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NON-LINEAR GENETIC ALGORITHMS FOR SOLVING PROBLEMS BY
FINDING A FIT COMPOSITION OF FUNCTIONS

BACKGROUND OF THE INVENTION

This application is a continuation-in-part of co-pending United States Patent

Application Serial No. 07/196,973, filed May 20, 1988, titled Non-linear Genetic

Algorithms for Solvine Problems.

1. The Field of the Invention

The field of the invention is that of genetic algorithms. More specifically,
the field is genetic algorithms useful for problem solving. The field spans the range
of problems wherein a fit composition of functions may be found as a solution to

the problem.

2. The Prior Art

Genetic algorithms provide a method of improving a given set of objects.
The processes of natural selection and survival of the fittest provide a theoretical
base. Genetic algorithms in their conventional form can solve many problems.
However, the problem of the Prisoner’s Dilemma illustrates the limitations of
conventional genetic algorithms.

The Prisoner’'s Dilemma is a well-researched problem in game theory (with
numerous psychological, sociological, and geopolitical interpretations) in which
two players can either cooperate or not cooperate. The players make their
moves simultaneously and without communication. Each player then receives a
payoff that depends on his move and the move of the other player.

The payoffs in the Prisoner's Dilemma game are arranged so that a non-
cooperative choice by one player (when the other player is cooperating) yields the
non-cooperative player a greater payoff than a cooperative choice; but, if both

players cooperate, they are both better off than if they both do not cooperate.
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Moreover, if both players are selfishly non-cooperative, they are both worse off
than if they had both cooperated. The game is not a “zero sum game” because,
among other things, both players are better off if they both cooperate.

Applying the conventional genetic algorithm to a specific problem requires
that a representation scheme be created to represent possible solutions to the
problem as an individual chromosome amongst a large population of
chromosomes. In the Prior Art, each individual chromosome in this population
must take the form of a character string over a fixed alphabet, most typically a
presentation of 0's and 1's (i.e. binary “bits”) of the same length. The creation of
this representation scheme (coding scheme) is an inherent part of the
conventional genetic algorithm because the codes undergo manipulation when the
genetic algorithm is actually applied.

In the case of a game, an individual in this population is a particular
“strategy” for playing the game. A “strategy” for a given player in a game is a
way of specifying what move the player is to make at a particular point in a game
given all the allowable moves and information about the state of the game which
is available to the player. In the case of the Prisoner's Dilemma game, the
allowable moves for a particular player are always the same two alternatives —
the player can cooperate or not. The information available to the player consists
of the history of previous moves from the beginning of the game.

The chapter concerning game playing entitled “The Evolution of Strategies
in the Iterated Prisoner's Dilemma” by Robert Axelrod in Genetic Algorithms and
Simulated Annealing (1987) illustrates the general nature of conventional genetic
algorithms and how they apply to specific problems. In particular, it illustrates the
process by which a mathematical problem is converted into a form involving
strings of 0's and 1's (i.e. strings of binary “bits”) of the same length. Thus, the
conventional genetic algorithm can be applied to the problem.

In his article on the Prisoner's Dilemma, Axelrod began by noting that there

are 4 possible ways the previous play could have occurred (i.e. cooperation or

-
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non-cooperation by each of the 2 players). In order to represent this game within
the confines of the conventional genetic algorithm, Axelrod decided to base a
player's next move only on knowledge of the history of the previous 3 plays.
Having made this limitation, there are then 64 possible previous play histories (i.e.
4 times 4 times 4). In this kind of representation scheme, the history of plays by
both players for the previous 3 plays are associated with one of the 64 bit
positions in a binary string of length 64. For example, bit position 64 might refer to
cooperative plays by both players on all 3 previous plays (i.e. previous plays of
CCCCCC). A “1” in bit position 64 of this string of length 64 might then instruct
the player to cooperate on the current play if the previous plays have been
CCCCCC. The entire string of 64 0's and 1's constitutes a complete way of
telling the player how to move on the next play based on the history of the
previous 3 plays. (In the article, Axelrod actually expands this binary string to
length 70 to accommodate 6 special bit positions to deal with the very beginning of
the game when there is no history).

After developing the representation scheme, the genetic algorithm begins by
randomly creating a population of individual binary strings of length 70. The
“fitness” of each of these individual strings (strategies) is then evaluated in an
“environment” (which, in this case, consi-sts of a series of different games). In
order to play a particular game of the series in this “environment,” it is necessary
to refer to the appropriate bit position in the string of 70 0's and 1's for each move
and then make the indicated move in the game; then, play the entire game; and,
then, determine the payoff to the player for the game for following that particular
individual strategy. These payoffs are then accumulated (and averaged) over the
entire series of games to determine the average fitness of a particular individual
strategy. Since each of the 70 bit positions in the binary string of length 70
represent a different past history, the series of games used to evaluate a given
individual string would ideally contain a statistically meaningful number of different

moves involving each of the 70 past histories.
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The genetic algorithm then proceeds by identifying the best individual

strategies in the current population and creates offspring for the next generation of

individuals using the fittest individual strategies. As in nature, each offspring
inherits some genetic traits from each parent in a process of “crossing” some
genetic traits from each parent. The process of reproduction by the fittest and
crossover tends to produce, over a period of many generations, a population with
increasing overall fitness in the environment involved.

Axelrod achieved results from applying the conventional genetic algorithm
to the Prisoner's Dilemma game that paralleled other mathematical research and
international competitions on how to best play this game. However, it should be
noted that the conventional genetic algorithm imposed four important limitations
which restrict its usefulness in solving this particular gaming problem and other
problems that have been studied.

First, the requirement that each individual in the population be a string of the
same length required Axelrod to arbitrarily limit the player considering only a pre-
determined number of previous plays (three here) in deciding how to make the
next move. This meant possibly ignoring an opponent's previous history of
deceitful “surprise attacks” if they occurred more than three moves in the past.
Obviously, in many situations, a player whose strategy involves arbitrarily and
intentionally ignoring available past history (particularly past history as recent as
three moves earlier) would be susceptible to some devastating simple counter-
strategies by the opposing player.

Secondly, the use of a binary string (a string of 0’s and 1’s) led to a
representation scheme involving an explosively large number of “different”
strategies merely to handle consideration of only the three previous plays 270
strategies—over a billion trillion). In contrast, if the representation scheme were
not required to be rigidly structured in advance prior to the start of operation of
the conventional genetic algorithm, a representation scheme involving only a

relative handful of relevant possible histories might have evolved (e.g. “the

«
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opponent always cooperates”, “the opponent cooperates about half of the time”,
etc).

Thirdly, the individuals in the population were representational descriptions
(codings) of the strategy (as opposed to being actionable procedures which
directly made the actual move in the game). Any particular strategy that one
envisions and wants to include in the population had to be first coded into a binary
string of length 70 before it could be inserted into the population. And, before any
play could be made using a strategy, the binary string of length 70 had to be
decoded into actionable instructions to make a move in a particular situation.

Fourthly, the binary strings of fixed length provide no hierarchical structure
for potential solutions to the problem. The binary string is one dimensional. All
items in the string operate at the same level. The significance and desirability of
hierarchical structure for solving problems will be seen later.

Whatever the solution’s structure, the natural selection process provides a
powerful tool for problem solving. This is shown by nature and its various
examples of biological entities that survive in various environments. In nature,
complex combinations of traits give particular biological populations the ability to
adapt, survive, and reproduce in their environments. Equally impressive is the
complex, relatively rapid, and robust adaptation and relatively good interim
performance that occurs amongst a population of individuals in nature in response
to changes in the environment. Nature's methods for adapting biological
populations to their environment and nature's method of adapting these
populations to successive changes in their environments (including survival and
reproduction of the fittest) provides a useful model. This model can develop
methods to solve a wide variety of complex problems which are generally thought
to require “intelligence” to solve.

In nature, a gene is the basic functional unit by which hereditary information
is passed from parents to offspring. Genes appear at particular places (called

gene “loci”) along molecules of deoxyribose nucleic acid (DNA). DNA is a long
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thread-like biological molecule that has the ability to carry hereditary information
and the ability to serve as a model for the production of replicas of itself. All
known life forms on this planet (including bacteria, fungi, plants, animals, and
human) are based on the DNA molecule.

The so-called “genetic code” involving the DNA molecule consists of long
strings (sequences) of 4 possible gene values that can appear at the various gene
loci along the DNA molecule. For DNA, the 4 possible gene values refer to 4
“bases” named adenine, guanine, cytosine, and thymine (usually abbreviated as
A, G, C, and T, respectively). Thus, the “genetic code” in DNA consists of a
long strings such as CTCGACGGT... |

When living cells reproduce, the genetic code in DNA is read. Sub-
sequences consisting of 3 DNA bases are used to specify one of 20 amino acids.
Large biological protein molecules are, in turn, made up of anywhere between 50
and 500 such amino acids. Thus, this genetic code is used to specify and control
the building of new living cells from amino acids.

A chromosome consists of numerous gene loci with a specific gene value
(called an “allele”) at each gene loci. The chromosome set for a human being
consists of 23 chromosomes, and a typical human chromosome contains about
150,000,000 gene values. The 23 human. chromosomes together provide the
information necessary to describe one individual human being and contain about
3,000,000,000 genes. These 3,000,000,000 genes constitute the so-called
“genome” for one particular human being. Cofnplete genomes of the
approximately 5,000,000,000 living human beings together constitute the entire
pool of genetic information for the human species. It is known that certain gene
values- occurring at certain places in certain chromosomes control certain traits of
the individual, including traits such as eye color, susceptibility to particular
diseases, etc. Thus, our current world population of humans can be viewed as a

product of a genetic algorithm.



WO 91/14990 PCT/US91/01970

7
Adaptation in Artificial and Natural Systems, by Professor John H. Holland,

summarizes Holland's research in genetic algorithms and presents an overall
mathematical theory of adaptation for both natural and artificial systems. A key
part of this book described a “genetic algorithm” patterned after nature’s methods
for biological adaptation. However, a limitation of this work resides in using fixed
length binary strings to represent the population. U.S. Patent 4,697,242 (Holland)
and U.S. Patent 4,881,178 (Holland) are examples of processes which use fixed
length binary strings with a genetic algorithm.

Empirical studies by various researchers have demonstrated the capabilities
of such genetic algorithms in many diverse areas, including function optimization
(De Jong 1980), operation of a gas pipeline (Goldberg 1983), pattern recognition
(Englander in Grefenstette, 1985), and many others.

In the chapter entitled “An Overview” contained in the 1987 collection

Genetic Algorithms and Simulated Annealing, Lawrence Davis and Martha

Steenstrup stated, “In all of Holland's work, and in the work of many of his
students, chromosomes are bit strings — lists of 0's and 1's.” In addition, they
continue, “Some researchers have explored the use of other representations, often
in connection with industrial algorithms. Examples of other representations
include ordered lists (for bin-packing), embedded lists (for factory scheduling
problems), variable-element lists (for semiconductor layout), and the
representations used by Glover and Grefenstette in this volume.”

Some researchers have éttempted to solve search and optimization
problems using schemes patterned after evolution that employed mutation-plus-
save-the-best strategies. Examples are Box (1957), Hicklin (1986), and the 1966
book by Fogel, Owens, and Walsh entitled Artificial Intelli gence Through

Simulated Evolution. The few results obtained from these efforts were highly

specific to particular applications and domains and largely reflect the cleverness of
implementation of the mutation concept rather than its usefulness as a genéral

technique for achieving adaptive increases in fitness in populations. It is important
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to note that mutation is not the primary means by which biological populations in
nature improve their fitness and it is not the primary means used in the present
invention. 7

Since Holland’s 1975 book, Holland and various colleagues have developed
a novel application of conventional genetic algorithms called a “classifier system™.
A classifier system is a group of rules. Each rule consists of a conditional part
and an action part (i.e. an IF-THEN rule). Both the conditional part and action
part of each rule are like the individuals in the conventional genetic algorithm in
that they are a strings of 0’s and 1’s of fixed length. In a classifier system,
messages (consisting of binary strings) are received from the environment and
activate those rules whose conditional part (“IF” part) match the message (binary
string) coming in. This activation triggers the action part (“THEN” part) of the
rule. The action part of a rule sends out a new message (binary string).

Classifier Systems are described in the 1978 article “Cognitive Systems
based on Adaptive Algorithms” (by Holland and Judith S. Reitman) published in
Pattern-Directed Inference Systems, edited by D.A. Waterman and Frederick
Hayes-Roth; and David E. Goldberg’s 1983 dissertation entitled Computer-Aided

- Gas Pipeline Operations Using Genetic Algorithms and Rule Learning. In

classifier systems, credit is assigned to chains of individual rules that are invoked
by a credit allocation scheme known as the “bucket brigade”. The Holland
process is a combination of a classifier system and a “bucket brigade algorithm”.
A 1987 paper by Cory Fujiki and John Dickinson in Genetic Algorithms and Their

Applications: Proceedings of the Second International Conference on Genetic

Algorithms , (edited by John J. Grefenstette) describes a computer program for a
classifier system written in LISP for solving the Prisoner’s Dilemma using binary
strings of fixed length and IF-THEN classifier rules. In addition, Smith (1980,
1983) has placed IF-THEN rules in genetic strings in lieu of individual characters.
We call conventional genetic algorithms “linear” because they manipulate

strings (sequences) of characters over a fixed alphabet (typically strings of binary

[C ]
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digits 0 and 1). This is in contrast to the “non-linear” situation in which the
objects being manipulated are hierarchical expressions consisting of a hierarchical
arrangement of functions and arguments.

The reasons for limiting the conventional genetic algorithm to binary strings
of fixed length appear in the literature. First, in his 1983 dissertation entitled
Computer-Aided Gas Pipeline Operation Using Genetic Algorithms and Rule
Learning, David E. Goldberg argues that any binary string of the common fixed

length always has an interpretation (via a well-defined representation scheme) to
the problem being solved. This might be called the property of being “well
defined” and it is a desirable property.

Secondly, if each individual in the population consists of a binary string of
fixed length, then the crossover operation will always produce another binary
string of fixed length when applied to any two individuals in the population. This
might be called a “closure” property and it is also a desirable property. Of course,
binary strings of fixed length are not the only way of achieving these desirable
properties of closure and being well-defined.

In Adaptation in Natural and Artificial Systems (1975, page 71), Holland

argues in favor of strings consisting only of 0’s and 1’s (i.e. binary strings) in the
conventional genetic algorithm on the basis that the number of strings in the
search space that are searched automatically using what he calls the “implicit
parallelism” of the conventional genetic algorithm is highest when the strings
consist only of two possibilities. This point is true; however, it should not be the
controlling consideration. For various reasons cited hereinafter, limiting the
genetic algorithm to the one dimensional world of linear strings of fixed length
(and, in particular, binary strings of fixed length) precludes solving many problems.
The field of computer science is replete with other situations where it is
highly unrealistic to assume that the size or shape of a problem is known in
advance to the solver so that he can use this information to rigidly pre-specify the

size and shape of his search in advance. An elementary example from
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information theory illustrates this point. Huffman codes are binary strings of
variable length that are used to maximize the amount of information that can be

transmitted over a given channel. Huffman codes are somewhat similar to Morse

code in that more frequent messages (letters, such as “e”) are assigned codes of -

shorter length and less frequent messages are assigned codes of longer length.
The Huffman coding algorithm starts with the messages that are to be transmitted
and their probability of occurrence. The algorithm then assigns relatively short
binary strings to the most frequent messages and relatively long binéry strings to
the rarer messages. The size of the strings needed in a Huffman coding scheme
is not known in advance, but it is determined after applying the algorithm to the
particular set of messages and their respective probabilities. Any attempt to
decipher a Huffman code by searching and matching strings must take the length
of longest binary strings actually used by the coding algorithm into account.

Using fixed length binary strings in conventional genetic algorithms limits
their ability to solve many problems. The following 3 separate example problems
illustrate additional limitations of conventional genetic algorithms.

First, suppose we want a computer to program itself to solve the problem of
finding the point at which two intersecting straight lines intersect. The point of
intersection of two straight lines is the pair of numbers that satisfy the two linear
equations in two variables that represent the lines. Thus, the computer program
we are seeking would use the coefficients of the two equations and various
mathematical operators (such as multiplication, subtraction, etc.) to produce the
desired answer. To make the problem of having a computer learning to program
itself more realistic, it is best not to specify in advance the size or shape of the
mathematical expression needed to solve the problem. It is also more realistic if
the computer had access to various irrelevant inputs and extraneous mathematical
operations to confuse its search to find the solution to the problem.

There is no simple or convenient way to uniquely associate a binary string

whose length is predetermined in advance with an arbitrary mathematical

8
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expression composed of specified mathematical operations (functions) and
arguments. A binary string of length n can only represent 20 different things (no
matter what the representation scheme). No matter how large an n is pre-
selected in advance, there are additional mathematical expressions.

Before continuing, it should be emphasized that it is not necessary to
represent things of infinite size. Rather, what should be avoided s arbitrarily pre-
setting a limit on the size and shape of the things being represented (even though
any particular thing will itself be finite in size). In most problems, the size and
shape of the solution are not necessarily known in advance. The process of
solving the problem should be free to develop proposed solutions without any pre-
set limit on the size and shape of the solution.

Even if an arbitrary maximum length specified in advance were acceptable,
the method for associating each arbitrary mathematical expression (for example:
A*B+C _ D * E * F ) with a binary string would necessarily obscure the
underlying mathematical operations involved. The highly complex method used by
Godel in 1931 in his proof of the Incompleteness Theorem is an example of such a
method for making this kind of association. Thus, this first example problem
highlights the need to be able to represent arbitrary mathematical expressions
(involving various functions and arguments) whose length is not arbitrarily limited
in advance (rather than merely strings of 0’s and 1°s of the same fixed length).

It should be noted that if it is assumed that the two straight lines in this
problem always intersect, the problem is entirely numerical. However, if the two
lines might possibly be parallel, the answer from a computer program to this
expanded version of the problem might appropriately be a symbolic response (e.g.
“The Equations are inconsistent and the lines are parallel”) rather than the
numeric location of the point of intersection. This situation can be easily
recognized by a computer program by checking to see if a certain computed value
(the determinant) is zero. Thus, this expanded version of this first example

problem highlights the need occasionally to accommodate symbolic processing
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and symbolic output from a computer program that normally produces a numeric
output.

Second, consider the problem of predicting the future elements of a
sequence of numbers from a sampling of early numbers from the sequence. This
problem is an example of induction. Induction is the logical process by which one
observes specific examples of some process (e.g. “The sun has come up every
morning so far during my life”) and then “induces” a reasonable underlying rule
for the process (e.g. “The sun always comes up in the morning”). In applying
inductive reasoning, there is no proof that the result is correct. Nonetheless, the
process of induction is very important and indeed lies at the heart of all learning.

In contrast, deduction is the logical process in which one starts with some
given premises (or facts) and some deductive rules of inference and then reaches
a logical conclusion by repeatedly applying the deductive rules to the original
given premises or facts. The sequence of steps used in deduction to reach a
conclusion is called the proof.

If one is given a sampling of a sequence of numbers such as 0, 2, 4, 6, 8, 10,
12, 14 it is not difficult to reasonably induce that the next number in the sequence
is 16. The number 16 is a reasonable induction because each previous element of
the sequence is 2 times the element’s position in the sequence (counting the first
element as position 0). Note, however, that even elements of this simple
numerical sequence cannot be represented with strings. whose length has been
specified in advance.

More interesting sequences involve more complicated rhathematical
operations. For example, the 6th element of the sequence 2, 4, 8, 16, 32, can be
expressed directly in mathematics as 2 raised to the 6th power (i.e. 64). This
sequence can also be expressed in mathematics using a recursion — that is, by
defining the 6th element in terms of previous element(s) in the sequence. In this
case, the mth element of the sequence is 2 times element m-1 of the sequence

(that is, 2 times 32 is 64).

&,

-7
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For some important mathematical sequences, there is no known non-
recursive expression for each element of the sequence, and the use of a recursion
becomes a necessity, not merely an option. The well-known Fibonacci sequence
1,1,2,3,5,8, 13, 21, 34, 55, is constructed by adding the 2 previous elements of
sequence. For example, 8 is the sum of 3 and 5, and 13 is the sum of 5 and 8. In
general, the mth element of the Fibonacci sequence 1s the sum of element m-1
and element m-2 of the sequence (with the understanding that the first two
elements of the sequence are a “default” value of 1).

Thus, the problem of sequence induction highlights the need to be able to
represent recursions as well as arbitrary mathematical expressions (involving
functions and arguments). It also re-emphasizes the need to be able to represent
strings whose length has not been pre-specified in advance.

Many problems are best approached by developing hierarchies in which
solutions to sub-problems are manipulated and assembled hierarchically into
solutions to the original main problem. In fact, many mathematical problems are
solved by first “decomposing” a larger problem into smaller sub-problems. Then,
an attempt is made to solve each of the sub-problems. And, finally, the solutions
to the sub-problems are assembled into a solution to the original problem. The
problem of solving sets of a large number of equations with many variables and
solving polynomial equations of high order are examples of problems where
decomposition can be used. In some cases, there is a symmetry betweqn this
process of assembly and the solution to the individual sub-problem. That is, in this
assembly process, the solutions to the sub-problems may be manipulated as if they
themselves were merely the elements of a sub-problem.

Even when no symmetry is involved, a “hierarchy” develops when a ,
problem is solved by decomposition. At the lowest level of the hierarchy, the sub-
problem is solved. The hierarchy consists of combining the solutions of the sub-
problem into the solution to the larger problem. Something similar is

commonplace in computer programming in general. For example, sub-routines (or
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sub-procedures) are typically called by a main program. The main program is at
the top of the hierarchy, typically organized to provide an overview of the solution

to the whole problem. Each of the sub-routines called by the main program are

&

found at one level lower on the hierarchy. If one of the sub-routines itself happens
to call upon another sub-routine, that second sub-routine is one level lower on the -«
hierarchy than the sub-routine which called it. Complex social organizations (such
as corporations and military organizations), are similarly organized into

hierarchies. The ability to decompose problems into hierarchies of sub-problems is
generally important for solving problems.

What is needed is a way to apply some of the general principles of
biological natural selection that are embodied in the conventional genetic algorithm
(i.e. survival of the fittest and crossing over of parents’ traits to offspring) to a
greatly expanded class of problems. In particular, what is needed is a method for
adaptively creating computer programs involving complicated combinations of
mathematical functions and their arguments, recursions, symbolic processing, and
other complicated data structures (such as permutations) with no advance
limitations on the size, shape, or complexity of the programs. One object of the
present invention is to provide a genetic algorithm to provide solutions for an
expanded class of problems. A further object of the present invention is to
provide a genetic algbrithm process without any predetermined limits on the size,

shape, or complexity of the members of the subject population.



WO 91/14990 PCT/US91/01970

15
References Cited
U.S. PATENTS
4,697,242, “Adaptive Computing System Capable of Learning and Discovery”,
issued September 29, 1987, filed Jun. 11, 1984, Holland et al.

4,881,178, "Method of Controlling a Classifier System"”, issued Nov. 14, 1989, filed
May 7, 1987, Holland et al.

OTHER PUBLICATIONS

Box, G.E.P. “Evolutionary Operation: A Method for Increasing Industrial

Productivity” - Journal of the Royal Statistical Society. 6 (2), 81-101.

Barto, A. G., Anandan, P., and Anderson, C. W. Cooperativity in networks of
pattern recognizing stochastic learning automata, In Narendra, K. S. Adaptive
and Learning Systems, New York: Plenum 1985.

Davis, Lawrence (Editor) - Genetic Algorithms and Simulated Annealing. Pitman,
London 1987.

Fogel, L. J., Owens, A. J. and Walsh, M. J. - Artificial Intelligence through
Simulated Evolution, New York: John Wiley 1966.

Fujiki, Cory - An Evaluation of Holland’s Genetic Operators Applied to a Proeram

Generator, Master of Science Thesis, Department of Computer Science,
University of Idaho, 1986.

Goldberg, David E. - Computer-Aided Gas Pipeline Operation Usine Genetic

Algorithms and Rule Learning, (Doctoral Dissertation, University of Michigan,



WO 91/14990 PCT/US91/01970

16
1983) Dissertation Abstracts International 44(10), 3174B (University Microfilms
No. 8402282).

4

Goldberg, David E., Genetic Algorithms in Search, Optimization, and Machine

Learning. Reading, MA: Addision-Wesley 1989. -

Green, Cordell C. et al., Progress Report on Program-Understanding Systems,

Stanford Artificial Intelligence Laboratory memo AIM-240, Stanford University

Computer Science Department, August 1974.

Grefenstette, John J. (Editor) - Proceedings of an International Conference on

Genetic Algorithms and Their Applications, Pittsburgh, Pa. 1985.

Grefenstette, John J. (Editor) - Genetic Algorithms and Their Applications:

Proceedings of the Second International Conference on Genetic Algorithms,

Lawrence Erlbaum Associates, Hillsdale, New Jersey 1987..

Hicklin, Joseph F. - Application of the Genetic Algorithm to Automatic Program

Generation, Master of Science Thesis Department of Computer Science,
University of Idaho, 1986.

Holland, John H. - Adaptation in Natural and Artificial Systems, The University of
Michigan Press, Ann Arbor, 1975. .

Holland, J. H., & Reitman, J. S. (1978), Cognitive systems based on adaptive
algorithms, In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern Directed

Inference Systems (pp. 313-329), New York: Academic Press.



WO 91/14990 PCT/US91/01970

17
Jefferson, David, Collins, Rob, et al., The Genesys System: Evolution as a theme

in artificial life, In Langton, Christopher, G. and Farmer, D. (editors) Proceedings

of Second Conference on Artificial Life. Redwood City, CA: Addison-Wesley,
1990, In Press.

Koza, John R., Econometric modeling by genetic breeding of mathematical
functions, Proceedings of International Symposium on Economic Modeling,
Urbino, Italy: 1990, In Press.

Koza, John R. and Keane, Martin A., Genetic breeding of non-linear optimal

control strategies for broom balancing, Proceedings of the Ninth International

Conference on Analysis and Optimization of Systems. Antibes, France: 1990, In

press.

Koza, John R., Hierarchical genetic algorithms operating on populations of
computer programs, Proceedings of the 11th International Joint Conference on

Artificial Intelligence (IICAI). San Mateo, CA: Morgan Kaufman 1989.

Koza, John R. and Keane, Martin, Cart centering and broom balancing by

genetically breeding populations of control strategy programs, Proceedings of

International Joint Conference on Neural Networks, January 1990, Volume I.

Langley, Pat and Zytkow, Jan M., Data-driven approaches to empirical discovery,

Artificial Intelligence, 40 (1989) 283-312.

Langley, Pat, Simon, Herbert A., Bradshaw, Gary L., and Zytkow, Jan M.,
Scientific Discovery: Computational Explorations of the Creative Process.
Cambridge, MA: MIT Press 1987.




WO 91/14990 PCT/US91/01970

18

Lenat, Douglas B. AM: An Artificial Intelligence Approach to Discovery in

Mathematics as Heuristic Search, PhD Dissertation, Computer Science

Department, Stanford University, 1976.

Lenat, Douglas B., The role of heuristics in learning by discovery: Three case
studies, In Michalski, Ryszard S., Carbonell, Jaime G. and Mitchell, Tom M.,

Machine Learning: An Artificial Intelligence Approach, Volume I, P. 243-306,
Los Altos, CA: Morgan Kaufman 1983.

Lenat, Douglas B. and Brown, John Seely., Why AM and EURISKO appear to
work, Artificial Intelligence, 23 (1984), 269-294.

Nilsson, Nils J., Action Networks, Draft Stanford Computer Science Department
Working Paper, October 24, 1988, Stanford, CA: Stanford University, 1988a.

Quinlan, J.R., Introduction of decision trees, Machine Learning, 1 (1) pages 81-
106.

Schaffer, J.D. (editor), Proceedings of the 3rd International Conference of Genetic

Algorithms, San Mateo, CA: Morgan Kaufman Publishers Inc. 1989.

Smith, Steven F., A Leaming System Based on Genetic Adaptive Algorithms.

PhD dissertation, Pittsburgh: University of Pittsburgh, 1980.

Smith, Steven F., Flexible learning of problem solving heuristics through adaptive

search, Proceeding of the 8th International Conference on Artificial Intelligence,

Karlsruhe, Germany: Morgan Kaufman 1983.

Steele, Guy L. Jr., Common LISP, Digital Press, 1984.




WO 91/14990 PCT/US91/01970

19

Tanese, Reiko, Distributed Genetic Algorithm For Function Optimization, PhD.

dissertation, Department of Electrical Engineering and Computer Science,

University of Michigan, 1989.

Widrow, Bemard, Pattern recognizing control systems, Computer and
Information Sciences (COINS) Symposium Proceedings, Washington, D.C.,
Spartan Books, 1963.

Widrow, Bernard, The original adaptive neural net broom balancer, 1987 IEEE

International Symposium on Circuits and Systems. Vol. 2.

Wilson, Stewart W., Bid competition and specificity reconsidered, Journal of

Complex Systems, 2(6), 705-723, 1988.



WO 91/14990 PCT/US91/01970

20
SUMMARY OF THE INVENTION

The present invention relates to non-linear genetic algorithms. The process
of the present invention operates upon a population of entities which accomplish
tasks and can vary in size and shape. Each iteration of the process comprises
activating, assigning, selecting, choosing, performing, and adding. First, each
entity activates to accomplish its goal and produces a result. ‘Second, a value is
associated with the result of each activation and assigned to the corresponding
entity. Third, at least one entity having a relatively high associated value is
selected. Next, an operation is chosen from crossover, fitness proportionate
reproduction, mutation or permutation. If crossover is chosen, then the selected
entity performs the crossover operation. Crossover creates new entities by
combining portions of at least one selected entity with portions of at least one
other entity. Fitness proportionate reproduction retains the selected entity in the
population. Mutation randomly alters a small random part of an entity.
Permutation reorders the parts of an entity without a net gain or loss. Finally, the
newly produced entities are added to the population.

Many seemingly different problems can be reformulated into a problem
requiring discovery of a mathematical expression or computer program that
produces some desired output for particular inputs. When viewed in this way, the
process of solving these seemingly different problems becomes equivalent to
searching a space of possiblé mathematical éxpressions or computer programs for
a most fit individual mathematical expression or computer program.

This invention disclosed herein is useful for solving at least three groups of
problems.

The first group of problems consists of a problem that presents itself under
several different names, namely, the problem of symbolic function identification,
symbolic regression, empirical discovery, modeling, induction, chaos, and

forecasting.
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The second group of problems contains several similar, but different,
problems. This group contains the problems of symbolic integration, symbolic
differentiation, symbolic solution of differential equations, symbolic solution of
integral equations, symbolic solution of mathematical equations, and inverses.

The third group of problems contains several other seemingly different, but
related, problems, namely, function leaming, planning, automatic programming,
game playing, concept formulation, pattern recognition, and neural net design.

All of these problems can be formulated and then solved in the manner
described herein.

Computer programs have the ability to perform alternative computations
conditioned on the outcome of intermediate calculations, to perform computations
on variables of many different types, to perform iterations and recursions to
achieve the desired result, and to define and subsequently use computed values
and sub-programs. This flexibility found in computer programs facilitates the
solution to these various different problems.

The process of solving these problems can be reformulated as a search for
a most fit individual computer program in the space of possible computer
programs. In particular, the search space is the hyperspace of LISP "symbolic
expressions” (called S-expressions) composed of various terms (called atoms in
LISP) along with standard arithmetic operations, standard programming
operations, standard mathematical functions, and various functions peculiar to the
given problem domain. For example, the standard arithmetic functions of addition,
subtraction, multiplication, etc., are relevant when we are attempting to construct
a mathematical expression that might be the solution to a differential equation. In
general, the objects that are manipulated in our attempts to build computer
progréms are of four types. These objects include functions of various number of
arguments, such as addition mentioned above; variable atoms, such as the
independent variable(s) in an equation; constant atoms, such as 0, 1, etc.: and

control structures such as If-Then-Else, Do-Until, etc.
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The LISP S-expression required to solve each of the problems described
above tends to emerge from a simulated evolutionary process using the non-linear
genetic algo}ithm. This process starts with an initial population of LISP S-
expressions (typically randomly generated) composed of functions and atoms
appropriate to the problem domain.

The fitness of each individual LISP S-expression in a population drives the
process. Fitness will be measured by the sum of the distances (taken for all the
environmental cases) between the point in the solution space (whether real-
valued, complex-valued, vector-valued, multiple-valued, Boolean-valued, integer-
valued, or symbolic-valued) created by the S-expression for a givén set of
arguments and the correct point in the solution space.

The closer this sum is to zero, the better the S-expression. If this sum is
close to zero, there is a good fit. If this sum attains the closest possible value to
zero, there is a best fit. If this sum actually attains the value of zero, there is a
perfect fit. The notions of good, best, and perfect fit are well known in the art. The
differences needed to compute this fitness function depends on the specific
problem in the group of problems. Once the desired level of fitness is attained, the
iteration of the evolutionary process can be terminated.

