US 20070172041A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2007/0172041 A1l

Boccon-Gibod et al.

43) Pub. Date: Jul. 26, 2007

(54)

(735)

(73)

@
(22)

(60)

DIGITAL RIGHTS MANAGEMENT ENGINE
SYSTEMS AND METHODS

Inventors: Gilles Boccon-Gibod, Los Altos, CA
(US); Julien G. Boeuf, Paris (FR)

Correspondence Address:

FINNEGAN, HENDERSON, FARABOW,
GARRETT & DUNNER

LLP

901 NEW YORK AVENUE, NW
WASHINGTON, DC 20001-4413 (US)

Assignee: Intertrust Technologies Corporation,
Sunnyvale, CA

Appl. No.: 11/583,695
Filed: Oct. 18, 2006
Related U.S. Application Data

Provisional application No. 60/728,089, filed on Oct.
18, 2005. Provisional application No. 60/772,024,

102
N

Content Policy
105

PACKAGER
108

filed on Feb. 9, 2006. Provisional application No.
60/744,574, filed on Apr. 10, 2006. Provisional appli-
cation No. 60/791,179, filed on Apr. 10, 2006. Pro-
visional application No. 60/746,712, filed on May 8,
2006. Provisional application No. 60/798,925, filed
on May 8, 2006. Provisional application No. 60/835,
061, filed on Aug. 1, 2006.

Publication Classification

(51) Int. CL
HO4M 1/56 (2006.01)
HO4M 15/06 (2006.01)
(52) US. €l oo 379/142.1
(57) ABSTRACT

Systems and methods are described for performing digital
rights management. In one embodiment, a digital rights
management engine is provided that evaluates license asso-
ciated with protected content to determine if a requested
access or other use of the content is authorized. In some
embodiments, the licenses contain control programs that are
executable by the digital rights management engine.

108a

14

=)

108b

120

108¢c

Patent Application Publication Jul. 26, 2007 Sheet 1 of 44

102
B\

Content Policy

N

PACKAGER
109

104 <Lvl, 106

P(C) q.l L

US 2007/0172041 A1

108a

108b

APP
116

DRM
118

120

108c

Patent Application Publication Jul. 26,2007 Sheet 2 of 44 US 2007/0172041 A1

200
\ ‘ A
USER INTERFACE
NETWORK .
INTERFACE D 205
210
204 i
™ /1
SYSTEM MEMORY ﬁ
0S5 -220
I~ 212
DRM ENGINE - 232 PROCESSOR 202
VM - 222

HOST APPLICATION - 230

STATE DB - 224 SPU 203

CONTENT - 228

CRYPTO SERVICES - 226
PORT 207

LICENSES - 229 T

208

FIG. 2

FIG. 3

Patent Application Publication Jul. 26,2007 Sheet 3 of 44 US 2007/0172041 A1
300b
302 -
\ HOST APPLICATION | WEB SERVICES
304b 305b
DRM ENGINE SERVICES

303b 306b

/_308

CONTENT
310
—300¢
DRM ENGINE WEB SERVICES
303c 305a
HOST APPLICATION SERVICES
304c 306a
HOST APPLICATION | WEB SERVICES
3043 305a
DRM ENGINE SERVICES
303a 306a
. 300d
HOST APPLICATION
304d
DRM ENGINE SERVICES
303d _ 3062

Patent Application Publication Jul. 26,2007 Sheet 4 of 44 US 2007/0172041 A1

Music
SERVICE
SUBSCRIBERS
412

RIAA
APPROVED
414

CAREY
FAMILY
408

PUBLIC
LIBRARY
410

DEVICE
MANUFACTURER
416

PORTABLE
DEVICE
406

FIG. 4

Patent Application Publication Jul. 26,2007 Sheet S of 44 US 2007/0172041 A1

C START)

Y.

RECEIVE REQUEST 500

A 4

502

EVALUATE LICENSE |

T

AUTHORIZATION?

— 508 -~ 508

DENY REQUEST

GRANT REQUEST

H END Y

FIG. 5

9 "9Id

US 2007/0172041 A1

rd
/

/

/
> |
M | HSVH HSVH 434 434
s | T0YINOD ATMLINILINOD ATDILINIINOD IN3JLINOD
© | 43y 43y
= | TOHLNOD ADILNILNOD
[-P]
= I ; , ¥O193L0¥d

| “Y MITIONINOD
- |
(=]
S |
< _
&
Q |
m.. |
= |
n I v
o |
£
S " 3000 v1va
w _ 31A9 104LINOD A3 Q3LJAYNONA
£ _ 019
- \ A3 INIJLINOD
mw \ ~ 209 ™~
x \
= AN JASN3IIN
=y N o
2 2 T TT-TTTmTmTTsTTT=== T T T === -
< 009
~—
=
[=P]
~N
]
e

o ——— - — —— —

aanols = D

1N3ILINOD

Q31dAYONT

US 2007/0172041 A1

Patent Application Publication Jul. 26, 2007 Sheet 7 of 44

g/ "Old

1N3OV

s
oKL $0Z
507 a2 3ANIONI
ANIONI WHa aa Wya
9 WALSAS 9Ll Y W3LSAS
20/ _J) 002 ~/
V. '9ld
L2
= | |® _
¥oZ
INIONS
3INIONT
wxa aa ivph
g W3LSAS oM ¥ WILSAS
c0l .K 004 :\
S0/
oL ILNEDR

Patent Application Publication Jul. 26,2007 Sheet 8 of 44 US 2007/0172041 A1

CTRL1}-- 816

812

CONTENT: ID =
NS:007

!
!
02 84| CONTENT:ID= |
NS:008 |
|
1

e . o — — — . — — e o o —— — — — . — — — — — — — — o

FIG. 8

Patent Application Publication Jul. 26,2007 Sheet 9 of 44 US 2007/0172041 A1

C START)

Y

RECEIVE REQUEST

y

FIND PROTECTOR FOR EACH CONTENT ID

A 4

FIND CONTENTKEY FOR EACH CONTENT ID

T T

A 4

FIND CONTROLLER FOR CONTENTKEY(S) 906

Y

FIND CONTROL FOR CONTENTKEY(S)

Y

(e}
- .
o

EXECUTE CONTROL

RETURN RESULT
C ~ END

o
—
N

T‘ij

L

FIG.9

Patent Application Publication Jul. 26,2007 Sheet 10 of 44 US 2007/0172041 A1

(START)
LOAD BYTE CODE l’ ~ 1000

1002

SET UP RUNTIME ENVIRONMENT

EXECUTE BYTE CODE 1004

1006

RETURN RESULT
(START ’

FIG. 10

Patent Application Publication Jul. 26, 2007 Sheet 11 of 44

US 2007/0172041 A1

Play.Perform

IsNodeReachable (ul)

GetDate
CMP Date, Start_Date

Return

constraint.check

FIG. 11

Patent Application Publication Jul. 26,2007 Sheet 12 of 44 US 2007/0172041 A1

Q START)

A 4

CALL IsNodeReachable(User1) 1200
DOES APATHTO
User1 EXIST?
YES
A 4
4 1204
FOR EACH LINK
v
- EVALUATE CONTROL 1206
" PROGRAM IN LINK
1208
YES NO
veS 1210
MORE LINKS?
AN
NO
CURRENT DATE >
START DATE?
YES NO
1214 1216 ¢—|
|—+ /a _

C SUCCESS) (FAIL 31—

FIG. 12

Patent Application Publication Jul. 26,2007 Sheet 13 of 44 US 2007/0172041 A1

1300

/

USER INTERFACE

1304
A
\ 4
HOST APPLICATION
1302 \
4; 3
| MEDIA
| RENDERING
CRYPTO ENGINE
DRM HOST CONTENT SERVICES 1312
CLIENT SERVICES SERVICES 1314
ENGINE INTERFACE 1310

1308 1308

FIG. 13

Patent Application Publication

SERVICE
ACCESS

POINT
1414

Jul. 26,2007 Sheet 14 of 44 US 2007/0172041 A1

1400

USER INTERFACE

Y

1404
™ GENERAL
HOST APPLICATION CRYPTO
1402 [« SERVICES
1410
[y ’
v I
DRM HOST MEDIA CONTENT
PACKAGING SERVICES FORMAT ENCRYPTION
ENGINE INTERFACE SERVICES |*—™| SERVICES
1416 1412 1406 1408

FIG. 14

/ \T\. 1500a
NODE A

Patent Application Publication Jul. 26,2007 Sheet 15 of 44

7 \—\.‘ 1500b
NODE B
Kow [B]

US 2007/0172041 A1

?, Kp,iv[A] — 1515a Koriv {B] 1515°\— J
777777777, LIS II TS l//lllllllll/f
A KlAl L~ 15252 Ks[B] 1525c-H K[Cl [

% A, ‘IIIIIIIIIIIJ

VI IITITISIETS 277777777

1530a

ENCRYPTED LINKA-B ENCRYPTED
WITH K. [A] WITH K; [B]
OR Kpub [A] OR Kpub [B]

/ KEY CHAIN

O—

A
i v

OBTAINED FROM
PERSONALITY
NODE A

OBTAINED BY
PERSONALITY LINK
A-B

OBTAINED BY
PROCESSING
LINK B-C

\

7//)) =KEPT SECRET BY ENTITY

@ = DECRYPT WITH PRIVATE OR
SYMMETRIC KEY

FIG. 15

Patent Application Publication Jul. 26,2007 Sheet 16 of 44 US 2007/0172041 A1

1600
/.

e ™
DOMAIN MANAGER

@ 1602b

_
A A l l
LINK
T: U4
@ ;)
;”C“ 1624
1604a 1606_~~ ¥ M 1604b
N2 @ 1614 1620 | 1610 e
DRM .
LINK
1616\/— T "
F: D1
Q
/ 1608 1612
1618 ——

1619 ~™N ¢ (Kur, CK)

N

FIG. 16

Patent Application Publication Jul. 26, 2007 Sheet 17 of 44

PC1

US 2007/0172041 A1
1706
r
SERVER
1710
\ y

LINK

;5 géz PASSWORD |~ 1712

KEY INFO :

CTRL PROC

e 1704
y ~\
PC2
1714
~
CONTENT /1702
——
EKnCK) | 1708 | > a
\J\
DRM ENGINE 17163 1716b\
DB

LINKA LINK2
T U2 T. DOM2
F.oomz | | Fipc2

FIG. 17

Patent Application Publication Jul. 26,2007 Sheet 18 of 44 US 2007/0172041 A1

/ 1800

REGISTRATION - DIRECTORY SERVER POLICY
SERVICE -~ o 1806 [« i P SERVICE
A812 g Ea— 1816
5 :
M]
[(]
M]
[)
................. NP R RRIRT
E SERVICE ORCHESTRATION LAYER - 1810 H
................. Y
v 4
DRM PLUGIN
1808

' A

[} []

[] »

. .

[} []

' .

] []

[] 1)

) 1

A4 A4

EDITING EMAIL
APP CLIENT
1802 ' 1804

FIG. 18

FIG. 19

Patent Application Publication Jul. 26,2007 Sheet 19 of 44 US 2007/0172041 A1
DIRECTORY POLICY
SERVER P > SERVICE
1906 1916
s ¥ é
Lsr OFIGROUPS 4‘/® REQUEST POLICY :
FOR “SPECIAL
To fp'{"gh?SE 191 PROJEGT TEAM
? POLICY |
: s
[] []
1908 H H
SN A4 ¥
' DRM PLUGIN () 1icense accorons To
POLICY
1913 T . 1920
b “SAVEWITH §
PERMISSIONS® ¢ ATTAGH AND SEND
E ~ 1912
9
L PROTECTEOL oo cceceeml Leeeono..
EDITING > FILE > EMAIL PRO;I'“E-(E:TED
APP CLIENT
1902 oo 1904
1902 1910~ _ucense - nggr?se

Patent Application Publication Jul. 26,2007 Sheet 20 of 44 US 2007/0172041 A1

2010
é CHECK CURRENT AD GROUP
MEMBERSHIPS FOR THE USER

RE(;IES;\%EON €-----=-4 ACTIVE DIRECTORY
2002 > 2004
2012 ; ry
OBJECT THAT
Q) sz oa
MEMBERSHIF IN SPECIAL _
PROJECT TEAM
2006

REGULARLY-CHECK REGISTRATION
SERVICE FOR NEW OR REFRESHED LINKS

|
|
|
2014 \) v

DRM PLUGIN
2000

FIG. 20

US 2007/0172041 A1

Jul. 26,2007 Sheet 21 of 44

Patent Application Publication

3SNION
aNY

ELE!
g319310¥d

X

vore
IN3MD
ey | VNS
INIWHOVLLY Q310310ud

HLIM TIVIAS 3A1I303d

AL

S—
3SN30N
aNv

N4
g319310ud

otLe
& INTWHDVLLY
N3dO

<0l
ddv
ONILIa3

v\mm_‘m

PR —— -

801l¢

NIONTd WHA

123ro¥d vID3dS. Sl ‘STOHLINOD

¢319YHOVYIY JAON JNWY3IL

ISNIVIT SILNDIAXTA NIONTd Waa

v(vmrw

NOLLYOllddvY OL 3714

3SVYITIH OL %O "SHMNIT 40

NIVHD QIMVA SYH 30IA30

=Talo]]
301A30,

0cie

<4— 0L SONO138

«39d039.

[44%4

feed
m
o
Z
G)
&
5

VAL
103rodd
WIO3AdS.

Patent Application Publication Jul. 26,2007 Sheet 22 of 44 US 2007/0172041 A1

2200 .
\ POLICY
LDAP — " > SERVICE
2206 2216
1]
13
: t
REQUEST “SPECIAL
ORI

POLICY

2208

~ v

C I) PACKAGE AND CREATE

DRM PLUGIN LICENSE ACCORDING TO
POLICY
L]
1]
.
T H
“ SEND
@ R ®
[]
2203 I : =Y
[]
[N IS
EDITING - EMAIL > rerome| [P
APP }--ee-- eee)|PROTECTEDY _ ____ eeesp-| CLIENT
2202 2204 AND AND
LICENSE LICENSE
@ ATTACH

FIG. 22

Patent Application Publication Jul. 26,2007 Sheet 23 of 44 US 2007/0172041 A1

MEDICAL
CARDIOLOGIST @ FOUNDATION Z
APPROVED APPROVED
DOCTOR X > @ ICs |

O 0

INSURANCE
COMPANY W

Patent Application Publication Jul. 26,2007 Sheet 24 of 44 US 2007/0172041 A1

SUBSCRIPTION

SUBSCRIPTION O\' 2404

422
242 2410 2400

2424 2402 SUBSCRIPTION
2420 ALICE@123_MSP ALICE@XYZ_ISP O

f

% ALICEQABC_CSP

FIG: 24

Patent Application Publication Jul. 26,2007 Sheet 25 of 44 US 2007/0172041 A1

CSP_ACCOUNT

2502 fO

2500
SMITH
FAMILY
DOMAIN
ALICE’S PC
CARL'S PVYR

ALICE’S PHONE

JOE'S PSP

FIG. 25

Patent Application Publication Jul. 26,2007 Sheet 26 of 44 US 2007/0172041 A1

| hostApp I | holeonl:)dI

new() "
>[5 FIG. 26
€
createSassion(hostContext) > J_ new(hastContext)
_——)| session |
L getFil)
- <+
secureFileSystem | ———— At the initialization of the session, the file
system will be accessed in order to deal with
readiwrite operation in secure storage.
S
7
processObject(dmObject0) N
- - »
< veritySigrptura(signalurainfo) drmObjectd can be a control. f it is the case,
I I o the signature of the control has to be verified
» using a caliback with ihe hostContext.
&
N
processCbject(dmmObject1} - I
P ’LI I drmQbject1 can be the encrypted content Key.
<
pracessObject{dmObject2) o
>
veritySignture{signatureinfo)
<
e X
T > createDigefter(drmObject1)
. % drmObject2 can be a controller. This one must
- _, newfdmObject1) . be signed and its signature verified and the
digester |4 hash of the encrypted content key has to be
- checked.
>
I P hostContext getDigesgr().getDigest(}
I I 5
J’ ”
Fal
processObject(drmObject3) o
, 'l I | drmObject3 can be the protector of the key. I
~ processObject{dmObject4) N
'l l I drmObject4 can be the content. I
openContent{contentRef} o
» [contert contentRef is the 1D of the
[l drmObjectd.
€ Optional call. Can be used to get
control meta data in order to get
etDRMinfol
SOOIl g “human " info on what
& I I the control means.
~
createAdion(‘PLAY™) » *PLAY")
<
<
chebkl)
L content.getSession().getHostContext().getCurgentTime ()
When the action is checked, it <
may verify date and counter. I I R
The answer to this will be a 3
result coda that the hostApp content. ion(). { }.g8tCi
can handle. I <
| N
rd
Z
N pertolm ()
: —>
When the action is performed, the conteht \
cansequences are enforced. Here < -
for example, the counter of the rl «
number of time you can play the ‘)
content is decremented.

Patent Application Publication Jul. 26,2007 Sheet 27 of 44 US 2007/0172041 A1

I hostApp I | hasiComexlI
newd ;I engine I

createSession(hostContext)
new(hostContext)

}

<N

>
»

] new()

securef

At the initialization of the session, the
file system will be accessed in order
to deal with nodes and their keys in
arder to encrypt the content key.

—___‘}l content I

D)

W

N

The content objecl is
created with one or
more content
references
representing the
number of tracks (i.e.,
the number of keys) to

createContent{cdntentRets]])

A 4

setDRMInfo{drminfo)

A 4

A

The node representing the
user to whom the content
).getHostContaxt() 0 will be bind ta is accessed
in arder to get its secret
key.

v

A

—]
A
N

getSession(}.getHostContgxt().createCipher(}) A content key is created
using the Random
Number generator
implemented by the hast.

new()

The content key will be
encrypted with the node's
secret key.

A

A

Y.
I_ ¢ @s ssion(). getHostContext(). i Data)
L getSession().getHgstCantext().createDigesten) cpntml objects must be
< signed.

update{contantke}) controller objects must

- camy a hash of the content
- = key and must be signed
getDigest) as well,

new{}
l digester ;1

R

L. . getHostContext(). it Data)
I
N
—2
"
<
getDRMObjects()
¢ |
~ getContemKeys(corftentRefs() . I
P 1
—N

FIG. 27

v8z 'Ol

US 2007/0172041 A1

/ . /r

‘ ONIONIE _ ONIONIg
(4371081NOD)S J0MLNOD 434

43y \

43y 434
TOYLINOD AGMINILNOD

JON3Y3IITY
JITOHULINOD

_ , mm.:oEzoo/\ ¥019310¥d

FUNLYNDIS Md

(218 Hd)S

(Y3110YLINOD)S

Jul. 26,2007 Sheet 28 of 44

JON3H343Y
FANLYNOIS IHNd

viva

3002

J1Ad TOUINOD

AN Q3LdAYONT

JONIY343y
HITIOULINOD

TOULNOD ~ A3¥ 1IN3INOD

ASN3JN

Patent Application Publication

N

1NIINOD

Q31dAYON3

IN3LNOD

Patent Application Publication Jul. 26,2007 Sheet 29 of 44 US 2007/0172041 A1

ATTRIBUTES I ATTRIBUTES
(NODE TYPE, ETC. $ (NODE TYPE, ETC.)

AR IR AN EIEE NN NN N

\SYMMETRIC SHARING KE YSYMMETRIC SHARING KE
[optional] : [optional]

PRIVATE SHARING KE
[optional]

PUBLIC SHARING KEY
[optional]

Lttt Lttt

{ CONTROL [optional]]

;5: NI ENERE

KEY DERIVATION INFO
[optional]

= SIGNED

\\\ = CONFIDENTIAL FIG. 28B
GIHD = CERTIFIED

US 2007/0172041 A1

Patent Application Publication Jul. 26, 2007 Sheet 30 of 44

)

S30INY3S
1SOH

j

_ ﬁ AHOWIW
"z N \
¥062 sl sTVo || _ 0162
> INIWNOMIANT | | W3LSAS 906¢ ga 31v1s
1SOH 31NAOW 3a0D
WA)
N J Z062- WA
_ x y. VAN J

o

06¢ - ANIONT WAHQ

P/

A

\ 4

06¢ - NOILYOIddY 1SOH

Patent Application Publication Jul. 26,2007 Sheet 31 of 44

3002~ pkCM

3004 —" pkDS

3005 147

Data Segment Image

3006 —

pkCS

3007 17

Code Segment Image

3008 {9

pkEX

3009 A"

Number of Entries [N (32 bits)]
Each Entry:
[nameSize (8 bits)

[nameSize (nameSize * 8 bits)])
- [offset (32 bits)]

3010 —1

pkRQ

vmVersion (32 bits)
minDataMemory (32 bits)
minCallStack (32 bits)
flags (32 bits)

US 2007/0172041 A1

? 3000

FIG. 30

Patent Application Publication Jul. 26, 2007 Sheet 32 of 44
3112

3114 3116
/ .
4 h]

H DS, DS,

FIG. 31A
3120

3122 3124
{/ .
{ h]

H CSo CS;

FIG. 31B

3122 3130 3132
[(—
f Y

0 0 Co C1

FIG. 31C

US 2007/0172041 A1

Patent Application Publication Jul. 26, 2007 Sheet 33 of 44 US 2007/0172041 A1

3160

/

3162 3164 2168
{/ (A \ s *)
s Co | C | cs2] 0 o | o | oa | ©Os
3106
FIG. 31D
3170
8172 3174
/ s 8 \
5 M A | N 0 0 0 0 64

FIG. 31E

Patent Application Publication Jul. 26,2007 Sheet 34 of 44 US 2007/0172041 A1

{/,,— 3200

SOURCE SINK
3212 ' 3210
< REQUEST
N 3202
RESPONSE >
3204

CONFIRMATION
3206

A

FIG. 32

Patent Application Publication Jul. 26, 2007 Sheet 35 of 44 US 2007/0172041 A1

SOURCE SINK
3312 \ 3310
_ SETUP
- 3302
AL EE LA I A e A A d At Rl R it il i bbbl bbbl el Bttt did]
1 L]
L] . :
; RUNAGENT > :
i 3304 !
: CAN HAVE :
E ' 0+ OF THESE E
1 L
! _ AGENTRESULT :
: = 3306 :
: :
L] 1]
L el cccccccaccacccccccoccccccncccneccosecannencaserererssehossssncanccasncas
TEARDOWN =
3308 >

FIG. 33

Patent Application Publication Jul. 26, 2007 Sheet 36 of 44 US 2007/0172041 A1

3404
~ Ve 3406

L CONTENTKEY 1] [CONTROL]

3405\‘6@ CONTROLLER %3402

pd

@ b\3408
PKI

’ MAC (CK1)
3410

FIG. 34

Patent Application Publication Jul. 26, 2007 Sheet 37 of 44 US 2007/0172041 A1

CONTENTKEY 2]

CONTENTKEY 1 [CONTROL]

[@%NTROLLER &]

cpg/J<A }b

MAC (CK1)

o
@ vac ck2)

FIG. 35

Patent Application Publication Jul. 26, 2007 Sheet 38 of 44

3602

Setup Request E(PubB, {Q,S})

US 2007/0172041 A1

3606

3604

Setup Response

<€

- 3608

3610

d0oo1
LNIWIHNSVIN .

114

FIG. 36

Patent Application Publication Jul. 26, 2007 Sheet 39 of 44 US 2007/0172041 A1

3708
[W

- ~—

-~ - =~ ~
~ ~
7 ~N
Vd AN
/7 N\
7/ N\
/ \
/. DEVICE 1 \
/ 3704 \

/ \
/ \
I \
| (" |
!
| PVR
\ 3702 I
\ /

\ /

\ /
\ /
\ /
. /
\ /
N /7
~ 7
~ 7
~ -~ <
S -
DEVICE 2

3706

FIG. 37

Patent Application Publication Jul. 26,2007 Sheet 40 of 44 US 2007/0172041 A1
3800
CONTENT 3804
3806 RENDERING o
CLIENT > DRM LICENSE
3802 SERVICE

A

FIG.

38

\

Patent Application Publication Jul. 26,2007 Sheet 41 of 44

3800

CONTENT
RENDERING
CLIENT

v

AUTHORIZATION

N

}

g

\\

AUTHENTICATION

'

MESSAGE SECURITY

N

r 3900 3900 <

US 2007/0172041 A1

DRM LICENSE
SERVICE

~\
AUTHORIZATION
\Q

1

r)
AUTHENTICATION

\

A

7~
MESSAGE

~
SECURITY

ﬂ\

UNSECURED COMMUNICATIONS CHANNEL

FIG. 39

Patent Application Publication Jul. 26,2007 Sheet 42 of 44 US 2007/0172041 A1

CLIENT
SERVICE SERVICE

~
AUTHORIZATION
\
AUTHENTICATION ASSERTION
CACHE
KEYSTORE
N
MESSAGE SECURITY

\§ ‘ =X J
v

‘UNSECURED COMMUNICATIONS CHANNEL

FIG. 40

Patent Application Publication Jul. 26,2007 Sheet 43 of 44 US 2007/0172041 A1

CLIENT SERVER

BootstrapRequestMessage

v

A

ChallengeRequestMessage

ChallengeResponseMessage

A 4

BootstrapRequestMessage

FIG. 41

Patent Application Publication Jul. 26,2007 Sheet 44 of 44 US 2007/0172041 A1

<xml> | cidn p———Pp <xmi>’

OCTOPUS

XML b <X[1)[>" -] 14N =P <xml>"

FIG. 42

US 2007/0172041 Al

DIGITAL RIGHTS MANAGEMENT ENGINE
SYSTEMS AND METHODS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 60/728,089, filed Oct. 18, 2005, U.S.
Provisional Application No. 60/772,024, filed Feb. 9, 2006,
U.S. Provisional Application No. 60/744,574, filed Apr. 10,
2006, U.S. Provisional Application No. 60/791,179, filed
Apr. 10, 2006, U.S. Provisional Application No. 60/746,712,
filed May 8, 2006, U.S. Provisional Application No. 60/798,
925, filed May 8, 2006, and U.S. Provisional Application
No. 60/835,061, filed Aug. 1, 2006. U.S. Provisional Appli-
cation Nos. 60/728,089, 60/772,024, 60/744,574, 60/791,
179, 60/746,712, 60/798,925, and 60/835,061 are incorpo-
rated herein by reference in their entirety for any purpose.

