr Gly Thr Met Pro Ala Thr Asn Val Ser Ile Phe Ile Asn Asn Thr
 95 105 110

cag ctc tca gat acg ggc acg tac cag tgc ttt gtt aat aac ctt cca 386
Gln Leu Ser Asp Thr Gly Thr Tyr Gln Cys Leu Val Asn Asn Leu Pro
 115 120

gac aga ggg ggc aga aac atc ggg gtc act ggc ctc aca gtt tta gtc 434
Asp Arg Gly Gly Arg Asn Ile Gly Val Thr Gly Leu Thr Val Leu Val
 130 135 140

ccc cct ctc gct cca cca tgc caa atc cca gga tcc cag gac ctc ggc 482
Pro Pro Ser Ala Pro Gln Cys Gln Ile Gln Gly Ser Gln Asp Leu Gly
 145 150 155

agt gac gtc atc ctt ctg agt tca gag gaa ggc atc cct cgg ccc 530
Ser Asp Val Gln Leu Leu Ser Glu Gly Ile Arg Pro Arg Pro
 160 165 170

acg tac ctt tgg gag aag tta gat aat acg ctc aag cta cct cca acg 578
Thr Tyr Leu Trp Glu Leu Asp Thr Leu Lys Leu Pro Pro Thr
 175 180 185 190

gcc act cag gac cag gtc cag gga aca gtc acc atc cgg aat atc agt 626
Ala Thr Gln Asp Gln Val Gln Gly Thr Val Thr Ile Arg Asn Ile Ser
 195 200 205

gcc ctc cct ctc ggt ctc tgc tac cag tgt gct ctc aat gcc atc ggg 674
Ala Leu Ser Gly Leu Tyr Gln Cys Val Ala Ser Asn Ala Ile Gly
 210 215 220

acc agc acc tgt ctg gac ctc cag gtt atc tca ccc gtt cta ggc c 723
Thr Ser Thr Cys Leu Leu Asp Leu Gln Val Ile Ser Pro Val Leu Ala
 225 230 235

<210> 12
<211> 238
<212> PRT
<213> Mus musculus

<400> 12

Met Thr Arg Arg Arg Ser Ala Pro Ala Ser Thr Leu Leu Val Ser Leu
 1 5 10 15
Leu Gly Val Ala Thr Ser Leu Glu Val Ser Glu Ser Pro Gly Ser Val
 20 25 30
Gln Val Ala Arg Gly Gln Thr Ala Val Leu Pro Cys Ala Phe Ser Thr
 35 40 45

16
Ser Ala Ala Leu Leu Asn Leu Asn Val Ile Trp Met Val Ile Pro Leu
50
Ser Asn Ala Asn Gln Pro Glu Gln Val Ile Leu Tyr Gln Gly Gly Gln
65
Met Phe Asp Gly Ala Leu Arg Phe His Gly Arg Val Gly Phe Thr Gly
85
Thr Met Pro Ala Thr Asn Val Ser Ile Phe Ile Asn Asn Thr Gln Leu
100
Ser Asp Thr Gly Thr Tyr Gln Cys Leu Val Asn Asn Leu Pro Asp Arg
115
Gly Gly Arg Asn Ile Gly Val Thr Gln Thr Leu Thr Val Leu Val Pro Pro
130
Ser Ala Pro Gln Cys Gln Ile Gln Gly Ser Gln Asp Leu Gly Ser Asp
145
Val Ile Leu Leu Cys Ser Ser Glu Glu Gly Ile Pro Arg Pro Thr Tyr
165
Leu Trp Glu Lys Leu Asp Asn Thr Leu Lys Leu Pro Pro Thr Ala Thr
180
Gln Asp Gln Val Gln Gly Thr Val Thr Ile Arg Asn Ile Ser Ala Leu
195
Ser Ser Gly Leu Tyr Gln Cys Val Ala Ser Asn Ala Ile Gly Thr Ser
210
Thr Cys Leu Leu Asp Leu Gln Val Ile Ser Pro Val Leu Ala
225

<210> 13
<211> 867
<212> DNA
<213> Mus musculus

<220>
<221> CDS
<222> (16)...(855)

<400> 13
gtagctttcaaataggtagtagatctactcagttcggctggtctggtggtgcacctg
Met Glu Ile Ser Ser Gly Leu Leu Phe Leu Gly His
1 5
10
catatagtctccattgcaccccaccctaaacaaacctgagtttgtgtgactagtccag
Leu Ile Val Leu Thr Tyr Gly His Pro Thr Leu Lys Thr Pro Glu Ser
15 20
25
gtgacaagaccaggtaattcagtacattgcattcattgat
17
Val Thr Gly Thr Trp Lys Gly Asp Val Lys Ile Gln Cys Ile Tyr Asp
30
ccc ctg aga ggc tac agg caa gtt ttg gta aaa tgg ctc gta aga cac
45
Pro Leu Arg Gly Tyr Arg Gln Val Leu Val Lys Trp Leu Val Arg His
50
ggc tct gag tcc acc atc ttc cta cgt gac tcc act gga gac cat
55
Gly Ser Asp Ser Val Thr Ile Phe Leu Arg Asp Ser Thr Gly Asp His
60
atc cag cag gca aag tac aga ggc cgc ctg aaa gtt agc cac aca gtt
65
Ile Gln Gln Ala Lys Tyr Arg Gly Leu Lys Val Ser His Lys Val
70
cca gga gat gtt tcc ctc caa ata aat acc ctg cag atg gat gac agg
75
Pro Gly Asp Val Ser Leu Gln Ile Asn Thr Leu Gln Met Asp Arg
80
aat cac tat aca tgt gag gtc acc tgg cag act cct gat gga aac caa
85
Asn His Tyr Thr Cys Glu Val Thr Trp Gln Thr Pro Asp Gly Asn Gln
90
gta ata aga gat aag atc att gag ctc cgt gtt cgg aaa tat aat cca
95
Val Ile Arg Asp Lys Ile Ile Glu Leu Arg Val Arg Lys Tyr Asn Pro
100
ctt aga atc aat act gaa gca cct aca acc ctg cac tcc tct tgg gaa
105
Pro Arg Ile Asn Thr Leu Ala Pro Thr Thr Leu His Ser Leu Glu
110
531
gca aca act ata atg agt tca acc tct gac tgg acc act aat ggg act
115
Ala Thr Thr Ile Met Ser Ser Thr Ser Asp Leu Thr Thr Asn Gly Thr
120
579
gga aaa ctt gag gac acc att gct gtt tca ggg agg aac ctg cca act
125
Gly Lys Leu Glu Thr Ile Ala Gly Ser Gly Arg Asn Leu Pro Ile
130
519
ttt gcc ata atc ttc atc ttc ctt tgc tgc ata gta gct gtc acc
135
Phe Ala Ile Ile Phe Ile Ile Ser Leu Cys Ile Val Ala Val Thr
140
522
ata cct tat atc ttc ggc tgc agg aca ttc caa cca gag tat gtc
145
Ile Pro Tyr Ile Leu Phe Arg Cys Arg Thr Phe Gln Glu Tyr Val
150
561
tat gga gta agc gtt ttt gcc agg aag aca agc aac tct gaa gaa
155
Tyr Gly Val Ser Arg Val Phe Ala Arg Lys Thr Ser Asn Ser Glu Glu
160
556
acc aca agg gta act acc atc gca act gat gaa cca gat tcc cag gct
165
Thr Thr Arg Val Thr Thr Ile Thr Asp Glu Pro Asp Ser Gln Ala
170
571
cgg att agt gac tac tct gat gat cct tgc ctc gac cag gag tac caa
175
Leu Ile Ser Asp Tyr Ser Asp Pro Cys Leu Ser Gln Glu Tyr Gln
180
819
ata acc atc aga tca aca atg tct att cct gcc tgc tga acag tcgg
185
Ile Thr Ile Arg Ser Thr Met Ser Ile Pro Ala Cys
200
867
<211> 14
<212> 280
<213> Mus musculus
NEW PA03SWO_sequence listing[1].ST25

<400> 14
Met Glu Ile Ser Ser Gly Leu Leu Phe Leu Gly His Leu Ile Val Leu
1 5 10 15
Thr Tyr G1y His Pro Thr Leu Lys Thr Pro Glu Ser Val Thr Gly Thr
20 25 30
Trp Lys Gly Asp Val Lys Ile Gln Cys Ile Tyr Asp Pro Leu Arg Gly
35 40 45
Tyr Arg G1n Val Leu Val Tyr Trp Leu Val Arg His G1y Ser Asp Ser
50 55 60
Val Thr Ile Phe Leu Arg Asp Ser Thr Gly Asp His Ile Gln Gln Ala
65 70 75 80
Lys Tyr Arg G1y Leu Lys Val Ser His Lys Val Pro G1y Asp Val
85 90 95
Ser Leu Gln Ile Asn Thr Leu Gln Met Asp Asp Arg Asn His Tyr Thr
100 105 110
Cys Glu Val Thr Trp Gln Thr Pro Asp Gly Asn Gln Val Ile Arg Asp
115 120 125
Lys Ile Ile G1u Leu Arg Val Arg Lys Tyr Asn Pro Pro Arg Ile Asn
130 135 140
Thr Glu Ala Pro Thr Thr His Ser Ser Leu Glu Ala Thr Thr Ile
145 150 155 160
Met Ser Ser Thr Ser Asp Leu Thr Thr Asn Gly Thr Gly Lys Leu G1u
165 170 175
Glu Thr Ile Ala G1y Ser Gly Arg Asn Leu Pro Ile Phe Ala Ile Ile
180 185 190
Phe Ile Ile Ser Leu Cys Cys Ile Val Ala Val Thr Ile Pro Tyr Ile
195 200 205
Leu Phe Arg Cys Arg Thr Phe Gln Gln Glu Tyr Val Tyr Gly Val Ser
210 215 220
Arg Val Phe Ala Arg Lys Thr Ser Asn Ser Glu Glu Thr Thr Arg Val
225 230 235 240
Thr Thr Ile Ala Thr Asp Glu Pro Asp Ser Gln Ala Leu Ile Ser Asp
245 250 255
Tyr Ser Asp Asp Pro Cys Leu Ser Gln Glu Tyr Gln Ile Thr Ile Arg
19
Ser Thr Met Ser Ile Pro Ala Cys
275
280

<210> 15
<211> 574
<212> DNA
<213> Mus musculus

<220>
<221> CDS
<222> (11)...(574)

<400> 15
gggtaccagg atg gag atc tca tca gcc ttg ctg ttg gcc cac cta
Met Glu Ile Ser Ser Gly Leu Leu Phe Leu Gly His Leu
1 5 10
ata gtt ctc acc tat gcc cac ccc acc cta aaa aca cct gag agt gtt
Ile Val Leu Thr Tyr Gly His Pro Thr Leu Lys Thr Pro Glu Ser Val
15 20 25
aca ggg acc tgg aaa gga gat gtt aag att cag tgc atc tat gat ccc
Thr Gly Thr Trp Lys Gly Asp Val Lys Ile Glu Cys Ile Tyr Asp Pro
30 35 40 45
ctg aga ggc tac agg cca gtt ttg gtt aaa tgg ctg gta aga cac ggc
Leu Arg Gly Tyr Arg Glu Val Leu Val Lys Trp Leu Val Arg His Gly
50 55 60
tct gac tcc gtc acc atc ttc cta ggt gac tcc act gga gac cat atc
Ser Asp Ser Val Thr Ile Phe Leu Arg Asp Ser Thr Gly Asp His Ile
65 70 75
cag cag gca aag tac aga ggc cgc ctg aaa gtt gac cac aaa gtt cca
Gln Glu Ala Lys Tyr Arg Gly Arg Leu Lys Val Ser His Lys Val Pro
80 85 90
ugg gat gtt tcc ctc cca ata aat acc ctg cag atg gat gac agg aat
Gly Asp Val Leu Glu Thr Leu Glu Thr Asp Ser Thr Gly Asp Arg Asn
95 100 105
cac tat cca tgt gag gtc acc tgg cag act cct gat gga aac cca gta
His Tyr Thr Cys Gly Val Thr Gln Thr Pro Asp Glu Asn Gln Val
110 115 120 125
ata aga gat aag atc att gag ctc cgt ggg aaa tat aat cca cct
Ile Arg Asp Lys Ile Ile Glu Leu Arg Val Lys Tyr Asn Pro Pro
130 135 140
aga atc aat act gaa gca cct aca acc ctg cac tcc ttg gaa gca
Arg Ile Asn Thr Glu Ala Pro Thr Thr Leu His Ser Ser Leu Glu Ala
145 150 155
aca act ata atg agt tca acc tct gac ttg acc act aat ggg act gga
Thr Thr Ile Met Ser Ser Thr Ser Asp Leu Thr Thr Asn Gly Thr Gly
160 165 170
aaa ctt gag gac acc att gct ggt tca ggg agg aac ctg cta ggc
Lys Leu Glu Thr Ile Ala Gly Ser Gly Arg Asn Leu Ala
175 180 185

<210> 16
NEW PA035WO_sequence listing[1].ST25

Met Glu Ile Ser Ser Gly Leu Leu Phe Leu Gly His Leu Ile Val Leu
1 5 10 15

Thr Tyr Gly His Pro Thr Leu Lys Thr Pro Glu Ser Val Thr Gly Thr
20 25 30

Trp Lys Gly Asp Val Lys Ile Gln Cys Ile Tyr Asp Pro Leu Arg Gly
35 40 45

Tyr Arg Gln Val Leu Val Lys Trp Leu Val Arg His Gly Ser Asp Ser
50 55 60

Val Thr Ile Phe Leu Arg Asp Ser Thr Gly Asp His Ile Gln Gln Ala
65 70 75 80

Lys Tyr Arg Gly Arg Leu Lys Val Ser His Lys Val Pro Gly Asp Val
85 90 95

Ser Leu Gln Ile Asn Thr Leu Gln Met Asp Asp Arg Asn His Tyr Thr
100 105 110

Cys Glu Val Thr Trp Gln Thr Pro Asp Gly Asn Gln Val Ile Arg Asp
115 120 125

Lys Ile Ile Glu Leu Arg Val Arg Lys Tyr Asn Pro Pro Arg Ile Asn
130 135 140

Thr Glu Ala Pro Thr Thr Leu His Ser Ser Leu Gln Ala Thr Thr Ile
145 150 155 160

Met Ser Ser Thr Ser Asp Leu Thr Thr Asn Gly Thr Gly Lys Leu Glu
165 170 175

Glu Thr Ile Ala Gly Ser Gly Arg Asn Leu Leu Ala
180 185

<210> 17
<211> 11006
<212> DNA
<213> Artificial Sequence

<220> source
<221> pCEP-hsB7-H4(ECD)-Fc

<220> misc_feature
<222> (10593)..<(10593)
<223> n is a, c, g, or t
NEW PA035WO_sequence listing[1].ST25

<400> 17
gcccgccgc gcgacgaact aaacctgact acggcatctc tgccccctct ctgctgtgtac 60
gaggagcgtc ttgtttttgt atttcgggca gtgcattgtaa tccctctcag tgggtgtgtac 120
aatctgccaa cttgacccct cttccacatgt gacacggggg gggaccaaac acaaaaggggt 180
tctctgcttg tagttgacat cctttataat ggtatggagc atttgaccaac accttggtgac 240
itttcatcttg gagcagacatt tcgatgtcgt ggactgcaac acaacattgc cttttatggt 300
aatccctggc tggagtctctt acaacattgc tgccggtgac atcctcccc gggccccagg 360
agacgatcgg gagctccatttagc cgacgatcgg cattgtggctg cctttattt ctaagccggg 420
accccagacaac accaaccctgg cggagctcaact aacactagta tactgttggc tcttcgcttg 480
ttagctatac ttttcttcgg gtttggtttag ccaccaatat ctttcttcgctg 540
atgttactcgc acgcaaaccac ccacacattt gggacccggcg gatctctgcggtg 600
cagccatattt cttcacccttt cttctctctcg cccggtttataat cccggtggcg gttttata 660
cagacccggc accacagctc accacagctc gggaccaaccac ctggtgctgac ccacac 720
aacacttgac atctctcaact gggaccaaccac ccacacatcat ctttcttcgg gttttata 780
agacgatcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 840
ccttcggc cccagttggc gttgggtttataat cccggtggcg gttttataa 900
cttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 960
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1020
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1080
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1140
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1200
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1260
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1320
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1380
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1440
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1500
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1560
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1620
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1680
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1740
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1800
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1860
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1920
ctttcttcgg cccagttggc gttgggtttataat cccggtggcg gttttataa 1980
NEW PA035WO_sequence listing[1].ST25

tctgggtacg atatgctatc ctaaatctata tctgggtagt atatgctatc ctaaatattata 2040
tctgggtacg atatgctatc ctaaatctata tctgggtacg atatgctatc ctaaatctata 2100
tctgggtagt atatgctatc ctaaatctata tctgggtacg atatgctatc ctaaatgctata 2160
tacagtacag atatgataacc cagagttaga gttggaggtgc tatctcttgc atatgctgacc 2220
acccctcaag ggggctgtaa tttgcgctgc tgtcctctttt cctgctatgc gtttgcctcc 2280
attcttaggt gaatttaagc aagccagctgg caaaccgctgg catgttctgat tcgtcaccag 2340
gtaaatcgcg ctaatgctttc ccaacgctgag aaggtgttga ggccgggatgc gagaagcgtg 2400
acaacatggg tattgcccacat tggcccgtattg tggagggagcg aaatgtgtaa caagacagat 2460
ggccagaaat acaacaaagc cagcatctgg gcacctctgg gattttatct ttaagtgcggg 2520
ggaatacgct gcttttaata aagattgaggg cgtctcctaaa caagttcatc cactcctgcc 2580
cctctcctcc actcatctcgc acacatctttc cactcctggtc atctcctctgct caccctctgg 2640
cggcagcccc tctcctagca gttgaggaagc agggagcactt cccacacgttc ggagagagcct 2700	
tgcaacagct caccctgtatc ttaagctggcg gagcggccttt tgcataaaca aggtcccttaa 2760
tgcgaactctt ccaacacccc gcaaatatat ggaagttttaa aagaaggaggaa agaatcagaca 2820
catggctcct cccctagcgag ccagttggctt ggccggctgccc aggggctgactt ccaacaggga 2880
gacgacttaa tggctgaagc caagattggtgc gaattgcaaga ggccgtctcc gcctctgtgg 2940
tgcgaacatgc ggctctcatt cctcctcata cgaacacacc gcgcagcctaa gttctcctcgt 3000
cggtctgttc ctctcaggtc ctcctcgcaac cagagcagttc taacaccttcc gcaatgctct 3060
caacattccgg ttggaaccct ccttgaccac gatgcctttcc aacacactcc ccttttcttc 3120
cggctgctcct aaactctgtgc cccgctgccct cagtgccttg gcctctctct ggagtcattgc 3180
cggggccccctt ccccgtctgct ccgggccccgg ccgctagtgg ccaaccccttt ccgctctgct 3240
ggttgattc aaaaatactcg gttccccctta caggggtggg aataagcttc ctacctgggag 3300
ggggcctcgc ggctgtgagc ccggagtgtag atgactgtact aactgggact gcgggccctct 3360
	ttctcaccgc tgtccagacct cccccctctgg ctttttcctc acctccccct gctgccttcct 3420
cactgttcct caacccggcgg cctccacact cctctcgacgc cgggcttccca ctacccctctc 3480
gacccgggccc tccactgcct cctggaaccgc ggcttccaca cctctcgtct gcgctctcctg 3540
tctctgcctc ccttcctcgttg cttggtccctgc tggccctcca gcctggtctgg cctgctgtgcc 3600
tcctctgctcc tggcctccctgc cctccctgcct cctcgctctgct cttcctctgct cctgctctgct 3660
tcgcctctctc tgggtctctcgc ctcctgctcct gcctggtgtgc cttcctgtctgct cttcctgtgctc 3720
tcgccttccc tgcgtctgcccc cttcctgtccc tttgcctcttc gcctgctgtcc cttcctgtgccc 3780
tcctgcctgctg ctcgtgctgctc ctcctgcgctgc ctcctgcgctgc ctcctgcgctgc ctcctgcgctgc 3840
tcgcctctctc tgcgtctgctgc ctcctgcgctgc ctcctgcgctgc ctcctgcgctgc ctcctgcgctgc 3900
tcctgcctgctc ctcctgcgctgc ctcctgcgctgc ctcctgcgctgc ctcctgcgctgc ctcctgcgctgc 3960
tcctgcctgctc ctcctgcgctgc ctcctgcgctgc ctcctgcgctgc ctcctgcgctgc ctcctgcgctgc 4020
ctcctgcccc ctcctgcccc ctcctgcttc ctggcccccc ctcctgcttc gccttcctctg 4080
cctctccctg cctctccctc gctctggcct ctcctcctgc tctctgcccc ctcctgcccctc 4140
cctcctcccc tgcctccctt ctcctgcgcc ctcctccctc gccttcctctg 4200
cctcctcccc gcgtcctgttc gcgtcctgttc gcctcctcttc gcgtcctgtgc 4260
aadctgggacgt tttttggggtgc tctcgggaca tctctctatag tctctgcccct gatctgcagtgc 4320
cgcctgcgggc tctctgtcgtt cgcctcctctc ctctctctct cctcttccttc 4380
agtatctccc cccctctccct ctcctgcttc cggccctgctc gctctgtgcgct 4440
ctcctctctc ctctagcctcc ttcctgctctt ctcctgctctt gctctgctctt gctctgctctt 4500
acactaagag acctcattata tagaagcagcgc tcagtaataa cagggagtgc 4560
agaactctgcag cctccctccct cgcctaatcct tccctcatcct ccttcagcttgc 4620
agatacgggct ctaagatcct cggccgcaag cgtctgtgct gcctctgctt 4740
gcctcgactc ctttcgctcct ctttcgctctc tgcgggcaatc atctctctctt 4800
ttcctcctct tccaagcctgc aggctctcttc gccagctcttc gccagctcttc 4860
agtgcggcgg cgggctggcct gctctggtgcct ctcctgctctc gcggctgctctc 4920
acacaagagc cccctccctcc cccctcctctt cgccttctttag gctctctctttaatggtgctctctctt 4980
cttagcagtcct tggctggtgctc gctgtggtgctc ttcctgggcctc gctgtggtgctc 5040
tcaatattc ttcctcctct tccaatattg ccagttatccttc tccctgtctctc 5100
aatattgaa cagacggatc tcagagcatttc ccctttcctct ttcctgctctt ctcctgctctt 5160
ctgtcttcatgt tcctcttctt gctctgctctt gcctgctctt ttcctgctctt ctcctgctctt 5220
cttcttcgccg cgggctgctctt gcctgctctt ttcctgctctt ctcctgctctt ctcctgctctt 5280
agtgtggtgc ctcctgctctt tcctctctct tgcgtctgctctt ctcctgctctt ctcctgctctt 5340
actattcctt cgccttctct cgggctgctctt gcctgctctt ttcctgctctt ctcctgctctt 5400
actattcctt cgccttctct cgggctgctctt gcctgctctt ttcctgctctt ctcctgctctt 5460
gcctcagctc cgccttctct cgggctgctctt gcctgctctt ttcctgctctt ctcctgctctt 5520
ctccttctct cgccttctct cgggctgctctt gcctgctctt ttcctgctctt ctcctgctctt 5580
ctccttctct cgccttctct cgggctgctctt gcctgctctt ttcctgctctt ctcctgctctt 5640
ctccttctct cgccttctct cgggctgctctt gcctgctctt ttcctgctctt ctcctgctctt 5700
ctccttctct cgccttctct cgggctgctctt gcctgctctt ttcctgctctt ctcctgctctt 5760
ctccttctct cgccttctct cgggctgctctt gcctgctctt ttcctgctctt ctcctgctctt 5820
ctccttctct cgccttctct cgggctgctctt gcctgctctt ttcctgctctt ctcctgctctt 5880
ctccttctct cgccttctct cgggctgctctt gcctgctctt ttcctgctctt ctcctgctctt 5940
ctccttctct cgccttctct cgggctgctctt gcctgctctt ttcctgctctt ctcctgctctt 6000
ctccttctct cgccttctct cgggctgctctt gcctgctctt ttcctgctctt ctcctgctctt 6060
tcctttttga taatctctag accaaaatcc cttaacgctg aatttctttc cacgtgagct
6120
cagacccgct agaaaagaact aaaggactt aaagagaccc ctcttgatcc ccccccctct
6180
gctgttcgca aacaaaaaaa caccgcgcct cagcgggtttg tgtgctggctg gatcaagacg
6240	 taccaactct ttttccccag aggcaagctc cccgacacag gcagatatcc aataccttc
6300
ttctactgta gccgtgtgtg gccccaacct acagagactt ctcgcaatcc tgtgacccgc ctctttac
6360
tgctgctttct aatccctttt ttcaggctcg ctgccaagttt cctactccctgct gctcactc
6420
ggtggagcgc aagcagcatag ttacccggata aggcgcaagcg gctgaggttcg taatgtgtttct
6480
cgtgcaacac gccaccggtg gacgcaagcc cccagccggt tctggtctgc ctcgctcctg
6540
tagcttgcag aacagcggcag cttcccaggg ggagagaaag gggactgttt ctggagactc
6600
gacggttcgg aacagcggaga aggctccagg gggaaagcgc tggtagctttc ggtactc
6660
tagtcttgtt gtcgatcggc ccrrccgctc aggataatcg agttgttgcag tggagc
6720
gggcggagag cctattggaa aaccgccagc accgggctgc tttacgcttc ctctggtcaa
6780
gctgcggcgc gttcgggcgc ggagaagtcg gaggacgagc gtagttctct gccagaagttt
6840
ggttggcgtc ttgctaccct tcctgcaagaa ttggtttgct ccaatctttg aagtggtgtaa
6900
tccgtggcag aggctcagcgt gcgctgtcct gaaacttaag aatcgcctgg gttgtg
6960
cagtggtt gttggaaagtc ccagcggcttc ccagcagcagc gaagactagc aagcagagat
7020
tcataataggt gtcagcaaac cggtgaggtg tccccggcgt cccagccagc cagaagatag
7080
caaagcatgc atctcaatta gccgcaaccc ctatccttgc gcccctcccg
7140
cccctacact cggcagcttc ccggggcttc cgcggcagct gcgcacccgc ccaccctc
7200	tatgcagagg cggggcgcg ccctggcctct gcgctgatatc gagaagtatgc aggagcttctt
7260	ttggagggt gaccgcgcag aacggactgg cccactccc ctgcagccagc cctggagaac
7320
tccagaggag gacgacaccc ctaagcgcgg cgtgcgcgctc gcgcacccgc
7380
gacgcagctgc cccggcggtgc aacgggcttc ccgccccggt tgtcgccacta cccggcgccg
7440
cgccacccgc ccgaccacat gcaccgccag ccgacgcgtca gagaaccttct
7500
tctaccgcgcc cggcttgccga actggcagcag gttgctgggcc ggcgacccgc
7560
gcggtctgga ccaccgcggg aggaggtgaa gggaggggctc tggctgcgg
7620
cgtcatggcc agtgagcggg ttggccggcgc ggcgccagcc aacagatggag aaggctctcg
7680
gcgccgacc ggcctaagga ggcggcgttg gttcctggcca ccgcggcttg ctgcctggcg
7740
caccacgggca agggttggga ccccggcgtcg tgtcctggcct gaggctggagc ggcgccagcc
7800
ggcgggggtgc ccgctctctt ggaggaccttc gcggcccccg ataattttct ctacgacggc
7860	ctggctttca ccgccgccgc gcagcttgagc ttggccgaggg aaccggcgact ctggctgcag
7920
cggcgaagcc ccggtgtgtcg aacggccgccc caccacggc acgcggccgc gaaagagacg
7980
gcacgacggc gtggcgccgg gcggccaggg tcccgagggg gagcgcctcag aacttttggtt ttg
8040
tttgcgcttt aataattgta ccataagagc aatacctcag ccacatggctt gatgactaca
8100
NEW PA035WO_sequence listing[1].ST25

