O 0 0 0 0O

24003 A1

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 April 2001 (05.04.2001)

A 0000 00O A

(10) International Publication Number

WO 01/24003 A1l

(51) International Patent Classification’: GOG6F 9/46

(21) International Application Number: PCT/US00/26789

(22) International Filing Date:

28 September 2000 (28.09.2000)
(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/156,499 28 September 1999 (28.09.1999) US
60/184,945 25 February 2000 (25.02.2000) US

(71) Applicant (for all designated States except US):
DATALEX USA WEST, INC [US/US]; 1200 N.W.

Naito Parkway, Suite 200, Portland, OR 97209 (US).

(71) Applicants and

(72) Inventors: TILDEN, Mark, D. [US/US]; 17979 N.W.
Gilbert Lane, Portland, OR 97229 (US). HOPKINS, Scott,
D. [US/US]; 20867 S.W. Eggert Way, Aloha, OR 97007
(US). STONIER, Brett, J. [US/US]; 1263 N.E. 17th Av-

enue, Hillsboro, OR 97124 (US).

(74) Agent: STOLOWITZ, Micah, D.; Stoel Rives LLP, 900
S.W. Fifth Avenue, Suite 2600, Portland, OR 97204-1268
(US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ,PL, PT,RO,RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CIL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
— With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A SOFTWARE COMPONENT-CONTAINER FRAMEWORK FOR DYNAMIC DEPLOYMENT OF BUSINESS
LOGIC COMPONENTS IN A DISTRIBUTED OBJECT ENVIRONMENT

' Client
| wrapper

T Config (C1)
CrlyCode < TPC factury >
Lookup < CityCode Lookup >
<BL 3205 >
Container
(60; //’T—\
d 8 626 Config (C2) ¢

controller
factory

< TPC factory >
< Kosher meal >
< Amadeus If. factory >

610

614 —/
< Document factory >
Documem (l: Filter < Filter United >
facmry United
D 674

Document Server Container Config (C3)

(57) Abstract: This application pertains to multi-tiered, distributed computing systems and, more specifically, is directed to a com-
=~ ponent container middleware framework for dynamic deployment of business logic software components on a CORBA distributed
object infrastructure. Each server container includes a configuration file which is read upon initializing the container. The container
process loads software components as specified in the configuration file, and the configuration file includes information on names
and locations of components creators, and defines relationships among components. The configuration file, expressed in XML syn-
tax, makes it easy to deploy or update business logic components without exposing system source code, while maintaining a robust,
scalable distributed system for demanding applications like supporting travel web sites.

10

15

20

25

30

WO 01/24003 PCT/US00/26789

A SOFTWARE COMPONENT-CONTAINER FRAMEWORK FOR
DYNAMIC DEPLOYMENT OF BUSINESS LOGIC COMPONENTS
IN A DISTRIBUTED OBJECT ENVIRONMENT

Related Applications

This application is a continuation of and claims priority from U.S. Provisional
Applications No. 60/156,499 filed September 28, 1999, and No. 60/184,945 filed
February 25, 2000.

Technical Field

This application pertains to multi-tiered, distributed computing systems and,
more specifically, is directed to a component container middleware framework for
dynamic deployment of business logic software components on a CORBA distributed

object infrastructure.

Background of the Invention

On-line travel is one of the largest single e-commerce categories today. First-
generation travel sites, those erected roughly in 1994 to 1996, were full of images
and copy describing travel destinations and packages. These were essentially on-line
brochures or “brochureware” and lacked interactivity. Sites were hard to maintain

and were populated with static content.

10

15

20

25

30

WO 01/24003 PCT/US00/26789

On-line booking was introduced in approximately 1996 in second-generation
travel sites. Many airline sites and virtual travel agents introduced booking services
for air, hotels and rental cars. For the first time, individuals had access to
information previously available only through travel agents. A revenue stream
developed, but profitability remained elusive due to the cost of accessing reservation
systems such as Apollo and SABRE, high-maintenance costs, commission caps, etc.
There remained a high ratio of “lookers” to “bookers.”

The third-generation travel sites, those emerging today, provide a high degree
of personalization as distinguished from their predecessors. Modern travel sites
present dynamic content based upon information volunteered by millions of users.
Pages are presented dynamically upon information stored in the member’s profile.
Such profiles can include home airport, seating preferences, usual destinations,
membership award status, etc.

Supporting all of this interactivity, and the loads imposed by thousands of
simultaneous users, present challenges to the computer programers and architects that
design such systems. The present invention is directed to a “middleware”
framework, i.e., the software that lies between a Web site and a computer reservation
system such as SABRE. Such a system must be robust, scalable and reliable.

More specifically, such a system should provide to its users, i.e., travel-site
system integrators, the ability to rapidly modify their own business logic software and
deploy new business logic objects quickly and easily. If one can isolate modules of
functionality and develop a simple and flexible means for introducing those modules
of functionality into a booking system, system integrators will be able to provide
more compelling and effective interface to customers while lowering their
development and maintenance costs.

CORBA—the common object request broker architecture—defined by the
object management group (OMG), is a protocol definition for communicating among
heterogeneous systems. CORBA allows systems using different hardware, operating
systems and programming languages to communicate. CORBA allows the

interactions between those systems to be defined in a platform-independent way,

10

15

20

25

30

WO 01/24003 PCT/US00/26789

giving the system a set of well-defined interfaces. Thus, CORBA provides an
infrastructure for distributed computing.

The present invention is implemented on a CORBA platform. Conventionally,
a CORBA server, i.e., a single, executable program, contains all the various
components that may be required by its users or clients. This executable usually is
hard-coded and compiled. A number of different compiled executables are provided
to implement the system. Accordingly, to update that software or introduce a new
component, code has to be modified, affected servers recompiled, and then the new
executables distributed across the appropriate machines. This is a time-consuming
and expensive process. It is also an inflexible solution that is difficult to extend.
What is needed is an open solution that allows an integrator to introduce a new
component into a distributed system quickly and easily, without compromising

scalability and performance of that system.

Summary of the Invention

One general aspect of the present invention pertains to multi-tiered, distributed
computing systems and, more specifically, is directed to a component container
middleware framework for dynamic deployment of business logic software
components on a CORBA distributed object infrastructure. The invention is described
by way of example and not limitation by presenting salient features of such a system
that implements a travel planning and booking system. Such a system can be used to
allow consumers, using a web browser and connected via the internet, to investigate
travel options, including airline flights (as well as hotel rooms, rental cars, etc.) and
actually book their own reservations, i.e. purchase tickets "on line."

The booking engine is built on top of a unique CORBA framework. This
"middleware" framework is the basis for the travel system's flexibility, scalability, and
monitoring capability. These same services are available to programmers implementing
new business objects for the travel system or even separate applications that will
co-exist with the existing system. Thus, in practical application, the present invention

allows system integrators to easily deploy new business rules or logic into a robust,

10

15

20

25

30

WO 01/24003 PCT/US00/26789

scalable, distributed system not only without rebuilding that system, but indeed without
even having access to the existing system source code.

The present framework is based on a component-container model. The
framework includes a standard "container" that can contain "components." The
container preferably is a generic CORBA server that can load one or more components,
based on a "configuration file." The container automatically reads the configuration file
when it starts up and it loads the components listed in the configuration file.

Components are implemented by deriving from a framework base class. The
programmer implements the desired functionality in the component objects and loads
the resulting objects into the container by adding them to the container's configuration
file as further explained later. The components are implemented as shared libraries, so
the container can load them at run time without recompiling or linking the generic
server container. Figure 2 illustrates how the container and components fit together;
this will be explained in greater detail below.