The initial individual S-expressions in the population typically will have
exceedingly poor fitness. Nonetheless, some individuals in the population will be
somewhat more fit than others.

Then, a process is based on the Darwinian principle of reproduction and
survival of the fittest (fitness proportionate reproduction) and the genetic operation
of crossover (recombination) to create a new population of individuals. In
particular, a genetic process of sexual reproduction (crossover) among two
parental S-expressions will be used to create offspring S-expressions. At least
one of the two participating parental S-expressions will be selected in proportion
to fitness. The resulting offspring S-expressions will be composed of sub-

expressions from their parents.
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In addition, other operations such as mutation and permutation define
building blocks and editing may be used.

Finally, the new population of offspring (i.e. the new generation) will replace
the old population of parents and the process will continue.

At each stage of this highly parallel, locally controlled and decentralized
process, the state of the process will consist only of the current population of
individuals. Moreover, the only input to the algorithmic process will be the
observed fitness of the individuals in the current population in grappling with the
problem environment.

This process produces populations which, over a period of generations, tend
to exhibit increasing average fitness in dealing with their environment, and which,
in addition, can robustly (i.e. rapidly and effectively) adapt to changes in their
environment.

The solution produced by this process at any given time can be viewed as
the entire population of distinctive alternatives (typically with improved overall
average fitness), or more commonly, as the single best individual in the population
at that time ("winner take all").

The hierarchical character of the computer programs 1s an essential aspect
of the process. The results of this process are inherently hierarchical and in many
cases the results contain default hierarchies which often solve the problem in a
relatively parsimonious way.

The dynamic variability of the size and shape of the computer programs that
are developed along the way to a solution are also an essential aspect of the
process. In each case, it would be difficult and unnatural to try to specify or
restrict the Size and shape of the eventual solution in advance. Moreover, the
advance specification or restriction of the size and shape of the solution to a
problem narrows the window by which the system views the world and might

well preclude finding the solution to the problem.
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DESCRIPTION OF THE DRAWINGS

Figure 1 is a tree diagram representation of a LISP S-expression.

Figure 2 is a tree diagram representation of a LISP program.

Figure 3 is a flow chart diagram of the present invention.

Figure 4 is a tree diagram representation of a crossover operation occurring at

internal points.

Figure 5 is a tree diagram representation of a crossover operation occurring at

external points.

Figure 6 is a tree diagram representation of a crossover operation occurring at an

internal and an external point.

Figure 7 is a tree diagram representation of a permutation operation.

Figure 8 is a block diagram of the parallel processing embodiment of the present

invention.

Figure 9 is a chart diagram of the linear equation problem.

Figure 10 is a tree diagram representation of an S-expression which is a member

of initial population for solving the linear equation problem of the present invention.

Figure 11 is a tree diagram representation of a crossover operation of the

Fibonacci series problem.
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Figures 12, 13, and 14 are graphs of points for an unknown curve used to

illustrate symbolic function identification and regression.

Figure 15 is a diagram of a block stacking plan used to illustrate the planning

problems solved by the present invention.

Figure 16 depicts a plan for moving an "artificial ant" over a trail.

Figure 17 is a decision tree illustrating a concept formation solution.
Figure 18 shows a game tree used to present a method for game playing.

Figure 19 illustrates a simple entity, namely the symbolic expression in the LISP

programming language for the mathematical expression A +BC.

Figure 20 illustrates the simple entity in Figure 19 after application of the "Define

Building Block" operation,

Figure 21 illustrates the portion of the simple entity in Figure 19 being represented
by the "Define Building Block” function.

Figure 22 illustrates a tree representation of a LISP program for a simple neural

net.

Figure 23 illustrates a neural net used to perform the exclusive-OR- (XOR) task.

Figure 24 illustrates a typical computer configuration.
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DETAILED DESCRIPTION OF THE INVENTION

The present invention describes a genetic algorithm process for problem
solving. In the following description, numerous specific details are set forth in
order to prove a thorough understanding of the present invention. It will be
obvious, however, to one skilled in the art that the present invention may be
practiced without using these specific details. In other instances, well-known
methods and structures have not been described in detail so as not to
unnecessarily obscure the present invention.

The present invention operates on a population of entities. The entities must
possess an ability to produce an objectively observable result. To provide utility,
the entities must direct their actions toward a constructive end, even if their
results do not always serve those ends. The iterative process of the present
invention produces populations which tend to accomplish their constructive ends
better than previous populations.

Although the preferred embodiment uses computer programs as entities,
using other types of entities remain within the scope and spirit of the present
invention. For example, combinations of electrical circuits could provide a
population for the iterative process of the present invention. The circuits could
reproduce and crossover until the population produces sufficiently robust solutions
to a subject problem. Additionally, different automobile designs could comprise
another population, with elements of the designs taken as different alleles for
crossover and rearrangement. Thus although the following description uses
computer programs as entities, the description does not limit the present invention.

The computer languages FORTRAN, COBOL, ALGOL. PL/1, FORTH,
PASCAL, C, PROLOG, ADA, BASIC, etc. have the ability to write complicated
mathematical expressions, recursions, complex data structures, and symbolic
expressions. Some of these languages can write symbolic expressions that are

executable as computational procedures (or programs) within the language itself.
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Also, some of these languages can generate symbolic expressions, although often
this process is inconvenient and inefficient. In general, most computer languages
do not allow arbitrarily complex expressions to be written. Also, most do not
delay assigning actual computer memory (and types) in the computer for such
expressions until just prior to actual execution of the expression. Such a memory
management method is termed dynamic storage allocation or “late binding”.

One existing computer language, however, has all the features discussed
above and is generally available in relatively efficient forms on a variety of
computers. This language is LISP, and is the computer language of choice for
many artificial intelligence applications. Many dialects of the LISP language have
been created over the years. A dialect of LISP called “Common LISP” has
started to emerge as a standard.

The LISP programming language’s basic structure is a list of items (an
ordered set of items contained within a pair of parentheses). An important source
of LISP’s simplicity, generality, and power arises from treating the first element in
every list encountered as a function to be executed, termed “evaluated”, and
treating the remaining elements of the list as arguments to that function.
Moreover, unless otherwise indicated, LISP reads, evaluates, and returns a value
for each such function it encounters. Thus, in LISP, entire computer programs
can appear as merely functions within functions within functions (often called
“compositions” of functions and arguments or more simply a “composition” of
functions). Applying functions to arguments as encountered controls the flow of
LISP program. In other words, the control structure in LISP fs based on
composition of functions.

Within the outermost pair of parentheses in LISP, there may be numerous
functions, including functions for performing arithmetic, functions for performing
recursions, functions for modifying symbolic expressions, functions for
conditionally varying the program flow, and other complex functions. A key

feature of LISP is that LISP programs have the same form as the data (and the
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functions). As the above features indicate, LISP is a functional programming
language. LISP is not the only existing functional programming language nor is it
the only possible functional programming language. It is, however, the most
widely used language in this category and well-suited for the requirements at
hand.

In spite of the complex results obtained, LISP can be viewed as being very
simple because it simply reads, evaluates, and returns a value for each such
function it encounters. This seeming simplicity gives LISP enormous flexibility
(including the flexibility to accommodate computational procedures which modify
themselves and execute themselves). This enormous flexibility makes LISP the
preferred computer language for the present invention.

For example, consider the simple mathematical expression ordinarily written
as 5 *4 -3 * 2. To evaluate this expression, one must start by first evaluating 5 *
4. One evaluates 5 * 4 by performing the function of multiplication (*) on the two
arguments (5 and 4). The basic structure in LISP is a list of items (that is, an
ordered set of items contained within a set of parentheses). Moreover, unless
otherwise indicated, LISP treats the first item in every list encountered as a
function and the remaining items in the list as arguments to that function. Thus,
LISP represents 5 * 4 as (* 5 4). Here a function (i.e. the multiplication function
denoted by *) is the first item of the list and the two arguments to the function (i.e.
the two numbers to be multiplied) follow. Similarly, LISP denotes 3 * 2 as (*32).
Once these two multiplications are executed (evaluated), the subtraction function
then has the two arguments (i.e. 20 and 6). The two values obtained by
evaluating these two multiplication functions are treated as arguments to the
subtraction function which performs the operation of subtraction, which is (— (* §
4) (* 3 2)). Expressions such as (- (¥'5 4) (* 3 2)) in LISP are called S-
expressions. Here the function of subtraction (-) is performed on the result
previously obtained for (* 5 4) and (* 3 2). When a simple number or variable is

used as the argument of a function (such as the 3 or 2 in the multiplication 3 * 2),
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it is called an “atomic” argument. The contrasting situation occurs with a
composition of functions when the argument to one function is itself the result of
carrying out an earlier (embedded) function. We can represent increasingly
complex mathematical expressions by embedding previous results within new
expressions in this manner.

It is helpful to graphically depict a functional programming language’s
expressions. Functional expressions can be viewed graphically as a tree with
labels on the various points of the tree. In particular, any such expression can be
viewed as a rooted point-labeled tree in which the internal points of the tree are
labeled with functions and the endpoints of the lines radiating downwards from
each such internal point is labeled with the arguments to that function. By use of
the term downwards with rooted-point labeled trees, extending farther away from
the root of the tree is the intended meaning. The external points of the tree
(sometimes called “leafs”) are labeled with the atomic arguments. The root of
the tree is the particular internal point labeled with the function executed first. In
a LISP S-expression, the first function is the outer-most LISP function (1.e. the
function just inside the outermost left parenthesis of the LISP S-expression).

Figure 1 illustrates this for LISP using the equation 5 * 4 — 3 * 2. In the
ordinary notation of arithmetic shown as equation 100, the function 104
(multiplication) operates on the arguments 102 and 106 (i.e. 5 and 4 respectively)
and the function 112 (multiplication) operates on the arguments 110 and 114 (i.e. 3
and 2 respectively). The function 108 (subtraction) then operates on the results of
these two functions as its arguments. The function 108 is higher in the hierarchy
than the functions 104 and 112.

In Figure 1, the LISP S-expression 120, (- (* 5 4) (* 3 2)) is expressed as
the function 124 (multiplication) operating on the arguments 126 (the number 5)
and 128 (the number 4) and the function 130 (multiplication) operating on the
arguments 132 (the number 3) and 134 (the number 2). The function 122

(subtraction) then operates on the results of these two evaluations.
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When presented graphically in Figure 1, the internal point 150 of the tree
130 with root 140 is labeled with the function of multiplication (*) and the external
points 156 and 158 of the tree are labeled with the two arguments to the
multiplication function (i.e. 5 and 4 respectively). The arguments to a given
function (such as the multiplication function denoted by the internal point 150) are
found by following the lines 152 and 154 radiating downwards from the internal
point 150. Similarly, the internal point 160 of the tree is labeled with the function
of multiplication and the external points of the tree 166 and 168 are labeled with
the two arguments to the multiplication function (i.e., 3 and 2, respectively). The
arguments to the function 160 are found by following the lines 162 and 164
radiating downwards from the internal point 160. The internal point of the tree
140 is labelled with the subtraction function. The arguments to the subtraction
function are found by following the lines 142 and 144 radiating downwards from
point 140. These arguments turn out to be the results of the previously performed

- multiplication operations. Arguments may be found at external points (if they are
“atoms™) or at internal points (i.e. when the arguments to one function, such as
subtraction here at 140, are the result of previous functions). The internal point
140 1s the root of the tree and is labeled with the outermost function (subtraction)
122 in the LISP S-expression 120 (i.e., the function just inside the outermost left
parenthesis of the LISP S-expression).

The advantage of a computer language such as Common LISP for
performing work of this kind derives from the enormous flexibility arising from
repeated applications of this very simple basic structure. The fﬁnctions available
in LISP can include functions other than the simple arithmetic operations of
multiplication and subtraction. They include more complex mathematical
functions such as square roots, exponentiation, etc; program control functions
such as PROGN which allow a series of LISP expressions to be performed in
series; recursions (wherein a function référs to itself in the process of evaluating

itself); iterative functions (such as DOTIMES) which cause certain functions to be
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performed repeatedly (typically with differing arguments); conditional functions
[which cause specified alternative functions to be performed if some predicate
function is (or is not) satisfied]; and symbolic functions which operate on symbols
(instead of numbers).

By way of an example, suppose we want a computer program to begin by
printing the symbolic string “HELLO”; then set the variable C to the sum of the
variables A and B; and, then print the value of C only when C is greater than 4.
In Figure 2, the LISP S-expression (i.e. program) 700 performs these tasks. The
function 701 PROGN allows a series of 3 major steps to be combined together
into one program. The first major step of the series involves the function 702
(PRINT) operating on the symbolic string argument 704 (“HELLO”). The second
major step involves the function 706 (SETQ) operating on a variable 708 (C) and
the result obtained from the function 710 (addition) operating on the arguments
712 (the variable A) and 714 (the variable B). The SETQ function assigns a value
(its second argument) to a variable (its first argument). Finally, the third major
step involves the conditional function 716 (WHEN) operating on two arguments.
The first argument is a predicate function involving the relationship 718 (greater
than) operating on the arguments 720 (the variable C) and 722 (the number 4).
The second argument is the function 724 (PRINT) operating on the argument 726
(the variable C).

Graphically, this LISP program (S-expression) can be represented as a tree
whose internal points are labeled with functions and where the endpoints of the
lines radiating downwards from each such internal point is labeled with the
arguments to that function. In this graphical representation, one of the internal
points is the root of the tree and the root is labeled with the function that appears
just inside the first left parenthesis of the LISP S-expression.

Here, the root of the tree 730 is labeled with the function PROGN. The
function PROGN has 3 arguments. The 3 lines 732, 734, and 736 radiating

downwards from the internal point 730 (the root) correspond to the 3 arguments



WO 91/14990 PCT/US91/01970

32

of PROGN. The first argument of PROGN is function 738, the PRINT function.
It is the endpoint of the first line 732 radiating downwards from internal point 730.
The function PRINT has one argument 740. In the case of the PRINT function, it
has one argument which it prints. In this case, the argument is the symbolic string
740 “HELLO”. This string 740 “HELLO” is an atomic argument and appears at =
an external point (leaf) of the tree.

The second argument of PROGN is function 742, the SETQ funcﬁon. The
function SETQ has two arguments 744 and 746. The second argument of SETQ

€

is itself a function 746 (addition) operating on the two arguments 748 (the variable
A) and 750 (the variable B). The two arguments 748 and 750 are the variables A
and B (atoms in LISP). They appear at external points (leafs) of the tree. The
first argument of SETQ is 744 (the variable C) which is set to the sum of A and B. _

The third argument of PROGN is function 752, the WHEN function. The
function WHEN has two arguments, 754 and 756. The first argument of the
WHEN fﬁnction is a predicate function 754 (greater than). The predicate function
754 > has two arguments 758 (the variable C) and 760 (the number 4). The
predicate function 754 > returns a value of T (for “True”) or NIL (for “False™)
depending on whether its first argument 758 (the variable C) is greater than its
second argument 760 (the number 4). The WHEN function executes its second
argument 756 (the PRINT function) if its first argument 754 evaluates as T
(True). The PRINT function 756 has one argument 762 (the numeric value of the
variable C). Note that the PRINT function is flexible; it can accommodate a |
symbolic argument (such as “HELLO” at 740) or a number (such as the variable
C at 762). _

Although LISP can be run on virtually any computer, it is preferable to use
a computer especially designed for performing LISP functions. The Texas
Instruments Explorer II computer is particularly advantageous for these purposes
because it contains an especially designed microprocessor chip (called the Mega

Chip) which performs LISP functions directly. The Mega Chip contains basic
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microcode that correspond directly to the basic operations of LISP. These
include, among others, basic LISP operations for constructing stacks (which,
among other things, retain references to repeated calls on functions) and
performing other operations peculiar to LISP. A conventional microprocessor
chip (such as the Intel 80286 contained in the IBM AT computer) can be
programmed to carry out the various LISP functions by applying its generic
computer instructions to the requirements of LISP.

Moreover, it is especially advantageous to run LISP programs on
computers with large amounts of internal memory because the complex structures
that one develops using LISP in applications such as are described here often
require large amounts of memory. To the extent that computer memory is not
available as internal memory in a given computer, significant inefficiencies in
operation result. Since the solution to problems often require complex structures,
significant inefficiencies may make the difference between being able to solve the
problem or not solve the problem. The preferred embodiment of the present
invention uses an Explorer II computer with 32,000,000 bytes of internal memory
(32 megabytes). A typical computer configuration is depicted in Figure 24.

After generating a population of computational procedures, these
procedures are executed and a value in the environment involved is assigned to
the result of the execution. Thus an important requirement for any implementation
of this system is the ability to generate computational procedures (computer
programs) and then execute them to produce a result.

Using LISP representations on a computer having sufficient memory, the
present invention can solve problems previously intractable under prior art
methods. This disclosure presents a general method and specific examples of the
present invention. First, the process itself is described. Secondly, two examples
of its operation are presented. The examples illustrate the operation of the

present invention dealing with linear equations and sequences.
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Figure 3 is a flow-chart of the process of the present invention. The
process 1300 starts by the step Create Initial Population 1302 which creates a
number of programs (typically randomly). If the termination test for the process
1304 is satisfied (for example, by achieving a known best solution to the problem
among the population of individuals, by achieving a certain degree of improvement
in average fitness for the population, etc.), the process terminates at End 1301.
Otherwise, the process continues to iterate.

The basic iterative loop of the process begins with the step Execute Each
Program 1306 wherein each program executes. The next step, Assign Value and
Associate Value with each Program 1312, involves assigning a value (fitness) to
each result produced by execution, and associating the value with the producing
program. After assigning and associating, Remove Program(s) with relatively low
fitness, step 1314, causes the removal of the less fit members of the population
(the term “program(s)” used herein refers to the phrase “program or programs”).
Although not essential, step 1314 improves the average fitness and eases memory
requirements by keeping the population within reasonable limits. Step 1316,
Select Program with relatively high fitess values, picks at least one program to
use in the following operation. The selected program(s) have a relatively high
fitness value.

At step 1318, Choose an Operation to Perform, the process determines
which operation to begin. Crossover 1320 and Reproduction 1330 are the basic
operations performed; however, Permutation 1340 also plays a role. Optionally,
the operation of Mutation 1350 may be used. Typically, the vast majority of
operations are the reproduction and crossover operations.

.If, in selecting the groups of two parents above, the selection is carried out
with probabilities proportionate to fitness, the same individual may be selected
more than once (i.e., selection with replacement allowed). It should be recognized
that there are numerous slight variations of the overall process possible. Some of

these variations can be used as a matter of convenience.
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Crossover 1320 requires a group of at least two programs (typically two
parents), so second program(s) are picked to mate with at least one selected
program(s). No definitive method of choosing the second parent or parents exists,
but choosing only relatively high fitness individuals is preferable over choosing
randomly. Parents mate by matching selected program(s) with at least one
second picked program(s). For each mating, a crossover point is separately
selected at random from among both internal and external points within each
parent at Select Crossover Points 1322. Then newly created programs are
produced at Perform Crossover 1324 from the mating group using crossover.

Two parents would typically produce two offspring.

Note also no requirement exists that the population be maintained at a
constant size. The version of the crossover operation producing two offspring
from two parents has the cornvenient attribute of maintaining the population at
constant size. (Note that the other operations each produce one offspring from
one parent so that they too maintain constant population size). On the other hand,
if the crossover operation acts on a group of more than two parents, the size of
the population may grow. For example, if three parents formed a mating group,
each parent would have two crossover points selected for it and there would be
27 possible offspring (3 x 3 x 3). Even if the three offspring equivalent to the three
original parents are excluded, there would be 24 possible new offspring available.
In general, if there are N parents, then N=1 crossover points would be selected
for each and there would be NN—N new offspring available. When an operation
produces more offspring than parents, then either the population can be allowed to
grow or the population can be trimmed back to a desired (presumably constant)
size when the next round of fitness proportionate reproduction takes place.

For the operation of Reproduction 1330, the Selected program(s) remain
unchanged. The preferred method for selecting computational procedures for
reproduction is to select them with a probability proportional to their normalized

fitness.
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If the permutation operation is selected then the process continues at
Permutation 1340. A permutation point is selected at random in Select
Permutation Point 1342 from among the internal points within the selected
individual. Then Perform Permutation 1344 is performed, by reordering the
selected program’s sub-procedures, parameters, or both at the permutation points.

If the mutation option is chosen, Mutation 1350 occurs. The location of the
mutation is picked in Select Mutation Point 1352 for each Selected program.
Perform Mutation 1354 then randomly generates, for each Selected program, a
portion of a program and inserts it at the mutation point . The portion inserted is
typically a single point, but may be a sub-program.

Finally, the newly created programs are inserted into the population at 1360
and the process returns to the termination test 1304.

An audit trail can be created of the entire process from the creation of the
initial population of individuals to the current population of individuals. In fact,
compositions of LISP S-expressions provide an ideal way of representing audit
trails. Suppose we denote the individuals of the initial population as 11, 12, I3, ...
These individuals can be either stored directly or one can store the random

-algorithm (and random seeds) used to generate the initial members. When a
crossover is performed on two individuals (say 11 and 12, at point p of parent 1
and point q of parent 2), the LISP function LIST can be used to create an S-
expression involving 5 items — namely, the symbolic string “CROSSOVER?”, the
identities of the two individuals being crossed at the time (i.e. I1 and I2) and the
two crossover points (i.e. p and q). In this example, the S-expression would be
(CROSSOVER 11 12 p q). This new string would be the identity (i.e. audit trail) of
the newly created individual. If a crossover were later performed on the result of
the first crossover illustrated above at point r, with initial individual I3 at point s,
the audit trail of the resulting individual would be (CROSSOVER (CROSSOVER 11
I2pq) I3 rs). If a subsequent crossover'(or other operation) were performed on

this individual, this string would, in turn, become an argument of a new LIST
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operation. Similarly, when a permutation is performed on an individual, the LIST
can be employed to create an S-expression involving 3 items — namely, the
symbolic string “PERMUTATION”, the identity of the individual, and the
permutation point. An example would be (PERMUTE 14 t) if the permutation
operation had been performed on individual 14 at point t.

The first step in the iterative process involves activating each entity.
Activation means having each entity attempt to accomplish its goal, producing an
objective result. In the preferred embodiment, entities are cdmputer programs, so
activation requires executing the programs of the population. The second step in
the process assigns a fitness value to the objective result, and associates that
fitness value with its corresponding entity. For computer programs, the fitness
value is generally a number, or a vector, which reflects the program’s execution,
although the fitness value could be any symbolic representation used on a
computer.

In general, some of the entities will prove to be better than others when 2
value is assigned to them after their interaction with the “environment” of the
problem. The best value (fitness) may be the lowest number (as is the case here
where we are measuring the deviation between a result and a known perfect
solution). In other problems, the best value (fitness) may be the highest number
(e.g. scoring direct “hits”). The value (fitness) assigned may be a single
numerical value or a vector of values, although it often most convenient that it be
a single numerical value. In many problems, the best value is not known.
However, even in such problems, it is known whether lower (or higher) numbers
connote better fitness and the best value attained by the process at a given time
can be identified.

A useful method for organizing raw fitness values involves normalizing the
raw values, then calculating probabilities based on the normalized values. The

best raw fitness value is assigned an adjusted fitness of 1, the worst value is
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assigned a value of 0, and all intermediate raw values are assigned in the range of

0 to 1. The probability of being selected is determined by the equation:
f
Pli) - —
2
2f
j=1 ]
Where P(i) is the probability of selection for individual i having an adjusted fitness
of fj, and n is the total number of the population. Thus, an individual’s probability
of being selected equals the individual’s adjusted fitness value divided by the sum
of all the adjusted fitness values of the population. In this way, the normalized
fitness values range P (i) between 0 and 1, with a value of 1 associated with the
best fitness and a value of 0 associated with the worst, and the sum of all the
probabilities equals 1. 7

It may also be desirable to remove individual computation procedures from
the population with relatively poor fitness values. In practice, it may also be
convenient to defer this activity briefly until a new generation of individuals is
created.

It 1s a key characteristic of this overall process that the new populations of
individuals tends to display, over a period of time, increasing average value
(fitness) in the environment involved. Moreover, another characteristic of this
overall process is that if the environment changes, the new populations of
individuals will also tend to display, over a period of time, increasing average value
(fitness) in the new environment involved.

At any given time, there is one individual in every finite population having a
single fitness value that is the best amongst that population. Moreover, some
environments have a known best fitness value. Ekamples are when fitness is
measured as deviation from a known answer (e.g. the linear equations problem)
or number of matches (e.g. the sequence induction problem). The present
invention’s process may occasionally generate an individual whose value (fitness)

happens to equal the known best value. Thus, this overall process can produce the
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best solution to a particular problem. This is an important characteristic of the
overall process, but it is only one characteristic. Another important characteristic
(and the one which is more closely analogous to nature) is that a population of
individuals exists and is maintained which collectively exhibits a tendency to
increase their value (fitness) over a period of time. Also, by virtue of the many
individuals with good, but not the very best, fitness values the population exhibits
the ability to robustly and relatively quickly deal with changes in the environment,
Thus, the variety in the population lowers its overall average value (fitness);
additionally, the population’s variety gives the population an ability to robustly
adapt to changes in the environment.

In executing the overall process, it is often convenient to mark the one (or
perhaps two) individuals in the population with the best fitness value amongst that
population at any given time. Such marked best individuals are then not subject to
removal (as parents), but are instead retained in the population from generation to
generation as long as they remain the best. This approach prevents loss of the
most fit individual in the population and also provides a convenient reference point
for analytical purposes. If the problem involved happens to have a known best
solution, after a certain number of generations the best individual will often be the
known best solution.

The third step involves selecting entities which will be used to perform
operations. A number of selection methods exist which tend to select entities of
relatively high value. The theoretically most attractive way to select individuals in
the population is to do so with a probability proportionate to their fitness values
(once so normalized between 0 and 1). Thus, an individual with fitness of .95 has
19 times greater chance of being selected than an individual of fitness value .05,
Occasionally individuals with relatively low fitness values will be selected. This
selection will be appropriately rare, but it will occur.

If the distribution of normalized fitness values is reasonably flat, this method

is especially workable. However, if the fitness values are heavily skewed
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(perhaps with most lying near 1.00), then making the selection using a probability
that is simply proportionate to normalized fitness will result in the differential
advantage of the most fit individuals in the population being relatively small and
the operation of the entire process being prolonged. Thus, as a practical matter,
selection is done with equal probability among those individuals with relatively
high fitness values rather than being made with probability strictly proportionate to
normalized fitness. This is typically accomplished by choosing individuals whose
fitness lies outside some threshold value. One implementation of this approach is
to select a threshold as some number of standard deviations from the mean
(selecting for example, all individuals whose fitness is one standard deviation from
the mean fitness).

In connection with selection of individuals on the basis of fitness, we use the
phrase “relatively high value” herein to connote either selection based on a
probability proportionate to normalized fitness (the theoretically preferred
approach) or selection with equal probability among those individuals having
fitness values outside some threshold. In practice, choosing individuals from the
best half with equal probability is a simple and practical approach, although fitness
proportionate selection is the most justified theoretically.

After completing selection, the fourth step requires choosing an operation.
The possible operations include crossover, permutation, and reproduction. The
preferred operation is crossover, followed by reproduction, and lastly permutation.
However, this preference is only a generalization, different preferences may work
better with some specific examples. Thus the choice of operaﬁons should mainly
be the preferred operation; but that choice should remain flexible to allow for
solving differing problems.

As will be seen below, the key operation for introducing new individuals into
the population is the crossover operation. To illustrate the crossover operation for
this example, a group of two computational procedures is selected from among

the population of individual S-expressions having relatively high fitness values,
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although, it is not necessary to limit the size of the group selected to two. Two is
the most familiar case since it is suggestive of sexual reproduction involving a
male parent and a female parent. The underlying mathematical process can
obtain effective results by “crossing” hereditary information from three or more
parents at one time. However, the key advantage of being able to combine traits
from different individuals is attained with two parents. In its preferred form, all of
the individuals in the group of parents have relatively high fitness values. In its
most general form, the requirement is only that at least one of the individuals in
the group of parents has a relatively high fitness value. The other parents in the
group could be any member of the population. In either case, all mating involves
at least one parent with relatively high fitness values.

For purposes of this example problem, assume that a group of two parents
with relatively high fitness values has been selected. The group of parents is now
used to create two new computational procedures. Figure 4 graphically illustrates
a simple example of mating two parents to produce two new offspring for the
example problem involving linear equations. It should be noted that there need not °
be precisely two offspring and some versions of the basic concept here produce
only one offspring (or can produce more than two offspring).

Parent 1 is the computational procedure 400:

(- (+ (+ B1 B2) Al11) (* B2 A12))
This computational procedure can also be represented by the rooted pointlabeled
tree with root 410. Root 410 is the subtraction function and has lines to two
arguments, internal nodes 412 and 413. Node 412 is the addition function having
lines to internal node 414 and leaf 417 (the variable A11), its arguments. Node
414 is the addition function havin g lines to leafs 415 and 416 (the variables B1 and
B2, respectively). The root 410’s second argument, node 413, is the multiplication
function having lines to leafs 418 and 419 (the variables B2 and A12,
respectively), its two arguments. Sub-tree 411 comprises 413, 418, and 419.

Parent 2 is the computational procedure 420, (- (* Bl A22) (- B2 A11)). This
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cbmputational procedure can also be represented as the rooted point-labeled tree
with root 430. Root 430 is the subtraction function and has lines to two
arguments, internal node 432 and 434. Node 432 is the multiplication function
having lines to arguments at leafs 435 and 436 (the variables B1 and A22,
respectively). Node 434 is the subtraction function having lines to arguments at =
leafs 437 and 438 (the variables B2 and A11, respectively). Tree 421 comprises
430, 432, 435 and 436, which is all of parent 2 except for the root 430°s second
argument.

Selecting the crossover point starts by counting up the internal and external
points of the tree. The tree with root 410 has 9 points (410, 412, 413, 414, 415,
416,417,418, and 419). One of the 9 points (410,412, 413,414, 415, 416, 417,

418 and 419) of the tree for parent 1 (that is, the tree with root 410) is chosen at
random as the crossover point for parent 1. A uniform probability distribution is
used (so that each point has a probability of 1/9 of being selected). In this figure,
point 413 is chosen. Point 413 happens to be an internal point of the tree.

Similarly, one of the 7 points (430, 432, 434, 435, 436, 437 and 438) of the
tree for parent 2 (that is, the tree with root 430) is chosen at random as the
crossover point for parent 2. In this figure, point 434 is chosen. Point 434
happens to be an internal point of the tree. Each of the 7 points has a uniform
probability of 1/7 of being chosen.

Offspring 2 is produced by combining some of the traits of parent 1 and
some of the traits of parent 2. In particular, offspring 2 is produced by substituting
the sub-tree 411 (sub-procedure), beginning at the selected crossover point 413 s
[namely, (* B2 A12)] of parent 1, into the tree 421 of parent 2 at the selected
crossover point 434 of parent 2. The resulting offspring 470 thus contains the sub- |
procedure 411 (* B2 A12) from parent 1 as a sub-procedure at point 474, which
is attached to the second line from root 430 of tree 421. It is otherwise like parent
2 [that is, it has a root labeled with the subtraction function having (* B1 A22) as

its argument]. This particular mating produces the computational procedure 460,
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(— (* BI A22) (* B2 A12)), which is the known correct solution for the first
variable x1 for a pair of two linear equations in two variables. In other words, the
crossover involving parents 1 and 2 (neither of which were the correct solution to
the linear equations problem) using the crossover points 413 and 434 happened to
produce an offspring with best fitness (i.e. the known correct solution to the
problem).

Offspring 1 is produced in a similar fashion by combining some of the traits
of parent 1 and some of the traits of parent 2. In this case, the complementary
portions of each parent combine. In particular, offspring 1 is produced by
substituting the sub-tree (sub-procedure) beginning at the crossover point 434, ((-
B2 A11)] of parent 2, into the tree of parent 1 at the crossover point 413 of parent
1. The resulting offspring 450 thus contains the sub-procedure (- B2 A11) from
parent 2 as a sub-procedure at point 454. 1t is otherwise similar to parent 1. Root
452 is the subtraction function having lines to arguments at internal nodes 442 and
454. Node 442 is the addition function having lines to arguments at internal node
445 and leaf 444 (the variable A1l 1). Internal node 445 is the addition function
having lines to arguments at leafs 446 and 448 (the variables B1 and B2,
respectively). Node 454 is the subtraction function having lines to arguments at
leafs 456 and 458 (the variables B2 and Al 1, respectively).