aaacaagccct tccacgcttc catcgagaa aacatcctca aagcçaaaag ggacgccgga 10200
gaacccacag tgtacacattgc gcccccatcc cggggatgacg tgaaccaagaa ccaggtcagc 10260
c tgtacctgcc tggctcaagg cttttcatcc aggcacatcg ccttgaggtgg ggagagcact 10320
gggctaggag aagaaactaa caagacccag cctcccgtgt tggactccga cggctccttc 10380
ttctctctac gcacaatctac cgtagagacaag agcaggttgc aagacggggaa cgtttttctca 10440
tgccctgtaa tgacatgagcc tctgcacaa cactacacgc agaagagcct cttccctgtct 10500
cggggttaat gacgctgagg cccgaacaaaa acctcatctca gaagaggtat cgaatagcgc 10560
cgctgaccat cactcatcat atcattgatt ttnaacgtc cagacatgat aagatacatt 10620
gatggttgg gcacaaacac aactgaaagtt cagttgaaagtaa aatgttcttt atgtgtaatt 10680
tgtatggtct ttgcttttatt tgtaaactctc ttaagctgca ataacaacact taacacaac 10740
aatgcaatc atttttatgg tcaggtttcag ggggagttgg ggaggttttt taaaccagat 10800
aaaactctaa caaagctggtt atggctgtatt atgatcgcgc gcctcttcgcgt gtctgtggtga 10860
tgacggtgaa aacccctgcac acatgcagct cccggagacag gtctgacttt gtctgtaagc 10920
ggtacggtcgg agccagcaac cccgcgacgg cgggtgcagcg ggtgttggcgc ggtgtcgggg 10980
cgacgccatg acgggtcgac tctaga 11006

<210> 18
<211> 10561
<212> DNA
<213> Artificial Sequence
<220> source
<221> pCEP-hsB7-H4(ECD)-comp-FL-C
<400> 18
gccgccggcg cggacaaact aaactgactc acggcatctc tcggtcgtcgtc 60
gagggaggttt tttttttttt attcggggcag gttgcatggta tcccttcgctg tgggttggttc 120
aacttgccaag cttggcctctg tcccacagtt gacaacgggg gggaccaaac acaaggggtt 180
tctctcgatcg tagttgcact cttttataat ggtggtgac tttgccacat actgagtggtg 240
tttttatctg gaggcaactc tgcaaggttg gacctcgaga acaacattgga ctattttattg 300
aatgttctgc gtaagctttc acaacatgac tgggagctcg gcctcccagc gggccagg 360
agactacgg gagctacac cagtgactc cagaggggct gttgtcgtact ccgataaggc 420
gaccccaag agggccaggg caatgttgtt tataaggccc ctttttagta ctcacaagggg 480
tagcataattgc ttcccggtta gttgttatata cttatctcagc taacccatct tcaatatcagc 540
atgtaaccttcagcagcaatg cttattcgctg aataggtttg agttaaaaggg ttcttaagga 600
cagctgttttc tccccccccac gttggttctg cgtttttttttt tacatggggt cagattcaca 660
cgaggttagt gaacccatttt gttgctacagc gattggtttcttg aagatcaagag acggggcaag 720
gaatctctct gtaacctctgc ctgctctcctc attctctcctc gttggtactaa tacaattcagc 780
ggtgtgatgg aagagtttgtag ggtgttatctata ggtggtcggaa acaaggggctt cagttgacgc 840
NEW PA035WO_sequence listing[1].ST25

gacgactcaa tgtgtgaaga cgacatggtg gaaatagcaag ggcagtcttct ggccttaggt 2940
tgtaaagggg ggtctctcata cctcccatata cgaacacacc ggcgaacctaa gttcctctcgt 3000
cggtagctct tcctagcctga ggagagctct taaacctctct gcaatgtctct 3060
caaatatttgc gttggaacct ctcttgaccc caaatgtctctt aaacacacct cttttttttgc 3120
gcctgctccc atacacctgta cccccggtggt cagtgctttgg gctctctctct ggtcattcctg 3180
cggggccctgg ctctatgctct ccgggctggca ctctgacggctc acctccttgag cccacccccttt 3240
ggtggtatctt aaaaatatctgc ggttccccctt ccaggggtgaa aatggtcctct tacctctggag 3300
ggggccctcg ccgggtggacg ccgccaggtg atgactgact actgagacctgct cttgggctcct 3360
tttctccacg tccacgcact cccccctccgtt ctttccccctc gcttccccccct cttggtcttttt 3420
cagctcctctt accccggcgcc tccctcaata ctcttgaccc ccgggtcttctt caaccctcttc 3480
gacccgccccc tccactgtctc ctctggacccc ggccctccac cctctctctgct gccccctctgt 3540
tcctctgccct tctctctgctc ctctgccccctct cttgccccctct tcctccgcccccttc 3600
tcctctgtctct ctctccctctc ctctgccccctct cttgccccctct tcctccgcccccttc 3660
tcctccctcct tgtcctctgctc cccctctctgct ctctgccccctct tcctccgcccccttc 3720
tcctccctcct tgtcctctgctc cccctctctgct ctctgccccctct tcctccgcccccttc 3780
tcctctgctct tgtcctctgctc cccctctctgct ctctgccccctct tcctccgcccccttc 3840
tcctccccctc tgtcctctgctc cccctctctgct ctctgccccctct tcctccgcccccttc 3900
tcctctcctct tgcctctctct cttgctctgctc cccctctctgct ctctgccccctct tcctccgcccccttc 3960
tcctctcctct tgcctctctct cttgctctgctc cccctctctgct ctctgccccctct tcctccgcccccttc 4020
tcctctcctct tgcctctctct cttgctctgctc cccctctctgct ctctgccccctct tcctccgcccccttc 4080
ccctctccctc ctctctctct cttgctctgctc cccctctctgct ctctgccccctct tcctccgcccccttc 4140
tgctccccctc tggccccctct cctctctctct cttgctctgctc cccctctctgct ctctgccccctct tcctccgcccccttc 4200
tgctccccctc tggccccctct cctctctctct cttgctctgctc cccctctctgct ctctgccccctct tcctccgcccccttc 4260
aatcggcag tttttggtgt tctcggcgacg cactctcttgct tttggccctt gacatctcgtg 4320
cggccgctgg cccgcctctctt cttcctgtcct gcgcctctttt ctttggccctc ctctgctctctc 4380
ggttacacc cccctctcttt tgggtctcgc cctgccgcggca gcctctctgtt ccagatgtgtg 4440
tctccctttct tctcgccgcct cttccaggctcg tctactctgct ccctctcttcgcc tccagctgctc 4500
acactaaaaag agaataacgc acaatctgttt tagacagcgc tcaagatgca tcaagagctctc 4560
agactctctcg cccccctccac agaccccgca cccctctctcc ctctctctggtg ctctgctctcgc 4620
agatccaggct cttgaaatttc cccctctctctg caacctcgca cctctctcttgc accaattctc 4680
cgcagccccgg aaaaactctcc gtagctcctctg ctaagatgctc agctctggcag cccctctcttgc 4740
gctcaatatg cccctctctct cttttgtgccg caggtgtctg atgggggttc tccgccccccct 4800
tctctctctct cctcagttct gcacagcaga gatgctactctg ggccacgccg aagaagaatgctg 4860
ggtgccgctgc ttgaggatca gcctttacgt gataagctgt ccacatcag aattttgtaaa 4920
NEW PA035WO_sequence listing[1].ST25

gacgaaaggg cctcggtgata cgccctatttt tataggttaa tgtcatgata ataatggtttt 4980
cctagagctc aggtggcact tttccgggaa atgtgcggcg aacccctattt tggtaatutt 5040
tctaaataaca ttcaaatagtt tatcgctca tggacaata accctgtaaa atgcttcaaat 5100
aatattgaag aaggaagagt atgagatttc aacatttcgct tgtgccccctt atttctcttttt 5160
ttgcgcctatt tgctcctcttt gttttttgctc acccagaaac gctggtgaa aatgtaatagtt 5220
tcgaagacatc gtgtgggtcga cgagtggtttt acatcggaact ggtatccaaac agcggtaaga 5280
tccctgagag ttkgctgggccc gaagaaacctt ttccatagtt gacacttttt aaagttctgc 5340	
tatgtgaggc ggtatatctc cgtagtggagc ccgggacaag acaactcgtg ccggctgcatc 5400
actatctca gaagtacttg gttgagtaact caccagtcac agaagaacat cttacggatg 5460

gcatcagact aagaaagaatta tcagctgctg ccataaccat gatgataacact cgctgcggcca 5520
acttacctct gacaagacatc gcgggagctc aggagctaac ccgatatagttt ccaacaatggtg 5580
gggatcatgt aacctccttc gcgtctgggcttag gcgggactataa atacacattacgc 5640
acgacgctga ccacacagctcg ctcgcaacaa tcggcagcaga gttgccgaa ccattacacttg 5700
gcaactact tatactcagtc tcctccggaat aatataatagcttgagagtggagcgcgtaaag 5760
ttgccagacc actttctgctg ccgctcctc gtggatgctgt gtttagctgataatctg 5820
gagcgggtgta gctgctggctgc ccggcctataa ttggcacccag ggttaagccctc cccatctttta 5880
gagcgtcggctt gactcatctc ccggtgatcct gtttctgctga gtaaaactttg tagttcctttttttt 5940
agatctgtta gataggtgcc tcctctgtta agcatcttggt aactgtcagc cagttttactt 6000
catatatact tttagattgtatt caaatcaactc atttttagaa taattttaatgtataagaaga 6060
tcctttttga taatctcatt cccaaatcc cttactcgtga gtttctggtctc actgtagcgt 6120
cacaggcccc ataaagaacatc aaagacttctt cttgagatcc tttttctggctc gctcaatcctt 6180
gctgctgcc aacaaaaaacc cccgctaatc gcgggttggtg cttttttcgctgtc aatcaacagc 6240	
taccaactct ttttccgaag gtaactgctct gctagcagac gcgataaca atataactgctc ttcagatcgt 6300
tttcctgtgatc ggcgttagttta gggcccaact tcaaaaccattgtc ctctgctgcttg 6360
tcgctctctgt aatccctgaact gctggtgttgcct cggctgcattg cgtataatgcgtaaag 6420
ggttgagacact gacgttagatc attcgggata aggccagctac gtcggtgctcg aagcgagttt 6480
cgtgcacaca gcccgagctgg gacgcaagcag ctcacaccgac atctgagatac ctacagcgtg 6540
agctagagaa agcgccgctgct gcgggctcag caaaaagggc ggacaggttt cccgtaagctc 6600
gcaggggtgca aacagagaga cgcacagggg aagtttccaggg gggaaacgcc ttgtctttttt 6660
atagctctgt gctgtttgctc cacccctctgcc tttagcgtgcg attttatttgta tggctctgtcag 6720
gggggcgagc cctattgaga aacgcccagcag acgcgggccctt ttctagcgttctg tggcccttttttt 6780
gctgagcggcgcgtgctgctgc ggagagatgac ggacgctgtag tggatgtctc gccaggggttt 6840
ggttgacgcgcacaaccagaa ctaatttggtc gagttggtgaa ccaattctggcg agtggagttga 6900	tccggttagc gcggcctggaatgtagctg gatagttgtgtg 6960
NEW PA035WO_sequence listing[1].ST25

cagttagggt gtggaaagtgc cccaggttcc cccaggttcc gaagtatgtga aagctgcat
ctcaattagt cagcaacaccg gtgtggaaga tccccaggtt cccaggttcc cagagatagt
caagcagatc atctcaatta gtcagcaacc atagttccgc cccataacctgcccaatccgg
cccccaactcc gggaggttccag cggccccactttgctgtcaatttttatttttctttt
tatgcagagg cccaggttccg cctggtcctct gagctatccc agaagagttagggaggtt
cttggaggtt gaccgccgcc accggttccgc cccacatccc cttgacccgcccctgaccc
ctcaacagga gacgacccttt cagcagctgac caccacggcc cctgccccccg cctgc
ggagctccgctg aggagctcccctcc cccgagccgctg tcgctgcagc ccccagcagc
tccagacgctg tctggtctgaca tcagcgcaaggt gtgtgggtctgc gggcttcgctg ggc
gctgccagctg cagctgctgag cgggccgctg cctttgctgctgccagc ccctgcccc
caccagggcag aggctggggtt cagccgcgctg tgcctccccc aggctggggtt ggcccgc
gccgggggtgc cggccctttgcc gagacgtctcc gccggccggc acctccccccc ctacgacg
ctcgctttca cctgacgccg gcacgctgctg ccgcagcggg tgtggggtcc gcacgtgc
dccagcaactg ccggtccccg cccaggttccgccg ccctgtctttgtgctgctgctgctg
ctgcaat gacgagtggat tgcctgcgcgc gcagctgctgct gctgtctgtgtgctgtct
tagtagtaga taataatctgcatc tataataatt gatagtatg
ctgggtcatg gctgtctgggctg cagcatctgt gatgatgtgtgatgtat
tagtagtagatgtagtagactcattgtgc
tgctgggctg ccctgctgcgct cagccctggtg ctcctctgtcttctctctct
ctgctgcgctg cagccctggtg ctcctctgtcttctctctctct
tgctgctgcgct cagccctggtg ctcctctgtcttctctctctct
tgctgctgcgct cagccctggtg ctcctctgtcttctctctctct
tgctgctgcgct cagccctggtg ctcctctgtcttctctctctct
tgctgctgcgct cagccctggtg ctcctctgtcttctctctctct
ctgctgctgcgct cagccctggtg ctcctctgtcttctctctctct
tgctgctgcgct cagccctggtg ctcctctgtcttctctctctct
NEW PA035WO_sequence listing[1].ST25

cagagctcgt tttagcgaacc gtcagatctc tagaaagctgg gtacctgtcg acggagagatg 9060
gttggacctct cagtttcccc gaacctcttg aagccagttat cagtggaccag cagtttcttc 9120
tttcctccttc acctctcctct cttccgtgctt gggagcggca gctcgagaggt caagggcgta 9180
ggcctctgagt atcccatctct ggcctctgctt gggagaggggt ttggagttcccc ttggcacatca 9240
tggccacacgc tggatgcccc gcaaatggag atccgctgtgt tccggagtcag acctctctcat 9300
tggtgtacacc tgtaccagga gcagcgggag cttccctgcca ggccagatgc ggcccttccgg 9360
aacaggacca agttggtcaca ggacgacatc gcccatggcca gcgggtgcctt gcagcctcacc 9420
agcatactcc ccttggacaa gcgacattgt ggtgcgctgt tccactccga caacctctctct 9480
ggcgagactc tggtaggcccag tggagctggat tggctgggttt gcggagggcg cctctctctct 9540
agogcgctca aggaagggagc cattcagctg aagcctagat ccaagggtcg gttaccccaag 9600
cttctagtttc aagtggagaga ccacccaggg aagtgcctggc cttccagagtt tgaagcccctc 9660
ctctggaggt gcccagacct gttcagttcag gaaacatctg tggtagggctc agccggagggcc 9720
ttcagacaagg tggccttgctgt catcagaaat cttctctgtga gcgcagaagaa agagttggtg 9780
gttcagatag cagacgtggtg cgtaccgggg ttatgctgcag cggcagccaa accgcacaggc 9840
cagcgcagcgc gacgccgtaac accgacggag acacgtggatg ccagacgatc ggtcagagag 9900
tgccccagaga tggcagcgtg aactaatgcgg cgcgtcagaa cgcgtcagag 9960
ctttcgagac agaggtcacag ggtacccacag ttcagtcagta atacggttgc ggaagatgac 10020
gcttgccgag gatcagttctg agacgaatcc aaggtgacag acgacaaatg gggccgcgaa 10080
caaaaactca tttcagagag ggtcagttat agccggtctcg acacctcata tcctcattca 10140
tgaatttaa cgcacgcgtt agtgatatga aatgtttgac tttctggccc aacacacatc 10200
gaatgcagtc aaaaaatgtc ttatatggtg gtcattctgg tttactgtta 10260
ccattataag ctgcaataaa caagttacag acaacatcag cattctctta atgtttccgg 10320
cttcagggga gtagggaggt ttttttaag caagtttaac ctctcctaag ggtgtattgcctgtgagaatgctcttcggtgaccttcgcag gcggagacccatg cggagccag 10380
tgattatgt ccggtccttcg cggcctttcgt ggtggtcagc gtggaaaccct tgtacagatc 10440
cagctcccgg agacggtcac agcctggtctg taagcggatgt ccggagcag acaagccgggt 10500
cagccggtgct cggcgttctt tggcgggtat gcgggagcag ccatgacccgg ctgaactcct 10560

<210> 19
<211> 10961
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> pCEP-hsB7-H5(ECD)-Fc

<220>
<221> misc_feature

32
NEW PA035WO_sequence listing[1].ST25

19
gcccgcccgc gggagaacat aacactgact acggcatctc tggccctttct tggctgtgtaa 60
gagagggcttat attggggggt aaggtgatgtaa tctctctcagtt cgggtggtaa 120
aacttcgaca ttcgggcccgt ttcacatgt gacacaggggg gggacaaaca acaaaagggtt 180
tgttgctgatc tgccttcagctg ccttcataaat ggtgtgcacat attgtgccaa actgtgctgct 240
tttcatcttgctgagcatctc tgcagctggt gcctgcacaac acaacattgc cttttagctg 300
aactctccggtc tgaagctcttt ctcacaagtc tgggggacat gttgttcacca ggggcccagg 360
aagacttacgg aggctcacac caacgctcaat cagagggcct tgtgtagcta acaacgtagc 420
gacccctcaag ccaacttagtc aagagtctgt ctaaaggccc cttttagtatc ctaaagcagg 480
tactatatgc ttcgggtgta gtagtatata tctccagagc taactcttaat tcaaatctatc 540
atgattaacca aaggaagacagt gctctatccg aatagggtt agtaaaggg tctcaaaaa 600
cagcgtatc tccacccca tggctgtaa cgggttattt ctatatggggtt cagattcca 660
cagaggtagt gaacattcattt aagttcagag gcagtggttgc aagatcagag agcgggcaagt 720
gaactctctctcag ttcctccttc ttccttttctc gggttgctc gttttagctaatagataact 780
gctgtattgtg aacaagtaag gtgtatgtga ggtgcctgaa aacaaggttt cagttgacgc 840
cccacaaca aatattggac gggtggttaca gttggtgcgct tgtgtcattgta cacaatata 900
acccctcaaca aacctccgggta caataatgtttt taggttagagc atgaaacatt ctgaatatct 960
ntaataacag aatctcataag ggctggagcag acgcgttaac aactgtgattgct caactccacc 1020
gaatttattccgcatgctgtaa tctgatactgg gtttattaag gcgttattaaaa 1080
tgtgtcaccag gcagggagcaa agaaggtttgc acaacattgc tatctctcattt tggtaaacag 1140
GGAGAAGAGA GCTGGACCCGG AACACCGCGCAC CACAAAAGAAGAAGAAGAAGA 1200
AATATTACCCCAA CAGGAGCCTGACAC AGCTGTGCAAG TCCACTGCTGATCTTACAA 1260
TTTGTGACCA GTTGCGAGCCG CAGGTGTGCTGAC ACCTGCTGACAC ACACCAAGAAG 1320
TGATAAAATAA GGGTGTATAGG TTTGACTACCAAGC ACACTCTCCTGACAGGGCTGAC 1380
CAGGTGTGTGCA TATATGCTGAA GTTGCCTCGAC AACATCTCCTGATCGGCGCCCATG 1440
GGGAGATTAGG GCTGGACCATAGT GCTGGACGATCT GGGGAGAAGA TTACACACCA TTACATATGG 1500
GGGGACCAAGG CAGGTTTGGT GGCACAGCTGAC TCCACTGCTGACAC TGGAAGAAGAAG 1560
AACGTTTGGTGG TGTGGTATGATC ATACCTCCAA CAGGAGCCTGACAC AGCTGTGCAAG 1620
TATGACTGAA GTTGCCTCGAC AACATCTCCTGATCGGCGCCCATG 1680
TATGACTGAA GTTGCCTCGAC AACATCTCCTGATCGGCGCCCATG 1740
TATGACTGAA GTTGCCTCGAC AACATCTCCTGATCGGCGCCCATG 1800
TATGACTGAA GTTGCCTCGAC AACATCTCCTGATCGGCGCCCATG 1860
TATGACTGAA GTTGCCTCGAC AACATCTCCTGATCGGCGCCCATG 1920
tctgggtagc atatgctatc ctaaatctata tctgggtagc ataggtcatc ctaaatctata 1980