The generic server container provides a rich set of services to components it
contains. These services relieve much of the burden of creating components by
handling the details required for load balancing, monitoring, configuration, logging,
and threading. Illustrative services that the generic server and component base classes
can provide include the following:

- Reading XML configuration files

- Loading components based on the configuration file

- Establishing connections between components listed in the configuration files

- Setting properties of the components based on the configuration file

- Three different threading models for components

- Publishing and consuming events

- Logging

- Administrative functions to allow monitoring components and the container

- Gathering and publishing statistics for components

- Component pools—part of the framework, but not generic server or

component-base classes

10

15

20

25

WO 01/24003 PCT/US00/26789

- Dynamic properties for trading
In addition, the new framework can implement higher level services that are built on
top of the generic server and component model. These higher level services can include,
for example, a trader service that is specifically tuned for load balancing, and a
document server for storing, querying, and persisting XML documents for state
management. In this way the new framework allows a programmer to focus on creating
the business logic of components without worrying about the myriad of details required
to build a robust and scalable system. The generic server container implements many of
these services for any components it contains-nothing special is required in the
components as long as they inherit from the framework base classes.

The present invention thus can be described as a configurable middleware
framework comprising a client layer interface; a container process for supporting one or
more business objects or components; and a resource interface such as an interface to
an existing computer reservation system. The container process has access to a
configuration file, and can read XML, for configuring the container process at run time
to include components specified in the configuration file. These can include internal
components for loading into the logical container, and well as references to external
components. The configuration file is implemented in XML, while the components
themselves are not restricted in terms of implementation other than a CORBA
compliant interface.

The generic server also allows components to extract information from the
configuration files through interfaces in the component base class. This allows a
programmer to easily store parameters or other information in the XML configuration
file and modify those parameters without changing any code. The process of reading
and parsing the XML is handled entirely by the generic server container and component
base class, so the programmer doesn't have to worry about file formats or parsing

issues. The present invention thus enables an integrator to add new business logic --

and deploy it over a distributed system -- without taking everything down; without

modifying and recompiling source code; and without having to copy recompiled

10

15

20

25

30

WO 01/24003 PCT/US00/26789

source code to each and every server. In fact, an integrator or other authorized user
can add or modify functionality without exposing source code.

Additional objects and advantages of this invention will be apparent from the
following detailed description of preferred embodiments thereof which proceeds with

reference to the accompanying drawings.

Brief Description of the Drawings

Fig. 1 is a high-level block diagram of a multi-tiered, distributed computing
system to implement a robust, flexible, scalable, high-performance system for
connecting end-users, via the internet, to a back-end resource such as a computerized
reservation system.

Fig. 2 is a conceptual diagram of a generic container for loading software
components based on a configuration file according to the present invention.

Fig. 3 is a conceptual diagram illustrating a configuration file specifying
connections between components.

Figs. 4A and 4B together form an example of a configuration file implemented
in XML for a city code lookup process.

Figs. 5A-5C illustrate software processes, each of which implements a generic
container having a corresponding configuration file.

Fig.6 is a simplified diagram illustrating operation of a multi-tiered,
distributed computing system to support a travel planning and reservation web site.

Fig. 7A illustrates a portion of an XML configuration file corresponding to
the container process of Figure 5B.

Figs. 7B-7C comprise a pseudo-code listing of an implementation of a Kosher
meals component of the type deployed in the container of figure 6.

Figs. 8A-8B illustrate by example a flight schedule request expressed in XML.

Figs. 9A-9B illustrate by example a flight schedule response expressed in

XML.

Figs. 10A-10B illustrate a city code lookup process (container) configuration
file.

10

15

20

25

30

WO 01/24003 PCT/US00/26789

Fig.11 is an illustrative portion of a travel plan controller process (container)
configuration file.

Figs. 12A-12C illustrate XML data, a DOM hierarchical model of the XML
data and a corresponding node list, respectively.

Figs. 13A-13B sets forth an interface definition for document server object.

Detailed Description of Preferred Embodiment

Figure 1 illustrates a three-tiered e-commerce architecture with CORBA
providing the distribution mechanism. In the top tier, an HTTP server 102 is coupled
to the Internet 104 to provide access to multiple end-users 106 running standard Web
browsers, such as IE or Navigator. Behind the Web server 102 is an application
server, such as BroadVision application server 108. The application server interacts
with the business logic and framework “middleware” through a client wrapper layer
110 provided by the middleware vendor. The client wrapper layer can be
implemented, for example, using javascript and provides methods appropriate to the
application, in this case air travel, hotel reservations and car rental. The client
wrapper does not implement business logic. Business logic is implemented at the
framework (middleware) level and at the user interface level via java scripts.

The second, intermediate tier implements the business logic and middleware
framework of the present invention. This tier includes an XML document store 112,
framework objects 114, business objects 116 and various interfaces for interfacing
with computer reservation systems and/or inventory sources. By way of illustration,
figure 1 shows a database access layer 120 for connection to a customer profile
database 122 and it further shows a CRS (Computer Reservation System) interface 126
for interfacing to a computer reservation system 130. This drawing is highly
simplified; for example, various of the framework objects 114 and business
objects 116 may include factories for creating muitiple instances of corresponding
objects, and these various objects will be distributed in most applications across
multiple servers. As noted above, a central theme of the pfesent invention is to

implement a middleware framework that greatly simplifies a deployment of business

10

15

20

25

30

WO 01/24003 PCT/US00/26789

objects 116 without exposing the system source code. The business logic that drives
the site include such things as ticketing rules or restrictions on a particular itinerary.
Business logic components can implement policies for pricing, discounts, seat
assignments, etc. In one example, described later, a kosher meals object confirms the
availability of kosher meals when requested. The CRS interface 126 in a practical
implementation is likely to manage on the order of 1,000 simultaneous connections
with CRS mainframes such as the SABRE System.

Figure 2 illustrates a generic server container according to the present
invention as mentioned in the summary above. Components are implemented by
deriving from a framework base class. The programmer (or travel site integrater)
implements desired functionality in the component objects and loads the resulting
objects into the container by adding them to the container’s configuration file 202 in
Figure 2. The components are implemented as shared libraries, so the container 204
can load them at run time without recompiling or linking the generic server container.
The configuration files, expressed in XML syntax, are the basis for specifying which
components the generic server should load, and how they should be connected
together.

When the generic server starts up, one of the first things it does is look for a
configuration file based on a name passed on the command line for the server. There
is a separate configuration file for each server process in the preferred embodiment, as
well as a shared configuration file that the separation configuration files can include.
This makes it easy to put common elements, such as certain shared object references
in the shared file where every server can use the information.

In addition, the configuration file can specify connections between components
that implements specific framework-defined interfaces. The connections can include
components that are located within the same server process (internal components),
components located in other generic server processes, and even objects located in
other processes not implemented within the framework (external components). Any
CORBA object whose object reference can be entered in the configuration file in string

form can be connected—even if the object is written in another language supported by

10

15

20

25

30

WO 01/24003 PCT/US00/26789

CORBA. Figure 3 illustrates a connection between two components as specified in a
configuration file. In this case, component 1 requires a validator service, and a
connection is provided in the configuration file to component 2, which implements the
validator interface, and happens to be located in another server, identified by the
component 2 object reference listed in the configuration file.

Threading Policies

The generic server also supports three different threading models for handling
requests for the objects it contains.

1. Single Threaded. This is the simplest model. Each request coming into the
generic server for any object contained in that server process is handled serially.
Incoming requests are stored in a queue and each request executes to completion
before the next request is handled. Notice that this model applies to all the components
contained in a server process, so only one request for any component in the server
process is handled at a time.

2. Thread per Request. The generic server container also supports a model
where each incoming request is handled by a separate thread. Each new request causes
a thread to be created to handle that request, and the thread executes until the request
is completed. Then the thread terminates. A parameter specified in the XML
configuration file can set the maximum number of threads to be created. If this
maximum is reached, new requests are blocked until at least one previous request
finishes and its thread terminates.

3. Pool of Threads. In this model, the generic server starts a number of threads
specified in the configuration file at startup. Incoming requests are assigned a thread
from the pool of available threads. If no threads are available when a request comes
in, the request waits in the queue until a thread becomes available. The threading
model used is specified by the configuration file. However, it can also be changed at
run time. The generic server also checks the thread-safe attribute of each component it
loads and forces the single threaded model if any of the components it is loading are
not thread-safe. In addition, the generic server container handles thread maintenance

issues, such as handling dead or hung threads, and reporting statistics on thread usage.