If two external points (leafs) of the tree had been chosen as crossover
points, the crossover would have proceeded similarly with the labels (i.e.
arguments) for the two points being exchanged. Figure 5 illustrates the mating of
two parents with crossover occurring only at external points (leafs) for the linear
equations example problem. The first parent 500, (- (* A11 A12 A21) B1), is
represented by the tree with root 510. Root 510 is the subtraction function having
lines to arguments at internal node 515 and leaf 512 (the variable B1). Node 515
is the multiplication function having lines to arguments at leafs 516, 517, and 518
(the variables A11, Al12, and A21, respectively). External point (leaf) 512 has

been chosen as the crossover point for the first parent and contains the atomic
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argument of the variable B1. Note that, for purposes of illustrating the generality
of functions, one of the functions (*) has 3 arguments (A11, A12 and A21) in this
particular figure. The second parent 520 is represented by the tree with root 530.
Root 530 is the subtraction function having lines to arguments at leafs 534 and 532 !
(the variables A22 and B2, respectively). External point (leaf) 532 has been B
chosen as the crossover point for the second parent and contains the atomic
argument B2.

The result of the crossover operation is two new offspring 540 and 560.
The first offspring 540, (- (* A11 A12 A21) B2), is represented by the tree with
root 550. Root 550 is the subtraction function having lines to arguments at internal
node 545 and leaf 552 (the variable B2). Node 545 is the multiplication function
having lines to arguments at leafs 546, 547, and 548 (the variables A11, A12, and
A21, respectively). This tree is identical to the tree with root 510 (i.e. parent 1)
except that external point (leaf) 552 is now the argument B2 (instead of B1) from
parent 2. The second offspring 560, (— A22 B1), is represented by the tree with
root 570. Root 570 is the subtraction function having lines to arguments at leafs
574 and 572 (the variables A22 and B1, respectively). This tree is identical to the
tree with root 530 (i.e. parent 2) except that external point (leaf) 572 is now the
argument B1 (instead of B2) from parent 1. Thus, the arguments B1 and B2 have
been crossed over (exchanged) to produce the two offspring.

Figure 6 illustrates the mating of two parents with crossover occurring at
one internal point (i.e. a point labeled with a funétion) and one external point (i.e. a
point labeled with an atomic argument). The first parent 600, 2
(+ (+ A1l Al12) (* A21 A22)), is represented by a tree with root 610. Root 610 is
the addition function having lines to arguments at internal nodes 602 and 612.
Node 602 is the addition function having lines to arguments at leafs 604 and 606
(the variables A11 and A12, respectively). Node 612 is the multiplication function
having lines to arguments at leafs 614 and 616 (the variables A21 and A22,

respectively). Internal point 612 has been chosen as the crossover point for the
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first parent. The second parent 620, (- (- B1 B2) (* B3 B4)), is represented by a
tree with root 630. Root 630 is the subtraction function having lines to arguments
at internal nodes 622 and 624. Node 622 is the subtraction function having lines to
arguments at leafs 632 and 629 (the variables B1 and B2, respectively). Node
624 is the multiplication function having lines to arguments at 628 and 626 (the
variables B3 and B4, respectively). External point 632 has been chosen as the
crossover point for the second parent.

The result of the crossover operation is two new offspring. The first
offspring 640, (+ (+ All A12) B1), is represented by the tree with root 650. Root
650 is the addition function having lines to arguments at internal node 654 and leaf
652 (the variable B1). Node 654 is the addition function having lines to arguments
at leafs 656 and 658 (the variables A11 and Al2, respectively). This tree is
identical to the tree with root 610 (l.e. parent 1) except that the second argument
of the function + (addition) 652 is now the single argument (atom) B1 from parent
2. The second offspring 660, (— (— (* A1 A22) B2) (* B3 B4)), is represented by
the tree with root 670. Root 670 is the subtraction function having lines to
arguments at internal nodes 678 and 684. Node 678 is the subtraction function
having lines to arguments at internal node 672 and leaf 682 (the variable B2).
Node 672 is the multiplication function having lines to arguments at leafs 674 and
676 (the variables A2] and A22, respectively). Node 684 is the multiplication
function having lines to arguments at leafs 686 and 688 (the variables B3 and B4,
respectively). This tree is identical to the tree with root 630 (ie. parent 2) except
that the internal point 672 (i.e. the first argument of the subtrac.tion function 678) is
now a function (multiplication) instead of the atomic argument of the variable B1.

Thus, regardless of whether internal or external points are selected as
crossover points on the trees of the parents, the result of the crossover operation
is that offspring are produced which contain the traits of the parents. In fact, the
offspring resulting from crossover consist only of sub-procedures from their

parents. To the extent this is not entirely the case in actual practice, the result
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can be viewed as having been the result of applying crossover to the parents and
then allowing a mutation (random variation) to occur. The crossover operation
has the properties of closure and being well-defined.

Occasionally, a given individual may be mated with itself. In the
conventional genetic algorithm involving binary strings, crossover with identical
parents merely creates two copies of the original individual. When computational
procedures are involved, an individual mating with itself generally produces two
different individuals (unless the crossover points selected happen to be the same).

The three examples of mating with crossover were presented above in
terms of the graphical representation of the computational procedures. Graphical
representations are especially suited to demonstrating the “cut and paste”
character of the crossover operation. In addition, the graphical method of
representation is a general way of representing functions and the objects they
operate on (whether computational procedures or machines) and is also not
inherently associated with any particular programming language or any particular
mode of implementation. As previously discussed, the computer language LISP is
preferred for actually implementing these processes on a computer.

In Figure 6, the mating of two parents with crossover occurring at one
internal point and one external point is illustrated. Figure 6 will be referred to in
the following discussion since it encompasses the principles involved in both
Figures 4 and 5. Parent 1 in Figure 6 was the LISP computational procedure
(+ (+ A1l A12) (* A21 A22)) and parent 2 in Figure 6 was the LISP
computational procedure (- (~ B1 B2) (* B3 B4)). Using LISP computational
procedures, the mating of the two parents is implemented in the following way.

First, the number of functions and atomic arguments in the LISP
S-expression 600 in Figure 6 are counted. For LISP S-expression 600, there are 3
functions (i.e. 2 occurrences of + and 1 occurrence of *) and there are 4 atomic
arguments (i.e. A11, A12, A21 and A22). The total count is 7. This counting can

be easily performed in LISP in a variety of well-known ways. One especially
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simple way makes use of such basic LISP functions as CAR and CDR, which are
built mto the microcode of microprocessor chips that are especially designed to
handle LISP (such as found in the Texas Instruments Explorer II computer). The
CAR function in LISP allows one to examine the first item of any list. Here the
first item in computational procedure 600 is the first + function (i.e. the addition
function appearing just inside the outermost left parenthesis). The “+” is identified
as a function and included in the overall count. Meanwhile, the CDR function
eliminates the first item of the list by returning a list comprising all but the first
item. Thus, the remainder of the computational procedure (which is now smaller
than the original computational procedure 600 by the first element + ) can be
subjected to similar handling in a recursive way.

Secondly, having counted the number of functions and atomic arguments in
the computational procedure 600, a random number generator 1s called to select a
number between 1 and 7. Typically, a uniform probability distribution (i.e.
probability of 1/7 for each of the 7 possibilities is used). Such random number
generators are well-known in the art and often included in a package of utility
functions provided by computer manufacturers to users of their computers. Texas
Instruments provides a random number generator for generating a random integer
within certain bounds using a uniform probability distribution. If the random
number generator selects the integer 5, then the multiplication function * (shown
graphically at point 612) would be chosen as the crossover point for parent 1.
This identification is most simply accomplished by numbering the functions and
atomic arguments in the same order as the counting function encountered them
(although any ordering might be used for this purpose). In particular, the
crossover point is the first element of the sub-list (* A21 A22). This sub-list is the
third element of the list 600. Note that in LISP, a computational procedure is
represented by a list — an ordered set of items found inside a pair of parenthesis.

Similarly, the functions and atomic arguments in computational procedure

620 can be counted. The count for parent 2 would thus be 7. In this example, the
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atomic argument B1 is selected as the crossover point for parent 2. This atomic
argument happens to be in the second top-level element of the list 620 — namely,
the sub-list (— B1 B2). In fact, B1 is the second element of this second top-level
element of list 620.

The third step involves finding the “crossover fragment” for each parent. s
When the crossover point for a given parent is an atomic argument, then the
“crossover fragment” for that parent is simply the atomic argument. Thus, for
example, the crossover fragment for parent 2 is the atom B1. On the other hand,
when the crossover point for a given parent is a function, then the “crossover
fragment” for that parent is the entire list of which the function is the first element.
Thus, for example, the crossover fragment for parent 1 is the entire list (* A21
A22). By producing a “crossover fragment”, portions of each parent combine to
produce offspring.

In the above case, the list has no sub-lists. However, if this list contained a |
sub-list (that is, an argument that was itself a function of other arguments), then it
is carried along also. This point about sub-lists can be easily illustrated by
supposing that the first element of list 600 had been chosen as the crossover point
(instead of the multiplication * function). This first element is the function +. Then
the crossover fragment associated with this crossover point is the entire original
list 600 — that is, the list consisting of the function + and the 2 sub-lists
(+ A11 A12) and (* A21 A22).

The fourth step is to prbduce offspring 1. Offspring 1 is produced by
allowing parent 1 to perform the role of the “base” (“female”) parent and parent  »
2 to perform the role of the “impregnating” (“male”) parent. In general, an
offspring is produced within the female parent by replacing the crossover
fragment of female parent with the crossover fragment of the male parent. In
particular, the crossover fragment of the female parent [the entire list

(* A21 A22)] is replaced within the female parent by the crossover fragment of
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the male parent (the atomic argument B1). The resulting offspring 1 is thus:
(+ (+ A1l A12) B1).

The fifth step is to produce offspring 2. Offspring 2 is produced by allowing
parent 2 to perform the role of the “base” (“female”) parent and parent 1 to
perform the role of the “impregnating” (“male”) parent. In particular, the
crossover fragment of the female parent (the atomic argument B1) is replaced by
the crossover fragment of the male parent [the list (* A21 A22)]. The resulting
offspring 2 is thus: (- (- (* A21 A22) B2) (* B3 B4).

Thus, two parents can produce two offspring. In some variations of the
process, only one offspring is produced from a designated male-female pair;
however, it is most convenient to have two parents produce two offspring (since,
among other things, this produces the convenient, although not necessary, side
effect of maintaining the population size at a constant level). In this preferred
implementation of the crossover process, each offspring is composed of genetic
material that came from either its male parent or its female parent. The genetic
material of both parents finds its way into one of the two offspring.

For the operation of reproduction, one computational procedure with
relatively high fitness is selected from among the computational procedures in the
population. This computational procedure is retained in the population unchanged.
The preferred method for selecting computational procedures for reproduction is
to select them with a probability proportional to their normalized fitness. In other
words, there is survival and reproduction of the fittest amongst the computational

procedures in the population. One consequence of the reproduction operation is
that individuals in the population with relatively low fitness values are
progressively removed from the population.

It should be noted that the reproduction operation introduces nothing new to
the population. If only reproduction operations were performed, no new
individuals would be created. In fact, if only reproduction occurred, there would

be progressively fewer and fewer different individuals in the population (although
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the average fitness of the population would tend to increase). The reproduction
operation has the properties of closure and being well-defined. .

Reproduction of the fittest and crossover are the basic operations for
varying and improving the population of individual computational procedures. In
addition, there is a permutation operation. Permutation operates on a single
subject and produces a single computational procedure. The permutation
operation has the properties of closure and being well-defined. Figure 7 illustrates
the permutation operation on a computational procedure. '

The permutation operation is also performed on an individual in the
population with relatively good fitness. One purpose of permutation is to introduce
a new order among existing sub-procedures of a given computational procedure
(possibly allowing some new possibility for adaptation to emerge). However, the
chances of this happening are relatively remote (just as the chance of a random
mutation producing a mutant with high fitness is remote). The most important
purpose of permutation is, however, to improve various sub-procedures within a
given computational procedure already having high fitness. Potentially, a new
order for existing sub-procedures within a computational procedure already
having high fitness will be less subject to disruption due to the operation of the
Crossover operation.

In Figure 7, the subject computational procedure 900,
(--ABC)+DEF) (* GHI)), is represented by a tree with root 910. Root
910 is the subtraction function and has lines to arguments at internal nodes 902,
912 and 914. Node 902 is the subtraction function and has lines to arguments at
leafs 904, 906 and 908 (the variables A, B, and C, respectively). Node 912 is the
addition function and has lines to arguments at leafs with the variables D, E, and
F. Node 914 is the multiplication function and has lines to arguments at leafs with
the variables G, H, and L -

Only internal points are selected for the permutation operation. To

accomplish this, the internal points are counted and one of them is chosen at

4
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random from among the possibilities (typically using a uniform probability
distribution). The tree with root 910 has four internal points (910, 902, 912, and
914). Once the permutation point is chosen, all the lines radiating downwards
from that point are permuted (i.e. re-ordered) at random. If there are K lines
radiating from a given permutation point, then there are K-factorial possible
permutations. Thus, if K is 3 (as it is for internal point 902), then there are six
possible permutations (i.e. 3 times 2 times 1) possible at the permutation point 902.

One of the six possible permutations is chosen at random using a uniform
probability distribution over the six possibilities. One of the six possible
permutations of three items permutes the items A, B, C to C, A, B. Suppose this
one was chosen. The computational procedure 920, (- (-C A B) (+ DE F) *G
H I)), is represented by the tree with root 930; it is the tree that results when this
particular permutation is applied to the tree with root 910 using the permutation
point 902. In this new tree 930, the first line 922 radiating from the internal point
932 ends with the label C (instead of A as at 904). The second line 924 radiating
from internal point 932 ends with the label A (instead of B as at 906). The third
line 926 radiating from internal point 932 ends with label B (instead of C as at
908). The second and third lines from 930 have the same arguments as the
second and third lines from root 910. Thus, the permutation of A,B,C to C,AB at
permutation point 902 has been effected. If a particular permutation happens to
exactly reverse the order of items, it is called an inversion.

If internal point 910 had been chosen as the permutation point, the
computational procedure 940, (- (+ D E F)*GHI)(-ABCQ)), represented by
the tree having root 950 would be the result. In this tree, the first line 942
radiating dbwnwards from root 950 ends with the label + (addition). The second
line 944 radiating downwards from internal point 950 ends with the label *
(multiplication). The third line 946 radiating downwards from internal point 950
ends with the label — (subtraction). Thus, the three items -, +, * from tree 910 are

permuted into the new order +, *, —. Each function has the same arguments as
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the corresponding tree with root 910. If one views the permutation operation as
operating on the lines radiating downwards from the chosen point of permutation,
there is no fundamental difference between the permutation of arguments
illustrated by 920 and the permutation of functions illustrated by 940. The two are
included here for the sake of illustration.

Another possible step in the present invention’s process is mutation. The
mutation operation alters a randomly selected point within an individual. It has the
properties of closure and being well defined. Mutation, if performed at all, is
performed on only a tiny fraction of alleles in a tiny fraction of entities in the
population. It is preferably performed on randomly selected individuals in the
population having a relatively high fitness. The purpose of mutation is not to
accidently create a mutant individual with extremely high fitness and thereby
improve the population (although there is a very remote possibility that this may
happen). Mutation does, however, perform one role which is occasionally useful
— namely, it provides a way to introduce (or reintroduce) new genetic material
into the population. |

Generally, with even a modestly sized population, all the possible gene
values (alleles) will be represented somewhere in the population. This is almost
certainly going to be the case in the initial population if it is at least modestly sized
and if it is generated at random. In fact, a potential pitfall of priming an initial
population (especially if 100% of the initial population comes from priming) is the
possibility of accidently limiting the search possibilities to only a portion of the
potential search space. However, in the course of removing individuals with low
fitness, there is a remote possibility that particular alleles may actually disappear
completely from a population. There is also a remote possibility later the vanished
alleles may become necessary to achieve the next level of advance in fitness. To
forestall this remote conjunction of possibilities, the mutation operation may prove

useful. By randomly altering an allele in a tiny number of randomly chosen
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individuals from time to time, the mutation operation may reintroduce 4 vanished
allele back into a population.

Finally, the results of the chosen operation are added to the population.
When new individual computational procedures are created by any operation, they
are added to the existing population of individuals. The process of executing the
new computational procedures to produce a result and then assigning a value to
the results can be immediately performed. Thus, if the next step terminates the
iterative process, the newly created computational procedures will have a fitness
value.

The process of the present invention can benefit greatly from parallel
operation. By using parallel processing, the overall rate of activity rises in almost
direct proportion to the number of activities performed simultaneously. Figure § is
a block diagram depicting parallel processing of the present invention using two
sub-populations each having two operating units. Sub-population P] 1410 is
coupled to operating units U711 1411 and U12 1412. Sub-population P9 1420 is
coupled to operating units U2] 1421 and U22 1422. Communications channe]
1430 couples all four operating units. Figure 8 illustrates two sub-populations each
with two operating units; however, in general, there can be an arbitrary number of
sub-populations and arbitrary number of operating units involved.

Two types of parallel activity can occur. In the first type, each of the
operations (crossover, reproduction, permutation, etc.) are performed
simultaneously in parallel on different entities (or different groups of entities for
crossover) selected from a given population of individuals. If the entities are
computer programs, parallel processing is accomplished by a computing machine
having multiple operating units (control and arithmetic) capable of simultaneously
working on entities selected from a particular single computer memory area.

To show this first type of parallel processing, consider operating units U7 ]
1411 and U712 1412 which are coupled to sub-population P1 1410. Each operating

unit can access the sub-population to select entities for the operations based on
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their relative fitness, followed by performing the operation, adding new programs,
and the rest of the iterative process simultaneously.

The second type of parallel processing involves simultaneously occurring
activity in two or more different sub-populations. To show this type of parallel
processing, consider sub-population P1 1410 and sub-population P2 1420. While
P1’s two operating units operate on P1, P2’s two operating units operate on P).
Both types of parallelism are highly efficient because very little information need
be communicated along the communication channel 1430. In addition, each
operating unit need perform only a few very simple activities in response to the
information received from the communications channel 1430.

Communication and coordination is performed by communications channel
1430, which couples all the operating units associated with the various sub-
populations. In a computer, the communication channel is a communication bﬁs.

To illustrate the efficiency of parallel processing, let us suppose that
selection is performed using probabilities proportionate to fitness. The
computation of this probability for a particular individual typically requires two
pieces of information — namely, the value (fitness) assigned to the result of

- executing the particular individual and the total of all such values for all individuals
in the entire population. Typically this calculation is performed by dividing the
individual’s assigned value (fitness) by the total for the entire population. Once the
total has been once computed for the initial entire population, the total is easily
modified by incrementing it for each newly created individual and by debiting it for
each individual that is removed.

This simple computation can be performed by each operating unit whenever
it receives iﬁformation via the communications channel 1430 about any insertion
or removal of an individual in the population. Similarly, each operating unit must
transmit information along the communications channel 1430 to all other operating
units whenever it inserts or removes any individual from the sub-population which

it accesses. The message consists of the increment (in the case of an insertion)
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or the decrement (in the case of a removal) in the total value (fitness) of the
population. Note that these messages are relatively short and require very little
effort to send and act on in comparison to the considerably larger effort needed to
perform the iterative process. Because processing messages is relatively minor in
comparison to performiﬁg the genetic algorithm, the overall rate of activity in this
parallel configuration rises almost in direction proportion to the number of
activities being performed in parallel. In the case of computer programs, the
benefits of parallel activity (using parallel operating units accessing parallel sub-
populations) is manifested in terms of a rate of overall computer processing
activity, rising almost in direct proportion to the number of parallel activities. That
is, the amount of computation performed per unit of time rises almost in direct
proportion to the number of parallel activities.

From time to time, the communications channel is also used to exchange
large groups of individuals between the sub-populations so that each sub-
population receives new genetic material that have achieved relatively high values
of fitness from other sub-populations. These occasional transmissions of
information add to the administrative overhead of a parallel system; however,
because they occur only occasionally (i.e. after many generations of activity
confined to the sub-populations), they have only a minor effect on the overall
efficiency of the parallel configuration. -

Two examples (Solving Linear Equations and Sequence Induction) are

discussed below.

SOLVING LINEAR EQUATIONS

In this example, the environment in which adaptation takes place consists of
n sets of two consistent non-indeterminate linear equations in two variables. If we
delete the subscripts identifying the particular pair of equations involved, the
typical equation pair is:

All X1 + Al12 X2 = B1
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A21 X1 + A22X2 = B2

Without loss of generality, the coefficients of each pair of equations have
been normalized so that the determinant is 1. This particular problem has a
known mathematical solution for the first variable (x1) which, if written as an
S-expression in the LISP programming language, is (— (* Bl A22) (* B2 A12)).
A similar S-expression gives the solution for the second variable (x2). A natural
metric for evaluating an S-expression’s proffered solution is the sum of the
deviations from the known mathematical solution produced by the proffered S-
expression. This sum is the aggregate, over the series of all pairs of equations, of
the Euclidean distance between the proffered solution point and the known actual
solution point. A sum of zero for a particular S-expression means the expression
is a perfect solution. A very small sum represents the kind of solution acceptable
in practice from a digital computer. Since the solution for the second variable (x2)
is directly derivable from either of the two (consistent) equations of a given pair, a
proffered solution to this problem can be viewed as simply a single valid S-
expression whose return value is the solution for the first variable (x1) for each
pair of equations in the series. The proffered solution can then be evaluated by
deriving the solution for the second variable from the first; then computing the
Euclidean distance. Finally the distances are accumulated over the series. This
approach happens to make the atomic arguments A12 and A22 extraneous to the
solution for the variable (x1).

Figure 9 shows a pair of linear equations having two variables x1 and x2.
In Figure 9, the first equation 310 corresponds to the straight line 320 drawn on
the plane defined by the horizontal axis X1 330 and vertical axis X2 340. The
second equation 350 corresponds to the straight line 360 drawn on the same
plane. The point of intersection 370 has a coordinate 380 (x1) along the horizontal
axis X1 330 and a coordinate of 390 (x2) along the vertical axis X2 340.

The universe from which proffered solutions for the first variable x1 consists

of any valid LISP S-expression (with any level of embedding of functions)
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cohstructed from the useful input atomic arguments (A11, A21, B1, and B2), the
extraneous input atomic arguments (A12 and A22), the useful functions of
multiplication and subtraction ( * and - ), and the extraneous function of addition
(+). The presence of an extraneous function and arguments tends to make this
example problem more realistic.

The search space in which the solution to this problem lies is thus a very
large, non-linear, non-continuous space of rooted trees whose points are labeled
with various mathematical symbols (either functions or arguments). A large
number of possible tree structures can represent valid LISP S-expressions, even if
one arbitrarily limits the level of embedding and all the functions have only two
arguments. In addition, there are many ways of labeling the internal points of
these trees with the available functions and there are many ways of labeling the
external points (leafs) of these trees with the available arguments. Some LISP S-
expressions in the search space equal mathematically, the most parsimonious
solution cited above [for example, adding in (- A11 Al1) to the solution].
However, these occasional numerically equivalent S-expressions provide no
usable simplification of the problem or usable reduction of the large number of
possible S-expressions involved here.

Solving these problems starts by generating a population of individual
S-expressions using the functions *, —, and + and the atomic arguments All, Al12,
A21, A22, B1, and B2. The initial population can be generated entirely at random.
That is, starting at the top of the tree, one of the available functions or arguments
is chosen at random. If an atomic argument is chosen as this first choice, the
process is complete and the S-expression consists of this single atom. If a
function is chosen, the process continues. If the function chosen requires K
arguments (and K is 2 for all three of the functions in this problem example), then
a similar random selection is made for each end-point of each of K lines radiating
downwards from the initial point. That selection is also made at random and may

be an atomic argument or a function. If an atomic argument is selected, that
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particular point becomes an external point (leaf) on the tree and no further
attention is paid to that line. If a function is selected, then the process continues
recursively with additional selections being made in the same manner. When, at
some point, atomic arguments have been selected for all external points, the
process of randomly constructing the tree is then completed. The initial population s
is merely a random subset of the domain in which the subsequent search is to
take place.

For some problems, the system can be primed by including some
S-expressions (6r some portions of S-expressions) which are believed to be
important in dealing with the problem at hand. In addition, the operation of the
system may be interrupted at any point and restarted with the population of
individuals existing at the end of the previous run. That method of re-starting
operations can be viewed as priming the system with an entire population. Figure
10 1s an example of randomly generating an initial population of S-expressions
using the example expression 262, which is:

(+ (- B1 A12) (* (* B2 A21) B2))
Starting at the root 264 of the tree, one of the available functions (*, +, or —) or
one of the available atomic arguments (A11, A12, A21, A22, Bl or B2) is
selected. In this figure, the function + (addition) was selected at random to
appear at the root 264 of the tree. Since this function has two arguments, there
are two lines 266 and 268 radiating downwards from the internal point 264. For
the endpoint 270 of the line 266 and endpoint 272 of the line 268, another similar
random selection must be made from the set of available functions or available 5
arguments. For point 270, the function — (subtraction) has been selected. Since |
this function also has two arguments, there are two lines 274 and 276 radiating
downwards from point 270. For the endpoint of each such radiating line, a similar
random selection must be made. Here, the variable B1 has been selected for the
endpoint 278 of the line 274. Since B1 is an atomic argument, that completes the

process for this branch of the tree. Also, the variable A12 has been selected for
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the endpoint 280 of the line 276. This completes the process for the line 266
radiating downwards from the root 264.

For the second argument of root 264 at the internal point 272, a function *
(multiplication) has been selected. Since this function has two arguments, two
lines 282 and 284 radiate downward from point 272. For point 286 at the end of
line 282, another function * (multiplication) has been selected. The endpoint 288
of the first line 290, which radiates downward from point 286, has the atomic
argument of the variable B2. The endpoint 292 of the second line 294, which
radiates from point 286, has the atomic argument of the variable A21. Similarly,
the line 284 radiating downward from point 272 has the atomic argument of the
variable B2 at its endpoint (leaf) 296. This completes the random generation of
the tree and corresponding S-expression.

Shown below are some examples of possible S-expressions for this example
which could have been generated at random as the initial population of individuals:

(I) (+Al11 A12)

(2) (- (*B1 B2) A22)

(3)  (+ (- BI Al12) (* (* B2 A21) B2))
Examining one of these expressions, example (1) consists of the sum of the
coefficients of the first linear equation. Its interpretation is the solution for the first
variable (x1) in a system of two linear equations in two variables always equals
the sum of A1l and A12, regardless of any of the other coefficients or constants
in the equations. One would expect this wroﬁg expression to usually produce
proposed solutions which are far from the correct solutions. Of course, this
incorrect S-expression might occasionally, by coincidence, produce the correct
solution for a particular pair of equations.

Once the population of individuals is generated, each of the S-expressions in
the population is executed (i.e. evaluated in LISP) to produce a result. In LISP,
each S-expression can be executed to return some kind of numerical', symbolic,

logical, or other result. In practice, this execution is repeated over a series (i.e.
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different games for the Prisoner’s Dilemma and different pairs of linear equations
for the current example problem) to avoid accidentally misleading conclusions. By
performing this evaluation over a series of different situations, a better measure of
performance is obtained. For example, (+ A1l Al12) might give the correct
solution to the first variable (x1) for some unusual set of linear equations in two
variables, though not the solution to the problem in general.

For purposes of this example problem and in order to simplify the
discussion, the “result” of evaluating the S-expression here is-simply a numerical
value for the first variable x1. As previously mentioned, if the possibility of parallel
lines (i.e. inconsistent equations) were allowed in this example, the “result” might
be either numeric or symbolic. Alternately, the “result” could be the pair (vector)
of numbers (x1, x2) specifying the coordinates of the point in the plane where the
two lines intersect. Once the result of the execution of the computational
procedure (S-expression) takes place, the result can be assigned a value in the
particular énvironment involved for the particular problem involved.

In the case of this example problem, the solution for the second variable
(x2) 1s directly derivable from the first variable (x1) using either of two
(consistent) equations of a given pair of equations. The variables x1 and x2
correspond to a point in the plane (the point whose horizontal coordinate is x1 and
whose vertical coordinate is x2) while the actual solution corresponds to another
point in the plane. The distance between the two points in the plane can be
computed. The distances obtained by evaluating the S-expression using the other
pairs of linear equations can be similarly computed. Thercumulative distance
provides a natural measure of value (fitness) of a particular individual S-
expression in this environment. If the sum of these distances for a particular
individual S-expression is zero, then the S-expression has the best value (best
fitness) in this environment because it produces points of intersection that are
exactly correct in each case (i.e. have zero distance, in each case, from the

correct points).

N
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INDUCTION ON SEQUENCES

In this example problem, the environment in which adaptation is to take

place consists of a single given sequence:

50,51.52,83, ... ,Si, ..
The goal is to produce a computational procedure (S-expression) for the sequence
(that is, a computational procedure which gives Sj for any index i). A proffered
solution to this sequence induction problem consists of a LISP S-expression using
the argument INDEX which gives the value of the sequence for position INDEX
of the sequence. The first element of a sequence is considered to have an
INDEX of 0 (not 1) by convention. For example, the sequence 0, 2, 4, 6, 8, 10,...
can be represented by the computational procedure (* 2 INDEX). That 18, the
value of the sequence for position INDEX of the sequence is 2 times the INDEX.

This problem of sequence induction, of course, has no strictly mathematical
solution. Nonetheless, we can evaluate proffered solutions according to how well
they match the available known elements of the sequence. In this case, a higher
value for the matching function is better. The known best value for the matching
function is the value that occurs if all the available known elements of the
sequence exactly match the result of executing the computational procedure
under consideration.

Since many sequences are defined recursively (that is, earlier elements in
the sequence are used to define later elements), it is desirable to have a function
for referencing the value of the sequence for k positions earlier in the sequence
than the current position (i.e. the position numbered INDEX). For example, it may
be necessary to express Sj in terms of Si.] (the previous element of the
sequence) or in terms of Sj-k (k elements earlier in the sequence). Note that if
the value of k were zero, negative, or greater than INDEX, the attempted

reference would be to values of the sequence which do not exist. For these non-
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existent positions, a default value should be defined for the function to make it
complete. Thus, the referencing function should have two arguments. The first
argument 1s k and the second argument is a default value. The referencing
function is termed “&”.

The function & (k, D) of the variables k and D returns the value of the
sequence for position INDEX-k whenever INDEX-k lies between 0 and
INDEX-1, and, otherwise, this function returns the default value D. For example,
the sequence 2, 4, 8, 16, 32,... can be represented by the computational procedure
(* 2 (& 1 1)) because the value of the sequence for position INDEX is generally 2
times the value of the sequence for position INDEX-1. Note that when INDEX is
0 (and a reference is attempted for sequence position —1), the value of the
sequence is 2 times the default value of 1.

Similarly, for example; the Fibonacci sequence:

1,1,2,3,5,8,13,21, 34,55, ...
may be expressed as Sj = Si-2 + Si-1 (with the understanding that if Sj-2 or Sj-]
refer to sequence elements earlier than sequence element 0, a default value of 1
will be used). The Fibonacci sequence can also be represented by the doubly
recursive computational procedure: _

F(&1D)(&21))

Except for the special argument INDEX and except for the special referencing
function & needed to allow references to the sequence itself, the process of
sequence induction can proceed using the same functions available in LISP as
were used for the linear equations example.

Figure 11 illustrates the crossover operation applied to'two parents whose
functions and arguments include the special function & and the special argument
INDEX appropriate for the sequence induction problem. The first parent is
computational procedure 1000, (+ (* INDEX 2) (& 2 1)), represented by the tree
with root 1010. Root 1010 is the addition function and has lines to arguments at

internal nodes 1016 and 1012. Node 1016 is the multiplication function and has
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lines to arguments at leafs 1014 and 1015 (the variable INDEX and the number 2.
respectively). Node 1012 is the & (referencing) function and has lines to
arguments at leafs 1018 and 1019 (the numbers 2 and 1, respectively). Sub-tree
1011 comprises 1012, 1018, and 1019. The argument INDEX appears as one of
the arguments 1014 of the multiplication function (*) 1016. The referencing
function & appears at internal point 1012 of the tree and operates on the
arguments 1018 and 1019 (the numbers 2 and 1, respectively). This function (& 2
1) means give the value of the sequence 2 positions earlier in the sequence (or
gives the default value 1 if the current position of the sequence is only O or 1).
The second parent is computational procedure 1020, (+ (& 1 1) (&20)),
represented by the tree with root 1030. Root 1030 is the addition function and has
lines to arguments at internal nodes 1022 and 1032. Node 1022 is the & function
and has lines to arguments at leafs 1024 and 1026 (the numbers 1 and 1). Node
1032 is the & function and has lines to arguments at leafs 1034 and 1036 (the
numbers 2 and 0, respectively). Tree 1021 comprises 1030, 1022, 1024, and 1026.
Internal point 1012 of the tree with root 1010 and internal point 1032 of the tree
with root 1030 are chosen as the crossover points.

The first offspring 1040, (+ (* INDEX 2) (& 20)), is represented by the
tree with root 1050. Root 1050 is the addition function and has lines to arguments
at internal nodes 1042 and 1052. Node 1042 is the multiplication function and has
lines to arguments at leafs 1044 and 1046 (the variable INDEX and the number 2,
respectively). Node 1052 is the & function and has lines to arguments at leafs
1048 and 1054 (the numbers 2 and 0, respectively).