tctgggtagc atatgctatc ctaaatctata tctgggtagc atatgctatc ctaaatttata 2040

tctgggtagc ataggtcatc ctaaatctata tctgggtagc atatgctatc ctaaatctata 2100

tctgggtagc atatgctatc ctaaatctata tctgggtagc atatgctatc ctaatctata 2160

tacagtcagtgc atatgatagcc ctagtagtgact gttggagtgc tattcctctgc atatgccccgt 2220

aacctccaaaag ggggctggtaa ttttcctgtc ttgcctcccc tgcgcgtcct cgtgtgcccct 2280

attctttttaa aagccagctga cagttctcag catctcctggc tgcctcaccag 2340

gtaatggtc ctaatgtttt ccaacgctgag aaggtgttga ggcgggtagct gagtgccttgt 2400

acaactgcgtg tggcccaaat gccctagctg tggggagacta aatattggta aagcagagat 2460

ggccagaaactc aacaccaacag cagctcctgat cttactcctcattattactt ttaatgctgaa 2520

ggaataacgct cttttaataa cagttgaggct cttccctcata cagtttacat cactcctgc 2580

cctcctcacc ctcacattcct tctccctcttc cttcctcgta atctccgcttcct tccctattcg 2640

cccggagccc cttcctccata cgtgtagctgc aggagccacc ctctccagccttc gcgcgttgaag 2700

tgacacagt caccctccgata tggcagttgac gacggtgcttgc tgcataacac gccgacccca 2760

tgtgcatcct ctaacaccttat gagttttgtt acagagatcag ctaattacat 2820

catccagctc ccttctgcggg ccaggttgtag ggccggctcgtt ccacgccccct 2880

cgccagacgct gatgtggtgatc cagatcgcgac ctctccagcttt cctttttgcttggtctgctct 2940

ggctctgccttacct gacgtctgtcgtt ttacttcctccttcacctttt 3000

cggtgtttgg ccataatcttc gctttccttaa caggggctttt ccacgagctttttt 3060

acacccgccc cttccctccac cttgcgttcctt ctttcttcgctgctttgcttctctccctttctct 3120

ggcggcctgct cttccctccac cttgcgttcctt ctttcttcgctgctttgcttctctccctttctct 3180

ggcttctgccttacct gacgtctgtcgtt ttacttcctccttcacctttt 3240

ggcttctgccttacct gacgtctgtcgtt ttacttcctccttcacctttt 3300

acacccgccc cttccctccac cttgcgttcctt ctttcttcgctgctttgcttctctccctttctct 3360

ggcggcctgct cttccctccac cttgcgttcctt ctttcttcgctgctttgcttctctccctttctct 3420

acacccgccc cttccctccac cttgcgttcctt ctttcttcgctgctttgcttctctccctttctct 3480

ggcggcctgct cttccctccac cttgcgttcctt ctttcttcgctgctttgcttctctccctttctct 3540

acacccgccc cttccctccac cttgcgttcctt ctttcttcgctgctttgcttctctccctttctct 3600

acacccgccc cttccctccac cttgcgttcctt ctttcttcgctgctttgcttctctccctttctct 3660

acacccgccc cttccctccac cttgcgttcctt ctttcttcgctgctttgcttctctccctttctct 3720

acacccgccc cttccctccac cttgcgttcctt ctttcttcgctgctttgcttctctccctttctct 3780

acacccgccc cttccctccac cttgcgttcctt ctttcttcgctgctttgcttctctccctttctct 3840

acacccgccc cttccctccac cttgcgttcctt ctttcttcgctgctttgcttctctccctttctct 3900

acacccgccc cttccctccac cttgcgttcctt ctttcttcgctgctttgcttctctccctttctct 3960

34
NEW PA035WO_sequence listing[1].ST25

ctcctgctcc tgcctcctct ccctgtcctcg ccctccttgc ccctcctgc ccctcctctcg 4020
tcctgcccc tctgccccctc cctcctgctc ctggcctcctc tgcctgcctcg gcctcctctcg 4080
cctcctgctc gcctcctcctc gccctgctcctc cctcctgcttc cctgccccctc gcctcctctcg 4140
tgcctcccc tgcctcccttc ctgcctgctctc cctccttgcctc cctcctgccttg 4200
tgcctcccc tgcctcctcg cctgcctcctc tttccctgctc ggtcctccctc aggccaatgc 4260
aacctggagc ttttggggtt ctcggcgaac ccagtctctct ccctggccgct tgcctgcgac 4320
cgcctgcggc ttttcctgctt ttcggctccag cccttcctgtt cccagatggtg 4440
tcctctcttc cttgacctgg ccctccgctctc ctggacacatc ggacacagcgtt 4500
acactaaag agatcaataag atcccttttt gatagactgac ctgcctgacttc aaggcttttcc 4560
agactctgctc ccctccaaac agccctttcc ccctctcttcc ctcttcctctgc cgtgctgac 4620
agatccaggt ctgaaatttc ccctctctgtcc gaactacatctc cgtctctcttc acaattactc 4680
cgagccggc aagactccgg ctgaaactctc tcaagatttt actctctcttg gcatctgacttc 4740
gctctaaatt ctgcgctcttc cccttctctcg ctggagagctc ttcggtttcgct tggcttttca 4800
tcctcttctct cccttctctct ccgtatccgag ccctctcttcc ccctctctgtc cggacactgtc 4860
gttcggcctc tttctggagc ttttcgctctcg ccaagcagaag cgcctctccct cggagcgccttt 4920
agacaaaggg cctgtgcttc ggcctcttttt tggctctgtt aatttcgaattt ggttctctcttc 4980
cttagacgtc aggtggctgtt cttcggggtag atgccttgagc gctgctctcttct cgttgccatgg 5040
tcaaatttat tacctcgctca ccgagatctctc ctgcttctcttc atctctctctc ctgactctcttc 5100
aatattgtaa aagagagtct atgagttattt ctttctctctc ccgcttgtctt ccgctctcttc 5160
tgctgctctct cttctctcttc ccgcttgtctt ccgctctcttc ccgctctcttc ccgctctcttc 5220
tgagactctc ccctcctcttt ccctcctcttc ccgctctcttc ccgctctcttc ccgctctcttc 5280
tctctctctct ttcctgtcctc cttctctcttc ccctcctcttc ccctcctcttc ccctcctcttc 5340
tatgtgcgcg ggtagttttt ccgctgtcttc ccagctcctc cggctgtcttc ccgctgtcttc 5400
actatttcatc aagactagtc cttctctctt cggctgtcttc ccagctccttc cggctgtcttc 5460
gcatgactgt cggctgctctc ctcggctgtcttc ccagctccttc ctcggctgtcttc ccagctccttc 5520
actatttcatc cagctgcttc ccagctccttc ctcggctgtcttc ccagctccttc ctcggctgtcttc 5580
gagagactctc ccgctgtcttc ccagctccttc ctcggctgtcttc ccagctccttc ctcggctgtcttc 5640
gacagcgtgctc ctcggctgtcttc ccagctccttc ctcggctgtcttc ccagctccttc ctcggctgtcttc 5700
gcctgctctct cttctctcttc ccgctgtcttc ccagctccttc ctcggctgtcttc ccagctccttc 5760
aggagtcttc cttctctcttc ccgctgtcttc ccagctccttc ctcggctgtcttc ccagctccttc 5820
gacagcgtgctc ctcggctgtcttc ccagctccttc ctcggctgtcttc ccagctccttc ctcggctgtcttc 5880
agcctcctctc ctcggctgtcttc ccagctccttc ctcggctgtcttc ccagctccttc ctcggctgtcttc 5940
agatcgtgctc ctcggctgtcttc ccagctccttc ctcggctgtcttc ccagctccttc ctcggctgtcttc 6000
NEW PA035WO_sequence listing[1].ST25

catatatact ttagattgtat tttaaactctt atttttataatt taaagagatctc taggtgaaga 6060
tctcttttga taatctcatag acctaaatcc ctttaacgtgaa gttttcgcgttc cacacagcgtgt 6120
cagaccccgtt agaaaaagatg aaaaagatcattt cttgagatcctc tttttttttctc gctgtaatctt 6180
gctggcttgac aacaacaatcc ccacacgcttc cagcgggtggtc tttttggttgc gatcacaagcc 6240
taccacactt ttctcccaagg ctaactcctcg tcagcagacgc gagatacatca aataactgtcc 6300
ttttagtctga gccggagttgg cggacacactt ctaagaaaactg ttagcagccg cttcatacatc 6360
tcgcgtctgctaatctcagtatatcctgc cagttggtgctg ctcgcaaccggt cgtcatttgcag 6420
ggtggcaactc aagacgtagcttt tccgagctgattc tttttttgttc agcggggggttc 6480
gttggcaacacag ccgaccctgtg gaggcaagac cctacaccagg cctcagagttg cagagcgtctg 6540
agctagctaga gggcaacctcgc ccctggggatgg gagagaaagcc gcagacaggtc cgggtaaagcgc 6600
gcacgggtcgc aagcagggaga gcgcagcagagt cctcctccaggg gggacacgctg ccttcttttt 6660
atagctcctgtg cgggcttcggcg ctctcagttgc tttgagcgtcag atttttgtga tcgtgctgtgg 6720
gggggcgggga ctatagtcga aacgacccagca acgcggccttc ttcttcgattc cttgcacgttcg 6780
gttggcggcgc gttgacggctgc gggtgagagcgc ggcagcgatgc catatgtcctt gccaacgggt 6840
gtttgcgca gggcttcagttgc ttcgacagcactcc ccaactcattgt cgcaggtgaga ctggtggtga 6900
ctgcttcaggg cgcacgctccgc gttccgacgctgc gacactagtgat cccgctcgtgat gatgt tgtt 6960
ccatgtgaggg gcagctgctcg ctaagcagcagc aacgatcagttg cggagattgggt 7020
ttcgctacggtc acctacgataa cttaagtttgtt cttcctgaggtatatcgg 7080
ccacagattc aacgcgctgga aacgtcgacgc atcgccagctc ggggcatcggc 7140
ccctataacgtg cgcagccacgct cagctttttttt cggccccatcg ccgggctattc gctgactaatg 7200
tatgctcaggg ggggcgggccc ctcgaggctcg cttgctattc ctaacagtattg aaggggctttt 7260
ccgctgaggg gcagctgcttc ggggttggtgctg gccgaggggca ctaagcagcagc ggggcatcggc 7320
cgcgatcggtgc ccgaagcacttc ggggcatcggc 7380
cgccagcttc gggcgccggtgc ggggcttggcctg cgggccgtggc 7440
cggccaccgg gcgccagaccg cgcggcgtgc cttcgctggttc ccgacgtgctg ttcgccccggg 7500
cccacacccgc cgcacagcttc gggggctcagc ctcggcgctgc ctccgagcgcgccgcggtgc 7560
ggcggcctggagcctgagc cagcggcgtgagc ggttggttggcg cgcgggctgggc ggcgggctgggc 7620
cagctggctggcc ggggcgcgggc ctcgagccttg gacagcggcgcac gcgcgctggagcctgagc ggcgggctgggc 7680
cgcgctggctggcc ggggcgcgggc ctcgagccttg gacagcggcgcac gcgcgctggagcctgagc ggcgggctgggc 7740
accggcggccg acggcgctggtc gttgtgtgtgct gcgtggtggtgct gcggtgtgtgct gcggtgtgtgct 7800
ggggggggga cggggtgcgggc ctcgagccttg gacagcggcgcac gcgcgctggagcctgagc ggcgggctgggc 7860
cgcgctggctggcc ggggcgcgggc ctcgagccttg gacagcggcgcac gcgcgctggagcctgagc ggcgggctgggc 7920
accggcggccg acggcgctggtc gttgtgtgtgct gcgtggtggtgct gcggtgtgtgct gcggtgtgtgct 7980
ggggggggga cggggtgcgggc ctcgagccttg gacagcggcgcac gcgcgctggagcctgagc ggcgggctgggc 8040
NEW PA035WO_sequence listing[1].ST25

attgcagcctt ataataagttta caaataaaagc aataagcatc caaattttacc aatataaga 8100
ttttttttcact tgctattctag tttggtgcttg tccaaactca taatgtgttc ttatcatgct 8160
tgatcgtac gcaaccccttt cctcgaccaaa ttctcatgttt tgacacgtta tcatcggaga 8220
tccgggcaaac gtgtggtgtcat tgctgcaggc gcgaaactgg taggtatgaga agatctatac 8280
attgatcaaa tattttgcaaat agtctgatg tatatatgcat tatatacaaat 8340
tgctattaagg ccatcgtctg ctatgtctat atatacaaat atgtgacattt atatggggtc 8400
atgttcaata tgcaggccatt gtgtgacattg atattttgact agtgttatata agtatatacaat 8460
tacgggtcata ttgttcatca gcacatata tgggattcgac gttctataac ttacggtaaa 8520
tggcggcctgt ggctgacgcc ccaacaggcc ccggcctatgg cagcttataa tgatgatgtg 8580
tcccattgta agcggcaaatag ggacctttcag ttgaacggca ttgggaggtgg atttacggtta 8640
aactgccaccc tggggcgagtt atcaaggtgta cctaatgcaac agtcgcggccc ctatggacgt 8700
catgacggtt aagtgccagtgcgt gacggctttcct aggcacgtgatg gggagctttcct 8760
tactgggagctacatattcg tattagctgcag ctgtatattc agggtgtatggc ggtttttgca 8820
gtatcctgatt ggcgttgggat aggcgggattgct cttcaggggag tttttcaagt tccaccccct 8880
tgacgttaact gggagttttagg ttggcgccaca aatctcaagcg gacccctcaat aatggcctaa 8940
atacggccagg cctctccgac aatgtggggcg ctgctgtgaaggtcctgtcagt ggtgtggaa 9000
cagagctgtgt ttatgtaacc ctcagatctcc tagaagctgtg gatccagttgc tctctctggaa 9060
cttttctctt tgggggcgtct tctttctagag acttgggattg cagctcctctg ggaagtttac 9120
gagagcccttg ggagttttccag tttttctagat ctctttctgg tcgactgtcc gttggttgca 9180
actacaggcccg acggcctcctag taaaccttcg tggcaatctgc ttctctcactag ttccttcat 9240
gcacaaccacctgt ctatcctggtt caggggttgagc agatggttga gggtggcctc 9300
cggttccagg ctaggtgtagc atttcagggc accatgcggcg ctaccaagttct cttctctctc 9360
attattacagc accaagggccctg gcagtcgagtg ccctcgtttct cccctcacc 9420
gacatgaggg gcaggaacattg ggttgctacag ggtcgtccagct gttattgctcg cccctcacc 9480
ccacagctgcc aaatcgaagctt atccagaggttttgattattcactac ttttggagga agttgacagag 9540
tccagaggg cactcttctcg accaatttac tttttgagag cctaccaaac taacccctaat 9600
tcactctaca gacacactggtt gcctgtcgtgcc aacgctttcgg gacacaactt 9660
gcctgtctgtt ccagttgcttcc caggtgctatg ctctctaatcg tattggactc gagcactctgtg 9720
ctctgtgatc tccaggttatg ttcacccctct cccaggaacaatttggtgctagc gatcgaagttct 9780
cgcaagctta ctcacacatgg ccacccgtttg cagcgccttgctt aacccggagg tcgacagttg 9840
gctcttcctct tcccccccaata acaccaagag acctccagatg ttctctggagc cccctcaggttc 9900
acatgcgtgg tgggtggagttt gagcgcaggaag gacccctagctt ctaagttgattc gttgacacttg 9960
gacgagctggtt acctgacataa tgcacagcaa aagccgccggg aggagcagta caacagcaacg 10020	tacgctgagtt tcacgcctctc caccgagcttg gcgtgatgagc cagagagtctc 10080
NEW PA035WO_sequence listing[1].ST25

aagtgcaagg tctccaacaa agccctcccc gcctccatcg agaaacacat cttcaaaagcc
aagggcgac ccggagaacc acaggtgtaac accctgcccc cacccggggg taagccgtgacc
aagaaaccagg tcacgcttgac ctgctctggtc aagaggttct atccccacgga cactgccgtg
aggtgggaga gcaatgggca gcccgggaga aactacaaga ccagcgcctcc cgtgttgagac
tccgaagcgcct ccttctcttct ctcagcagag ctcacgcgrtg ccagacacag ccagacacag
gggaagctct tctctcatgctc ggtgtagctg caggctctgc acaccaactg ccaggcagac
agctctctccc tgctctccggg taaatgactc gaggccgca ccacaaatca tctcagaaga
agatctgaat acgcgccgctg acc actctcatc ctcatctcat tgaattttaaa ccagccacag
agtataagag acctgtgataatttgaggaa accacaaacta gaatgactg agaaaaatgac
tatattgtaa agaattttgttg tattttaaga ccattcataag ctgcaataaa
caggttaaca acaacaaatttt cactttcatg gttgcttccag gttggggaaggg
tttttaaaag ccagtaataac atgggtatatc ctgccgctagc
cgtggacatgct ccgtagcctgg gtcgaaactcc ccaggcagctc
agcctgtcttg taacccgagtg cccgcggacag aacagccccgt cagggcgctg cagccggtg

tggcgggtggt cggggcgccag ccagtgcagc cgcactctgct a

<210> 20
<211> 10516
<212> DNA
<213> Artificial Sequence

<220> source
<p>223> pCEP-hsB7-H5(EDC)-comp-FL-C

<400> 20
gccccggcgc cggacgcact aaactgtgact acggcatact tcgccctcttc tgcgtttgcct
60
gaggacgcgt tttttttttt attcggggccga gtgcatagttaa tcccctctcgt gtggtttgtc
120
aacattgcc ca tgcggcctg ttcctcagttf gcacgcggcgg gcaccccacaa aacaaggggt
180
tctctgactc tagtggacat ccttataaat ggtatgtgcac atttgccgca aacctgcgtc
ttcacactg gacgacattc tgcagttgtct gactgcgaac aacacatgct ctttattgtaa
300
aacctctgcc tgaagctcttc acaccaactct gcggccgccag gcggttggat gcacccctctg
360
agacactcgg gaggctacac caacgtcctaat cggagggcag tttgtgacatat cggataacag
420
gacctttcg agggcattag caattgtgtt ttaagggccc ctcgg Guildt ccaaaacgg
480
tagcatatagc ttccccggtta gttgtatatata cttacccagac taacccctaat tcaatagcat
540
atgtttacca acgggagac gatggtcattt cttactgtggt agttggtgtcc tgttattttt
600
cagcgtatcct tccacccgca tgcgcogccta cggttttattt tcatagttgg ccgatttcca
660
cgagggtgtat gaacactttt atgtcacaaggg gcaattgtgctg aagaccaaggg acggccagt
720
gaatctctcctc gaatttctcgc ccgccctcttg gtttaggtatt tagataaaa ctacagtct
780
gctgttttctt gaaacagataa gttgatttgtaa gttgcggtaaa acaagttttt caggtgcagc
840
NEW PA035WO_sequence listing[1].ST25
cccacagataa aatgttggac ggggggttca gttggtgcctg tttgctgatg ccaacatata 900
acccctcaaa accccttggc caaatatata tagtgtaggta atgaacatt cttgataatct 960
ttaacatag aatcctatgg gttgggagca agccgtaaag actggatgtc cattcctcac 1020
gaattattgg ctagtgccac cacaatattc tagtgcaata tggattactgg gttataaaga 1080
ttgccgcaag gcaggggacca gacagggtga acctagtgtt aacctctctat ttgtaaaaaa 1140
ggaggaagaga ggtggacgcc acagccagcgg actccacactg ttgctctctaa caccccccgg 1200
aattaacgag ggctccacgc caatggggcc ctaaaacaaa gacaattggc cactctctttt 1260
ttggaatgtg tgtgaattgg gcaccagctca gccccccacac gcggccgctg ggttttggc 1320
tgaaaatattg cgggtgacttcactg tttgtaaaaaa gcctaaacact gcggccgactc 1380
cacttgcacc caaaaaccact aatggcaccc cgggaatatac ctgcataactg aggtgggagg 1440
gccaagatag gggcgcgatt gctgagcagct gggagaaacac ttacacacac ttgcgcctg 1500
gccgcacgag cagggtaggggt gcattcctcata ttacagaggt gcctgagacgc acggttggtgc 1560
aatgttgccaa tggtgttagct atactacccca aatatcctgga tagcatatgc tatcctaatc 1620
tatatctgg ggatcataggg cttacatcttc ttatcgtggg tagcatatgc tatcctaatc 1680
tatatctggg tagcatatgc tatcctaatc ttatcgtggg tagcatatgc tatcctaatc 1740
tatatctggg tagcatatgc tatcctaatc ttatcgtggg tagcatatgc tatcctaatc 1800
tgtatccggc ggtcatatgc tatcctaatc tagatcttcttg tgctctaatg tagcatatgc 1860
tatatctggg tagcatatgc tatcctaatc tagatcttcttg tgctctaatg tagcatatgc 1920
tctgggtatgc atatgtcata ctaaatctat cttgggtatgc atagctcata ctaaatctat 1980
tctgggtatgc atatgtcata ctaaatctat cttgggtatgc atatgtcata ctaaatctat 2040
tctgggtatgc atatgtcata ctaaatctat cttgggtatgc atatgtcata ctaaatctat 2100
tctgggtatgc atatgtcata ctaaatctat cttgggtatgc atatgtcata ctaaatctat 2160
tacagtcacg atatgataacc cagtagttca gttggagttct cttacatcttc atatgaccgcc 2220
accctcccaag gggggtgtga tttgctgttc tttgctcttttt cctgcactgc ggtggtgtcc 2280
attcttaggt gatattaagag agggcagcagct aaagccgctcg catgtctgct tgctcaccag 2340
ggaatgtcaag[c] ttatgttttt cccaagctgag aaggtgctgg ggcggcagct ggtgcctgtg 2400
acaacatggg attgcccaaat tgtccccatgt tggtgggtggac aaatattgtgaa caagacagcat 2460
ggccagaaat acaccaacag cacgcatgtg gtctactggg gattttactt ttgtaacaggg 2520
ggaatatacc gcgggtttttt ggtgctccaa cgaagttctat cactctctgcc 2580
cctccctccac cttcatactca ctacactccct catctccctcc caacctccctccg 2640
cggcagcccc tttcccacatg ggtgggacaaag gggggtggaa atgcacttccca ttcgtcggc 2700
tgcctctttttct gattgtctga aggggctagtt cagttgttaa aagacctag aataaacagag 2760
tgcctctttttct gattgtctga aggggctagtt cagttgttaa aagacctag aataaacagag 2820
caatggactc ccttagctggc caggttttgtg gcggggttgc aggccagctg gcaaagggga 2880

39
gacgactcaa tgggtgtaaga cgacatttgt gaatacgacag ggcagttctc cgccttaggt 2940
ttgtaagggga ggtcttctacta cctcccatata cgaacacacc ggccgacccaa ttctccttgct 3000
cgggtgacct ctctctcgtca tctctcagc tggagagctt ctaaacttctc gcaatgttctt 3060
caaatttcggt gttggaacct ccttgacaca gatgcttttc ccaacacccct cccccccccct 3120
gctgtctcctg atcaccctgt cccggggttc cagtgctttgg gctctctctg ggggtcatctg 3180
cggggcccttg ctctctcgtct cccggggttc cgtcaggttc ctacatcctgg ccaacctcttct 3240
gtggtatttc aaataaatctg cgtctccctca caggggtgaa aaatggcttc tcaacctggaag 3300
ggggcttgcg cgggtgagac cccgcatcatt actctgccctc actgggcaccc cttgggcctct 3360
tttctcgcag tcacgagacct cctctccttgct ctctctcctct acctccccctc ctctctctttt 3420
cacgctctctct aacccggcggg ctcctcactc acctcaggtgc cccgcttcac ccctctctctc 3480
gacccggcctt ccacctgccct cttgacaccc ggctctccac ccctctctctc ttgctctctctc 3540
tctctgccccct tctctctgctc cttgccccct cttgcccccc tctctctgcc tctctctgccc 3600
tctctctctct cttgctcttgct cttgctctcc cttgctctcc cttgctctcc cttgctctcc 3660
tcgtcccccct tctctctgctc cctctctctc cctctctctc cctctctctc cctctctctc 3720
tcgtccccctt cttgctctgcc cctctctctc cttgctctct cttgctctcct cttgctctcct 3780
tctctctctct tctctctctct cttgctctct cttgctctct cttgctctct cttgctctct 3840
tcgtcccccct tctctctctct cttgctctct cttgctctct cttgctctct cttgctctct 3900
tcgtctctgct cccctctctgcc cctctctctc tctctctctc cttgctctct cttgctctct 3960
tcgtctctctt cttgctctctc cttgctctct cctctctctc cctctctctc cctctctctc 4020
tcgtctctctct cttgctctct cttgctctct cctctctctc cctctctctc cctctctctc 4080
ccccctctgct ccccctctctc cttgctctct cttgctctct cttgctctct cttgctctct 4140
tcgtcctctctt cttgctctct cttgctctct cttgctctct cttgctctct cttgctctct 4200
tcgtcctctctct cttgctctct cttgctctct cttgctctct cttgctctct cttgctctct 4260
aggggacacg tttttggggt ctcgagacac cctctctctc cttgctctct cttgctctct 4320
cgcgctggagc tttttggggt ctccggagac cctctctctc cttgctctct cttgctctct 4380
ggttatccag tcctctctct cttgctctct cggctcggga gctctctcttt tgtggatgttg 4440
ttcctctctctt ctctctctctt cttcgggagc ttcctctctct cttgctctct cttgctctct 4500
acactaaag agataaatag atacaactttt tagacgacgc tcagtgataa caggggtgcg 4560
agactctctgc ccccccccaac agccccccca cccccccca cccccccca acctctctct cttgctctct 4620
agatccagggt ctggaaatttc cccatctcctg gaaaccatct ctctctctct cttgctctct 4680
cgcagggcggg aaacatctcc tgggagacct cttgctctct cttgctctct cttgctctct 4740
gctctaatatt cctctctctct ctttcttctgt gacgggttggt atggggattt ctcgagaccc 4800
tcctctctct cttcagagtc ctccagacag gatgctacttg ggccacagga aagacagctg 4860
ggtgagtagcag ctctctctct cttgctctct cttgctctct cttgctctct cttgctctct 4920
NEW PA035WO_sequence listing[1].ST25