10

15

20

25

30

WO 01/24003 PCT/US00/26789

10

Figures 4A and 4B illustrate a configuration file, in this case, for a server
identified as the city code lookup server. This provides a city code lookup capability
which is made available to the application server through the client wrapper layer of
Figure 1. So, for example, if an end-user of the travel Web site enters a city name
which is not unique (Portland, Oregon/Portland, Maine) or uses an airport
abbreviation (PDX) or misspells the city name, the application server can call on the
city code lookup to obtain one or more valid alternatives. Referring to Figure 4A, the
first portion of this file lists attributes of the container, such as time out, thread policy
and maximum number of concurrent threads (“MaxThreads”).

< InternalComponents >

Internal software components are listed in this section, in this case, beginning
with the component name “CityCodeLookup”. For each internal component, the
configuration file indicates a creator name and location, relationships (in this example
there are none) and attributes. A presently preferred embodiment, a component can
have three types of attributes: simple, structure and sequence. In this example, all of
the listed attributes are of the simple type.

The CityCodeLookup configuration file continues on Figure 4B. Here, the
next component is listed beginning with the component name
“CityCodeStrictLookup.” Once again, a creator name was provided and a location of
the creafor, i.e., alibrary. There are no relationships in this example, and again
various attributes are listed. Accordingly, when the CityCodeLookup server or
container process initializes, it will read this configuration file, establishing the
general attributes as noted, and then it will load (create) instances of the
CityCodeLookup and CityCodeStrictLookup components. The simple-type attributes,
and their corresponding values, provide the means for passing perimeters to these
components. This enables the integrated to change the perimeters for a given business
logic component simply by editing the XML configuration file.

Also, the configuration file defines the order of calling components simply by
the order in which they appear in the configuration file. This allows new business

logic (a new component) to be inserted at the correct point in an existing process

10

15

20

25

30

WO 01/24003 PCT/US00/26789

11

simply by inserting it at the corresponding point in the component list in the
configuration file. As further explained later, the configuration file can define
relationships or “connections” between components; for example, defining which
components use what other component’s services. By “sequencing” a new component
into the configuration file list at the correct location, in defining relations to other
components, a new logic component can be fit into the overall system without
changing any existing source code. Put another way, the present component container
architecture presents a higher level of abstraction beyond, but still compatible with the
CORBA infrastructure.

Figure 5A presents a simple example of a container process C1 and
corresponding configuration file “Config (C1)”. Container 500 includes a travel plan
controller component 502, a kosher meal component 504 and any other business logic
component “XX” 506. Figure 5B illustrates a second container process 510 that
includes the components 502 and 504 previously mentioned, and introduces a new
component, Amadeus Interface Factory 512. The interface factory creates interface
objects as necessary, illustrated by interface objects 514. The Interface Factory
component is added to the container by listing it in the corresponding configuration
file “Config. (C2)”. These configuration files are simplified for purposes of
illustration and in practical application would contain more details such as those of
Figure 4A-4B. Figure 5C illustrates another container process C3, in this example a
document server container. This container includes two components, namely a
document server component 520 and a Filter United component 516, as listed in the
corresponding configuration file “Config. (C3)”. The document server creates
individual document objects as necessary, for example, objects (or "documents") 522
and 524.

In the travel site application, a document will be created for each end-user
"session" handled by the Web site application server. The application server
maintains session state information, and calls on the document server (the document
factory) to generate a new document, and conversely, it can notify the document

container to discard a given document when the corresponding session is concluded.

10

15

20

25

30

WO 01/24003 PCT/US00/26789

12

The individual document objects store user/session information, such as a flight
itinerary, in an XML format as further described later.

Figure 6 illustrates operation of the software system described above.
Referring now to Figure 6, at the beginning of a client session on the travel planning
Web site, the application server (see figure 1), using the client wrapper interface 600,
makes a call 602 to a travel plan controller factory component 604 shown in
container C2. This is essentially a request for the factory to create a travel plan
controller instance 606. This object 606 will implement the travel planning process
for this particular session. The client wrapper 600 also is used to make a call 610 to a
document factory 612, in this case, located in a document server container C3. The
document factory 612 creates document objects, in this example, document object 614,
for storing information associated with this current session. The corresponding travel
plan controller 606 communicates with the document 614 via path 616.

Assume that the end-user in the current session requests information about
flights between given locations on a specified date, etc. This flight request
information is written to the session document 614 via call 620 in an XML syntax.
The travel plan controller (TPC) 606 makes a call 622 to the Amadeus IF Factory 624
to request an interface to the CRS. The factory 624 creates (or assigns from a pool)
an interface object 626 as requested; makes it available to the TPC. The
IF 626 reads the flight request information 627 from the document 614 using a query
language explained later, and creates a flight schedule request in suitable form to
present the flight schedule request to the computer reservation system 640. The IF
receives a flight schedule response and writes that information into the document 614,
again formatted into an XML Syntax. The client wrapper 600 can read the updated
document via another call, and provide this information to the application server
which, in turn, provides the flight information to the Web server (See Fig. 1). Note
that the client wrapper layer provides an interface to the document for the application
server to access XML data.

We next assume that the end-user selects her itinerary from among the flights

offered. The selected flight information is written to the session document 614

10

15

20

25

30

WO 01/24003 PCT/US00/26789

13

through the client wrapper as described. Before the session is concluded, various
business logic components may be called to modify and/or validate travel plan
information as appropriate. These other components can be called by the travel plan
controller for this session (606), and they will interact with the data stored in the
corresponding document 614. Numerous components can be implemented to provide
a variety of business logic, as mentioned above, such as pricing, seating assignments,
special fares on discounts, mileage club, accommodations and even food requests. We
illustrate this last feature by way of a kosher meal business logic component 650. The
kosher meal component is shown deployed in container IC2 and therefore appears in
the corresponding configuration file 652.

The kosher meal component is to determine whether or not kosher meals are
available on a flight requested by the end-user. For example, if a kosher meal is
requested, the travel plan controller makes a call 654 to the kosher meal
component 650. Component 650’s job is to determine whether kosher meals are
available on the flight segments requested. Two requirements must be satisfied: first,
the departure city must be equipped to provide kosher meals; and second, a minimum
number of days of advance notice is necessary to provide kosher meals. The number
of days of advance notice required will be passed to the kosher meal component, via
the configuration file C2, at run time as further explained later. In response to the
call 654, the kosher meal component 650 makes a query 660 to the document 614. To
determine, for each flight segment, two pieces of information; namely, the departure
date and the departure city code. The kosher meal component 650 then makes a
call 662 to a CityCodeLookup component 664 to determine whether the departure city
indicated is capable of providing kosher meals. We assume this information is
available to the CityCodeLookup, as it would have information about virtually all the
commercial airports in the world. If kosher meals are available at the indicated
departure city, and if the prior notice requirement is met, in terms of the number of
days from ticketing (or the current date) to the departure date, the kosher meal
component 650 will modify the document 614 to indicate that kosher meal is available

on the corresponding flight segment. This process can be repeated for each flight

10

15

20

25

30

WO 01/24003 PCT/US00/26789

14

segment on the itinerary. The kosher meal availability could be implemented with a
Lookup table 666, but utilizing the city code lookup component would be preferred so
that airport information is collected in one place. Travel plan controller 606 can
provide this updated information to the client wrapper 670. An illustrative
implementation of a kosher meal component is provided in Figures 7B-7C. This
component uses the query language described below to access data stored in the
session document object.

Of course, many other user sessions can be processed at the same time. The
application server, via the client wrapper, will request travel plan controllers as
necessary and corresponding documents from the document factory. In the figure BL-
205 merely identifies another business logic component. Another component,
illustrated in container C3, is a filter component called “Filter United” 672. The
component framework includes a generic operation called filter. This is used to
modify a document that the system is working on. It essentially examines the
document and deletes certain information. In this case, Filter United has the task of
removing from the document United Airlines flights that appear in the flight schedule
response data. To add any new filter, the programmer can simply write one, derived
from the base filter class, and add it into the list of filters in the configuration file.
For illustration, we show the Filter United updating a document 674.