COPYRIGHT AUTHORIZATION

[0002] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND AND SUMMARY

[0003] In modern computing systems, it is often desirable
to limit access to electronic content, services, and/or pro-
cessing resources, and/or to allow only certain entities to
perform certain actions. A variety of techniques have been
developed or proposed to enable such control. These tech-
niques are often referred to as digital rights management
(DRM) techniques because, in general terms, their goal is to
manage the rights of various entities in digital or other
electronic content, services, or resources. A problem with
many prior art techniques is that they are overly complex,
overly restrictive, relatively inflexible, fail to enable certain
natural types of relationships and processes, and/or are
uninteroperable with other DRM systems.

[0004] Systems and methods are described herein that can
be used to ameliorate some or all of these problems. It
should be appreciated that embodiments of the presently
described inventive body of work can be implemented in
numerous ways, including as processes, apparatuses, sys-
tems, devices, methods, computer readable media, and/or as
a combination thereof. Several illustrative embodiments are
described below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The inventive body of work will be readily under-
stood by referring to the following detailed description in
conjunction with the accompanying drawings, in which:

[0006] FIG. 1 shows an illustrative system for managing
the use of electronic content.

[0007] FIG. 2 shows a more detailed example of a system
that could be used to practice embodiments of the inventive
body of work.

[0008] FIG. 3 shows how an illustrative digital rights
management (DRM) engine might function in a network that
uses DRM.

Jul. 26, 2007

[0009] FIG. 4 shows a collection of nodes and links used
to model the relationships in a DRM system.

[0010] FIG. 5 is a flowchart illustrating how an embodi-
ment of a DRM engine might determine whether a requested
action is authorized.

[0011] FIG. 6 shows an example of a DRM license in
accordance with one embodiment of the inventive body of
work.

[0012] FIGS. 7A and 7B illustrate the use of agents in one
embodiment.

[0013] FIG. 8 shows an example of a DRM license.

[0014] FIG. 9 is a more detailed example of how a DRM
engine might determine whether a requested action is autho-
rized.

[0015] FIG. 10 is a more detailed example of how a DRM
engine executes a control program in one embodiment
object.

[0016] FIG. 11 shows an illustrative embodiment DRM
engine running on a device.

[0017] FIG. 12 is a flowchart illustrating the steps
involved in executing a control program in one embodiment.

[0018] FIG. 13 shows the elements that make up a content
consuming client application in one embodiment.

[0019] FIG. 14 shows the elements that make up a content
packaging application in one embodiment.

[0020] FIG. 15 shows a key derivation mechanism in
accordance with one embodiment.

[0021] FIG. 16 shows an example of a DRM system.

[0022] FIG. 17 shows an example of a DRM system that
provides for temporary login.

[0023] FIG. 18 shows the high-level architecture of an
illustrative system for managing enterprise documents.

[0024] FIG. 19 shows an example of a how a system such
as that shown in FIG. 18 can be used to manage access to or
other use of a document.

[0025] FIG. 20 shows an additional example of a how a
system such as that shown in FIG. 18 can be used to manage
access to or other use of a document.

[0026] FIG. 21 shows additional features of the example
shown in FIG. 20.

[0027] FIG. 22 shows another illustrative system for man-
aging electronic content within an enterprise.

[0028] FIG. 23 illustrates how the systems and methods
described herein could be applied to manage healthcare
records.

[0029] FIG. 24 is an illustration of how the systems and
methods presented herein could be used in a context of an
electronic subscription service.

[0030] FIG. 25 is an illustration of how the systems and
methods described herein could be used in a context of a
home network domain.

US 2007/0172041 Al

[0031] FIG. 26 illustrates the interactions that take place
between a host application and a DRM client engine in one
example embodiment.

[0032] FIG. 27 illustrates the interactions that take place
between a host application and a packaging engine in one
illustrative embodiment.

[0033] FIG. 28A is a more detailed illustration of a license
in accordance with one embodiment.

[0034] FIG. 28B illustrates the relationship between links
and nodes in one example embodiment.

[0035] FIG. 29 illustrates the operating environment of an
illustrative implementation of a virtual machine.

[0036] FIG. 30 illustrates an extended status block data
structure in accordance with one embodiment.

[0037] FIG.31A shows a memory image of a data segment
in one embodiment.

[0038] FIG. 31B shows an example of the memory image
of a code segment in one embodiment.

[0039] FIG. 31C shows an example of an export entry
memory image in one embodiment.

[0040] FIG. 31D shows a generic example of an export
table entry in one embodiment.

[0041] FIG. 31E shows an example of an export table
entry for an example entry point.

[0042] FIG. 32 shows an example of a license transfer
protocol.

[0043] FIG. 33 shows another example of a license trans-
fer protocol in accordance with one embodiment.

[0044] FIG. 34 shows a mechanism for protecting the
integrity of license objects in one embodiment.

[0045] FIG. 35 shows a mechanism for protecting the
integrity of license objects in another embodiment.

[0046] FIG. 36 illustrates a proximity checking protocol in
accordance with one embodiment.

[0047] FIG. 37 illustrates the use of a proximity check
protocol in accordance with one embodiment.

[0048] FIG. 38 illustrates an interaction between a client
and a license server in one embodiment.

[0049] FIG. 39 is more detailed illustration of an interac-
tion between a client and a license server in one embodi-
ment.

[0050] FIG. 40 shows an example of an entity with mul-
tiple roles.

[0051] FIG. 41 illustrates a bootstrap protocol in accor-
dance with one embodiment.

[0052] FIG. 42 shows the relationship between cl4n-ex
and an illustrative XML canonicalization in one embodi-
ment.

DETAILED DESCRIPTION

[0053] A detailed description of the inventive body of
work is provided below. While several embodiments are
described, it should be understood that the inventive body of

Jul. 26, 2007

work is not limited to any one embodiment, but instead
encompasses numerous alternatives, modifications, and
equivalents. In addition, while numerous specific details are
set forth in the following description in order to provide a
thorough understanding of the inventive body of work, some
embodiments can be practiced without some or all of these
details. Moreover, for the purpose of clarity, certain techni-
cal material that is known in the related art has not been
described in detail in order to avoid unnecessarily obscuring
the inventive body work.

[0054] Commonly-assigned U.S. patent application Ser.
No. 10/863,551, Pub. No. 2005/0027871 Al (“the ’551
application”), which is hereby incorporated by reference,
describes embodiments of a digital rights management
(DRM) architecture and a novel DRM engine that overcome
some of the weaknesses that characterize many previous
DRM implementations. The present application describes
enhancements, extensions, and modifications to, as well as
alternative embodiments of, the architecture and DRM
engine described in the *551 application, as well as new
components, architectures, and embodiments. It will thus be
appreciated that the material described herein can be used in
the context of an architecture and/or DRM engine such as
that described in the *551 application, as well as in other
contexts.

1. Example DRM System

[0055] FIG. 1 shows an illustrative system 100 for man-
aging electronic content. As shown in FIG. 1, an entity 102
holding rights in electronic content 103, packages the con-
tent for distribution and consumption by end users 108a-¢
(referred to collectively as “end users 108,” where reference
numeral 108 refers interchangeably to the end user or the
end user’s computing system, as will be clear from the
context). For example, entity 102 may comprise a content
owner, creator, or provider, such as a musician, movie
studio, publishing house, software company, author, mobile
service provider, Internet content download or subscription
service, cable or satellite television provider, the employee
of a corporation, or the like, or an entity acting on behalf
thereof, and content 103 may comprise any electronic con-
tent, such as digital video, audio, or textual content, a movie,
a song, a video game, a piece of software, an email message,
a text message, a word processing document, a report, or any
other entertainment, enterprise, or other content.

[0056] In the example shown in FIG. 1, entity 102 uses a
packaging engine 109 to associate a license 106 with the
packaged content 104. License 106 is based on the policies
105 or other wishes of entity 102, and specifies permitted
and/or prohibited uses of the content and/or one or more
conditions that must be satisfied in order to make use of the
content, or that must be satisfied as a condition or conse-
quence of use. The content may also be secured by one or
more cryptographic mechanisms such as encryption or digi-
tal signature techniques, for which a trust authority 110 may
be used to obtain the appropriate cryptographic keys, cer-
tificates, and/or the like.

[0057] As shown in FIG. 1, packaged content 104 and
licenses 106 can be provided to end users 108 by any
suitable means, such as via a network 112 like the Internet,
a local area network 103, a wireless network, a virtual
private network 107, a wide area network, and/or the like,
via cable, satellite, broadcast, or cellular communication

US 2007/0172041 Al

114, and/or via recordable media 116 such as a compact disc
(CD), digital versatile disk (DVD), a flash memory card
(e.g., an Secure Digital (SD) card), and/or the like. Packaged
content 104 can be delivered to the user together with license
106 in a single package or transmission 113, or in separate
packages or transmissions received from the same or dif-
ferent sources.

[0058] The end user’s system (e.g., a personal computer
108¢, a mobile telephone 1084, a television and/or television
set-top box 108¢, a portable audio and/or video player, an
eBook reader, and/or the like) contains application software
116, hardware, and/or special-purpose logic that is operable
to retrieve and render the content. The user’s system also
includes software and/or hardware, referred to herein as a
digital rights management engine 118, for evaluating the
license 106 associated with the packaged content 104 and
enforcing the terms thereof (and/or enabling application 116
to enforce such terms), such as by selectively granting the
user access to the content only if permitted by the license
106. Digital rights management engine 118 may be struc-
turally or functionally integrated with application 116, or
may comprise a separate piece of software and/or hardware.
Alternatively, or in addition, a user’s system, such as system
108¢c, may communicate with a remote system, such as
system 1085, (e.g., a server, another device in the user’s
network of devices, such as a personal computer or televi-
sion set-top box, and/or the like) that uses a digital rights
management engine to make a determination 120 as to
whether to grant the user access to content previously
obtained or requested by the user.

[0059] The digital rights management engine, and/or other
software on the user’s system, or in remote communication
therewith, may also record information regarding the user’s
access to or other use of the protected content. In some
embodiments, some or all of this information might be
communicated to a remote party (e.g., a clearinghouse 122,
the content creator, owner, or provider 102, the user’s
manager, an entity acting on behalf thereof, and/or the like),
e.g., for use in allocating revenue (such as royalties, adver-
tisement-based revenue, etc.), determining user preferences,
enforcing system policies (e.g., monitoring how and when
confidential information is used), and/or the like. It will be
appreciated that while FIG. 1 shows an illustrative DRM
architecture and a set of illustrative relationships, the sys-
tems and methods described herein can be practiced in any
suitable context, and thus it will be appreciated that FIG. 1
is provided for purposes of illustration and explanation, not
for purposes of limitation.

[0060] FIG. 2 shows a more detailed example of a system
200 that could be used to practice embodiments of the
inventive body of work. For example, system 200 might
comprise an embodiment of an end user’s device 108, a
content provider’s device 109, and/or the like. For example,
system 200 may comprise a general-purpose computing
device such as a personal computer 108¢ or network server
105, or a specialized computing device such as a cellular
telephone 108a, personal digital assistant, portable audio or
video player, television set-top box, kiosk, gaming system,
or the like. System 200 will typically include a processor
202, memory 204, a user interface 206, a port 207 for
accepting removable memory 208, a network interface 210,
and one or more buses 212 for connecting the aforemen-
tioned elements. The operation of system 200 will typically

Jul. 26, 2007

be controlled by processor 202 operating under the guidance
of programs stored in memory 204. Memory 204 will
generally include both high-speed random-access memory
(RAM) and non-volatile memory such as a magnetic disk
and/or flash EEPROM. Some portions of memory 204 may
be restricted, such that they cannot be read from or written
to by other components of the system 200. Port 207 may
comprise a disk drive or memory slot for accepting com-
puter-readable media 208 such as floppy diskettes, CD-
ROMs, DVDs, memory cards, SD cards, other magnetic or
optical media, and/or the like. Network interface 210 is
typically operable to provide a connection between system
200 and other computing devices (and/or networks of com-
puting devices) via a network 220 such as the Internet or an
intranet (e.g., a LAN, WAN, VPN, etc.), and may employ
one or more communications technologies to physically
make such connection (e.g., wireless, Ethernet, and/or the
like). In some embodiments, system 200 might also include
a processing unit 203 that is protected from tampering by a
user of system 200 or other entities. Such a secure process-
ing unit can help enhance the security of sensitive operations
such as key management, signature verification, and other
aspects of the digital rights management process.

[0061] As shown in FIG. 2, memory 204 of computing
device 200 may include a variety of programs or modules for
controlling the operation of computing device 200. For
example, memory 204 will typically include an operating
system 220 for managing the execution of applications,
peripherals, and the like; a host application 230 for rendering
protected electronic content; and a DRM engine 232 for
implementing some or all of the rights management func-
tionality described herein. As described elsewhere herein,
DRM engine 232 may comprise, interoperate with, and/or
control a variety of other modules, such as a virtual machine
222 for executing control programs, and a state database 224
for storing state information for use by virtual machine 222,
and/or one or more cryptographic modules 226 for perform-
ing cryptographic operations such as encrypting and/or
decrypting content, computing hash functions and message
authentication codes, evaluating digital signatures, and/or
the like. Memory 204 will also typically include protected
content 228 and associated licenses 229, as well as crypto-
graphic keys, certificates, and the like (not shown).

[0062] One of ordinary skill in the art will appreciate that
the systems and methods described herein can be practiced
with computing devices similar or identical to that illustrated
in FIG. 2, or with virtually any other suitable computing
device, including computing devices that do not possess
some of the components shown in FIG. 2 and/or computing
devices that possess other components that are not shown.
Thus it should be appreciated that FIG. 2 is provided for
purposes of illustration and not limitation.

[0063] A digital rights management engine and related
systems and methods are described herein that can be used
to provide some or all of the rights management function-
ality of systems such as those shown in FIGS. 1 and 2, or in
other types of systems. In addition, a variety of other
systems and methods are described below that could be used
in the context of systems such as those shown in FIGS. 1 and
2, as well as in other contexts, including contexts unrelated
to digital rights management.

US 2007/0172041 Al

2. DRM Engine Architecture

[0064] In one embodiment a relatively simple, open, and
flexible digital rights management (DRM) engine is used to
implement core DRM functions. In a preferred embodiment,
this DRM engine is designed to integrate relatively easily
into a web services environment such as that described in the
’551 application, and into virtually any host environment or
software architecture. In a preferred embodiment, the DRM
engine is independent of particular media formats and
cryptographic protocols, allowing designers the flexibility to
use standardized or proprietary technologies as required by
the particular situation. The governance model used by
preferred embodiments of the DRM engine is simple, but
can be used to express sophisticated relationships and busi-
ness models.

[0065] Some of the illustrative embodiments of a DRM
engine that are described below relate to an example imple-
mentation referred to as “Octopus”; however, it will be
appreciated that the present inventions are not limited to the
specific details of the Octopus example, which are provided
for purposes of illustration, not limitation.

[0066]

[0067] FIG. 3 shows how an illustrative DRM engine
303a might function in a system 302 that uses DRM. As
shown in FIG. 3, in one embodiment DRM engine 303a is
embedded or integrated within a host application 3044 (e.g.,
a content rendering application such as an audio and/or
video player, a text-rendering application such as an email
program, word processor, eBook reader, or document reader,
and/or the like) or is in communication therewith. In one
embodiment, DRM engine 303a performs DRM functions
and relies on host application 304a for services such as
encryption, decryption, file management, and/or other func-
tions can be more effectively provided by the host. For
example, in a preferred embodiment DRM engine 303q is
operable to manipulate the DRM objects 305 which com-
prise a license 306 to protected content 308. In some
embodiments, DRM engine 303a¢ may also delivers keys to
host application 304a. As shown in FIG. 3, either or both of
DRM engine 303a and host application 304a may make use
of web services 305a and/or host services 306a for process-
ing and/or information needed to complete their respective
tasks. The ’551 application provides examples of such
services, and the manner in which a DRM engine 303¢ and
host application 304a might interoperate therewith.

[0068] In the example shown in FIG. 3, DRM engine
303a, host application 304a, host services 306a, and web
services interface 3054 are loaded onto a device 300a, such
as an end user’s personal computer (PC). Device 300q is
communicatively coupled to a server 3005, from which
content 308 and license 306 were obtained, as well as a
portable device 3004, to which device 300a may forward
content 308 and/or license 306. Each of these other devices
may include a DRM engine 303 that is similar or identical
to DRM engine 300a, which can be integrated with the
particular host application and host environment of the
device. For example, server 3005 might include a host
application 3044 that performs bulk packaging of content
and/or licenses, and makes use of a DRM engine 3004 to
evaluate controls associated with the content that is being
packaged in order to comply with any redistribution restric-
tions. Similarly, device 300¢ might include a host applica-

1.1. Overview

Jul. 26, 2007

tion 304c¢ that is capable of both rendering and packaging
content, while device 3004 might include a host application
that is simply able to render content. As yet another example
of the potential diversity of host environments, device 3004
might not include a web services interface, but may instead
rely on communication with device 300a, and web services
interface 305qa to the extent host application 3044 and/or
DRM engine 303d require the use of any web services. FIG.
3 is only one example of a system in which a DRM engine
might be used; it will be appreciated that embodiments of the
DRM engines described herein can be implemented and
integrated with applications and systems in many different
ways, and are not limited to the illustrative examples shown
in FIG. 3.

[0069] 1.2. Objects

[0070] In preferred embodiments, content protection and
governance objects are used to represent entities in a system,
to protect content, to associate usage rules with the content,
and to determine if access can be granted when requested.

[0071] As described in more detail below, in one embodi-
ment, the following objects are used:

Object Type Function

Node Represents entities

Link Represents a directed relationship between
entities

Content Represents content (e.g., media content)

ContentKey Represents encryption keys used to encrypt
content

Control Represents usage rules that govern interaction
with content

Controller Represents associations between Control and
ContentKey objects

Protector Represents associations between Content and
ContentKey objects

[0072] 1.2.1. Node Objects

[0073] Node objects are used to represent entities in the
system. In practice, a node will usually represent a user, a
device, or a group. Node objects will also typically have
associated attributes that represent certain properties of the
entity associated with the node.

[0074] Forexample, FIG. 4 shows two users (Xan 400 and
Knox 402), two devices (PC 404 and portable device 406),
and several entities that represent groups (e.g., members of
the Carey family 408, members of the public library 410,
subscribers to a particular music service 412, RIAA-ap-
proved devices 414, and devices manufactured by a specific
company 416), each having an associated node object.

[0075] Inone embodiment node objects include attributes
that define what the node represents. One example of an
attribute is a node type. Besides representing users, groups,
or devices, the node type attribute could be used to represent
other entities. In some embodiments, a node object can also
include cryptographic key information, such as when an
embodiment of the key derivation and distribution tech-
niques described elsewhere herein is used.

[0076] In some embodiments, node objects also include a
confidentiality asymmetric key pair that is used for targeting
confidential information to the subsystems that have access

US 2007/0172041 Al

to the confidential parts of the node object. This could be the
entity that the node represents (for example, the Music
Service 412) or some entity responsible for managing the
node (for example, the end user (e.g., Knox 402) could be
responsible for managing his or her portable device 406).

[0077] 1.2.2. Link Objects

[0078] In a preferred embodiment, link objects are signed
objects used to show the relationship between two nodes.
For example, in FIG. 4 the link 418 from the PC node 404
to Knox 402 shows ownership. The link from Knox 402 to
the Carey family node 408 shows membership, as does the
link from the Carey family node 408 to the Music Service
Subscribers node 412. In one embodiment, link objects
express the relationship between two nodes, and thus the
relationships shown in FIG. 4 could be represented using ten
links.

[0079] As shown in FIG. 4, a graph 420 can be used to
express the relationship between nodes, where link objects
are the directed edges between nodes. For example, in FIG.
4, the relationship between the Carey family node 408 and
the Music Service node 412 asserts that there exists a
directed edge 422 in the graph whose vertices are the Carey
family node 408 and the Music Service node 412. Knox 402
and Xan 400 are members of the Carey family 408. Because
Knox 402 is linked to the Carey family 408 and the Carey
family 408 is linked to the Music Service 412 there is said
to be a path between Knox 402 and the Music Service 412.
A DRM engine considers a node to be reachable from
another node when there is a path from that node to the other
node. This allows a control to be written that allows per-
mission to access protected content based on the condition
that a node is reachable from the device where the applica-
tion that requests access to the protected content is execut-
ing.

[0080] As described in more detail below, link objects can
also optionally contain some cryptographic data that allows
derivation of content keys. Link objects may also contain
control programs that define the conditions under which the
link may be deemed to be valid. Such control programs can
be executed or interpreted (these terms are used interchange-
ably herein) by a DRM engine’s virtual machine to evaluate
the validity of a link (e.g., to determine whether the link may
be used to reach a given node in an authorization graph).

[0081] In one embodiment, links are signed. Any suitable
digital signature mechanism can be used, and in one embodi-
ment the DRM engine does not define how the link objects
are signed and does not evaluate any associated certificates,
instead, it relies on the host system to verify any such
signatures and/or certificates. This allows the system archi-
tect or administrator to define the lifetime of a link object,
to revoke it, and so on (e.g., by using expiring keys or
certificates, revocation, and/or the like), thus providing an
additional layer of policy management and security on top of
the policy management and security provided by the DRM
engine’s evaluation of control programs and DRM objects in
the context of specific pieces of protected content and/or
links (for example, expiration of a link could alternatively,
or in addition, be implemented by including an appropriate
control program in the link object itself, which, when
executed would enforce the expiration date or other validity
period). In one embodiment, the DRM engine is generic, and
works with any suitable encryption, digital signature, revo-

Jul. 26, 2007

cation, and/or other security scheme that is used by the host
application and/or environment. Thus, for example, if the
DRM engine needs to determine if a particular link has been
properly signed, it might simply call the host application
(and/or a host or system cryptographic service) to verify the
signature in accordance with the particular signature scheme
chosen by the system designer, the details of which the DRM
engine itself may be unaware. In other embodiments, the
DRM engine itself performs the actual signature evaluation,
relying on the host simply to indicate the appropriate sig-
nature algorithm to use.

[0082] 1.2.3. Content Protection and Governance

[0083] Referring once again to FIG. 3, in a typical sce-
nario, a content provider 3005 uses an application 3045 that
includes a packaging engine to encrypt or otherwise cryp-
tographically secure a piece of electronic content 308 and
creates a license 306 that governs access to or other use of
that content. In one embodiment, license 308 comprises a set
of objects 305 that specify how content 308 may be used,
and also includes the content’s encryption key(s) and/or the
information needed to obtain them. In one embodiment,
content 308 and license 306 are logically separate, but are
bound together by internal references (e.g., using object IDs
310). In many situations it may be convenient to store and/or
deliver the content and the license together; however, this is
not required in preferred embodiments. In one embodiment,
a license can apply to more than one item of content, and
more than one license can apply to any single item of
content.

[0084] As shown in FIG. 3, when a host application 304a
running on a client device 300a wants to perform an action
on a particular piece of content 308, it asks DRM engine
303a to check if the action it intends to perform (e.g., “play™)
is allowed. In one embodiment, the DRM engine 3034 will,
from the information contained in the objects 305 compris-
ing content license 306, load and execute a control program
associated with content 308, and permission to perform the
action will be granted or denied based on the result returned
by the control program. Permission will typically require
that some conditions be met, such as the condition that a
node be reachable from the node representing the requesting
entity/device 300a.

[0085] FIG. 5 is a flowchart illustrating how an embodi-
ment of a DRM engine might determine whether a requested
action (e.g., viewing a piece of content) is authorized. As
shown in FIG. 5, a request to evaluate a license for a given
action is received (500). For example, this request might be
received from the host application, after the host received a
request from a user to perform the specified action. As
shown in FIG. 5, the DRM engine evaluates the specified
license (502), and determines whether the requested action
is authorized (504). For example, the license may contain a
control program that the DRM engine executes, the output
of which is used to make the authorization decision. If the
license authorizes the requested action (i.e., a “yes” exit
from block 504), then the DRM engine indicates to the host
application that the request is granted (506). Otherwise, the
DRM engine indicates to the host application that the
request is denied (508). In some embodiments, the DRM
engine may also return to the host application a variety of
metadata that e.g., associates conditions with a grant of
authorization (e.g., obligations and/or callbacks), or pro-

US 2007/0172041 Al

vides additional information regarding the cause of a denial
of authorization. For example, the DRM engine may indi-
cate that the requested action is allowed only if the host
application logs certain information regarding performance
of the requested action, or as long as the host application
calls the DRM engine back at predefined time intervals to,
e.g., re-evaluate the license. Additional information on such
obligations, callbacks, and other metadata returned by the
DRM engine is provided below. If the requested action is
authorized, the content key will be retrieved (e.g., from the
license’s ContentKey object), and used to release the content
for the requested use.

[0086]

[0087] As shown in FIG. 6, in preferred embodiment a
license 600 is a collection of objects. In the example shown
in FIG. 6, license 600 comprises a ContentKey object 602,
a protector object 604, a controller object 606, and a control
object 608. As shown in FIG. 6, ContentKey object 602
includes encrypted key data 610 (e.g., an encrypted version
of the key needed to decrypt encrypted content item 612)
and information regarding the cryptosystem used to encrypt
the key data. Protector object 604 binds ContentKey object
602 to one or more content objects 614. As shown in FIG.
6, control object 608 includes and protects a control program
616 that specifies how content object 614 is governed. In a
preferred embodiment, control program 616 is a piece of
executable bytecode that runs on a virtual machine operated
by the DRM engine. The control program governs whether
certain actions can be performed on the content by checking
for satisfaction of conditions specified in the control pro-
gram, such as whether certain nodes are reachable using
valid link objects, whether certain state objects have been
stored, whether the host environment has certain character-
istics, and/or the like. Referring once again to FIG. 6,
controller object 606 is used to bind one or more Content-
Key object 602 to control object 608.

1.2.4. License DRM Objects

[0088] License 600 may also comprise additional objects,
such as metadata providing a machine- or human-readable
description of the content-access conditions required by the
license. Alternatively, or in addition, such metadata can be
included as a resource extension of one of the other objects
(e.g., control object 608). In the embodiment shown in FIG.
6, control object 608 and controller object 606 are both
signed, so that the system can verify that the control infor-
mation is from a trusted source before using it to make
content-access decisions. In one embodiment, the validity of
control object 608 can also be checked through verification
of'a secure hash included in controller object 606. Controller
object 606 can also contain a hash value for each of the keys
or other key data contained in the ContentKey object(s) 602
that it references, thereby rendering it relatively difficult for
an attacker to tamper with the binding between the key data
and the ContentKey object.