The second offspring 1060, (+ (& 1 1) (& 2 1)), represented by the tree
with root 1070 is composed of tree 1021 of the second parent 1020 combined with
the sub-tree 1011. Root 1070 is the addition function and has lines to arguments
at internal nodes 1062 and 1072. Node 1062 is the & function and has lines to
leafs 1064 and 1066 (the numbers 1 and 1). Node 1072 is the & function and has
lines to leafs 1074 and 1076 (the numbers 2 and 1, respectively). This second
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offspring is the known correct solution to the problem of inducing the formula for
the Fibonacci sequence.

It should be noted that the sequences involved here need not be
deterministic sequences. Instead, they can be produced by probabilistic
processes. For example, the sequence 0, 1, 2, 5, 4, 5, 8, 7, . . . might be generated =
by simply making the value of the sequence equal to INDEX 75% of the time and
equal to (+ INDEX 2) 25% of the time. For example, when INDEX is 0, 1, 2, 4, 5,
and 7, the value of the sequence was 0, 1, 2, 4, 5, and 7, respectively. That is, the
value of the sequence was equal to INDEX. But, when INDEX was 3 and 6, the
value of the sequence was 5 and 8, respectively. That is, the value of the
sequence was equal to INDEX plus 2. In these cases, the perfect matches will
not be obtained; however, higher fitness levels will be associated with
computational procedures that produce matches more often than others.

Many seemingly different problems in artificial intelligence, symbolic
processing, and machine learning can be viewed as requiring discovery of a
computer program that produces some desired output for particular inputs. When °
viewed in this way, the process of solving these seemingly different problems

- becomes equivalent to searching a space of possible computer programs for a
most fit individual computer program. This most fit individual computer program
can be found by applying the techniques of the present invention described herein,
in which populations of hierarchical entities of various sizes and shapes, such as
computer programs, are genetically bred.

This invention is useful for solving at least three groups of problems. N

The first group of problems consists of a problem that presents itself under
at least scv'en different names, namely, the problem of symbolic function |
identification, symbolic regression, empirical discovery, modeling, induction, chaos,
and forecasting.

The second group of problems contains several similar, but different,

problems. This group contains the problems of symbolic integration, symbolic
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differentiation, symbolic solution of differential equations, symbolic solution of
integral equations, symbolic solution of mathematical equations, and inverses.

The third group of problems contains several other seemingly different but
related problems, namely, function learning, planning, automatic programming,
game playing, concept formulation, pattern recognition, and neural net design.

All of these problems can be formulated and then solved in the manner
described herein.

Depending on the terminology of the particular field of interest, the
“computer program” may be called a robotic action plan, a strategy, a decision
tree, an econometric model, the State transition equations, the transfer function,
mathematical expression, or perhaps merely a composition of functions. Similarly,
the "inputs” to the "computer program” may be called sensor values, state
variables, independent variables, attributes of an object, or perhaps merely, the
arguments to a function. However, regardless of different terminology used, the
underlying common problem is discovery of a computer program that produces

some desired output value when presented with particular inputs.

First Group - Symbolic Function Identification, Symbolic Regression,
Empirical Discovery, Modeling, Induction, Chaos and Forecasting

The problem of symbolic function identification appears under several
different-names, including symbolic regression, empirical discovery, modeling,
induction, chaos and forecasting.

Symbolic function identification requires finding a function in symbolic form
that fits given data points. In other words, symbolic function identification requires
finding a function that produces the values of the dependent variable(s) for given
values of the independent variable(s). This problem is also called symbolic
regression, empirical discovery, induction, modeling, chaos, or forecasting. The
function that describes the system can then be used to construct a model of the
process. The model of the process can then be used in forecasting future values

of the variables of the system. In particular, forecasting is done by setting the
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independent variables to values outside the domain of values of the original given
data points. Typically, time is the independent variable in forecasting problems. -

Regardless of the name, this problem requires finding a function in symbolic
form that fits the given values of the dependent variable(s) associated with the
particular given values of the independent variable(s).

While conventional linear, quadratic, or higher order polynomial regression
requires merely finding the numeric coefficients for a function of a pre-specified
functional form, symbolic regression involves finding both the appropriate

functional form and the appropriate numeric coefficients

Group 2 - Symbolic Integration, Symbolic Differentiation, Symbolic
Solution of Differential Equations, Symbolic Solution of Integral
Equations, Symbolic Solution of Mathematical Equations, and Inverses

Symbolic integration and symbolic differentiation require the finding of a
function, in symbolic form, which is the integral or derivative of an unknown curve
represented by a sampling of data points.

Symbolic solution to differential equations, integral equations, or
mathematical equations requires the finding of a function in symbolic form, which
when substituted into the equation, satisfies the equation( in the case of differential
equations, also satisfies the initial conditions associated with the equation).

Symbolic solutions to inverse problems require the finding of a function in
symbolic form which generates the indepéndent variable from a sample of values

of the dependent variable.

Group 3 - Function Learning, Planning, Automatic Programming,
Game Playing, Concept Formulation, Pattern Recognition, and Neural
Net Design

Function learning of a function requires developing a co.mposition of
functions that can return the correct functional value after seeing only a relatively
small number of specific examples of combinations of arguments and their
associated functional value. An example of machine learning of a function is the

problem of learning the Boolean multiplexer function.
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Planning requires generation of a plan that receives information from
sensors abotit the state of various objects in the environment and uses that
information to select a sequence of actions to execute to change the state of the
objects in the environment.

Automatic programming involves the development of a suitable computer
program using genetic techniques. The computer program automatically created
will generate desired output for a given set of Inputs.

Game playing requires the development of a strategy for playing a game.

Concept formation requires developing a computer program for classifying
any object in a universe into a particular class on the basis of the attributes of that
object.

Pattern recognition requires finding a computational procedure that
processes an input image to determine whether a particular pattern is present in
the input image.

Neural net design requires finding a network whose points contain linear
threshold elements and whose lines are weighted so that the output of the
network performs a certain task (such as classification) using the inputs to the
network.

We describe the use of non-linear genetic algorithm by specifying (1) the
nature of the structures that undergo adaptation in this process, (2) the search
space of structures, (3) the initial structures, (4) the environment, (5) the fitness
function which evaluates the structures in their interaction with the environment,
(6) the operations that are performed to modify the structures, (7) the procedure
for using the information available at each step of the process to select the
operations and structures to be modified, (8) the state (memory) of the algorithmic
system at each point in time, and (9) the method for terminating the process and
identifying its output.

The structures that undergo adaptation in the process are hierarchically

structured computer programs whose size and shape can dynamically change
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during the process. This is in contrast to the one-dimensional linear strings
(whether of fixed or variable length) of characters (or other objects) used in
conventional genetic algorithms.

Various functional programming languages (e.g. FORTH) might be suitable
for accomplishing the work described in this invention. However, the LISP
programming language (first developed by John McCarthy in the 1950's) is
especially well-suited for handling hierarchies, recursion, logical functions,
compositions of functions, self-modifying computer programs, self-executing
computer programs, iterations, and complex structures whose size and shape is
dynamically determined (rather than predetermined in advance). The LISP
programming language ié especially appropriate when the structures to be
manipulated are hierarchical structures. Moreover, both programs and data have
the same form in LISP.

The set of possible S-expressions for a particular domain of interest
depends on the functions and atoms that are available in the domain. The possible
S-expressions are those that can be composed recursively from the available set
of n functions F = {f1> 2, ..., fn } and the available set of m atoms A = {a], a2, ...,
am}. Each particular function f in F takes a specified number z(f) of arguments
b1, b2, ...., bz(f).

Note that infix form is used to represent the application of a function to its
arguments in the LISP programming language. Thus, for example, (+ 1 2 )
evaluates to 3. In Common LISP, any argument can itself be an S-expression so
that, for example, (+1 (*2 3)) evaluates to 7. The S-expressioﬁ +12{F (>
TIME 10) 3 4)) demonstrates the "function” > being applied to the variable atom
TIME and the constant atom 10. The sub-expression (> TIME 10) then
evaluates to either T (True) or NIL, and this value becomes the first argument of
the "function” IF. The function IF returns either its second argument (the

constant atom 3) or the third argument (the constant atom 4) according to
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whether the first argument is T or NIL, respectively. The entire S-expression
thus evaluates to either 6 or 7.

The search space for non-linear genetic algorithms is the hyperspace of
valid LISP S-expressions that can be recursively created by compositions of the
available functions and available atoms for the problem. This search space can,
equivalently, be viewed as the hyperspace of rooted point-labeled trees in the
plane having internal points labeled with the available functions and external points
(leaves) labeled with the available atoms.

The process of generating the initial random population begins by selecting
one of the functions from the set F at random to be the root of the tree.
Whenever a point is labeled with a function (that takes k arguments), then k lines
are created to radiate out from the point. Then for each line so created, an
element is selected at random from the entire combined set C to be the label for
the endpoint of that line. If an atom is chosen to be the label for any point, the
process is then complete for that portion of the tree. If a function is chosen to be
the label for any such point, the process continues. The probability distribution
over the atoms and functions in the combined set C and the number of arguments
required for each function determines an average size for the trees generated by
this process. In this invention, this distribution is typically a uniform random
probability distribution over the entire set C (with the exception of the root of the
tree where the selection is limited to just the functions in F); however, it is
possible to bias the initial population for a particular problem with a non-uniform
distribution or with entire seeded individuals that might be useful in solving the
particular problem at hand.

Each individual in a population is assigned a fitness value as a result of its
interaction with the environment. Fitness is the driving force of Darwinian natural
selection and genetic algorithms.

The environment is a set of cases which provide a basis for evaluating

particular S-expressions.
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The "raw fitness" of any LISP S-expressions is the sum of the distances
(taken over all the environmental cases) between the point in the solution space
(whether real-valued, complex-valued, vector-valued, symbolic-valued, Boolean-
valued, or integer-valued) returned by the S-expression for a given set of
arguments and the correct point in the solution space.

If the solution space is integer-valued or real-valued, the sum of distances is
the sum of absolute values of the differences between the numbers involved. In
particular, the raw fitness r(h,t) of an individual LISP S-expression h in the

population of size M at any generational time step t is:

Ne
r(h,t) = 2 V(i) -SQG!
j=1

where V(h,j) is the value returned by the S-expression h for environmental case j
(of Ne environmental cases) and where S(j) is the correct value for
environmental case j.

If the solution space is Boolean-valued, the sum of distances is the number
of mismatches. If the solution space is symbolic-valued, the sum of distances is,
similarly, the number of mismatches. If the solution space is complex-valued,
vector-valued, or multiple-valued, the sum of the distances is the sum over the
various components. Either the sum of the absolute values of the distances or the
Euclidean distance (square root of the sum of the squares of the distances) can be
used.

The closer this sum of distances is to zero, the better the S-expression.

Each raw fitness value is then adjusted (scaled) to produce an adjusted
fitness measure a(h,t). The "adjusted fitness" value is |

ath,t) = 1/ (1+r(h,t)),
where r(h,t) is the raw fitness for individual h at time t. Unlike raw fitness, the
adjusted fitness is larger for better individuals in the population. Moreover, the

adjusted fitness lies between 0 and 1.
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Each such adjusted fitness value a(h,t) is then normalized. The "normalized
fitness" value n(h,t) is
M
ntht) =atht)/ X a(t)
J=1
The normalized fitness not only ranges between 0 and 1 and is larger for better
individuals in the population, but the sum of the normalized fitness values is 1.
Thus, normalized fitness is a probability value.

The raw fitness, adjusted fitness and normalized fitness can be computed in
several alternative ways. The normalized fitness should, however, (i) range
between 0 and 1, (ii) be larger for better individuals in the population, and (iii) the
sum of the normalized fitness values should be 1.

If the solution space is integer-valued or real-valued, the sum of squares of
distances can, alternatively, be used to measure fitness (thereby increasing the
influence of more distant points). It is also possible for the fitness function to
consider factors in addition to correctness (e.g. efficiency of the S-expression,
parsimony of the S-expression, compliance with the initial conditions of a
differential equation, successfully reaching a sub-goal, etc.) It is also possible to
compute the fitness function using a sampling of the possible environmental cases
(including possibly a sampling that varies from generation to generation to
minimize the possible bias resulting from such sampling within any one
generation).

The two primary operations for modifying the structures undergoing
adaptation are Darwinian fitness proportionate reproduction and crossover
(recombination). In addition to the two primary genetic operations of fitness
proportionate reproduction and crossover, there are other secondary operations
for modifying the structures undergoiﬁg adaptation. They are mutation,
permutation, editing, and the "define building block" operation.

The operation of fitness proportionate reproduction for non-linear genetic

algorithms is the basic engine of Darwinian reproduction and survival of the fittest.
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It is an asexual operation in that it operates on only one parental S-expression.
The result of this operation is one offspring S-expression. In this operation, if sj (t)

is an individual in the population at generation t with fitness value f (si (t)), it will

be copied into the next generation with probability:

M
f (5 (0)/ 2 £ (s500).
j=1

The crossover (recombination) operation for non-linear genetic algorithms is a
sexual operation that starts with two parental S-expressions. At least one of the
parents is chosen from the population with a probability equal to its respective
normalized fitness. The result of the crossover operation is two offspring S-
expressions.

Every LISP S-expression can be depicted graphically as a rooted point-
labeled tree in a plane whose internal points are labeled with functions, whose
external points (leaves) are labeled with atoms, and whose root is labeled with the
function appearing just inside the outermost left parenthesis. The operation begins
by randomly and independently selecting one point in each parent using a
specified probability distribution (discussed below). Note that the number of
points in the two parents typically are not equal. As will be seen, the crossover
operation is well-defined for any two S-expressions. That is, for any two
S-expressions and any two crossover points, the resulting offspring are always
valid LISP S-expressions. Offspring contain some traits from each parent.

The "crossover fragment” is produced by deleting the crossover fragment
of the first parent from the first parent, and then impregnating the crossover
fragment of the second parent at the crossover point of the first parent. In
producing this first offspring the first parent acts as the base parent (the female
parent) and the second parent acts as the impregnating parent (the male parent).

The second offspring is produced in a symmetric manner.

)
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Note also that because entire sub-trees are swapped, this genetic crossover

(recombination) operation produces valid LISP S-expressions as offspring,
regardless of which point is selected in either parent.

Note that as the root of one tree happens to be selected as the crossover
point, the crossover operation will insert that entire parent into the second tree at
the crossover point of the second parent. In addition, the sub-tree from the
second parent will, in this case, then become the second offspring. If the root of
both parents happens to be chosen as crossover points, the crossover operation
simply degenerates to an instance of fitness proportionate reproduction.

Note that as an individual mates with itself, the two resulting offspring will
generally be different (if the crossover points selected are different).

Note that as an atom is located at the crossover point selected in both
parents, the crossover operation merely swaps these atoms from tree to tree.
Similarly, if an atom is located at the crossover point in precisely one parent, then
the sub-tree from the second parent is inserted at the location of the atom in the
first parent, and the atom from the first parent is inserted at the location of the
sub-tree of the second parent. In this case, the crossover operation often has the
effect of increasing the depth of one tree and decreasing the depth of the second
tree. A non-uniform probability distribution allocating about 90% of the crossover
points equally amongst the internal (function) points of each tree and 10% of the
crossover points equally amongst the external (atom) points of each tree is
advantageous. This non-uniform probability distribution promotes the recombining
of larger structures than would be the case with a uniform distribution (which may
do an inordinate amount of mere swapping of atoms from tree to tree in a manner
more akin to point mutation rather than true crossover).

The basic principle of crossover is that part of one parent, and part of
another part, are recombined to produce the offspring. Thus, other variations on

the basic crossover operation may be advantageous.
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The mutation operation provides a means for introducing small random
mutations into the population.

The mutation operation is an asexual operation in that it operates on only
one parental S-expression. The individual is selected in a manner proportional to
normalized fitness. The result of this operation is one offspring S-expression. The
mutation operation selects a point of the LISP S-expression at random. The point
of insertion can be an internal (function) or external (atom) point of the tree. This
operation removes whatever is currently at the selected point and inserts a
randomly generated sub-tree at the randomly selected point of a given tree. This
operation is controlled by a parameter which specifies the maximum depth for the
newly created and inserted sub-tree. A special case of this operation involves
inserting only a single atom (i.e. a sub-tree of depth 0) at a randomly selected
point of the tree. |

The mutation operation potentially can be beneficial in reintroducing
diversity in a population that may be tending to prematurely converge.

The permutation operation is an asexual operation in that it operates on only
one parental S-expression. The individual is selected in a manner proportional to
normalized fitness. The result of this operation is one offspring S-expression. The
permutation operation selects a function (internal) point of the LISP S-expression,
a random permutation is selected at random from the set of k! possible
permutations. Then the arguments of the function at the selected point are
permuted in accordance with the random permutation. The operation described
here allows any one of k! possible permutations to occur. Note that a simple
reversal of the order is but one the k! possible permutations.

The permutation operation can potentially bring closer together elements of  °
a relatively high fitness individual so that they are less subject to later disruption
due to crossover.

The editing operation provides a means to edit S-expressions as the

algorithm is running. The editing operation is applied after the new population is
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created through the action of the other operations. It is controlled by a frequency

parameter which specifies whether it is applied on every generation or merely a
certain subset of the generations. The editing operation is an asexual operation in
that it operates on only one parental S-expression. The result of this operation is
one offspring S-expression. The editing operation, if it is used at all, is typically
applied to every individual S-expression in the population.

The editing operation recursively applies a pre-established set of editing
rules to each S-expression in the population. First, in all problem domains, if any
sub-expression has only constant atoms as arguments, the editing operation will
evaluate that sub-expression and replace it with the value obtained. In addition,
the editing operation applies particular sets of rules that apply to various problem
domains, including rules for numeric domains, rules for Boolean domains, etc. In
numeric problem domains, for example, the set of editing rules would typically
include a rule that inserts zero whenever a sub-expression is subtracted from an
identical sub-expression and a rule that inserts a zero whenever a sub-expression
is multiplied by zero. In Boolean problem domains, the set of editing rules typically
would include a rule that inserts X in place of (AND X X), (OR X X), or (NOT
(NOT X)). |

The editing operation primarily serves to simplify S-expressions. It also
typically improves performance by reducing the vulnerability of an S-expression to
disruption due to crossover at points within a potentially collapsible, non-
parsimonious sub-expression. Crossover at such points typically leads to counter-
productive results. For example, if an example an S-expression contains a sub-
expression such as (NOT (NOT X)), which is susceptible to editing down to a
more parsimonious sub-expression, a crossover in the middle of this
sub-expression would produce exactly the opposite Boolean result. The editing
operation prevents that kind of crossover from occurring by condensing the sub-

expression.
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The "define building block" operation is a means for automatically
identifying potentially useful "building blocks" while the algorithm is running. The
"define building block" operation is an asexual operatioh in that it operates on only
one parental S-expression. The individual is selected in a manner proportional to
normalized fitness. The operation selects a function (internal) point of the LISP
S-expression at random. The result of this operation is one offspring S-expression
and one new definition. The "define building block" operation works by defining a
new function and by replacing the sub-tree located at the chosen point by a call to
the newly defined function. The body of the newly defined function is the sub-tree
located at the chosen point. The newly defined functions are named DF0, DF1,
DF2, DF3, .... as they are created. |

For the first occasion when a new function is defined on a given run,
"(DF0)" is inserted at the point selected in the LISP S-expression. The newly
defined function is then compiled. The function set of the problem is then
augmented to include the new function so that, if mutation is being used, the
arbitrary new sub-tree grown at the selected point might include a call to the
newly defined function. Figure 19 shows a simple entity, namely the symbolic
expression in the LISP programming language for the mathematical expression A
+BC. In LISP, this mathematical expression would be written as (+A (* B C)).
The figure shows the graphical representation of this LISP symbolic expression,
namely the tree with root 1900.

The "define building blocks” operation works by first selecting a point using
a probability distribution. Suppose that the point 1910 is selection. The sub-tree
(sub-expression, sub-list) starting at point 1910
is then replaced by a call to the function DF0. The function in Figure 19 has no
explicit arguments. Thus, the tree with root 1900 is replaced by the tree with root
1912, as shown in Figure 20. The new tree has the function (DF0) at point 1914,
in lieu of the sub-tree 1910. In LISP, the new S-expression is (+ A (DF0)).

2
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At the same time, a function DFO is created. Its definition is shown in

Figure 21. Its definition consists of the operations shown in the tree with root
1920. In LISP, the function might be written as
(DEFUN DFO ()
(*BC)
)

In implementing this operation on a computer, the sub-tree calling for the
multiplication of B and C is first defined and then compiled during the execution of
the overall run. The LISP programming language facilitates the compilation of
functions during the execution of an overall run.

The effect of this replacement is that the selected sub-tree is no longer
subject to the potentially disruptive effects of crossover because it is now an
individual single point. The newly defined function is now indivisible. The newly
defined function is a potential "building block" for future generations and may
proliferate in the population based on fitness. The "define building block" operation
appears to improve performance of the overall algorithm significantly.

Note that, for each operation described above, the original parent
S-expression is unchanged by the operation. Moreover, since the selection of the
parental S-expression is in proportion to fitness, the original unaltered parental S-
expression may participate in additional genetic operations during the current
generation, including replication (fitness proportionate reproduction), crossover
(recombination), mutation, permutation, editing, or the "define building block"
operation.

The state of the non-linear genetic algorithm system at any stage in the
process (as with genetic algorithms in general) consists only of the current
population of individuals in the population. There is no additional memory,
centralized bookkeeping, or administration to guide the adaptive process.

The algorithm is controlled by various parameters, including three major

parameters, namely the population size, the number of individuals in the population
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undergoing fitness proportionate reproduction, and the number of individuals in the

population undergoing crossover.

A population size of 300 is appropriate for all of the examples described

4

herein. In general, population size is the parameter that must be adjusted to
accommodate the complexity of the problem at hand. A larger population is, in a
the absence of any other consideration, better at producing a solution to the
problem at hand than a smaller population. However, as the population size is
increased, there may be decreasing benefits in relation to the increased amount of
resources needed. Crossover was performed on 90% of the pophlation. That is, if
the population size is 300, then 135 pairs of individuals (270 individuals) from each
generation were selected (with reselection allowed) from the population with a
probability equal to their normalized adjusted fitness. Fitness proportionate
reproduction was performed on 10% of the population on each generation. That
18, 30 individuals from each generation were selected (with reselection allowed)
from the pbpulation with a probability equal to their normalized adjusted fitness.
Note that the parents remain in the population and can often repeatedly
participate in other operations during the current generation. That is, the selection
of parents is done with replacement (i.e. reselection) allowed. Mutation and
permutation are used very sparingly. Their use at a rate of 1 per generation
would be appropriate for many problems. Our experience is that it is
advantageous to use editing on all problems. The "define building blocks"
operation can be advantageously used on 10 occasions in each. generation.

Several minor parameters are used to control the computer implementation

of the algorithm. In all of the examples described herein, a maximum depth of 15

&

was established for S-expressions. This limit prevented large amounts of
computer time being expended on a few extremely large (and usually highly unfit)
individual S-expressions. Of course, if we could execute all the individual LISP S-
expressions in parallel (as nature does) in a manner such that the infeasibility of

one individual in the population does not proportionately jeopardize the resources
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needed by the population as a whole, we would not need this kind of limit. Thus, if

a crossover between two parents would create an individual whose depth
exceeded this limit, the crossover operation is simply aborted. In effect, the
contemplated crossover operation is replaced with fitness proportionate
reproduction for the two parents. Similarly, a maximum depth of 4 was
established for the random individuals generated for generation 0. These numbers
must of course be adjusted upwards as the complexity of the problem increases.
Note that these limits are not necessary. They are merely a convenient and
effective way to limit the use of resources (which is especially important with
serial machinery).

The solution produced by this process at any given time can be viewed as
the entire population of disjunctive alternatives (presumably with improved overall
average fitness), or more commonly, as the single best individual in the population
at that time ("winner takes all"). The process can be terminated when either a
specified total number of generations have been run or when some performance
criterion is satisfied. For example, if a solution can be recognized if it is
discovered, the algorithm can be terminated at that time and the single best
individual can be considered as the output of the algorithm.

We now summarize below the six major steps necessary for using the non-
linear genetic algorithm.

The first major step is to identify the appropriate set of variable atoms and
constant atoms for the problem. For some problems, this identification may be
simple and straightforward. For example, in the symbolic regression problem with
one independent variable, the single necessary variable atom in the problem
corresponds to the single independent variable of the problem. The difficulty in
identifying an appropriate set of variable atoms for a particular problem, if any,
usually arises from the inherent difficulty (common to all science) of correctly

identifying variables which have explanatory power for the problem at hand. For
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eiample, one would not be able to discover Kepler's Third Law if one were given
only the color of the surface of the planets.

Constant atoms, if required at all, can enter a problem in two ways: One
way is to use the constant creation procedure described herein. The second way
for constant atoms to enter a problem is by explicitly including them. For
example, one might include [T in a particular problem where there is a possibility
that this particular constant would be useful. Of course, if one failed to include []
in such a problem, the non-linear genetic algorithm would probably succeed in
creating it (albeit at a certain cost in computational resources).

The second major step is to identify the appropriate set of functions for the

problem. For real-valued domains, the obvious function set might be {+, -, x %Y.

In a Boolean function learning domain, for example, a set of functions such as
{AND, OR, NOT, IF} might be the choice. This set is certainly sufficient for any
Boolean function learning problem since it is computationally complete.
Moreover, this set is convenient in that it tends to produce easily understood
logical expressions. Of course, the function set might consist of NAND alone, and
in some domains (e.g. design of semiconductor logic networks), this might be a
natural choice.

If the problem involves economics (where growth rates and averages often
play a role), the function set might also include the exponential, logarithmic, and
moving average functions in addition to the four basic arithmetic operations.
Similarly, the SIN and COS functions might be useful additions to the function set
for some problems.

Some functions may be added to the function set merely because they
might possibly facilitate a solution (even though the same result could be obtained
without them). For example, one might include a squaring function in certain
problems even though the same result could be attained without this function

(albeit at a certain cost in computational resources).
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Sometimes, the consequences of failing to include a potentially useful
function is that one gets a rough approximation to the missing function. For
example, if the SIN, COS or EXP function were missing from a function set, one
might get the first one or two terms of the Taylor power series expansion of those
functions in a solution in lieu of the missing function.

In any case, the set of functions must be chosen so that any composition of
the available functions is valid for any value that any available variable atom might
assume. Thus, if division is to be used, the division function should be modified so
that division by zero is well-defined. The result of a division by zero could be
defined to be zero, a very large constant, or a new value such as “infinity”. Note
that, in Common LISP, one could define the result of a division by zero as the
keyword value ":infinity". Then each of the other functions in the function set
must be well-defined if this “:infinity" value happens to be one of its arguments.
Similarly, if square root is one of the available functions, it could either by an
especially defined real-valued version that takes the square root of the absolute
value of the argument or it could be LISP's complex-valued square root function.
If logical functions are to be mixed with numerical functions, then a real-valued
logic should be used. For example, the greater-than function GT can be defined
S0 as to assume the real value 1.0 if the comparison relation was satisfied and the
real value 0.0 otherwise.

Note that the number of arguments must be specified for each function. In
some cases, this specificatioﬁ is obvious or even mandatory (e.g. the Boolean
NOT function, the square root function). However, in some cases (e.g. IF,
multiplication), there is some latitude as to the number of arguments. One might,
for example, include a particular function in the function set with differing numbers
of arguments. The IF function with two arguments, for example, is the IF-THEN
function, whereas the IF function with three arguments is the IF-THEN-ELSE
function. The multiplication function with three arguments might facilitate the

emergence of certain cross product terms, although the same result could be
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achieved with repeated multiplication function with two arguments. It is often
useful to include the PROGN ("program") function of common LISP with Varying
number of arguments in a function set to act as a connective between the
unknown number of steps that may be needed to solve the problem.

The choice of the set of available functions, of course, directly affects the
character of the solutions that can be attained. The set of available functions form
a basis set for generating potential solutions. For example, if one were trying to
do symbolic regression on the simple absolute value function on the interval [-1,
+1] and the function set contained the IF-THEN-ELSE function and a negation
function, one might obtain a solution in the familiar form of a conditional test on x
that returns either x or -x. On the other hand, if the function set contained COS,
COS3 (i.e. cosine of 3 times the argument), COS5 (i.e. cosine of 5 times the
argument) instead of the IF-THEN-ELSE function, one might obtain a solution in
the form of a Fourier series approximation to the absolute value function.
Similarly, if the Y. summation operator were not available in a real-valued problem
for which the solution was an exponential, one would probably see the first couple’
of polynomial terms of the Taylor series in the solution instead of eX.

The third major step is the construction of the environment for the problem.
In some problems, the nature of the environment is obvious and straight-forward.
For example, in the symbolic function identification (symbolic regression),
empirical discovery, and Boolean function learning problems, the environment is
simply the value(s) of the independent variable(s) associated with a certain
sampling (or, perhaps, the entire set) of possible values of the dependent
variable(s). In some problems (e.g. block-stacking), the environment is a set of
“starting condition” cases. In some problems where the environment is large and
not susceptible to simple random sampling (e.g. block-stacking), a representative
sampling must be constructed. In some problems, such as solving pairs of linear
equations and solving the quadratic equation, the environment is a set of equations

and their respective solution points.
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The fourth major step is construction of the fitness function. For most
problems, the fitness function is constructed in a simple, natural, and
straightforward way as the sum of the distances (taken over all the environmental
cases) between the point in the solution space returned by the S-expression for a
given set of arguments and the correct point in the solution space. In general, the
only issue is the minor issue of whether to use the absolute value of the difference
or the square of the difference in computing the distance. However, as we
illustrate in the second version of the block-stacking problem below (where both
efficiency and correctness were sought) and in the solution of differential
equations (where both the shape of the solution curve and the satisfaction of initial
conditions are required), the fitness function can sometimes be somewhat more
complicated (and correspondingly, more powerful).

The fifth major step is the selection of the major and minor parameters of
the algorithm and a decision on whether to use any of the secondary genetic
operations (described below). Often, the selection of the population size is the
most important choice. In general, the larger the population the better. But, the
improvement due to a larger population may not be proportional to the increased
computational resources required.

Finally, the sixth major step is the selection of a termination criterion and
solution identification procedure. The approach to termination depends on the
problem. In many cases, the termination criterion may be implicitly selected by
merely selecting a fixed number of generations for running the algorithm. For
many problems, one can recognize a solution to the problem When one sees it.
Examples are problems where the sum of differences becomes zero (or,
acceptably close to zero, if the problem is in a real-valued domain). However, for
some problems (such as problems where no exact mathematical solution is
known), one cannot necessarily recognize a solution when one sees it (although
one can recognize that the current result is better than any previous result or that

the current solution is in the neighborhood of some estimate to the solution). The



WO 91/14990 PCT/US91/01970

84
solution identification procedure is often simply a matter of identifying the best
single individual of some generation where the termination criterion is satisfied as
the solution to the problem ("winner takes all").

Note the process desired herein may be used to obtain useful
approximations, in functional form, of the solution to difficult or intractable
problems. The result may only be a good fit or good approximation to the solution
of the problem.

There are numerous opportunities to use domain specific heuristic
knowledge in connection with non-linear genetic algorithms. First, it may be
useful to include domain specific heuristic knowledge in cfeating the initial random
population. This might include inserting sub;programs believed to be useful for
solving the problem at hand. This might also include using a probability
distribution other than the uniform distribution to initially select the functions and
atoms when the initial random individuals are recursively generated. Secondly,
domain specific heuristic knowledge may be helpful in over-selecting or under-
selecting of certain points in the computer programs for the crossover operation.
This may even include protecting certain points from selection for crossover under
certain circumstances or requiring certain points to be selected for crossover
under certain circumstances. Thirdly, domain specific heuristic knowledge may
be useful in varying the parameters of the run based on information gained during
the run. Fourth, domain specific heuristic knowledge can be used in the selection
of the set of available functions and atoms for the problem so that this set is not
merely minimally sufficient to solve the problem, but so that the set of available
functions and atoms actively facilitates solution of the problem.

Because the process described herein involves executing and modifying
computer programs in non-standard ways and because these computer programs
were either originally generated at random or created genetically, a number of

practical computer implementation issues come to the forefront.
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First, it should be noted that if the experimenter chooses to use the
Common LISP function EVAL to implement the measurement of fitness of
individual LISP S-expressions, the evaluation will work correctly only if all of the
variable atoms appearing in the given S-expressions are declared to be global
variables.

Secondly, the most efficient implementation of the crossover operation in
LISP known to the author uses the COPY-TREE and RPLACA functions in LISP.
First, the COPY-TREE function is used to make a copy of each parent. Then, the
RPLACA function is used to destructively change the pointer of the CONS cell of
the copy of one parent at its crossover point so that it points to the crossover
fragment (subtree) of the copy of the other parent. Then, the RPLACA function
is used to destructively change the pointer of the CONS cell of the copy of second
parent at its crossover point so that it points to the crossover fragment (Subtree)
of the copy of the first parent. After destructively changing the pointers in the
copies, the resulting altered copies become the offspring. The original parents
remain in the population and can often repeatedly participate in other operations
during the current generation. That is, the selection of parents is done with
replacement (i.e. reselection) allowed.