Figure 7A illustrates the C2 configuration file in greater detail. The
configuration file, shown in XML syntax, begins with the server name and attributes
of the server. Next, it lists the three internal components, travel plan control, kosher
meals, Amadeus IF Factory, as mentioned before. ‘For each component name, the
configuration name includes a creator name and a library location of that creator. It
also includes attributes and relationships to other components, as appropriate. For the
component KosherMeals, a creator name and library location of the creator are listed.
Just one attribute is shown, of a simple type, called “PriorNotice” with a parameter
value of 5, indicating five days advance notice required for kosher meals. A container
process reads the configuration file and provides this attribute information to the

KosherMeals component as a parameter at run time. In this way, the advance notice

10

15

20

25

30

35

40

WO 01/24003 PCT/US00/26789

15

requirement can easily be changed by simply editing the XML configuration file. The
file also shows that component KosherMeals has a relationship in that it uses the city
code lookup component.

Figure 8 is an example of a flight-schedule request. The various elements of
the flight schedule request are summarized in the following table.

Table 1. Flight Schedule Request Method Element List:

Element : FlightSchedule
Description: Contains all the information to perform a flight availability and flight
schedule request and display the results.

Attributes : None

SubElements : Request - Below, 1 or more, required

Element : Request

Description: Contains all the information to perform a flight availability request.

Attributes : ID - unique identifier

SubElements : RequestedFlightSegment - Below, 1 or more, required
ClassOfService - Below, exactly 1, required

PassengerType: Below, 1 or more, required

ValidCarriers: Below, O or 1, optional

Element : RequestedFlightSegment

Description: Contains all the information for one flight query.

Attributes . ID - unique identifier

SubElements : Departure - Below, exactly 1, required
Arrival - Below, exactly 1, required
IncludeConnectingCities - Below, O or 1, optional

Element : Departure

Description: description of the departure point

Attributes . Date - departure date
Time - departure time

SubElements : City - TravelPlanXML, exactly 1, required

Element : Arrival

Description: arrival city

Attributes : None

SubElements : City - TravelPlanXML, exactly 1, required

Element : IncludeConnectingCities

Description : List of required connection cities, which the flight choices must
include as stopover cities
Attributes : None

SubElements : City - TravelPlanXML, exactly 1, required
Element : ClassOfService

Description: cabin request for all segments

Attributes : Code - cabin code for requested cabin
SubElements : None

10

15

20

25

30

35

WO 01/24003 PCT/US00/26789

16

Element : ValidCarriers

Description: limiting list of carriers which are acceptable for the returned flights

Attributes : None

SubElements : Carrier - TravelPlanXML, exactly 1, required

Element : PassengerType

Description: Number of passengers to request availability for - the sum of all
passenger type totals will be used in the request

Attributes : Number - number of passengers in this type

SubElements : None

Element : NumChoices

Description: maximum number of flight choices to return

Attributes : Value - number of passengers in this type

SubElements : None

Element : FlightNumber

Description: This element contains the flight number the user wants to get schedule
or availability information on.

Attributes . Value - The number of the flight.

SubElements : None

The example of Figure 8 shows virtually all of the elements that might be
included in a flight availability search, although not all of them are required, as
indicated in the table. All the information in the flight schedule request-and in the
flight schedule response are stored in the corresponding session document, as
mentioned above. Figures 9A-9B illustrate a flight schedule response. The response
begins with the corresponding flight schedule request for identification. The response
has an identification number, and includes two choices (flights), choice identification
numbers 1 and 2.

Figures 10A-10B form a listing of the city code lookup server configuration
file. The file includes general attributes (applicable to the entire container) and
internal components. Each of the internal components "CityCodeLookup" and
"CityCodeStrictLookup" has multiple attributes. Again, these attributes are passed to
the component as parameters at run time. Figures 11A-11B illustrate a portion of a
travel plan controller container configuration file. The configuration file includes a

travel plan controller factory of the type discussed above.

10

15

20

25

30

WO 01/24003 PCT/US00/26789

17

Document Component

The Document component is a component that internally contains an XML
document and whose external interface provides clients with the ability to set and
retrieve certain portions of the document at a given time. The XML document
preferably is stored internally using a C++ DOM implementation. Most document
users, however, will not need to deal with either XML or DOM directly, because most
reading and writing of Document information can be done using the Node and
NodeAttribute structures, using either a node id or an XQL query to identify a node or
a group of nodes.

As noted, session data is stored in the document objects in XML format.
Figure 12A illustrates the hierarchical association of tags in XML format. Figure 12B
illustrates the DOM model in which the tags have a tree structure, and each node has a
corresponding node id number. The present invention implements, in its query
language, a node list concept. This is a list of tags and corresponding node id's. A
node id is an internal unique identifier that the Document process uses to identify
individual nodes. Users of Document should not try to determine a node id on their
own, but should only use values that have been obtained from the Document instance
they are working on through an operation like get_nodes_by query. If a call to
get_nodes_by_query is successful, then the nodes returned can be relied upon to have
correct node ids, their values or attributes can be modified, they can be passed back to
the document via the update nodes_by_node_id, and the changes will be made in the
proper spots in the document. However, if one of these node ids were to be extracted,
the document saved to a file, and a new document created from that same file, the

node id would no longer be valid.

Query Language

A query is a string that conforms to a defined query language. In a presently
preferred embodiment of the invention, a query language suitable for accessing the
content of a document is a subset of XQL (XML Query Language), which is an

extension of XSL (Extensible Stylesheet Language). More information on these

WO 01/24003 PCT/US00/26789

18

languages is publicly available. Following is a table containing examples of the query

commands our Document component supports and what they do:

5 / Identifies the root node.
A Identifies the current context node.
) Identifies the parent node of the current context node.
Code Selects all of the Code nodes that are children of the current context node.
./Code Selects all of the Code nodes that are children of the current context node.
10 /Code Selects all of the Code nodes that are children of the root node.
City/Code Finds all of the City node children of the current context, and selects all of
their Code node children.
/City/Code Finds all of the City node children of the root node, and selects all of their
Code node children.
I Performs a recursive descent starting at (but not including) the root node.
J Performs a recursive descent starting at (but not including) the current
context node.
15 //Code Selects all of the Code nodes anywhere in the document.
//ICode Selects all of the Code nodes anywhere below the current context node.
City/* Finds all of the City node children of the current context, and selects all of
their children nodes.
*/City Select all City grandchildren of the current context.
/City// Finds all City nodes that are children of the root node, and performs a
recursive descent starting at (but not including) each one.
20 City//Code Finds all City nodes that are children of the current context node, and
selects all of their Code descendants.
/ICity/Code Finds all City nodes within the document, and selects all of their Code node
chiidren.
City/@identifier Finds all City node children of the current context, and selects only the

identifier attribute from each.

City/@* Finds all City node children of the current context, and selects only the

attributes (excluding the node’s name and value) from each.

City[@identifier] Selects all City nodes that are children of the current context node and have

an identifier attribute.

25 City[Code] Selects all City nodes that are children of the current context node and have

at least one Code child node themselves.

City[@identifier="MyCity”] | Selects all City nodes that are children of the current context and whose

identifier attribute value is “MyCity”.

The present invention departs from standard XQL in that the symbols

Document supports includes addition of the ! operator as a modifier to the // behavior.

10

15

20

25

WO 01/24003 PCT/US00/26789

19

XQL defines the // operator to be a recursive descent beginning at a specific node.
Therefore, .// would indicate a recursive descent starting at, but not including, the
current context node. This is significant in our use of XQL because a common XML
query will be to find certain nodes and select them and all their descendants. For
example, you might want to select all City nodes and their descendants anywhere in
the document. Following XQL by the letter, you could write the query //City, which
would select all City nodes anywhere in the document, but would not select their
descendants. You could also write the query //City//, which would find all City nodes
anywhere in the document and select their descendants, but not the City nodes
themselves. Therefore, you'd have to do at least two queries to select the City nodes
and their descendants, a potentially expensive process if being done across a network,
and certainly one that will return a messy result. Our solution was to allow a !
operator, directly following a //, to modify the // behavior to include the starting

node. This would allow the following queries:

/City//! Finds all City nodes that are children of the root node, and performs a
recursive descent starting at (and including) each one.