`gacgaaaggg cctcgtgata gcgcatatgg tataagttaa ttgtcagata ataatggtttt 4980`
`cctagacgct acgtggcact ttcgaggaga atgtgccgag aacccccctatt tgtttttttt 5040`
`tctaaataca tctcaatatg taccgctcga tgagacaata acccttgata atgccctcaat 5100`
`aatatgaa aaggaagagt atgagtttac aacatctcgg tgtgcctctct attccccctt 5160`
`ttgccccatt tccctctctct gttttttctgc acccagaaac gctgggtgaa gtaaagagt 5220`
`ctgaagacat gttgtggcac cagatgtgttg acatcgaact ggtatcctca acagcgttaa 5280`
`tccttgagag ttttcggccc gaagaaacggt tttcaatgat gacacttttt aaagtctctg 5340`
`ttatgaggcc ggttatattcc cgtggtcgtcc ccgggcaaga gcaactcggtg ccgcccatac 5400`
`actattctca gaatgaccttg tgtgagctact ccaacaacct acagaaaaat atctacggtat 5460`
`gcattagacgt aagagaatta tcgagctgctg ccataaacat ggtgtaact actgcggcca 5520`
`actctcttatg cacaacgatc gggggaacag cggagctacact cgtttttttg cacaacag 5580`
`gggatactct cactcgcccc gatcgggttg acgagcaacct cagtggtgaa atacagccag 5640`
`acggacgtga caccacgagt cctcgacgaa tgtgcaacac gtttgccaaat cacattactg 5700`
`gcgaactact tactctagct tccggcggaccc aataataaga cttgagttgac gcggataag 5760`
`ttgccaggac cctctctcgtc ccgggtgtga gtttatgtgtc gataaatctg 5820`
`gaggagggta gcgctggtcttc gcggagttca ttttattcga gttttttctct 5880`
`ccgcttcgta tcggactcgt cggagggga cggcttccga gtagtacattg 5940`
`agatcttggtc gatagttgccc tcactgatta aacctatgtta actgtcgagct caaqtctaact 6000`
`catataaact cttttttttt attttttatt taaaaggtgtagtgtaa 6060`
`ttctttttta ttgaattgtgtat atttttttatt taaaaaggtgtagtgtaa 6120`
`ccgcttcgta tcggactcgt cggagggga cggcttccga gtagtacattg 6180`
`tgagttgctt ctttgagaggt cggctcttct cgtgtttctc 6240`
`taccaacttct tccggcggac gtaaactgcgt tcacgagagg cagagacact tcaaatgatcc 6300`
`ttctattgtc gccgtagtta caggacaccact tcaagaattct tgtgacccac cttacatctc 6360`
`tcgctcctgt ctccctctgtt ccagcggggt cttgacagtgc gcattcaacgc gcggatcagc 6420`
`gtggagctct cagaggagagg cggaggagagg cgccggccaggg ggtgtattttt 6480`
`cgctgcaacag cccgagcttg gaggcagagc cgcagtcagcgcacttc acgtgatattca 6540`
`agcataagag cagcgccagg cttcggcgaag ggagaagggc ggacagggtat ccggtaagca 6600`
`gaggccgagg cagcagaggg ggggggaggg agccggcagct cttgagcttttctaaggtcagttc 6660`
`atacgttctgtc cgggttattgc ccaccttctgc ttgagcctgct atatttttgta tgctcaggtc 6720`
`ggggggcgag cctatggaa aacggccagca cagcggcccctt tttacgcttct cttgccccctt 6780`
`ggtgggccggc gtggggccggtc ggagacgctg gcggagcgtg gattttcttc ccaggggttc 6840`
`ggtggttggcc ttcacaggttc tcggccagaga ttgattggtgc gatggtgtgaa 6900`
`ttcggtaggc agggcatacga gtcggtgctctg gataagttgtg 6960`
NEW PA035WO_sequence listing[1].ST25

cagttaggggt gttggaaggtc cccaggtctcc cccagaggca gaagtatgca aagcatgcat 7020
cccaattagt cagcaaccag gttggaagag tccccaggct cccagccagg cagagttattg 7080
caaagcatgc atctcaatta gtctagacac ccagtctccgc cccctactcc gcctatcccg 7140
cccctacaacct gcagccagtctt ccgcccatacg gctgactacttt ttttttttt 7200
tattgacagg cccagggcgc ctcggcctcttg gacgttacctc agaggttagtg aggagctt 7260
tttggaggggt gaccgcacag accgggtccg ccacacatcct ctgacaccag ccctgtgacc 7320
tctcaagaga gaccgacctc atcgacccag aagaaagcct caagccagcgc cccaccccgcc 7380
gacgcagcttc cccggggtcgg aagcaccctt gccggccgcct tgtcggacta cccggcagcg 7440
cgccacaccc ctggacccgca ccggacctca cagacgtgca agaactctctc 7500
tctccggcgcg ctggctgtcag catcggcaag gttggtgtgct gcggagcgcc gcgcccgcgt 7560
ggcgtcggag cacgccgcgtt cagcgcctgc tgtccctcccg gagtgtgaggg gcgccgagcc 7620
gggtccccag ccgctctctgg gaggaccttc gccggccgcct accctctctt ctgccagcggg 7680
tccggaccttc ccgtccagcgc cgacgtcgag tgcgaccaggg acgcgcgagc ctggtctcag 7740
caccagggca aagggcttgtg cagcgcctgc tgtccctcccg gagtgtgagg gcgccagcgc 7800
gcggggcgcc ccgctctctgg gaggaccttc gccggccgcct accctctctt ctgccagcggg 7860
tccggaccttc ccgtccagcgc cgacgtcgag tgcgaccaggg acgcgcgagc ctggtctcag 7920
acccgccaagc ccggtgcctgt aagccgcccc ccacagcgcgc agaaggcccc gcggagccggc 7980
gcacgacccg gttcggcagcc gcggccagcgc tccggggtcgg gttgagcactg aactgtgctt 8040
attggcgtctt ataattgttta caaataaagc aatagcatca caaatattcag aatataagca 8100
cccccccccc caacgctcctc cagaagctcc ccggggtgctc ccggtgctgc ctgccagcggg 8160
tggtctgttc ctgggtgttgg tcccaactca tcctgtattt tttattctgc tccatgcagt 8220
tccgggccctc gttctggcttc ttgctgccga gacgctctgc cagctctggc cggggtgtgc 8280
attgacagctt tgtctgcttcatt agtctttggg tattatctttg ccattccataatata 8340
tggcaccggc ggtctgttttt ggggctttttt ggtctgaccttt gagtgacagcg gcgggttgct 8400
attgtccacc agtccagcttc gttccattgtc cttttctgagc cggagagtcg gcgggttgct 8460
tacggggctcaacctgtcttc gctgctgtttt ggggctttttt ggtctgaccttt gagtgacagcg gcgggttgct 8520
tggcccggctt ggtgcggcac ccacacgccg ccggccatttg cagctcaataa tcgcttgattg 8580
tcccatgtaa acgcaataag gcgctctctcg tgggtgagtttattcagcttt ggagactctttg 8640
aacgcggactcc gttcgactatc atctagctgtc tctattatgctt atgtcattattgcttcagcgggtt 8700
cagctgctgtt gccgctgctt ttgggtgagtttattcagcttt ggagactctttg 8760
tacggggctc ctgggttcgaat ttagctgccag tccgatttcgg cggcggctggc tggttggtttg 8820
tccacagatt caagcttctgg cttcggcgtttc tccacagatt caagcttctgg cttcggcgtttc 8880
tgagctgtttaa tttgggctac ccagctgctgtt gccgctgctt ttgggtgagtttattcagcttt ggagactctttg 8940
taacccggc cggggtgagtttattcagcttt ggagactctttg 9000
NEW PA035WO_sequence listing[1].ST25

cagagctcgt tttagtgaacc gtcagatctc tagaagctgg gtcaccatgtc tcttggtgaa 9060
cctttgtctt ggtggaacct tttttttagaa actgtgttgg cagcatcccc ggaaggtgca 9120
gagagcctgg ggaagattac ggtgtgccgg ggtcagacac acgtctctgc cttgacatctt 9180
actaccagcg ctgcttgtact taacccctaat tgtatttgtaa tggctacccc tctctcttcaat 9240
gccaacacac ctgcaagctg atccctgttat cagggtggac agatgtttga tgggtgccccc 9300
cggttccagc gttaggagtc attcagcag cactggccac ctcaccaattg ctctatcttc 9360
attaattaca ctcagttatt acagactctg acctacagtt cgcctgttca aacaacttca 9420
gacataggg gcagagcagt cgggttgcac ccagtcacag tggtaatttc ccctctgtcc 9480
ccacactgcc aaatcccaag atctccccag ttggcgcagc attgcatcctt gctgtgtagc 9540
tcagagaggt gcacccctcg accaaacttc ctcttttgga gattagacaa taccccttca 9600
tctctctccca cagcattctca ggagccagct cgggacagtc ctcacccagc gcacactgct 9660
gcctgtcttt caggtgtgttc ccagtcgcttg gctctctaatgc cttgtaggac cagacccagt 9720
tcttggtac tcacccagtc ttcacccgcc cccaggaaca ttgggctgac gcacccgacg 9780
ccaaacagcg agccggcagcc gcagccgccg ccagaaacctcc agggaaaccg cgggtgca 9840
gctttgggag actgtgccac ccagatgcctt cggggaaac ccagagactt tacggcggctg 9900
caagacgtga gagagctcttt ggcagacagcg gttcaaggaga ttcacccctcc aagacacagt 9960
gtgattgga gttgacgcttg cggaggtatg ggtctgagcg acataacagga tgcagacagc 10020
aagtaggggc cccagaaaaa actcatacctg aagagggcac tgaatgcgc cggctgaccgct 10080
catcactctc atcattggtc tttaacgcgtc cacagatgct tgcagactt ctgtgagtgtgct 10140
gacaaaacc aactgaagaat cagtgaaaaa aatgtctttt tttggaaatt tgtgagcatt 10200
ttggctttat tgtgaaccatt ataagtgctc attaagaacgta taaccccttca aatggcatct 10260
attttatgct tcaggtcttc ccgggagttgg ccaggttcttc taaggaacagtt aacacacttc 10320
caaatgtggt atggtgtgatt atgatccccc cgctttgcggc gttttgggtga tggctcggaa 10380
acaattcgcg ccacgagagcc gtcacacgctt gttctgtlaga ggatgcggccgg 10440
agcagacagg cccggtcaggg cgcggagcag ggttggtgac gctgtcgggg cgccgccaatg 10500
acgggggtgct tctaga 10516

<210> 21
<211> DNA
<212> Artificial Sequence
<220>
<221> source
<223> pCEP-mB-H5(ECD)-Fc
<400> 21

gatctgatctc ccgccgcccgg agcaactaaa cctgactacg gcatctctgc ccctctcttc 60
cggggccagtg cattgtatcc ttcagttgg ttggttccac ccgccccagt ggcctgtgtc 120

43
NEW PA035WO_sequence listing[1].ST25

cacatgtagc acgggggggg accaaacaca agaggtgctc ctagacttag tggacatccttct 180
tataaatgga tgtgcaccat tgccaacatc gatggtggctt cattcctggag cagacttttgc 240
aggtcctggga ctgcaaacaca acattgcttct tattgtgtaa tcttggtctga agctctttaca 300
ccaatgctgg gggacatgtag cctccacaggg ccccgaggaag actacggggag gctcacacca 360
cgctcaacgag aagggccctgt gtagctacggt ataaacgggag ccctcaagagg gcattagcaca 420
tagtttttat aagggccccct tggtaacccct aaacggtgtag cattatgcttc cccggtagtta 480
gtatatacta tccagacatag ccctaatctag atagcatatag tccactcaacg ggaagcatat 540
gctatgcaaat tagggttagtg aaaaaggttcc taaggaacag cgatataacctcc cccacccatga 600
gctgctacagat tttttattac atggggtctag gattccacga gggtatgtaa ccatttttagt 660
cacaagggga gtggctgtaag atcaagaagac ggccgagttga cctctcctgaa tcttcgcttg 720
cctttccatt cttcctctggt tagctcaagct ataactgtct gacttggtaa cagtaaggtt 780
tatgtaggtat gcctcggaaac aaggttcttct gtagaccccc cagaataaaat ttgagccggg 840
ggggtcagtgt gcggtccattt gctatgacac caatataacc cttcacaacac cctggggcaca 900
taaatacttag tgtaggaatg aaacatcttcg aatatctttta acaatagaaat tccagtgggt 960
gggacaaagc cgtaaagact ggtgtgctcat ctcacagcga tttstatgct ggcccaaac 1020
ataaatctctag tgcctataag tattagatgt gtccccagcga gggaccaga 1080
caggtaacc atggtagttac actcaatttag taacaaggggg aagagagagtgc gcacccgac 1140
gcagcggact ccactggtggt tctctacacac cccgaaataat taaacggggc tccagcggca 1200
tggggcccaca aaacaaagac aagttggcaca tccctttttttt gaaatttggt ggtggggcaca 1260
gcgcctagcc cccacacgcccc gcccctggggt tttgagactgt aaaaataagg ggttagaata 1320
tggctggttag taaaccgccct aaccactgcgg tgaacaccaac ttggcacaac aaccactaat 1380
ggcacccggg ggaataactgcg cattaggggt tgggctggggg aagataggg gcgcagttgtc 1440
gcagatgtaa ggccccccaca cccacacttt cgcctagcgg ccaagccag gttgtggttgg 1500
cctctatcct acaggggtgcg tcagaggcaggt gttggtctaat gttgcatgg gtagcatata 1560
tcccttatact atctggtagat cattgcttat cctaatcttat atctgggtag cattagcttat 1620
ctatctctat cctagtagct gtagtgctat cctaatcttat tctaggttag cacatctctct 1680
cctttaatct cccctcctctg atatactttact ctacatgtatat cttataaatctt tctagcttat 1740
cctatctctctactagtagctgcttactgtgctgttgctagctgtaatctagcataatcataactt 1800
cctaatagact tagtttgggtag tattgctgtaa gatatttggtgtaa gatcagcagcagaca 1860
ctcaaatcttg ggtagcataatc ctccatatctgt ggttagcatactgcttatcctatacgcagatcgca 1920
atctatatctg gtagcataatc ctccatatctgt ggttagcatactgcttatcctatacgcagatcgca 1980
atctatatctg gtagcataatc ctccatatctgt ggttagcatactgcttatcctatacgcagatcgca 2040
atctatatctg gtagcataatc ctccatatctgt ggttagcatactgcttatcctatacgcagatcgca 2100
atctatatctg gtagcataatc ctccatatctgt ggttagcatactgcttatcctatacgcagatcgca 2160
tagtagagtg ggaagtagctat cctcctgccata tgcaccgccacc tccccagggg gctgtaaat tt
/tgcgtcggcc tctcccttcct gcactacctg ttgctcctatt cttaggtgaa tttaaggagg 2280
/tcagggctaa gccggtgcagc gtctgtgttcgc tccacagcca aagttgctca aatgtgctta 2340
/aagcggagaa ggttgtgtagcg cggagtgcttg gacgctgtgg aacatggtatat gcccacattgc 2400
/cccatgggtag gaggaagcatc cattggtcgaaga gaccaggacaga cagagacgct cccattcagc 2460
gctgtagcgtg tactggtgttt tattttttt tttgtcgggg gatataccatt tcctattagc 2520
/ttcggcgctt ccctctccact ctgcgtctca tgagagtctga cctcgccggt caccatcatttgc 2580
/ttcctcctcc tctgctacac caccgagcctt cccgccccgc aatgcttcag cccataggctt 2640
ggaacgcaag gggcattcgtg ctaaagctgct gacagacgact cccttttttt gattttgtttt 2700
caggtagagg ccggggctctt cataacagag ctcttttaatg ctaatcctccca aacctcagc 2760
/aatataggt ttgtaaaaa gaccaagagct aaccagccctatatgg taggaccccgt tagcgggcctc 2820
/ggttggtgggcc ggctggccaggg gcctattccca aaggggagac gactcaatgg tggtaaggaag 2880
/cattggtgaa tagcagagcc agttctctgcg cttatgttg ttaaggggaggg ctaatcctatc 2940
/ccatacagga acacaggccgg gacccaggtt cctgcgttgcg tagtctctcct ctaaatggtt 3000
catgcagagg gctttctact acacatgtgca atgggttcgag aatggggttt gttataagcc 3060
tgacccacagt gctttctcaaa ccaccaacccc tttttgccc ggctcttacat acacagcctgcc 3120
gggtgctctc cgggtgctctgg ctagctctgcg ggcctctcctgcc tattcgcttc aacccgctctc 3180
gccgaccagctc cctgcgcttcct ctgcgtgacctt gcttttggc ggttagcttt ttaggctttgt 3240
tccctcactaag ggtaggggaa aaggtacctgt ctgtgaggggg gctggtgctcg tggagaccgg 3300
/gatgatgatag actgactactg gggactctctg ggctctctcttt ctccacgtgcc agacacctttc 3360
/cccttcggctc ttttacacgt tcccccccttg ctctctctcttc cttctctctctt gcacctgtctt 3420
/ccacctactc tctgcagaccgg gcctctctta cttcctctgg accgggccctcc actctctctctc 3480
/cgccgcccgc cttccacacctc tgcctctggc cctccctgctg tggccctctcc tctctctctct 3540
/gcctcccccttg cccctcctcttg tgcctctggt cccctcctgct ccctctctctct 3600
/gcctctggtct gcctctgtggc tgcctctctc ctctctctgct ccctctctctct 3660
/gctctctcgc cctccctgcggt cttcctctcttg ccccctctttg cccctctctctct 3720
/cctgcctctcct cttctgtggc ccctctctctcg tgcctctctgct ccctctctctct 3780
/gctcctctgc tgcctctgcctgc tgcctctctctc tgcctctctctct 3840
/gctcctctgc cttccctcttcg cttcctctctctc tgcctctctctct 3900
/gctcctctgc cttccctcttcg cttcctctctctc tgcctctctctct 3960
/gctcctctgc cttccctcttcg cttcctctctctc tgcctctctctct 4020
/gctcctctgc cttccctcttcg cttcctctctctc tgcctctctctct 4080
/gctcctctgc cttccctcttcg cttcctctctctc tgcctctctctct 4140
/gctcctctgc cttccctcttcg cttcctctctctc tgcctctctctct 4200
gctctctgttc caccgtgggtt ccctttgtag ccaatgcaac ttggagcttt ttggggtttc

cggacaccat ctttacttgtc tggcccttgtat cctgagccgc ccggggcttcc tggctctcccg

cctccctgtc cttgctctct ccctccgtcttg tatcactaca cttccccttc cttcctttga

gtccacagtc ccgccaggaccc ttctgtctca gatgctgtcc cttctctcctt tacccacctt

ccagctctctgct taccctgccc ttcctgtcag atgattcaac ataaaatgaaaa taatagacca

ttttatctcgc tagctactcga cttgaaatag gggagtgcggt ggtctgcaccc cccaacacgc

cccccccccctt tacttccccct catgggtcgct gttcagacag cttccagctg aaaaatcctcc

atctctcggaa ccacatctcgtt cctcctacac aattacctgc aggcgggaga actccgctgct

aacatcctca agatgttgtcat cctgagccctt aagccagggcc tcctaaactc tctcccccctt

cttggctgac ggtagggtgtt ggagttctcag gcacccctctt ccctttccctt caaggtcacc

agacagagat gcactgtggtt cacagggaaa taagatcttggt gcggccctggtt agagatcagct

tcctgatgat aagctgctca acatggaagt tcttgaagct gaaagggcct ccgcttgatacgc

catatcttcatc aggtaataat tagtttctttt ggtgctcagc tggctcaccttt

cgggaaagttg tggtaggcag cccattctttg ttaacctcttt aatacattttt aataatgttctg

cgccatagta gacaataacc ctgataaattcg ctctcaaatattgtagaagaggaagatagtttg

agtattcaac atttcggcgtt cgccttttatt cccctttttag ccgcatctttt cttcccttgct

tttgctgacc cagaaagctgt gttgaaagtta aaagatgctgtt aagactcagtgtt gggtagcagcgt

gttggttaac aacactaagcc tctgaaactc ggtgaagatcc ttgcaggttt tccggccggcta

gaaaaatcacca cacaatgtttgc ctcctcagcac ccccttttttccatgggctttg

gtgcagccgc gtcagagcag aacctggccgt cgcacactct atacataacag tgcctgttga

gactacccct cagctgcatc cggacagcag ccaacctcgttt gcagagacagcgccttttgcga

gagacgattgg cagccaggtg cgtgtaaataa aagacactctt ttttctttctctgcttgctg

ggcacacttcc gctgctttctt gattagctgt gatgacccaggg cagccagcctt gatacattttcacaacagtgtggtggaa cacccttcggtcgtcctgc cgggctttcgt tccccttctgac accttccctgat cttgagccag cctgcttttg ttttttgcag cccacctca cttgcttgat cttgtagttg ctttgagttg gatgagcag ccggtgattg gatggttgcg tttggtcagc gtgcgatagtt gatgacccaggg gcggcagttg ctttggtaaa ttttcttgttctt cttgctttcag acctcgtgggt tggcagcgttt gcggaaattgtg aagctgctca ccccttttttccatgggctttg

gttgctgacc cagaaagctgt gttgaaagtta aaagatgctgtt aagactcagtgtt gggtagcagcgt
gtgcagccgc gtcagagcag aacctggccgt cgcacactct atacataacag tgcctgttga