[0089] As shown in FIG. 6, in one embodiment content
612 is encrypted and is included in a content object 614. The
decryption key 610 that is used is included within (or
referenced by) ContentKey object 602, and the binding
between the two is represented by the protector object 604.
As shown in FIG. 6, unique IDs are used to facilitate the
binding between content object 614 and ContentKey object
602. The rules that govern the use of key 610 to decrypt
content 612 are included within control object 608, and the

Jul. 26, 2007

binding between control object 608 and ContentKey 602 is
represented by controller object 606, again using unique
1Ds.

[0090] 1t will be appreciated that while FIG. 6 shows the
objects that comprise a license in one preferred embodiment,
the DRM systems and methods described herein are not
limited to the use of this license structure. For example,
without limitation, licenses could be used in which the
functionality of the various objects shown in FIG. 6 are
combined in a smaller number of objects, or spread out over
additional objects, or broken up between objects in a dif-
ferent manner. Alternatively, or in addition, embodiments of
the systems and methods described herein can be practiced
with licenses that lack some of the functionality enabled by
the license structure shown in FIG. 6, and/or that provide
additional functionality. Thus it will be appreciated that any
suitable mechanism for associating licenses with content can
be used in accordance with the principles described herein,
although in preferred embodiments the advantageous struc-
ture shown in FIG. 6 is used.

[0091]

[0092] In one embodiment, the DRM engine includes, or
has access to, a secure, persistent object store that can be
used to provide a secure state storage mechanism. Such a
facility is useful to enable control programs to be able to
read and write state information that is persistent from
invocation to invocation. Such a state database can be used
to store state objects such as play-counts, date of first use,
accumulated rendering times, and/or the like, as well as
membership status, and/or any other suitable data. In some
embodiments, a DRM engine executing on a first system
may not have access to a local state database, and may be
operable to access a remote state database, e.g., using web
and/or host services. In some situations, it may be necessary
for a DRM engine executing on a first system to access state
information stored in a database on a remote system. For
example the first system may not include a state database, or
may not have the information it needs in its own state
database. In some embodiments, when a DRM engine is
faced with such a situation, it might access a remote state
database via a services interface, and/or by using agent
programs, as described in more detail below.

[0093]

[0094] The systems and methods described herein make
use of control programs in a variety of contexts. For
example, control programs contained in control objects can
be used to express the rules and conditions governing the use
of protect content. In addition, control programs in link
objects can be used to express the rules and conditions used
to determine whether the link is valid for a given purpose
(e.g., a node reachability analysis). Such control programs
are sometimes referred to herein as link constraints. Yet
another context in which control programs may be used is in
agent or delegate objects, were the control code is used to
perform an action on behalf of another entity (in the case of
agent control programs) or on behalf of another control (in
the case of delegate control programs).

[0095] Inone embodiment, control programs are executed
or interpreted by a virtual machine hosted by a DRM engine,
as opposed to being executed directly by a physical proces-
sor. It will be appreciated, however, that a physical processor

1.3. State Database

1.4. About Control Programs

US 2007/0172041 Al

or other hardware logic could be readily constructed to
execute control programs. In one embodiment, the control
programs are in byte-code format, which facilitates interop-
erability across platforms.

[0096] In a preferred embodiment, control programs are
written in assembly language and converted into byte code
by an assembler program. In other embodiments, templates
and/or high-level rights expression languages could be used
to provide the initial expression of rights, rules, and/or
conditions, and a compiler could be used to convert the
high-level expression into byte code for execution by an
embodiment of the DRM engine described herein. For
example, rights expressions written in a proprietary DRM
format could, with an appropriate compiler, be converted or
translated into a functionally equivalent byte code expres-
sion for execution on an embodiment of the DRM engine
described herein, thus enabling a protected piece of content
to be used, in accordance with the conditions specified by
the content provider, on systems that understand the propri-
etary DRM format, as well as systems that included a DRM
engine such as that described herein. It should also be
appreciated that the digital rights management engine sys-
tems and methods described herein are not limited to the use
of byte code rights expressions, interpreted by a virtual
machine. Instead, in some embodiments, rights can be
expressed in any suitable manner (e.g., using a high-level
rights expression language (REL), a template, etc.), and the
authorization graph and/or other techniques described herein
performed using an application program designed to recog-
nize and evaluate such rights expressions.

[0097] 1.4.1. Conditions

[0098] As previously indicated, control programs typi-
cally express one or more conditions that must be satisfied
in order for a request to use a piece of content to be granted,
for a link to be deemed valid, and/or the like. Any suitable
conditions can be used, depending on the requirements of
the content provider or system architect, and/or the func-
tionality provided by the system.

[0099] In preferred embodiments, the virtual machine
used by the DRM engine supports arbitrarily complex
programs that are capable of testing for conditions such as
some or all of the following:

[0100] Time-based conditions: Comparing a client time
value to a value or values specified in the control
program.

[0101] Targeting a particular node: Checking whether a
certain node is reachable from another node. This
concept provides support for such models as domains,
subscriptions, memberships, and the like.

[0102] Testing if certain node attributes match specified
values: Checking any of a node’s attributes, such as, for
example, whether the rendering capabilities of a device
associated with a node meet fidelity requirements.

[0103] Testing if the security-related metadata at the
client is up-to-date: Checking, for example, whether the
client has an acceptable version of the client software
and an accurate measure of time. In some embodiment,
such a check might rely, for example, on assertions in
one or more certificates from a data certification ser-
vice.

Jul. 26, 2007

[0104] State-based conditions: Checking information in
the state database. For example, the state database may
contain information generated as a result of previous
execution of control programs, and/or tokens attesting
to ownership of subscriptions, membership, and/or the
like, thereby enabling evaluation of conditions involv-
ing counters (e.g., number of plays, number of exports,
elapsed time limits, etc.) and other information regard-
ing recorded events and conditions.

[0105] Environmental characteristics: For example,
checking whether hardware and/or software in the host
environment has certain characteristics, such as the
ability to recognize and enforce obligations; checking
for the presence or absence of certain software or
hardware components, such as a secure output channel;
checking proximity information, such as the proximity
of a requesting device to another device or application;
checking the characteristics of, and/or data stored on,
remote systems using network services and/or agents;
and/or the like.

[0106] Using these or any other suitable conditions, a
control object can express rules that govern how content can
be rendered, transferred, exported, and/or the like. It will be
appreciated that the above list of conditions is illustrative in
nature, and that any suitable conditions could be defined and
used by, e.g., implementing a system call for use in testing
for the desired condition. For example, without limitation, if
it were desired to require that a device be located on a
particular sub-network, a system call could be defined (e.g.,
GetIPConfig) that would be operable to return the host
device’s IPConfig information (or a remote device’s IPCon-
fig information, if the system call were run on a remote
device using an agent), which could be used by a control
program to test for whether the device was located on the
prescribed sub-network.

[0107] 1.4.2. Agents

[0108] Preferred embodiments of the DRM engine-related
systems and methods described herein provide support for
independent objects that carry control programs. Such
“agents” can be distributed to a DRM engine running on a
remote system in order to accomplish specified functions,
such as writing into the remote DRM engine’s secure state
store. For example, an agent could be sent as a consequence
of contacting a remote service, or executing a remote control
program. An agent can also be used to effect a content move
operation, to initialize a counter, to deregister a node, and/or
the like. As yet another example, an agent could be used to
perform a reachability analysis from a remote node to
another node. Such an agent could, e.g., be useful in
enforcing a policy that prohibited a device registered to a
first user from being registered to a second user. If the
second user requested registration, an agent could be sent to
the device by the second user, or a registration service acting
on his or her behalf| to determine if the device was already
registered to the first user, in which case the second user’s
registration request would be denied.

[0109] FIGS. 7A and 7B illustrate the use of agents in one
embodiment. As shown in FIG. 7A, assume that two enti-
ties—system A 700 and system B 702—wish to communi-
cate with each other over a computer network 703, and that
a DRM system is being used that is capable of describing
and enforcing rules for certain operations, such as accessing

US 2007/0172041 Al

protected content, or creating DRM objects that can be used
to represent memberships, registration status, and/or the
like. In some cases, the rule(s) will be evaluated on system
A 700, but will require information that depends on the state
of system B 702. That information needs to be trusted by the
DRM system 704 that is enforcing the rule(s) on system A
700.

[0110] For example, the DRM system 704 on system A
700 may be evaluating/enforcing a rule for performing a
remote rendering of content from system A 700 to system B
702, and the rule might indicate that such an operation is
permitted only if system B 702 is part of a certain group of
devices, where the membership in that group is asserted by
the presence of a state object 711 in a secure state database
716 accessible on system B 702.

[0111] A method used in a preferred embodiment to handle
such situations makes use of agents. For example, if system
A 700 needs information from system B 702, system A 700
prepares an agent 705, which, in one embodiment, is a
control program (e.g., a sequence of instructions that can be
executed by a DRM engine) that is sent from system A 700
to system B 702. In one embodiment, system A 700 sends
agent code 705 to system B 702 over an authenticated
communication channel 720 so that system A 700 can be
confident that it is indeed on system B 702 that agent 705
will run. In some embodiments, along with agent code 705,
system A 700 may also communicates to system B 702 one
or more parameters that may be used by agent code 705 to
perform its work.

[0112] As shown in FIG. 7B, system B 702 receives agent
705 and any associated agent parameters, and runs the agent
code 705. When agent 705 is run on system B 702, it
accesses system B’s state database 716, retrieves state
information 711 and/or performs one or more computations
therewith, and sends the results 713 back to system A 700,
preferably over authenticated communication channel 710.
At this point, system A 700 has the information it needs to
continue with its evaluation.

[0113] 1.4.3. Link Constraints

[0114] In one embodiment, the set of routines that repre-
sent the rules that govern the performance of a certain
operation (such as “play”) on a content item is called an
“action control”. The set of routines that represent validity
constraints on a link object is called a “link constraint”. Like
action controls, in preferred embodiments link constraints
can express any suitable combination of conditions. Also
like action controls, link constraints can be evaluated locally
and/or remotely using a services interface or an agent.

[0115] 1.4.4. Obligations and Callbacks

[0116] In one embodiment, certain actions, when granted,
require further participation from the host application. Obli-
gations represent operations that need to be performed by
the host application upon or after the use of the content key
it is requesting. Callbacks represent calls to one or more of
the control program’s routines that need to be performed by
the host application upon or after the use of the content key
it is requesting. Examples of obligations include, without
limitation, a requirement that certain outputs and/or controls
be turned off while content is being rendered (e.g., to prevent
writing the content to an unprotected output or to prevent
fast-forwarding through certain important segments of the

Jul. 26, 2007

content); a requirement that information regarding use of the
content be recorded (e.g., metering or audit information)
and/or sent to a remote site (e.g., a clearinghouse, service
provider, or the like); a requirement that an agent program
be executed locally or remotely; and/or the like. Examples
of callbacks include, without limitation a requirement that
the host call the control program back at a certain absolute
time, after a certain elapsed time (e.g., an elapsed time of
content usage), after occurrence of a certain event (e.g., the
completion of a trial content-rendering period), when the
content has stopped being used, and/or the like. For
example, a callback after a certain elapsed time could be
used to increment or decrement budgets, playcounts, and the
like (e.g., only debiting the users budget if they use a piece
of content for at least a certain amount of time), thus
protecting the user from having his or her account debited if
he or she accidentally presses the play button but immedi-
ately presses stop.

[0117] In one embodiment, there are different types of
obligations and callbacks, and if an application encounters
any critical obligation or callback that it does not support, or
does not understand (for example because the obligation
type may have been defined after the application was
implemented), the application is required to refuse to con-
tinue the action for which this obligation or callback param-
eter was returned.

[0118]

[0119] FIGS. 8-12 show an example of how an illustrative
embodiment of a DRM engine might control the use of a
piece of content. Referring to FIG. 8, assume that the DRM
engine has received a request to play a group 800 of content
items 802, 804. For example, content items 802, 804 might
comprise different sub-parts of a multimedia presentation,
different tracks of an album, different pieces of content
obtained from a subscription service, email attachments, or
the like. The request may have been received by the DRM
engine from a host application, which, in turn, received the
request from a user of the computing device upon which the
host application was running. The request from the host
application will typically identify the requested action, the
piece or pieces of content upon which the action is to be
taken, and the license(s) that govern the content. DRM
engine follows the process illustrated in FIG. 5 to determine
whether the request should be granted.

1.4.5. Example

[0120] FIGS. 8 and 9 provide a more detailed non-limiting
example of the process shown in FIG. 5. Referring to FIG.
9, upon receiving the request to access content items 802 and
804 (block 900), the DRM engine examines the license(s)
identified in the request, or otherwise in its possession, to see
if a valid license exists. For example, the DRM engine might
first identify the protector objects 806 and 808 that contain
the unique identifiers of content items 802 and 804 (i.e.,
NS:007 and NS:008, respectively) (block 902 in FIG. 9).
Next, the DRM engine locates the ContentKey objects 810
and 812 identified in protector objects 806 and 808 (block
904 in FIG. 9), which, in turn, enables the DRM engine to
identify controller 814 which references both ContentKey
objects 810 and 812 (block 906 in FIG. 9). In a preferred
embodiment, controller 814 is signed, and DRM engine
verifies its signature (or asks host services to verity it). The
DRM engine uses controller 814 to identify the control
object 816 that governs use of ContentKey objects 810 and

US 2007/0172041 Al

812 (and, thus, content items 802 and 804)(block 908 in
FIG. 9). In a preferred embodiment, the DRM engine
verifies the integrity of control object 816 (e.g., by comput-
ing a digest of control object 816 and comparing it to a digest
contained in controller 814. If the integrity verification
succeeds, the DRM engine executes the control code con-
tained in control object 816 (block 910), and returns the
result (block 912) to the host application, which uses it to
grant or deny the user’s request to access the content. The
result of the control code might also optionally specify one
or more obligations or callbacks which the host application
will need to fulfill.

[0121] FIG. 10 is a more detailed example of how a DRM
engine might perform the actions specified in blocks 910 and
912 of FIG. 9 (i.e., executing a control program and return-
ing the result). As shown in FIG. 10, upon identifying the
relevant control object, the DRM engine loads the byte code
contained in the control object into a virtual machine that is
preferably hosted by the DRM engine (block 1000). The
DRM engine and/or the virtual machine will also typically
initialize the virtual machine’s runtime environment (block
1002). For example, the virtual machine might allocate the
memory needed for execution of the control program, ini-
tialize registers and other environment variables, and/or
obtain information about the host environment in which the
virtual machine is operating (e.g., by making a System.Host-
.GetObject call, as described below). It will be appreciated
that in some embodiments blocks 1000 and 1002 could
effectively be combined or interleaved, and/or their order
reversed. As shown in FIG. 10, the virtual machine next
executes the control program’s byte code (block 1004). As
described elsewhere herein, this may involve making calls to
other virtual machine code, retrieving state information from
secure storage, and/or the like. When the control program
has finished executing, it provides an output (e.g., in a
preferred embodiment, an ExtendedStatusBlock) that may,
for example, be used by the calling application to determine
whether a request has been granted, and, if so, whether any
obligations or callbacks are associated therewith; whether a
request has been denied, and, if so, the reason for denial; or
whether any errors occurred during execution (block 1006).

[0122] As previously indicated, the control code contained
in control object 816 specifies the conditions or other
requirements that must be satisfied in order to make the
requested use of content items 802 and 804. The systems and
methods described herein enable the specification of arbi-
trarily complex sets of conditions; however, for purposes of
this example, assume that the control program is designed to
require that, in order to play content items 802 and 804, (a)
a given user’s node must be reachable from the device on
which the request to play the content was made, and (b) the
current date must be after a specified date.

[0123] FIG. 11 shows how an illustrative embodiment of
a DRM engine 1100 running on a device 1102 might execute
the example control program described above, and FIG. 12
is a flowchart of the steps involved in the execution process.
As shown in FIG. 11, DRM engine 1100 creates a virtual
machine execution context (e.g., by calling System-
.Host.SpawnVm) 1104 and loads the control program. Vir-
tual machine 1104 begins execution of the control program
at the entry point specified by DRM engine 1100 (e.g., at the
location of the Control.Actions.Play.perform routine). In
this example, the control program needs to determine

Jul. 26, 2007

whether a given node is reachable from the personality node
of the device 1102 on which the DRM engine 1100 is
running. To make this determination, the control program
makes a call 1105 to a link manager service 1106 provided
by the DRM engine 1100, specifying the node to which
linkage is required (block 1200 in FIG. 12). Link manager
1106 is responsible for evaluating link objects to determine
if one node is reachable from another. To do this efficiently,
link manager 1106 may pre-compute whether a path exists
from the personality node 1110 of device 1102 to the various
nodes 1114 specified in any link objects that device 1102
possesses. That is, link manager 1106 may, simply by
checking the “to” and “from” fields of the links to which it
as access, determine which nodes are potentially reachable
from the personality node 1110 of device 1102. When link
manager 1106 receives the call 1105 from virtual machine
1104, it determines whether the specified node 1112 is
reachable by first determining if a path exists from person-
ality node 1110 to the specified node 1112 (e.g., by checking
for the node’s ID in the list of nodes that it previously
determined to be theoretically reachable)(block 1202 in FIG.
12). If a path exists, link manager 1106 evaluates any control
programs contained in the links to see if the links are valid
(blocks 1204-1210 in FIG. 12). To evaluate the control
programs in the link objects (block 1206 in FIG. 12), link
manager 1106 may use its own virtual machine 1108, on
which it executes the control programs included in the link
objects. Link manager 1106 returns the results of its deter-
mination (i.e., whether the given node is reachable) to the
control program executing in virtual machine 1104, where it
is used in the overall evaluation of whether the request to
play the piece of content will be granted. Upon determining
that the specified node 1112 is reachable from the person-
ality node 1110 of device 1102, the control program execut-
ing on virtual machine 1104 next determines if the specified
date restriction is met (block 1212 in FIG. 12). If the date
restriction has been met (i.e., a “yes” exit from block 1212),
then the control program returns a result indicating that the
specified conditions have been met (block 1214 in FIG. 12);
otherwise, control program returns a result indicating that
the specified conditions were not satisfied (block 1216 in
FIG. 12).

[0124] An example of a control program such as that
described above is shown below:

Sample Control

This Control checks that a user node is reachable
and that the date is after a specific start date

and before a specific end date

The values are retrieved from attributes in the control

; constants

>
>
>
>
>
>
>
>

.equ DEBUG__PRINT__SYSCALL,

.equ FIND_SYSCALL_BY_ NAME,

.equ SYSTEM_HOST_GET_OBJECT__SYSCALL,

.equ SUCCESS,

.equ FAILURE, -

— O W k=

5
; data

.data
Control TargetNodeld AttributePath:
string “Octopus/Control/Attributes/TargetNodeld”

US 2007/0172041 Al

-continued

Jul. 26, 2007

10

-continued

ControlStartDateAttributePath:

string “Octopus/Control/Attributes/StartDate”
ControlEndDateAttributePath:

string “Octopus/Control/Attributes/EndDate”
TargetNodeld:

.zeros 256
StartDate:

long 0
EndDate:

Jlong -1
IsNodeReachableFunctionName:

string “Octopus. Links.IsNodeReachable”
IsNodeReachableFunctionNumber:

long 0
GetTimeStampFunctionName:

string “System.Host.GetLocal Time”
GetTimeStampFunctionNumber:

long 0

>

; code

.code
Global.OnLoad:
; load global functions
; get the syscall number for Octopus.Links.IsNodeReachable
PUSH @IsNodeReachableFunctionName
PUSH FIND_SYSCALL_BY_ NAME
CALL
DUP
PUSH @IsNodeReachableFunctionNumber
POKE
BRN OnLoad__Fail
; get the syscall number for System.Host.GetTimeStamp
PUSH @GetTimeStampFunctionName
PUSH FIND_SYSCALL_BY_ NAME
CALL
DUP
PUSH @GetTimeStampFunctionNumber
POKE
BRN OnLoad__Fail
; ok
PUSH 0
RET
OnLoad_ Fail:
PUSH FAILURE
RET
Control.Actions.Play.Init:
; get the values from the attributes
; get the target node (guaranteed to be there)
PUSH 256 ; ReturnBufferSize (256 bytes)
PUSH @TargetNodeld ; Return value
PUSH @ControlTargetNodeld AttributePath ; Name
PUSH 0 ; Parent = root container
PUSH SYSTEM__HOST_GET_OBJECT_SYSCALL
CALL
; get the start date
PUSH 4
PUSH @StartDate
PUSH @ControlStartDateAttributePath ; Name
PUSH 0 ; Parent = root container
PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL
CALL
; get the end date
PUSH 4
PUSH @EndDate
PUSH @ControlEndDateAttributePath ; Name
PUSH 0 ; Parent = root container
PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL
CALL
; success
PUSH 0
PUSH SUCCESS
STOP
Control.Actions.Play.Perform:
Control.Actions.Play.Check:
; check that the target node is reachable

; ReturnBufferSize (4 bytes)
; Return value

; ReturnBufferSize (4 bytes)
; Return value

PUSH @TargetNodeld
PUSH @IsNodeReachableFunctionNumber
PEEK
CALL
BRN Play_ Fail
; put the current time on the stack
PUSH @GetTimeStampFunctionNumber
PEEK
CALL
; check that the date is before the end date
DUP ; current time
PUSH @EndDate
PEEK
SWAP
CMP
BRN Play_ Fail
; check that the date is after the start date
; the current time is on the stack
PUSH @StartDate
PEEK
CMP
BRN Play_ Fail
; success
PUSH 0
PUSH SUCCESS
STOP
Play_ Fail:
PUSH 0
PUSH FAILURE
STOP
.export Global.OnLoad
.export Control.Actions.Play.Init
.export Control.Actions.Play.Check
.export Control.Actions.Play.Perform

[0125] An additional example of a control program is

included in Appendix E.

3. Content Consumption and Packaging Applications

[0126] The following is a more detailed description of
illustrative embodiments of an application that consumes
DRM-protected content (e.g., a media player, a word pro-
cessor, an email client, etc., such as applications 303a, 303c¢,
and 3034 in FIG. 3), and a packaging application, such as
application 3035, that packages content targeted to consum-

ing applications.

[0127]

[0128] A content-consuming application will typically
focus on accessing protected content, or could be part of a
general-purpose application that also performs other func-
tions, such as packaging content. In various embodiments, a
content-consuming application might perform some or all of

the following:

1.5. Content-Consuming Application Architecture

[0129] Provide an interface by which a user can request
access to protected content objects and receive infor-
mation about the content or error information;

[0130] Manage interaction with the file system;

[0131] Recognize the format of protected content
objects;

[0132] Request a DRM engine to evaluate licenses for
pieces of content to see if permission to access the
content can be granted;

[0133] Verify digital signatures and deal with other

general-purpose cryptographic functions that the DRM
engine needs performed;

US 2007/0172041 Al

[0134] Request the DRM engine to provide the keys
needed to decrypt protected content; and/or

[0135] Decrypt the protected content and interact with
media rendering services to render the content.

[0136] Inoneembodiment, a DRM client engine evaluates
the licenses associated with content, confirms or denies
permission to use the content, and provides decryption keys
to the content-consuming application. The DRM client
engine may also issue one or more obligations and/or
callbacks to the content-consuming application, requiring
the application to perform certain actions as a consequence
of having been given access to the content.

[0137] FIG. 13 shows the elements that make up a content-
consuming client application 1300 in one embodiment. As
shown in FIG. 13, host application 1302 is the logical central
point of the client. It is responsible for driving the interaction
pattern between the other modules, as well as interaction
with the user through user interface 1304. The host appli-
cation 1302 provides a set of services to DRM engine 1306
via a host services interface 1308. The host services inter-
face 1308 allows the DRM engine 1306 to get access to data
managed by the host application 1302, as well as certain
library functions implemented by the host application 1302.
In one embodiment, the host services interface 1308 it is the
only outbound interface for the DRM engine 1306.

[0138] In one embodiment, the DRM engine 1306 does
not interact directly with the multimedia content managed
by the host application 1302. The host application 1302
logically interacts with content services 1310 for accessing
the multimedia content, and passes on to the DRM engine
1306 only the portions of data that must be processed by the
engine. Other interactions with the content are performed by
the media rendering engine 1312. For example, in one
embodiment content services 1310 are responsible for
acquiring content from media servers, and storing and
managing the content on the client’s persistent storage,
while media rendering engine 1312 is the subsystem respon-
sible for accessing the multimedia content and rendering it
(e.g., on a video and/or audio output). In one embodiment,
the media rendering engine 1312 receives some information
from DRM engine 1306 (such as content decryption keys),
but in one embodiment the DRM engine 1306 does not
interact with media rendering engine 1312 directly, but
rather through the host application 1302.

[0139] Some of the information needed by the DRM
engine 1306 might be available in-band with the multimedia
content, and can be acquired and managed through the
content services 1310, but some of this information may
need to be obtained via means of other services such as a
personalization service or a membership service (not
shown).

[0140] In the embodiment shown in FIG. 13, crypto-
graphic operations (e.g., encryption, signature verification,
etc.) are handled by crypto services block 1314. In one
embodiment, the DRM engine 1306 does not interact
directly with the crypto services block 1314, but instead
interacts indirectly via the host 1302 (using host services
interface 1308), which forward its requests. Crypto services
1314 may also be used by, e.g., the media rendering engine
1312 in order to perform content decryption

[0141] Tt will be appreciated that FIG. 13 is provided for
purposes of illustration, and that in other embodiments the

Jul. 26, 2007

various components shown in FIG. 13 could be rearranged,
merged, separated, eliminated, and/or new components
could be added. For example, without limitation, the logical
division of functionality between the DRM engine and the
host application in FIG. 13 is simply illustrative of one
possible embodiment, and in practical implementations
variations can be made. For example, the DRM engine could
be integrated wholly or partially with the host application.
Thus, it will be appreciated that any suitable division of
functionality between host application and DRM engine can
be used.

[0142]

[0143] The following provides an example of the func-
tions that a packaging engine might perform for a host
application that packages electronic content. In practice, a
packaging application may focus on packaging specifically,
or could be part of a general-purpose application operating
at a user system that also accesses protected content (either
packaged locally or elsewhere, e.g., on a network).

[0144] In various embodiments, a packaging host appli-
cation might perform some or all of the following:

1.6. Packager Architecture

[0145] Provide a user interface by which content and
license information can be specified;

[0146] Encrypt content;

[0147] Create the DRM objects that make up a license;
and/or

[0148] Create a content object that contains or refer-
ences the content and contains or references a license

[0149] FIG. 14 shows the elements that make up a pack-
aging application 1400 in one embodiment. DRM packaging
engine 1416 is responsible for packaging licenses such as
those described herein (e.g., licenses comprising DRM
objects such as controls, controllers, protectors, and the
like). In some embodiments, DRM packaging engine 1416
may also associate metadata a license to explain, in human-
readable form, what the license does.