Third, because the process described herein involves executing randomly
generated computer programs, the individuals in the initia] random population as
well as the individuals produced in later generations of the process often have
sub-expressions which evaluate to astronomically large numbers or very small
numbers. When the range is integral, the BIGNUM mode is automatically used in
the Common LISP programming language. In this mode, integer numbers can
grow arbitrarily large (limited only by the virtual address space of the machine).
Thus, the potential growth in size of the integers produced by the randomly
generated S-expressions presents no problem, as a practical matter. On the other
hand, when the range is real-valued, floating point overflows or underflows will

frequently occur. In problems involving such floating point variables, it is therefore
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a practical necessity to wrap the entire algorithm in error handlers that
accommodate every possible kind of floating point underflow and overflow
applicable to the particular computer involved.

Fourth, it is important to note that this non-linear genetic algorithm is
probabilistic in the following four different ways: (a) the initial population is
typically generated entirely at random from the available functions and atoms; (b)
both parental individuals participating in the crossover operation are chosen at
random (typically, at least one individual is chosen randomly proportionate to
fitness and the other is chosen either randomly proportionate to fitness or simply
at random using a uniform probability distribution); (c) the crossover points within
each parent are selected at random (using a probability distribution); and (d) the
individuals undergoing the operation of fitness proportionate reproduction are
chosen randomly in proportion to normalized fitness. Thus, in implementing
genetic algorithms on a computer, it is important to have an effective randomizer
that is capable of producing the numerous random integers needed by the
algorithm. Many randomizers originally written for the purpose of generating
random floating point numbers are not suitable for this purpose. A randomizer
with 3 independent seeds was used here. It is also convenient, for experimental
purposes, to have the option of seeding the randomizer so that interesting runs can
potentially be replicated (e.g. perhaps with additional details displayed, such as an
audit trail).

Fifth, in problems involving iteration with a DU ("Do-Until") operator, a
DUL operator, or a SIGMA summation operator, it is necessafy to suppress
premature evaluation of the WORK and PREDICATE arguments (if any) of the
operator. Neither the WORK argument nor the PREDICATE argument (if any)
of such operators are to be evaluated outside the operator. Instead, these
argument(s) must be evaluated dynamically inside the operator on each iteration.
Because of the evaluation model of Common LISP, such operators cannot be

implemented directly as functions in Common LISP. The reason is that the
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argument(s) would be evaluated prior to entry into the function and the operator

would, for example, then merely repeatedly evaluate the value of the WORK as

opposed to doing the WORK itself.

Thus, these iterative operators must be implemented as a Common LISP
macro with a related function and should expand into, for example, '(DU-1
"WORK 'PREDICATE). (Note the three quotation marks are back quotes).
Then the body of the related function DU-1 is implemented so as to have the
desired iterative behavior (i.e. (LOOP DO (EVAL WORK) UNTIL (EVAL
PREDICATE))). This is possible because the arguments to the sub-expressions
WORK and PREDICATE are bound in the global environment. We could, in
principle, have addressed this problem by introducing a quoting operator into the
set of functions so as to allow DU to have the semantics of DU-1. But this
approach results in incorrect performance whenever the QUOTE function
happens to occur at a crossover point and becomes separated from its intended
argument. Moreover, some implementations of Common LISP (the Texas
Instruments Explorer machines being among this group) use a technique called
“macro displacement” to side-effect programs being interpreted with the macro-
expanded version. This has the beneficial effect of speeding up execution by
incurring the cost of the macro-expansion only once. However, because this
technique side-effects the program itself, if macro displacement is not disabled for
genetic operators, then crossover that occurs on individuals after macro-
expansion may see forms that are introduced 'by’the macro-expander, not forms
that are really part of the problem. On Texas Instruments machines, this behavior
can be disabled by setting "si:inhibit-displacing-flag" to T.

Sixth, when iterative operators (such as DU, DUL, and SIGMA) are used,
individual S-expressions in the population will often contain an unsatisfiable
termination predicates. Thus, it is a practical necessity (when working on a serial
computer) to place limits on both the number of iterations allowed by any one

execution of a such an operator. Moreover, since the individuals S-expressions in
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the genetic population often contain deep nestings of such operators, a similar limit
must be placed on the total number of iterations allowed for all such operators that
may be evaluated in the process of evaluating any one individual S-expression for
any particular environmental case. Thus, the termination predicate of each
operator is actually an implicit disjunction of the explicit predicate for that operator -«
and two additional implicit termination predicates. The typical "time out" limits
that we have used for the problems herein are that the DU operator "times out" if
there have been more than 25 iterations for an evaluation of a single DU operator,
or if there have been a total of more than 100 iterations for all DU operators that
are evaluated for a particular individual S-expression for a particular
environmental case. Of course, if we could execute all the individual LISP S-
expressions in parallel (as nature does) so that the infeasibility of one individual in
the population does not bring the entire process to a halt, we would not need these
limits. Note, however, that even when a DU operator times out, it nevertheless
returns a Value. In particular, the DU operator evaluates to T unless one of the
two implicit termination predicates times out. The value resulting from this
evaluation of the DU operator is, of course, in addition to the side effects of the
DU function on the state variables of the system (particularly the STACK and
TABLE in the block-stacking problem) If the predicate of a DU operator is
satisfied when the operator is first called, then the DU operator does no work at
all and simply returns a T. The DUL operator and the SIGMA operator are
treated similarly.

Seventh, for all but the simplest problems, the overwhelming majority of 2
computer time is consumed by the evaluation of fitness of the individuals (rather
than, as one might suppose, the actual genetic operations or other administrative
aspects of the program). For some problems, fine-grained parallel computers, and
"data parallelism” techniques may be advantageous. When the fitness calculation
consumes the overwhelming majority of computer time, then fine-grained parallel

computers (as compared to coarse-grained parallel computers) and the
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techniques of "data parallelism” confer no particular advantage. The problem
may simply be paralleled by handling the environmental cases in parallel.
Similarly, if this concentration exists, ones efforts at optimization must necessarily
be focused almost entirely on the relatively small number of lines of code that are
used to compute fitness (over the various environmental cases of the particular
problem). One highly effective way to optimize the fitness calculation s to create
a look-up table of S-expressions that have been previously encountered so that -
their fitness need not be recomputed. This hash table can span both generations
and runs (provided the environmental cases remain the same). Not that the
technique of look-up tables may be, however, inconsistent with the technique of
changing the environmental cases on €Very generation so as to minimize the
possible bias of a small sampling of environment cases.

Eight, many problems involve time-consuming transcendental functions (e.g.
EXP, SIN, COS) that are computed via Taylor power series. In such problems,
both the initial randomly-generated individuals and the later genetically-created
individuals in the population often contain multiple occurrences of these functions
within a single individual. A considerable amount of computer time can be saved
by evaluating these functions via table look-up, rather than direct computation,

Ninth, an informative and interactive interface is an invaluable tool in
carrying out computer experiments in the field of machine learning. Accordingly,
the computer program used here has extensive interactivity, including three full-
color graphs, a "hits histogram", a "fitness histogram" (in deciles of numerical
fitness values), a window showing the best single S-expression of the current
generation in both graphical and symbolic form, three scrolling windows, and three
non-scrolling windows (with various mouse-sensitive points for inspecting
progress of the program while it is executing). The three color graphs provide a
variety of information about the run in progress.

A first graph dynamically tracks the average normalized fitness of the

population. This graph also tracks the number of “hits" for the best single
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individual of each generation for problems where exact matches are possible (or
the number of "near hits" for real-valued numerical problems). This number of
“hits” or "near hits" is not used by the genetic algorithm in any way. The
algorithm uses only the fitness values computed from the sum of the distances
described above. Nonetheless, the number of "hits" or "near hits" has proved to
be extremely valuable for monitoring the overall progress of the algorithm.

A second graph dynamically tracks the average raw fitness of the
population for each generation, the raw fitness of the best individual in the
population, and the raw fitness of the worst individual in the population for each
generation. This graph also displays the average raw fitness of the initial random
population as a baseline. '

A third graph is used only in a subset of the problems described in this
paper, namely, the problems of sequence induction, symbolic function
identification, symbolic regression, symbolic integration, symbolic differentiation,
symbolic solution to differential and/or integral equations, chaos, empirical
discovery, and power series problems. This graph dynamically graphs the
“target” function and the best individual S-expression from the current generation.
The best S-expression changes with each generation. The horizontal axis of this
graph is the domain of the problem area and the vertical axis is the range of the
target function. In the special case of the symbolic integration and symbolic
differentiation problems, the graph of the integral or derivative of the current best
S-expression is added to this third graph as an additional item.

A "hits histogram" showing the number of individuals in the population with
a particular number of "hits" (or "near hits", for numerical problems) provides a
particularly informative and dramatic view of the learning process. At the initial
random generation, the bulk of the population appears at the far left of the
histogram (with perhaps 0 or 1 hits). Then, after a few generations, the bulk of
the population typically start shifting gradually from left to right in the histogram.

As learning takes place, this undulating "slinky" movement from left to right

<
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continues during the run. Finally, in the late stages of a run, individuals
representing a perfect solution to the problem may start appearing at the far right
of the histogram. complete convergence occurs when 100% of the populations
becomes concentrated at the far right of the histogram (although one usually does
not run the algorithm to that point). Premature convergence can often be readily
identified from the histogram as a concentration of the population at one single-
sub-optimal number of hits. In contrast, normal progress towards a solution and
towards convergence is typically indicated by a broad "flowing" distribution of
individuals over many different numbers of hits in the histogram.

In addition, a "fitness histogram" showing the number of individuals in the
population having a fitness lying on a particular numerical range of fitness values
provides another informative view of the learning process. This histogram uses
the actual fitness values representing the sum of the distances described above
and is presented in deciles over the range of such fitness values. Note that this
“fitness histogram" is based on the sum of distances, while the "hits histogram" is
a cont of the integral number of "hits" (or "near hits").

Tenth, appropriate computing machinery should be used in implementing
this process. A computer program implementing this process, consisting of 11562
lines of Common Lisp code, was run on a Texas Instruments Explorer II+TM
computer with a 40 megahertz LISP microprocessor chip with 32 megabytes of
internal memory and a half gigabyte of external hard disk memory. It is
advantageous to use a compufer especially designed to execute LISP instructions
and to use a computer with a large amount of internal memory and additional

external memory.

Symbolic Function Identification and Regression

Problems in the area of symbolic function identification require finding a
function in symbolic form that fits given data points.

In linear regression, one is given a set of values of various independent

variable(s) and the corresponding values for the dependent variable(s). The goal
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is to discover a set of numerical coefficients for a linear combination of the
independent variable(s) which minimizes some measure or error (such as the sum
of the squares) between the given values and computed values of the dependent
variable(s). Similarly, in quadratic regression, the goal 'is to discover a set of
numerical coefficients for a quadratic expression which similarly minimizes the «
error. In Fourier "regression”, the goal is to discover a set of numerical
coefficients for sine and cosine functions of various periodicities which similarly
minimizes error.

Of course, it is left to the researcher to decide whether to do a linear
regression, quadratic regression, or a higher order polynominal regression or
whether to try to fit the data points to some non-polynominal family of functions
(e.g. sines and cosines of various periodicities, etc.). But, often the most difficult
and most important issue is deciding what family of functions most appropriately
fits the data, not merely computing the numerical coefficients given the
appropriate functional form of the model.

For example, suppose we are given a sampling of the numerical values from
an unknown curve over 20 points in the domain -2 to +2. That is, we are given 20

- pairs (xi, yi). These points might include pairs such as (+1.0, +5.86), (+2.0,
+17.16), (-1.0, -0.42), (-2.0, +4.59), etc. The goal is to find the function, in
symbolic form, from the 20 pairs of numerical data points. (The unknown curve
happens to be 2.71828x2 + 3.14159x for this example).

Figure 12 is a graph of the pairs of points for the unknown curve. The
curve is graphed in a conventional way in a plane defined by the horizontal axis s
(X-axis) 110 and the vertical axis 112. In Figure 12, only 5 points of the curve are
shown. Thé points on the curve are drawn with a solid line. Starting at far right,
the point 120 is the point on the curve (+2.0, +17.16). That is, when x is +2, the
value of the curve is +17.16. The point 122 is the point (+1.0, +5.86) on the curve.
The point 124 is the point (0, 0) on the curve. The point 126 is the point (-1.0, -
0.42) on the curve. The point 128 is tﬁe point (-2.0, +4.59) on the curve.
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Figure 13 is a graph of another curve, namely y=7x. Point 130 is the point
(2, 14) on the curve. Point 132 is the point (1,7). Point 134 is the point (0, 0) on
the curve. Point 136 is the point (-1, -7) on the curve. Point 138 is the point (-2, -
14) on the curve.

Figure 14 is a graph of another curve, namely y=3x2, Point 140 is the point
(2, 12) on the curve. Point 142 is the point (1, 3) on the curve. Point 134 is the
point (0, 0) on the curve. Point 136 is the point (-1, 3) on the curve. Point 148 is
the point (-2, 12) on the curve.

Neither the second curve nor the third curve is 2 good fit to the first curve.
However, each curve bears some resemblance to the unknown curve. For
example, the first curve is generally closer to the unknown curve than the second
curve when x is positive. That is, points 120 and 122 are closer to the unknown
curve that points 140 and 142. However, the second curve is not very close to
the unknown curve when x is negative. While the second curve is a straight line,
the third curve is of the same general parabolic shape as the unknown curve.
While neither the second curve nor the third curve are particularly good fits to the
unknown curve, they are far better than many alternatives, such as Y=7x+10,
Y=x3+x2+x+1, etc.

The desired solution to this problem of finding an unknown function in
symbolic form can be viewed as a search for a function from a hyperspace of
functions that can be composed from a set of candidate functions. The set of
available candidate functions might include addition (+), subtraction (-), and
multiplication (*). The set of atoms for this particular problem consists of just the
independent variable X,

In symbolic regression problems, the problem is both the discovery of the
correct functional form that first the data and the discovery of the appropriate
numeric coefficients.

Discovery of the appropriate numeric coefficients is a new problem that

must be addressed in order to successfully do symbolic regression. This problem
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of constant creation can be solved by extending the atom set by one ephemeral
element (called "R") during the generation of the initial random population. Thus,
the atom set for this problem would be enlarged to size 2 for this particular
problem. Whenever the ephemeral atom is chosen for any point of the tree during
the generation of the initial random population, a random number in a specified
range is generated and attached to the tree at that point. In this particular
problem, the random constants were real numbers between -1.0 and +1.0. Of
course, in a problem involving integers (e.g. induction of a sequence of integers),
integers would be used for the ephemeral "R" atoms. This generation is done
anew for each such point so that the initial random population of individuals
contains a variety of different random numbers.

The random number produced by the ephemeral "R" atoms will then be
moved around from tree to tree by the various crossover operations that occur
and will become embedded in various sub-trees that are subject to various
arithmetic operations. This moving around of the constants is not at all random,
but instead is driven by the overall process of achieving ever higher levels of
fitness. A symbolic expression that is a reasonable good fit to a target function
may become a better fit if a particular constant is, for example, decreased slightly.
A slight decrease can be achieved in several different ways. For example, there
may be a multiplication by 0.90, a division by 1.10, a subtraction of 0.08, or an
addition of -0.04. However, things are not always so direct.

In one particular problefn where [1/2 was needed, 2 - [1/2 (about 0.429)
was approximated by a succession of decreasing numbers in 11 steps. Starting
with the available constant 1 and the available function SIN, (SIN 1) was
computed as 0.841. The the SIN of 0.841 was taken to obtain a still smaller
number, namely 0.746. This result was then squared to obtain a still smaller
number, namely 0.556. Then the SIN function was successively applied six more

times to obtain a succession of stillr smaller numbers, of which the last one was

2

an
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0.433. That is, the composition (SIN (SIN (SIN (SIN (SIN (SIN (* (SIN (SIN
1)) (SIN (SIN D)))))))) was used to compute the constant 0.433.

Referring again to the regression examples in Figures 12-14, the best
individual in the initial random population of individuals did not come close to any
of the 20 actual given data points and the sum of the deviations between it and the
20 points was very large. However, starting with generation 1, the average
population began improving. '

Starting in generation 41, the best individual S-expression was
(+ (- (+ -.50677 X) (+ (* -.50677 x) (* -.76526X))))

(¢ (+ .11737) (+ (- X (* -.76527X)) X))). This S-expression is equivalent to
2.76X2 + 3.15X.

In other runs, the symbolic regression was successfully performed on
additional target expressions such as X4 + X3 + X2 + X and SIN X + COS X +
X2 + X using function sets containing SIN, COS, and a restricted logarithm
function RLOG (i.e. the logarithm of the absolute value returning O for an

argument of 0).

Empirical Discovery - Kepler's Third Law

Kepler's Third Law of planetary motion was discovered in 1618. It is an
example of empirical discovery of a scientific law by observing data. Kepler's
Third Law states that the cube of a planet's distance from the sun is proportional
to the square of its period. That is, D3/P2=c.

In attempting to rediscover Kepler's Third Law using non-linear genetic
algorithms, we used the function set F = {+, -, *, %, SRT, SIN, COS} and the
atom set A = {DIST}. The environment consisted of 9 cases relating the distance
DIST (in astronomical units) of each planet from the sun and the period P of the
planet (in Earth years). The object was to find an S-expression for P in terms of

DIST.

The most parsimonious versions of the solutions were S-expressions such
as (SRT (*DIST (*DIST DIST))) and (* DIST (SRT DIST)). Less parsimonious
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correct solutions included S-expressions such as (*DIST (+ (- DIST DIST) (+ (-
DIST DIST) (SRT DIST)))) and
(- (* DIST (SRT DIST)) (SIN 0.0)).
Interestingly, the S-expression (* DIST DIST) appeared several times as an
imperfect (but approximately correct) ancestor of the correct final solution on
several runs. Ten years before publishing the correct version of his Third Law,

Kepler published this incorrect version.

Modelling and Forecasting - Econometric Time Series

An important problem area in many areas of science is finding the empirical
relationship underlying the observed numeric values of various variables
measuring the system so that a model of the process can be constructed. It is
also possible to then use the model of the process to forecast future values of the
process. In practice, the observed data may be noisy and there may be no known
way to express the relationships involved in a precise way.

The problem of discovering such empirical relationships can be illustrated
by the well known econometric "exchange equation" M=PQ/V, which relates the
money supply M, price level P, gross national product Q, and the velocity of
money V of an economy. Suppose that our goal is to find the relationship between
quarterly values of the money supply M2 and the three other elements of the
equation.

In particular, suppose we are given the 112 quarterly values (from 1961:1 to
1988:4) of the econometric time series. The first time series is "GNP82" (i.e. the
annual rate for the United States gross national product in billions of 1982 dollars).
The second time series is "GD" (i.e. the gross national product deflator normalized
to 1.0 for 1982). The third series is "FYGM3" (i.e. the monthly interest rate yields
of 3-month Treasury bills, averaged for each quarter). The fourth series is "M2"
(i.e. the monthly values of the seasonally adjusted money stock M2 in billions of

dollars, averaged for each quarter). The time series used here were from the
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CITIBASE data base of machine-readable econometric time series collected and
distributed by Citibank N.A. of New York.
The actual long term historic postwar value of the M2 velocity of money in
the United States is 1.6527 so that the "correct” solution is the multiplicative (non-

linear) relationship

M2 = GD * GNP§2

1.6527

However, we are not told a priori whether the functional relationship
between the given observed data (the three independent variables) and the target
function (the dependent variable M2) is linear, multiplicative, polynomial,
exponential, logarithmic or otherwise. The set of available functions for this
problem is F = {+, -, *, %, EXP, RLOG}. The set of available atoms for this
problem is A = {GNP82, GD, FYGM3}. They provide access to the values of the
28-year time series for particular quarters. We are not told that the addition,
subtraction, exponential, and logarithmic functions and the time series for the 3-

month Treasury bill yields (FYGM3) are irrelevant to the problem.

Note that the restricted logarithm function RLOG used here is the logarithm
of the absolute value and returns 0 for an argument of 0. Note also that the
restricted division function % returns a value of 0 is division by 0 is attempted.

In generating the initial random population (generation 0), various random
real-valued constant were inserted at random as atoms amongst the initial random
LISP S-expressions. The initial random population was, predictably, highly unfit.
In one fairly typical run, none of the population came within 3% of any of the 112
environmental data points in the time series for M2. The sum of errors between
that best S-expression and the actual time series was very large (88448).
Similarly, the best individuals in generations 1 through 4 came close to the actual
time series in only a small number of cases (i.e. 7, 2,3 and 5 of 112 cases,

respectively), and also had a large sum of error measures (72342, 70298, 26537
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an.d 23627). However, by generation 6, the best individual came close the the
actual time series in 41 of the 112 environmental cases and had a sum of errors of
6528.

In generation 9, the following S-expression for M2 emerged:
(* GD (% GNP82 (% (% - .587 0.681) (RLOG -0.587)))).

Note that this S-expression for M2 is equivalent to
(% (* GD GNP82) 1.618), or, more familiarly,

)

A

M2 = GD * GNP§2

1.618
The S-expression discovered in the 9th generation comes within 3% of the
actual values of M2 for 82 of the 112 points in the 28-year time series. The sum
of the absolute errors between the S-expression discovered and the 112 points of
the 28-year time series is 3765.2. The S-expression discovered here compares

favorably to the "correct” "exchange equation” M=PQ/V (with a value of V of
1.6527) which had a sum of errors of 3920.7 and which came within 3% of the

actual time series data for only 73 of 112 points in the 28-year time period studied.

Once a LISP S-expression has been found as the solution for any problem,
it can be translated into another computer programming language (such as C or
FORTRAN) for more convenient re-use. LISP is a particulérly convenient
programming language in which to perform such translation. Thus, the LISP S-
expression: (% (* GD GNP82) 1.618) could be translated into an equivalent
FORTRAN assignment statement:

M2 = (GD * GNP82 / 1.618).

Chaos
One aspect of the study of chaos involves finding the function that fits a
given sample of data. Often the functions of interest are recursive in the sense

that the sequence of values of the function over time depends on one or more
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initial condition values. One simple example of such a function 4 x(t-1) (1 - x(t-1))
over the unit interval [0,1]. For each time, after the initial time t=0, the value of
the function is computed using the value of the function at the previous time step.
The initial condition is the value (e.g. 0.26) for the function at time 0.

In one run, the sample S-expression data was provided for times 0, 1, 2, .....
50.
(*PREV (* 2 (* 2 (-1 PREV))))
was found after six generations. The atom PREV allows access to the value of
the function at a previous time step. The initial condition is the value of the
function at time 0.

The above example for chaos illustrates forcasting for a dependent variable
x for a time outside the region of time associated with the sample of data (i.e. a

time greater than 50) from which the S-expression was discovered.

Symbolic Integration

In "symbolic integration" we are given numerical values for a sampling of
points on an unknown curve and we desire to find the function, in symbolic form,
that is the integral of the unknown curve.

In particular, suppose we are given a sampling of 50 numerical values from
an unspecified curve. That is, we are given 50 pairs (xy, y;), where each Xj < X
j+1> for i between 1 and 49. The domain may be 0 to 2[]. The unspecified curve
happens to be Cos x + 2x + 1, but the genetic algorithm is not given this
information in functional form. The goal is to find, in symbolic form, the integral of
the unspecified curve from the given pairs of numerical points. That is, the goal is
to find Sin x + x2 + x in symbolic form from the 50 pairs (x;, yy)-

It will be seen that the problem is, in fact, similar to the problem of symbolic
regression discussed above, except for an additional numerical integration step.

We first numerically integrate the curve (x;, y;) over the domain starting at xq and
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running to X; o as to obtain a value for the integral of the unspecified function for

each point x;.

We call this integral I(x;) for the domain point X;.

This numerical integration can be performed using any one of several well
known techniques.

One well known technique for numerically integrating involves viewing the
area under the curve as areas under rectangles. If the point is x4, the sum is the
sum of the areas of three rectangles. The first rectangle has a base running from
x1 and x2 and a height equal to the average of x1 and x2, that is, (x] + x2)/2. The
second rectangle has a base running from x and x3 and a height equal to the
average of xp and x3. The third rectangle has a base running from x3 to x4 and
has a height equal to the average of x3 and x4. The sum of the areas of these
three rectangles is I(x4).

As each individual candidate function fj is generated by the genetic
algorithm, we evaluate fj(xi) so as to obtain 50 pairs (xi, fj(xi)).

The raw fitness of an individual candidate function is the sum of the
absolute values of differences between the individual candidate function fj(x;) at
domain point xj and the integral I(xj) of the unspecified function up to domain point
Xj. |

As before, the desired solution can be viewed as a function from a
hyperspace of functions that can be composed from the available functions (which
are the same as above). .

As before, the set of atoms contains just the single variable value x. Thus,
the combined set of functions and atoms for this problem is C = {X, +, -, %, SIN,
COS, RLOG} having 0, 2, 2, 2, 1, 1, and 1 arguments, respectively.

After 4 generations, the S-expression (+ (+ (- (SIN X) (- X X)) X) (* X X))
emerged. This function has a very small error with respect to the 50 numerical

points and it has a perfect score of 50 "near hits" in the sense that this function is
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within the criterion (0.01) of the integral of the unspecified curve for each of the
50 xj values. This S-expression is equivalent to Sin x + x2 + .

To summarize, we found the functional form Sin x + x2 + x from the 50
given data points (Xj, ¥;)-

To another experiment, x4 + x3 + x2 + x was obtained as the symbolic
integral of 4x3 + 3x2 + 2x + 1.

It is advisable to use comparatively more points for numerical integration
than for a symbolic regression because the numerical integration process is itself
an approximate process. Thus, we used 50 points in this example concerning
integration as compared to 20 points for the example concerning symbolic

regression.

Symbolic Differentiation .

In "symbolic differentiation”, we are given numerical values for a sampling
of points on an unknown curve and we desire to find the function, in symbolic
form, that is the derivative of the unknown curve,

In particular, suppose we are given a sample of 200 numerical values from
an unspecified curve in the domain 0 to []/2. That is, we are given 200 pairs (xi,
yi). The uhspecified curve happens to be Sin x + x2 +x, but the genetic algorithm
is not given this information in functional form. The goal is to find in symbolic form
the derivative of the unspecified curve from the given pairs of numerical points.
That is, the goal is to find Cos x+ 2x +1 in symbolic form.

It will be seen that the problem is, in fact, similar to the problems of
symbolic regression and symbolic integration discussed above except for an
additional numerical differentiation step. These are well known techniques for
numerical differentiation. One approach follows. In numerically differentiating the
curve (xi, yi) for points other than endpoints of the domain, the derivative is the
average of the slope of the curve between point xj-] and Xi, and the slope of the
curve between point xj and xj+]. For the two endpoints of the domain the slope is

the (unaveraged) slope of the curve to the nearest point.
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After 30 generations, the S-expression (+ (+ (COS (- X X)) (+ X X)) (COS
X)) emerged. This function has a very small error with respect to the 200

numerical data points and it has a perfect score of 200 "hits" in the sense that this

)

function is within the criterion (0.01) of the yj value for each of the 200 x; values.
This S-expression is equivalent to Cos x + 2x +1. =

- In another experiment, 4x3 + 3x2 +2x + 1 was obtained as the symbolic
derivative of x4 + x3 + x2 + x.

It is advisable to use comparatively more points for numerical differentiation

than numerical integration because the numerical differentiation process is itself
an approximate process. Thus, we used 200 points in this example concerning
differentiation, as compared to 50 points for the example concerning symbolic

integration.

Differential Equations

Differential equations are typically approached using analytic methods or
numerical approximation methods. However, the problem of solving differential
equations may be viewed as search in a hyperspace of functions for a function
which satisfies the equation and its initial condition.

Consider the simple differential equation:

dy
-2y =0

dx
having an initial value of y of 7.389 for an initial value of x of 1.0. The goal is to
find a function which satisfies the equation, namely, e2X, 3
For convenience, we standardize the equation so that the right hand side of
the equation is always zero. The left hand side of the differential equation may |
involve addition, subtraction, multipliéation, division, derivatives (with respect to a
specified variable), second derivative, higher derivative, scaling by a constant, or

some other function of the individual candidate function f(xj). We start by

generating 200 random values of xj over a domain such as between 0 and 2.0. As
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each individual candidate function fj is generated, we evaluate fj(xi) so as to
obtain 200 pairs (xj, fj(xi)). We then numerically differentiate the curve (xj, fj,
(Xi)) to obtain the value of the derivative fj'(xi) for all 200 points. We then
perform the multiplication by 2 for all 200 pairs of points and then perform the
subtraction fj’(xi) - 2fj(x{) for all 200 points. In other words, we compute the left
hand side of the equation for all 200 x; points.

The sum of the absolute values of the differences between the zero
constant function (the right hand side of the equation) and the left hand side
(involving the individual candidate function) is then computed. The closer this sum
of differences is to zero, the better.

The fitness of an individual candidate function is composed of two factors.
The sum of absolute differences mentioned above represents the largest
contribution to the raw fitness of the function (say 75%). The other 25% of the
raw fitness is derived from the closeness of the candidate function to the initial
condition, namely, the absolute value of the difference between the value
computed by the individual candidate function fj for the domain value x * for the
initial condition and the actual value y * for the initial condition.

The combined set of functions and atoms for this example problem is C =
{X, +, -, *, SIN, COS, RLOG, REXP) having 0,2,2,2,1,1,1, and 1 arguments,
respectively.

By the 4th generation of one run, the LISP S-expression (EXP (* 2 X))
emerged.

To further illustrate this process, consider the differential equation

dy
— + yCosx=0
dx

having an initial value of y of 1.0 for an initial value of x of 0.0.

Again, as a matter of convention, the right hand side of this differential

equation is zero.
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The left hand side involves the unknown function y, the first derivative of
the unknown function y, and the cosine of the independent variable x.

We start by generating 200 random values of x; over some domain such as
0 and 1.0. As each individual candidate function fj(x) by the genetic algorithm, we
evaluate fj(xj) so as to obtain 200 pairs (xj, fj(xi)). We then multiply so as to
obtain 200 pairs (xj, fj(xi) * Cos xj). We then take the numerical derivative of fj so
as to obtain 200 pairs (x;, fj “(x1) + fj(xi)Cos xi). To the extent that fj (x;) +
fj(xi)Cos x; is close to zero for the 200 values of xj, the candidate function fj is a
good approximate solution to the differential equation.

In one run, the best individual in the initial random population (generation 0)

was the function:

X
el-e

Its raw fitness was 58.09 and only 3 of the 200 points were "near hits". By

generation 2, the best individual in the population was:
el_esm X

Its raw fitness had improved to 44.23 and only 6 of the 200 points were
"near hits".

By generation 6, the best individual in the population was equivalent to e ~
SN X The raw fitness had dramatically improved (decreased) to only 0.057.
Moreover, 199 of the 200 poiﬂts were "near hits". The function e -Sin x is the
solution to the differential equation.

Another example is the differential equation:

dy 2+Sinx

dx 3 (y-1)?
with initial condition such that y =2 when x =0
In one run, the best individual in the 13th generation was:

(- (CUBRT (CUBRT 1)) (CUBRT (- (- (- (RCOS X) (+ 1 (CUBRT 1))) x) X))).

)
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where CUBRT is the cube root function. This is equivalent to:

(+1 (CUBRT (- (+ 2 (* 2 X)) (RCOS XN
which is equivalent to 1 + ( 2 + 2X - Cos X ) 173, which is the solution to this
equation.

When the initial condition of the differential equation involves only a value of
the function itself (as is typically the case when the differential equation involves
only first derivatives), any point in the domain of the independent variable (X) may
be used for the initial condition. On the other hand, when the initial condition of
the differential equation involves a value of any derivative of the function (as may
be the case when the differential equation involves second derivatives or higher
derivatives), it is necessary that the value of the independent variable (X) involved
in the initial condition be one of the points in the random set of points xj (and
preferably an internal point). This allows the first derivative (or higher derivative)

to be evaluated for the initial condition point.

Power Series Solution to a Differential Equation

It is also possible to discover the power series program for eX when an
exponential function is part of the solution to a differential equation.

In this experiment, we demonstrate the use of two tools which are
commonly used in computer programming, namely iteration and the ability to give
a name to the results of a calculation (or the result of a sub-program) so that it
can be subsequently referred to and subsequently used.

For this experiment, the problem is to find the solution to:

dy -y =0

dx
having an initial value of y of 2.718 for an initial value of x of 1.0. In effect, the

problem is to compute eX using the power series:

.

2

.
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=0

The functions available for this problem include addition (+), multipliéation
(*), and the modified division operation % (which returns a value of zero when
division by zero is attempted), the "set" operator SA, an an iterative summation
operator SIGMA. The atoms available for this problem include the variable X, an
iterative summation index II, and the assignable variable AAA.

The "set" operator SA has one argument and sets the global variable AAA
equal to the value of its assignment. The set function allows a computer program
to assign a name to the results of a calculation (or the results of a sub-program)
so that it can subsequently refer to and subsequently use that result. It fills a role
similar to the assignment statement found in programming languages, such as
FORTRAN or PASCAL.