gactacccct cagctgcatc cggacagcag ccaacctcgttt gcagagacagcgccttttgcga

ggcacacttcc gctgctttctt gattagctgt gatgacccaggg cagccagcctt gatacattttcacaacagtgtggtggaa cacccttcggtcgtcctgc cgggctttcgt tccccttctgac accttccctgat cttgagccag cctgcttttg ttttttgcag cccacctca cttgcttgat cttgtagttg ctttgagttg gatgagcag ccggtgattg gatggttgcg tttggtcagc gtgcgatagtt gatgacccaggg gcggcagttg ctttggtaaa ttttcttgttctt cttgctttcag acctcgtgggt tggcagcgttt gcggaaattgtg aagctgctca ccccttttttccatgggctttg
actggcttca gcagagcgcga
gataccaaat actgtctttc tagttagcct gtagttaggc
6300
caccacctca agaactcttg agcacccgctc acatacctcg cttctgtaaat ccctgtaac
6360
gttgctgcgg ccaaggtgcgg taaggctggt cttaccgggt tgtgactaag agataggtta
6420
cgagataagg cgccagcggtc gggctgaacc gggggttctg gcacacacgc gacgttagac
6480
cgaagccgacct acaccgaaacct gactatacct cagcgtgagcc tattgagaaag ccgccacgctt
6540
ccggaagggg gaaagccgaca caggtatccg gtaagccgga ggcgcggcgc ggaagacgcc
6600
acgagggagc ttccaggggg aacggcctgg ttttttttata gttcttgctgg gttccggac
6660
cctgactgtt agctctcagatt tttgtagtcg tcgctccgggg ggcgcggcct atgagaaaaac
6720
gccgaccaacg gcggccttttc gccttcttct gctccctggt gcgtcttgcttg ggtgatgctt
6780
agatgacgagc cggatggtcag atgggtctgc aaggggttggt ttgccgcatc cagtttctcc
6840
gcaagatagtt atttggttcctt atcgttgaggg tggtagaaccct tgtgagggagg ccatcgcagcc
6900
tccgctggaa ctagatgatcc cgctgtggaaa tgtgtgtcag ttgaggttgtg gaaagccgcc
6960
agccctccca gcacgcagaa gatgtgaaagc atgatcatac taaatttggt caccaggttg
7020
tggaagttc ccagcgtctcc cagcagcagc aagttgtcaag agcatctcttc tcaattagtc
7080
agcaaccacta gctccgcccc taactccgcc ctaactccgc ccagtttgcgc
7140
ccctctcccg cccctctggct gactaatatt ttatattatt gcagacgaccg aggcgccttcc
7200
ggtgctctcagc ctagttcggagc aaggttttttg ggaggtgtagc gcggcagaccg
7260
tgcccacacc atccccctgace caacgcctcc gcccttcctaca aggagacgca cttcctgtca
7320
cgcagtcgcca gcacgcagttgc gcgcctccgac gctgccccgg gcggctagcgc
7380
ccctcgcgac cgctggctgc gcataccgcgg cccgctgggcc cccgacgccg
7440
acatcgaacgc gttgtcggaag cgcgcggccg gctggtgcgg ctggcacagc
7500
geagggtgttg ggttcgcgcga gacgcgctgcg cgggtggtggt ctggacctcg gccggacgacg
7560
tcggagcgcc ggccgcttggg gcgcgcctgg gcgcgcctgg gcggagttgag gcgcgcttccc
7620
gctggtgggcc gcacagcaccac ctctgttggc gcgcgcctgg gcggagcggccc
7680
cggctgttcct gcgcacgcgg gcgcgtctgcg ccgcagcacca ggcagaggggt tgtggccgcg
7740
ccgctgtgtct cccggagagt gaggccgagg ggcgcggcgg ggtgcccgcct ttccttgaga
7800
ccctcgcgccc gcgcacaccttc ctccttctacg aggggtcgggg cctccctggtc accggccagc
7860
tgatgtcgcgc gacagggcgc ggacgctgtg gcatagcagg caagccggctg gtctgcgcgg
7920
cggcccacagc cccgacgcgc cggacggaaag ggagggcagc gccggtctcgc acggcggggc
7980
acgggtcggag gcgggtcgga cctctgaaacc tgtttattgtc agctttatat ggttacaaat
8040
aagcgaatag ctcacaaata agcatgaatt ttcctcagata ttcagtgatt
8100
gttttgatca accatcaaatgtatccttcgctagtgattgac cccctcctccg
8160
accaattctc atggttggaca ctcattactc gcagatccgg gcacaagttg tgtcattgctg
8220
cagcgcgaga actggtaggt atggaagatc atcaatatcg gcataacttg gcataatgac
8280
atatcgttcat ttggttatat
acaatagatac aatattggtt attggtccatt gatactgttg
8340
tatctatattc ataataatgta cattatatgc gcctgcatgtc ccatatgacc gcctgcatgtg
8400
ccattgattat tcgactttca ttaataagta ctaattacgg ggtccattgt tcatagccca
8460
atatgagttgct ccgctgttcat ataaacttcag gtaatgggc gccctgtggct gaccgccgaa
8520
gaccgcgccc cattgactgct aataatgagc tattgcttcat aagtaacgcc aataaggact
8580
ttcattgac gtaatgggtt ggagatattta cgtaaaaactg cccattgggc aagaatcatca
8640
gtgtatcata tcgcaagtttgc gcccccatt attgctcaatg acggtaatgg gccgctttgg
8700
cattacggtgc tcgagcggac cttccctactt ggccagcata ttcctacttt gcagtcctaa
8760
gtcatcgtca tttcatcggg tggcgtgtatgc aatgctttctg ggtgtctgctt
8820
ccctgcatttcc aagttggattc cccaagttgccc cccaagttgccc tttttttttg
8880
caccaaaaaat acogggcactt tccaaaatgtc gaataaaccac ccgcccccttc gacgcaatgt
8940
ggcggtcaggc gtgtagcggttg ggagagttcat ataagcagagtctggttgtatt gacccgctcg
9000
attcttgaagctgggctattac atcaaactgc ggccgtttatt ccggcttttc ggtgctgttctg
9060
tggccgctgctc cggggtctggtgc aatggtccgaa gacccgcttttt gcgcttttttgc
9120
tccgctgcttc ccgctgcttc gactcggccc attcgggcctc ccccttttgg aaggtgccag
9180
acctcaatgtc cattcttcggtg ttaattccatgc taacttccag ccaagttcctg gccttttacc
9240
attttatcac gttgctgcca atgatctttg cgggtcttccg tggcctttttc cgcagcttttgc
9300
attcgagggct cagtctgtgc cttgcttctc taacttttcct cctaattcag cagcttttttc
9360
atacgcttttc ccaatttcgcc cccttgccttc gcctttccagc gcgtatttcag
9420
gggtcagtggc ccctcagctc aatgcttcttc cccagcttgg aacgctgttg
9480
cccctgtgctg tgggtcagctg ccctctttttg gacccgctttc cccctgctttc cgtctttttt
9540
ccctgcttttc cccctgctttt cccttgtttt cccctgctttt cccttgtttt cccctgctttt
9600
accagctgctc cccttctgcc ccaacctgctg gccgtgctttt cccctgctttt cccctgctttt
9660
acttcgcttctc ttgatccctcgtgc ccctgctttt cccctgctttt cccctgctttt cccctgctttt
9720
ctaacagccgg tgggtcttcc ccaactttg tcctcttttt cccctgctttt cccctgctttt
9780
tgatccagcc cccctgctttt cccctgctttt cccctgctttt cccctgctttt cccctgctttt
9840
agtctttttc cccttctttt cccctgctttt cccctgctttt cccctgctttt cccctgctttt
9900
agggttccttc gcggcttttt cccttctttt cccctgctttt cccctgctttt cccctgctttt
9960
cccttcttttt cccctgctttt cccctgctttt cccctgctttt cccctgctttt cccctgctttt
10020
cccttcttttt cccctgctttt cccctgctttt cccctgctttt cccctgctttt cccctgctttt
10200
cccttcttttt cccctgctttt cccctgctttt cccctgctttt cccctgctttt cccctgctttt
10260
cccttcttttt cccctgctttt cccctgctttt cccctgctttt cccctgctttt cccctgctttt
10320
NEW PA035WO_sequence listing[1].ST25

tggacaagag caggtggccag caggggaacc tccctctctg ctccgtgatg catgaggctc 10380
tgcaacacca ctacacgccag aagacgctct cccctgctcc gggtaatgca ctgcagggccc 10440
gaacaaaaac tcatctccaga agaggatctg aatagcgccc tgcacatca tcatcattc 10500
cattgagttaaacagatccacagactgataag atacactggat gattttggac aaacaccaac 10560
tagatgctcag taagaaaaat gcctttatttg tgaaaaaattt gtatctatgg ctttattttg 10620
aacattata agctgcaata aacaagttta aacaaccaat tgcattcatt ttatgttttca 10680
gttcgagggg gaggtgggga gtttttttta agcaagttaa acctctctacaa atgttgtattg 10740
gctgattatg atccggtcttc ctccggtcgtt tccgtgtatga cgggtaaaac ctctgacaca 10800
tcgacccctcc ggagacggtc acagcgtgttc tgtaagcggg agccggggac agacaagccc 10860
gtcaggggct gtcagcgggt gttggccgggt gtcggggggc agccctgagg tgcacctcag 10920
a
10921

<210> 22
<211> 10477
<212> DNA
<213> Artificial Sequence

<220> source
<221> pCEP-mB7-H5(ECD)-comp-FL-C

<400> 22
ggatgatgcc gcgcgcgcgc acaagtaaaa accgacgtcgc gcatctcttc gcctctctcctc 60
cggggcagtg acagtaatccc cttcagttcg ttggttcaacc ttgccaactg gcgcctgcttc 120
cacatgtgac aacgagggggg accaaccaac aaggggtttct cttgacgatag aggcatctctc 180
tataatggga tgtgcaacatt tgccaaacact gatggtgttt cattcctgag gagaaccttac 240
agcttgtgga ctcgcaacaca acacgtccttt tattgttcaac ttttggctgta agcttttaca 300
ccaaatcgcg gggacagtga cctcccaggg gccccaggaag aacgtacggg gccgacccaa 360
cgctcaacag aggccgggtt ctagctccag atacagccgac ccctcaaggg gcattgcagaa 420
tagtttttta aaggccccct tggtaaccc aacggggttag cacatgtcct gcggggtagta 480
gtatatcata ccacgataaa acaaatata ccattcatacg acaccaacc ggaagcatat 540
gctatcgaat taggggtattg aaaaaggttcc taaggaacag cctatcttcc caccccataa 600
gctgtacagg ttatatattct atggggtcag gatttccaca gggtagtgaac ccatttttga 660
cacaagggca gtagctgaag atcaagggc gcggcgatgg ccctctctgtact ctctccctg 720
ctcttcctgt ctctctgggt tagctaatag aataacgctt gattttggaa ccagtaagggt 780	
tatgtgagggt gctgaaaccc aaggggggtct cagttgagcc caagacccca caagttccggg 840
gggttcaggctgtggcagtt gcattgacac caattacacag ccctatcagga ccctcgggaa 900
taatattcgat agaatttcttg aataacatttt acaattgaaga tccatggggtt 960
ggggcaagac cgtaaaagact ggtgctcag ctcacacgaa ttttgggtta tgggcaacac 1020
taatattcg atgcaatgtg aaccttggg attaagatgt gtcgacccagc ggggaccaaga 1080
caggtgaacc atggtgttac actctatattg taacaagggg aaagagagtg gagcgcgccac 1140
gacgacggact ccacgtgttg ttcctacac ccccgaaatat taacaggggc tccaagctc 1200
tggggcccatt aacacgaac aagtggtgcc tttttttttt gaaattgttg agtggtgggca 1260
cgcgtcagcc cccacgccgc gccctgcgct tttggcacttg aaaataaggg tgtaataact 1320
tgctgtgattg taacccgccgt gccatcagcc gtcaaaacacc ttgcaccaaa aaccactaat 1380
gcaccacggc ggaaatcctcg tcaagtaggc gaggccgcccc agataggagc cgccgttgct 1440
gcatgtggga ggacaaatta cacacacttg cgctctagcc ccaacacagc ggttgttgtgt 1500
cctatatttc acagaggtcg gcagagacgcgt gttggctaatat tgtgccccatgg gtagcatata 1560
catacacaat atcttggtgat ccatatcctg atcttccctat ctcctttctg 1620
cctaatctat atcttggtgtag ccatagctctt cctaatctat atcttccctat 1680
cctaatatc atcttggtgtag ccatagctctt cctaatctat atcttccctat 1740
cctaatatc atcttggtgtag ccatagctctt cctaatctat atcttccctat 1800
cctaatagag attagtggtgt ccatatgctctt cctaatatct atcttccctat 1860
ccatatatat ggctgtagcata tcgctatccct atctatatctt ggtttgtcata tcgctatccct 1920
acatatatat ggtggtagcata ggttatccct atctatatctt ggtttgtcata tcgctatccct 1980
acatatatat ggtggtagcata ggttatccct atctatatctt ggtttgtcata tcgctatccct 2040
acatatatat ggtggtagcata ggttatccct atctatatctt ggtttgtcata tcgctatccct 2100
acatatatat ggtggtagcata ggttatccct atctatatctt ggtttgtcata tcgctatccct 2160
tagtagagag gaggctgctat cctttgcata tcgccccacc tcccaagggg gcgtgaaattt 2220
tgctgtgcttg tctttttcct gcacgctgttg tcgcttccctg cttattggtta ttaagaggg 2280
ccaggttaaa gcgcgtgcat gtctgtgtgc tcaccaggtta aagttccctc atgttctttc 2340
acgccgagaag gttgtgtgagc gcagagacgcgt ggtcttgagc acatgggcat gccaacttgc 2400
cccagttggg gaggacagaa atggtgacaa gacagatggc cagaaataca ccacacgcaac 2460
gcatgtgtgc tacgtggttag ttattttttta gttggcggggga atacacggcct tttatataca 2520
ctgccagcg ctttctacac gttacatcac tcgcttggctt cctactacctt ttcatatatct 2580
ccctcctctcct ccctgtcatc cctccgcccag cgccttttctt tccccatcagct 2640
gcagcgccag gaggacacatc ctcacagccttc ccccttttctt 2700
caggtacag ggctgtgcttg tcctttatctgt ctaatcctccaa aacctctagc 2760
aatataatag ttgtatccaa gaccaagcagct cgtatgacacct cctgacgaaatg 2820
ggattctgcg gcaggtccag ggcccttcctt aaggggccagc gactcataatg ttagacgca 2880
cattgtagc tagcaagggc agtctctgcag ctttagtggtt aaagggattct tagtactctt 2940
ccatataagc acacaggcgc gaccacaggtt ccctgggctgc tagtctctctc cctgatctct 3000
tagctgcaag gaccccttcgca gaaaaactctc cgtttctcctt aatccctggtt gcaacctccct 3060
tgcgacgat gctttccaa cccacccctctttgctgcc tgcctccatc acctctgaccc 3120
NEW PA035WO_sequence listing[1].st25

cgggtccag tgcttgggcc ttctctctgg gcgtctgcgc ggccccgcct ctcctgctcc 3180

ggggcaag ctgagtgcca atctgagagc cttcgtctgt ggtattcaga ataattcggctt 3240

tccctctccag gttgaaataa tgctgctcctgc gctttcgcctg gttgagacccgct 3300

gatgatgatg actgactactg ggcacgagcc gccctcccccc cttcgtctcc 3360

cctgccgcttc ttctccagc gtttctctgtg cttcctctgtc cttcctctgtc 3420

cactacctcc cttgacgccc acctcctcctc ctctcctcgcc ctctcctcctc ctctcctcctc 3480

cgacccggcc cttcctctcctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 3540

gccccctcctc cttcctctcctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 3600

cctccctctg cttcctctcctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 3660

gctctcctgcc ctctctctctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 3720

cctccccctc cttcctctctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 3780

gtctgctcctcc cttcctctctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 3840

cctgcccccttc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 3900

gctgcccccttc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 3960

gctgctctcttc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 4020

gctgtctctctc cttcctctctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 4080

gctgtctctcctc cttcctctctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 4140

gctctgtcctcc cttcctctctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 4200

gctcctctcttc cttcctctctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 4260

cggacaccat cttctatctcc tggccgcctgt cttgagccgc ccggggctcct ctgctccctctc 4320

cctctctcctcc ctctcctctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 4380

gtctggacctc ctctcctctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 4440

caccgagcttc cttccctctctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 4500

tcttattag aagagcctctc tggataataa cagactgcg cttctgctcct ctctcctcctc ctctcctcctc 4560

cccccccaccct ctctcctctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 4620

tatccctcag ccacccctcctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 4680

aaaatcttact gcatagaatg cttgagccctc aagagccgccct taaactccct ctgctccctcct 4740

taacctgtttgaggttggag tggattctcc gcctgccctc ctctgctctct ttctgcctctct 4800

gacacagagat ctgactctggg caagggatag aagactggttgc gggcctgctga agatgactct 4860

tatcgatgt aagactgttca aatgagagaa atcgagatgtt ccgctgttctg cgtgataagct 4920

tatattttatat aagtttagatg cttgataataa atgtttctct caagagctcgg cggatactcttct 4980

cgggtaaatg cttgacgccct cttcttatttc ttatctctttt aatactccct aattatattgatg 5040

cggctcag aagagagata cttgataataa cttgataataa attaaattg ctcctgctctgctct 5100

gatattcact ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc ctctcctcctc 5160
tttgctacc cagaacgcgt ggtgaaagta aaagatcgtg aagatcagtt gggtgcacg
5220
gtgggtagca tcgaactgga tccacagcgc ggtaagatcgc ttgagatgct tggcccggaa
5280
gaagtttttc caatgtagag cactttttaa gttcttgctat gtggcgcggtt attatccggt
5340
gttgacgcc ggcaagagca actctggtgac cgcatacact atcttccgaa tgacattggtt
5400
gagttctcag cagttcagca aagcaagctt caggtggcgc taagacgttaa agaatattgc
5460
agtggctcga taaccatagc tgataacact gcggcccaact tactctcgac aacatgacg
5520
ggaccgaaag agctacaccgc ttttttcgac aacatgaggg atcatgtacat tggcctgtat
5580
gtctttacct cggagctgaata gcacacgtta ccaacgcgcg agcttgacac cagctgtcct
5640
gcagcaatct ccaacagcgt gccgaacttc ttaacttggcg aactacttact ttagcctccc
5700
cggcacatca taataaagtt gatggagagg cggagaacct tctgcgctcg
5760
gccctctcgg ctgtcggctgg tgtagcgtat aatctgtgag ccgggtgacg tggtctgcgc
5820
ggtatcattgc cagcactgg ggcagcctgc ttacgtcgtt tagctcgagc aagcctccttc
5880
gcaggagagtc aggcaactgt gtagaagcgc aataagacac tctgcgctag tgggttgcctca
5940
tgatgactc atctgtatct gtcagacccaa gttataactat atatacttta gattgattta
6000
aatattcct ttaattattaa aagactctag tggagatctc tttggatatt tctctacgagc
6060
aatattcctt aacgcttgatt tctgctctcc tggagctcag acccctgtga aagaactcaa
6120
ggtagcttctt gagatctcttt ttttctgcgc gtaatctctgct gttgctcaac aaaaacagac
6180
ccgctacagg ccgtggagttc tttggcgagtt ccagagcctc caaccttttt tcccaggtta
6240
actggctctca gcagacgcgc gatacctaat actgtcctttc tagttagccg tagttagggc
6300
cacacacttc agaactctgtgt agacgccctct acataactctc tctctagtaa ctctgtacaca
6360
gtggctcgcga cagtgctgctg ctatctgcgttt ggctcggagt tgctcgacac ccagcctga
6420
cgcagcggat acacgacuca cagcgtgctga ttgagagagcag cggacaacgctt
6480
cgaaagcagcag acacagcact tagatacctca cagcgtgctga ttgagagagcag cggacaacgctt
6540
ccgacgagga gaaagcgcca caggttagccg tgaagcggga aggctcggaa aggagagcgc
6600
acgagcagacg ttttcagggg aaaagctcttg tttcttttata gttgggcgtgg gtttgcacc
6660
ttcttgagctt agcgtctgatg tttgtagcgc tcgctcgagg ggcggagcct atggaaaaac
6720
gcagcaacgc ccgctttttt atggtctcgct ggtttttctg gcggccctggt ggctggtctgt
6780
agatgagcggc ccgagatctt aatggctctgg aaggggtggtg tgtgctgatcc aagttctccc
6840
gcaagaagtct atctgttagc cgtctctgttt tgtgtgcag gaagcctccc gttttttgag
6900
tcgctcgagaa ctagatgtact cgctgtggag tgtttgtgata gaagacctccc
6960
aggtctccca gcagcagaga gtatgcaag cagcgtcttc aattcgtcag ccaaaccaggtg
7020
tgaaagctcc ccaggtccagc cagcagcagc aaggttgcagc agcatgtact ctaattagtc
7080
agcaacagta gcttccggcc ccacgccttcg ctaacctctcc cagctgcctgc
7140
ccattctcgg cccagctggct gactattaattttatatatat gtcagagcggc agcggccctc
7200
NEW PA035WO_sequence listing[1].ST2

```
ggcctctgag ctattccaga agtagtgaggg agggtttttt ggaggggtgac cgcacacgagg 7260
tgcggccacc atcccctgac ccacgcctcct gacccctcact aaggagacga ctttcctatga 7320
ccgagtcaca gccccacgtag cgcctgcgca cccgcgacgga cgtccccccgg gcctgactgca 7380
cctgcgcccc cgctgtgcgcac gactaccccg ccacgcgcacg caccgtgac ccgaccgccc 7440
acatcgaaacg cgctacgcag ctcgaagaaaaa tctttttcctac ggcgtgctgg gctgcacatcg 7500
gcaagggttgtg ggcgcgagcgc ggagggcgcg ccgggtggcttc ctggaccacgc ccggagacgcg 7560
tggagccggc ggcaggtggttc gcgcagatgac gcggcgcgctg gcgggcagttg agcgggtttcc 7620
ggttgctggtgcc ccgccagcgc tanccgcgcgac ccccgccatgc ggctggagcag ccggagcgcg 7680
gcgatttcttc cggccagctgc gcgcgtcgcg gcaacccaccac aggcagggg atcggtgacgcg 7740
cctgctgcgct gcgaccgcac gccgalacac gcggggtgatag gcggcgcctgc gttctgcgtgctg 7800
cctgcgcccc cgcaacctcc ccctctcgag cgcggctgttg cttcaccgcc accggcagacg 7860
tcgagtcgcc gaggacgccc ggcgtgtcgtt gcaatgaccc gcgcgcctcgc ggctgacgccc 7920
cggcgcgccgc ccgcgcacgc cccgggcgaa ggcgagcgcc acggcggtccg acgcccgcgcc 7980
acgggttcgca ggccccgcacgtg ccctgcaactg tgtttatagcg acgttatataat ggtttacaat
8040
aaagcaaatat catcacaatttc ctcaagaaaaa aacattttttt tctcagctat ctaagttttg 8100
gttggatca gctaatcattcat tatttttact atgtcttgcat gcagacacac cccccctctcg 8160
accataatttat tattttttatg cagatagtcgc acggctgtgg gcaacacgttg tgtattgtctg 8220
caggcgcgac acttgtgatgt ggaagagatc tataacttacg atcaatattgc gcaattagcc 8280
ataattgttc tgtttatatata cagataaatc atatgtgtgatt tgcgtcacc gcgtgtggcttg 8340
tatatattatat atatatagttca cattatatgtg ggtctcttgac caataatagcg gccatgtttg 8400
cattgattat tgtattgtaa ttaattactc tcataatgcgc ggtctattat tctatagccca 8460
atatattgcat ttgctttattg aagtaataatc atatgttgcc tatgcgctccac gcgcgcgccaac 8520
gacccccggc cctgagcaac aataagcgc tattttttcctag tattgactccc aatagggactgt 8580
cttacctagc gcgtagttgg ggagtgattta cggttaactgc ccaccttcgg gcgtacatcaaa 8640
gtgttatcat acgcagcttc gcccctctcttt gacggtcatg acggttaatga gcggcgtctgg 8700
catttgccg agtacagcgc cttacctgggcc rtctttattg gcaatggagctgt 8760
gtcatcgtca ttcatatggtt gattgttattata cggttaactg ccaccttcgg gcgtacatcaaa 8820
cttacctgc gcgcggtgcgg caggatgtttg ggcgttacatat caaatgctgg gacacgtctag 8880
cttacctgc gcgcggtgcgg caggatgtttt ggcgttacatat caaatgctgg gacacgtctag 8940
ggcggagcct ggtgctggttgg ggcgtttttt ggcgtttttt ggcgtttttt ggcgtttttt ggcgtttttt
9000
atcttcatgaa gttgctgttacct agtacggttc gcgcgtgctgg cttgttgtgtt gatgctgttgc 9060
tgtgcgctgtc gcgtgctgcag acattcctgg aagttgctgca gcgtgcgtgctgg cgtgtgctttc 9120
tgcggcggtgg ccagcagcagc gcctgcgtggc ccgccggtttt caccaggtgt gcccctctttgc 9180
acccataagtct cattttgtgc gtcattccccct tttcctatgc aacacggccc gcagcgtgtcgt 9240
```
ttctttatca gggtgacaa gatgttgacg gcgcctcccg gttccacggg agggttagat 9300
ttacggtcac catgcgtatc accaatgtct cgtatcctat caataacaaca cagctgtcag 9360
atcagggcag gtacagtctgc ttggtgaata accttccaga cagagggggc aagaacatcg 9420
gggatctgg cctacagcgtt tagtcccttc cttctgcgtcc acaatgcacaa attcaaggat 9480
ccaggacact cgccgatgcag tgcacgtcct tcgtgtatcga agagaagggc aatccttccgc 9540
ccacgtactc ttggtgagac ttagatataa cgctcaagct accttccaga gcgacactag 9500
accggctca gggacagctcg accatcggca atacagtgcct ccttctctcc ggtctgtacc 9660
agctgtgtgc tcctaatgcac atcgaggaaca gcacgctgtct gctgacacctc caggttatct 9720
ccaacggtgct agccgcagccc cagccgaaac cgcagcgccga ggcgagcccg cagccgaaac 9780
cgcagccgaa accggccagcc gaaagtttgg gagaactgtcgt ccacagagct ctctcagacac 9840
tccagggacaga taatgcgccgc ctgcaagacgc tggagagctc ctgctccagc caggtcaag 9900
agatccacatt cctgaaagatt acggtgtgaat aatgtgacgc cttgcggagga tcctgctctg 9960
acgacatcaaa gggatgacgc gacaagtagg ggccgcaaca aaactactct tcgaagaggg 10020
atctgaatag cgccgtcgac catcatcatc atcatcatgag agttaataacg atccgacacatt 10080
gataataacat attgattagat ttggcgaacac cacaactaga atgcatgaa ataatgtcctt 10140
tatattgtgaa atttattgtgt etatattct tattgtaacc attataagct gcataaaaca 10200
agttaaacac aacaactgca ttcatatttat gtctctggatt caggagggg tggggaggtt 10260
ttttaagcca agttaaacat tctaaatgt ttgatgggctg attatgatcc ggctgctcctg 10320
cgcgtttccg tgtgacacct cggaaaccttc gacacatgca gttccggagag acgtcagcag 10380
tttgtctgtta agcgggatgtcc ggagacgagc aagcggctca gggccgctcaa gggtggtgg 10440
gcggtgtgctg ggcggcgcagcc atggagtcga cttctaga 10477

<210> 23
<211> 10774
<212> DNA
<213> Artificial Sequence

<220> source
<221> pCEP-mB7-H6(ECD)-Fc

<400> 23
ggatcgatcc cgcggcgccgg acgaactaaact cctgactacgc gcatctctgc cccctttcttcg 60
cggccgctgag catgtaactcc ctcctcgtgag ttggtcaaccc ttgcacagctg gggccgtctc 120
cacagtgagc aagggggggg acaaaacaca aagggggttct cgtactgtac tgtgacactc 180	tataaagga tgtgcacatt gcacaaactc gatgtgctttt catctctggag cagacacctc 240
agtctgtgga ctgcaacacca acattctgtt tatgtgtaca atctgtgcttg agcctttaca 300
ccaagtctgg ggagacactag ccccccaggg gcggaggaag aactacgggag gcctacacaa 360
cgtcaactcg aggcccagtt gtagctaccc ataagccggac ctcacagag ggccattagca 420