City//Code//! Finds all City nodes that are children of the current context node, finds
all of their Code descendants, and performs a recursive descent starting
at (and including) each one.

1'Code Selects all of the Code nodes if the current context node or anywhere
below the current context node (a very tiny difference.)

City//!Code Finds all City nodes that are children of the current context node, and
selects all of their Code descendants. In this case, the ! is useless,
because it would modify the // behavior to check each City node to see
if it is a Code node, which obviously would never be true.

/I'City/Code Finds all City nodes within the document, and selects all of their Code
node children. Again, here the ! is useless, because it would modify

the // behavior to see if the root node is a City node, which would

10

15

20

WO 01/24003 PCT/US00/26789

20

never be true because the root node is the document and is not an XML

node.

The current context is an important concept when using a query. If a query
begins with a '/', it begins at the root, which is the base of the document tree.
However, if it doesn't begin with a '/', it begins at the current context. The current
context is analogous to a pointer or cursor in other technologies, in that it refers to a
specific place in the document. When a document is loaded from a file or otherwise
created, the current context is set to the root. From here the current context can be
moved to any node in the document. Once the current context is set, it remains until
changed explicitly or until the document is destroyed. This allows queries to be
applied only to a specific portion of the document, if desired.

Some operations that operate by query, such as set_current_context_by query
and add nodes_at_query, can only perform their function if the query specifies a
single node in the document. In other operations, such as get_nodes by query,
queries can specify and select multiple nodes. A simple example of use of these types
of queries is illustrated in the Kosher Meals example of Figures 7B-7C.

It will be obvious to those having skill in the art that many changes may be
made to the details of the above-described embodiment of this invention without
departing from the underlying principles thereof. The scope of the present invention

should, therefore, be determined only by the following claims.

WO 01/24003 PCT/US00/26789

21
Claims

We Claim:

1. A multi-tiered, distributed object framework comprising:

(a) a client wrapper layer for interaction with a client process;

(b) a middleware layer including a container process for hosting one or more
business logic objects; and

(c) aresource interface layer for connection to and interfacing with a computer
reservation system,

(d) the container process having access to at least one configuration file for
configuring the container process at run time by loading into the container one or
more components specified in the configuration file.

2. A framework according to claim 1 wherein the configuration file includes
identification of at least one external component.

3. A framework according to claim 1 wherein the configuration file includes at
least one attribute of the container process.

4. A framework according to claim 3 wherein the container attribute
comprises selection of a predetermined threading policy.

5. A framework according to claim 1 wherein the configuration file includes,
for the specified component, identification of at least one attribute for passing to the
component at run time as a parameter.

6. A middleware framework according to claim 5 wherein the component
attribute comprises a selected parameter and a value of the selected parameter, for
passing the value of the selected parameter to the said internal component by editing
the value in the corresponding configuration file.

7. A framework according to claim 1 wherein the configuration file is formed
in XML syntax.

8. A framework according to claim 1 wherein the configuration file is

implemented in a text file.

WO 01/24003 PCT/US00/26789

22

9. A framework according to claim 1 wherein the configuration file is
encapsulated as a software object.

10. A framework according to claim 1 wherein the configuration file includes
for the specified component, identification of at least one relationship of that
component to another component.

11. A document server container process comprising:

a document factory component for creating document objects;

each document object encapsulating data stored internally in an XML syntax;

each document object further implementing an interface for accessing the
encapsulated data; and

the document server container process having access to a configuration file
associated with the document server container for configuring the container process at
run time by loading into the container one or more software components specified in the
configuration file, including the document factory component.

12. A document server container process according to claim 11 wherein the
document object implements a hierarchical tree structure of the encapsulated data, and
assigns to each node of the XML data, a corresponding unique internal node identifier
(id); the node id corresponding to a specific node within a hierarchical tree model.

13. A document server container process according to claim 12 wherein the
document interface maintains an indication of a current context, for executing query
language commands on the encapsulated data relative to the current context.

14. A document server container process according to claim 12 wherein the
document object implements a node list, the node list including a list of tags of the XML
data and a corresponding node id for each tag.

15. A document server container process according to claim 12 wherein the
document interface implements a predetermined query language for accessing the
encapsulated data; the query language including commands for accessing the data based

on node identifiers.

WO 01/24003 PCT/US00/26789

23

16. A document server container process according to claim 15 wherein the
query language implements commands for obtaining query results including node
identifiers.

17. A method of storing and maintaining dynamic session data in a
distributed object environment, comprising the steps of:

providing a document factory for creating a document object for each session;

in each document object, storing selected session data in an XML syntax;

implementing a hierarchical internal tree structure associating the data stored in
the document object;

assigning to each tag of the stored data a unique internal node identifier
corresponding to the tag location on the tree structure; and

in each document object, implementing an interface for accessing the session
data stored in the object based on the assigned node identifiers, thereby encapsulating
the actual XML syntax data.

18. A method of storing and maintaining dynamic session data according to
claim 17 wherein the document object implements a predetermined query language that
includes query commands that return selected node identifiers.

19. A method of storing and maintaining dynamic session data according to
claim 18 wherein the document object implements a predetermined query language that
includes query commands that update the document object at node identifiers specified
in a query command.

20. A method according to claim 18 and further comprising maintaining an
indication of a current context in the document, for executing query language commands

on the encapsulated data relative to the current context.

PCT/US00/26789

WO 01/24003

1/21

ocl SO

44

aseqeijeq

a|yoid
lswoisn)

aoepBIU| SHI

18Ae"] SS90y
aseqgejeq

9cl 0cl saoepajU| 801N0g AIOJUBAU|/SYHD
] 210]S
s)0alqO ssauisng $103[qQ Y}iomawel AN JuBWIN20Q TNX
\ \ yiomawel4 g 21607 ssauisng
il 1417
o ausou SEVNEETS laneg 1ahen
J8s) pu3 } ! qoM uoneolddy Jaddeipp usln
901l 0l 2ol 801 oLl

l 'Old

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

2/21

FIG. 2

Configuration File

< Component 1 >
< Component 2 >
< Component 3 >

Component 1 Component 2 Component 3

shared library shared library shared library

Generic CORBA Server ("Container")

SUBSTITUTE SHEET (RULE 26)

WO 01/24003

PCT/US00/26789

container 1

Configuration File

Validator = component 2
object reference

3/21
FIG. 3
i
|
! Component 2
-
Component 1 . | (Implements the
(Needs a ! i :
) , ! : Validator
Validator Service) ‘ i
: 1 Interface)
Validator :
Service i
Generic server Request Generic server

container 2

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

4/21

<Server Name="Bk/CityCodeLookupSvr'"> FIG. 4A
<Attributes>
<Simple Name="Timeout">0</Simple>
<Simple Name="ThreadPolicy">thread-pool</Simple>
<Simple Name="MaxThreads">20</Simple>
<Simple Name="Description">This server contains components related to Car related
Code Lookups.</Simple>
<Simple
Name="IncludeFile">/net/godzilla/usr2/BookSmart/v2.0/run/CORBA/TraderInclude. xml</Si
mple>
</Attributes>
<InternalComponents>
<Component Name="CityCodeLookup">
<Creator Name="ConverterCreator"
Library="libSnSFrameworkConverterCreators.so"/>
<Relationships>
</Relationships>
<Attributes>
<Simple Name="ServiceType">CityCodeLookup</Simple>
<Simple Name="SubstringMatch">True</Simple>
<Simple Name="TagName">City</Simple>
<Simple Name="CodeAttribute">Code</Simple>
<Simple Name="NameAttribute">Value</Simple>
<Simple Name="Library">liboral2d0146.s0</Simple>
<Simple Name="Database">WG80</Simple>
<Simple Name="UserName">BROADVISION</Simple>
<Simple Name="Password">BROADVISION</Simple>
<Simple Name="Table">BK_CITY_MAST</Simple>
<Simple Name="CodeColumn">CITY_CODE</Simple>
<Simple Name="NameColumn">CITY_NAME</Simple>
<Simple ‘
Name="CodelsPrimaryColumn">ISPRIMARY_FLAG</Simple>
<Sequence Name="Attributes" Type="Simple">
<Simple
Name="AttributeColumn">COUNTRY_CODE</Simple>
<Simple
Name="AttributeColumn">CURRENCY_CODE</Simple>
<Simple
</Sequence>
</Attributes>
</Component>