[0150] In one embodiment, a host application 1402 pro-
vides a user interface 1404 and is responsible for obtaining
information such as content references and the action(s) the
user (typically a content owner or provider) wants to per-
form (e.g., to whom to bind content, what content-usage
conditions to include in a license, etc). User interface 1404
can also display information about the packaging process,
such as the text of the license issued and, if a failure occurs,
the reason for the failure. In some embodiments, some
information needed by the host application 1402 may
require the use of other services, such as authentication or
authorization services, and/or membership through a Service
Access Point (SAP). Thus, in some embodiments the pack-
aging application 1400 and/or the host application 1402 may
need to implement some or all of the following:

[0151] Media format services 1406: In one embodi-
ment, this element is responsible for managing media
format operations such as transcoding and packaging. It
is responsible as well for content encryption, which is
achieved via content encryption services module 1408.

[0152] General-purpose cryptographic services 1410:
In one embodiment, this element is responsible for
issuing/verifying signatures, as well as encrypting/

US 2007/0172041 Al

decrypting some data. Requests for such operations
could be issued by the Service Access Point 1414 or by
the DRM packaging engine 1416 via host services
interface 1412.

[0153] Content encryption services 1408: In one
embodiment, this module is logically separated from
the general-purpose cryptographic services 1410
because it does not know about the application. It is
driven by the media format services at content pack-
aging time with a set of keys previously issued by the
DRM packaging engine 1416.

4. Key Derivation

[0154] The following describes a key derivation system
that fits naturally with preferred embodiments of the DRM
engine and system architecture described herein, and/or can
be used in other contexts. Some of the examples in the
following section are taken from a reference implementation
of a preferred embodiment of this key derivation system
known as “Scuba”. Additional embodiments are described in
the ’551 application.

[0155] As shown in FIG. 15, in some embodiments link
objects 15304, 15305 are used to distribute keys, in addition
to their primary purpose of establishing relationships
between nodes 1500a, 15005, 1500c. As described above, a
control object can contain a control program that can be used
to decide if a request to perform an action should be granted
or not. To do this, the control program may check whether
a specific node is reachable via a chain of links. The key
derivation techniques described herein take advantage of the
existence of this chain of links to facilitate the distribution
of'akey, such that the key can be made available to the DRM
engine that is executing the control program.

[0156] In one illustrative embodiment, each node object
15004, 15005, 1500c¢ in a given deployment that uses the
optional key distribution system has a set of keys that are
used to encrypt content keys and other nodes’ keys. Link
objects 1530a, 15305 created for use in the same deploy-
ment contain some cryptographic data as a payload that
allows key information do be derived when chains of links
are processed by a DRM engine.

[0157] With nodes and links carrying keys in this manner,
given a chain of links 1530a, 15305 from a node A 15004 to
anode C 1500C, an entity (e.g., the DRM engine of a client
host application) that has access to the secret sharing keys of
node A 1515a, 15254, also has access to the secret sharing
keys of node C 1515¢, 1525¢. Having access to node C’s
secret sharing keys gives the entity access to any content key
encrypted with those keys.

[0158] 1.7. Nodes, Entities, and Keys
[0159] 1.7.1. Entities
[0160] In one embodiment of a DRM system, nodes are

data objects, not active participants in the system. Active
participants, in this context, are called entities. Examples of
entities are media players, devices, a subscription service,
content packagers, and the like. Entities typically have nodes
associated with them. An entity that consumes content uses
a DRM engine and manages at least one node object that
constitutes its personality. In one embodiment, an entity is
assumed to have access to all the data of the node objects it
manages, including all the private information of those
objects.

12

Jul. 26, 2007

[0161] 1.7.2. Nodes

[0162] Node objects that participate in an illustrative
embodiment of the key derivation system contain keys as
part of their data. In one embodiment, nodes may contain
two general types of keys: sharing keys and confidentiality
keys. The following sections list the different key types that
can be used in various embodiments. It will be appreciated,
however, that a specific deployment may use only a subset
of these keys. For example, a system could be configured to
work only with key pairs, omitting the use of secret sym-
metric keys. Or a system could be deployed without provi-
sioning nodes with confidentiality keys if it only needed to
use the sharing keys.

[0163] 1.7.2.1. Sharing Keys

[0164] Sharing keys are public/private key pairs and/or
symmetric keys that are shared by a node N and all the nodes
Px for which there exists a link from Px to N that contains
key derivation extensions.

[0165] Sharing Public Key: Kpub-share[N] This is the
public part of a pair of public/private keys for the public key
cipher. This key typically comes with a certificate so that its
credentials can be verified by entities that want to crypto-
graphically bind confidential information to it.

[0166] Sharing Private Key: Kpriv-share[N] This is the
private part of the public/private key pair. The entity that
manages the node is responsible for ensuring that this
private key is kept secret. For that reason, this private key
will generally be stored and transported separately from the
rest of the node information. This private key can be shared
downstream with other nodes through the key derivation
extensions of links.

[0167] Sharing Symmetric Key: Ks-share[N] This is a key
that is used with a symmetric cipher. As with the private key,
this key is confidential, and the entity that manages the node
is responsible for keeping it secret. This secret key can be
shared downstream with other nodes through the key deri-
vation extensions of links.

[0168] 1.7.2.2. Confidentiality Keys

[0169] Confidentiality keys are key pairs and/or symmet-
ric keys that are only known to the entity that manages the
node to which they belong. The difference between these
keys and the sharing keys described above is that they will
not be shared with other nodes through the key derivation
extensions in links.

[0170] Confidentiality Public Key: Kpub-conf[N] This is
the public part of a pair of public/private keys for the public
key cipher. This key typically comes with a certificate so that
its credentials can be verified by entities that want to
cryptographically bind confidential information to it.

[0171] Confidentiality Private Key: Kpriv-conf[N] This is
the private part of the public/private key pair. The entity that
manages the node is responsible for ensuring that this
private key is kept secret. For that reason, this private key
will generally be stored and transported separately from the
rest of the node information.

[0172] Confidentiality Symmetric Key: Ks-conf[N] This
is a key that is used with a symmetric cipher. As with the
confidentiality private key, this key is kept secret.

US 2007/0172041 Al

[0173]

[0174] Preferred embodiments of the key derivation and
distribution systems described herein can be implemented
using a variety of different cryptographic algorithms, and are
not restricted to any specific choice of cryptographic algo-
rithm. Nevertheless, for a given deployment or profile, all
participating entities will generally need to agree on a set of
supported algorithms (where the term profile will generally
refer to the specification of a set of actual technologies used
in a particular implementation (e.g., an RSA for key deri-
vation; XML for encoding objects; MP4 for the file format,
etc.) and/or other representation of the semantic context that
exists when objects are defined in a practical deployment).

[0175] In one embodiment, deployments include support
for at least one public key cipher (such as RSA) and one
symmetric key cipher (such as AES).

1.8. Cryptographic Elements

[0176] The following notation will be used when referring
to cryptographic functions:

[0177] Ep(Kpub[N], M) means “the message, M,
encrypted with the public key, Kpub, of node, N, using
a public key cipher”

[0178] Dp(Kpriv[N], M) means “the message, M,
decrypted with the private key, Kpriv, of node, N, using
a public key cipher”

[0179] Es(Ks[N], M) means “the message, M,
encrypted with the symmetric key, Ks, of node, N,
using a symmetric key cipher”

[0180] Ds(Ks[N], M) means “the message, M,
decrypted with the symmetric key, Ks, of node, N,
using a symmetric key cipher”

[0181]

[0182] In a preferred embodiment, two types of crypto-
graphic targeting are used. Targeting a content key to a target
node’s sharing keys means making that key available to all
entities that share the secret sharing keys of that target node.
Targeting a content key to a node’s confidentiality keys
means making that key available only to the entity that
manages that node. Targeting of a content key is done by
encrypting the content key, CK, carried in a ContentKey
object using one or both of the following methods:

[0183] Public Binding: Create a ContentKey object that
contains Ep(Kpub[N], CK)

1.9. Targeting of Content Keys

[0184] Symmetric Binding: Create a ContentKey object
that contains Es(Ks[N], CK)

[0185] In a preferred embodiment, symmetric binding is
used where possible, as it involves a less computationally
intensive algorithm, and therefore makes it less onerous to
the receiving entity. However, the entity (typically, a content
packager) that creates the ContentKey object may not
always have access to Ks[N]. If the packager does not have
Ks[N], then it can use public binding, since Kpub[N] is not
confidential information and therefore can be made available
to entities that need to do public binding. Kpub[N] will
usually be made available to entities that need to target
content keys, accompanied by a certificate that can be
inspected by the entity to decide whether Kpub[N] is indeed
the key of a node that can be trusted to handle the content
key in accordance with some agreed-upon policy (e.g., that

Jul. 26, 2007

the node corresponds to an entity running a DRM engine and
host application that comply with the functional, opera-
tional, and security policies of the system).

[0186] 1.10. Derivation of Keys Using Links

[0187] To allow an entity to have access to the sharing
keys of all the nodes reachable from its personality node, in
one embodiment link objects contain an optional key exten-
sion payload. This key extension payload allows entities that
have access to the private/secret keys of the link’s “from”
node to also have access to the private/secret sharing keys of
the link’s “to” node. In this way, an entity can decrypt any
content key targeted to a node that is reachable from its
personality node (if the targeting was done using the target
node’s sharing keys).

[0188] Inone embodiment, when a DRM engine processes
link objects, it processes the key extension payload of each
link in order to update an internal chain of keys to which it
has access. In one embodiment, the key extension payload of
a link, L, from node, F, to node, T, comprises either:

[0189] Public derivation information: Ep(Kpub-share
[F], {Ks-share[T], Kpriv-share[T]})

[0190] or

[0191] Symmetric derivation information: Es(Ks-share
[F], {Ks-share[T], Kpriv-share[T]})

[0192] Where {Ks-share[T], Kpriv-share[T]} is a data
structure containing Ks-share[T] and Kpriv-share[T].

[0193] The public derivation information is used to con-
vey the secret sharing keys of node T, Ks-share[T] and
Kpriv-share[T], to any entity that has access to the private
sharing key of node F, Kpriv-share[F].

[0194] The symmetric derivation information is used to
convey the secret sharing keys of node T, Ks-share[T] and
Kpriv-share[T], to any entity that has access to the symmet-
ric sharing key of node F, Ks-share[F].

[0195] As for targeting content keys to nodes, the pre-
ferred payload to include in a link is the symmetric deriva-
tion information. This is possible when the link creator has
access to Ks-share[F]. If not, then the link creator will fall
back to including the public derivation information as the
payload for the link.

[0196] Assuming that the DRM engine processing a link
already had Ks-share[F] and Kpriv-share[F] in its internal
key chain, after processing the link, L[F—T], it will also
have Ks-share[T] and Kpriv-share[T].

[0197] Since, in one embodiment, links can be processed
in any order, the DRM engine may not be able to do the key
derivation computations at the time a given link, L, is
processed. This might be due to the fact that, at that time, the
DRM engine’s key chain might not yet contain the keys of
the “from” node of that link. In this case, the link is
remembered, and processed again when new information
becomes available to the DRM engine, such as after pro-
cessing a new link, P. If the “to” node of link P is the same
as the “from” node of link L, and the “from” node of link P
is a reachable node, then the “from” node of link L will also
be reachable, and the key derivation step adds the private
sharing keys of the “from” node of link L to the key chain.

US 2007/0172041 Al

5. Implementation Examples

[0198] Several examples are provided below to illustrate
how various embodiments of the systems and methods
described herein could be applied in practice. The systems
and methods described herein can enable a wide range of
rights management and other functionality, and thus it will
be appreciated that the specific examples that are given here
are not intended to be exhaustive, but are rather illustrative
of the scope of the inventive body of work.

[0199]

[0200] Assume that you want to implement a DRM system
that ties the right to play content to a particular user, and you
want to make it easy for the user to play content on all the
playback devices that he or she owns. Assume that you
decide that you are going to provide users with software that
enables them to add playback devices as needed (e.g.,
mobile players). Also assume, however, that you want to set
some policy to limit the number of general-purpose devices
to which the user can transfer the content, so that the user
does not have the ability to act as a distribution agency.

1.11. Example: Users, PCs, and Devices

[0201] Based on these system requirements, it might, for
example, make sense to tie the licenses you create to users,
and to establish relationships between users and the devices
that they use. Thus, in this example, you might first decide
what kinds of nodes you need to establish the sorts of
relationships that you require. For example, you might
define the following types of nodes:

[0202] User (e.g., an individual who owns the rights to
use the content)

[0203] PC (e.g., a software application, running on a
personal computer, that can play content and specity
additional playback devices)

[0204] Device (e.g.,
device)

a portable content-rendering

[0205] Each node object can include a type attribute that
indicates whether the object represents a user, a PC, or a
device.

[0206] Say, for example, that you decide to restrict the
maximum number of PC node objects that can be attached
to any one user at a particular time to four (4). You decide
there is no need to restrict the number of devices attached to
the user as long as you provide restriction on the number of
PCs. Based on this, a control program can be set up to allow
access if a relationship can be established between the user
node and the node that requests access. That node, then,
could be either a PC or a device.

[0207] FIG. 16 shows a system designed to fulfill the
foregoing requirements. Server 1600 assigns a user node
object 1602a, 16025 to each new user 1604a, 16045, and
manages the ability of users 1604a, 16045 to associate
devices 1606, 1608 and PCs 1610, 1612 therewith for the
purpose of accessing protected content. When a user 1604a
wishes to associate a new device 1606 with his or her user
node 16024, server 1600 determines whether the device
1606 already contains personalization information 1614, as
might be the case if the device 1606 was personalized at the
time manufacture. [f the device does contain personalization
information 1614, server 1600 uses that personalization
information 1614 to create a link 1616 from the device 1606

Jul. 26, 2007

to the user’s node 16024, and sends link 1616 to the user’s
device 1606. When user 1604a obtains protected content
1618 (e.g., from server 1600 or from some other content
provider), that content 1618 is targeted to the user’s node
16024 (e.g., by encrypting the content’s decryption key with
one of the secret sharing keys associated with the user’s
node 1602a) and a license 1619 is associated therewith
specifying the conditions under which the content can be
accessed. When user 1604q attempts to play content 1618 on
device 1606, the DRM engine 1620 running on device 1606
evaluates the license 1619, which indicates that the content
1618 can be played as long as user node 1602a is reachable.
DRM engine 1620 evaluates link 1616, which shows that
user node 1602a is reachable from device 1606, and grants
user 1604a’s request to access content 1618, e.g., by autho-
rizing decryption of the content decryption key contained
within license 1619.

[0208] Since the content decryption key, in this example,
is encrypted using a secret key associated with the user’s
node 1602a, this secret key will need to be obtained in order
to decrypt the content decryption key. If the optional key
derivation techniques described elsewhere herein have been
used, the user node’s key can be obtained simply by decrypt-
ing the key derivation information contained in link 1616
using one of device 1606°s secret keys. The decrypted key
derivation information will contain the key needed to
decrypt the content decryption key contained in license 1619
(or information from which it can be derived or obtained).

[0209] Referring once again to FIG. 16, assume user
16044 wishes to associate a new PC 1610 with his or her
user node 1602a. Server 1600 verifies that the maximum
number of PCs have not already been associated with user
node 16024, and authorizes PC 1610 to be associated with
user node 1602a. To perform the association, however,
server 1600 needs to obtain personalization information
from PC 1610 (e.g., cryptographic keys, a unique identifier,
etc.). If, however, the PC 1610 has not been previously
personalized (as might be the case if the user simply
downloaded a copy of the PC software) server 1600 will
perform the personalization process (e.g., by creating a PC
node object using the bootstrap protocol described else-
where herein) or direct the user to a service provider who
can perform the personalization process. Upon completion
of the personalization process, server 1600 can create a link
1624 from PC 1610 to user node 16024 and send the link to
the PC 1610, which could continue to use it as long as it
remained valid.

[0210] The user could request to add additional PCs later,
and the server would enforce the policy that limits the
number of PC node objects per user to 4 (typically it would
also provide the ability for users to remove PCs from its
active list as needed).

[0211] As yet another example, assume now that the
service provider has decided that users should be able to play
any content that they own on any device that they own. The
service provider might also wish to allow the user’s PC
software to create links to each of his or her devices, rather
than requiring the user to contact server 1600. In such an
embodiment, when the user wished to play content on a new
device, the user’s PC software would access the new
device’s confidential personalization information and use it
to create a new link for that device (e.g., a link from the new

US 2007/0172041 Al

device to the user’s node 1602a). If the device was not
personalized, then the PC software might access a remote
service, or direct the device to access the remote service, to
perform the personalization process. The PC software would
then send the link to the new device, at which point the new
device would be able to play the content as long as it
remained valid, since, in one embodiment, once a link object
exists there is no need to create another one unless the link
object expires or is otherwise invalidated.

[0212] Inthe examples shown above, content is targeted to
the user. To do this, a packager application chooses a new 1D
for the content, or uses an existing one, creates an encryption
key and associated ContentKey object, as well as a protector
object to bind the content object and the ContentKey object.
The packager then creates a control object with a control
program (e.g., compiled in byte code executable by the
DRM engine’s virtual machine) that allows the “play” action
to take place if and only if the user node is reachable from
the PC or device node that is requesting the action. Typically,
the control, controller, protector and ContentKey objects are
embedded in the packaged content if appropriate, so that the
PCs and devices do not have to obtain them separately.

[0213] In one embodiment, when a device or a PC wants
to play content, it follows a process such as that previously
described in connection with FIG. 9. That is, the DRM
engine finds the protector object for the content ID of the
content, then the ContentKey object referenced by that
protector, then the controller object that references that
ContentKey object, and finally the control object referenced
by that controller. The DRM engine executes the control
program of the control object, which checks whether or not
the user node is reachable. If the device or PC node has the
necessary link objects to verify that there exists a path
between its node and the user node, then the condition is met
and the control program allows the use of the key repre-
sented in the ContentKey object. The media rendering
engine of the device or PC can then decrypt and play the
content.

[0214] 1.12. Example: Temporary Login

[0215] FIG. 17 is another example of a potential applica-
tion of the DRM systems and methods described herein.
This example is similar to the example in the preceding
section, except here the policy that governs creation of link
objects between PC node objects and user node objects
allows for a temporary login of no more than 12 hours, as
long as the user does not already have a temporary login on
another PC. This feature would allow a user 1700 to take his
content 1702 to a friend’s PC 1704, log in to that PC 1704
for a period of time, and play the content 1702 on the
friend’s PC 1704.

[0216] To accomplish this, a link object 1710 would be
created with a limited validity period. In one embodiment,
this could be done as follows:

[0217] For ease of explanation, assume that the DRM-
enabled consuming software 1714 required to play the
DRM-protected content 1702 is already present on the
friend’s PC 1704. The file containing the content 1702 and
license 1708 is transferred to the friend’s PC 1704. When the
user tries to play the content 1702, the software 1714
recognizes that there is no valid link object linking the local
PC node with the node of the user who owns the content.

Jul. 26, 2007

Software 1714 prompts the user for his credentials 1712
(this could be provided via a username/password, a mobile
phone authentication protocol, a smartcard, or any authen-
tication system allowed under the policy of the system) and
communicates with a backend system 1706. The backend
system 1706 checks the attributes of the user node object and
PC node object for which the link is requested, and checks
that there is no active temporary login link object still valid.
If those conditions are met, the backend service 1706 creates
a link object 1710 linking the friend’s PC node object and
user’s node, with a validity period limited to the requested
login duration (e.g., less than 12 hours, to comply with the
policy in this example). Having the link object 1710 now
enables the friend’s PC 1704 to play the user’s content 1702
until the link 1710 expires.

[0218]

[0219] FIG. 18 shows the high-level architecture of an
illustrative system 1800 for managing enterprise documents
(e.g., email, word processing documents, presentation
slides, instant messaging text, and/or the like). In the
example shown in FIG. 18, a document editing application
(e.g., a word processor) 1802, an email client 1804, and a
directory server (e.g., an Active Directory server) 1806 make
use of a digital rights management (DRM) plug-in 1808, a
network service orchestration layer 1810, a registration
service 1812, and a policy service 1816 to facilitate man-
agement of documents, email messages, and/or the like in
accordance with policies. In a preferred embodiment, the
DRM plug-in 1808, network service orchestration layer
1810, policy service 1816, and registration service 1812 are
implemented using the DRM engine and service orchestra-
tion technologies described elsewhere herein and in the *551
application. For example, in one embodiment DRM plug-in
1808 may comprise an embodiment of the DRM engine
described above. It will be appreciated that while FIG. 18
shows an embodiment in which existing applications such as
word processor 1802 and email client 1804 are integrated
with the DRM engine via a plugin that the applications can
call, in other embodiments the DRM engine could be
included as an integral part of either or both of the appli-
cations themselves. It will also be appreciated that the
illustrative system shown in FIG. 18 can be implemented
within a single enterprise or may span multiple enterprises.

[0220] In the illustration shown in FIG. 18, the directory
server 1806 may, for example, contain user profiles and
group definitions. For example, a group called “Special
Projects Team” may be set up by a company’s system
administrator to identify the members of the company’s
Special Projects Team.

[0221] In one embodiment the directory server 1806 may
comprise an Active Directory server running web services,
such as those described in the *551 application (and imple-
mented, e.g., with standard IIS based technologies on the
Windows® platform), that issue nodes, links, and licenses to
the people in the Special Projects Team group based on
content that is accessed. If membership changes in the
group, then new tokens may be issued. For revocation of
rights, the directory server 1806 can run a security metadata
service based on technology such as that described in the
’551 application (occasionally referred to herein as
“NEMO” technology). In some embodiments, the client can
be required to have an to-date time value or notion of time

1.13. Example: Enterprise Content Management

US 2007/0172041 Al

(based on whatever freshness value the company chooses to
define (e.g., 1 week, 1 day, 1 hour, every 5 minutes, etc.)) in
order to use DRM licenses. For example, a token that the
security metadata service provides might include a trusted
and authenticable time value. In some embodiments, the
client can identify user node IDs in security metadata service
interactions. Security metadata can be evaluated directly in
the context of license controls to determine if a user still has
a given membership. Security metadata can also return
agents that can determine if relationships such as being a
member in the Special Projects Team are valid. Thus, in
some embodiments it is possible to leverage a company’s
existing authorization and authentication infrastructure (e.g.,
the company’s Active Directory server) with just the addi-
tion of a few well-defined web services.

[0222] FIG. 19 shows an example of how a system such as
that shown in FIG. 18 can be used to manage access to or
other use of a document. In this example, a particular
employee (John) might frequently work on highly confiden-
tial strategic projects, and may have already installed the
DRM plugin 1908 for his applications (e.g., a word pro-
cessing program 1902, an email program 1904, a calendar
program, a program or program suite that integrates such
programs, and/or the like). At some point during the creation
of his document, John accesses a “permissions” pull-down
menu item that has been added to his application’s toolbar
(action 1913). A permissions dialog box appears which
contacts his company’s Active Directory Server 1906 for a
directory of individuals and groups that have been set up on
the system. He selects “Special Projects Team” from the list,
and elects to give everyone on the team permission to view,
edit, and print the document. Using the NEMO service
orchestration technologies described in the 551 application,
the DRM plugin 1908 contacts a NEMO-enabled Policy
Service extension 1916 to the Active Directory 1906 and
requests a copy of the Policy to use to protect files for the
Special Projects Team (action 1914). When John saves the
document, the DRM plugin automatically encrypts the file
1912, and creates a license object targeted and bound to the
group known as “Special Projects Team”1910. The license
1910 allows the file 1912 to be accessed (e.g., viewed,
edited, printed, etc.) by any device that can produce a valid
chain of links from its Device Node to the Special Projects
Team Group Node.

[0223] John can access the document 1912 because his
device has a link to John’s User Node, and it also has a link
from John’s User Node to the “Special Projects Team”
Group Node. Likewise, if he forwards this document to
others, they can only access it if they also can produce a
valid chain of links to the “Special Projects Team” Group
Node (e.g., by requiring that the Special Projects Team Node
be reachable by the device).

[0224] John might save the file (already protected) on his
computer, and later attach it to an email message (action
1920). For example, he might open an old email to his boss
(George), attach the file as he normally does, and send the
message. As shown in FIG. 20, George also has the DRM
plugin 2000 installed on his computer 2014. When he logged
in to his computer 2014, the plugin 2000 opportunistically
checked all of the groups that he has been added to (action
2006), and downloaded new, refreshed links for any that had
expired (action 2012). If he had been added to “Special
Projects Team” since his last login, his plugin 2000 would

Jul. 26, 2007

download a Link Object 2008 that links his User Node to the
“Special Projects Team” Group Node. This Link 2008
signifies that User Node “George” is a member of the Group
Node “Special Projects Team”. In this example, assume Link
Object 2008 has an expiration date after which it will no
longer be valid (e.g., 3 days).

[0225] As shown in FIG. 21, when George tries to open
the document (actions 2130, 2132), the DRM plugin 2108
checks the embedded (or attached) license, and learns that
the “Special Projects Team™ node must be reachable. His
plugin 2108 constructs (and validates) a chain of links 2120,
2122 from his computer’s Device Node to the User Node
“George”; and from User Node “George” to Group Node
“Special Projects Team” (action 2134). Since the device has
a valid chain of Links 2120, 2122, his plugin 2108 permits
access to the file.

[0226] As described elsewhere herein, in some embodi-
ments links can also carry a secure chain of keys. Thus, in
some embodiments, by producing a chain of Links to the
Special Projects Team Node, the plugin can not only prove
that it is permitted to access the content, but also that it is
capable of decrypting a chain of keys that enable it to
decrypt the content.

[0227] 1If, for example, another employee (“Carol”)
receives John’s email accidentally, and attempts to open the
document, her DRM plugin will retrieve the license bundled
with the file and evaluate the terms of the license. Her PC
has a link to her User Node “Carol”; but since she is not a
member of the team, there is no Link from “Carol” to the
“Special Projects Team” Group Node. Since “Special
Projects Team” is not reachable, she is not permitted to
access the file.