54
tagtgttttat aaggccccct
tgttaacctt aacgaggttag catagtcttc cggggtagta 480
gtatatact aacgagcataa cctaatatca aatacgatag tttaccaacgc ggaagcatata 540
gctatcgaat tagagttgatg aaaaaatgctc taaggaacag cgtatcttcc ccccccaatag 600
gctgtcagcgg ttatattttac atggtgctag cgttgccgac ggggtgattg ccatttttattt 660
cacaagggca gttgccgaag atcaaggagc ggggagtggta cttctccgtaa tcttctcgtg 720
cctctcatt cttcctcgtg ctaaacagagt aataacgtct gaggcctgta cagtaaggtgta 780
tatgtgagtt cttctgaaac aaggttccag tagagccggcc cagaataaaa ttggagcgggg 840
gggtccagtt gttcgacatgt ctatataacc cttcagacacc cculttgccaa 900
taatacttag tgtaggaatg aacattctctg aatatctttta acaaatagaga tccatgtggt 960
ggggcaagcc cgtaaagact cgtatgctcat tctcagcaga tattatggtta tggcaacaccc 1020
taatcatctag tggcgattga tactggtggtt attaatagttg gttcccagcgg gggcagacaa 1080
caggtgaacc aaattttgtcc actctctatgg taacaagggg aaagagaggt gcaggcgacac 1140
gcagagcactt cccagccggt tctctcaacc cccgaaaaat taacaggggc tccgcggcaca 1200	taggaaccctt ccacacacagc aatgtggccct ttttttttttta gaaatgtggt aagggcggaa 1260
ggctgctagcgc ccccaagcgg gccctgaggtt tttgacattg taaaaaggg tgtaataact 1320	gggtgtctcc taaaccgccccgct aaccactcgcc gtcaaaacacc tggccacaca aaccacttaa 1380
ggccccccgg ggaatattcg tagatgctgg tggcggggc cagagctcggc gccgattgtct 1440
ggcatctgga gcagtaataa cacacactggt cgctcgcagcc caacagcagc ggtttgttgt 1500
cctctatcag acgagttgcgt tgagacacgcgt tgtgctactgtg gttgcgctatgt gtagcatata 1560
cctacccaaat atctgcatag catatgcctat ccataatctat atctgctgctat ctagatgtct 1620
cctaatcatttc atctgggaagcat cattctctag atctggtggtc atatagctatt 1680
cctataattttc atctgctgtc ctaaggggct catgcattgat ctagctctctc 1740
cctaatcacat atctgggttag ctagctctctc ctaaatcgtatatccctatgtgctagcc 1800
cctataattcat aatggcttaa cctataattct ctaggctactctctctcagtctttccac 1860
cctaatcctatt ggttctgctac tggctatcctca actaatctt ctagctttca 1920
cctatcattatt ggtgtatca cttgggcctctct ctaggctgtct ctagcttttctctctctct 1980
cctaatatctt atctgctcatt ctagtctcttc ctagtgctgctc ctaggttctcctcctctctc 2040
cctatcattctt atctggttctttc ctaggttctcttc ctaggttcttctctctcctctcctctc 2100
tactctcattt ggttctgtttc cttgtctcctc ctaggttcttctctctctctctctctctctc 2160
tagtagaggtt ggtgttttattt cctcaaaagc gctgtatattttttttttttttttttttttttt 2220
tctcagtctttc cttggccgctc ctcgcgggcg cgggaaatgaa ttaaaggggg 2280
cctctataaaat ggagtgttcagt gttagttgtt cttgaggatt ttttaaggagg 2340
agggcagaaag gtaatctgctg tgaagtgcgca aacatgtggt atccgagcagc 2400
cccacagctg tcaccagagt gacaggttcag tcacggcagc cggagattg gacagttcgat 2460
tcttttagag acgcgctaag tgaatcagc gqaagtgcaga ctctctgccc cttcaacagc	4560
cccccccacc tcatctcctt catggtgcgt gtcagacaga tccaggtctg aaaaattccc	4620
atctctccgaa ccacttctgct cctcatcacc aattactgcg agccgccaaga actccgcttg	4680
aactacctca acgatttgctt ccttgacctc cagccagggc tcaaatcctc ctgtcccccctt	4740
ttgacacbga gcgtgagcag gggtaccctcg gcagccccctc tccctctctt cccgaagtcac	4800
agacagagat gctactgaggg caacggaaga aacagtctgggt gcggcctgtg aggatcagct	4860
tatcgtagat aagctgtcaa acatgagaat tcttgaagac gaaagggccct ctgtgacgc	4920
ctatttttat aggttaaatg ccatgtaata atgtgtctttt cagacgtaggg tggcattgc	4980
cgggggaaatgt tcgcccagac cccattttttt ttaatattttt ttaatatatttcc aatatagatc	5040
ccgctccatga gacaatacc tctgatattag cttgcaatatt cttggaagaa ggaagatagt	5100
agatattaac atctctggttc cctccttatt cctttttttt gggcattttt ccctcctttt	5160
tttgccctacc cagcaagcgtt gcggagagcta aagatagctt gggggtcagca gggtgcagcag	5220
gtgggttaaca tcgaactgga tcttctcagc ggttaatgct ttgagattt tcgcccctgag	5280
gaagggttttc caatgtgagc actctttttta tttcttgctat tggcgcctgtg aattttcccgt	5340
ttgacgcggg gcagaaacgca ctgacataaca attcctcgaaga aagatcctgg	5400
gatgacctcag cagctcaga cagagcatcctt acggagttgcag aagcataaag aagatattggc	5460
aqtgctgcca taacctgag tgaataaact gcggccaacct tctctctgac aacgatcggga	5520
ggacacaggg agctaaacctc ttttttgcag aacatggtggg atcatactta tcgcccttgat	5580
ctctcgggac ccagactcctg gtaagctgatc ctaaaccagc gcaggtccagc agcagatcctt	5640
gcaagcaatatg cagaaacctg atactggtgcc gcagaaccta ttatagctgac aagatcagc	5700
tggcacaactg cagctgcac agtggagggc gataaaagtt gaggccactt cttgctgtcg	5760
gcccctccggg ctgctgtgttt tattggctgat aattttgagc cgggtgccagc tggggctctgc	5820
ggtatccattt cagctcgggc gcaagctgttt gcagctctcc gtaacgttaag ttcctctgag	5880
acgaggggtctc aggcaacta ctgaagacgc aataagagaca tctgcttgat gttgccccct	5940
ctgataaactt attggttaact gcgcagacaa atttactctctg atatactttta gaggcttata	6000
aaacttccttt tttaatatttta aagatctcag gtaagatatc cttttttctg gttactattc	6060
aaatctcctttt tggaggtgcttg tcctctccag gatgtgtctgg acccctgaga aagatcacaag	6120
gatcttttct cagatcctttt tctttctgccc gtaatctgct tggccaaac cataaataacc	6180
ccgctacccg cgggtgagttt tttgccccggat ccaagactac caactcttttt tccgaagttc	6240
acgttgcttc gcagagcgcag ctaaagcaaat ctgcttctct ctagatcgtt ggtactttatc	6300
caccacctca cagaaactctg acgcaccgcct ctttatactct ctcgcttaat cctgtactac	6360
gttgctgtctg cagctgctgc ttagtctctgg tggactcaag acgatagttc 6420	
ccgctgtaagg cgcagcgcctg cgggtcaagc gggggtcttct gcacacacgct cagctgtcggg	6480
cgaagcagctt acacccagact gagacacatct cagcggtgcagc tatgagaaag cgcacacgctt	6540
NEW PA035WO_sequence listing[1].ST25

cccgaagggga gaaagggcgg gattgatcgg gtaagccgca gggctgggaac aggagagccg 6600
acgaggggac gccgaggggg aacgcccttg gatcttttata gttcctgtcgg gtttcgcac 6660
cctgtaccgg agcgtctgatt ttgtgtagtc tcgtcaggg ggcggagcct atggaaacac 6720
gcagcagga cggcctttttt acgtttctgt gccttttttgct gcgcggcttg ccggtctggtg 6780
agatggtcggga gcggatggat atgttttttgccc aaggggtgtgt ttgctgaatcc acagttcc 6840
gcagggatttt attgtgcacc tttggttggag tttggtgcttg ttggcgtcag tttttttttttt 6900
tgcgtcggaa ctatagtgtac gcgggtggaa tggggcgtcag tttgggtgtg gaaaggtc 6960
agctttccca gcgcagcaaa gtagcgaaa ctaaggcttcct conservative caaagagggg 7020
tgtagaagctt ccgggctggc cagccagcag cagttgtcagtc tcaactgtaaagc tcaagtg 7080
acgaaaccata gtcctccggcc taactccgccc ctaactccgccc ccaagttccgc ccc 7140
cattctccg ccccaggtct gactaattaatt tttttttttttt ctagcggagcc aggccgcttc 7200
ggctcctgag cttacctctag aagtagtgagg aggtttttt tggaggtgtag ccagcggaggg 7260
tgcggcacc acctgcctgac cgccctccctt ggcgcgcctag cagagacgca cctttccatga 7320
ccagtaacag gcgcacgcgct cggcctcgcga cctctcggcct gcggatccgc gcggatccgc 7380
ccctggccgc gcgcggccgg gcactcaccg ccagcagcag ccaggccacc gcgcggcgcgc 7440
acatcggaac gcgctagcccg cagctagcag cagttctctcag ggcggctcgg gtcggcactcg 7500
gcagggatttt ggcggcggcc gcacctcccg ccagcgggac gcggtcggggtgct gggttgacccg 7560
tcgaaggggg gcgggggtttt gcgagatcgc gcggggccgctg gcggatggtg gacggtgcttc 7620
gtcggcacc gcagcagcagca attggaagcc ttttgctgatgc gcaggggagcc aagagggcgg 7680
cgagggatttt gcgcggcggc gcgcgctggcc gccagagcagc gcggtcggggtgct caggggat 7740
cgcctcggtc gggggggttcgg cggcgcagttt gttttggcag atggtgataat ttttataaatg 7800
cctggcgggc gcgcgctgacc gcccctttcg acgctggtccag cttccccctcgc gcgcgctccg 7860
tgagtgcggg gcagggggcgc gcagctttggct gcaggggctgc gcggatccgc gcggatccgc 7920
cgcgctgggg gcgcagcagcagc gcagcggcggc gcgggtcggcc gcgggctggcc gcgggctggc 7980
acgaggggac gggggttcgc gtcctgataat ttttttttttgc agcgtgataat ttttataaatg 8040
aaagcactag catcacaatttt ttttataataa aagcataatta ttctactgtg tttccgcttg 8100
tgttctccaa actctatatt atcttttact tctgtgtatt gcgtcgggtac ccctctctcg 8160
acccattttt acgtggtgtcg gatttatttttcac gacatgacgccctgg acagctgtgt ctacagcctttg 8220
cagggcgcag actctattgt ttttattttttt ttttattttttt ttttattttttt ttttattttttt 8280
aataggataa atccgataattgct aagttgtgatt gcggcgttc gttgcatttct gataaagagct 8340
attcctattg atctattttttt attttattttttt ttttattttttt ttttattttttt ttttattttttt 8400
cattggttat cttgtattt actataaatct aacatatttt ttttattttttt ttttattttttt 8460
tatattttattattt ctttctctcgc gcgctggtcc ggcgggctgggc gcggagcggcgcgcggg 8520
gacggggtggt gcgtcggctgc gtcggcttttct ccaggtcttgc gcggatccgc gcggatccgc 8580
NEW PA035WO_sequence listing[1].ST25

gtttcgggtgatgacggtga aacccctgac gacatcagcg cccggaagag cgctcagcctg 10680
gtttcgggtgatgacggtga aacccctgac gacatcagcg cccggaagag cgctcagcctg 10740
gtttcgggtgatgacggtga aacccctgac gacatcagcg cccggaagag cgctcagcctg 10774

<210> 24
<211> 10330
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> pCEP-mB7-H6(ECD)-comp-FL-C

<400> 24

ggatcgtacc cccgccccggc agaagtaata aactgaactac gcatctctgc cccttctctcg 60
cgccccgctg aaatctaatc cctcactttg ggtttacgag gggcttctcc 120
ccctccgatg cccgtgtaac gaccatttct ctggtcttta cccctttcct 180
tataatgcct tttccctcct gttctctgtt ggtggctcct gcctctcttct 240
ttttcgttca ctgcaacatc aaccacactc tttttttcga ttttctctttc 300
tttttctta aaccccttcct ttttaatcct aacccgctgg cgggctcttc 360
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 420
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 480
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 540
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 600
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 660
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 720
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 780
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 840
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 900
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 960
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1020
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1080
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1140
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1200
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1260
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1320
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1380
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1440
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1500
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1560
cctcctgctc ctgccccctcct tgccctctcct cctgccctctgc ccctctctcct 3660
gctctgccc ctctctgcctct cctctctctgct gcctctctctgc ccctctctcct 3720
ctgcctcccct ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 3780
cctgcctccct ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 3840
cctgcctccct ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 3900
cctgcctccct ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 3960
gctctgccc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 4020
gctctgccc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 4080
gcttgctgc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 4140
gctctgccc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 4200
gctctgccc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 4260
cggcacccct ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 4320
ccttgctgtcc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 4380
ctgcctctgccc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 4440
tccctctctgccc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 4500
tctacatgata ccagcagctcctg gagaagaagac caaagcagac ccagcagctcctg 4560
tctacatgata ccagcagctcctg gagaagaagac caaagcagac ccagcagctcctg 4620
ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 4680
ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 4740
tttgctgtgcg ggtggtggtgc ggatttctcg gcctctctctgc ccctctctctgc 4800
agacagagac ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 4860
atgcagatgat caacctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 4920
ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 4980
ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 5040
ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 5100
agatctcacc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 5160
ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 5220
ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 5280
ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 5340
ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 5400
ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 5460
ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 5520
ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 5580
ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc ccctctctctgc 5640
NEW PA035WO_sequence listing[1].St25

gcagcaatgg caaacaacctt gcgccaaacta ttaacttgccg aacctactac tctagcctcc 5700
cggccaaagt taatagacgtg gatgggagcc gaaaaagtgg caggacaccct tctggcgtcg 5760
gcctctccgg ctggctgttg tattgtctat aaacctctagag cccgtgagcg tgggtctcgc 5820
ggtactctgg cagcactggg gcagagatggt aagccctccc gttacgtagt tattctacag 5880
agcggggagt ccagaactat ggattgaaag aataagacac gtcgctggat aggtgctccat 5940
cgtattagcc atttggtact gtacagacaa gttactctcat atatacttta gattgattta 6000
aaacttcatt ttaattttaa aaggtatcag tggtaagatcc tttttgataa tctcatgacc 6060
aaatcctcctt aacgtgattt tcgcttccac tgcagctcag accccgtgaa aagatcaca 6120
ngattcttctt gagatctcttt ttttctcgcc gtatactcgt gtcttgcaac aaaaaaccac 6180
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 6240
actggtctca gcagagcgcg caagcactctat aagctccttac tagtgtaagcc gtagtaagcc 6300
ccacactctca aagactctgtt aagccgctcct atacaactctcg ctctgctaat ccctgatc 6360
ctggcttgtgtt gctttttggt tgtgcctctat ttgctcaag aagctatgtaa 6420
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 6480
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 6540
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 6600
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 6660
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 6720
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 6780
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 6840
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 6900
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 6960
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 7020
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 7080
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 7140
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 7200
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 7260
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 7320
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 7380
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 7440
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 7500
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 7560
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 7620
ccgcttaccc cgggtgctttt ttgcgcggat caagagctca caactctcttt tccgaaggtta 7680
NEW PA035WO_sequence listing[1].ST25

cgttgttctt ggccacaccgc cggctctgcc cgcaccacca gggcaaggggt ctgtggcagc
gcgctgtctt ccggcagctgc gccgacccgg cggagcctcgc ggtgccctcgg
tccggccgcc cccgaaacct cccctctacgc agccgcgctgc cttccagctgc accgccgcagc
tcggatgccc gacagccggt gccaggcttgc gcatagccgag caagccggtg gccgtgacgc
ccggccacgag cccgacggcg ccggcggagc ggagcgcaagc accgagcgcgg cccgagccgac
gcggagcgtga cctggagagaat gttatatggc aggttataaat gttcactaat
aacagatgagc atcactaatc ttcacatattt ctctacgcttc tctagttgtg
agtggcttcag atcactaatc ttcactaatc ttcagctttt tctagttgtg
atcataatc aatattgtg atctgaattc aatattttgt tagtggcttc gcttgctg
agcgtgatagc gctcgccggc ctttctcttt gtgtcaatgc cgggtgtagtt
aggccttgtt gcagcgtgta ataattgcgct cggacctatgg cagttttgtt
actacggtt tttttgtgcc ccttcacttct cctcactttc cggagtacgctacggtgtt
gcattggggtg tagtgggtt gcccttgagtct gcggttgcttc
tggctactgtt cactacgttg tggactcttg ttcgactgttgc tcctctgggt
tagaactgtgc ctccttcctcc cctcactttc cggctgttttc
ttcggacatgc ctttctcttc ctttctcttc cggctgttttc
ttcgagcatgc ctttctcttc ctttctcttc cggctgttttc
ttcgagcatgc ctttctcttc ctttctcttc cggctgttttc
ttcgagcatgc ctttctcttc ctttctcttc cggctgttttc
ttcgagcatgc ctttctcttc ctttctcttc cggctgttttc
NEW PA035WO_sequence listing[1].ST25
acgtgagaga gctcttcgca cagcaggtca aggagatcac cttcctgaag aatagcgtga 9780
tggaatgtga cgcttgccga ggtatcggtc tagacgacta caaggatgac gagcagcaagt 9840
aggggccgca acaaaaaactc atctcagaag aggatctgaa tagcgcgggca gaccatgac 9900
atccatcata ttaggttaaa acgatccaga catgataaga tacattgatg agttttgaca 9960
aacacaacat agaatgcagct gaaaaaatcttttatgtt gaaatatttgat atgctattgc 10020
tttttgtgta accattataa gctgcaataa acagtttaac aacaacaaatt gcattcattt 10080
tatgttccag gtctaggggg aggttgggag gttttttata gcaagttaaa cctctacaaa 10140
tgtgtatgga ctgattatga tccggtgtcc tcggcggttt ccgggtgatg ggtgaaacc 10200
tctgacacat gcagcctcccg gagaagcgtca cagctttgtct gtaagctgat gcccgggaga 10260
gacaagccccg tcagggcgccg tcagcggggtg ttgcccgggtg tccggggcgcg gccatgaggt 10320
cgactctaga 10330

<210> 25
<211> 19
<212> DNA
<213> Artificial Sequence

<220> source
<221> LV43-XMO87714f primer
<400> 25
tgctgacgag agatgggtgg

<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence

<220> source
<221> LV44-XMO87714b primer
<400> 26
cccagccttt tagatgagccg

<210> 27
<211> 27
<212> DNA
<213> Artificial Sequence

<220> source
<221> LV49-XMO87714f primer
<400> 27
gggggtaacct gctgacgagga gatgggtg

<210> 28
<211> 25
<212> DNA
<213> Artificial Sequence
source
LV48-XM087714b primer

cggctagccc ggtacgaac acgtc

source
LV50-XP087460f primer

tttcatctg aggcaagaag

source
LV60-hsB7-H5b primer

ttcctctgt cctaccaaa gg

source
LV56-sec-hsB7-H5f primer

ggggtaccat gtctctgtg gaacttttgc

source
LV57-sec-hsB7-H5b primer

cggctagccc aatgtcctg ggtg

source
JS7-mB7-H5f primer

DNA

DNA

DNA

DNA

DNA

DNA

DNA

DNA

DNA
<400> 33
atgacctgcc ggcgctc 17

<210> 34
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> JS8-mB7-H5r primer

<400> 34
catatccagg gacctgctc gac 23

<210> 35
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> MSt-1mB7-H5for primer

<400> 35
ggggtaccat gacctgcccc ccctcc 26

<210> 36
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> MSt-2mB7-H5rev primer

<400> 36
gggctagcac gggtgagata acctggag 28

<210> 37
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> LV80-mc18f

<400> 37
gtagcttcaa ataggatgga g 21

<210> 38
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> LV81-mc18b

<400> 38
aaacctgttgc cagccagcag 20
<table>
<thead>
<tr>
<th>Start Index</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GGTTACGAGG ATGGAGATCT CATCAG</td>
</tr>
<tr>
<td>40</td>
<td>GGCTAGCGAG TTCCCTCCCTG AAC</td>
</tr>
<tr>
<td>50</td>
<td>CTG TG ATG GGG ATC TTA CTG GGC CTG CTA CTC CTG GGG CAC CTA ACA GTG</td>
</tr>
<tr>
<td>10</td>
<td>GAC ACT TAT GGC CTT CCC ATC CTG GAA GTG CCA GAG AGT GTA ACA GGA</td>
</tr>
<tr>
<td>15</td>
<td>Asp Thr Tyr Gly Arg Pro Ile Leu Gly Leu Val Pro Glu Ser Val Thr Gly</td>
</tr>
<tr>
<td>20</td>
<td>CCT TGG AAA GGA GAT GTG AAT CTT CCC TCG ACC TAT GAC CCC CTG CAA</td>
</tr>
<tr>
<td>25</td>
<td>Pro Trp Lys Gly Asp Val Asn Leu Pro Cys Thr Tyr Asp Pro Leu Gln</td>
</tr>
<tr>
<td>30</td>
<td>GGC TAC ACC CAA GTC TGG GTG AAG TGG CTG GTA CAA CTT GGC TCA GAC</td>
</tr>
<tr>
<td>35</td>
<td>Gly Tyr Thr Gln Val Leu Val Lys Trp Leu Val Gln Arg Gly Ser Asp</td>
</tr>
<tr>
<td>40</td>
<td>CCT GTC ACC ATC TTT CTA CTG GAC TCT TGT GGA GAC CAT ATC CAG CAG</td>
</tr>
<tr>
<td>45</td>
<td>Pro Val Thr Ile Phe Leu Arg Asp Ser Ser Gly Asp His Ile Gln Gln</td>
</tr>
<tr>
<td>50</td>
<td>GCA AAG TAC CAG GGC CGC CTG CAT GTG AGC CAC AAG GTT CCA GGA GAT</td>
</tr>
<tr>
<td>55</td>
<td>Ala Lys Tyr Gln Gly Arg Leu His Val Ser His Lys Val Pro Gly Asp</td>
</tr>
<tr>
<td>60</td>
<td>GTA TCC CTC CAA TTG AGC ACC CTG GAG ATG GAT GAC CCG AGC CAC TAC</td>
</tr>
<tr>
<td>65</td>
<td>Val Ser Leu Gln Leu Ser Thr Leu Glu Met Asp Arg Ser His Tyr</td>
</tr>
<tr>
<td>70</td>
<td>ACG TGT GAA GTC ACC TGG CAG ACT CCT GAT GGC AAC CAA GTC GTG AGA</td>
</tr>
<tr>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>140</td>
<td>145</td>
</tr>
<tr>
<td>210</td>
<td>215</td>
</tr>
<tr>
<td>280</td>
<td>285</td>
</tr>
<tr>
<td>350</td>
<td>355</td>
</tr>
</tbody>
</table>