In writing computer programs, computer programmers often mistakenly use
a variable that has not yet been defined by their program. Depending on the
programming language or machine involved, such undefined variables typically
either cause the computer program to halt or they are assigned a default value
(which may well be inappropriate to the specific problem involved). Our purposes
here are best served by not having the evaluation of any one individual halt the
overall operation here. Thus, we assign a default value to any undefined variable.
Since this problem involves real-valued variables, the default value here should be
a floating point number. In order to simplify the particular problem here, we have
made the default value 1.0 for undefined variables. Note that a given S-
expression typically changes the value of an assignable variablé during the course
of the program (and may do so many times).

The iterative summation operator SIGMA has one argument called WORK
and performs a function similar to the familiar summation operator Y, in
mathematics. In particular, the operator SIGMA evaluates its WORK argument
repeatedly until a summand is encountered that is very small (e.g. less than
.000001 in absolute value). The operator SIGMA then returns the value of its

accumulated sum.

W)
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The operator SIGMA is similar to the iterative DU ("Do Until") operator,
described below, in that an indexing variable II is available inside the SIGMA
operator as it iterates. While a SIGMA operator is performing iterations, an
iteration variable II counts the number of iterations (starting with 1). This variable
can be one of the atoms in the set of available atoms. Thus, if the argument
WORK happens to contain II, the SIGMA operator becomes a summation over
the indexing variable. Of course, if it does not, the SIGMA operator merely
accumulates a sum of summands that are independent of II (but which may,
nonetheless, change due to the operation of assignable variables or other side
effects).

Since individual S-expressions in the population are not generally or
necessarily very small in absolute value, there is no guarantee that the operator
SIGMA will terminate. Therefore, it is a practical necessity (when working on a
serial computer) to place limits on both the number of iterations allowed by any
one execution of a SIGMA operator and to place a similar limit on the total
number of iterations allowed for all SIGMA operators that maybe evaluated in the
process of executing any one individual S-expression for any particular
environmental case. Note that even when a SIGMA operator times out, it
nevertheless returns a real value equal to the sum accumulated up to the time.

The LISP S-expression (SIGMA (SA (* AAA (% X I1)))) is a
parsimonious LISP S-expression for computing the value of the power series for
eX -1 for a given value of X. This S-expression consists of a SIGMA operator
that starts by setting AAA t the result of multiplying the value of AAA (which
initially is 1) by X and dividing by the iteration variable II. As this iterative
process cohtinues, the summands successively consist of the powers of X divided
by the factorial of the iteration number. When the current assignable variable
AAA gets very near zero, the SIGMA operator terminates and returns its

accumulated value (namely, the last overall sum). Note that if the termination
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prédicate is ill formed (as it often is), the iterative summation operator will "time
out” when the limit on the number of iterative steps is reached (e.g. 15).
In one run, we obtained (SIGMA (SA (* SA AAA) (SA (% X 1)) as
the best individual LISP expression on the 13th generation. When simplified, this
LISP S-expression is equivalent to the correct solution to the differential equation =

and its initial conditions.

Inverse Problems

Suppose we have a set of data consisting of (xi,y;) pairs such as (9, 6), (16,
8), (25, 10), (36, 12), (2.25, 3.0), etc. Symb.olic regression would reveal that the
dependent variable yj is twice the square root of the independent variable x;. That
is, yi = 2Vx;.

The problem of finding the inverse function involves a set of (x;, y;) pairs of
data such as (6, 9), (8, 16), (10, 25), (12, 36), (3, 2.25), etc. and concluding that the

dependent variable yj is the square of half of the independent variable x;. That is,

xi2
yi =

2
It will be seen that the problem of finding the inverse function for a given set
of data is similar to the problem of symbolic regression discussed above, except
for an additional step of switching the roles of the independent and dependent

variables of the data set.

Integral Equations

It can be seen that integral equations can be solved with the same approach
as the above.

Integral equations are equations that involve the integral of the unknown
function. In fact, some integral equations that commonly appear in engineering

and physical problems involve both the integral of the unknown function and the
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derivative of the unknown function. Such equations are called integro-differential
equations.

It will be seen that the problem of solving such integral equations (or
integro-differential equations) is similar to the problem of symbolic regression
discussed above, except for the additional step of taking the integral of the
candidate function (or, in the case of integro-differential equations, taking the
integral and derivative of the candidate function).

One example of an integral equation is:

=t
y(®) +2 | Cos(t-r) y(r) dr -1 = 0.

r=0

This integral equation can be solved for

yt)=1-2tet
in the same manner as the differential equations. Note that the process of
integration creates a variable (r in this case), which is similar to the indexing
variable of an iterative loop, (described below in connection with the "DU" and

"DUL" functions and described above in connection with the SIGMA function).

Solving Mathematical Equations

Other even more complicated types of equations can be solved with the
genetic process described herein.

In each case, the principle is to search the hyperspace of compositions of
functions for a function which, when substituted into the given equation, is good,
best, or perfect in satisfying the given equation. For convenience, the right hand
side of the equation is zero. The steps are as described above. Many equations
have additional conditions (similar to the initia] conditions of differential equations).
Such additional conditions can be given weight in computing fitness as described

above.
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There are many applications in science, engineering and other fields which
require solving equations (either exactly or approximately). As an example,
consider the following functional equation:

f(2x)-1+2Sin2x=0.

The goal is to solve this equation for the function f, which when substituted into
the equation satisfies the equation.

As before, we begin by defining a set of functions and arguments (atoms).
In this case, the set of functions might contain functions such as the exponential
function (EXP), the sine function (SIN), the cosine function (COS), the square
root function (SQRT), etc. The set of arguments would contain the variable atom
X. The set of arguments might also contain some constant atoms that might be
useful (such as O or 1) and some random real numbers (denoted by "R" in the
atom set). In it this example, the solution to this particular equation (which is the
function Cos 2x) will not need these particular constant atoms or, the random
constants; however, we do not usually know this in advance.

Proceeding as before, we select a number of random points in a suitable
domain. In particular, we select 50 points x; in the domain of real numbers
between -3.14 and +3.14. In a computer implementation, we would typically use
a vector (array) to store these 50 values x;. We compute another vector of 50
values corresponding to the sine of each xj. We then compute another vector of
50 values corresponding to the square of the sine of each x;. Next, we compute
another vector corresponding to twice the square of the sine of the 50 x; values.
Each of these computed vectors can also be viewed as a curve; since, we can
think of the points for 2Sin2x being plotted graphically on conventional graphic
axes.

Similarly, we compute a vector for the constant 1 (denoted "constant
curve)". This consists of a vector of 50 values each identical to 1. We then
subtract this "constant curve" from the "curve" computed earlier for 2 Sin2 x.

Finally, we consider each of the S-expressions in the current population of

&
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individuals. If the population size is 300, for example, we then consider each of
th3MHMWMmHmmmmﬁQbmwmimm3mﬂnmmmwm0mmmmhs
fitness. In this particular problem, we must first perform the additional step of
multiplying the 50 x; values by 2 before beginning the evaluation. We then
compute the new "curve" for f (2x) - 1 + 2 Sin2 x for the 50 values X;.

If we happen to have the exact function f that exactly satisfies the equation

f(2x)-1+2Sin2x =0,
the new "curve" computed will consist of all zeros. In any case, the value of the
left hand side f (2x) -1 +2Sin2 x corresponds to the fitness of the function in this
problem environment.

In one run, the S-expression below was attained on the 7th generation with
a raw fitness of zero:

(*1(COS (+ X X)).

This S-expression is equivalent to Cos 2x and solves the equation. That is, when
Cos 2x is substituted into the equation

f(2x)-1+2Sin2x =0,
the equation is satisfied (i.e. the left hand side evaluates to zero for each random
Xi).

An important special case of the process of solving equations is where the
set of arguments (atoms) consists only of constants. That is, there are no variable
arguments (such as x) in the set of arguments used to construct the S-
expressions. In this special case, the process can be used to solve an equation for
numerical values. |

For example, consider the simple equation which one would conventionally
write as:

x2-2V2x +2 =0.

This equation has two identical roots, namely, V2, which is approximately
1.414214. For clarity here, this equation may be represented as being a functional

equation
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f2(x)-22f(x)+2=0
where the function f(x) is the unknown (instead of the conventional variable x
being the unknown).

We proceed by using a set of functions that contain functions such as

)]

addition (+), subtraction (-), multiplication (*), division (%), and perhaps other z
functions. The set of arguments (atoms), however, consists only of random
constants ("R"). Note that x does not appear in this set of arguments (atoms).
The set of arguments could also contain some particular specific constant atoms
that might be useful in solving the problem; although, we do not use any in this
particular example. As a result, the set of S-expressions contains only random
constants. Typical S-expressions might be |

(+ 0.234 (* -0.685 0.478)) and

(* (* 0.537 -1.234) (+ 1.467 0.899)).

As before, 50 random values of x; are selected in a suitable domains (such
as -2.0 to +2.0). A "curve" is then built up by squaring each x;. Next, each x; is
multiplied by 2V2 and this result is subtracted from the square of each xj. The
value 2 is added to each of the 50 values. The next step is to evaluate the fitness
of each of the 300 individual S-expressions fj in the population. Each S-expression
in this problem has a particular numeric value because the initial population of S-
expressions contained only constants. Its value does not depend on xj. Thus,
when each fj is evaluated for fitess, the value is the same for all 50 cases
(because the value fj does not depend on x;). As before, the sum of these 50
(identical) values is the fitness of the S-expression fj. If the S-expression causes &
the left hand side of the equation (i.e. the raw fitness side) to be zero, that
S-expression (which is, in fact, a numeric constant value) satisfies the equation.

In one run, the best individual S-expression in the 42nd generation evaluated
to 1.41417, which is within 0.00004 of the value of V2, which is approximately
1.41421.
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Note that this genetic approach to solving equations for numeric values

produces quite precise values. This result is contrary to the conventional view
that genetic algorithms are only good for searching for the general neighborhood
of a correct answer in a large search space. This view is perhaps correct when
applied to genetic conventional algorithms operating on character strings whose
length is fixed in advance. However, in genetic algorithms where the size and
shape of the solution is allowed to dynamically vary as the problem is being
solved, it is possible to search large search space for the correct neighborhood

and then converge closely onto the precise correct solution.

Multiple Regression

The examples above included problems with one dependent variable x and
problems with several independent variables (such as the econometric time series
problem where there were two independent variables).

Problems with more than one dependent variable can also be solved. For
example, consider the following problem with four independent variables x1, x7, X3
and x4, and two dependent variables y and y2. Suppose we are given a set of 50
data points in the form of 50 6-tuples, namely, (x1i, X2i, X3;, X4i, ¥Y1i, ¥2i). The
unknown functional relationships might be

Y1i = X1i X3{ -X21 X4j

¥2i = X2i X3i +X1i X4i
for i between 1 and 50.

Problems of this type require the use of a somewhat more complex
structure for the individuals in the population because there are two return values
(y1i and y?2i), instead of just one. Two changes are required from the process
described earlier to accomodate multiple retum‘ values.

First, the root of the tree (i.e. the function just inside the left most

parenthesis of the LISP S-expression) should be the function LIST. This function
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LIST should have two arguments. That is, the value returned by the LISP S-
expression is a pair (LIST) of two numbers, rather that a single number.

The LISP S-expressions created in the initial generation of the process can
be of this form merely by restraining the choice for the function just inside the left-
most parenthesis of the S-expression to the particular function LIST (with two *
arguments). Thereafter, the process of generating the initial individuals in the
population would be unrestricted as before.

Second, the choice of points in the crossover operation should be
correspondingly restrained so as to preserve the structure required by the
problem. The structure required by the problem is that the root of the tree must
be the LIST function. In other words, the rule of construction for S-expressions
for this problem is to always initially place a LIST function at the root of the tree
and then preserve it at that location.

This restraining process can be conceived in two ways.

One way of conducting this restraining process is to exclude the root of the
tree (i.e. the function point just inside the left most parenthesis of the LISP S-
expression) from being selected as the crossover point of either parent in the
crossover operation. With this exception, the crossover process then proceeds as
before.

A second way of conducting the selection of the crossover point illustrates
the general principle involved somewhat more clearly. In this second way of
conducting the selection of the crossover point, any point may be selected in the
first parent. There is no restriction. However, the selection of the Crossover point &
in the second parent is restricted to a point of the same "type" as the point just
chosen from the first parent. There are only two "types” of points involved in the
multiple regression problem, namely, the root point and the non-root point of the
tree (LISP S-expression). Thus, if a non-root point is chosen as the crossover
point for the first parent, then a non-root point must be chosen as the crossover

point for the second parent. If the root happens to be chosen as the crossover
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point for the first parent, then the selection of crossover points in the second
parent is limited to points of this same “type". Therefore, the root of the second
parent must be chosen. As it happens, the crossover operation merely swaps
entire parents when the crossover points are both roots.

This second way of looking at the restraining process is more dramatically
illustrated in the problem of game playing and neural net design (both described
below). In games, for example, the internal points of the tree may be labeled with
the player who is entitled to move at that point in the game. The "types" of points
in the tree therefore correspond to the players involved. As before, any point may
be chosen in the first parent. The restraint applied is to limit the selection of the
Crossover point in the second parent to a point in the game tree that belongs to the
same player as the crossover point already chosen in the first parent.

Note that the fitness function for multiple regression problems must be
modified to take into account the fact that more than one dependent variable is
involved. One way to do this is to make the fitness equal to the absolute value of
the difference between the value of the first dependent variable returned by the S-
expression and the target value of the first dependent variable plus the absolute
value of the difference between the value of the second dependent variable
returned by the S-expression and the target value of the second dependent
variable. Of course, other ways of measuring differences (such as the square root
of the sum of the squares of differences) can also be used in the multiple
regression problem (in the same way as when there is only one dependent
variable).

In one run of the illustrative multiple regression problem described above,
the LISP S-expression
(LIST (- (* X3 X1) (*X4X2)) (+ ((*X3 X2) (* X1 X4)))
emerged on the 31st generation. The two S-expressions in the LIST are the two

desired S-expressions.
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The technique described above for handling the return of more than one
value from a program and the associated calculation of fitness for that situation
can be applied to many of the other problems described herein. For example,
there may be more than one value returned as the solution to an equation or a pair i
of equations; or, there may be multiple values returned from a program that s

performs a task that can be measure as to several different attributes.

Function Learning

The problem of machine learning of a function requires developing a
composition of functions that can return the correct functional value after seeing
only a relatively small number of specific examples of the functional value that is
associated with particular combinations of arguments.

In this first experiment, the problem is to learn the Boolean multiplexer
function. The input to the Boolean multiplexer function consists of k "address" bits
aj and 2K "data bits" d; and is a string of length k+2k of the form ak-1---- ajag d2k.
1--d1 d0. The value of the multiplexer function is the value (0 or 1) of the
particular data bit that is singled out by the k address bits of the multiplexer. For
example, for the 11-multiplexer (where k = 3), if the three address bits apaja( are
110, then the output is the sixth data bit dg.

The set of available functions for this problem is F = {AND, OR, NOT, IF}.
In fact, this set of basic logical functions seems appropriate (and is certainly
adequate) for any problem involving a Boolean function. The AND and OR

functions take two arguments. The NOT function takes one argument. The IF

IA)

function is the IF-THEN-ELSE function and takes three arguments.

The set of available atoms for this 'problem has 11 elements and is C = {AQ,
Al, A2,D0, D1, ..., D7}.

The potential set of structures undergoing adaptation in this prbblem is the
set of all LISP S-expressions that can be recursively composed from the set of

available functions and the set of available atoms.
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The Boolean multiplexer function with k+2k arguments is one of 2k+2k

possible Boolean functions of k+2k arguments. Thus, the search space for the
Boolean multiplexer is of size 2k+2k. Every possible Boolean function of k+2k
arguments can be realized by at least one LISP S-expression composed from the
functions and atoms above (via disjunctive normal form, for example). Thus, the
search space for the 11-multiplexer (where k = 3) is of size 22048 which is
approximately 10616,

The environment consists of the 2k+2k possible combinations of arguments
apalazdod1d2d3dadsdgdy, along with the associated correct value of the 11-
multiplexer function. For the 11-multiplexer (where k = 3), there are 2048 such
combinations of arguments in the environment. In our discussion here of this
particular problem, we use the entire set of 2048 combinations of arguments (i.e.
we do not use sampling of the environment).

The raw fitness of a LISP S-expression is the sum of the distances (taken
over all the environmental cases) between the point returned by the S-expression
for a given set of arguments and the correct point. When Boolean variables are
mvolved, this is equivalent to the number of mismatches. Thus, the raw fitness of
an S-expression can range over 2049 different values between 0 and 2048. A
raw fitness of O denotes a 100% correct individual.

We have found it highly useful to define an auxiliary measure for monitoring
the progress of runs which count the number of "hits" between an S-expression
and the correct value. For this problem the number of "hits" is simply 2048 minus
the raw fitness (mismatches). For problems involving integer values discussed
later, this auxiliary measure counts the number of "hits" between an S-expression
and the correct environmental value (whereas the raw fitness is a cumulative
distance measure). For problems involving real values discussed later, this
auxiliary measure counts the number of "near hits” for which the S-expression

comes within a small tolerance of the correct environmental value. This measure
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of "hits" or "near hits" is not accessible to, or used by, the genetic algorithm for
any problem discussed herein. It is used only for monitoring runs.

We illustrate the overall process by discussing one particular run of the
Boolean 11-multiplexer in detail. The process begins with the generation of the
initial random population (i.e. generation 0).

Predictably, the initial random population includes a variety of highly unfit
individuals. Some involve logical contradictions, such as (AND AQ (NOT A0)).
Others involve inefficiencies such as (OR D7 D7). Some are passive and merely
pass an input through as the output, such as (NOT (NOT A1)). Some of the initial
random individuals base their decision on precisely the wrong arguments (i.e. data
bits), such as (IF DO A0 A2). Most of the initial random individuals are partially
blind in that they do not involve all 11 arguments that are necessary for a solution.
Some are just nonsense, such as (IF (IF (IF D2 D2 D2) D2) D2).

Nonetheless, even in this highly unfit initial random population, some
individuals are somewhat more fit than others. For the run in question, the
individuals in the initial random population (generation 0) had raw fitness values
ranging from 768 mismatches (1280 hits) to 1280 mismatches (768 hits). As it
happens, a total of 25 individuals out of 4000 tied with the high score of 1280 hits
on generation 0. One such individual was the S-expression (IF A0 D1 D2). In
spite of its obvious shortcoming (e.g. it is partially blind, in that is uses only 3 of the
11 necessary atoms of the problem), this individual nonetheless does some things
right. It uses an address bit (AQ) as the basis for selecting one of two data bits as
the output. Moreover, if AQ (which is the low order binary bit of the 3-bit
address) is T (True), an odd numbered data bit (D1) is selected, while if AQ is
NIL, an even numbered data bit (D2) is selected. This individual is far from
perfect, but it is more fit than any of the others. The worst individual in the
population was (OR (NOT A1) (NOT (IF (AND A2 A0) D7 D3))) and had 1280

mismatches. The average raw fitness for generation 0 is 985.4.

B)
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The "hits" histogram of the population provides additional details about the
population and is particularly valuable in monitoring the progress of leamning from
generation to generation. A total of 50 different levels of raw fitness are
represented in the population. A histogram would show, for example, that 1490
had raw fitness 1152 (the high point for generation 0).

A new population is then created from the current population. This process
begins with the selection of a mating pool equal in size to the entire population
using fitness proportionate reproduction (with reselection allowed). The crossover
operation is then performed on the specified percentage of the mating pool. When
these operations are completed, the new population (i.e. the new generation)
replaces the old population.

Starting with generation 1, the average raw fitness of the population
immediately begins improving (i.e. decreasing) from the baseline value for
generation O of 985.4 to about 891. We typically see this kind of generation. As it
happens, in this particular run, the average raw fitness improves monotonically
between generation 2 and generation 9 and assumes values of 845, 823, 762, 731,
651, 558, 459, and 382.

At the same time, we typically see a generally improving trend in the raw
fitness of the best individual in the population from generation to generation. As it
happens, in this particular run, the raw fitness (i.e. number of mismatches) of the
best single individual in the population improves monotonically between generation
2 and generation 9 and assumés values of 640 (i.e. 1408 hits), 640, 576, 384, 384,
256, 256, 128, and 0 (i.e. a perfect score of 2048 hits), respectively. On the other
hand, the raw fitness of the worst individual in the population typically fluctuates
considerably. It is rarely monotonically improving. For this particular run, this
number starts at 1280 and actually deteriorates to 1792 (only 256 hits out of 2048)
by generation 9.

The number of hits for the best single individual in the population rises to

1408 for generations 1 and 2 of the run. In generation 1 for example, one
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individual in the population had a score of 1408, namely (IF AO (IF A2 D7 D3)
DO0). Note that this individual performs better than the best individual from
generation 0 because it considers two address bits (A0 and A2) in deciding which
data bit to choose as output and because it incorporates three data bits as its ’
potential output. In contrast, the best individual in generation O considered only 2
one address bit (A0) and incorporated only two data bits as potential output.
Although still far from perfect, the best individual from generation 1 is less blind
and more complex than the best individual of the previous generation.

By generation 2, the number of individuals sharing this high score of 1408
rose to 21. The histogram for generation 2 reflects the beginning of the left-to-
right undulating "slinky" progress that characterizes the learning by the population.
Note that the high point of the histogram for generation 2 has advanced from 1152
for generation 0 to 1280. There are now 1620 individuals with 1280 hits.

In generation 3, one individual in the population attained a new high score of
1472 hits. This individual is:

(IF A2 (JF A0 D7 D4) (AND (IF (IF A2 (NOT D5) A0) D3 D2) D2)).

The histogram for generation 3 shows further advances in fitness for the
population as a whole. The number of individuals with a fitness of 1280 (the high
point of the histogram) has risen to 2158 for generation 3, and the number of
individuals with fitness 1280 or better has risen from 1679 in generation 2 to 2719
in generation 3.

In generations 4 and 5, the best individual has a score of 1664 hits. This
score is attained by one individual in generation 4 and 13 individuals in generation
5. This best individual is:

(IF AO (IF A2 D7 D3) (IF A2 D4 (IF A1 D2 (IF A2 D7 D0)))).

Note that this individual uses all three address bits (A2, Al, and AQ) in
deciding upon the output. It also uses five of the eight data bits. By generation 4,
the high point of the histogram has moved to 1408 with 1559 individuals.
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In generation 6, four individuals attain a score of 1792. The high point of the
histogram has moved to 1536. In generation 7, 70 individuals attain this score of
1792.

In generation 8, four individuals attain a score of 1920. The high point of the
histogram has moved to 1664 and 1672 individuals share this value. Moreover, an
additional 887 individuals score 1792.

In generation 9, one individual emerges with a 100% perfect score of 2048
hits. That individual is: '

(IF AO (IF A2 (IF A1 D7 (IF AO D5 D0))
(IF AO (IF Al (IF A2 D7 D3) D1) D0))
(IF A2 (IF A1 D6 D4) (IF A2 D4 (IF Al D2 (IF A2 D7 D0)))))

Thus, this 100% correct individual can be simplified to:

(IF A0 (IF A2 (IF A1 D7 D5) (IF Al D3 D1))
(IF A2 (IF A1 D6 D4) (IF A1 D2 DO0))).

When so rewritten, it can be seen that this individual correctly performs the
11-multiplexer function by first examining address bits A0, A2 and A1 and then
choosing the appropriate one of these eight possible data bits.

A rapid sequential review of the histograms for generations 0 through 9
reveals the left-to-right "slinky" movement of the single best individual, the high
point of the histogram, and the "center of mass" of the histogram.

Further insight can be gained by studying the genealogical audit trail of the
process. This audit trail consists of a complete record of the details of each
instance of the operations. In the case of the operations of fitness proportionate
reproduction and crossover, the details consist of the individual(s) chosen for the
operation and the particular point chosen within each such participating
individual(s).

Construction of the audit trail starts with the individuals of the initial random
generation (generation 0). Certain additional information, such as the individual's

rank location in the population (after sorting by normalized fitness) and its raw
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fitness, is carried along as a convenience in interpreting the genealogy. Then, as
each operation is performed to create a new individual for the next generation, a
list is recursively formed consisting of the operation, the details of the operation,
and the entire audit trail (itself a list) accumulated so far for each of the
individual(s) participating in that operation.

An individual occurring at generation h has up to 2b+! ancestors. The
number of ancestors is less than 2h+1 to the extent that operations other than
crossover are involved; however, crossover is, by far, the most frequent operation.
For example, an individual occurring at generation 9 has moved up to 1024
ancestors. Note that a particular ancestor may appear more than once in this
genealogy because all selections of individual to participate in the basic genetic
operations are skewed in proportion to fitness. Moreover, even for a modest sized
value of h, 20+1 will typically be greater than the population size. This repetition,
of course, does nothing to reduce the size of the genealogical tree.

Construction of the genealogical audit trail is exponentially expensive in both
computer time and memory space. Note that the audit trail must be constructed
for each individual of each generation because the identity of the 100% correct
individual(s) eventually solving the problem at generation 0 is not known in
advance. Thus, there are 4000 audit trails. By generation 9, each of these 40000
audit trails incorporates recursively the audit trails of up to 1024 ancestors. In
order to minimize the size of the audit trail (which depends on the number of
generations involved), we selected a relatively large population (i.e. 4000) so as to
force down the number of generations needed to produce a 100% correct
individual. The audit trail for the single individual of interest in generation 9 alone
occupies about 27 densely printed pages.

An examination of the genealogical audit trail for the 100% correct
individual emerging at generation 9 reveals a number of interesting points. This
individual is the child resulting from the most common genetic operation used in

the process, namely crossover. The male parent from generation 8 had rank
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location of 58 (out of 4000) in the population and scored 1792 hits (out of 2048).
The female parent from generation 8 had rank location 1 and scored 1920 hits.
Note that it is entirely typical that the individuals selected to participate in
crossover had relatively good rank locations in the population since crossover is
performed among individuals in a mating pool created using fitness proportionate
reproduction.

The male parent from generation 8 (scoring 1792) was:

(IF A0 dF A2 D7 D3)
(IF A2 (IF A1 D6 D4)
(IF A2 D4 (IF A1 D2 (IF A2 D7 DO)))))).

Note that this male parent starts by examining address bit A0. If AQ is T,
the italicized and underlined portion then examines address bit 42, and partially
blindly makes the output equal D7 or D3 without even considering address bit A1,
Moreover, the underlined portion of this individual does not even contain data bit
D1 and D5. On the other hand, when A0 is NIL, this individual is 100% correct.
In that case, it examines A2 and is A? is T, it then examines A1 and makes the
output equal to D6 or D4, according to whether Al is T or NIL. Moreover, if A2
is NIL, it twice retests A2 (unnecessarily, but harmlessly) and then correctly
makes the output equal to (IF A1 D2 D0). In other words, this imperfect
individual handles part of its environment correctly and part of its environment
incorrectly. In particular, this father correctly handles the even numbered data
bits and often incorrectly handles the odd numbered data bits.

The tree representing this male parent has 22 points. The crossover point

was chosen at the second occurrence of the function IF, That is, the crossover

fragment consists of the incorrect, underlined sub-expression (IF A2 D7 D3).
The female parent fro generation 8 (scoring 1920) was:
(IF A0 (IF A0 (IF_A2 (IF A1 D7 (IF A0 D5 D0))
(F A0 (IF A1 (IF A2 D7 D3) D1) D0))
(IF A1 D6 D4))
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(IF A2 D4 (IF A1 D2 (IF A0 D7 (IF A2 D4 D0))))))

The tree representing this female parent has 40 points. The crossover point
was chosen at the third occurrence of the function IF. That is, the crossover
fragment consists of the italicized and underlined sub-expression. This sub-
expression correctly handles the case when AO it T by making the output equal to =
D7 when the address bits are 111, by making the output equal to D5 when the
address bits are 101, by making the output equal to D3 when the address bits are
011, and by making the output equal to D1 when the address bits are 001. This
female parent does not correctly do as well when AQ is NIL. In other words, this
mother correctly handles the odd numbered data bits and incorrectly handles the
even numbered data bits.

Thus, these two imperfect individuals contain complementary, coadapted
portions which, when mated together, produce a 100% correct offspring individual.

As one traces the ancestry back, one encounters parents scoring generally
fewer and fewer hits. And of course, as one goes farther back, one encounters
more S-expressions that perform irrelevant, counterproductive, partially blind, and
incorrect work.

Note that the result of the non-linear genetic algorithm is always inherently
hierarchical. In addition, default hierarchies often emerge from the non-linear
genetic algorithm. Default hierarchies incorporate partially correct sub-rules into
a perfect overall procedure by allowing the partially correct sub-rules to handle
the majority of the cases and by then dealing another way for certain specific
cases. For example, in one run of the Boolean 6-multiplexer broblem, we obtained »
the 100% correct solution:

(IF (AND AO A1) D3 (IF A0 D1 (IF Al D2 D0))).

This solution is a default hierarchy. In this expression, the output defaults to
(IF A0 D1 (IF A1 D2 D0)); however, in the specific case when both address bits
of the 6-multiplexer problem are 11, the output is the data bit D3. Default

hierarchies are considered desirable in induction problems and classifier systems
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because they are often parsimonious and they are a human-like way of dealing

with situations.

Planning Problem - Block Stacking

A simple illustrative problem in robotic planning involves rearranging
uniquely labeled blocks in various towers from an arbitrary initial arrangement into
an arbitrary specified new order on a single target tower. In the version of the
problem involving 9 blocks, the blocks are labeled with the 9 different letters of
"FRUITCAKE" or "UNIVERSAL." In the experiment here, the task is to
automatically generate a general plan that solves this problem.

This problem is typical of many problems in artificial intelligence in that it is
primarily symbolic. This problem illustrates the technique of associating LISP
atoms with the state variables of a problem and of using functions and their side
effects to alter the state space of a problem. This problem also illustrate the use
of an iterative function DU ("Do Until").

Three lists are involved in the formulation of the problem. The GOAL-
LIST is the ordered set specifying the desired final order in which the blocks are
to be stacked in the target tower (i.e. "FRUITCAKE or "UNIVERSAL"). The
STACK is the ordered set of blocks that are currently in the target tower (where
the order is important). The TABLE is the set of blocks that are currently not in
the target tower (where the order is not important). The initial configuration
consists of certain blocks in the STACK and the remaining blocks on the TABLE.
The desired final configuration consists of all the blocks being in the STACK in
the order specified by GOAL-LIST and no blocks being on the TABLE.

Thrée sensors dynamically track the environment in this problem. The
sensor TB ("Top correct Block") dynamically specifies the CAR (i.e. first
element) of the list which is the longest CDR (i.e. list of remaining elements) of the
list STACK that matches a CDR of GOAL-LIST. The sensor NN ("Next
Needed") dynamically specifies the next needed block for the STACK (i.e. the
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immediate predecessor of TB in GOAL-LIST). The sensor CS dynamically
specifies the CAR of the STACK (i.e. the top block of the STACK).

Thus, the set of atoms available for solving the problem here is A = {TB,
NN, CS.} Each of these atoms is a variable that may assume, as its value, one of ’
the 9 block labels or NIL. .

The combined set of functions available for solving the problem here
contains 5 functions F = {MS, MT, DU, NOT, EQ.} The functions NOT and EQ
are the usual Boolean Common LISP negation and equality function. The other
three functions are described below.

The function MS ("Move to the Stack") has one argument. The
S-expression (MS X) moves block X to the top of the STACK if X is on the
TABLE. This function MS does nothing if X is already on the STACK, if the
table is empty, or if X itself is NIL. Both this function and the function MT
described below returns NIL if they do nothing and T if they do something;
however, their real functionality is their side effects on the STACK and TABLE,
not their return values.

The function MT ("Move to the Table") has one argument. The
S-expression (MT X) moves the top item of the STACK to the TABLE if the
STACK contains X anywhere in the STACK. This function MT does nothing if X
is on the TABLE, if the STACK is empty, or if X itself is NIL.

The iterative operator DU ("Do Until") has two arguments. The
S-expression (DU WORK PREDICATE) iteratively does the WORK until the
PREDICATE becomes satisfied (i.e. becomes T). The DU operator is similar to =
the "REPEAT...UNTIL" loop found in many programming languages. Note that
the WORK and PREDICATE arguments are not evaluated outside the iterative
DU operator and then passed to the DU operator when the DU operator is called.
Instead, these arguments must be evaluated dynamically inside the DU operator
on each iteration. First, the WORK is evaluated inside the DU operator. Then the

PREDICATE is evaluated inside the DU operator. These two separate"
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evaluations are performed, in sequence, using the LISP function EVAL inside the
DU operator. Note that in an iterative construction, the execution of the WORK
will almost always change some variable that will then be tested by PREDICATE..
Indeed, that is usually the purpose of the loop. Thus, it is important to suppress
premature evaluation of the WORK and PREDICATE arguments of the DU
operator. The evaluation of arguments to the other iterative and summation
operators described elsewhere in this article must be similarly postponed. The
iterative function DU has an indexing variable II which is updated for each
iteration.