[0228] 1If Carol is eventually added to the group “Special
Projects Team”. The next time her DRM plugin refreshes her
memberships, it will detect this new group, and download a
Link Object that links her User Node to the Special Projects
Team Node. Her plugin now has all of the links it needs to
construct a chain from her Device Node to her User Node to
the Special Projects Team Node. The Special Projects Team
node now “is reachable” and she can open any documents or
emails that are targeted to the Special Projects Team—even
those that were created before she joined the team.

[0229] Assume that a month later George moves on to a
new role and is removed from the Special Projects Team
Group in the Active Directory. The next time George logs in,
his plugin does not receive a new, refreshed Link Object
associating his User Node “George” to the “Special Projects
Team”. When, weeks later, he tries to open John’s file, his
plugin attempts to construct a chain of links to the Special
Projects Team. His PC still has a link to the User Node
“George” (George’s PC still belongs to him); but the Link
from “George” to the “Special Projects Team™ has expired.
Since “Special Projects Team” is not reachable, he is not
permitted to access the file.

[0230] Assume that the company has a policy that requires
access to all confidential information to be logged. In one
such an embodiment, the policy for the Special Projects
Team dictates that all licenses that are created for this group
also need to require collection and reporting of usage
information to, e.g., a central repository. Thus, in this
example, when evaluating (e.g., executing) the control pro-

US 2007/0172041 Al

gram in the license, the plugin executes the requirement to
log the access and does so. For example, activity of conse-
quences can be logged in a local protected state database
such as that described herein, and when network connectiv-
ity is re-established the relevant content can be reported via
services previously described.

[0231] FIG. 22 shows another illustrative system 2200 for
managing electronic content within an enterprise. In the
example shown in FIG. 22 an LDAP server 2206 is used to
manage user profiles, group definitions, and role assign-
ments, and contains a group definition called “Special
Projects Team”, and a role definition of “Attorney”.

[0232] Assume that John is an attorney and wishes to send
an email with an attachment to other members of the Special
Projects Team. When John installs the DRM plug-in 2208
for his applications, it also installs items to his email toolbar.
At some point during his composition of the email message,
John accesses “Set Permissions” from a pull-down menu
that was added to his toolbar. The DRM plug-in 2208
contacts a Policy Service 2216 and displays a list of corpo-
rate messaging policies from which to choose. John selects
“Special Project DRM Template” and the DRM plug-in
2208 uses the NEMO protocol to request and ensure the
authenticity, integrity, and confidentiality of policy object
that it receives. The policy describes how the licenses that
use this template should be created, including how they
should be targeted and bound.

[0233] When John hits “Send”, the DRM plugin 2208
encrypts the message and attachment, and generates the
associated license(s). The license requires that in order to
access the email or the attachment, either the Special
Projects Team Group Node or the “Attorneys” Group Node
must be reachable.

[0234] The license(s) are bundled with the encrypted
message payload and encrypted attachment. The message is
subsequently sent to a list of recipients using standard email
functionality. Since the license rules and encryption are not
dependent on the addressing of the email, the fact that an
incorrect email recipient might be erroneously included does
not put the contents of the email or attachment at risk.

[0235] Since such an unintended recipient will not have a
valid Link Object linking his User Node to the Special
Projects Team, he is not permitted to access the content if
and when he attempts to do so. Furthermore, since his device
does not have the necessary chain of Links (and the keys
they contain), his device does not even have the capability
to decrypt the content.

[0236] However, if the unintended recipient, in turn, for-
wards the same, unmodified email using standard email
functionality to a member of the Special Projects Team. That
member will have a Link Object that Links his User Node
to the “Special Projects Team” Group Node, and will be able
to access the email’s contents.

[0237] Assume that another attorney (“Bill”) at the com-
pany has also received a Link Object that associates him
with the “Special Projects Team” Group Node. Bill can also
view the file. If he forwards the message to a paralegal
(“Trent”), who is neither an attorney nor associated with the
Special Projects Team, Trent will not have a Link Object that
connects him with the “Special Projects Team” Group Node,
and he will not be able to access the document.

Jul. 26, 2007

[0238] If Trent is subsequently added to the Special
Projects Team group in the LDAP directory 2206, he will be
given the necessary Link Object(s) and will be able to access
the previously forwarded email.

[0239] 1If, as previously discussed, the company has a
policy indicating that a reporting requirement be included in
all licenses, then, in one embodiment, whenever a control
program within one of these licenses is executed (e.g., when
someone attempts to access the file), a reporting event can
be triggered. The reporting step can additionally include an
indicator as to whether or not access was granted or
denied—this is a matter of implementation choice. If such an
indicator is used, a log can be maintained of the number of
attempts to access a particular document, and status or other
information on each (e.g., success, failure, etc.).

[0240] As yet another example, assume that one of the
members (“Stephen”) of the Special Projects Team travels to
another company to perform work on the special project.
Before leaving for the other company, Stephen’s email client
downloads a local copy of all the email in is Inbox. The
protected report attached to one of these emails also includes
an embedded (or attached) license. This license object
includes both the rules for accessing the content as well as
an encrypted content key. The only “missing link” required
to access the content is the necessary link objects to reach
the “Special Projects Team” Group Node.

[0241] Since, in this example, the company’s policy is to
allow Link Objects to remain valid for 3 days, the Link
Object that links Stephen’s User Node to the Special
Projects Team Node, will remain valid while he is traveling
and disconnected. If he attempts to access the file while
offline, the Special Projects Team Group Node will still be
reachable, and he will be permitted to access the file.

[0242] 1If, however, Stephen stays offline for more than
three days, the Link Object linking him to the Special
Projects Team will expire. The Special Projects Team Group
Node will then no longer be reachable, and he will not be
permitted to access the file.

[0243] If Stephen eventually travels to a location where he
can connect to the company’s system (e.g., via VPN), his
DRM plug-in will request refreshed copies of Link Objects
for each of the groups to which he belongs. Since he is still
part of the “Special Projects Team” group, he will receive a
new link object from his User Node to the Special Projects
Team Group Node. This link replaces the ‘old’ link which
has expired and is no longer valid.

[0244] Since the “Special Projects Team” Node is now
reachable using this new, refreshed Link, he is once again
able to access the protected report. The new link object will
be valid for a period of 3 days, after which it will also expire.

[0245] As yet another example, assume that a member
(“Sally”) of the Special Projects Team wishes to communi-
cate with another team member via an instant messenger,
save a copy of the communication, and give it to another
member of the team (e.g., via an email attachment, a
diskette, a dongle, or the like). In this example, the instant
messenger client (and, potentially any other messaging or
communication products which the company offers its
employees) is linked to a DRM plugin which, as in the
previous examples, accesses the Policy “Special Project
DRM Template™ that dictates how licenses are to be targeted

US 2007/0172041 Al

and bound. When Sally attempts to save her instant mes-
saging conversation (e.g., by selecting “Save-As”), the plug-
in chooses an encryption key (e.g., randomly) and packages
(encrypts) the text of the conversation. Per company policy,
the DRM plugin then generates a license object that is
targeted and bound to the Special Projects Team Group
Node.

[0246] The file containing the protected IM transcript is
bundled with the license to access the transcript contents. As
in the previous examples, the License contains both the rules
that govern access to the content, as well as an encrypted
copy of the content key. Sally can transfer this bundled file
to an email, USB dongle, diskette, etc. using standard ‘drag
and drop’ procedures, and send it to someone else. Provided
that the recipient’s device can produce valid links to the
Special Project Group Node, access to the content is per-
mitted and possible.

[0247] Assume that Sally gives the file to John, who is also
a member of the Special Projects Team. If John has a
recently-refreshed Link Object that identifies him as a
member of the Special Projects Team, he will be able to
access the file. Per the company’s policy, this Link Object
contains an expiration date that will cause it to expire in
three days. Therefore, even if John remains disconnected, he
will still have access as long as that link remains valid.

[0248] 1If, at some later time, John leaves the Special
Projects Team for another job assignment, and finds the USB
dongle from Sally in his bag and attempts to open the file
using his desktop computer, the Link Object associating his
User Node to the Special Projects Team will have expired.
Since he is no longer part of the team, the DRM plugin on
his device no longer can acquire new, refreshed links. Since
the “Special Projects Team” Group Node is no longer
reachable by his device, access is not permitted.

[0249] Figuring that his laptop has not been connected to
the network since he changed jobs, he also tries to open the
file with that device. Since the maximum allotted time has
passed, that Link is also no longer valid. In some embodi-
ments, each time he attempts to access the file, a report can
be generated and queued to be sent to a central repository.

[0250] The central repository receives multiple reports of
unsuccessful attempts to access the file and flags a manager
via email. The manager reminds John that he is no longer
permitted to access the confidential material and asks for all
files to be destroyed (even though the system indicates that
access has not been granted).

[0251] As yet another example, assume that a governmen-
tal agency or outside auditor wishes to investigate or audit
the Special Projects Team’s handling of confidential infor-
mation. To support the investigation, the company wishes to
demonstrate audit records for access to sensitive information
related to the Special Project.

[0252] To this end, the company first scans all cleartext
message archives for any messages related to the Special
Project. To their relief, they discover that, in adherence to
company policy, no employees sent messages discussing the
Special Project without appropriate DRM protection (e.g.
outside of the system).

[0253] The company then uses the DRM access records to
produce an audit trail detailing who was given access to
protected information, and when.

Jul. 26, 2007

[0254] Per company procedure, when the Special Projects
Team Group was established, it also included the Chief
Compliance Officer (CCO) by default. A Link Object for
Chief Compliance Officer was created and saved to the
archive server, which allows him or her to review the
contents of all messages if needed in the future.

[0255] In this example, the policy defined for the Special
Projects Team indicated that all Licenses generated by the
team must include the requirement to report any attempted
access to the file, including the date and time, UserNode, and
whether or not access was granted. These reports were saved
in an access log on a central repository.

[0256] The CCO checks the access logs for all accesses
associated with the Special Projects Team prior to the date
when any leak or other irregularity was suspected to have
occurred. The CCO also searches the email, IM, and net-
work backup archives for all message traffic and system files
on or before that date. Since each file has an attached license
(with content key), and the CCO has the necessary Link
Objects to satisty the requirements of the License, he or she
is permitted to access the contents of each and every
message that was accessed prior to the time in question.

[0257] The access logs and unencrypted message contents
are made fully available to the agency/auditor as part of the
investigation.

[0258] In some embodiments the policy for the Special
Projects Team could also have included the requirement to
set an expiration date for the all licenses related to the
Special Project. For example, if the company were only
statutorily required to keep records of this nature for a period
of 1 year, they could indicate in the policy that Licenses
expire one year following date of issue. In that case, the
company might only keep records as long as legally required
to do so. Even the CCO would not have access after that
time.

[0259] In the foregoing discussion, reference has occa-
sionally been made to “targeting” and “binding”. In pre-
ferred embodiments, targeting and binding represent two
different, yet closely related processes. In preferred embodi-
ments, “binding” is primarily a cryptographic process, con-
cerned with protecting the key that was used to encrypt the
content. When a License is ‘bound’ to a Node (for example
the “Special Projects Team” Node), it can mean, e.g., that the
content key is encrypted with the public key associated with
that Node. Thus, only devices that have access to the private
key of the Node will have the necessary key to decrypt the
content (and in preferred embodiments, the only way to get
access to the private key of a Node is to decrypt a chain of
Links to that Node); however, simply having the correct
private key only indicates that the device has the capability
to decrypt the content, if it is also permitted to do so.

[0260] In preferred embodiments, whether or not a device
is permitted to access the content is determined by a Control
Program within the License, and specifically, how it is
“targeted”. “Targeting” refers to adding a requirement in the
Control Program to specify that a particular node (or nodes)
“are reachable” to perform a use of the content. In the
examples shown above, the Control Program typically
specifies that a particular Node “Special Projects Team” is
reachable by the consuming device.

[0261] In some instances, it may be desirable to have
licenses targeted to more than one Node, such as a new

US 2007/0172041 Al

product development team at a company (“Company”) that
is working with multiple suppliers to bid on components for
anew top secret product. Assume that during the early stages
of the project, Supplier A and Supplier B (competitors) both
have links to “SecretProjectX”. Supplier A wants its ideas to
be shared with all members of SecretProjectX, but does not
want them to inadvertently leak to Supplier B. Supplier A
can target these licenses such that: (“SecretProjectX is
reachable”) AND (“Supplier A is reachable” or “Company is
reachable”). If Company inadvertently shares this informa-
tion to everyone in Secret Project X (including Supplier B),
those at supplier B will not be permitted to look at it, limiting
any non-disclosure risk to Company and eliminating the
prospect of Supplier A losing its trade-secrets.

[0262]

[0263] FIG. 23 illustrates how the systems and methods
described herein could be applied to manage healthcare
records. Assume that medical records have different levels of
confidentiality, and that it is desirable to grant different
access rights to different entities in the system (e.g., patients,
doctors, insurance companies, and the like). For example, it
may be desirable to permit some records to be viewed only
by the patient, to permit some records to be viewed only by
the patient’s doctor, to permit some records to be viewable
by the patient but only editable by the patient’s doctor, to
permit some records to be viewable by all doctors, to permit
some records to be viewed by all insurance companies, to
permit some records to be viewable only by the patient’s
insurance company, and/or the like.

[0264] As shown in FIG. 23, this healthcare ecosystem
2300 can be modeled using DRM objects like nodes and
links, such as those describe elsewhere herein. For example,
nodes could be assigned to the patient 2302, the patient’s
doctors 2304, the patient’s insurance company 2306, the
patient’s devices (2308, 2310) a specific one of patient’s
doctors 2312, the doctor’s computing devices 2314, 2316,
the group of all doctors 2318, the group of doctors of a
certain specialty 2320, a medical institution 2322, an insur-
ance company 2324, the computing devices used by the
insurance company 2326, the group of all insurance com-
panies 2328, and the like.

[0265] Assume that the patient’s doctor uses his or her PC
to create a medical record regarding the patient. For
example, the medical record may comprise a document
template with a number of fields for his or her notes,
diagnoses, prescription instructions, instructions for the
patient and/or the like. The template may also allow the
doctor to select the security policies for governing the
document and/or the individual field thereof. For example,
the doctor’s application may present a set of standard
security policy choices, and, upon obtaining the doctor’s
selection, may automatically generate a license based on
those choices and associate with the protected (e.g.,
encrypted) content of the medical record.

1.14. Example: Healthcare Records

[0266] For purposes of this example, assume the license
grants viewing access to the patient, to all healthcare pro-
viders who treat the patient, and to all insurance companies
that provide coverage for the patient. Further assume, for the
sake of illustration, that the license grants editing rights only
to cardiologists at medical institution X.

[0267] The packaging application accepts the doctor’s
policy specification input (which may simply comprise a

Jul. 26, 2007

mouse click on a standard template) and generates a license
that includes a control program such as that shown below:

Action.Edit.Perform() {
if (IsNodeReachable(“MedicalFoundationX”) &&
IsNodeReachable(“Cardiologist™)) {
return new ESB(ACTION_GRANTED);

}else {

return new ESB(ACTION__DENIED);

)

Action.View.Perform() {

if (IsNodeReachable(*“PatientY™) ||
IsNodeReachable(“HCPsPatientY™) |
IsNodeReachable(“ICsPatientY™) {
return new ESB(ACTION_GRANTED);

} else if (EmergencyException == TRUE) {
return new ESB(ACTION__GRANTED, new
NotificationObligation()); }

else {
return new ESB(ACTION__DENIED);

[0268] The medical record and its associated license might
then be stored in a central database of medical records, a
database operated by the particular medical foundation,
and/or the like. If patient Y subsequently visits another
healthcare provider, and authorizes that healthcare provider
as one of his approved healthcare providers (e.g., by signing
an authorization form), that healthcare provider will obtain
a link to the patient y approved healthcare providers node,
which the healthcare provider would store on his computer
system. If that healthcare provider were to then obtain the
medical record created by doctor x, he would be able to gain
viewing access to that medical record, since patient y’s
approved healthcare provider node would be reachable from
the new healthcare provider’s computer system. If on the
other hand, an unapproved healthcare provider were to
obtain a copy of the (encrypted) medical record, he would be
unable to access it since none of the required nodes (i.e.,
patient y’s node, the node for all of patient y’s approved
healthcare providers, and the node for all of patient y’s
approved insurance companies) would be reachable from his
computing system.

[0269] Note, however, that the example control program
shown above includes an override feature that can be
invoked, e.g., in emergencies if, for example, a healthcare
provider needs to access the protected medical record, but is
unable to satisty the conditions of the control program (e.g.,
because the healthcare provider attempting to make emer-
gency access to the medical record has not previously been
registered as a healthcare provider of patient Y). Note also,
however, that invocation of the emergency access exception
will cause information to be automatically recorded regard-
ing the invocation and/or other circumstances, and, in this
example, will also cause a notification to be sent (e.g., to the
patient’s preferred healthcare provider—i.e., an entity
explicitly authorized by the patient—and/or the patient
himself). The association of such obligations with the emer-
gency exception may discourage abuse of the exception,
since a record of the abuse would exist.

[0270] 1t will be appreciated that this example program
has been provided to facilitate explanation of certain
embodiments of the systems and methods described herein.

US 2007/0172041 Al

For example, whether a system includes support for emer-
gency exceptions will typically depend on the requirements
and desires of the system architect. Thus, for example, some
embodiments may not support emergency exceptions, others
may support emergency exceptions, but limit the class of
entities who can invoke such exceptions to the class of “all
doctors” (e.g., by requiring that the EmergencyException
flag be set to “true” AND the All Doctors node be reachable),
and others still may support emergency exceptions, but not
associate mandatory obligations therewith (since inability to
comply with the obligation would, in a preferred embodi-
ment, render the content inaccessible), relying instead on
non-technical, legal or institutional means for enforcement
(e.g., by trusting healthcare providers not to abuse the ability
to invoke the exception, and/or relying on industry certifi-
cation and the legal system to prevent abuse).

[0271] Yet another variation that could be made to the
examples provided above might be to require stronger proof
that a doctor, or a specifically named doctor, was actually the
one accessing a medical record, as opposed to someone else
sitting at the computer that the doctor uses to access records
(and thus a computer potentially containing the links nec-
essary to satisfy a reachability analysis). Such a stronger
form of authentication could be enforced in any suitable
manner. For example, it could be wholly or partially
enforced at the application or system level by protecting the
doctor’s computer and/or the software used to access medi-
cal records using passwords, dongles, biometric identifica-
tion mechanisms, and/or the like. Alternatively, or in addi-
tion, the control programs associated with certain medical
records could themselves include an obligation or condition
require such stronger identification, such as checking for the
presence of a dongle, requiring the host to obtain a pass-
word, and/or the like.

[0272] 1.15. Example: Subscriptions

[0273] FIG. 24 is an illustration of how the systems and
methods presented herein could be used in the context of an
electronic subscription service. Say, for example, that a user
(Alice) wishes to obtain a subscription to jazz music from an
Internet service provider (XYZ ISP). The Internet service
provider may offer a variety of different subscription
options, including a trial subscription that is free of charge,
but can only be used to play subscription content five times
before expiring (e.g., by playing one song five times, by
playing five different songs once each, or the like). The trial
subscription also will only make the content available in
slightly degraded form (e.g., reduced fidelity or resolution).
Alice uses her personal computer to access the service
provider’s Internet website, and opts for the trial subscrip-
tion. The service provider then issues a link object 2400 and
an agent 2401 and sends them to Alice’s personal computer
2406. The agent 2401 is operable to initialize a state in
Alice’s secure state database that will be used to keep track
of the number of times Alice has used trial content. The link
2400 is from Alice’s ISP account node (Alice@XYZ_ISP)
2402 to subscription node 2404 and includes a control
program that, when Alice requests to play a piece of content,
checks the current value of the state variable set by the agent
2401 to see if additional plays are allowed.

[0274] When Alice downloads a piece of content to her PC
and attempts to play it, the DRM engine on her PC evaluates
the license associated with the content, which indicates that

Jul. 26, 2007

subscription node 2404 must be reachable in order to play
the content. Alice had previously registered her PC with her
ISP, at which time she received a link 2405 from her PC
node 2406 to her account node 2402. The DRM engine thus
possess link objects 2405, 2400 connecting PC node 2406 to
subscription node 2404; however, before granting Alice’s
request to play the content, the DRM engine first determines
whether the links are valid by executing any control pro-
grams that the links contain. When the control program in
link 2400 is executed, the DRM engine checks the state
database entry to determine if 5 plays have already been
made, and, if they have not, grants her request to play the
content, but also issues an obligation to the host application.
The obligation requires the host to degrade the content
before rendering. The host application determines that it is
able to fulfill this obligation, and proceeds to render the
content. In order to enable Alice to preview content before
counting that content against her five free trial-offer plays,
the control program might also include a callback that
checks, e.g., 20 seconds after a request to play a piece of
content has been granted, to see if the content is still being
played. If the content is still being played, the play count is
decremented, otherwise it is not. Thus, Alice can select from
any of the content items offered by the subscription service,
and play any five of them before her trial subscription
expires.

[0275] Once Alice’s trial subscription expires, Alice
decides to purchase a full, monthly subscription which
enables her to play as many content items as she wishes for
a monthly fee. Alice use’s her PC to sign up for the
subscription, and receives a link 2410 from her account node
2402 to the subscription node 2404. The link includes a
control program indicating that the link is only valid for one
month (e.g., the control program checks an entry in the state
database to see if one month has elapsed since the link was
issued). This link 2410 is sent to Alice’s PC, along with an
agent program that is operable to initialize an appropriate
entry in the state database of the PC’s DRM engine indi-
cating the date on which the link was issued. When Alice
downloads a piece of content from the subscription service
and attempts to play it, her PC’s DRM engine determines
that a path to the subscription node exists comprised of links
2405, 2410. The DRM engine executes any control pro-
grams contained in links 2405, 2410 to determine if the links
are valid. If less than a month has elapsed since link 2410
was issued, the control program in link 2410 will return a
result indicating that link 2410 is still valid, and Alice’s
request to play the piece of content. If Alice attempts to play
a piece of content she previously obtained during her free
trial period, the DRM engine on her PC will perform the
same analysis and grant her request. Since the license
associated with the piece of content obtained during the trial
period indicates that if the TrialState variable in the secure
database is not set, the only condition is that the subscription
node must be reachable, Alice can now access that content
once again since the subscription node is once again reach-
able from Alice’s PC, this time via link 2410, not link 2400,
which is no longer valid. Thus, Alice does not need to obtain
a second copy of the content item to replace the copy she
obtained during the free trial offer. Similarly, if Alice obtains
a piece of subscription content from her friend, Bob, who is
also a subscriber to the same service, Alice will, in this
example, be able to play that content, too, since the content’s

US 2007/0172041 Al

license simply requires that the subscription node be reach-
able, not that it be reachable via Bob’s PC or account.

[0276] 1t will be appreciated that the above examples are
simply intended to illustrate some of the functionality that
can be enabled by the systems and methods described
herein, and is not intended to suggest that subscriptions must
be implemented in precisely the manner described above.
For example, in other embodiments, the license associated
with a piece of subscription content might be bound to a
user’s node, rather than the subscription node, thus prevent-
ing two subscribers from sharing content like Bob and Alice
were able to do in the example described above. It will be
appreciated that many other variations to the above
examples could be made.

[0277] The table below provides some illustrative pseudo-
code for the agent, link, and license control programs in the
example described above:

The subscription trial gives you access to up to 5 pieces of
subscription content. The content will be marked as rendered only after
20 seconds of rendering. Content rendered in the context of the trial
will have to be degraded by the rendering applicatio.

The real subscription will be renewed every month and has no such
limitations on the number or quality of the renderings.

The code of the agent is as follows:

TrialAgent() {
SetObject(“TrialState”, 5);

The code of the control program in the trial link will be:

Control.Link.Constraint.Check() {
if (GetObject(“TrialState”, 5) > 0) {
return SUCCESS;
}else {
return FAILURE;
¥
¥

When Alice registers for real to the subscription service, she gets back
a link (from: Alice, to: Subscription) and an agent
The code of the agent is as follows:

RealSubscriptionAgent() {
// erase the TrialState if present
trialState = GetObject(*“TrialState™);
if (trialState != NULL) {
SetObject(“TrialState”, NULL); // erase

}

The code of the link will be:

Control.Link.Constraint.Check() {
if (GetTrustedTime() < ExpirationDate) {
return SUCCESS;
}else {
return FAILURE;
¥
¥

The content licenses targeted to the subscription all have the same
control program:

Action.Play.Perform() {
// first check if the subscription node is reachable
if ({IsNodeReachable(“SubscriptionNode™)) {
return new ESB(ACTION__DENIED);

}

Jul. 26, 2007

-continued

// now check if the TrialState is present
if (GetObject(“TrialState) != NULL) {
// we’re in the trial mode: we need a callback and an obligation
return new ESB(ACTION__GRANTED,
new OnTimeElapsedCallback (20, DecrementCounter),
new DegradeRenderingObligation());
}else {
// we’re in paid subscription mode: just return ACTION_GRANTED
return new ESB(ACTION__GRANTED);

}

// code of the callback function of OnTimeElapsed
DecrementCounter() {
SetObject(“TrialState”, GetObject(“TrialState”) - 1); }

[0278] Referring once again to FIG. 24, Alice also has an
account 2420 with her mobile service provider, which
remains valid as long as she remains connected to the
network. Alice is not required to make a special payment for
the subscription, in exchange for which she gets sent a link;
instead renewal links 2424 are sent to her phone automati-
cally when she connects to the network. These links enable
her to access any of the content items or services offered by
the mobile service provider, which have licenses that require
only that the subscription node 2422 be reachable. If Alice
changes mobile service providers, she will unable to access
previously acquired content once her links 2424 expire.

[0279] FIG. 25 shows an example of how a service pro-
vider might interact with a home network domain 2500. In
this example, devices are registered to a home network
domain which enforces a policy that allows up to 5 devices
to belong to the domain at any one time. Although the Smith
family’s cable service provider did not provide the domain
manager software used to set up the home network domain
2500, cable service provider knows that the domain manager
has been implemented by a certified provider of home
network domain manager software, and thus trusts the
domain manager software to operate as intended. As shown
in FIG. 25, the Smith family connects Alice’s phone and PC,
Carl’s PVR, and Joe’s PSP to the domain 2500, resulting in
links being issued from each of these devices to the domain
node 2500. When new content is received, e.g., at the PVR,
discovery services such as those described in the ’551
application enable the other devices in the domain to auto-
matically obtain the content and any necessary links. Links
are issued from the domain node 2500 to the service
provider account node 2502. Some of the cable service
provider’s content has a license with an obligation that fast
forward and rewind must be disabled so that advertisements
will be viewed. Carl’s PVR and PC Alice’s PC are able to
enforce the obligation, and thus can play the content. Alice’s
mobile phone is unable to enforce the obligation and thus
denies access to the content.