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

5/21

<Component Name="CityCodeStrictLookup"> F1G. 4B
<Creator Name="ConverterCreator"
Library="libSnSFrameworkConverterCreators.so"/>
<Relationships>
</Relationships>
<Attributes>
<SimpleName="ServiceType">CityCodeStrictLookup</Simple>
<Simple Name="VerboseErrors">True</Simple>
<Simple Name="SubstringMatch">True</Simple>
<Simple Name="TagName">City</Simple>
<Simple Name="CodeAttribute">Code</Simple>
<Simple Name="NameAttribute">Value</Simple>
<Simple Name="Library">liboral2d0146.s0</Simple>
<Simple Name="Database">WG80</Simple>
<Simple Name="UserName">BROADVISION</Simple>
<Simple Name="Password">BROADVISION</Simple>
<Simple Name="Table">BK_CITY_MAST</Simple>
<Simple Name="CodeColumn">CITY_CODE</Simple>
<Simple Name="NameColumn">CITY_NAME</Simple>
<Simple
Name="CodelsPrimaryColumn">ISPRIMARY_FLAG</Simple>
<Sequence Name="Attributes" Type="Simple">
<Simple
Name="AttributeColumn">COUNTRY_CODE</Simple>
<Simple
Name="AttributeColumn">CURRENCY_CODE</Simple>
<Simple
Name="AttributeColumn">ISVALIDHOTELRENTAL_FLAG</Simple>
<Simple Name="AttributeColumn">DAL</Simple>
<Simple
Name="AttributeColumn">ISETCARRIERCHECK</Simple>
</Sequence>
</Attributes>
</Component>

</InternalComponents>
</Server>

SUBSTITUTE SHEET (RULE 26)

PCT/US00/26789

WO 01/24003

6/21

JS 'Old

gs 'Old

VS 'Old

< pajun 18yt >
< JoAJ8S Jusawnooq >

(¢2) byuon

vZs ¢cs
papun \k Alojoe)
1914 Juawnoo

Jaulejuod IsAI8g jusawnoog

Aloyoey °J] snapewy >
< |eaw Jaysoy| >

(8) '} (q) ‘4 016G (48,

4 v0 c0

|0JJU0D

< |osjuoo ueid jpael] > %Momﬁ) _m_dmmwﬂ ued
pewy SO onel]
(20) Byuod
00§ Jsutgjuo)d 10
< XX >
< |eaw 18ysoy] > b0 o
< |osjuod ueid jaAel] > 18USOY]

(1D) Byuod

sjusuodwo) Aseiqi] pateys

SUBSTITUTE SHEET (RULE 26)

PCT/US00/26789

WO 01/24003

7121

< payun so4 >

pajun O Aiojoey
19)|14 juawino0(]
< Alojoey Juswinooq >

O
(D) Byuod Jauiejuo) JaA1ag Juawnoog %

cl9

Y

— vL9
b9 T SyD | %% 8@/ oﬁ\

¥09

Aojoey
18jj05ju09
ueid
[oABI]

< Kiojoey)| snapewy >
< |eaw Jaysoy| >
< Aiojoe) Ddl > @

Aojoey °J|
snapewy

[eaw
laysoy|

%9 (z0)Byuop sts |\ O

20

0€9 — - 909

Jaulejuo)

299

<Goze g >

< dnyoo 8poDAND > dmj007
< Kioyoey Ddl > apoDAID
v
(1) Byuod

9 'Old

019

29

09

19

Jaddeim
uslD

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

8/21

FIG. 7A

>Server Name="ContainerC2Svr">
<Attributes>
<Simple Name="ThreadPolicy">thread-pool</Simple>
<Simple Name="MaxThreads">450</Simple>
<Simple Name="Description">This server contains components related to doing
travel plan operations.</Simple>
</Attributes>
<Internal Components>
<Component Name=""TravelPlanControl">
<Creator Name="ControllerCreator">
Library="1ibMDSframeworkControllerCreators.so"/>
<Attributes>
<Simple Name="UserName">Micah</Simple>
</Attributes>
<Relationships>
<Uses Name="someFactory"
Component="ThatFactory" Type="Component" PersistConnection="False"/>
<Uses Name="PassengerTypeCodeLookup"
Component="PassengerTypeCodeLookup" Type="Converter" PersistConnection="False"/>
</Relationships>
</Component>
<Component Name=""KosherMeals'>
<Creator Name="KosherCreator">
Library="1ibMDS frameworkInFlightCreators.so"/>
Attributes
<Simple Name="PriorNotice">5</Simple> // 5 days notice
</Attributes>
<Relationships>
<Uses Name="CityCodeLookup" ...
</Relationships>
<Component Name=""AmadeusIF">
<Creator Name="IFFactoryCreator">
Library="libMDSframework IFFactoryCreators.so"/>
Attributes
</Attributes>
</Component>
<Internal Components>

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

9/21

FIG. 7B

// modify: When called, should be pointed at a FlightSchedule or FlightShopping

// Response node. The function queries all FlightSegments within the Response,

// checks their Departure Date and City information, and if it checks out,

// inserts a XML node that indicates that Kosher meals are available on that Flight Segment.

CORBA_Boolean KosherMealModifier_i::modify(
SnSFramework ErrorStore& error,
SnSFramework_Document_ptr documentln,
SnSFramework DocumentNodeld nodeldln,
const SnSFramework WString& sSpeciallnstructions)

SnSFramework WString sSegQuery;
c_str_to_idl_wstring("Choice/Flight/FlightSegment", sSegQuery)

SnSFramework NodeList_var varFlightSegments =
documentIn->get_nodes_by_query at_node_id(error,
sSegQuery, nodeldIn);

CORBA_ULong nNumOfSegs = varFlightSegments->length();
for (CORBA_ULong nSegindex = 0; nSegindex < nNumOfSegs; nSeglndex++)
{

// read departure date and city from segment

SnSDate departureDate;
SnSWString sDepartureCityCode;

SnSFramework WString sDateQuery;
c_str_to_idl_wstring("Departure/@Date", sDateQuery);

SnSFramework NodeList _var varDepartureDate =
documentIn->get nodes_by_query at node_id(error,
sDateQuery, (*varFlightSegments)[nSeglndex].nodeld);

if (varDepartureDate->length() > 0)
departureDate = (*varDepartureDate)[0].attributes[0].sValue;

SnSFramework WString sCityQuery;
c_str_to_idl_wstring("Departure/City/@Code", sCityQuery);

SnSFramework NodeList_var varCityCode =
documentIn->get nodes_by_query_at node id(error,

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

10/21

FIG. 7C

sCityQuery, (*varFlightSegments)[nSeglndex].nodeld);

if (varCityCode->length() > 0)
sDepartureCityCode = (*varCityCode)[0].attributes{0].s Value;

// check data for kosher possibility
bool bKosherOk = true;

if (departureDate < SnSDate::today() + m_nKosherAdvanceNoticeDays)
bKosherOk = false;

SnSFramework WString sKosherOkPropertyCheck;
c_str_to_idl wstring("ISKOSHEROKAY", sKosherOkPropertyCheck);

if ('m_varCityLookup->is(error, sDepartureCityCode.idl_wstring(),
sKosherOkPropertyCheck))
bKosherOk = false;

// add kosher available XML if okay

if (bKosherOk)