DNA Artificial Sequence

Source

LV82-mc18f primer

DNA Artificial Sequence

Source

LV83-mc18b primer

CDS

(6) ... (1202)
NEW PA035WO_sequence listing[1].ST25

Thr Cys Glu Val Thr Trp Gln Thr Pro Asp Gly Asn Gln Val Val Arg
115 120 125

gat aag att act gag ctc cgt cag aaa ctc tct gtc tcc aag ccc
Asp Lys Ile Thr Glu Leu Arg Val Gln Lys Leu Ser Val Ser Lys Pro
130 135 140

aca gtg aca act ggc aqc ggt tat ggc ttc aqc gtc ccc cag gga atg
Thr Val Thr Thr Gly Tyr Gly Phe Thr Val Pro Gln Gly Met
145 150 155

agg att aqc ctc caa tgc cag gct cgg ggt tct cct ccc aqc atg tat
Arg Ile Ser Leu Gln Cys Gln Ala Arg Gly Ser Pro Pro Ile Ser Tyr
160 165 170 175

att tgg tat aag caa cag act aat aac cag gaa ccc atc aac gta gca
Ile Trp Tyr Lys Gln Gln Thr Asn Asn Gln Glu Pro Ile Lys Val Ala
180 185 190

acc cta atg acc tta ctc ttc aag cct ggc gtt ata gcc gac tca ggc
Thr Leu Thr Thr Leu Leu Phe Lys Pro Ala Val Ile Ala Asp Ser Gly
195 200 205

tcc tat ttc tgc act ggc aag ggc cag gtt ggc tct gag cag cac aac
Ser Tyr Phe Cys Thr Ala Lys Gln Val Gly Ser Glu His Ser
210 215 220

acc att gtc aag ttt gtc aac gac ccc tca aag cta ctc aag acc
Asp Ile Val Lys Phe Val Val Lys Asp Ser Ser Lys Leu Leu Lys Thr
225 230 235

aag act gag gca cct aca acc atg aca tac ccc tgg aac gca aca tct
Lys Thr Glu Ala Pro Thr Thr Met Thr Tyr Pro Leu Lys Ala Thr Ser
240 245 250 255

aca gtc aag cag tcc tgg gac cgg acc act aag gat ggc tac ctt
Thr Val Lys Glu Ser Thr Trp Asp Trp Thr Thr Asp Met Asp Gly Tyr Leu
260 265 270

aga gac acc aqg gct ggc cca gga aag aac ctc gct gtc ttt gcc atc
Gly Glu Thr Ser Ala Gly Pro Gly Lys Leu Pro Val Phe Ala Ile
275 280 285

atc ctc atc atc ttc tgg tgc tgt atg gtt gtt ttt acc atg gcc tat
Ile Leu Ile Ile Ser Leu Cys Met Val Val Phe Thr Met Ala Tyr
290 295 300

atc atc tgt cgg aag aca tcc caa caa gag cat gtc tac gaa gca
Ile Met Leu Cys Arg Lys Thr Ser Gln Gln Glu His Val Tyr Glu Ala
305 310 315

gcc aag gca cat gcc aqa gag gcc aac gac ctc gta gaa aac atc aqc
Ala Arg Ala His Ala Arg Glu Ala Asn Asp Ser Gly Glu Thr Met Arg
320 325 330 335

atc aqc aqc tgg gcc atc ttc gcc cgc gtc cag gtc gat gag cca act cag
Val Ala Ile Phe Ala Ser Gln Val Cys Gln Ser Asp Gly Pro Thr Ser Gln
340 345 350

att ctc gcc aag gcc aag aac aac ttc ctc ctt gat ggc ctg ggg aag cag
Asn Leu Gly Asn Tyr Ser Gln Ala Asp Pro Cys Ile Gly Glu Tyr
355 360 365

atc aqc aqc atg gcc atc aag gcc aag aag atc ctc ggc tgc cgc gtc cgc
Gln Ile Ile Ala Gln Ile Asn Gly Asn Tyr Ala Arg Leu Leu Asp Thr
370 375 380

gtt ctc ctg gat tat gag ttt ctg ggc act gag ggc aac aqc tgc tgt
69 70
<table>
<thead>
<tr>
<th>Position</th>
<th>Amino Acid(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-210</td>
<td>Met Gly Ile Leu Leu Gly Leu Leu Leu Gly His Leu Thr Val Asp</td>
</tr>
<tr>
<td>211-215</td>
<td>Thr Tyr Gly Arg Pro Ile Leu Glu Val Pro Glu Ser Val Thr Gly Pro</td>
</tr>
<tr>
<td>216-220</td>
<td>Trp Lys Gly Asp Val Asn Leu Pro Cys Thr Tyr Asp Pro Leu Gln Gly</td>
</tr>
<tr>
<td>221-225</td>
<td>Tyr Thr Gln Val Leu Val Lys Trp Leu Val Gln Arg Gly Ser Asp Pro</td>
</tr>
<tr>
<td>226-230</td>
<td>Val Thr Ile Phe Leu Arg Asp Ser Ser Gly Asp His Ile Gln Gln Ala</td>
</tr>
<tr>
<td>231-235</td>
<td>Lys Tyr Gln Gly Arg Leu His Val Ser His Lys Val Pro Gly Asp Val</td>
</tr>
<tr>
<td>236-240</td>
<td>Ser Leu Gln Leu Ser Thr Leu Glu Met Asp Asp Arg Ser His Tyr Thr</td>
</tr>
<tr>
<td>241-245</td>
<td>Cys Glu Val Thr Trp Gln Thr Pro Asp Gly Asn Gln Val Val Arg Asp</td>
</tr>
<tr>
<td>246-250</td>
<td>Lys Ile Thr Glu Leu Arg Val Gln Lys Leu Ser Val Ser Lys Pro Thr</td>
</tr>
<tr>
<td>251-255</td>
<td>Val Thr Thr Gly Ser Gly Tyr Gly Phe Thr Val Pro Gln Gly Met Arg</td>
</tr>
<tr>
<td>256-260</td>
<td>Ile Ser Leu Gln Cys Gln Ala Arg Gly Ser Pro Pro Ile Ser Tyr Ile</td>
</tr>
<tr>
<td>261-265</td>
<td>Trp Tyr Lys Gln Thr Asn Asn Gln Glu Pro Ile Lys Val Ala Thr</td>
</tr>
<tr>
<td>266-270</td>
<td>Leu Ser Thr Leu Leu Phe Lys Pro Ala Val Ile Ala Asp Ser Gly Ser</td>
</tr>
<tr>
<td>271-275</td>
<td>Tyr Phe Cys Thr Ala Lys Gly Gln Val Gly Ser Glu Gln His Ser Asp</td>
</tr>
</tbody>
</table>

The sequence listing includes a subset of amino acids lining up in columns, with positions indicated at the top.

The sequence begins with the amino acid Met (Methionine) at position 1 and ends with the amino acid Asp (Aspartic Acid) at position 275.

The listing also includes codons for RNA and DNA translation, with the codon for the stop/start codon indicated at position 1210.
NEW PA035wo_sequence listing[1].ST25

Ile Val Lys Phe Val Val Lys Asp Ser Ser Lys Leu Leu Lys Thr Lys
225 230 235 240

Thr Glu Ala Pro Thr Thr Met Thr Tyr Pro Leu Lys Ala Thr Ser Thr
245 250 255

Val Lys Gln Ser Trp Asp Trp Thr Thr Asp Met Asp Gly Tyr Leu Gly
260 265 270

Glu Thr Ser Ala Gly Pro Gly Lys Ser Leu Pro Val Phe Ala Ile Ile
275 280 285

Leu Ile Ile Ser Leu Cys Cys Met Val Val Phe Thr Met Ala Tyr Ile
290 295 300

Met Leu Cys Arg Lys Thr Ser Gln Gln Glu His Val Tyr Glu Ala Ala
305 310 315 320

Arg Ala His Ala Arg Glu Ala Asn Asp Ser Gly Glu Thr Met Arg Val
325 330 335

Ala Ile Phe Ala Ser Gly Cys Ser Ser Asp Glu Pro Thr Ser Gln Asn
340 345 350

Leu Gly Asn Asn Tyr Ser Asp Glu Pro Cys Ile Gly Gln Glu Tyr Gln
355 360 365

Ile Ile Ala Gln Ile Asn Gly Asn Tyr Ala Arg Leu Leu Asp Thr Val
370 375 380

Pro Leu Asp Tyr Glu Phe Leu Ala Thr Glu Gly Lys Ser Val Cys
385 390 395

<210> 43
<211> 844
<212> DNA
<213> homo sapiens

<220> CDS
<222> (1)...(843)

<220> misc_feature
<222> (513)...(513)
<223> T at position 513 might be a C (silent mutation)

<400> 43
atg ggg atc tta ctg ggc ctg cta ctc ctg ggg cac cta aca gtt gac
Met Gly Ile Leu Leu Gly Leu Leu Leu Gly His Leu Thr Val Asp
1 5 10 15

act tat ggc cgt ccc atc ctg gaa gtt cca gag agt gta aca gga cct
Thr Tyr G1y Arg Pro Ile Leu Glu Val Pro Glu Ser Val Thr Gly Pro
20 25 30

71
NEW PA035wo_sequence listing[1].ST25

```
tgg  aaa  ggg  gat  gtg  aat  ctt  ccc  tgc  acc  tat  gac  ccc  ctc  gaa  ggc
Trp  Lys  Gly  Asp  Val  Asn  Pro  Cys  Thr  Tyr  Asp  Pro  Leu  Gln  Gly  
  35

tac  acc  gtc  tgt  gtg  aag  tgg  tgg  tga  tca  gac  cct  
Tyr  Thr  Gln  Leu  Val  Val  Lys  Lys  Gln  Arg  Gly  Ser  Asp  Pro  
  55

gtc  acc  atc  ttc  cta  gtg  acc  ttc  gac  cat  atc  cag  cag  gca
Val  Thr  Ile  Phe  Leu  Arg  Asp  Ser  Gly  Asp  His  Ile  Gln  Gln  Ala  
  70

gag  tac  cag  ggc  cgc  ctc  cat  gtc  agc  cac  aag  gtt  cca  gga  gat  gta
Lys  Tyr  Gln  Gly  Arg  Leu  His  Val  Ser  His  Lys  Val  Pro  Gly  Val  
  90

tcc  ctc  cta  cag  acc  ctc  cag  gag  atg  gat  gac  cgg  agc  cac  tac  acg
Ser  Leu  Thr  Leu  Ser  Thr  Leu  Glu  Met  Asp  Asp  Arg  Ser  His  Tyr  Thr  
  105

tgt  gaa  gtc  acc  tgg  cag  act  cct  gat  ggc  aac  cta  gtc  gtt  aca  gat
Cys  Glu  Val  Thr  Gln  Thr  Thr  Val  Asp  Gly  Asn  Val  Val  Arg  Asp  
  120
	aag  att  act  gag  ctc  cgg  act  gag  aag  ccc  tat  val  gln  arg  val  
Lys  Ile  Thr  Glu  Leu  Arg  Val  Lys  Val  Ser  Val  Asp  Val  
  135

gtg  aca  act  ggc  aac  ggt  tat  ggc  tcc  acg  gtc  cag  gga  atg  agg
Val  Thr  Thr  Gly  Ser  Gly  Tyr  Gly  Phe  Thr  Val  Pro  Gln  Met  Arg  
  145

tat  ggc  ctc  cct  cag  ggt  cct  ccc  atc  agt  tat  att
Ile  Ser  Leu  Gln  Cys  Glu  Ala  Arg  Gly  Ser  Pro  Pro  Ile  Ser  Tyr  Ile  
  160

tgg  tat  aag  cca  cag  act  aat  aac  cag  gaa  ccc  atc  aaa  gta  gca  acc
Trp  Tyr  Lys  Glu  Glu  Arg  Val  Val  Asp  Pro  Ile  Ser  Thr  Ala  Thr  
  175

tct  cta  gag  aag  cct  cgg  cca  ggg  ggt  ctc  gag  cag  cac  gac
Leu  Ser  Thr  Leu  Leu  Phe  Lys  Pro  Ala  Val  Ile  Ala  Asp  Ser  Gly  Ser  
  190

ttt  tgc  act  gcc  aag  ggc  cag  gtg  ata  gcc  gac  tca  ggc  ccc
Tyr  Phe  Cys  Thr  Ala  Lys  Gly  Gln  Val  Gly  Ser  Glu  Gln  His  Ser  Asp  
  205

tct  tgc  act  gcc  aag  ggc  cag  gtg  ata  gcc  gac  tca  ggc  ccc
Tyr  Phe  Cys  Thr  Ala  Lys  Gly  Gln  Val  Gly  Ser  Glu  Gln  His  Ser  Asp  
  220

ttt  tgc  act  gcc  aag  ggc  cag  gtg  ata  gcc  gac  tca  ggc  ccc
Tyr  Phe  Cys  Thr  Ala  Lys  Gly  Gln  Val  Gly  Ser  Glu  Gln  His  Ser  Asp  
  235

tct  tgc  act  gcc  aag  ggc  cag  gtg  ata  gcc  gac  tca  ggc  ccc
Tyr  Phe  Cys  Thr  Ala  Lys  Gly  Gln  Val  Gly  Ser  Glu  Gln  His  Ser  Asp  
  250

ttt  tgc  act  gcc  aag  ggc  cag  gtg  ata  gcc  gac  tca  ggc  ccc
Tyr  Phe  Cys  Thr  Ala  Lys  Gly  Gln  Val  Gly  Ser  Glu  Gln  His  Ser  Asp  
  265

ttt  tgc  act  gcc  aag  ggc  cag  gtg  ata  gcc  gac  tca  ggc  ccc
Tyr  Phe  Cys  Thr  Ala  Lys  Gly  Gln  Val  Gly  Ser  Glu  Gln  His  Ser  Asp  
  280

gag  acc  act  gat  ggc  cca  gga  aag  cta  g
Glu  Thr  Ser  Ala  Gly  Pro  Gly  Lys  Leu  
  302
```
Seq 1: Met Gly Ile Leu Leu Gly Leu Leu Leu Gly His Leu Thr Val Asp 1
 5 10 15

 Thr Tyr G3y Arg Pro Ile Leu Glu Val Pro Glu Ser Val Thr G3y Pro
 20 25 30

 Trp Lys Gly Asp Val Asn Leu Pro Cys Thr Tyr Asp Pro Leu Gln Gly
 35 40 45

 Tyr Thr Gln Val Leu Val Lys Trp Leu Val Gln Arg Gly Ser Asp Pro
 50 55 60

 Val Thr Ile Phe Leu Arg Asp Ser Ser Gly Asp His Ile Gln Gln Ala
 65 70 75 80

 Lys Tyr Gln Gly Arg Leu His Val Ser His Lys Val Pro Gly Asp Val
 85 90 95

 Ser Leu Gln Leu Ser Thr Leu Glu Met Asp Arg Ser His Tyr Thr
 100 105 110

 Cys Gν Val Thr Trp Gln Thr Pro Asp G3y Asn Gln Val Val Arg Asp
 115 120 125

 Lys Ile Thr Gln Leu Arg Val Gln Lys Leu Ser Val Ser Lys Pro Thr
 130 135 140

 Val Thr Thr Gly Ser Gly Tyr G3y Phe Thr Val Pro Gln Gly Met Arg
 145 150 155 160

 Ile Ser Leu Gln Cys Gln Ala Arg Gly Ser Pro Pro Ile Ser Tyr Ile
 165 170 175

 Trp Tyr Lys Gln Gln Thr Asn Asn Gln Glu Pro Ile Lys Val Ala Thr
 180 185 190

 Leu Ser Thr Leu Leu Phe Pro Ala Val Ile Ala Asp Ser Gly Ser
 195 200 205

 Tyr Phe Cys Thr Ala Lys G3y Glu Glu Gly Ser Glu Gln His Ser Asp
 210 215 220

 Ile Val Lys Phe Val Val Lys Asp Ser Ser Lys Leu Leu Lys Thr Lys
 225 230 235 240

 Thr Glu Ala Pro Thr Thr Met Thr Tyr Pro Leu Lys Ala Thr Ser Thr
 245 250 255
NEW PA035WO_sequence listing[1].ST25

Val Lys Gln Ser Trp Asp Trp Thr Thr Asp Met Asp Gly Tyr Leu Gly

260
265
270

Glu Thr Ser Ala Gly Pro Gly Lys Leu

275
280

<210> 45
<211> 10615
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> pCEN-5Hb7-H6-COMP-FLAG

<400> 45
gcatctagt ttgttttgg tccaaactca tcaattatct tcatcatgtct ggatcgtacct
60
gaaccgcccc cttgaccaatt tctcatggtt gacagctttat catgcagat cccgcaacg
120
tgatgctatt gctgacgagg cagaacaggc aagttggaag atcatcataca tttgactaat
180
attggcaacct cagccatatt gacacattggt atatagcata aattcatatt gcttattgge
240
cattcatacc aagcaatatta gctgattgct tttcataataa cggccgacta
300
gacgccaaatt tggacattga atagcattgata gattattata aatgctggacc
360
tggcagtata tcaagtgttat caatgcccaat gtccgcccccc ttatgacggtc aatgacggtgta
420
aatgccccggtc atgcgattat cggccagttta cggctgacttg ctattactctt cattgggacta
480
gcgcaattag cagcttggat gggggtgaaa tttcgtcatt ccaagttctt cagcagttgttt gctacagct
540
tgdcagttgtca cttgacgacag cattcgaact cctgcatgctc
600
aatgagcccccg caatgtatgt ctgactggtta gagcctggat ggggtgttga ttcagggcaat cattgtggagtc
660
cggccgaaatt ggtgtgttgg actcgaggtt cttggttcgcttt cggctcaatt ggtgtgttgc
720
ggattttgctc cccatctggct tgggctgctt cccatctggct tgggctgctt cccatctggct
780
ggaggttccgct cccctgtgcctct cccctgtgcctct cccctgtgcctct cccctgtgcctct cccctgtgcctct
840
ggcggccgggag agacgtgtctcg cggctgagtc ggtgtggagtc ggtgtggagtc ggtgtggagtc
900
gcgccggtttg ttgcgggttc ctggtcggtc ctggtcggtc ctggtcggtc ctggtcggtc
960
gctactccct tgtggacagtt cggctggagtt cggctggagtt cggctggagtt cggctggagtt
1020
gactgtgatgt ggtggggttg cggctggagtt cggctggagtt cggctggagtt cggctggagtt
1080
aggtcggcctt ggtggtttgg cggctggagtt cggctggagtt cggctggagtt cggctggagtt
1140
tgaggggatgt tatgtggtgtt ggtggtttgg cggctggagtt cggctggagtt cggctggagtt
1200
tgtgaggttt ggtggtttgg cggctggagtt cggctggagtt cggctggagtt cggctggagtt
1260
cggctgagtc cggctgagtc cggctgagtc cggctgagtc cggctgagtc cggctgagtc
1320
aggtggtggtg gtgggttgtg cggctgagtc cggctgagtc cggctgagtc cggctgagtc
1380
tgctggtgtg ggtggtttgg cggctgagtc cggctgagtc cggctgagtc cggctgagtc
1440
tgaggggatgt tatgtggtgtt ggtggtttgg cggctgagtc cggctgagtc cggctgagtc
1500
NEW PA035WO_sequence listing[1].ST25

catcaaagta gcaacccctaa gtaccttact cttcaagacct gcgggtgatag cggactcagg 1560
ctccttatcct tgcactgcct aagggcagggt tggctctgag cagcacaaggc acaattgtgaa 1620
gttgtggtcc aaaaactctt caaagactctt caagaccaag actgaggccac ctacaacattc 1680
gacataccccc ttgaagacca ctactcagctt gaaagctgcc ttggactgga ccactgcattt 1740
ggatggtctac ctggagagac ccagttgctgg ggcagaaaag ctaagccagc cgacgcagaa 1800
accgcagccgg ccgacgccgg cgcagccggaa accgcagcgg aacccggaac cggagaagttt 1860
gggagacgtcg gcggcagagac tgcggcagag acactcggag actaactcgg cgctgcagaa 1920
cggagagag cttctgtgagc agcagctgca gagagctgac tctctggaaga atacaggtgtat 1980
gaaatgtgac gcttgccgag gtcttggcttt agacgacactt aagagataga cagcacaaggc 2040
gggagcggagca aaaaaactca tctccagaag gaattcagatg aagcggctcg accatcatca 2100
tcacatatcat tgagttttaaa cgtacgacag atctataagat acattgtgatg tttgagcaaa 2160
acacaacta aagatcgaagt aaaaaattgc tttataaggg aataattgttg atgctattgtc 2220
ttattgtaaa cattatttaag ctcgacattaa caaagttaca acaaaactgg tctctattttt 2280
atgtctcagg ttcagggggg ggtttaaatg aagatgtaaag ctctacattaatct 2340
gtggatatgc ttggtgtagt cgggctgcgtc ctgccgcttcct ggtgtgagac ctgaaacactc 2400
tgacacactgc cagctccccgg agacggtcag acgttgcctctt taaggcggtg ctggaggccag 2460
acaagcgggct cagggcgctgt cagggcgttgct ttggcgcggtgt cgggagcgcag ccatgcaggtc 2520
gactctagac gatcgacttcc gcggcgcgcag cgaactaataa cgggctacagc cttctgagc 2580
cctcttcgct cgggatgtgc agtataaccc ttcagtttgtct tggtgataact gccaactgct 2640
gccctgttcc acatgtcagac cggggttcctt ggtttctttc tgcactgtgct 2700
tgacatcattt ataataaggc gatggcatagcg ggagtaaccgc cttactaccgc tggcgaagag 2760
agaactttgga gtcgcgtgaggct gcacacacaa cattgccctt atgtgtaact cttgatgcag 2820
gccctcttcc ctattgctgc cagctcggggt ggtatggtgc ctcgctctgg ctggcggactg 2880
tcagcacaag ctaacactgc ggtggctctgg cttagctccac tacaagggcc ctcgcgtcgga 2940
cattgacatact aatgcttttt aaggggctct cggcagcagc atatgtcttt ggaaactcgc 3000
cgggtgtatgc ttatctcagttt gagcgaagttc cccttcgatc gatgcttggtg atcggagc 3060
gaaacactag ctatattcag aagggctagt aagggctctg aagacactga gcacacgcctcc 3120
acccttctaa gtttggcgcag atctcaagag gcgggtgtgg ggttagtcagc 3180
acatttgctc acaagggccgg cttgcgtgaaac tcaagggcgc ggcaggtgaaactcctcgatat 3240
tccgcgcttcct ctcctctcctcctctccatagc cacaactaggcct ctcgcttctcccttgggtggg 3300
agaattgtgtgc acatgaatga cggggttctt gcgtcgccggt gcgtcgccggt gcgtcgccggt 3360
ttcgggagg cggcgtgcgtgc gcgtcgccggt gcgtcgccggt gcgtcgccggt gcgtcgccggt 3420
ccatgggattatagt caggtttaagc aacatttttag atccttttataa aatgtaatgattc 3480
ccatgggattatagt caggtttaagc aacatttttag atccttttataa aatgtaatgattc 3540
NEW PA035WO_sequence listing[1].st25