[0280] 1.16. Additional Examples: Content and Rights
Sharing

[0281] As the preceding examples illustrate, embodiments
of the systems and methods presented herein enable elec-
tronic content to be shared in natural ways. For example, the
systems and methods described herein can be used to enable
consumers to share entertainment content with their friends
and family members, and/or enjoy it on all of their family’s

US 2007/0172041 Al

devices, while simultaneously protecting against wider,
unauthorized distribution. For example, automated peer-to-
peer discovery and notification services can be used, such
that when one device obtains content or associated rights,
other devices can automatically become aware of that con-
tent, thereby providing a virtual distributed library that can
be automatically updated. For example, in one embodiment
if one user obtains content or rights on a portable device at
one location, then comes home, the user’s family’s devices
can automatically discover and make use of those rights.
Conversely, if a user obtains rights on a device on his or her
home network, his or her portable devices can discover and
carry away that content for use elsewhere. Preferred embodi-
ments of the systems and methods described herein can be
used to create services and rights objects that allow the
above-described scenarios to be completely automated,
using, for example, the service discovery and inspection
techniques described in the *551 application. For example,
the devices registered to a particular domain may provide
services to each other (e.g., sharing of rights and content),
and/or remote services can be invoked to facilitate local
sharing of content. The systems and methods described
enable the creation of DRM frameworks that are not focused
on preventing the creation of copies per se, but rather are
designed to work harmoniously with network technology to
allow content to be shared, while protecting against con-
sumers becoming illicit distributors of the content.

[0282] Preferred embodiments of the DRM systems and
methods described herein also enable the determination of
rights without the verbose types of rights expressions char-
acteristic of some other DRM systems. Instead, preferred
embodiments use a set of crafted rights objects that can
interact contextually. These objects describe relationships
and controls among entities such as users, devices, content,
and groups thereof. For example, such contextual interac-
tions might allow a device to determine that a given piece of
content can be played because (a) the content was obtained
from a legitimate content service that the user currently
subscribes to, (b) the user is part of a specific family group,
and (c) the device is associated with this specific family
group. There are numerous types of relationships such as
those described in this example, which users understand
intuitively, and preferred embodiments of the systems and
methods described herein enable the creation of systems that
naturally understand these kinds of relationships. The rela-
tionships among entities can be created, destroyed, and
changed over time, and preferred embodiments provide a
natural way of determining rights in a dynamic networked
environment—an environment that consumers can naturally
understand. Nevertheless, if a content deployer wants to use
a more traditional rights expression approach, preferred
embodiments can accommodate that as well. For example,
tools can be used to translate traditional rights expressions
into sets of objects such as those described above, and/or a
DRM engine can be implemented that operates directly on
such rights expressions. Alternatively, in some embodi-
ments, devices do not need to understand such traditional
rights expressions, and are not constrained by their limita-
tions.

[0283] Preferred embodiments of the systems and meth-
ods described herein also have a very general notion of a
media service. A broadcast service and an Internet download
or subscription service are examples of media services.
Restrictions associated with these services can make content

Jul. 26, 2007

difficult to share. With preferred embodiments of the sys-
tems and methods described herein, content can be obtained
on broadcast, broadband, and mobile services, and shared on
a group of networked devices in the home, including por-
table devices. Alternatively, or in addition, services can be
offered by individual devices in a peer-to-peer fashion via
wireless connectivity. For example, the new generation of
WiFi enabled cellphones can provide content catalog ser-
vices to other devices. Such a service allows other devices
to “see” what content is available to be shared from the
device. The service provides information that can be used to
determine the rights so that any limitations can be accepted
or easily eliminated.

[0284] Preferred embodiments of the systems and meth-
ods described herein are not confined to one service or to one
platform. As explained above, preferred embodiments are
capable of working with numerous services, including “per-
sonal” services. This is becoming more and more important
as home and personal networks become more ubiquitous.
For example, digital cameras are now available with WiFi
connectivity, making it very convenient to share photos over
networks. It is nice to be able to automate the sharing of
photographs, but the camera will encounter many different
networks as it is carried about. Automated sharing is con-
venient, but personal photos are, of course, personal.
Embodiments of the systems and methods described herein
make it easy to share photos within a family on the family’s
devices, but not with arbitrary devices that happen to
encounter the camera on a network. In general, as more
devices become networked, it is going to be increasingly
important to manage the rights of all content on those
devices. Although the purpose of networking is to allow
information on the networked devices to be shared, net-
works will overlap and merge into one another. Networks
enable content to be shared easily but it should not be shared
arbitrarily. Thus, it is desirable to have a DRM system that
is network-aware and that can use the context provided by
the content, the user, the network, and characteristics of
devices to determine if and how content should be shared.
Preferred embodiments of systems and methods described
herein enable such an approach.

6. Reference Architecture for Content Consumption and
Packaging

[0285] The following is a description of a reference archi-
tecture for a consuming application (e.g., a media player)
that consumes DRM-protected content, and a packaging
application (e.g., an application residing on a server) that
packages content targeted to consuming applications.

[0286] 1.17. Client Architecture

[0287] The following provides an example of functions
that an illustrative embodiment of a DRM engine might
perform for a host application that consumes content.

[0288] 1.17.1. Host Application to DRM Engine Interface

[0289] Although in a preferred embodiment there is no
required API for DRM engines, the following are high-level
descriptions of the type of interface provided by an illus-
trative DRM engine (referred to as the “Octopus” DRM
engine) to a host application in one illustrative embodiment:

[0290] Octopus::CreateSession(hostContextObject)—
Session—Creates a session given a Host Application Con-

US 2007/0172041 Al

text. The context object is used by the Octopus DRM engine
to make callbacks into the application.

[0291] Session::ProcessObject(drmObject)—This func-
tion should be called by the host application when it encoun-
ters certain types of objects in the media files that can be
identified as belonging to the DRM subsystem. Such objects
include content control programs, membership tokens, etc.
The syntax and semantics of those objects is opaque to the
host application.

[0292] Session::OpenContent(contentReference)—Con-
tent—The host application calls this function when it needs
to interact with a multimedia content file. The DRM engine
returns a Content object that can be used subsequently for
retrieving DRM information about the content, and inter-
acting with it.

[0293] Content::GetDrmInfo()—Returns DRM metadata
about the content that is otherwise not available in the
regular metadata for the file.

[0294] Content::CreateAction(actionInfo)—Action—The
host application calls this function when it wants to interact
with a Content object. The actionlnfo parameter specifies
what type of action the application needs to perform (e.g.,
Play), as well as any associated parameters, if necessary. The
function returns an Action object that can then be used to
perform the action and retrieve the content key.

[0295] Action::GetKeyInfo()—Returns information that
is necessary for the decryption subsystem to decrypt the
content.

[0296] Action::Check()—Checks whether the DRM sub-
system will authorize the performance of this action (i.e
whether Action::Perform() would succeed).

[0297] Action::Perform()—Performs the action, and car-
ries out any consequences (with their side effects) as speci-
fied by the rule that governs this action.

[0298] 1.17.2. DRM Engine to Host Services Interface

[0299] The following is an example of the type of Host
Services interface needed by an illustrative embodiment of
a DRM engine from an illustrative embodiment of a host
application.

[0300] HostContext::GetFileSystem(type)—FileSys-
tem—Returns a virtual FileSystem object that the DRM
subsystem has exclusive access to. This virtual FileSystem
will be used to store DRM state information. The data within
this FileSystem should only be readable and writeable by the
DRM subsystem.

[0301] HostContext::GetCurrentTime()—Returns the
current date/time as maintained by the host system.

[0302] HostContext::Getldentity()—Returns the unique
ID of this host.

[0303] HostContext::ProcessObject(dataObject)—Gives
back to the host services a data object that may have been
embedded inside a DRM object, but that the DRM sub-
system has identified as being managed by the host (e.g.,
certificates).

[0304] HostContext::VerifySignature(signaturelnfo)—
Checks the validity of a digital signature over a data object.
In one embodiment the signaturelnfo object contains infor-

Jul. 26, 2007

mation equivalent to the information found in an XMLSig
element. The Host Services are responsible for managing the
keys and key certificates necessary to validate the signature.

[0305] HostContext::CreateCipher(cipherType, key-
Info)—Cipher—Creates a Cipher object that the DRM sub-
system can use to encrypt and decrypt data. A minimal set
of cipher types will be defined, and for each a format for
describing the key info required by the cipher implementa-
tion.

[0306] Cipher::Encrypt(data)
[0307] Cipher::Decrypt(data)

[0308] HostContext::CreateDigester(digesterType)—Di-

gester—Creates a Digester object that the DRM subsystem
can use to compute a secure hash over some data. In one
embodiment, a minimal set of digest types can be defined.

[0309]
[0310]
[0311]

[0312] FIG. 26 illustrates the use of the illustrative APIs
set forth in the preceding sections, and the interactions that
take place between the host application and the DRM client
engine in an exemplary embodiment.

[0313]

Digester::Update(data)
Digester::GetDigest()
1.17.3. UML Sequence Diagram

1.18. Packager Reference Architecture

[0314] The following provides an example of the func-
tions that a packaging engine might perform for a host
application that packages content. In practice, a packaging
application may focus on packaging specifically, or could be
part of a general purpose application operating at a user
system that also accesses protected content (either packaged
locally or elsewhere in a network).

[0315]
Interface

1.18.1. Host Application to Packaging Engine

[0316] This section provides a high-level description of an
illustrative API between a host application and a packaging
engine used in connection with a reference DRM engine
referred to as “Octopus”.

[0317] Octopus::CreateSession(hostContextObject)—
Session. Creates a session given a host application context.
The context object that is returned by this function is used
by the packaging engine to make callbacks into the appli-
cation.

[0318] Session::CreateContent(contentReferences[])—
Content. The host application calls this function in order to
create a content object that will be associated with license
objects in subsequent steps. Having more than one content
reference in the contentReferences array implies that these
are bound together in a bundle (e.g., one audio and one video
track) and that the license issued should be targeted to these
as one indivisible group.

[0319] Content::SetDrmInfo(drmInfo). The drmlInfo
parameter specifies the metadata of the license that will be
issued. The drmInfo will act as a guideline to translate the
license into bytecode for the virtual machine.

[0320] Content::GetDRMObjects(format)—drmObjects.
This function is called when the host application is ready to
get the drmObjects that the packager engine created. The

US 2007/0172041 Al

format parameter will indicate the format expected for these
objects (e.g., XML or binary atoms).

[0321] Content::GetKeys()—keys[]. This function is
called by the host packaging application when it needs keys
in order to encrypt content. In one embodiment, there is one
key per content reference.

[0322]
face

1.18.2. Packaging Engine to Host Services Inter-

[0323] The following is an example of the type of inter-
face that an illustrative packaging engine needs the host
application to provide in one embodiment.

[0324] HostContext::GetFileSystem(type)—FileSystem.
Returns a virtual FileSystem object that the DRM subsystem
has exclusive access to. This virtual FileSystem can be used
to store DRM state information. The data within this File-
System should only be readable and writeable by the DRM
subsystem.

[0325] HostContext::GetCurrentTime()—Time. Returns
the current date/time as maintained by the host system.

[0326] HostContext::Getldentity()—ID. Returns the
unique 1D of this host.

[0327] HostContext::PerformSignature(signaturelnfo,
data). Some DRM objects created by the packaging engine
will have to be trusted. This service provided by the host will
be used to sign a specified object.

[0328] HostContext::CreateCipher(cipherType, key-
Info)—=Cipher. Creates a cipher object (an object that is able
to encrypt and decrypt data) that the packaging engine can
use to encrypt and decrypt data. In one embodiment, the
cipher object is used to encrypt the content key data in the
ContentKey object.

[0329] Cipher::Encrypt(data). Encrypts data.
[0330] Cipher::Decrypt(data). Decrypts data.

[0331] HostContext::CreateDigester(digester Type)—Di-
gester. Creates a digester object that the packaging engine
can use to compute a secure hash over some data.

[0332] Digester::Update(data). Feeds data to the digester
object.

[0333] Digester::GetDigest(). Computes a digest.

[0334] HostContext::GenerateRandomNumber(). Gener-
ates a random number that can be used for generating a key.

[0335] FIG. 27 is a UML diagram showing an example of
the use of the illustrative APIs set forth above, and the
interactions that take place between the host application and
the packaging engine in one illustrative embodiment.

7. Objects

[0336] This section provides more information regarding
the DRM objects that serve as the building blocks of an
illustrative implementation of a DRM engine. First, a rela-
tively high-level overview is given of the types of objects the
DRM engine uses for content protection and governance.
Next, a more detailed description of these objects and the
information they convey is provided, along with some
example data structures used in one illustrative embodiment.

Jul. 26, 2007

[0337] 1.19. Content Protection and Governance DRM

Objects

[0338] As previously described in connection with FIG. 6,
content governance objects (sometimes referred to, collec-
tively with node and link objects, as “DRM objects™) are
used to associate usage rules and conditions with protected
content. Together, these objects form a license.

[0339] As shown in FIG. 6, the data represented by
content object 614 is encrypted using a key. That key needed
to decrypt the content is represented by ContentKey object
602, and the binding between the content and the key used
to encrypt it is represented by protector object 604. The rules
that govern the use of the decryption key are represented by
control object 608, and the binding between the ContentKey
602 and the control object 608 is represented by controller
object 606. In one embodiment, trusted systems will only
make use of the content decryption key under governance of
the rules expressed by the byte code in control object 608.
FIG. 28A is a more detailed illustration of a license such as
that shown in FIG. 6, and illustrates a signature scheme that
is used in one embodiment.

[0340]

[0341] In one embodiment, objects share common basic
traits: they can each have an ID, a list of attributes, and a list
of extensions.

[0342] 1.19.1.1.IDs

[0343] Objects that are referenced by other objects have a
unique ID. In one embodiment, IDs are simply URIs, and the
convention is that those URIs are URNs

[0344] 1.19.1.2. Attributes

[0345] Attributes are typed values. Attributes can be
named or unnamed. The name of a named attribute is a
simple string or URI. The value of an attribute is of a simple
type (string, integer, or byte array) or a compound type (list
and array). Attributes of type ‘list’ contain an unordered list
of named attributes. Attributes of type ‘array’ contain an
ordered array of unnamed attributes.

[0346] An object’s “attributes’ field is a (possibly empty)
unordered collection of named attributes.

[0347]

1.19.1. Common Elements

1.19.1.3. Extensions

[0348] Extensions are elements that can be added to
objects to carry optional or mandatory extra data. Extensions
are typed, and have unique IDs as well. Extensions can be
internal or external.

[0349]

[0350] Internal extensions are contained in the object they
extend. They have a “critical’ flag that indicates whether the
specific extension data type for the extension is required to
be known to the implementation that uses the object. In one
embodiment, if an implementation encounters an object with
a critical extension with a data type that it does not under-
stand, it must reject the entire object.

[0351] Inone embodiment, the ID of an internal extension
needs to be locally unique: an object cannot contain two
extensions with the same ID, but it is possible that two
different objects each contain an extension with the same ID
as that of an extension of the other object.

1.19.1.3.1. Internal Extensions

US 2007/0172041 Al

[0352] An object’s ‘extensions’ field is a (possibly empty)
unordered collection of internal extensions.

[0353] 1.19.1.3.2. External Extensions

[0354] External extensions are not contained in the object
they extend. They appear independently of the object, and
have a ‘subject’ field that contains the ID of the object they
extend. In one embodiment, the ID of an external extension
needs to be globally unique.

[0355] 1.19.2. Content

[0356] Inone embodiment, the content object is an “exter-
nal” object. Its format and storage are not under the control
of the DRM engine, but under the content management
subsystem of the host application (for instance, the content
could be an MP4 movie file, an MP3 music track, etc.). In
one embodiment, the format for the content needs to provide
support for associating an ID with the content payload data.
The content payload is encrypted in a format-dependent
manner (typically with a symmetric cipher, such as AES).

[0357] 1.19.3. ContentKey

[0358] The ContentKey object represents a unique encryp-
tion key, and associates an ID with it. The purpose of the ID
is to enable Protector objects and Controller objects to make
references to ContentKey objects. The actual key data
encapsulated in the ContentKey object is itself encrypted so
that it can only be read by the recipients that are authorized
to decrypt the content. The ContentKey object specifies
which cryptosystem was used to encrypt the key data. The
cryptosystem used to protect the content key data is called
the Key Distribution System. Different Key Distribution
Systems can be used. An example of a Key Distribution
System is the Scuba Key Distribution System described
above.

[0359] 1.19.4. Protector

[0360] The Protector object contains the information that
makes it possible to find out which key was used to encrypt
the data of Content objects. It also contains information
about which encryption algorithm was used to encrypt that
data. In one embodiment, the Protector object contains one
or more IDs that are references to Content objects, and
exactly one ID that is a reference to the ContentKey object
that represents the key that was used to encrypt the data. If
the Protector points to more than one Content object, all
those Content objects represent data that has been encrypted
using the same encryption algorithm and the same key. In
one embodiment, unless the cryptosystem used allows a safe
way of using the same key for different data items, it is not
recommended that a Protector object point to more than one
Content object.

[0361] 1.19.5. Control

[0362] The control object contains the information that
allows the DRM engine to make decisions regarding
whether certain actions on the content should be permitted
when requested by the host application. In one embodiment,
the rules that govern the use of content keys are encoded in
the control object as byte code for execution by the virtual
machine. The control object also has a unique ID so that it
can be referenced by a controller object. In one embodiment,
control objects are signed, so that the DRM engine can
verify that the control byte code is valid and trusted before

Jul. 26, 2007

it is used to make decisions. The validity of the control
object can also optionally be derived through the verification
of a secure hash contained in a controller object.

[0363] 1.19.6. Controller

[0364] The controller object contains the information that
allows the DRM engine to find out which control governs
the use of one or more keys represented by ContentKey
objects. The controller object contains information that
binds it to the ContentKey objects and the control object that
it references. In one embodiment, controller objects are
signed (e.g., by a packager application that has a certificate
allowing it to sign controller objects), so that the validity of
the binding between the ContentKey and the control object
that governs it, as well as the validity of the binding between
the ContentKey ID and the actual key data, can be estab-
lished. The signature of the controller object can be a public
key signature or a symmetric key signature, or a combina-
tion of both. Also, when the digest of the control object
referenced by the controller object is included in the con-
troller object, the validity of the control object can be
derived without having to separately verify the signature of
the control object.

[0365]

[0366] In one embodiment, this is the preferred type of
signature for controller objects, and is implemented by
computing a Message Authentication Code (MAC) of the
controller object, keyed with the same key as the key
represented by the corresponding ContentKey object. In one
embodiment, the canonical method for this MAC is to use
HMAC with the same hashing algorithm as the one chosen
for the PKI signature algorithm used in the same deploy-
ment.

[0367]

[0368] This type of signature is used when the identity of
the signer of the controller object needs to be known. This
type of signature is implemented with a public key signature
algorithm, signing with the private key of the principal who
is asserting the validity of this object. In one embodiment,
when using this type of signature, a symmetric key signature
will also be present, and sign both the controller object as
well as the public key signature, so that is can be guaranteed
that the principal who signed with its private key also had
knowledge of the actual value of the content key carried in
the ContentKey object.

[0369] 1.20. Identity and Key Management DRM Objects

1.19.6.1. Symmetric Key Signature

1.19.6.2. Public Key Signature

[0370] As previously described, node objects represent
entities in a DRM profile, and no implicit or explicit
semantics are used to define what the node objects represent.
A given deployment (DRM profile) of a system will define
what types of principals exist, and what roles and identities
different node objects represent. That semantic information
is typically expressed using attributes of the node object.

[0371] Link objects represent relationships between
nodes. Link objects can also optionally contain some cryp-
tographic data that allows the link to be used for content key
derivation. Just as for nodes, in one embodiment no implicit
or explicit semantics are used to define what a link relation-
ship means. Depending on what the from and to nodes of the
link represent in a given DRM Profile, the meaning of the
link relationship can express membership, ownership, asso-

US 2007/0172041 Al

ciation, and/or many other types of relationships. In a typical
DRM profile, some node objects could represent users, other
nodes could represent devices, and other nodes could rep-
resent user groups or authorized domains (ADs). In such a
context, links between devices and users might represent an
ownership relationship, and links between users and user
groups or authorization domains might represent member-
ship relationships. FIG. 28B illustrates the structure and
interrelationship between nodes and links in one example
embodiment.

[0372] 1.20.1. Node

[0373] The node object represents an entity in the system.
The node object’s attributes define certain aspects of what
the node object represents, such as the role or identity
represented by the node object in the context of a DRM
profile. The node object may also have a confidentiality
asymmetric key pair that is used for targeting confidential
information to the subsystems that have access to the
confidential parts of the node object (typically, the entity
represented by the node, or some entity that is responsible
for managing that node). Confidential information targeted
at a node can be encrypted with that node’s confidentiality
public key. The node object may also have a sharing
asymmetric key pair and a sharing symmetric key can be
used in conjunction with link objects when the system uses
a ContentKey derivation system for ContentKey distribu-
tion, such as that described elsewhere herein. In a preferred
embodiment, only entities that need to be referenced by link
or control objects, or to receive cryptographically targeted
information, need to have corresponding node objects.

[0374] 1.20.2. Link

[0375] The link object is a signed assertion that there
exists a directed edge in the graph whose vertices are the
node objects. For a given set of nodes and links, we say that
there is a path between a node X and a node Y if there exists
a directed path between the node X vertex and the node Y
vertex in the graph. When there is a path between node X
and node Y, we say that node Y is reachable from node X.
The assertions represented by link objects are used to
express which nodes are reachable from other nodes. The
controls that govern content objects can check, before they
allow an action to be performed, that certain nodes are
reachable from the node associated with the entity perform-
ing the action. For example, if node D represents a device
that wants to perform the “play” action on a content object,
a control that governs the content object can test if a certain
node, U, representing a certain user, is reachable from node
D. To determine if node U is reachable, the DRM engine can
check whether there is a set of link objects that can establish
a path between node D and node U.

[0376] In one embodiment, the DRM engine verifies link
objects before it uses them to decide the existence of paths
in the node graph. Depending on the specific features of the
certificate system (e.g., x509v3) used to sign link objects,
link objects can be given limited lifetimes, be revoked, etc.
In one embodiment, the policies that govern which keys can
sign link objects, which link objects can be created, and the
lifetime of link objects are not directly handled by the DRM
engine. Instead, those policies leverage the node’s attribute
information. To facilitate the task of enforcing certain poli-
cies, in one embodiment, a way to extend standard certificate
formats with additional constraint checking is provided.

Jul. 26, 2007

These extensions make it possible to express validity con-
straints on certificates for keys that sign links, such that
constraints such as what type of nodes the link is connecting,
as well as other attributes, can be checked before a link is
considered valid.

[0377] In one embodiment, a link object can contain a
control object that will be used to constrain the validity of
the link. In addition, in one embodiment a link object may
contain cryptographic key derivation data that provides the
user with sharing keys for key distribution. That crypto-
graphic data will contain, in addition to metadata, the private
and/or symmetric sharing keys of the “from” node,
encrypted with the sharing public key and/or the sharing
symmetric key of the “to” node.

[0378]

[0379] The following paragraphs describe, in more detail,
an illustrative object model for the objects discussed above,
defining the fields that each type of object has in one
illustrative embodiment. Data structures are described using
a relatively simple object description syntax. Each object
type is defined by a class that can extend a parent class (this
is an “is-a” relationship). The class descriptions are in terms
of'the simple abstract types “string” (character strings), “int”
(integer value), “byte” (8-bit value), and “boolean” (true or
false) but do not define any specific encoding for those data
types, or for compound structures containing those types.
The way objects are encoded, or represented, can vary
depending on the implementation of the engine. In practice,
a given profile of use of the DRM engine can specify how
the fields are represented (e.g., using an XML schema).

[0380] In one illustrative embodiment, the following nota-
tions are used:

1.21. Data Structures

class ClassName { Defines a class type. A class type is a

fleldl1; heterogeneous compound data type

fleld2; (also called object type). This

compound type is made up of one or
} more fields, each of a simple or

compound type. Each field can be of a
different type.

type[] Defines a homogeneous compound data
type (also called list or array type). This
compound type is made up of 0 or more
elements of the same type (0 when the
list is empty).

String Simple type: represents a character
string

Int Simple type: represents an integer value

Byte Simple type: represents an integer value
between 0 and 255

Boolean Simple type: represents a boolean value

(true or false)

Defines a class type that extends
another class type. A class that extends
another one contains all the fields of the
class it extends (called the superclass)
in addition to its own fields.

Defines an abstract class type. Abstract
class types are types that can be
extended, but are never used by
themselves.

class SubClass extends
SuperClass {...}

Abstract class {...}

{type field;} Defines an optional field. An optional
fleld is a field that may be omitted from
the compound data type that contains it.

(type field;) Defines a field that will be skipped

when computing the canonical byte
sequence for the enclosing compound
field

US 2007/0172041 Al

-continued

class SubClass extends Defines a subclass of a class type and

SuperClass (field=value) {...} specifies that for all instances of that
subclass, the value of a certain field of
the superclass is always equal to a fixed

value.

[0381] 1.21.1. Common Structures

[0382] In one illustrative embodiment, the following com-
mon structures are used:

abstract class Octobject {
{string id;}
Attribute|] attributes;
Internal Extension|] extensions;

class Transform {
string algorithm;

class Digest {
Transform[] transforms;
string algorithm;
byte|] value;

class Reference {
string id;
{Digest digest;}

[0383] 1.21.1.1. Attributes

[0384] In one embodiment, there are four kinds of
attributes: IntegerAttribute, StringAttribute, ByteArrayAt-
tribute, and ListAttribute, each having a name and a type.

abstract class Attribute {
{string name; }
string type;

class IntegerAttribute extends Attribute(type="int") {
int value;

class StringAttribute extends Attribute(type="string’) {
string value;

class ByteArrayAttribute extends Attribute(type="bytes) {
byte|] value;

Class ListAttribute extends Attribute(type="list’) {
Attribute|] attributes; // must all be named

Class ArrayAttribute extends Attribute(type="array’) {
Attribute|] attributes; // must all be unnamed

¥
[0385] 1.21.1.2. Extensions
[0386] In the illustrative embodiment under discussion,

there are two types of extensions: internal extensions, which
are carried inside the Octobject, and external extensions,
which are carried outside the Octobject.