Because the genetic computing paradigm described herein involves
executing randomly generated computer programs, a number of computer
implementation issues must be addressed. In particular, individual S-expressions
in the genetic population will often contain an unsatisfiable termination predicate.
Thus, it is a practical necessity (when working on a serial computer) to place
limits on both the number of iterations allowed by any one execution of a DU
operator. Moreover, since the individuals S-expressions in the genetic population
often contain complicated and deep nestings of numerous DU operators, a similar
limit must be placed on the total number of iterations allowed for all DU functions
that may be evaluated in the process of evaluating any one individual S-expression
for any particular environmental case. Thus, the termination predicate of each
DU operator is actually an implicit disjunction of the explicit predicate argument
PREDICATE and two additional implicit termination predicates. The typical "time
out” limits that we have used in the problem herein are: (1) the DU operator
"times out" if there have been more than 25 iterations for an evaluation of a single
DU operator or (2) if there have been a total of more than 100 iterations for all
DU operators that are evaluated for a particular individual S-expression for a
particular environmental case. Of course, if we could execute all the individual
LISP S-expression in parallel (as nature does) so that the infeasibility of one

individual in the population does not bring the entire process to a halt, we would
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not need these limits. Note that even when a DU operator times out, it
nevertheless returns a value. In particular, the DU operator evaluates to T unless
one of the two implicit termination predicates times out. The value resulting from
this evaluation of the DU operator is, of course, in addition to the side effects of
the DU function on the state variables of the system (particularly the STACK and -+
TABLE in the block-stacking problem). If the predicate of a DU operator is
satisfied when the operator is first called, then the DU operator does no work at
all and simply returns a T.

Note that the fact that each function returns some value under all conditions
(in addition to whatever side effects it has on the STACK and TABLE) and the
inherent flexibility of the LISP language guarantees that every possible individual
S-expression can be executed and evaluated for any composition of functions and
arguments that may arise.

The environment consists of millions of different environmental starting
cases of N blocks distributed between the STACK and on the TABLE. The raw
fitness of a particular individual plan in the population is the number of
environmental starting cases for which the particular plan produces the desired
final configuration of blocks after the plan is executed.

The computation of fitness in this problem (and indeed, in many genetic
algorithm and adaptive systems problems) can be significantly shortened by
consolidating various inherently similar initial configurations or by sampling. In
particular, there are N+1 cases in which the Bloéks, if any, in the initial STACK
are all in the correct order and in which there are no out-of-order blocks on top of =
the correctly-ordered blocks in the initial STACK. There are also N-1 additional
cases where there is precisely one out-of-order block in the initial STACK on top )
of various number of correctly-ordered blocks in the initial STACK. In lieu of an
environment of up to several million environmental starting cases, we constructed
an environment consisting of (1) the 10 cases where the 0-9 blocks in the STACK

are already in correct order, (2) the 8 cases where there is precisely one out-of-
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order block in the initial STACK on top of whatever number of correctly-ordered
blocks, if any, happen to be in the initial STACK, and (3) a structured random
sampling of 148 additional environmental starting cases with 0, 1, 2, ..., 8 correctly-
ordered blocks in the initial STACK and various random numbers 2,3, 4, ... out-of-
order blocks on top of the correctly-ordered blocks. The complete structured
random sampling used for this problem contained a total of 166 environmental
starting cases so that raw fitness ranged over 167 values between 0 and 166.
Obviously, this consolidation and sampling process must be done with some care
to that the process is not misled into producing solutions that correctly handle the
smaller environment and do not correctly handle the entire environment.

The first version of the block-stacking problem involves finding a general
plan which can start with any of the environmental starting condition cases and
can correctly stack the 9 blocks onto the STACK in the desired order and then
stop.

The initial random population of plans have predictably low fitness. Many of
these initial random plans were complicated, inefficient, pointless, or counter-
productive. Typical random initial plans are plans such as (EQ (MT CS) NN) and
(MS TB). This first plan unconditionally moves the top of the STACK to the
TABLE and then performs the useless Boolean comparison between the sensor
value NN and the return value of the MT function. The second plan (MS TB)
futilely attempts to move the block TB (which already is in the STACK) from the
TABLE to the STACK. Many initial random plans are so ill formed that they
perform no action at all on the STACK and the TABLE. Thése plans achieve a
raw fitness level of 1 (out of a maximum of 166) since they at least leave
untouched the environmental starting case consisting of an already perfectly
arranged STACK. Many other initial random plans are even more unfit and even
disrupt a perfectly arranged initial STACK. These plans achieve a fitness level of
0. Some initial random plans achieve modest fitness levels such as 2, 3, etc.

because they contain particular specific action sequences that happen to work on
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a small fraction of the environmental starting cases. For example, the plan from
the TABLE to the STACK. This plan works in the four particular specific
environmental starting cases where the initial STACK consists of 6, 7, 8 or 9
already correct blocks and no out-of-order blocks on the STACK.

After about five generations, there is usually one or more individuals in the =
population that can correctly handle the most simple N+1 (10) environmental
cases in group (1) above (i.e. where the blocks, if any, in the initial STACK are all
in the correct order and in which there are no out-of-order blocks on top of the
correctly-ordered blocks in the initial STACK). Typically, these partially correct
sub-plans (sub-goals) are not parsimonious; however, in a few runs, the
parsimonious sub-plan (DU (MS NN) (NOT NN) emerged. This plan works by
enlarging an initial STACK by iteratively moving needed blocks (NN) in the
correct sequence from the TABLE onto the STACK until there are no more
blocks needed to finish the STACK (i.e. the sensor NN is NIL). This sub-plan, or
course, does not produce a correct final STACK if the blocks originally on the
STACK were not correct, and thus, is incorrect in 157 of the 167 environment
starting condition cases. Note that the fitness function reflects the affirmament of
the sub-goal of correctly handling the 10 cases of 166 cases.

Thereafter, the performance of the best single individual in the population
typically increases somewhat from generation to generation and correctly deals
with a few more additional cases in the environment. At the same time, the
overall average fitness of the population also tends to increase somewhat from
generation to generation. After about ten generations, we often see one or more 2
individuals in the population achieving a perfect score (that is, the plan produces
the desired final configuration of blocks in the STACK for 100% of the initial
environmental starting cases). These 100% correct plans are typically neither
parsimonious nor efficient. The most common form for these 100% correct plans
are plans, which when restated parsimoniously, are equivalent to:

(EQ (DU (MT CS) (NOT CS)) (DU (MS NN) (NOT NN))).
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This overall plan consists of two sub-plans which are connected via the
function EQ. The first subplan (DU (MT CS)) does the work of moving CS (i.e.
the top of the STACK) to the TABLE until the top of the STACK becomes NIL
(i.e. the predicate (NOT CS) becomes T). The second sub-plan does the work of
moving the next needed block NN to the STACK until there is no remaining next
needed block (i.e. the predicate (NOT NN) becomes T).

Note that the previously discovered, partially correct subplan (DU (MS
NN) (NOT NN)) is part of the final solution. It became part of the final solution
as a result of the crossover operation working on individuals chosen in proportion
to fitness. In effect, this subplan became part of a default hierarchy created by
crossover, which, in turn, was driven by fitness.

The particular 100% correct solution discovered above is highly inefficient
in that it mindlessly removes blocks from the STACK that are already in the
correct order on the STACK. It requires 2319 block movements over the 166
environmental starting cases. The most efficient way to solve this problem, in
terms of minimizing total block movements, is to remove only the out-of-order
blocks from the STACK and to then move the next needed blocks to the STACK.
This approach can be accomplished with 1641 block movements over the 166
environmental starting cases.

We can simultaneously breed the population for both correctness and
efficiency by using a new combined fitness measure that assigns the largest part
of the weight to correctness (say 75%), and the remaining weight (say 25%) to
efficiency. Specifically, 1641 block movements would be assigned the best share
of the 25% of fitness assigned to efficiency. Any deviation (up or down) from 1641
would be penalized. Efficiency can be viewed as the work effort required or the
amount of time required to solve the problem.

In one run, for example, the best individual from the Initial random

population (generation 0) performed correctly in only 1 of the 166 environmental
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starting cases and involved a total of 6590 block movements. However, by
generation 11, the best individual in the population was
(DU (EQ (DU (MT CS) (EQ CS TB)) DU (MS NN) (NOT NN))) (NOT NN))
This plan is 100% correct and 100% efficient in terms of total block movements.
It uses the minimum number (1641) of block movements to handle all 166
environmental starting cases. This plan is graphically depicted in Figure 15.

In this plan, the sub-plan (DU (MT CS) (EQ CS TB)) at 1510 iteratively
moves CS (the top block 1520) of the STACK to the TABLE (via the MT
function at 1522) until the TB (top correct block 1524) equals CS (at 1526). Then,
the sub-plan (DU (MS NN) (NOT NN)) at 1530 iteratively moves the next
needed block (NN at 1532) to the STACK (via the MS function at 1534) until
there is no longer any next needed block (that is, the predicate (NOT NN) at
1536 is satisfied).

Note that the function EQ at 1540 serves only as a connective between the
two sub-plans. Note also that the outermost DU function 1500 performs no
function (but does no harm) since the predicate (NOT NN at 1550) is satisfied at
the same time as the identical predicate 1536 of the second sub-plan 1530. In that
regard, it is similar to the approximately 99% of nucleiotide bases (out of
approximately 2.87 billion) in a molecule of human deoxyribonucleic acid that
never get expressed into protein.

We can also similarly breed the population for other secondary factors
(such as parsimony). Parsimbny is the succinctness of the S-expression. Thus,
25% of the weight in the fitness measure can be assigned to the S-expression

(with shorter S-expressions receiving a better share of this 25%).

Planning Problem - Artificial Ant
Another illustrative example of a planning problem is the problem of an

“artificial ant" attempting to traverse a trail.
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The setting for the problem is a square 32 by 32 grid containing stones in 89
of the 1024 cells and nothing in the remaining cells. The trail is a winding trail of
stones with single missing stones, double missing stones, a missing stone at some
comners, double missing stones at some corners (knight moves), and triple missing
stones at some corners (long knight moves).

An "artificial ant" begins at the cell identified by the coordinates (0,0) and is
facing in a particular direction (e.g. east) at the beginning of the trail. The artificial
ant has a sensor that can see only the single adjacent cell in the direction the ant
is facing. At each time step, the ant has the capacity to execute any of four
operations, namely, to move forward in the direction it is facing, to turn right (and
not move), to turn left (and not move), or to do nothing. The grid is toroidal so
that if the ant moves off the edge of the grid, it reappears and continues on the
opposite edge.

The objective of the ant is to traverse the entire trail. As the ant moves into
a particular cell with a stone, that stone is credited to the ant's account and the
cell is then converted into a blank cell so that it is not counted again. The ant's
expenditure of effort is measured by the ant's success in finding all 89 stones, the
total amount of time required to find the stones, or a weighted average of these
two factors. The ant's task is limited to a certain number of time steps which, if
exceeded prior to finding all 89 stones, causes the ant to "time out."

This problem was originally presented and solved using conventional
genetic algorithms using fixed-length strings of binary bits by Jefferson, Collins, et
al. at the Second International Conference on Artificial Life held in Santa Fe, New
Mexico in February, 1990. To solve this problem using conventional string-based
genetic algorithms, a population of 65,536 individual bit strings of length 453 was
processed on the Connection Machine computer using a genetic algorithm using
crossover and mutation operating on a selected fraction of the population based on
fitness.
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Their objective was to find a finite automaton and a neural net that could
solve the problem.

The finite automaton necessary to solve the problem was assumed to have
32 or fewer states and was represented by a binary string representing the state
transition diagram of the automaton (and its initial state). The ant's sensory input =
at each time step was coded as one bit and the output at each time step was
coded as two bits (for the four possible operations). The next state of the
automaton was coded with 5 bits. The complete behavior of the automaton was
thus specified with a genome consisting of a binary string with 453 bits (64
substrings of length 7 representing the state transitions and 5 additional bits
representing the initial state of the automaton). After 200 generations in a
particular run, a single individual finite automaton emerged which attained a
perfect score of 89 stones within the time limit of 200 operations.

Jefferson, Collins et al. were similarly successful in discovering a multi-layer
recurrent neural net for this task using conventional string-based genetic
algorithms. The neural net necessary to solve the problem was assumed to have
two processing units in the input layer (for the two possible sensory inputs of the
ant), five processing units with 7 inputs each in the hidden layer, and four
processing units with 7 inputs each in the output layer (for the four possible
operations). The genome for encoding the neural net contained 520 bits
representing the weights associated with the inputs, the thresholds, the initial
activation levels of the processing units, and other information.. The population
size was again 65,536 individuals and the Connection Machine computer was "
used. _

Note that Jefferson, Collins, et al. had to predetermine the maximum size of
the finite automaton and neural net before they could use the conventional genetic
algorithm using fixed length binary character strings to solve the problem.

In our approach to this task using non-linear genetic algorithms, the function

set consisted of the functions {MOVE, TURN-RIGHT, TURN-LEFT, IFS,
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PROGN}]. The first three functions have no arguments and operate via their side
effects on the ant's state (i.e. its position on the grid or the facing direction). The
IFS function has two arguments and returns the first argument if the ant's sensor
senses a stone or, otherwise, returns the second argument. The PROGN function
is the standard Common LISP connective function that merely sequentially
evaluates its arguments (2 or 3) as a "program.” The atom set was empty. We
allowed 400 time steps before timing out. As can be seen, the mov'ements and
turns of the artificial ant are illustrative of the movements that a robot might need
to perform tasks in response to sensory input that the robot senses from its robotic
environment.

In one run (involving our usual population of 300 individuals), an individual
scoring 89 out of 89 emerged on the 7th generation, namely,
(IFS (MV) (PROGN (TRG) (IFS (MV) (TLF)) (PROGN (TLF) (IFS (MV)
(TRG)) (MV)))).
This plan is graphically depicted in Figure 16.

This individual plan moves the ant forward (via the MV function at 1602) if -
a stone is sensed by the IFS function at 1600. Otherwise it turns right 1604 and
then moves the ant forward 1606 if a stone is sensed, but turns left 1608,
(returning to its original orientation) if no stone is sensed. The IFS function at
1610 controls these two choices. Then it turns left 1620 and moves forward 1622
if a stone is sensed (by 1624), but turns right (returning to its original orientation) if
no stone is sensed 1626. The fifth operation occurring if the ant originally did not
sense a stone (via the left-most IFS of the plan at 1600) is to move forward

unconditionally 1630. Note that there is no testing of the backwards directions.

Game Playing
Figure 18 shows a game tree. A game tree is a graphical way of

presenting a game. The game in Figure 18 is a simple illustrative game involving



WO 91/14990 PCT/US91/01970

136

alfernating play by two players who have two choices ("left" and "right") on each
occasion when they have the opportunity to move.

The root 1800 of the tree is labeled with the player who is entitled to move
at the beginning. The root 1800 of the game tree in Figure 18 is labeled with
player I. One line radiates downwards from the root of the tree for each possible =
move available to the player entitled to move at the beginning. In particular, the
line 1810 on the left and the line 1812 on the right represent the two possible
moves available to player I at the beginning of the game.

Similarly, each other internal point of the tree is labeled with the player who
is entitled to move at that point in the game. In particular, if player I chooses to
move to the left, the state of the game arrives at internal point 1820. Because this
game involves alternating play by two players, point 1820 is labeled with player II.
If player I chooses to move to the right, the state of the game arrives at internal
point 1822. Similarly, one line radiates downwards from each other internal point
of the tree for each possible move available to the player entitled to move at that
point in the game. In particular, if the state of the game is at point 1820 (because
player I previously moved to the left on his first move), the line 1830 corresponds
to player II choosing to move to the left whereas the Iine 1832 corresponds to
player II choosing to move to the right. Similarly, if the state of the game is at
point 1822 (because player I previously moved to the right on his first move), the
line 1834 corresponds to player II choosing to move to the left whereas the line
1836 corresponds to player II choosing to move to the right. |

As one moves deeper into the game tree, the game tree similarly describes
the available moves in the game. Thus, the points 1840, 1842, 1844, and 1846 are
the points where Player I can make his second move in the game. In this
particular simple game, player II's second move is the last move of the game.

The external points (leaves, ending points) of the tree (1861, 1862, 1863,
1864, 1865, 1866, 1867, and 1868) show the payoff (to player I) if the game

progresses to the end. For example, if player I moves left at the beginning of the
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game (at the root 1800), if player I moves to the right at point 1832, and if player
I moves to the left at point 1842, then the external point 1863 will be reached.
The payoff to player I is $4 for external point 1863.

The objective of player I in the game is to maximize his payoff. Note that,
given player I's move to the left at the beginning, player II did the best he could by
moving to the right on his move (at 1820) since that limited player I's payoff to
either $4 (at 1863) or $3 (at 1864). Player I would then do his best by choosing
the $4 (point 1863) by moving to the left on his second move at point 1842. If,
after player I's first move to the left, player II had non-optimally moved to the left
on his move (at 1820), payoffs of either $7 (at 1861) or $8 (at 1862) would then
be available to player I. In particular, player I would then do his best by choosing
the $8 (at 1862) by moving to the right on his second move at point 1840.

A "strategy" for a given player in a game is a way of specifying what move
the player is to make at a particular point in the game form all the allowable
moves at that time and given all the information about the state of the game that is
available to the player at that time. Strategies for games may be expressed in
several different ways. One way is to specify the player's moves in terms of
every possible sequence of previous moves. This method is conceptually simple,
but very tedious. Another way is to express the strategy in terms of the state of
the game. This method is typical in board games (such as checkers or chess)
where the current state of the board (not the particular sequence of moves that
led to the current state of the board) is used for expressing the strategy for the
subsequent move.

Another way of expressing a strategy for a game is to express the strategy
in terms of various features of the current state of the game (e.g. control of the
center of the board in checkers) rather than the entire state of the game (i.e. the
board).

The best strategy for player I is that player I should move to the left of his

first move. Then, if player II moved to the left on his move, player I should move
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to the right; and, if player II moved to right on his move, player I should move to
the left. The best strategy for player II is that if player I moved to the left on his
first move, player II should move to the right; and, if player I moved to the right on
his first move, player II should move to the left. i

We can approach the problem of generating the best strategy for player I *
by genetically breeding a population of game strategies for player I. A strategy
for player I must unambiguously specify player I's move at each opportunity he
has to move during the game. In particular, the strategy for player I must specify
player I's move at the beginning of the game and it must also specify player I's
move given either of the possible first moves by player II.

One possible set of functions that can be used for this problem consists of
two functions XF1 and XF2, each with three arguments. As will be seen below,
these functions allow the strategy to be expressed in terms of the sequence of
previous moves that have occurred in the game. This particular approach is
tedious. There are, of course, many alternative approaches for defining the
strategy functions that could have been used. We can illustrate the operation of
these functions by discussing the LISP S-expression that is the best strategy for

- player I in this game, namely,

(XFIL(XF2LRL)(XF2LLR)). |

The function XF1 uses information about player I's first move to specify
what move player I should make. The function is designed to produce a move in
all cases, including the case where there is no information about player I's first
move. The function XF1 chooses its first argument as player I's move if player I's
first move is unspecified. This occurs when player I has yet to move (i.e. at the
beginning of the game when it is player I's turn to move). The first argument is L.
Thus, the best strategy for player I tells player I to move to the left at the
beginning of the game. The function XF1 chooses its second argument as player
I's move if player I's first move was to the left and chooses its third argument as

player I's move if player I's second move was to the right. As it happens, in the
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best strategy for player I shown above, the second and third arguments of XF1
are themselves functions (in both cases, XF2 functions). Thus, it is necessary to
evaluate those XF2 functions in order to determine player I's second move. In
other words, in this game, player I's second move depends on both player I's first
move and player II's intervening first move.

The function XF2 uses information about player II's move to specify what
move player I should make. The function XF2 chooses its first argument as
player I's move if player II's move is unspecified. This is the case prior to player
II's move. The function XF2 chooses its second argument as player I's move if
player II's move was to the left and chooses its third argument as player I's move
if player II's move was to the right. If player I's first move was to the left, the
best strategy for player I is for player I to move to the right if player II's move is
to the left and to move to the left if player II's move is to the right. If player II's
move was to the right, the best strategy for player II is for player I to move to the
right if player II's move was to the left and for player I to move to the left if player
II's move was to the right.

Note that regardless of whether player I has made his first move, and
regardless of whether player II has made his first move, a move (R or L) is
always unambiguously specified for player I. Moreover, regardless of how these
particular two functions XF1 and XF2 may be combined, a move (R or L) is
always unambiguously specified for player I. In the best strategy, the move
specified for player I is his best move.

The best strategy for player I in playing this game has béen discovered in
various runs of the process described herein.

The process of finding a best strategy in a game can be facilitated by
imposing additional structural limitations on the initial creation of S-expressions
and by imposing additional structural limitations on the selection of the crossover
points. In particular, for the game in the above example where plays alternate

between two players, the root point of the S-expression should be limited to a
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function operating from the point of view of the player who is entitled to make the
first move in the fame. In the particular example above, the function XF1 (but not
the function XF2) would be appropriate for the root point of the tree. Similarly,
points at the next level of the tree (which correspond to player II) would be
limited to functions operating from the point of view of player I. Similarly, points
at the next level of the tree (which correspond to player I) would be limited to
functions operating from the point of view of player L

When the crossover operation is being performed, the crossover operation
should be restrained so as to preserve the structural limitation introduced at the
time of creation of the initial population. There need not be any restriction of the
selection of the crossover point in the first parent. However, once the crossover
point in the first parent is selected, the selection of crossover point in the second
parent should be limited to points in the second parent of the same type. In the
particular case of the game in the above example, if the point chosen in the first
parent belongs to player I, the crossover point for the second parent would then
be limited to points belonging to player I.

In general, there are predetermined rules of construction which limit what
functions can appear at particular points in the creation of the initial population.
These rules of construction have the effect of limiting, in at least one situation, the
choice of function that can appear at a particular point in the initial individuals of
the population. Similarly, when crossover is being performed, these rules of
construction have the effect of limiting, in at least one situation, the choice of |
crossover points for the second parent on the basis of which crossover point has
already been chosen from the first parent.

A similar limitation was illustrated in the discussion of multiple regression
(above) and neural net design (below). In the case of multiple regression, the rule
of construction was particularly simple and succinct, namely, the root of the tree
had to be a LIST function.

%

&



WO 91/14990 PCT/US91/01970

141
Cdncept Formation

The problem of building up a knowledge base by inductive inference from
examples and of acquiring structural knowledge about a domain in the form of
concepts has received increasing attention as result of the emergence of
knowledge-based expert system technology. Working in Australia, Quinlan has
developed and inspired a particularly effective family of hierarchical classification
systems for inducing a decision tree from a limited number of training case
examples. In ID3 (and various other systems of the ID3 family), the goal is to
partition a universe of objects into classes. Each object in the universe is
described in terms of various attributes. The system is first presented with a set
of training case examples which consist of the attributes of a particular object and
the class to which it belongs. The system then generates a decision tree which
hopefully can then be used to classify a new object correctly into a class using the
attributes of the new object. The external points (leaves) of the decision tree are
the eventual class names. The internal points of the decision tree are attributed-
based tests which have one branch emanating from the decision point for each
possible outcome of the test.

The induction of such decision trees for classifying objects can be
approached by genetically breeding LISP S-expressions for performing this task.
In particular, the set of atoms is the set of class names. The set of functions is the
set of attribute-based tests. Each function has as many arguments as there are
possible outcomes of that particular test. When a particular object is presented to
the LISP S-expression (i.e. the decision tree), each function in the S-expression
tests one attribute of the object and returns the particular one of its arguments
designated by the outcome of the test. If the designated argument is an atom, the
function returns the class name. When the S-expression is fully evaluated in
LISP's usual left-oriented depth-first way, the S-expression as a whole thus
returns a class name. That is, the S-expression is a decision tree that classifies

the new object into one of the classes.
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To demonstrate the technique of genetically inducing a decision tree, we
apply this approach to the small training set of 14 objects presented by Quinlan in
1986. In Quinlan's problem, each object has four attributes and belongs to one of
two classes ("'positive” or "negative"). The attribute of "temperature”, for
example, can assume the possible values hot, mild, or cool. Humidity can assume
the values of high or normal. Outlook can assume values of sunny, overcast, or
rain. Windy can assume values of true or false. The decision tree presented by
Quinlan as the solution for this problem is shown in Figure 17.

If, for example, the OUTLOOK 1700 of a particular object is sunny 1702
and the HUMIDITY 1710 is high 1712, then that object is classified into class O

. (negative) 1714,

In order to genetically induce the decision tree, each of the four attributes in
this problem is converted into a function. For example, the function "temperature”
operates in such a way that, if the current object has a temperature of "mild," the
function returns its second argument as its return value. The other attributes in
this problem, namely "humidity”, "outlook", and "windy", are similarly converted
to functions. The function set for this problem is therefore F = {TEMP, HUM,
OUT, WIND} with 3, 2, 2, and 2 arguments, respectively. The atom set for this
problem is A = {0, 1} since there are two classes.

In one run, the LISP S-expression
(OUT(WIND 1 0) (WIND 1 1) (HUMO 1)
emerged on the 8th generation with a maximal fitness value of 14 (i.e. it correctly
classified all 14 training cases). Noting that (WIND 1 1) is ecjuivalem to justthe &
atom 1, this S-expression is equivalent to the decision tree 1700 presented by

Quinlan using ID3.

Automatic Programming
The problem of automatic programming requires developing a computer

program that can produce a desired output for a given set of inputs.
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For this experiment, the problem is to solve the quadratic equation x2 + bx
+ ¢ = ( for a complex-valued root. The available functions were multiplication,
subtraction, a modified division operation %, and a square root function V. The
modified division function % returns 0 when division by zero is attempted. The
square root function V returns a LISP complex number. Thus, for example, (V -4)
calls for the square root of -4 and would evaluate to the LISP complex number
#C(0, 2), which is equivalent to 0 + 2i.

The environment consisted of a suite of 10 quadratic equations (with some
purely real roots, some purely imaginary roots, and some complex-valued roots).
For each of the 10 equations in the environment, a given individual S-expression
was evaluated to obtain a (generally) complex number. The square root of the
square of the real part of the complex number produced by the individual LIPS S-
expression and the square of the imaginary part of the complex number produced
by the individual LISP S-expression was computed. These distance values were
then summed over the 10 quadratic equations in the environmental test suite to
obtain the fitness value of the given S-expression.

In one run, a correct solution to the problem emerged at generation 22,
namely, the S-expression (- (V -(*(%B2)(%B2)C)(%B 2)), which is
equivalent to the well-known solution. |

The problem of finding primes illustrates a third iterative control structure,
namely, an operator equivalent to the "LOOP FOR" found in many programming
languages. A prime number is a positive integér which is evenly divisible only by
itself and one. The problem of finding primes can be viewed as finding a function
over the positive integers that returns the number of divisors. If the number of
such divisors is greater than two, then the number is not a prime (i.e. it is a
composite number). If the number of such divisors is two (or perhaps one,
depending on how one handles the-argument one), then the number is a prime. If
the test suite is the first 64 integers, then the space of possible two-valued

functions for this problem is of size 264.
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Two approaches to this problem were used. In both approaches, the atom
J 1s an integer between 1 and 64. The objective is to determine whether J is a
prime. An assignable variable CNC is available and it is initially zero. In both
approaches, the function CZ is available. The function (CZ J M) adds one to
CNC if J modulo M is zero.

In the first approach, an iterative operator DUL was used. The DUL
operator is equivalent to the "FOR" loop found in many programming languages,
whereas the DU operator is equivalent to the "REPEAT . . . UNTIL" loop and the
SIGMA operator is equivalent to the 3, notation for infinite series in mathematics.
The operator DUL ("Do-Until-Loop") has two arguments, namely, the work
WORK and the number of iterations NLOOP to be performed. It is similar to the
previously described interactive operator DU ("Do-Until") and the previously
described iterative summation operator SIGMA in that an iteration variable II is
available inside the DUL operator for possible incorporation into the WORK
argument or the NLOOP argument and in that "time out" limits must be
established for this operator.

The combined set of functions and atoms for this first approach is C =

{DUL, CZ,J, II}. If an S-expression returned a value that was not greater than 2,

it is deemed to be a prime. Otherwise, it is deemed to be a composite:number.
Fitness is the number of integers between 1 and 64 that were correctly classified.
The S-expression (DUL (CZJII) J) is a parsimonious and completely correct
solution to this problem. This solution was obtained in several runs of the
program.

In the second approach, the only operative function available was CZ. The
passive function PROGN was included in the set of available functions to allow 2
sequence of functions to be performed. The available atoms were J, CNC, and
the integers up to § (i.e. the square root of 64). An appropriate sequence of CZ
functions with appropriate arguments can thus functions as a sieve. Moreover,

partially correct structures can easily develop. In one run, (CZ J 2) appeared as



WO 91/14990 PCT/US91/01970

145
the best individual of generation 0. Then, (PROGN (CZ J 2) (CZJ7) CNO)
appeared with slightly better fitness. Then, (PROGN (CZ J 3) 7 (PROGN (CZ1J
2) (CZJ7)CNC)) appeared with even better fitness. Finally, (PROGN (CZ
(PROGN (CZ 1 3)51)5) 7 (PROGN CZ ] 2) CZJ 7) CNC)) appeared in
generation 5. This S-expression is as close to a solution as is possible with the

available atoms and functions.

Pattern Recognition

A simple illustrative problem in pattern recognition involves the problem of
translation-invariant recognition of a one-dimensional shape in a linear binary
retina (with wrap-around). In the simplified experiment here, the retina has 6
pixels (with wrap-around) and the shape consists of three consecutive binary 1's.
Thus, 001110, 000111, and 100011 are among 6 possible instances of the shape.

The functions available are a zero-sensing function HO, a one-sensing
function H1, ordinary multiplication, and a disjunctive function U. The atoms
available are the integers 0, 1, and 2, and a universally quantified atom k. The
function HO (or H1) takes two arguments and returns the integer 1 if there is a 0
(or 1) in the position equal to the sum of the two arguments (module the retina
length) and returns the integer O otherwise. Thus, one argument of these
functions can potentially serve as a positional pointer and the other can potentially
serve as a displacement. The universally quantified atom k assumes all integral
values over the retinal length. The disjunctive function U takes two arguments
and returns the integer 1 if either argument is non-zero and returns the integer 0 if
both arguments are 0. The ordinary multiplication function * serves as a
conjunctive function and returns the integer 1 if all arguments are non-zero and
returns the integer O if any argument is 0.

The functions U and * so defined resolve potential type problems that would
otherwise arise when integers identify positions in the retina. Although LISP is

comparatively tolerant as to typing, pattern recognition problems seem to require
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the ability to freely combine numerical concepts such as positional location (either
absolute or universally quantified) and relative displacement (e.g. the symbol 2
pixels to the right) with Boolean concepts (e.g. a particular disjunctive and
conjunctive combination of features indicates a particular shape). One does not
want to specify or restrict a priori the kind of combination of functions available to  +«

solve the problem.

Initial random individuals include contradictions such as (* (HO 2 2) (H1 2
2)), inefficiencies such as (U (HO 2 1) (HO 1 2)), irrelevancies such as (U (HO 0 0)
(H1 2 0)), and nonsense such as (U 2 (* k (H1 0 0))). In one particular run, the
number of mismatches for the best individual of generation 0 was 48 and rapidly
improved to 40 for generations 1 and 3. It then improved to 0 mismatches in
generation 3 for the individual (* 1 (* (HI K 1) (H1 K 0) (H1 K 2)) 1). Ignoring
the extraneous outermost conjunction of two 1's, this individual returns a value of
the integer 1 if and only if a binary 1 is found in the retina in positions 0, 1, and 2

(each displaced by the same constant k).

Neural Net Design

Neural networks are networks containing linear threshold processors at the
internal points in the network. Some of the external points of the network are
designated as inputs. One (and sometimes more) of the external points of the
network are designated as outputs. The lines connecting the various points of the
network (except typically for the lines going to the external point designated as
outputs) are all weighted. That is, the signal on that line is multiplied by a constant
value (typically in a range such as between -1.00 and +1.00) as it passes along
that line. The lines all have a direction. That 1s, each line connecting two points
begins at one point (which can be an internal point or an external "input" point)
and ends at another point (which can be an internal point or an extemnal "output”

point).
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A wide variety of neural networks appear in the existing literature. Some
neural nets receive only digital input signals (typically binary 0 or 1 signals) while
others process analog data. In some simple neural nets (originally called
"perceptrons"), there was only one linear threshold processing element between
the input to the net and the output. That is, the neural net had only one layer.
Most neural net research today is involved with neural nets with more than one
layer of processing elements between the input and the output. In most neural
nets described in current literature, the processing elements are arranged in
clearly defined layers such that the output of a processing element from one layer
feeds into one, many, or all of the processing elements of the next layer ( but
never back to a processing element of the same or earlier layer). On the other
hand, so-called "recurrent” neural nets allow the output of a processor to be
connected anywhere, including feeding back to earlier processors or itself,

Neural nets have the common feature of having linear threshold processing
elements at the internal points. These processing elements emit a signal from a
discrete set of possibilities (typically just O or 1) if the sum of the weighted inputs
to the processor exceeds a certain threshold value T. That is, the output Oj of the
linear threshold processing element j is set to 1 if:

N
S wij Sij > Tj (otherwise Oj =0)
i=1

where Sjj is the i-th signal to processing element j, where wijj s the i-th
weight to processing element j, and where Tj is the threshold for processing
element j. In many (but not all) neural nets described in the literature, the
threshold Tj is the same for all processing elements (typically 1) and does not
change with time. Some neural nets have one extra input signal to each

processing element (called the bias) to provide a constant additional value as

input.
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Although there are many variations in the details of neural nets, the overall
goal typically is to have the neural net leamn to perform some task. Usually, this
learning is done by training the neural net on a number of training cases and then
hoping that it has learned to perform the task well enough so that it can correctly
perform the task when it encounters previously unseen cases of the same general =
problem task. There are a number of different training paradigms in use.
Sometimes the neural net is expected to be "self organizing."