gggcaacaca taatctctagt gcacatagat acctgggtta ttaagatgtg tcccaaggcag 3600
gacaccaagc aggtgaacca tgttgtttca ctctatattgt aacaagggga aagagagtgg 3660
cacgccgacg cagcggactc cactggtttgt ctctacacc cccgaaaaatt aacggggcct 3720
caccccaaat ggggggcata aacaaagacc aagttggccat cttttttttg aataatttgga 3780
gtgggggcac gcgctcagcc cacacgcgcg cccctgctggg ttggactgta aaataagggt 3840
gtaataacctg gctgtgattgt aaccccgcta accactgcgg tcaacaccact tggccacaaa 3900
accactaatag gcacccgggg gaataacctgc ataagttagtt ggccggcaca agataggggc 3960
gcattgtgct cgtattggaag gacaattata acacaccttg gccttgaccc caagcacagg 4020
gttgttggttc ctcatatctca cgaggtcgtc gagacacacgg tggggtatag ttgctatggg 4080
tacatatac taccaaatata cttggtatagc atatgtcatcc taatctatac tctggttgatc 4140
atatgtcatc ctaatcttata cttggtgtac atagcttact taatcttata tctggtgtagt 4200
atatgtacta ctaatatttata cttggtgtac atagcttact taatcttata tctggtgtagt 4260
atatgtacat ctaatcttata cttggtgtag atagcttact taatcttata tctggtgtagt 4320
atatgtacta ctaatagaga ttaggtgtag atagcttact taatatttata tctggtgtagt 4380
atatctacc caaatatcttg gtagcatatat ctctatatcctaa tctatatctgt gtatgcatat 4440
gtatctccta ctctatatctg gtagcataag cctatccttctaa cctatatccttg gtatgcatat 4500
gtatctccta ctctatatctg gtagcataag cctatccttctaa cctatatccttg gtatgcatat 4560
gtatctccta ctctatatctg gtagcataag cctatccttctaa cctatatccttg gtatgcatat 4620
gtatctccta ctctatatctg gtagcataag cctatccttctaa cctatatccttg gtatgcatat 4680
gataccagct agtagagttgg gatgtctcttc tttgcatat gcccacacct cccaaaggggg 4740
cgtgaaatctt cctttttccttg catgctgtgtt gctccccattc ttaaggtgatat 4800
ctataattc cgctgtccttg ctcttcccttg catgctgtgtt gctccccattc ttaaggtgatat 4860
ttgctgacaag caggtgtcagc tctggttggct cacacagttta atgctgcttta 4920
cccaatgccc ccatgtttggg aggacagaaaa tgggtgacaag acagatggcc agaatatacac 4980
caacacagctc catgaggtctg actgggggttt ttatttttttg tgcgggggaa tacacggcct 5040
ctatatcgag tggggtgtcg tctcaacag tttatatcttact cctgctcctct ttcacccccca 5100
tctccatcac cttctctcttct cgctttctat ccgctatcac cttcgcggcg agcgcctccc 5160
acatataggtt gaaacgaaggg aggccaaatct atctccttctg caaagctgca cacagtcacc 5220
tgtatattgc agttgacgct gcgtgtctttgta ataaacaggttt atccttcctaaa 5280
acccagcaca atatataggttt ttgtaaagat accatgaaat aacagacaagag atctcctttctt 5340
agcggccagct ttgcttgggcc ggtgcgctagg gtcattccaa agggagacgc actcaatgatt 5400
gttagctagat atgagattttt gtaagcggctc gttctctctctgt aaaggaggtc 5460
ttatcaacctc catataccga caacctgcggc acccaagttt cttcggctgtg agtccctttct 5520
acgtgactccc tagccaggag acgcctttaaa ctttctgcaa tgggtgatgtg 5580
gaaccccttt gagccagctg ctttccaaac ccacctctctt ttgtgcgcct gcctccatcct 5640
ccttgacccc ggggtgagggt gcttgtggtt tcctctggt gcctgcggtt 5700
atctgctccg gggtcaagagg tgcagtctgcc atctctgcttc gtttccgacgct 5760
taatggtcttc cccccccccc gctctccgtt cttgctgtctt gcctggtgcttt 5820
agagagcggg atgtgatgag tgcacagtct ggaactgcttc gcctctcctt cttccgctcaa 5880
cggcctcgg ccctggggtct ttgagaaatgc ctgccctctcc cttggcggggt 5940
cctggggtt ccctggggtt ccctggcggg ccctggcggg ccctggcggg 6000
cctggggtt ccctggggtt ccctggggtt ccctggggtt ccctggggtt 6060
cctggggtt ccctggggtt ccctggggtt ccctggggtt ccctggggtt 6120
cctggggtt ccctggggtt ccctggggtt ccctggggtt ccctggggtt 6180
cctggggtt ccctggggtt ccctggggtt ccctggggtt ccctggggtt 6240
cctggggtt ccctggggtt ccctggggtt ccctggggtt ccctggggtt 6300
cctggggtt ccctggggtt ccctggggtt ccctggggtt ccctggggtt 6360
cctggggtt ccctggggtt ccctggggtt ccctggggtt ccctggggtt 6420
cctggggtt ccctggggtt ccctggggtt ccctggggtt ccctggggtt 6480
cctggggtt ccctggggtt ccctggggtt ccctggggtt ccctggggtt 6540
cctggggtt ccctggggtt ccctggggtt ccctggggtt ccctggggtt 6600
cctggggtt ccctggggtt ccctggggtt ccctggggtt ccctggggtt 6660
cctggggtt ccctggggtt ccctggggtt ccctggggtt ccctggggtt 6720
cctggggtt ccctggggtt ccctggggtt ccctggggtt ccctggggtt 6780
tggggggttcc ggacacacatc tctatgtcttc gcctggtgcc gcgcctggctct 6840
gtgcttcgtt cttctcggttc tttcttcttt ccctgctctt gcctggtgtt acctggctcct 6900
cctcctcggtt tcgctggttc cttcttcttt ccctgctctt gcctggtgtt acctggctcct 6960
agccccattct cagcttcttct tgggcggtct cgctggttcgct cgctggtgtt acctggctcct 7020
caataagagta tcctctgagtt gcgtggtggt ccctgctctt gcctggtgtt acctggctcct 7080
tcctagcgtt ccctcgtggtt ccctcgtggtt ccctcgtggtt ccctcgtggtt ccctcgtggtt 7140
aatcctccgt cttgcgggac cttgctgtgct tgcagctggt ccctcgtggtt ccctcgtggtt 7200
cttggggtt ccctcgtggtt ccctcgtggtt ccctcgtggtt ccctcgtggtt ccctcgtggtt 7260
ggggggtt ccctcgtggtt ccctcgtggtt ccctcgtggtt ccctcgtggtt ccctcgtggtt 7320
agagagagctt tcaggtggagac cttctcgtggt ccctcgtggtt ccctcgtggtt ccctcgtggtt 7380
agagagagctt tcaggtggagac cttctcgtggt ccctcgtggtt ccctcgtggtt ccctcgtggtt 7440
agagagagctt tcaggtggagac cttctcgtggt ccctcgtggtt ccctcgtggtt ccctcgtggtt 7500
agagagagctt tcaggtggagac cttctcgtggt ccctcgtggtt ccctcgtggtt ccctcgtggtt 7560
agagagagctt tcaggtggagac cttctcgtggt ccctcgtggtt ccctcgtggtt ccctcgtggtt 7620
NEW PA035WO_sequence listing[1].ST25

aagagtatga gtattcaaca tttccggtgc gccccttttc cctttttttgc ggcatctttgc 7680
cctccctgttt tgtgctcaaccc agaaacgcgtg gtgaagaagtaa aagatgcgtga agatcagtgtg 7740
ggtgcacagag tgggttttcat cgaactggatg tcttccaccc gtaagatctct tggagagttttt 7800
cgccccggaag aagcgtttttt cctttttttttgt gggcctgttgta 7860
ttacccgttg ttggcggcggc gcaagacagg ccagtttgggat gctgctacccccaagtttttc 7920
gacttggttg agatctcacc agtcacagaga acgcatctttta cggatgggcat gacagtacaaga 7980
Gaattatgca ggtgctggcat aaccaactgtg gataacacct ctggcaagcttttgcaga 8040
acgatcggag gacccgaaggc gctactcgccttttgcaca actaggggggt tcacagttactt 8100
cggcttgatct gttggacgcc ggaagcgcggc ggatcattata ccaagccacttc gcacggcctactt 8160
acagttgtcg cagcagatggc aacaaactactt gcgcataaccc cacttccatcttactcact 8220
cactttccgg ggcacacact ttaagacgctt atggagccggg ataaagttccc aggacaccctt 8280
cggctcggtgg cctctcccccgtt gttgctggtt gttctgacgt ctgatcgcagc atctttgagct 8340
gggcttcgctg gatcacttggc agcactggtg caagcagtcga gctcctcccac tttctgagttt 8400
attctacggg gtacagcatcgg cGgcacctgca atagacgca agatcggtattt 8460
ggtgcctcag cctagcattcc cattcaagtgctgtgtgctt cccagctgatattttttttttt 8520
attgatttaaa aactcctattt ttaattttataa aggtatctagg taagactctctttttgataat 8580
cctatgacca aatatccccct aagcgtgatttt tcttctccact gagcgtcagc cccctcagaa 8640
aagatcccaag gtattcctgtg atagccctttttttttttttgctgctgcttcttctggatc 8700
aaaaacccag gctgcaggtg ggtgttggtttgt tcgctctgatc aagacgtcacc aacatttttttttt 8760
ccgaaagttac gttggtctttt ctgcagctgact accaccaatct ccacagctgactatatcagatc 8820
tagttaggcc accaccttcaa gaactccgata gcacgctgctt ctaacccttc agtgatcggg 8880
ccttacagct gttgctcttggt ccggtgcgctg gttcctctgcttc ccttcctgcg gctccgctgct 8940
cggactgcgg ccatattagcg cggctcctgct gctgtaacgcgg ggggtgcgtgcttttacagac 9000
agcttgaggag gcacgccctc cacaagcccc ccagcatcttc gcgtgctgtgc tgaagacagcc 9060
gcacacgttcc ggacaggaggg aagaggccggag aagatcgcgag tgcctggaagc ggctgcaagc 9120
ggagagccag ccagggccct cccaggagttt cccctctcggct aacccctctctttgccaagggag 9180
ctttccgaca tttgctatttc ccagctgtgtc cctgctgacctctgtgtagtc 9240
tgaaaagacg gcacagccacg cgtctctcttc cttggtgctt cggctcggctt 9300
ggctggctgga agtgggctgag gcagatgtgcagattcaagtccaggggttgtgtaa ccgctccttcag 9360
cagtctccg aagaatgtgc ttgctccaccc ttggcttgagtgc cttcagtgaggt gttgaacgcct 9420
catccacgcct gcgtcgctaccc ccatagatgctcatc ggtgctggatgt gttgctgctgcgttgagttg 9480
aacgtcccaag gcgtccttccag cagggcaagcttgccagaaa atctgtctcctttctgctgctt 9540
aacaggtgtc ggaaggtgcc caggtccctcc gcagccagagc agatgtgcaaga gctacatcctt 9600
catattatca gcacccatag ttcccgccttc aacccgctccc atccgccccg ttaactccgccc 9660
NEW PA035WO_sequence listing[1].ST25

cagtccgcc cattctccgc cccatggctg actaatatatt ttatatatatg cagaggccga 9720
ggcgcctcgc gcctctgagc tatattcaaag gtagtgagga gacccctttgg gagaggtagcc 9780
gccacaggtt gcgcccaacct cccctcgacg cagccaccgct acenacacca aggagacac 9840
cctccacatgc cgagctcaag cccacgtgtgc gcctccgaca ccccgcccgcc gttccccgag 9900
cgctagcacc cctggcgcgcc gcgttgtcgcg acctccccgc cccggccgac acggtgcacc 9960
ccgaccgcca catcgaacgcg gtccacacgcg tcgacggtgtg gcgcgagac 10020
ttcgacatgc cagagttggt gcgtggtgtgac gcggccgac gccttctggtc tcgagcagcgc 10080
cggagacgt cgaagcgggg gcgggtgttcc gcggatcgg gcggcgcatg gcggagttgga 10140
gcggctcgc gcagggccgcg cagcaacagag ggaagcaccct ccctggggcgc cccggccca 10200
aggagccccg gttggttcggt gcggccggtgcc gctgctcgcc gcagcgccag gcgaaggggtc 10260
tgggagccgct gcctgctgctc cccggagttgg aggcggcccg gcgcggcggg gttggccgct 10320
tcttgagac cctggcgcgcc cgccaacctcc cctcctcagca gcggctgctgc tccacccgta 10380
ccggcgacgt cgagttgcgctg aagggcccg gcagccgttggg ctagccgcgc ggcgggcccgt 10440
tggagggcgc gcgcggcgcgc gcgggcaagac gcgcgcggag ccgggccgca cggggttccga 10500
cgggtgcagcc gcgggtcggcg aagcccgtcg gccagggtca actcccataatg tttatttgca 10560
gttacaaata aagcaaatagc atcacaatta tcacaataaa agcatttttt taca 10615

<210> 46
<211> 11059
<212> DNA
<213> Artificial Sequence

<220> source
<221> pCEP-hsB7-H6-Xa1-Fc
<223> pCEP-hsB7-H6-Xa1-Fc

<400> 46
gcattctagt tgtgtgttttgt cccaaactcat caatgtatct tatcatgtct ggtatcgac 60
gaacccttct ctcgcagcaat ttcctatgttt gacaggttatt catgcatcc cccggccagc 120
ttggttgcttt gctgcagccgc cagaaatcgtt aggtatgga gatctataa tttgattattc 180
attggaatc agccatatta gtcattgttt atatacgatga aatcaacttatt ggtattattgc 240
ctattgctat gttgtagttc tatattata gtttacattttattgtcat 300
gacggccatt gttgacattg gattgactta atttatta gtaatcatca actcgggtcatg 360
atgatcaag cccatatatg gatctgttgttg ttcataacttg cggccagcgtt 420
gctgagccccg cccagaagccg cggcctctgt ccgtaatatt gccatagtgatc 480
gcgcctatagc ggttgtaagt gcgggtctatgg ttcattttact cggcctcactc 540
tgtgactataa taatgctaatat gttatcctctgc ttcggtgctgat 600
aatggccccg cgggtcttcatt gcggcagact ccctgctaccc actgggtatg 660
acatattgctt actgcagcatc cctggtcggca gtttcagcatc 720
aaagcaagta aaccccttac aatgttggtta tgtcctgatta tgtatccgccgct gctctgcgcgc gctcgctcgccg
tttcgggtgt gacggtgtaaa aacctctgaca catgcagctc cgggagacgg tccagcttgcg
tctgtgaacgc gcagcgcggga gcagcagaagc cgctgagcgggc gcgtcagcgggt ggttggtgcgg
gtgtcggggc gcagcagctga tgtcagctctt agaggacgctt tccctgccccgcc ccggcagaact
aacacccgtac aacccctcggc tcgcgcttcgt ctcgcctcttc gcgcgctgac gcgcagcttgcagt
tgtgtgttacct acctgccccct gccctcagttg ttcacactgt gcacgaggggg ggcagccaatc
acaaggggtc tctctgactg tagtggcatc cctgttaaat ggatggtcagc aattttgccaac
actggagggc ttctctgactt acagcagatct gcagctctgtg ggactcaacgc acaacattgc
cttattgct aaccccttggg tgaagtgtgct cccacacact cgggatgtttt gtcctccccta
ccgataagcg gacccctcaag aagggcatag cagcatgttt tataaggcct catttttacaac
cctaaacggg tagctatgtgc ttctgctttcg caatcagcgcaga ttctctctctt
ctaatgctag tgaatctccca acggggaatgc ttcgctatcg aattttgggt atgaaaggg
ctctaagtaga cagcagatct ccacccctacag cgggtgctccga cgccttttttc tccatgcttcg
caggattcc acggggagtgt gccaccaattt aatcagcagag gcagttgagctt aatggaagtttg
cccaatataac cctctacacaa cccctctggg ccaatataac gttgctgatg ggaattttaatg
ccagaatata aatggtgtggg gacgctgataa cctgggaattt gttttaatgccg
cccaatataa ggggagacgc gccagcggcag cccacatcgcag ccagctctttt cctccacatgc
cactctttt ttgaattgg gctagggggc gcacggctct gccttcccacac cgggctgttgctg
ggttgagctgc tttgggttttg ggttggttatc ggaactttcg ttagtgatttt ctaagtttataaa
cagctctgagc gccagcagac gcagctcactg cggggagctga tcgctcatatc gctgtatgtg
ttgagctgttct gccagcgcgg gcgcgcatgc cagcgcgata cagcgtttttt ccaagtcgcag
gtgcttcctcc gcggcgccttc cggggagttc caatcagcttc gggccaggcatt gcagtttacaag
aggtggtggag cgcaatgataag cgccgcatgg ccggtgctccg tggacacgagc ttgcttgccttaa
tttcggcagc gcggcagcagc caggtttttt ggtgtgcagctt ggaaggcaaca tctggacacag
ggtttttgagct gtttggagtta aatggtgtgtg ttcgctatccgc cttccacactct catgttccacatc
gctcttccaa ctagtgacaat gttgctgcttc cttggatctta gggagagact gcggcgcacccg
agtctctcct tattatattg gccgctccga acctttttttt tgggtgggc gcgcgctgttgctg
attgagctctt gcggctcgttt gctgacggcttt cttggcatgcg cgggtgagctg cggggagttt
tccagcagc acgggtgagcc gccagcgcagc ctagtgacaat gttgctgcttt cttggatctta
4200
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
NEW PA035WO_sequence listing[1].ST25

tatcctaatt tatatctggg tagcatatac taccacaaata ctctggatgac ataggtctac 4860
taatctata tctgggttagc ataggtctatc ctaatctata tctgggttagc ataggtctatc 4920
taatctata tctgggttagc ataggtctatc ctaatctata tctgggttagc ataggtctatc 4980
taatattata tctgggttagc ataggtctatc ctaatctata tctgggttagc ataggtctatc 5040
taatctata tctgggttagc ataggtctatc ctaatctata tctgggttagc ataggtctatc 5100
tcatgtcata tacaagcacg ataggtatac cggtgagtcg gatggtatgc tattcttgct 5160
atabgcccgtacctctcaag ggaggtgtgaa ttttcggctgc tttctctttct cctgcgtatcgt 5220
gaggtgcggg aagcaagctgg cagatagcag ctaatgatgtc cccagagacg gactgaggtgat 5280
tgtcaccag cgttacatgg ccaagcaagc gaggctctttg tgtctgtcgtc aaccaaacagtc 5340
gaggtgacgc aaccaagcgag tgcacagtgc tcagcagcgtctg caggtgatttgc 5400
cacagcagat gtacctgcgc ctgcaagcatg cccctcctttt ctctgttttc 5460
tattgtgcggg gatacgctatg cgtgctatttattg tggctgagctg cctgcacattt 5520
ctcttcgtgc tctctctcacc ctctatcctca ttcacacatcct cttgctgcc cacacatc 5580
tgcctcggcc tctctctcacc ctctatcctca ttcacacatcct cttgctgcc cacacatc 5640
tcgctcaacag tgcacagtgc caccctgata tgtgcaggtgac gacgagcccttg tcgcatac 5700
tagcctccta tgcaggcaact ccaaccccta gaaacatatttagtacct cagccgct 5760
aatatatgac ccaaacacag tgcacagtgc caccctgata tgtgcaggtgac gacgagcccttg tcgcatac 5820
ccaagagagcg accagcactgatt ctaatgatgtc cccagagacg gactgaggtgat 5880
tctctattaggt tgtttattagcct gctctctattata cttctaatata aataacacatg cccagagacg gactgaggtgat 5940
ctctctctcttctgctgcttc cttctctttcttct cttctctcttcttct cttctctcttcttct cttctctcttcttct 6000
ccacaccttc ctaatgactttgc gttcagttctac cctgacccca gttcagttctac cctgacccca 6060
tctctctcttc ctaatgactttgc gttcagttctac cctgacccca gttcagttctac cctgacccca 6120
tctctctcttc ctaatgactttgc gttcagttctac cctgacccca gttcagttctac cctgacccca 6180
tctctctcttc ctaatgactttgc gttcagttctac cctgacccca gttcagttctac cctgacccca 6240
tctctctcttc ctaatgactttgc gttcagttctac cctgacccca gttcagttctac cctgacccca 6300
tctctctcttc ctaatgactttgc gttcagttctac cctgacccca gttcagttctac cctgacccca 6360
tctctctcttc ctaatgactttgc gttcagttctac cctgacccca gttcagttctac cctgacccca 6420
cttctctcttc ctaatgactttgc gttcagttctac cctgacccca gttcagttctac cctgacccca 6480
cttctctcttc ctaatgactttgc gttcagttctac cctgacccca gttcagttctac cctgacccca 6540
cttctctcttc ctaatgactttgc gttcagttctac cctgacccca gttcagttctac cctgacccca 6600
cttctctcttc ctaatgactttgc gttcagttctac cctgacccca gttcagttctac cctgacccca 6660
cttctctcttc ctaatgactttgc gttcagttctac cctgacccca gttcagttctac cctgacccca 6720
cttctctcttc ctaatgactttgc gttcagttctac cctgacccca gttcagttctac cctgacccca 6780
cttctctcttc ctaatgactttgc gttcagttctac cctgacccca gttcagttctac cctgacccca 6840
gccccctctc ctgctctctgc cccctctctgcccc cccctctctgcc ccctctctctcc ctccctctctgcc 6900
cctgccctcct cctccctcttc tgccctccctc ccttcctctcc gccttcctctcc gccttcctctcc 6960
cctccctctg ccctccctctgc cctccctcttct gcctccctctgc cctccctctgcc 7020
gccctctctg ccctccctctgc cctccctctctc gcctccctctgc cctccctctgcc 7080
cctccctctc ctggccctctcc cctccctctctg gcctccctctgc cctccctctgcc 7140
cctccctctg ccctccctctgc cctccctctctg tggccctctctc gcctccctctgcc 7200
cagcccaatgc aacattgagc ttttttgggt ctccggacac tccttctcctg tttttggcccct 7260
gactcttgcag cgccgccccgc tcctggtcttt cgcctctctcc gcttctctgcc ttcttccccggt 7320
cctgctctcag gtttttttctcg tggccctctctcc gcttctctgcc ttcttccccggt 7380
ccagatggtgct cctctctctcccc cctctctctcc cctctctctcc gcttctctgcc 7440
gacatgattc acactaaag acagtcataag ctatcttttat tagacacgctc tcagcgaataa 7500
caggaggtgc agagctctggt cccctcccaac agcggaaaaac cccctcaac ttcattggtgc 7560
gctgctatgcag atgtaaaaaa cccatctctcc cagccattac tgcctctctcc 7620
accaatctttccgagcctgcccc ggaaaaactcccc gagacacatcc ctcaggtccgct ctcaggtcggct 7680
ccttccataggg ctctccctttct tttttctctcg aacagggattc tgcctgcgtctgc 7740
tccggaccccc cctccctcttct cctccctctcctc accagggatat ccagagctggttc tgcctctcttc 7800
agaaagatcgt ggccgtgcct ggccgatgtcg cctctctctcc gcttctctgc 7860
aatccttgtgac gacagagaaa gctctctgcttg caagcctatttt tagagtttaa tgcctctctcc 7920
ataatggtttt ctaagcagtc aggtggtcact tttcgctggaaaa ttcgctgcgg aacccctattttt 7980
tgcattttgtttct tctctacact ttcacatcag cttcctctctcc tgcctctctgaaaa 8040
atgtttcattaa atatctttttgc agagagctctctc tctctctctcc gcttctctggct 8100
atactctcctt ttggcccatt ttgctctctct cccccccccct cccccccccct cccctctctgatt 8160
ataacaggg gctctctcttc gcctttctttc gcccctctcttc cccctctctctc gcctttctctctc 8220
acagctcttc tctctctctct cccctctctct cttccctctctcc gcttctctctcc 8280
aagctctctctcc ctctttttttct gcctctctctc ctctttttttct gcctttctctctcc 8340
cagcgcctctac cttctctctc cttctctctcc ggtcgctctcact cggctctctctt ccagtgct 8400
ctttttttg gtcagcagtaa aagaggaatag tgcattttaac tgcctctctctc cccccccccct 8460
actgctctctctg gtttctttct ctctctctct cccctctctct ccagctctctctc 8520
cacaaacatg cccctctctct ccagctctctct ggtcgctctctcct ccagctctctctc 8580
atacagataag aagagagacacag cccctctctct cccctctctct cccctctctctc 8640
ctttttttg gtcagcagtaa aagaggaatag tgcattttaac tgcctctctctc cccccccccct 8700
genctgctctctctcg ccctttttttct gcctttttttct gcctttctctctcc 8760
gtttctttttct gcctttttttct gcctttttttct gcctttctctctcc 8820
agnctctctctg cccctctctct cccctctctct cccctctctctc gcctttttttct gcctttctctctcc 8880
NEW PA035WO_sequence listing[1].ST25

cgaattagac agatcgcggtg
gataggctgcc tcactgatta agcatattgta actggtcagac 8940
caagtttact catatatcct ttagaggatt ttaaaacacct attttttaatt taaaaggatct 9000
taggtgaaga tcctttttga taatctctag accaaaatccc cttaagctgta gttttctgctc 9060
caattgaccgt cagacccggct agaaagagatc aaaggtatcttt ttttgasttcct 9120
cgcgtaatctg gctgctttgcc aacaaaaaaa ccacggctcca cagcggtggtt ttggttgccg 9180
gataataggc tacaaactct tttcccgaag gtaactgtgct tcagccagcg gcacatagacca 9240
aatcattgctc ttctctctgtg caagtggtctg cctgccactg cggagctagtcg cggctgctg 9300
ctctacattc tttgctctgtct ataactgtgct ccaagtggtgct egtgcagccg cgcagacgacg 9360
tggattctatt ccatttttttc atcctggctg aagcagtgag tggctgctgct 9420
acgagggggtt cgtgcacaca gccccagcttg gagccagaca cctctgacca actgagatac 9480
tcatcagcttg atctttcctttg cagggctggcc gtttggccg gcggagcagatg cgtctctgctg 9540
cggcctgctt ggctctgctt gccgggttgcg gatgttcagtcg aagggggttgtc cctttgggtaa 9600
ctcatttttt gcttgcttttt agagttctttt ctccttttttt tttttgggcgg 9660
tgcctctctct ccccttcccc gctccctctct tcctttttctt tcccttttttctgc 9720
ctcatttttt ccttttttttt gatgtgagttt gcttttttgcg gcttttttttt gcttttttttt 9780
ggcaggggtt gccttttttt ttttttttttt cttcttttttt cttcttttttt 9840
agcgtcttagg gccttttttttt ttttttttttt gcttttttttt 9900
ctcatttttt ccttttttttt gctttttttttt gctttttttttt gctttttttttt 9960
ctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10020
ctcatttttt ccttttttttt ttttttttttt ttttttttttt ttttttttttt 10080
ctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10140
ctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10200
cctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10260
cctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10320
cctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10380
cctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10440
cctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10500
cctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10560
cctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10620
cctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10680
cctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10740
cctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10800
cctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10860
cctcatttttt ccttttttttt cttcttttttt ttttttttttt ttttttttttt 10920
aaaggagcgc acgacccggt ccgacggcgg cccacgggttc ccaggggggt gcacctcga
10980
actggttat tgcagcttat aatggttaca aataaagcaa tagcatcaca aatccacaa
11040
ataaagcatt ttttctact
11059

<210> 47
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> B76-1 oligonucleotide

<400> 47
aggaggctgg aagaaaggac
20

<210> 48
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> B76-2 oligonucleotide

<400> 48
ccccccggcag agatacta
18

<210> 49
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> B76-3 oligonucleotide

<400> 49
ggtaccgccca ccatggggat cttactgggc ct
32

<210> 50
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> B76-4 oligonucleotide

<400> 50
gctagcttttc cttggcccagc act
23