Jul. 26, 2007

abstract class ExtensionData {
string type;

abstract class Extension {
string id;

class ExternalExtension extends Extension {
string subject;
ExtensionData data;

class InternalExtension extends Extension {
boolean critical;
{Digest dataDigest;}
(ExtensionData data;)

[0387] In some embodiments, it will be important to be
able to verify the signature of an object even if a particular
type of ExtensionData is not understood by a given imple-
mentation. Thus, in one embodiment, a level of indirection
with the dataDigest field is added. If the specification of the
ExtensionData mandates that the data is part of the signature
within the context of a particular object, then the dataDigest
field will be present. An implementation that understands
this ExtensionData, and is therefore capable of computing
its canonical representation, can then verify the digest. If, in
such an embodiment, the specification of this ExtensionData
mandates that the data is not part of the signature, then the
dataDigest field will not be present.

[0388] 1.21.2. Node Objects

class Node extends Octobject {

[0389] 1.21.3. Link Objects

class Link extends Octobject {
string fromId;
string toId;
{Control control;}

[0390] 1.21.4. Control Objects

class Control extends Octobject {
string protocol;
string type;
byte|] codeModule;

[0391] 1.21.5. ContentKey Objects

abstract class Key {
string id;
string usage;

US 2007/0172041 Al

-continued

string format;
byte|] data;

abstract class PairedKey extends Key {
string pairld;

class ContentKey extends Octobject {
Key secretKey;

}

[0392] In one embodiment, each key has a unique id, a
format, a usage (that can be null), and data. The ‘usage’ field,
if it is not empty, specifies the purpose for which the key can
be used. For normal content keys, this field is empty. In
embodiments in which a key distribution scheme such as
that described above is used, this field may specify if this is
a sharing key or a confidentiality key. The ‘format’ field
specifies the format of the ‘data’ field (such as, for example,
‘RAW’ for symmetric keys, or ‘PKCS#8’ for RSA private
keys, etc.). The ‘data’ field contains the actual key data,
formatted according to the ‘format’ field.

[0393] For keys that are part of a key pair (such as RSA
keys), the extra field ‘pairld’ gives a unique identifier for the
pair, so that the pair can be referenced from other data
structures.

[0394] In one embodiment the data field in the key object
is the plaintext value of the actual key (i.e., it is the plaintext
value of the key that will be hashed), even though the
object’s actual representation contains an encrypted copy of
the key.

[0395] 1.21.6. Controller Objects

class Controller extends Octobject {
Reference controlRef;
Reference| | contentKeyRefs;

8. Virtual Machine

[0396] Preferred embodiments of the DRM engine
described herein use a virtual machine (sometimes referred
to herein as the “control virtual machine,” the “control VM,”
or simply the “VM”) to execute control programs that
govern access to content. [llustrative embodiments of such
a virtual machine are described below, as are various modi-
fications and design considerations that could be made to
this illustrative embodiment. The integration of an illustra-
tive embodiment of the virtual machine (referred to as the
“Plankton” virtual machine) with an illustrative embodiment
of the DRM engine (referred to as “Octopus™) is also
described. It should be appreciated, however, that embodi-
ments of the digital rights management engine, architecture,
and other systems and methods described herein can be used
with any suitable virtual machine, or, in some embodiments,
without a virtual machine at all, and thus it will be appre-
ciated that the details provided below regarding example
embodiments of a virtual machine are for purposes of
illustration and not limitation.

[0397] In a preferred embodiment, the control VM is a
traditional virtual machine, designed to be easy to imple-

Jul. 26, 2007

ment using various programming languages with a very
small code footprint. It is based on a simple, stack-oriented
instruction set that is designed to be minimalist, without
undue concern for execution speed or code density. In
situations where compact code is required, data compression
techniques can be used to compress the virtual machine’s
byte code.

[0398] In preferred embodiments, the control virtual
machine is designed to be suitable as a target for low or high
level programming languages, and supports assembler, C,
and FORTH. In addition, it will be appreciated that com-
pilers for other languages, such as Java or custom languages,
can be created in a relatively straightforward fashion to
compile code into the format (e.g., byte code) used by the
virtual machine. In one embodiment the control virtual
machine is designed to be hosted within a host environment,
not run directly on a processor or in silicon. In preferred
embodiments, the natural host environment for the virtual
machine is the DRM engine, although it will be appreciated
that the virtual machine architecture described herein could
alternatively, or in addition, be used in other contexts.

[0399] FIG. 29 illustrates the operating environment of an
illustrative implementation of the control virtual machine
2902. As shown in FIG. 29, in one embodiment virtual
machine 2902 runs within the context of its host environ-
ment 2904, which implements some of the functions needed
by the virtual machine as it executes programs 2906. Typi-
cally, the control VM runs within the DRM engine 2908,
which implements its host environment. As shown in FIG.
29, in a preferred database, the virtual machine 2902 and the
DRM engine 2908 have access to a secure database 2910 for
presistant storage of state information.

[0400] 1.22. Architecture
[0401] 1.22.1. Execution Model
[0402] In preferred embodiments, the VM runs programs

by executing instructions stored in byte code in code mod-
ules. Some of these instructions can call functions imple-
mented outside of the program itself by making system calls.
System calls can be implemented by the VM itself or
delegated to the host environment.

[0403] In one embodiment, the VM executes instructions
stored in code modules as a stream of byte codes loaded into
memory. The VM maintains a virtual register called the
Program Counter (PC), which is incremented as instructions
are executed. The VM executes each instruction, in
sequence, until an OP_STOP instruction is encountered, an
OP_RET instruction is encountered with an empty call
stack, or a runtime exception occurs. Jumps are specified
either as a relative jump (specified as a byte offset from the
current value of PC), or as an absolute address.

[0404] 1.22.2. Memory Model

[0405] In one embodiment, the VM uses a relatively
simple memory model, in which memory is separated into
data memory and code memory. For example, data memory
can be implemented as a single, flat, contiguous memory
space, starting at address 0, and can be implemented as an
array of bytes allocated within the heap memory of the host
application or host environment. In one embodiment,
attempts to access memory outside of the allocated space
will cause a runtime exception which will cause program
execution to terminate.

US 2007/0172041 Al

[0406] Data memory is potentially shared between several
code modules concurrently loaded by the virtual machine.
The data in the data memory can be accessed by memory-
access instructions, which, in one embodiment, can be either
32-bit or 8-bit accesses. 32-bit memory accesses are per-
formed using big-endian byte order. In a preferred embodi-
ment, no assumptions are made with regards to alignment
between the virtual machine-visible memory and the host-
managed memory (i.e., the host CPU virtual or physical
memory).

[0407] In one embodiment, code memory is a flat, con-
tiguous memory space, starting at address 0, and can be
implemented as an array of bytes allocated within the heap
memory of the host application or host environment.

[0408] The VM may support loading more than one code
module. If the VM loads several code modules, in one
embodiment all the code modules share the same data
memory (although each module’s data is preferably loaded
at a different address), but each has its own code memory,
thus preventing a jump instruction in one code module to
cause a jump to code in another code module.

[0409]

[0410] In one embodiment, the VM has the notion of a
data stack, which represents 32-bit data cells stored in the
data memory. The VM maintains a virtual register called the
Stack Pointer (SP). After reset, the SP points to the end of
the data memory, and the stack grows downward (when data
is pushed on the data stack, the SP register is decremented).
The 32-bit data cells on the stack are interpreted either as
32-bit addresses or 32-bit integers, depending on the instruc-
tion referencing the stack data. Addresses are unsigned
integers. In one embodiment, all other 32-bit integer values
on the data stack are interpreted as signed integers unless
otherwise specified.

[0411]

[0412] In one embodiment, the VM manages a call stack
used for making subroutine calls. In one embodiment, the
values pushed on this stack cannot be read or written directly
by the memory-access instructions. This stack is used inter-
nally by the VM when executing OP_JSR, OP_JSRR, and
OP_RET instructions. For a given VM implementation, the
size of this return address stack can be fixed to a maximum,
which will allow only a certain number of nested calls.

[0413]

[0414] In one embodiment, the VM reserves a small
address space at the beginning of data memory to map
pseudo-registers. In one embodiment, the addresses of these
pseudo-registers are fixed. For example, the following reg-
isters could be defined:

1.22.3. Data Stack

1.22.4. Call Stack

1.22.5. Pseudo Registers

Address Size Name Description

0 4 ID 32-bit ID of the currently executing code
segment. This ID is chosen by the VM
when a module is loaded. The VM
changes this register if it changes from
the code segment of one module to the

code segment of another module

Jul. 26, 2007

-continued

Address Size Name Description

4 4 DS 32-bit value set to the absolute data
address at which the data segment of the
currently executing module has been
loaded. This value is determined by the
VM’s module loader

32-bit value set to the absolute code
address at which the code segment of the
currently executing module has been
loaded. This value is determined by the
VM’s module loader.

32-bit value set to the absolute data
address of the first byte following the
region of the data memory space where
the data segments of code modules have
been loaded.

12 4 UM

[0415] 1.22.6. Memory Map

[0416] The following shows the layout of data memory
and code memory in an illustrative embodiment:

[0417] Data Memory

Address Range Description

Data Memory

0to 15

16 to 127
128 to 255
256to DS -1

Pseudo-registers
Reserved for future VM/System use
Reserved for application use
Unspecified. The VM may load the data
segments of code modules at any address at or
above 256. If it chooses an address larger than
256, the use of the address space between 256
and DS is left unspecified. This means that the
virtual machine implementation is free to use it
any way it sees fit.
Image of the data segments of one or more code
modules loaded by the virtual machine.
Shared address space. The code modules’ data
and the data stack share this space. The data stack
is located at the end of that space and grows
down. The end represents the last address of the
data memory space. The size of the data memory
space is fixed by the VM based on memory
requirements contained in the code module and
implementation requirements.

Code Memory

DStoUM -1

UM to End

OtoCS -1 Unspecified. The virtual machine may load the
code segments of code modules at any address at
or above 0. If it chooses an address larger than 0,
the use of the address space between 0 and CS is
left unspecified. This means that the virtual
machine is free to use it in any way it sees fit.
CS to CS + size (code Image of the code segment of a code module
segment) — 1 loaded by the virtual machine

[0418] 1.22.7. Executing Routines

[0419] Before executing a code routine, in one embodi-
ment the virtual machine implementation resets the data
stack pointer to point to the top of the initialized data stack.
The initialized data stack contains the routine’s input data,
and extends to the end of the data memory. The initialized
data stack may be used as a way to pass input arguments to
a routine. When there is no initialized data stack, the data

US 2007/0172041 Al

30

stack pointer points to the end of the data memory. In one
embodiment, the initial call stack is either empty or contains
a single terminal return address pointing to an OP_STOP
instruction, which will force execution of the routine to end
on an OP_STOP instruction in case the routine finished with
an OP_RET instruction.

[0420] When execution stops, either because a final
OP_RET instruction with an empty call stack has been
executed or a final OP_STOP instruction has been executed,
any data left on the data stack is considered to be the output
of the routine.

[0421]

[0422] In one embodiment, any of the following condi-
tions is considered to be a runtime exception which causes
execution to stop immediately:

1.22.8. Runtime Exceptions

[0423] An attempt to access data memory outside the
current data memory address space.

[0424] An attempt to set the PC to, or cause the PC to,
reach a code address outside the current code memory
address space.

[0425] An attempt to execute undefined byte code.

[0426] An attempt to execute an OP_DIV instruction
with a top-of-stack operand equal to 0.

Jul. 26, 2007

[0427] An attempt to execute an OP_MOD instruction
with a top-of-stack operand equal to 0.

[0428] An overflow or underflow of the Call Stack.

[0429] 1.23. Instruction Set

[0430] In one embodiment, the control VM uses a rela-
tively simple instruction set. Though limited, the number of
instructions is sufficient to express programs of arbitrary
complexity. Instructions and their operands are represented
by a stream of byte codes. In one embodiment, the instruc-
tion set is stack-based, and except for the OP_PUSH instruc-
tion, none of the instructions have direct operands. Operands
are read from the data stack, and results pushed on the data
stack. In one embodiment, the VM is a 32-bit VM: all the
instructions operate on 32-bit stack operands, representing
either memory addresses or signed integers. Signed integers
are represented with 2 s complement binary encoding. An
illustrative embodiment of an instruction set for use with the
control VM is shown in the following table. In the table, the
stack operands for instructions with two operands are listed
as “A,B” where the operand on the top of the stack is listed
last (i.e., “B”). Unless otherwise specified, the term “push,”
as used in the following description of one illustrative
embodiment, refers to pushing a 32-bit value onto the top of
the data stack.

Byte
OP CODE Name Code Operands Description
OP_NOP No 0 Do Nothing
Operation
OP__PUSH Push 1 N (direct) Push a 32-bit constant
Constant
OP_DROP Drop 2 Remove the top cell of the data
stack
OP_DUP Duplicate 3 Duplicate the top cell of the
data stack
OP_SWAP Swap 4 Swap top two stack cells
OP_ADD Add 5 AB Push the sum of A and B (A + B)
OpP_MUL Multiply 6 AB Push the product of A and B
(A*B)
OP__SUB Subtract 7 AB Push the difference between A
and B (A - B)
OP_DIV Divide 8 AB Push the division of A by B
(A/B)
OP_MOD Modulo 9 AB Push A modulo B (A % B)
OP_NEG Negate 10 A Push the 2’s complement
negation of A (-A)
OP_CMP Compare 1 A,B Push -1 if A less than B, 0 if A
equals B, and 1 if A greater
than B
OP_AND And 12 AB Push bit-wise AND of A and B
(A& B)
OP_OR Or 13 AB Push the bit-wise OR of A and
B (A|B)
OP_XOR Exclusive 14 AB Push the bit-wise eXclusive OR
Or of A and B (A ~B)
OP_NOT Logical 15 A Push the logical negation of A
Negate (1if Ais 0, and O if A is not 0)
OP__SHL Shift Left 16 A'B Push A logically shifted left by
B bits (A << B)
OP__SHR Shift Right 17 A'B Push A logically shifted right
by B bits (A >> B)
OP__JMP Jump 18 A Jump to A
OP_JSR Jump to 19 A Jump to subroutine at absolute
Subroutine address A. The current value of

PC is pushed on the call stack.

US 2007/0172041 Al

31

Jul. 26, 2007

-continued
Byte
OP CODE Name Code Operands Description
OP_JSRR Jump to 20 A Jump to subroutine at PC + A.
Subroutine The current value of PC is
(Relative) pushed on the call stack.
OP_RET Return from 21 Return from subroutine to the
Subroutine return address popped from the
call stack.
OP_BRA Branch 22 A Jump to PC + A
Always
OP__BRP Branch if 23 AB Jump to PC + Bif A> 0
Positive
OP_BRN Branch if 24 AB Jump to PC + Bif A <0
Negative
OP_BRZ Branch if 25 AB Jump to PC + Bif Ais 0
Zero
OP__PEEK Peek 26 A Push the 32-bit value at address A
OP_POKE Poke 27 A B Store the 32-bit value A at
address B
OP__PEEKB Peek Byte 28 A Read the 8-bit value at address
A, O-extend it to 32-bits and
push it on the data stack
OP_POKEB Poke Byte 29 AB Store the least significant 8 bits
of value A at address B
OP_PUSHSP Push Stack 30 Push the value of SP
Pointer
OP__POPSP Pop Stack 31 A Set the value of SP to A
Pointer
OP_CALL System Call 32 A Perform System Call with
index A
OP__STOP Stop 255 Terminate Execution

[0431] 1.24. Code Modules

[0432] In a preferred embodiment, code modules are
stored in an atom-based format, similar or identical to that
used for the MPEG-4 file format, in which atoms contain a
32-bit size (e.g., represented by 4 bytes in big-endian byte
order), followed by a 4-byte type (e.g., bytes that correspond
to ASCII values of letters of the alphabet), followed by a
payload (e.g., 8 bytes).

[0433] FIG. 30 shows the format of an illustrative code
module 3000. Referring to FIG. 30, pkCM atom 3002 is the
top-level code module atom. It contains a sequence of
sub-atoms. In one embodiment, pkCM atom 3002 contains
one pkDS atom 3004, one pkCS atom 3006, one pkEX atom
3008, and possibly one pkRQ atom 3010. The pkCM atom
3002 may also contain any number of other atoms that, in
one embodiment, are ignored if present. In one embodiment,
the order of the sub-atoms is not specified, so implementa-
tions should not assume a specific order.

[0434] 1.24.1. pkDS Atom

[0435] As shown in FIG. 30, pkDS atom 3004 contains a
memory image 3005 of a data segment that can be loaded
into data memory. As shown in FIG. 31A, in one embodi-
ment memory image 3005 is represented by a sequence of
bytes 3112, consisting of one header byte 3114 followed by
zero or more data bytes 3116. Header byte 3114 encodes a
version number that identifies the format of the bytes that
follow 3116.

[0436] In one embodiment, only one version number is
defined (i.e., DataSegmentFormatVersion=0), and in this
format the data bytes of the memory image represent a raw
image to be loaded into memory. The virtual machine loader

only loads the data bytes 3116 of the memory image 3105,
not including the header byte 3114. In one embodiment, the
virtual machine loader is operable to refuse to load an image
in any other format.

[0437] 1.24.2. pkCS Atom

[0438] As shown in FIG. 30, pkCS atom 3006 contains a
memory image 3007 of a code segment that can be loaded
into code memory. As shown in FIG. 31B, in one embodi-
ment memory image 3007 is represented by a sequence of
bytes 3120 consisting of one header byte 3122 followed by
zero or more data bytes 3124. Header byte 3122 encodes a
version number that identifies the format of the bytes that
follow 3124.

[0439] In one embodiment, only one version number is
defined (i.e., CodeSegmentFormatVersion=0), and, as
shown in FIG. 31C, in this version the byte following header
byte 3122 contains another header byte 3130 containing a
version number that identifies the byte code encoding of the
following bytes 3132. In the example shown in FIG. 31C,
header byte 3130 identifies ByteCodeVersion=0, which
specifies that data bytes 3132 contain a raw byte sequence
with byte code values such as those defined in the example
instruction set that is set forth above. In a preferred embodi-
ment, the virtual machine loader only loads the byte code
portion 3132 of the data bytes, not the two header bytes
3122, 3130.

[0440] 1.24.3. pkEX Atom

[0441] Referring once again to FIG. 30, the pkEX atom
3008 contains a list of export entries. In the example shown
in FIG. 30, the first four bytes 3009 of pkEX atom 3008
encode a 32-bit unsigned integer in big-endian byte order

US 2007/0172041 Al

equal to the number of entries that follow. As shown in FIG.
31D, each following export entry 3160 consists of a name,
encoded as one byte 3162 containing the name size, S,
followed by S bytes 3164 containing the ASCII characters of
the name, including a terminating zero 3166, followed by a
32-bit unsigned integer 3168 in big-endian byte order rep-
resenting the byte offset of the named entry point, measured
from the start of the byte code data stored in the 3 ICS atom.
FIG. 31E shows an example of an export table entry 3170 for
the entry point MAIN at offset 64, in which the first byte
3172 indicates that the size of the name (i.e., “MAIN”), plus
the terminating zero, is five bytes, and in which the last four
bytes 3174 indicate that the byte offset is 64.

[0442] 1.24.4. pkRQ Atom

[0443] As shown in FIG. 30, pkRQ atom 3010 contains
requirements that need to be met by the virtual machine
implementation in order to execute the code in the code
module. In one embodiment, this atom is optional, and if it
is not present, the virtual machine uses default implemen-
tation settings, such as may be defined by an implementation
profile.

[0444] In one embodiment, the pkRQ atom consists of an
array of 32-bit unsigned integer values, one for each field:

Field Name Description

vmVersion
minDataMemorySize

Version ID of the VM Spec

Minimum size in bytes of the data memory
available to the code. This includes the data
memory used to load the image of the Data
Segment, as well as the data memory used by
the Data Stack. In one embodiment, the VM
must refuse to load the module if it cannot
satisfy this requirement.

Minimum number of nested subroutine calls
(OP_JSR and OP__JSRR) that must be
supported by the VM. In one embodiment,
the VM must refuse to load the module if it
cannot satisfy this requirement.

Flags Set of bit-flags to signal required features of
the VM.

In one embodiment, a VM implementation
must refuse to load a code module that has
any unknown flag set. For example, if there
are no flags defined, in one embodiment a
VM implementation must check that this flag
is set to 0.

minCallStackDepth

[0445] 1.24.5. Module Loader

[0446] The virtual machine is responsible for loading code
modules. When a code module is loaded, the Data Segment

Jul. 26, 2007

memory image encoded in the pkDS atom is loaded at a
memory address in the Data Memory. That address is chosen
by the VM loader, and is stored in the DS pseudo-register
when the code executes.

[0447] The Code Segment memory image encoded in the
pkCS atom is loaded at a memory address in the Code
Memory. That address is chosen by the VM loader, and is
stored in the CS pseudo-register when the code executes.

[0448] When a code module is loaded, the special routine
named “Global.OnlLoad” is executed if this routine is found
in the entries of the Export table. This routine takes no
argument on the stack, and returns an integer status upon
return, O signifying success, and a negative error code
signifying an error condition.

[0449] When a code module is unloaded (or when the
virtual machine that has loaded the module is disposed of),
the special routine named “Global.OnUnload” is executed if
it is found in the Export table. This routine takes no
argument on the stack, and returns an integer status upon
return, O signifying success, and a negative error code
signifying an error condition.

[0450] 1.25. System Calls

[0451] The virtual machine’s programs can call functions
implemented outside of their code module’s Code Segment.
This is done through the use of the OP_CALL instruction,
which takes an integer stack operand specifying the System
Call Number to call. Depending on the System Call, the
implementation can be a byte code routine in a different code
module (for instance, a library of utility functions), executed
directly by the VM in the VM’s native implementation
format, or delegated to an external software module, such as
the VM’s host environment.

[0452] 1In one embodiment, if an OP_CALL instruction is
executed with an operand that contains a number that does
not correspond to any System Call, the VM behaves as if the
SYS_NOP system call was called.

[0453] 1.25.1. System Call Numbers Allocation

[0454] 1In the illustrative embodiment under discussion,
System Call Numbers 0 to 1023 are reserved for fixed
System Calls (these System Calls will have the same number
on all VM implementations). System Call Numbers 1024 to
16383 are available for the VM to assign dynamically (for
example, the System Call Numbers returned by System-
.FindSystemCallByName can be allocated dynamically by
the VM, and do not have to be the same numbers on all VM
implementations).

[0455] In one example embodiment, the following fixed
System Call Numbers are specified:

Mnemonic

Number System Call

SYS_NOP

SYS_DEBUG_ PRINT

SYS_FIND_ SYSTEM__CALL_BY_ NAME
SYS_SYSTEM__HOST_GET_OBIECT
SYS_SYSTEM_ HOST_SET_OBIECT

System.NoOperation
System.DebugPrint
System.FindSystemCallByName
System.Host.GetObject
System.Host.SetObject

AW O = O

US 2007/0172041 Al

[0456]

[0457] Inoneembodiment, a few standard system calls are
supported that are useful for writing control programs. These
calls include the fixed-number system calls listed in the table
above, as well as system calls that have dynamically deter-
mined numbers (i.e., their system call number is retrieved by
calling the System.FindSystemCallByName system -call
with their name passed as the argument).

[0458] 1In one embodiment, the system calls specified in
this section that can return a negative error code may return
error codes with any negative value. Section 8.4.4 defines
specific, illustrative values. In one embodiment, if negative
error code values are returned that are not predefined, they
are interpreted as if they were the generic error code value
FAILURE.

1.25.2. Standard System Calls

[0459] System.NoOperation. This call takes no inputs and
returns no outputs, and simply returns without doing any-
thing. It is used primarily for testing the VM.

[0460] System.DebugPrint. This call takes as its input,
from the top of the stack, the address of a memory location
containing a null-terminated string, and returns no output. A
call to this function causes the string of text to be printed to
a debug output, which can be useful in debugging. If the VM
implementation does not include a facility to output debug
text (such as might be the case in a non-development
environment), the VM may ignore the call and treat it as if
System.NoOperation had been called.

[0461] System.FindSystemCallByName. This call finds
the number of a system call given its name. The call takes
as its input (from the top of the stack) the address of a
null-terminated ASCII string containing the name of the
system call for which to look, and returns (to the top of the
stack) the system call number if a system call with the
specified name is implemented, an ERROR_NO_SU-
CH_ITEM if the system call is not implemented, and a
negative error code if an error occurs.

[0462] System.Host.GetLocalTime. This call takes no
inputs, and returns, to the top of the stack, the current value
of the local time of the host, which, in one embodiment, is
expressed as a 32-bit signed integer equal to the number of
minutes elapsed since Jan. 1, 1970 00:00:00, or a negative
error code.

[0463] System.Host.GetLocalTimeOffset. This call takes
no inputs, and returns, to the top of the stack, the current
time offset (from UTC time) of the host, which, in one
embodiment, is expressed as a 32-bit signed integer number
equal to the number of minutes difference between local
time and UTC time (i.e. LocalTime—UTC).

[0464] System.Host.GetTrustedTime. This call takes no
inputs, and returns, to the top of the stack, the trusted time
and the value of one or more flags. In one embodiment, the
trusted time is the current value of the trusted time clock (if
the system includes such a trusted clock), or a negative error
code if the trusted time is not available. In one embodiment,
the value of trusted time is expressed as a 32-bit signed
integer equal to the number of minutes elapsed since Jan. 1,
1970 00:00:00 UTC, or a negative error code. In one
embodiment the flags are the bit-set of flags that further
define the current state of the trusted clock. In one embodi-

Jul. 26, 2007

ment, if an error has occurred (e.g., the value of Trusted Time
is a negative error code) the value returned for the flags is 0.

[0465] In one embodiment, the following flag is defined:

Bit index (0 is

LSB) Name Description

The value of TrustedTime is
known to not be at its most

accurate value, and therefore
should be considered

an estimate.

0 TIME_IS_ESTIMATE

[0466] This system call is relevant on systems that imple-
ment a trusted clock that can be synchronized with a trusted
time source and maintain a monotonic time counter. The
value of the trusted time is not guaranteed to always be
accurate, but in one embodiment the following properties
are required to be true:

[0467] The value of the trusted time is expressed as a
UTC time value (the trusted time is not in the local time
zone, as the current locality usually cannot be securely
determined).

[0468] The trusted time never goes back.

[0469] The trusted clock does not advance faster than
realtime.