{
// create <KosherOk Value="True"/> to FlightSegment XML

SnSFramework NodeList kosherNode;
kosherNode.length(1);
c_str_to_idl_wstring("KosherOk", kosherNode.sName);

kosherNode.attributes.length(1);

c_str_to_idl wstring("Value", kosherNode.attributes[0].sName);
c_str_to_idl wstring("True", kosherNode.attributes[0].sValue);
documentIn->insert_nodes_at_node_id(error,

kosherNode, (*varFlightSegments)[nSegindex].nodeld,
false, false);

}

return true;

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

11/21

FIG. 8A

FlightScheduleRequest XML

<BookSmart >
< FlightSchedule >
<Request ID="1">
<RequestedFlightSegment ID="RFS_1"/>
< Departure Date="09052000" Time="1200" >
< City Code="PDX" Value="Portland, OR" />
< /Departure >
<Arrival >
< City Code="RNO" Value="Reno, NV" />
</Arrival >
< IncludeConnectingCities >
< City Code="SEA" Value="Seattle, WA" / >
< /IncludeConnectingCities >
< ExcludeConnectingCities >
< City Code="SFO" Value="San Francisco, CA"/ >
< /ExcludeConnectingCities >
< NonStopOrConnectingCities >
< City Code="SEA" Value=" Seattle, WA""/ >
< City Code="SFO" Value="San Francisco, CA"/ >
< /NonStopOrConnectingCities >
< /RequestedFlightSegment >
< BookingCabin Code="Y" Value="Coach" BookingClassCode="B"/>
< PassengerType Code="ADT" Value="Adults" Number="2"/>
< Passenger Type Code="CHD" Value="Children" Number="1"/>
< ValidCarriers >
< Carrier Code="AA" Value="American Airlines"/ >
< /ValidCarriers >

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

12/21
FIG. 8B

< InValidCarriers >

< Carrier Code="AS" Value="Alaska Airlines"/ >
< /InValidCarriers >
< PreferredCarriers >

< Carrier Code="AA" Value="American Airlines"/ >
< /PreferredCarriers >

< ConnectionTypesAllowed NonStop="T" Direct="T" Connecting="T"/ >
< DepartAfter Time="1200"/>
< DepartBefore Time="1800"/>
<NumChoices Value="10"/>
<MaxQueries Value="10"/>
< FareRestrictions ApplyAll="T" Penalties="T" NonRefundable="T"
AdvancePurchaseRequired="T"/ >
< FlightNumber Value="239"/>
</Request >
<Request ID="2">
< RequestedFlightSegment ID="RFS_1"/>
< Departure Date="09102000" Time="1800" >
< City Code="RNOQO" Value="Reno, NV" />
</Departure >
<Arrival >
< City Code="PDX" Value="Portland, OR" />
</Arrival >
< /RequestedFlightSegment >
< BookingCabin Code="Y" Value="Coach"/ >
</Request >
< /FlightSchedule >
</BookSmart >

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

13/21

FIG. 9A
FlightScheduleResponse XML

<BookSmart >
<FlightScheduleRequest >

</FlightScheduleRequest >
<FlightScheduleResponse ID="1" >
<Choice ID=1>
<Flight>
< Origin Date="03032000" Time="1050" >
< City Code="DFW" Value="Dallas/Fort Worth"/ >
</Origin >
< Destination Date="03032000" Time="1208" >
<City Code="LHR" Value="London Heathrow, England"/ >
< /Destination >
<ElapsedFlyingTime Value="1010"/>
<FlightSegment ID ="1" Suffix=??? FlightNumber="90"
IsCommuter="F" IsCodeShare="F"
FrequentFlyerMiles ="445" NumberStops="1"
IsChangeOfGuage="T"
ElectronicTicketingQualifier="T" >
< Departure Date="03032000" Time="0600" Terminal="B" >
< City Code="DFW" Value="Dallas/Fort Worth" />
</Departure >
< Arrival Date="03032000" Time="2210" Terminal="3">
< City Code="LHR" Value="London Heathrow, England"/ >

</Arrival >
< Carrier Code="AA" Value="American Airlines"/ >
< OperatedBy >
< Carrier Code="" Value=""/>
</OperatedBy >

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

14/21

FIG. 9B

<BookingCabin Code="Y" Value="Coach"
BookingClassCode="M"
CabinChanged ="F"
Seats="9"/>
<Meal Code="L" Service="1" Value="Lunch"
CabinName="First"/ >
<Meal Code="S" Service="1" Value="Snack"
CabinName="First"/ >
<Meal Code="S" Service="2" Value="Snack"
CabinName="Coach"/ >
< AircraftInformation Code="M80" Value="MDonnel MD80"/ >
< LevelOfAccess Value="1A"/>
< Stop EquipementChange="T">
< Arrival Date="03032000" Time="0805" Terminal="3">
< City Code="ORD" Value="Chicago, Nlinois" />
</Arrival >
< Departure Date="03032000" Time="0900" Terminal="C"/>
< TimeOnGround Value="0055"/>
< AircraftInformation Code="77" Value="Boeing 777"/ >
<KosherOK Value = "True"/ ></Stop>

</FlightSegment>
< /Flight>
< /Choice >
< Choice ID="2" >

< /Choice >
< /FlightScheduleResponse >
< FlightScheduleResponse ID ="2" >

</FlightScheduleResponse></BookSmart>

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

15/21

FIGURE 10A

< Server Name = "Bk/CityCodeLookupSvr" >

< Attributes >

< Simple Name = "Timeout" > 0 </Simple >

< Simple Name = "ThreadPolicy" > thread-pool </Simple >

< Simple Name = "MaxThreads" >20 < /Simple >

< Simple Name = "Description" > This server contains components related to Car related Code
Lookups. </Simple >

< Simple
Name = "IncludeFile" > /net/godzilla/usr2/BookSmart/v2.0/run/CORBA/TraderInclude.xml < /Sim
ple>

</Attributes >

< InternalComponents >

< Component Name = "CityCodeLookup" >
< Creator Name = "ConverterCreator"
Library = "libSnSFrameworkConverterCreators.so"/ >
< Relationships >
</Relationships >
< Attributes >
< Simple Name ="ServiceType" > CityCodeLookup < /Simple >
< Simple Name = "SubstringMatch" > True </Simple >
< Simple Name ="TagName" > City </Simple >
< Simple Name = "CodeAttribute" > Code < /Simple >
< Simple Name = "NameAttribute" > Value </Simple >
< Simple Name = "Library" > liboral2d0146.so </Simple >
< Simple Name = "Database" > WG80 < /Simple >
< Simple Name ="UserName" > BROADVISION < /Simple >
< Simple Name ="Password" >BROADVISION </Simple >
< Simple Name ="Table">BK_CITY_MAST </Simple >
< Simpie Name ="CodeColumn" > CITY_CODE </Simple >
< Simple Name ="NameColumn" > CITY_ NAME </Simple >
< Simple
Name = "CodelsPrimaryColumn" > ISPRIMARY_FLAG </Simple >
< Sequence Name = "Attributes” Type = "Simple" >
< Simple
Name ="AttributeColumn" > COUNTRY_CODE < /Simple >
< Simple
Name ="AttributeColumn" > CURRENCY_CODE </Simple >
< Simple
Name ="AttributeColumn" > COTERMINAL < /Simple >
< Simple

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

16/21

FIGURE 10B

Name ="AttributeColumn" > ISVALIDPOO_FLAG </Simple >
< Simple
Name ="AttributeColumn" > ISVALIDCARRENTAL_FLAG </Simple >
< Simple
Name = "AttributeColumn” > ISVALIDHOTELRENTAL FLAG </Simple >
< Simple Name = "AttributeColumn" > DAL </Simple >
< Simple
Name = "AttributeColumn" > ISETCARRIERCHECK < /Simple >
< /Sequence >
</Atributes >
< /Component >

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

17/21

FIG. 11A

Server Name="Bk/TravelPlanControllerSvr">

<Attributes>

<Simple Name="Timeout">0</Simple>

<Simple Name="ThreadPolicy">thread-pooi</Simple>

<Simple Name="MaxThreads">20</Simple>

<Simple Name="ThreadBusyThreshold">180</Simple>

<Simple Name="Description">This server contains components related to doing Travel Plan
operations.</Simple>