The process of designing a neural net to perform a particular task thus
primarily involves determining the size of the neural net, the way that the
processing elements connected to one another, determining the weights (and
sometimes the thresholds and biases) associated with each connection that feeds
into a processing element.

Most existing neural net training paradigms start with a fixed arrangement
of processing elements (i.e. a specified number of processing elements arranged in
a specified way into layers) and then progressively modify the weights (and
occasionally the thresholds and biases) so that the neural net becomes able to
produce a correct output value when presented with particular input values.

The problem of designing neural nets can be solved in a more flexible and
general way using genetic techniques. In the genetic approach, the size of the
neural net, the connections in the neural net, and the weights (and thresholds and
biases) can all be genetically discovered. In the simple example below, we show
how to do this. (In the simple example, the thresholds are all assumed to be 1.0
and there are no biases; however, it will be seen that these secondary attributes +
can also be genetically discovered, if desired, by proceeding in the same way
merely by adding these secondary attributes into the argument list for the
processing element function).

The set of functions contains the linear threshold processing function P.

This function appears in the set of functions with varying numbers of arguments
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(e.g. perhaps 2, 3,4, etc.). The set of functions also contains multiplication (*) and
other arithmetic functions (such as addition, subtraction and division).

The set of arguments contains the data input to the problem. In this simple
example, we will assume that there is only one output signal from the neural net.
(If there were more than one output signal, the techniques described in the earlier
discussion of multiple regression would be used to handle multiple output signals).
Random constants ("R") will be used in the initial population of individuals. Thus,
the possible initial individuals would include individuals such as (P (* D1 1.423) (>
DO -1.037)).

The problem of designing neural nets is similar to the game playing problem
and the multiple regression problem in that there are rules of construction that
limit what structures are allowed in the initial population of individuals. In addition,
the crossover operation is restrained (in the same way as in the game playing
problem and multiple regression problem) so that only structures that comply with
the rules of construction can emerge from the crossover operatlon

In the case of the simple neural net example, the rules of construction
specify that the root of the tree (i.e. the function appearing just inside the left-most
parenthesis of the LISP S-expression) must be a "P" function. It cannot be a
multiplication, another arithmetic operation, or a random constant. Moreover, the
function at the next level below a processing function P must be a multiplication
(*) function. At the next level below the multiplication, there can be atoms (input
signals, such as DO and D1), any arithmetic operation (addition, subtraction,
division, or multiplication), random constants, or another P function. At the next
level below another arithmetic operation (whether addition, subtraction,
multiplication, or division), there can be atoms (1.e. input signals such as DO or
D1), any arithmetic operation, random constants, or another P function. However,
once a P function appears, the rules of construction require that the function on

the next function below the P function again be a multiplication function. These
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rules are repeatedly recursively until a full tree is constructed. The full tree has
external points that are either input signals (i.e. DO or D1) or random constants.

It will be noted that the resulting tree (or S-expression) is a structure that is
a neural network. It consists of linear threshold processing elements (the "P"
functions) that process weighted inputs to produce a single discrete signal
(typically O or 1) as the output. The number of inputs to a processing element (P
function) can vary; however, the inputs always consist of weighted input signals.
These input signals can be the output of other processing elements or can be the
inputs to the network from the outside world. (Note that the define building block
preparation provides a means for connecting the output of one processing element
to more than one subsequent processing element).

Figure 22 shows a LISP S-expression (rooted tree) to illustrate these rules
of construction. The root of the tree 2200 contains the linear threshold processing
function P. This particular occurrence of the function P has two arguments. The
functions at the next level below the P function are multiplication (*) functions in
all cases. There is a multiplication function at both 2210 and 2212. Below the
multiplication function 2210, there is a random constant 1.841 at the external point
2220 of the tree. Below the multiplication function 2210, there is a P function at
internal point 2222. Since there is a P function at internal point 2222, there must
be multiplication functions at the level below the P function. Thus, there is a
multiplication function at both 2230 and 2232. Below the multiplication function at
2230, there is another random éonstant (1.66) at external (leaf) point 2240 and
there is an input signal DO at external (leaf) point 2241.

Let us consider the following simple task to further specify the design of a
neural net using genetic techniques. Suppose there are two binary inputs DO and
D1. The goal is to design a neural net to perform the task of performing the
exclusive-or logical operation on the two inputs. That is, we want a neural net

that will produce an output of 1 if either (but not both) of the inputs DO or D1 are

Y
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1, énd will produce an output of 0 if otherwise. That is, the output will be zero if
the two inputs are either both 0 or both 1.

The following individual emerged on the 42nd generation of one run as a
neural net that 100% correctly performs the task of the exclusive-or logical
function:

P (*1841 (P (* 166 DO)

(* -1.387 D1)))
(*1.901 (P (* 1.191D1)
(* - 0.989 D0)))).

Note that this S-expression appears in Figure 22.

Figure 23 presents the correct solution found by the genetic process for the
exclusive-or task in the form that one would typically see in neural network
literature. This neural net corresponds to the LISP S-expression presented above
and shown in Figure 22.

In Figure 23, the input signal DO at 2340 is weighted by 1.66 at 2330 as the
first line into processing element P at 2320. The input signal D1 at 2342 is
weighted by -1.387 at 2332 as the second line into processing element P at 2320.
Since the inputs DO and D1 are either 0 or 1, the first line into 2320 is either 0 or
1.66 in value. Similarly, the second line into 2320 is either 0 or -1.387 in value.
The processing element P at 2320 adds up the weighted input lines and emits a 1
if the sum exceeds 1 and emits a 0 if otherwise. If D0 and D1 are both 0, the sum
of the inputs will be 0 (which is less than the threshold of 1) and, therefore, P will
emit 0. If DO is 1 and D1 is 0, the sum will be 1.66 and Pwillemital. If DO is 0
and D1 is 1, the sum will be -1.387 and P will emit a 0. If both DO and D1 are 1,
the sum will be 0.273, which is less than the threshold of l,and P will emit a 0. In
other words, P at 2320 emits a 1 if and only if the input lines are 10.

In effect, the processing element at 2320 is a detector for a single special

case when the inputs are 10.
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There are two signal lines to the processing element P at 2322. The input
signal DO at 2344 is weighted by -0.989 at 2334 to become one of the two signal
lines into processing element P at 2322. The input signal D1 at 2346 is weighted
by 1.191 at 2336 to become the second of the two signal lines into processing
element P at 2322. When DO and D1 are both 0, the sum of the signals into P at
2322 is 0 as it will emit a 0. When DO and D1 are both 1, the sum of the signals
into P at 2322 is 0.196, which is less than the threshold of P, and P will emit a 0. If
DO is 0 and D1 is 1, the sum of the signals into P at 2322 is 1.191 and P will emit a
1. If DO is 1 and DO is 0, the sum of the signals into P at 2322 is -0.989 and P will
emit a 0. In summary, P at 2322 will emit a 1 if and only if the input signals are
01.

The output of the processing elements at 2320 and 2322 are either O or 1.
The output of P at 2320 is weighted by 1.841 at 2310 and the output of P at 2322
is weighted by 1.901 at 2312. These two weighted values are the signal lines into
processing unit P at 2300. It can be seen that the effect of these weights is that
the sum exceeds 1 if and only if either signals coming along the lines 2310 or 2312
or both are non-zero. This occurs if the input signals DO and D1 are either 01 or
10. In other words, the output of processing unit P at 2300 is 1 if either (but not
both) DO or D1 are 1 and O otherwise. That is, unit P at 2300 performs the
exclusive-or logical task.

Note that in performing the crossover operation, any point may be chosen in
the first parent. Having chosen this point, the point in the second parent should be
of the same "type", where the relevant "types"” for this problem are (1) processing
element points, (2) multiplications just below processing element points, and (3) all
other points. This is the same principle that applies to the crossover in the game
playing and multiple regression problems. '

Note that entire arithmetic expressions are often created below the

multiplications that are just below the processing elements P.
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The specific arrangements and methods herein are merely illustrative of
several applications of the principles of this invention. Numerous modifications in
form and detail may be made by those skilled in the art without departing from the
true spirit and scope of the invention.
Thus, a genetic algorithm process for problem solving is described.

Although this invention has been shown in relation to particular
embodiments, it should not be considered so limited. Rather it is limited only by the

appended claims.
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What is claimed is:

L A process for finding a composition of functions whose performance
is a good fit, best fit or perfect fit to a sample of data, using a population of entities
of various sizes and shapes wherein each entity is a hierarchical arrangement of
functions and arguments, said process comprising iterations of a series of steps,
each iteration comprising the steps:

activating each said entity to produce a result by performing said
hierarchical arrangement of functions;

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
closeness of the fit of said corresponding entity to said sample of data;

selecting at least one selected entity from said population using selection
criteria, said selection criteria based on said value associated with each said
entity, said selection criteria preferring each said entity having a relatively high
associated value over each said entity having a relatively low associated value;

choosing and performing an operation wherein each chosen operation is one
of the operations of crossover or reproduction;

creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected
entity and at least one other entity from said population, such that any new entity
created by crossover comprises at least a portion of said selected entity and at
least a portion of said other entity, said new entity can-differ in size and shape

from said selected entity and said other entity;

iy
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retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction;

adding said new entity to said population.

2. The process for finding a composition of functions whose
performance is a good fit, best fit or perfect fit to the integral of a curve associated
with a sample of data, using a population of entities of various sizes and shapes
wherein each entity is a hierarchical arrangement of functions and arguments,
said process comprising iterations of a series of Steps, each iteration comprising
the steps:

activating each said entity to produce a result by performing said
hierarchical arrangement of functions;

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
closeness of the fit of said corresponding entity to the integral of said curve
associated with said sample of data;

selecting at least one selected entity from said population using selection
criteria, said selection criteria based on said value associated with each said
entity, said selection criteria preferring each said entity having a relatively high
associated value over each said entity having a relatively low associated value;

choosing and performing an operation wherein each chosen operation is one

of the operations of crossover or reproduction;
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creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected
entity and at least one other entity from said population, such that any new entity
created by crossover comprises at least a portion of said-selected entity and at
least a portion of said other entity, said new entity can differ in size and shape
from said selected entity and said other entity; *

retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction; |

adding said new entity to said population.

3. A process for finding a composition of functions whose performance
is a good fit, best fit or perfect fit to the derivative of a curve associated with a
sample of data, using a population of entities of various sizes and shapeé wherein
each entity is a hierarchical arrangement of functions and arguments, said process
comprising iterations of a series of steps, each iteration comprising the steps:

activating each said entity to produce a result by performing said
hierarchical arrangement of functions;

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
closeness of the fit of said corresponding entity to the derivative of said curve
associated with said sample of data;

selecting at least one selected entity from said population using selection

criteria, said selection criteria based on said value associated with each said
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entity, said selection criteria preferring each said entity havirig a relatively high
associated value over each said entity having a relatively low associated value;

choosing and performing an operation wherein each chosen operation is one
of the operations of crossover or reproduction;

creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected
entity and at least one other entity from said population, such that any new entity
created by crossover comprises at least a portion of said selected entity and at
least a portion of said other entity, said new entity can differ in size and shape
from said selected entity and said other entity;

retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction;

adding said new entity to said population.

4, A process for finding a composition of functions whose performance
i a good solution, best solution or perfect solution to a differential equation and its
associated initial condition, using a population of entities of various sizes and
shapes wherein each entity is a hierarchical arrangement of functions and
arguments, said process comprising iterations of a series of steps, each iteration
comprising the steps: |

activating each said entity to produce a result by performing said

hierarchical arrangement of functions;
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assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
closeness of said corresponding entity in satisfying said differential equation and its
associated initial condition;

selecting at least one selected entity from said population using selection
criteria, said selection criteria based on said value associated with each said
entity, said selection criteria preferring each said entity having a relatively high
associated value over each said entity having a relatively low associated value;

choosing and performing an operation wherein each chosen operation is one
of the operations of crossover or reproduction;

creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected
entity and at least one other entity from said population, such that any new entity
created by crossover comprises at least a portion of said selected entity and at
least a portion of said other entity, said new entity can differ in size and shape
from said selected entity and said other entity;

retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction;

adding said new entity to said population.

5. A process for finding a composition of functions whose performance
is a good solution, best solution or perfect solution to an integral equation, using a

population of entities of various sizes and shapes wherein each entity is a
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hierarchical arrangement of functions and arguments, said process comprising
iterations of a series of Steps, each iteration comprising the steps:

activating each said entity to produce a result by performing said
hierarchical arrangement of functions;

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
closeness of said corresponding entity in satisfying said integral equation;

selecting at least one selected entity from said population using selection
criteria, said selection criteria based on said value associated with each said
entity, said selection criteria preferring each said entity having a relatively high
associated value over each said entity having a relatively low associated value;

choosing and performing an operation wherein each chosen operation is one
of the operations of crossover or reproduction;

creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected
entity and Vat least one other entity from said population, such that any new entity
created by crossover comprises at least a portion of said selected entity and at
least a portion of said other entity, said new entity can differ in size and shape
from said selected entity and said other entity;

retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction;

adding said new entity to said population.
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6. A process for finding a composition of functions whose performance
is a good fit, best fit or perfect fit to the inverse function for a sample of data, using
a population of entities of various sizes and shapes wherein each entity is a
hierarchical arrangement of functions and arguments, said process comprising
iterations of a series of steps, each iteration comprising the steps:

activating each said entity to produce a result by performing said
hierarchical arrangement of functions;

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
closeness of the fit of said corresponding entity to the inverse function for said
sample of data;

selecting at least one selected entity from said population using selection
criteria, said selection criteria based on said value associated with each said
entity, said selection criteria preferring each said entity having a relatively high
associated value over each said entity having a relatively low associated value;

choosing and performing an operation wherein each chosen operation is one
of the operations of crossover or reproduction;

creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected
entity and at least one other entity from said population, such that any new entity
created by crossover comprises at least a portion of said selected entity and at
least a portion of said other entity, said new entity can differ in size and shape

from said selected entity and said other entity;
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retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction;

adding said new entity to said population.

7. A process for finding a composition of functions whose performance
is a good solution, best solution or perfect solution to a mathematical equation,
using a population of entities of various sizes and shapes wherein each entity is a
hierarchical arrangement of functions and arguments, said process comprising
iterations of a series of Steps, each iteration comprising the steps:

activating each said entity to produce a result by performing said
hierarchical arrangement of functions;

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
closeness of said corresponding entity in satisfying said mathematical equation;

selecting at least one selected entity from said population using selection
criteria, said selection criteria based on said value associated with each said
entity, said selection criteria preferring each said entity having a relatively high
associated value over each said entity having a relatively low associated value;

choosing and performing an operation wherein each chosen operation is one
of the operations of crossover or reproduction;

creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected

entity and at least one other entity from said pdpulation, such that any new entity
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created by crossover comprises at least a portion of said selected entity and at
least a portion of said other entity, said new entity can differ in size and shape
from said selected entity and said other entity;

retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction;

adding said new entity to said population.

8. A process for finding a correct function associated with a particular
combination of arguments by reference to a sample of functional results
associated with sample combinations of arguments, using a population of entities
of various sizes and shapes wherein each entity is a hierarchical arrangement of
functions and arguments, said process comprising iterations of a series of steps,
each iteration comprising the steps:

activating each said entity to produce a result by performing said
hierarchical arrangement of functions;

assighing a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
similarity between said result of said corresponding entity and said sample
functional results;

selecting at least one selected entity from said population using selection
criteria, said selection criteria based on said value associated with each said
entity, said selection criteria preferring each said entity having a relatively high

associated value over each said entity having a relatively low associated value;
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choosing and performing an operation wherein each chosen operation is one
of the operations of crossover or reproduction;

creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected
entity and at least one other entity from said population, such that any new entity
created by crossover comprises at least a portion of said selected entity and at
least a portion of said other entity, said new entity can differ in size and shape
from said selected entity and said other entity;

retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction;

adding said new entity to said population.

9. A process for finding a best plan of action to achieve a desired result
given an arbitrary initial state,; using a population of entities of various sizes and
shapes wherein each entity is a hierarchical arrangement of functions and
arguments, said process comprising iterations of a series of steps, each iteration
comprising the steps:

activating each said entity to produce a result by performing said
hierarchical arrangement of functions:

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the

closeness of the performance of said corresponding entity to said desired result:
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selecting at least one selected entity from said population using selection
criferia, said selection criteria based on said value associated with each said
entity, said selection criteria preferring each said entity having a relatively high
associated value over each said entity having a relatively low associated value;

choosing and performing an operation wherein each chosen operation is one
of the operations of crossover or reproduction;

creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected
entity and at least one other entity from said population, such that any new entity
created by crossover comprises at least a portion of said selected entity and at
least a portion of said other entity, said new entity can differ in size and shape
from said selected entity and said other entity;

retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction;

adding said new entity to said population.

10. A process for developing a strategy for playing a game, using a
population of entities of various sizes and shapes wherein each entity is a
hierarchical arrangement of functions and arguments, said process comprising
iterations of a series of steps, each iteration comprising the steps:

activating each said entity to produce a result by performing said

hierarchical arrangement of functions;
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assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
performance of said corresponding entity in playing said game;

selecting at least one selected entity from said population using selection
criteria, said selection criteria based on said value associated with each said
entity, said selection criteria preferring each said entity having a relatively high
associated value over each said entity having a relatively low associated value;

choosing and performing an operation wherein each chosen operation is one
of the operations of crossover or reproduction;

creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected
entity and at least one other entity from said population, such that any new entity
created by crossover comprises at least a portion of said selected entity and at
least a portion of said other entity, said new entity can differ in size and shape
from said selected entity and said other entity;

retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction;

adding said new entity to said population.

11. A process for automatically generating a computer program capable
of producing a desired output, using a population of entities of various sizes and

shapes wherein each entity is a hierarchical arrangement of functions and
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arguments, said process comprising iterations of a series of steps, each iteration
comprising the steps:

activating each said entity to produce a result by performing said
hierarchical arrangement of functions;

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
closeness of the performance of said corresponding entity to producing said
desired output;

selecting at least one selected entity from said population using selection
criteria, said selection criteria based on said value associated with each said
entity, said selection criteria preferring each said entityrhaving a relatively high
associated value over each said entity having a relatively low associated value;

choosing and performing an operation wherein each chosen operation is one
of the operations of crossover or reproduction;

creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected
entity and at least one other entity from said population, such that any new entity
created by crossover comprises at least a portion of said selected entity and at
least a portion of said other entity, said new entity can differ in size and shape
from said selected entity and said other entity;

retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction;

adding said new entity to said population.

Ly
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12. A process for recognizing a pattern in input data, using a population of
entities of various sizes and shapes wherein each entity is a hierarchical
arrangement of functions and arguments, said process comprising iterations of a
series of steps, each iteration comprising the steps:

activating each said entity to produce a result by performing said
hierarchical arrangement of functions:

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
performance of said corresponding entity in recognizing said pattern;

selecting at least one selected entity from said population using selection
criteria, said selection criteria based on said value associated with each said
entity, said selection criteria preferring each said entity having a relatively high
associated value over each said entity having a relatively low associated value;

choosing and performing an operation wherein each chosen operation is one
of the operations of crossover or reproduction;

creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected
entity and at least one other entity from said population, such that any new entity
created by crossover comprises at least a portion of said selected entity and at
least a portion of said other entity, said new entity can differ in size and shape

from said selected entity and said other entity;
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retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction;

adding said new entity to said population.

13. A process for generating a decision tree for classifying an object by
reference to a sampling of relationships between attributes associated with an
object and classifications associated with an object, using a population of entities
of various sizes and shapes wherein each entity is a hierarchical arrangement of
functions and arguments, said process comprising iterations of a series of steps,
each iteration comprising the steps:

activating each said entity to produce a result by performing said
hierarchical arrangement of functions;

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
similarity between said result of said corresponding entity and said sampling of
relationships;

selecting at least one selected entity from said population using selection
criteria, said selection criteria based on said value associated with each said
entity, said selection criteria preferring each said entity having a relatively high
associated value over each said entity having a relatively low associated value;

choosing and performing an operation wherein each chosen operation is one

of the operations of crossover or reproduction;
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Creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected
entity and at least one other entity from said population, such that any new entity
created by crossover comprises at least a portion of said selected entity and at
least a portion of said other entity, said new entity can differ in size and shape
from said selected entity and said other entity;

retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction;

adding said new entity to said population.

14. A process for designing a neural network for performing tasks, using
a population of entities of various sizes and shapes wherein each entity is a
hierarchical arrangement of functions and arguments, said process comprising
iterations of a series of steps, each iteration comprising the steps:

activating each said entity to produce a result by performing said
hierarchical arrangement of functions;

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
performance of said corresponding entity in performing said task;

selecting at least one selected entity from said population using selection
criteria, said selection criteria based on said value associated with each said
entity, said selection criteria preferring each said entity having a relatively high

associated value over each said entity having a relatively low associated value;



WO 91/14990 PCT/US91/01970
170

choosing and performing an operation wherein each chosen operation 1is one
of the operations of crossover or reproduction;

creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected
entity and at least one other entity from said population, such that any new entity
created by crossover comprises at least a portion of said selected entity and at
least a portion of said other entity, said new entity can differ in size and shape
from said selected entity and said other entity;

retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction;

adding said new entity to said population.

15. A process for problem solving, using a population of entities of various
sizes and shapes wherein each entity is a hierarchical arrangement of functions
and arguments or a randomly generated constant appropriate to the domain of a
problem, said process comprising iterations of a series of steps, each iteration
comprising the steps:

activating each said entity to produce a result by performing said
hierarchical arrangement of functions;

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the

fitness of said corresponding entity in solving or partially solving a problem;
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selecting at least one selected entity from said population using selection
criteria, said selection criteria based on said value associated with each said
entity, said selection criteria preferring each said entity having a relatively high
associated value over each said entity having a relatively low associated value:

choosing and performing an operation wherein each chosen operation is one
of the operations of crossover or reproduction;

creating at least one new entity by crossover using a group of entities if said
chosen operation is crossover, said group of entities comprising said selected
entity and at least one other entity from said population, such that any new entity
created by crossover comprises at least a portion of said selected entity and at
least a portion of said other entity, said new entity can differ in size and shape
from said selected entity and said other entity;

retaining said selected entity such that said selected entity remains
unchanged if said chosen operation is reproduction:

adding said new entity to said population.

16.  The process in Claims 1, 2, 3, 4,5,6,7,8,9,10,11,12, 13, 14, or 15
wherein said step of choosing and performing an operation further comprising an
operation of define building block such that if said chosen operation is said define
building block operation, a step of define building block occurs before said adding
step, wherein a portion of said selected entity is replaced by an invocation of a

building block function, said building block function being defined as the



WO 91/14990 PCT/US91/01970
172

hierarchical arrangement of functions and arguments originally associated with

said selected portion of said selected entity.

17.  The process in Claims 1, 2, 3,4, 5,6,7,8,9, 10,11, 12, 13, 14, or 15
wherein said step of choosing and performing an operation further comprising an
operation of editing such that if said chosen operation is said editing operation, a
step of editing occurs before said adding step, wherein said selected entity is
edited, such that predetermined editing rules are applied to said selected entity to

produce a modified hierarchical structure of said selected entity.

18.  The process in Claims 1, 2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, or 15
wherein at least one said entity in said population includes an assignment function,
wherein a value is computed and a name is associated with said value, said value

can be referenced by other said entities in said population using said name.

19.  The process in Claims 1, 2, 3,4, 5,6,7, 8,9, 10, 11, 12, 13, 14, or 15
wherein at least one said entity in said population includes an iteration function,
wherein a portion of said entity is performed repeatedly until a predicate condition

1s satisfied.

20. The process in Claims 1, 2, 3,4, 5,6,7,8,9, 10, 11, 12, 13, 14, or 15

wherein at least one said entity in said population includes an iteration function,

»
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wherein a portion of said entity is performed repeatedly until a specified number of

iterations is completed.

21.  The process in Claims 1,2,3,4,5,6,7,8,9, 10,11, 12, 13, 14, or 15
wherein at least one said entity in said population includes a recursion function,
wherein a portion of said entity is performed recursively until a base condition is

reached.

22. The process in Claims 1, 2,3,4,5,6,7,8,9,10, 11, 12, 13,14, 0r 15
wherein an individual entity in said population attaining a pre-established value of
fitness with respect to solving a problem is designated as a solution to said
problem, said process including the step of translating said entity representing a
solution to said problem into a different programming language while maintaining

the logical consistency of said entity representing a solution to said problem.

23.  The process in Claims 1, 2, 3, 4, 5, 6,7,8,9,10,11, 12, 13,14, 0r 15
wherein an initial population of entities is created, said entities consisting of
hierarchical arrangements of functions and arguments available for a particular
problem, said hierarchical arrangements being constructed according to
predetermined rules of construction which place a limit on which functions can

Occur at particular points in said hierarchical arrangement.

24. The process in Claim 23 wherein said crossover operation is

restrained such that selection of said portion of said other entity is restrained
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according to predetermined rules which place a limit on which portions of said

other entity may be selected for crossover.

25.  The process in Claim 15 wherein at least one said randomly
generated constant appropriate to the domain of said problem is inserted at
random as an argument to at least one function in a created population of said

entities.

26.  The process in Claim 15 wherein said step of assigning a value
comprising:

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
fitness of said corresponding entity in solving or partially solving a problem, said
value also indicative of the efficiency of said corresponding entity in solving or

partially solving a problem.

27.  The process in Claim 15 wherein said step of assigning a value
comprising:

assigning a value to each said result and associating each said value with a
corresponding entity which produced eaéh said result, said value indicative of the
fitness of said corresponding entity in solving or partially sdlving a problem, said
value also indicative of the parsimony of said corresponding entity in solving or

partially solving a problem.
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28.  The process in Claim 15 wherein said step of assigning a value
comprising:

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
fitness of said corresponding entity in solving or partially solving a problem, said
value also indicative of the ability of said corresponding entity to solve or partially

solve a problem while complying with additional conditions.

29.  The process in Claim 15 wherein said step of assigning a value
comprising:

assigning a value to each said result and associating each said value with a
corresponding entity which produced each said result, said value indicative of the
fitness of said corresponding entity in solving or partially solving a problem, said
value also indicative of the ability of said corresponding entity to solve or partially

solve a problem by reaching a subgoal which contributes to reaching a final goal.

30.  The process in Claim 1 wherein said sample of data comprising at
least one value of an independent variable associated with at least one value of a

dependent variable.
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31. The process in Claim 1 wherein said sample of data comprising at
least one value of an independent variable associated with values of more than

one dependent variable.

32.  The process in Claim 1 wherein at least one said result produced by
performing at least one said entity lies outside of a region associated with said

sample of data.

33.  The process in Claim 32 wherein said sample of data comprising at
least one value of an independent variable wherein said independent variable is

time.

34.  The process in Claim 9 wherein said best plan of action to achieve a

desired result is used for the purpose of controlling a robotic device.

35. The process in Claim 12 wherein said input data is an image and said

pattern is an object within said image.

36. A computer for solving problems comprising'a processor and a
memory means coupled to said processor for storing a population of entities of
various sizes and shapes wherein each entity is a hierarchical arrangement of
functions and arguments or a randomly generated constant appropriate to the

domain of a problem, said computer further comprising:

(
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means for activating each said entity to produce a result by performing said
hierarchical arrangement of functions, said means for activating coupled to said
mMemory means;

means for assigning a value to each said result and associating each said
value with a corresponding entity which produced each said result, said value
indicative of the fitness of said corresponding entity in solving or partially solving a
problem, said means for assigning coupled to said memory means;

means for selecting at least one selected entity from said population using
selection criteria, said selection criteria based on said value associated with each
said entity, said selection criteria preferring each said entity having a relatively
high associated value over each said entity having a relatively low associated
value, said means for selecting coupled to said memory means;

means for choosing and performing an operation wherein each chosen
operation is one of the operations of crossover or reproduction, said means for
choosing and performing coupled to said memory means;

means for creating at least one new entity by crossover using a group of
entities if said chosen operation is crossover, said group of entities comprising said
selected entity and at least one other entity from said population, such that any
new entity created by crossover comprises at least a portion of said selected
entity and at least a portion of said other entity, said new entity can differ in size
and shape from said selected entity and said other entity, said means for creating

coupled to said memory means;
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means for retaining said selected entity such that said selected entity
remains unchanged if said chosen operation is reproduction, said means for
retaining coupled to said memory means;

means for adding said new entity to said population, said means for adding

coupled to said memory means.

(£1]

37.  The computer in Claim 36 including a means for defining a building
block comprising means for replacing a portion of said selected entity by an
invocation of a building block function, said building block function defined as the
hierarchical arrangement of functions and arguments originally associated with
said selected portion of said selected entity, said means for defining a building

block coupled to said memory means.

38.  The computer in Claim 36 including a means for editing comprising
means for applying predetermined editing rules to said selected entity to produce a
modified hierarchical structure of said selected entity, said means for editing

coupled to said memory means.

39.  The computer in Claim 36 wherein at least one said entity in said
population includes an assignment function comprising means for computing a
value and means for associating a name with said value, said value referenced by

other said entities in said population using said name.

B
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40.  The computer in Claim 36 wherein at least one said entity in said
populatlon includes an iteration function, wherein a portion of said entity is

performed repeatedly until a predicate condition is satisfied.

41. The computer in Claim 36 wherein at least one said entity in said
population includes an iteration function comprising means for repeatedly
performing a portion of said entity until a specified number of iterations is

completed.

42.  The computer in Claim 36 wherein at least one said entity in said
population includes a recursion function comprising means for recursively

performing a portion of said entity until a base condition is reached.

43.  The computer in Claim 36 wherein an individual entity 1n said
population attaining a pre-established value of fitness with respect to solving a
problem is designated as a solution to said problem, said computer including
means for translating said entity representing a solution to said problem into a
different programming language while maintaining the logical consistency of said

entity representing a solution to said problem.

44, The computer in Claim 36 including means for creating an initial
population of entities coupled to said memory means, said entities consisting of

hierarchical arrangements of functions and arguments available for a particular
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problem, said means for creating an initial population of entities comprising means
for constructing said hierarchical arrangements according to predetermined rules
of construction which place a limit on which functions can occur at particular

points in said hierarchical arrangement.

45. The computer in Claim 36 wherein said means for creating at least
one new entity by crossover includes restraining means such that selection of said
portion of said other entity is restrained according to predetermined rules which

place a limit on which portions of said other entity may be selected for crossover.

46.  The computer in Claim 36 wherein said population of entities includes
at least one entity including said randomly generated constant appropriate to the

domain of said problem as an argument to at least one function of said entity.

47. The computer in Claim 36 wherein said means for'assigning a value
comprising: _

means for assigning a value to each said result and associating each said
value with a corresponding entity which produced each said result, said value
indicative of the fitness of said corresponding entity in'solving or partially solving a
problem, said value also indicative of the efficiency of said corresponding entity in

solving or partially solving a problem.

48. The computer in Claim 36 wherein said means for assigning a value

comprising:

2
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means for assigning a value to each said result and associating each said
value with a corresponding entity which produced each said result, said value
indicative of the fitness of said corresponding entity in solving or partially solving a
problem, said value also indicative of the parsimony of said corresponding entity in

solving or partially solving a problem.

49.  The computer in Claim 36 wherein said means for assigning a value
comprising:

means for assigning a value to each said result and associating each said
value with a corresponding entity which produced each said result, said value
indicative of the fitness of said corresponding entity in solving or partially solving a
problem, said value also indicative of the ability of said corresponding entity to

solve or partially solve a problem while complying with additional conditions.

50.  The computer in Claim 36 wherein said means for assigning a value
comprising;:

means for assigning a value to each said result and associating each said
value with a corresponding entity which produced each said result, said value
indicative of the fitness of said corresponding entity in solving or partially solving a
problem, said value also indicative of the ability of said corresponding entity to
solve or partially solve a problem by reaching a subgoal which contributes to

reaching a final goal.
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