<Simple
Name="IncludeFile">/net/godzilla/usr2/BookSmart/v2.0/run/CORBA/CommonInclude.xml</Simple>

</Attributes>

<InternalComponents>

<Component Name="BkTravelPlanControllerFactory">
<Creator Name="SnSFactoryCreator"
Library="libSnSFrameworkFactoryCreators.so"/>
<ChildCreator Name="SnSControllerCreator"
Library="libSnSFrameworkControllerCreators.so"/>

<Attributes>

<Simple Name="Policy">Factory</Simple>

<Simple Name="ProductsAreGateways">False</Simple>

<Simple Name="MaintenanceThreads">1</Simple>

<Simple Name="CreatorName">SnSControllerCreator</Simple>

<Simple Name="AvailableBuffer">2</Simple>

<Simple Name="ServiceType">TravelPlanControllerFactory</Simple>
</Attributes>

<Children Name="TravelPlanController">

<Attributes>
<Simple Name="LogAllErrors">True</Simple>
<Simple Name="PublishErrorStats">True</Simple>
<Simple Name="PublishPerformanceStats">True</Simple>
<Simple Name="AdminThreadPause">300</Simple>
<Simple Name="TimeBetweenStatPublishing">100</Simple>

</Attributes>

<Relationships>

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

18/21

FIG. 11B

<Uses Name="AmadeusIFFactory"
Component="AmadeusIFFactory"
Type="Component"
PersistConnection="False"/>

<Uses Name="HotelController" Component="HotelController"
Type="Component"
PersistConnection="False"/>
<Uses Name="FlightShoppingServer"
Component="FlightShoppingServer"
Type="Component"
PersistConnection="False"/>
<Uses Name="CarController" Component="CarController"

Type="Component"
PersistConnection="False"/>

<Uses Name="ErrorLookup" Component="ErrorLookup"
Type="Component" PersistConnection="True"/>
<Uses Name="ContactinfoValidator" Component="BkContactInformationValidator"
Type="Validator" PersistConnection="True"/>
<Uses Name="PassengerTypeCodeLookup" Component="PassengerTypeCodeLookup"”
Type="Converter" PersistConnection="False"/>
<Uses Name="ServiceRequestCodeStrictLookup"
Component="ServiceRequestCodeStrictLookup"
Type="Converter" PersistConnection="False"/>
<Uses Name="SpecialEquipmentCodeStrictLookup"
Component="SpecialEquipmentCodeStrictLookup"
Type="Converter" PersistConnection="False"/>
<Uses Name="ContactInfoCodeLookup" Component="ContactinfoCodeLookup"
Type="Converter" PersistConnection="False"/>
<Uses Name="CityCodeLookup"
Component="CityCodeLookup"
Type="Converter" PersistConnection="False"
Priority="1"/>
<Uses Name="CurrencyCodeLookup"
Component="CurrencyCodeLookup"

Type="Converter" PersistConnection="False"
Priority="1"/>

<Uses Name="ConvertAir"

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

19/21

STRING

< parent tag >
< child tag >
< grandchild tag >
< /child tag >
< /parent tag >

Fig. 12A

DOM

parent tag

child tag 1 child tag 2

grandchild tag
node id

O

Fig. 12B

NODE LIST
Parent tag 1, node id

Child tag 1, node id

Fig. 12C

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

20/21

FIG. 13A
Document IDL

typedef WString DocumentNodeld;

enum EncodingFormat { ASCII, UTF8, UTF16 };

struct NodeAttribute

{
WString sName;
WString sValue;

b
typedef sequence<NodeAttribute> NodeAttributeList;

struct Node

{.
DocumentNodeld nodeld;
WString sName;
WString sValue;

NodeAttributeList attributes;
sequence<Node> children; // same type as NodeList
WString sNodePath; // for informational purposes only

}
typedef sequence<Node> NodeList;
interface Document : Component

{

DocumentNodeld get current context_node_id(inout ErrorStore error);

boolean set_current_context_by node_id(inout ErrorStore error, in DocumentNodeld
contextNodeld);

boolean set_current_context_by query(inout ErrorStore error, in WString
sContextQuery);

NodeList get nodes by query(inout ErrorStore error, in WString sSelectQuery);
NodeList get nodes_by query_at_node_id(inout ErrorStore error, in WString

sSelectQuery,
SnSFramework DocumentNodeld startingNodeld);

SUBSTITUTE SHEET (RULE 26)

WO 01/24003 PCT/US00/26789

21/21
FIG. 13B

boolean insert_nodes_at_node_id(inout ErrorStore error, inout NodeList nodes, in
DocumentNodeld parentNodeld,
in boolean bAllOrNothing, in boolean bEnforceUniqueTags);

boolean insert_nodes_at_query(inout ErrorStore error, inout NodeList nodes, in
WString parentQuery
in boolean bAllOrNothing, in boolean bEnforceUniqueTags);

boolean update nodes_by_node_id(inout ErrorStore error, in NodeList nodes, in
boolean bA1lOrNothing);

boolean delete node by node id(inout ErrorStore error, in DocumentNodeld
deleteNodeld);

boolean delete_nodes by query(inout ErrorStore error, in WString sDeleteQuery, in
boolean bAllIOrNothing),

boolean load_from_file(inout ErrorStore error, in WString sFileName);

boolean save_to_file(inout ErrorStore error, in WString sFileName, in
EncodingFormat encoding);

WString get nodes by node_id_as_xml(inout ErrorStore error, in DocumentNodeld
startingNodeld);

boolean add_nodes_at node_id_from_xml(inout ErrorStore error, in WString sXml,
in DocumentNodeld parentNodeld);

WString transform_into_xml(inout ErrorStore error, in WString sStyleSheet,in
DocumentNodeld sourceNodeld);

boolean transform_into_document(inout ErrorStore error, in WString sStyleSheet,
inout Document resultDocument, in DocumentNodeld sourceNodeld, in
DocumentNodeld resultNodeld);

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Intern 1al Application No

PCT/US 00/26789

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F9/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the internationai search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 5 822 580 A (LEUNG WYATT) 1-10,
13 October 1998 (1998-10-13) 17-20
column 1, 1ine 14 - line 45

column 5, line 50 -column 6, line 44

A EP 0 786 723 A (HITACHI LTD) 11-16
30 July 1997 (1997-07-30)

column 1, line 1 -column 7, line 50
A US 5 956 508 A (MCKELLEY JR CHARLES R ET 1-10,
AL) 21 September 1999 (1999-09-21) 17-20
column 2, line 7 - line 22

column 8, 1ine 26 - line 42
A US 5 515 508 A (PETTUS CHRISTOPHER E ET 1-10,
AL) 7 May 1996 (1996-05-07) 17-20
column 4, line 45 —column 5, line 63

D Further documents are listed in the continuation of box C. lﬂ Patent family members are listed in annex.

° Special categories of cited documents : " . . -

T later document published afier the international filing date
or priority date and not in conilict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
invoive an inventive step when the document is taken alone

S - - *Y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the

O document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu—
other means ments, such combination being obvious to a person skilled

*P" document published prior to the international filing date but inthe art.

{ater than the priority date claimed '&" document member of the same patent family

A document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another

Date of the actual completion of the international search

12 December 2000

Date of mailing of the international search repon

19/12/2000

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Brandt, J

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

.. .ormation on patent family members

Intern

1al Application No

PCT/US 00/26789

Patent document
cited in search report

Publication
date

Patent family
member(s)

Publication
date

US 5822580 A 13-10-1998 CA 2238973 A 24-07-1997
DE 69701623 D 11-05-2000
EP 0861467 A 02-09-1998
Wo 9726597 A 24-07-1997

EP 0786723 A 30-07-1997 JP 9204348 A 05-08-1997
us 5887171 A 23-03-1999

US 5956508 A 21-09-1999 NONE

US 5515508 A 07-05-1996 AU 7393294 A 03-07-1995
Wo 9517060 A 22-06-1995

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