[0470] Therefore, in this example embodiment, the value
of TrustedTime is between the value of the last synchronized
time (synchronized with a trusted time source) and the
current real time. If the system is able to determine that its
trusted clock has been operating and updating continuously
and normally without interruption since the last synchroni-
zation with a trusted time source, it can determine that the
value of TrustedTime is not an estimate, but an accurate
value, and set the TIME_IS_ESTIMATE flag to 0.

[0471] Inone embodiment, if the trusted clock detects that
a hardware or software failure condition has occurred, and
it is unable to return even an estimate of the trusted time, an
error code is returned, and the value of the returned flags is
set to 0.

[0472] System.Host.GetObject: This system call is a
generic interface that allows a program to access objects
provided by the virtual machine’s host. The System.Host-
.GetObject call takes the following inputs (listed from the
top of the stack downwards): Parent, Name, ReturnBuffer,
and ReturnBuffer Size. Where “Parent” is the 32-bit handle
of the parent container; “Name” is the address of a null-
terminated string containing the path to the requested object,
relative to the parent container; “ReturnBuffer” is the
address of a memory buffer where the value of the object is
to be stored; and “ReturnBufferSize” is a 32-bit integer
indicating the size in bytes of the memory buffer in which
the value of the object is to be stored.

[0473] The System.Host.GetObject call produces the fol-
lowing outputs (listed from the top of the stack downwards):
TypelD, Size. Where “Typeld” is the object type id, or a
negative error code if the call failed. If the requested object
does not exist, the error returned is ERROR_NO_SU-
CH_ITEM. If the buffer supplied for the return value is too

US 2007/0172041 Al

small, the error returned is ERROR_INSUFFI-
CIENT_SPACE. If the part of the object tree that is being
accessed is access-controlled, and the calling program does
not have the permission to access the object, ERROR_PER-
MISSION_DENIED is returned. Other error codes may be
returned. “Size” is a 32-bit integer indicating the size in
bytes of the data returned in the buffer supplied by the caller,
or the size required if the caller provided a buffer that was
too small.

[0474] In one embodiment, there are four types of host
objects: strings, integers, byte arrays, and containers.

Object Type Type Id Name Type Id Value
Container OBJECT_TYPE_ CONTAINER
Integer OBJECT_TYPE_INTEGER

String OBJECT_TYPE__STRING
Byte Array OBJECT_TYPE_BYTE__ARRAY

W= O

Jul. 26, 2007

-continued

Virtual Name Description

string. Note that unnamed objects are only
accessible through the @<n> virtual name of a
container object (see below)

Virtual integer object. The integer value is equal
to the size in bytes required to store this object.
For integers, this value is 4; for strings, it is the
number of bytes needed to store the UTF-8
string plus a null byte terminator. For byte
arrays, this is the number of bytes in the array.
Virtual integer object. The integer value is equal
to the object’s Type Id.

@Size

@Type

[0480] For containers, the following virtual names are
defined as virtual child object names in one embodiment:

[0475] Inoneembodiment, the value of a byte array object
is an array of 8-bit bytes, the value of a string object is a
null-terminated character string incoded in UTF-8, and the
value of an integer object is a 32-bit signed integer value.
Containers are generic containers that contain a sequence of
any number of objects of any combination of types. Objects
contained in a container are called the children of that
container. The value of a container is a 32-bit container
handle that is unique within a given VM instance. In one
embodiment, the root container ¢/* has the fixed handle value
0.

[0476] Inone embodiment, the namespace for host objects
is hierarchical, where the name of a container’s child object
is constructed by appending the name of the child to the
name of the parent container, separated by a °/° character.
String and integer objects do not have children. For
example, if a container is named ‘/Node/Attributes’, and has
a string child named ‘Type’, then ‘/Node/Attributes/Type’
refers to the child string.

[0477] The root of the namespace is */°. All absolute
names start with a */’. Names that do not start with a */* are
relative names. Relative names are relative to a parent
container. For example, the name ‘ Attributes/Type’, relative
to parent ‘/Node’, is the object with the absolute name
‘/Node/Attributes/Type’.

[0478] In one embodiment, container objects can also
have real and virtual child objects that be accessed by using
virtual names. Virtual names are names that are not attached
to host objects, but a convention to identity either unnamed
child objects, child objects with a different name, or virtual
child objects (child objects that are not real children of the
container, but created dynamically when requested).

[0479] In one embodiment, for objects, the following
virtual names are defined as virtual child object names:

Virtual Name Description

@Name Virtual string object: the name of the object.

If the object is unnamed, the value is an empty

Virtual Name

Virtual @<n> Virtual object: the <n>th object in a container.

Index The first object in a container has index 0. <n>
is expressed as a decimal number.
Example: if ‘Attributes’ is a container that
contains 5 child objects, ‘Attributes/@4’ is the
5% child of the container.

Virtual ~ @Size Virtual integer object. The integer value is

Size equal to the number of objects in the container.

Description

EXAMPLES

[0481] The following table shows an example of a hier-
archy of Host Objects:

Chil-
Name Value dren
Node 1 Name Value Children
Type “Device”
Name Value Children
Attri- 2 Name Value Children
butes Color “Red”
Name Value Children
Size 78
Name Value Children
Domain “TopLevel”

[0482] In this example, calling System.Host.GetObject-
(parent=0, name=“Node™) returns a type ID of 0 (i.e,
container), and causes the handle value of 1 to be written in
the buffer supplied by the caller. The size of the value is 4
bytes.

[0483] Calling System.Host.GetObject(parent=0, name=
“Node/Attributes/Domain”) returns a type ID of 2 (ie.,
string), and causes the string “TopLevel” to be written in the
buffer supplied by the caller. The size of the value is 9 bytes.

[0484] Calling System.Host.GetObject(parent=1, name=
“Attributes/@ 1”) returns a type ID of 1 (i.e., integer), and

US 2007/0172041 Al

causes the integer 78 to be written in the buffer supplied by
the called. The size of the value is 4 bytes.

[0485] Calling System.Host.GetObject(parent=00, name=
“DoesNotExist”) returns the error code ERROR_NO_SU-
CH_ITEM.

[0486] System.Host.SetObject. This system call is a
generic interface that allows a program to create, write, and
destroy objects provided by the virtual machine’s host. The
description of the object names and types is the same as for
the System.Host.GetObject call described above. Not all
host objects support being written to or destroyed, and not
all containers support having child objects created. When a
SetObject call is made for an object that does not support the
operation, ERROR_PERMISSION_DENIED is returned.

[0487] The System.Host.SetObject system call takes as
input the following parameters, listed from the top of the
stack downwards:

Top of stack

Parent

Name
ObjectAddress
ObjectType
ObjectSize

[0488] Parent: 32-bit handle of the parent container.

[0489] Name: address of a null-terminated string contain-
ing the path to the object, relative to the parent container.

[0490] ObjectAddress: address of a memory buffer where
the value of the object is stored. If the address is O, the call
is interpreted as a request to destroy the object. The data at
the address depends on the type of the object.

[0491] ObjectType: the type ID of the object.

[0492] ObjectSize: 32-bit integer indicating size in bytes
of the memory buffer where the value of the object is stored.
In the illustrative embodiment under discussion, the size is
set to 4 for integer objects, and to the size of the memory
buffer, including the null terminator, for string objects. For
byte array objects, the size is the number of bytes in the
array.

[0493] The System.Host.SetObject system call returns a
ResultCode to the top of the stack as an output. The
ResultCode is 0 if the call succeeded, and a negative error
code if the call failed. If the call is a request to destroy an
object and the requested object does not exist, or the call is
a request to create or write an object and the object’s parent
does not exist, the error code returned is ERROR_NO_SU-
CH_ITEM. If the part of the object tree that is being
accessed is access-controlled, and the calling program does
not have the permission to access the object, ERROR_PER-
MISSION_DENIED is returned. Other error codes may also
be returned.

[0494] There is a special case when the object refers to a
container and the ObjectAddress is not 0. In this case the
ObjectSize parameter is set to 0 and the value of ObjectAd-
dress is ignored. If the container already exists, nothing is
done, and a SUCCESS ResultCode is returned. If the

Jul. 26, 2007

container does not exist, and the parent of the container is
writeable, an empty container is created.

[0495] Octopus.Links.IsNodeReachable. This system call
is used by control programs to check whether a given node
is reachable from the node associated with the entity hosting
this instance of the virtual machine. The call takes as its
input a Nodeld from the top of the stack, where the Nodeld
is a null-terminated string containing the ID of the target
node to be tested for reachability. As output, the call returns
a ResultCode and a StatusBlockPointer to the top of the
stack. The ResultCode is an integer value that is 0 if the node
is reachable, or a negative error code if it is not. The
StatusBlockPointer is the address of a standard Extended-
StatusBlock, or 0 if no status block is returned.

[0496] System.Host.SpawnVm. This system call is used
by control programs to request that a new instance of a
virtual machine be created, and a new code module loaded.
In one embodiment, the host of the newly created virtual
machine exposes the same host objects as the ones exposed
to the caller, except the host object “/Octopus/Runtime/
Parent/Id” is set to the identity of the caller. In one embodi-
ment, this host object is a container. The children of this
container are objects of type string, each with a value
representing a name. In one embodiment, the semantics and
specific details of those names are specified by the specifi-
cation of the virtual mchine’s host.

[0497] In one embodiment, when the virtual machine that
is running the code for the caller terminates, any spawned
virtual machine that has not been explicitly released by
calling System.Host.ReleaseVm is automatically released
by the system as if System.Host.ReleaseVm had been called.
[0498] The System.Host.SpawnVm call takes as its input
a Moduleld from the top of the stack. The Moduleld
identifies the code module to be loaded into the new virtual
machine instance. In one embodiment, the specification of
the virtual machine’s host describes the mechanism by
which the actual code module corresponding to this module
ID is to be located.

[0499] The System.Host.SpawnVm call returns a Result-
Code and a VmHandle to the top of the stack. The Result-
Code is an integer value that is O if the call was successful,
and a negative error code if it failed. The VmHandle is an
integer value identifying the instance of the virtual machine
that has been created. If the call fails, this handle is set to 0.
In one embodiment, this handle is only guaranteed to be
unique within the virtual machine in which this call is made.

[0500] System.Host.CallVm. This system call is used by
control programs to call routines that are implemented in
code modules loaded in virtual machine instances created
using the System.Host.SpawnVm system call. This system
call takes the following input from the top of the stack:

Top of stack:

VmHandle

EntryPoint
ParameterBlockAddress
ParameterBlockSize
ReturnBufferAddress
ReturnBufferSize

[0501] VmHandle: an integer value representing the
handle of a virtual machine that was created by calling
System.Host.SpawnVm.

US 2007/0172041 Al

[0502] EntryPoint: the address of a null-terminated string
that specifies the name of the entry point to call. This name
needs to match one of the entry points in the Export Table
of the code module that was loaded into the virtual machine
instance that corresponds to the VmHandle parameter.

[0503] ParameterBlockAddress: the address of a memory
block that contains data to be passed to the callee. If no
parameters are passed to the callee, this address is set to 0.

[0504] ParameterBlockSize: the size in bytes of the
memory block at address ParameterBlockAddress, or 0 if
ParameterBlockAddress is 0.

[0505] ReturnBufferAddress: the address of a memory
buffer where the caller can receive data from the callee. If
the caller does not expect any data back from the callee, this
address is set to 0.

[0506] ReturnBufferSize: the size in bytes of the memory
buffer at address ReturnBufferAddress, or 0 if ReturnBuf-
ferAddress is 0.

[0507] The System.Host.CallVm call returns the follow-
ing output to the top of the stack:

Top of Stack:

SystemResultCode
CalleeResultCode
ReturnBlockSize

[0508] SystemResultCode: an integer value that is 0 if the
call was successful or a negative error code if it failed. This
value is determined by the system, not by the callee. Success
only indicates that the system was able to successfully find
the routine to call, execute the routine, and get the return
value from the routine. The return value from the routine
itself is returned in the CalleeResultCode value.

[0509] CalleeResultCode: an integer value that is returned
by the callee.

[0510] ReturnBlockSize: the size in bytes of the data
returned in the buffer supplied by the caller, or the size
required if the caller provided a buffer that was too small. If
no data was returned by the callee, the value is O.

[0511] In the illustrative embodiment under discussion,
the called routine complies with the following interface
conventions: When the routine is called, the top of the stack
contains the value ParameterBlockSize, supplied by the
caller, indicating the size of the parameter block, followed
by ParameterBlockSize bytes of data. If the size is not a
multiple of 4, the data on the stack will be padded with zeros
to ensure that the stack pointer remains a multiple of 4. Upon
return, the called routine provides the following return

Jul. 26, 2007

[0512] ReturnBlockAddress: the address of a memory
block that contains data to be returned to the caller. If no data
is returned, this address is set to 0.

[0513] ReturnBlockSize: size in bytes of the memory
block at address ReturnBlockAddress, or 0 if ReturnBlock-
Address is 0.

[0514] System.Host.ReleaseVm. This system call is used
by control programs to release a virtual machine that was
spawned by a previous call to System.Host.SpawnVm. Any
virtual machines spawned by the released virtual machine
are released, and so on, recursively. The System.Host.Re-
leaseVm call takes as its input a VmHandle from the top of
the stack, the VmHandle representing the handle of a virtual
machine that was created by calling System-
.Host.SpawnVm. The System.Host.ReleaseVm call returns a
ResultCode to the top of the stack as an output. The
ResultCode is an integer value that is O if the call was
successful or a negative error code if it failed.

[0515] 1.25.3. Standard Data Structures

[0516] The following are standard data structures used by
some of the standard system calls.

[0517] 1.25.3.1. Standard Parameters

ParameterBlock:

Name Type
Name NameBlock
Value ValueBlock

[0518] Name: name of the parameter.

[0519] Value: value of the parameter

ExtendedParameterBlock:

Name Type
Flags 32-bit bit field
Parameter ParameterBlock

[0520] Flags: vector of boolean flags.

[0521] Parameter: parameter block containing a name and
a value.

NameBlock:
values on the stack: ameBloc
Name Type
Top of stack: Size 32-bit integer

ResultCode
ReturnBlockAddress
ReturnBlockSize

Characters Array of 8-bit characters

[0522] Size: 32-bit unsigned integer equal to the size in
bytes of the “characters” field that follows. If this value is 0,
the characters field is left empty (i.e., nothing follows).

US 2007/0172041 Al

[0523] Characters: Null-terminated UTF-8 string.

Jul. 26, 2007

-continued
ValueBlock: ValueListBlock:
Name Type Name Type
Type 32-bit integer Valuel ValueBlock
Size 32-bit integer
Data Array of 8-bit bytes

[0524] Type: 32-bit type identifier. In one embodiment, the
following types are defined:

Identifier =~ Type Name Description

0 Integer 32-bit integer value,
encoded as four &-bit bytes
in big-endian byte order. In
one embodiment the value
is considered signed unless
otherwise specified.

32-bit floating point value,
encoded as IEEE-754 in
big-endian byte order
Null-terminated UTF-8
string

32-bit unsigned integer
value, representing the
number of minutes elapsed
since January 1, 1970
00:00:00. In one
embodiment, unless
otherwise specified, the
value is considered to be a
UTC date, the most
significant bit of which
must be 0.

ParameterBlock structure
ExtendedParameterBlock
structure

The value is a resource. The
resource here is referenced
by ID: the Data field of the
value is a null-terminated
ASCII string containing the
ID of the resource that
should be de-referenced to
produce the actual data.
An array of values (encoded
as a ValueListBlock)

The value is an array of 8-
bit bytes

1 Real

2 String

3 Date

4 Parameter
5 ExtendedParameter

6 Resource

7 ValueList

8 ByteArray

[0525] Size: 32-bit unsigned integer equal to the size in
bytes of the “data” field that follows. If this value is 0, the
data field is left empty (i.e., nothing follows the size field in
the ValueBlock).

[0526] Data: array of 8-bit bytes representing a value. The
actual bytes depend on the data encoding specified by the
type field.

ValueListBlock:
Name Type
ValueCount 32-bit integer
Value0 ValueBlock

[0527] ValueCount: 32-bit unsigned integer equal to the
number of ValueBlock structures that follow. If this value is
0, no ValueBlocks follow.

[0528] ValueO, Valuel, . . . :
ValueBlock structures.

[0529] 1.25.3.2. Standard ExtendedStatus

[0530] The standard ExtendedStatusBlock is a data struc-
ture typically used to convey extended information as a
return status from a call to a routine or a system call. It is a
generic data structure that can be used in a variety of
contexts, with a range of different possible values for its
fields. In one embodiment, an ExtendedStatusBlock is
defined as follows:

[0531] ExtendedStatusBlock:

sequence of zero or more

Name Type

GlobalFlags 32-bit bit field
Category 32-bit integer
SubCategory 32-bit integer
LocalFlags 32-bit bit field
CacheDuration CacheDurationBlock
Parameters ValueListBlock

[0532] GlobalFlags: boolean flags whose semantics are
the same regardless of the category field. The position and
meaning of the flags are defined by profiles that use standard
ExtendedStatusBlock data structures.

[0533] Category: Unique integer identifier of a category to
which this status belongs. The category identifier values are
defined by profiles that use standard ExtendedStatusBlock
data structures.

[0534] SubCategory: Integer identifier (unique within the
category) of a sub-category that further classifies the type of
status described by this block.

[0535] LocalFlags: Boolean flags whose semantics are
local to the category and subcategory of this status block.
The position and meaning of the flags are defined by profiles
that define and use the semantics of the category.

[0536] CacheDuration: Indicates the duration for which
this status can be cached (i.e remains valid). See the defi-
nition of the CacheDurationBlock type, below, for how the
actual value of the duration is defined.

[0537] Parameters: List of zero or more ValueBlocks.
Each ValueBlock contains a parameter encoded as a value of
type Parameter or ExtendedParameter. Each parameter binds
a name to a typed value, and is used to encode flexible
variable data that describes the status block in more detail
than just the category, sub-category, cache duration, and
flags.

US 2007/0172041 Al

[0538] CacheDurationBlock:

Name Type
Type 32-bit integer
Value 32-bit integer

[0539] Type: Integer identifier for the type of the value. In
one embodiment, the following types are defined:

Type Description

0 The value is a 32-bit unsigned integer that
represents the number of seconds from the
current time. A value of O means that the
status cannot be cached at all, and therefore
can only be used once. The special value
OXFFFFFFFF is interpreted as an infinite
duration (i.e., the status can be cached
indefinitely).

1 The value is a 32-bit unsigned integer that
represents an absolute local time, expressed
as the number of minutes elapsed since
January 1, 1970 00:00:00. In one
embodiment, the most significant bit must be
0.

[0540] Value: 32-bit integer, the meaning of which
depends on the Type field.

[0541] 1.25.4. Standard Result Codes

[0542] Standard result codes are used in various APIs.
Other result codes may be defined for use in more specific
APIs.

Value Name Description
0 SUCCESS Success
-1 FAILURE Unspecified failure
-2 ERROR__INTERNAL An internal

(implementation) error
has occurred
-3 ERROR_INVALID_PARAMETER A parameter has an
invalid value
Not enough memory
available to complete
successfully
Not enough resources
available to complete
successfully
The requested item
does not exist or was
not found
Not enough memory
supplied by the caller
(typically used when a
return buffer is too
small)
Permission to perform
the call is denied to the
caller.
-9 ERROR_RUNTIME__EXCEPTION An error has occurred
during execution of
byte code
Error caused by data
with an invalid format

-4 ERROR_OUT_OF_MEMORY

-5 ERROR_OUT_OF_RESOURCES

-6 ERROR_NO_SUCH_ITEM

-7 ERROR_INSUFFICIENT__SPACE

-8 ERROR_PERMISSION_ DENIED

-10 ERROR_INVALID_FORMAT

Jul. 26, 2007

-continued

Value Name Description

(for example, invalid
data in a code module)

[0543] 1.26. Assembler Syntax

[0544] This section describes an example syntax for use in
compiling programs into the bytecode format described
elsewhere herein. It should be appreciated that this is just
one example of one possible syntax, and that any suitable
syntax could be used. As previously indicated, it should also
be understood that the bytecode format presented herein is
also just an example, and the systems and methods described
herein could be used with any other suitable byte code
format or other code format.

[0545] An assembler reads source files containing code,
data, and processing instructions, and produces binary code
modules that can be loaded by a control virtual machine. In
one illustrative embodiment, the assembler processes a
source file sequentially, line by line. Lines can be zero or
more characters, followed by a newline. Fach line can be
one of: an empty line (whitespace only), a segment directive,
a data directive, an assembler directive, a code instruction,
a label, or an export directive. In addition, each line can end
with a comment, which starts with a ‘;> character and
continues until the end of the line.

[0546] Data and instructions read from the source files
have an implicit destination segment (i.e., where they end up
when loaded by the VM). At any point during the parsing
process, the assembler will have a “current” segment which
is the implicit destination segment for data and instructions.
The current segment can be changed using segment direc-
tives.

[0547] 1.26.1. Segment Directives

[0548] Segment directives change the current segment of
the parser. In one embodiment, the supported segment
directives are .code and data. The .code segment holds the
byte code instructions, and the data segment holds global
variables.

[0549] 1.26.2. Data Directives

[0550] Data directives specify data (e.g., integers and
strings) that will be loaded in the virtual machine’s data
segment. In one embodiment, the supported data directives
are:

[0551] .string “<some chars>"—Specifies a string of
characters. In one embodiment, the assembler adds an
octet with value O at the end of the string.

[0552] .byte <value>—Specifies an 8-bit value.
<value> can be expressed as a decimal number, or a
hexadecimal number (prefixed by 0x).

[0553] .long <value>—Specifies a 32-bit wvalue.
<value> can be expressed as a decimal number, or a
hexadecimal number (prefixed by 0x).

US 2007/0172041 Al

[0554]

[0555] Inone embodiment, the supported assembler direc-
tives are .equ <symbol>, <value>, which sets the symbol
<symbol> to be equal to the value <value>. Symbols are
typically used as operands or code instructions.

[0556] 1.26.4. Labels

1.26.3. Assembler Directives

[0557] Labels are symbols that point to locations within
segments. Labels pointing to instructions in the code seg-
ment are typically used for jump/branch instructions. Labels
pointing to data in the data segment are typically used to
refer to variables. In one embodiment, the syntax for a label
is: <LABEL>:

[0558] Note that there is nothing after the “:”, except an
optional comment. A label points to the location of the next
data or instruction. In one embodiment, it is ok to have more
than one label pointing to the same address.

[0559] 1.26.5. Export Directives

[0560] Export directives are used to create entries in the
“export” section of the code module produced by the assem-
bler. Each entry in the export section is a (name, address)
pair. In the illustrative embodiment under discussion, only
addresses within the code segment can be specified in the
export section.

[0561] The syntax of the export directive is: export
<label>, which will export the address pointed to by <label>,
with the name “<label>".

[0562]

[0563] When compiling data destined for the code seg-
ment, the assembler reads instructions that map directly, or
indirectly, into byte codes. In the example instruction set
shown above, most virtual machine byte codes have no
direct operands, and appear with a simple mnemonic on a
single line. To make the assembler syntax more readable,
some instructions accept pseudo-operands, which look as if
they were byte code operands, but are not really; in this case,
the assembler generates one or more byte code instructions
to produce the same effect as if the instruction did have a
direct operand. For example, the branch instructions use
pseudo-operands.

[0564] 1.26.6.1. Branch Operands

1.26.6. Code Instructions

[0565] Branch instructions can be specified verbatim
(without any operand), or with an optional operand that will
be converted by the assembler into a corresponding byte
code sequence. The optional operand is an integer constant
or a symbol. When the operand is a symbol, the assembler
computes the correct integer relative offset so that the branch
ends up at the address corresponding to the symbol.

[0566] 1.26.6.2. Push Operands

[0567] In one embodiment, the PUSH instruction always
takes one operand. The operand can be one of an integer
constant, a symbol, or the prefix “@” directly followed by
a label name. When the operand is a symbol, the value that
is pushed is the direct value of that symbol, whether the
symbol is a label or an .equ symbol (the value is not
incremented by a segment offset). When the operand is a
label name prefixed with “@?, the value pushed depends on
what the label points to. The value pushed on the stack is the

Jul. 26, 2007

absolute address represented by the label (i.e., the local label
value added to the segment offset).

[0568] 1.26.7. Examples

; constants
.equ SOMECONST, 7
; what follows goes into the data segment
.data
VARI:
byte 8
VAR2:
.string “hello\0”
VAR3:
long OXFFFCDAO7
VAR4:
long 0
; what follows goes into the code segment
.code
FOO:
PUSH 1
ADD
RET
BAR:
PUSH 2
PUSH @FOO ; push the address of the label FOO
JSR ; jump to the code at label FOO
PUSH SOMECONST ; push the value 7

PUSH @VAR1 ; push the addr of VAR1

PUSH VAR1 ; push the offset of VARI within the data
segment

PUSH @VAR3 ; push the addr of VAR3

PEEK ; push the value of VAR3

PUSH @VAR4 ; push the addr of VAR4

POKE ; store the value on top of the stack into
VAR4

PUSH @VAR2 ; push the addr of the string “hello”

[0569] 1.26.8. Command Line Syntax

[0570] In one embodiment, the assembler is a command-
line tool that can be invoked with the following syntax:
“PktAssembler [options]
<input_file_path><output_file_path>", where the [options]
can be: -cs int, -ds int, -xml id, or -h, where “-cs int” is a
Code Segment Address Value (default=8), “-ds int” is a Data
Segment Address Value (default=4), “-xml id” is used to
output a control object as an XML file with the specified ID,
and “-h” is used to display help information.

9. Controls

[0571] This section describes illustrative embodiments of
control objects. Control objects can be used to represent
rules that govern access to content by granting or denying
the use of the ContentKey objects they control. They can
also be used to represent constraints on the validity of a link
object in which they are embedded. They can also be used
as standalone program containers that are run on behalf of
another entity, such as in agents or delegates. In one embodi-
ment, controls contain metadata and byte-code programs,
which implement a specific interaction protocol. The pur-
pose of a Control Protocol is to specify the interaction
between the DRM engine and a control program or between
a host application and a control program through the DRM
engine. This section also describes illustrative actions the
application can perform on the content, which action param-
eters should be supplied to the control program, and how the
control program encodes the return status indicating that the
requested action can or cannot be performed, as well as
parameters that can further describe the return status.

US 2007/0172041 Al

[0572] In this section, the following abbreviations and
acronyms are used:

[0573] ESB: Extended Status Block
[0574] LSB: Least Significant Bit
[0575] Byte: 8-bit value, or octet

[0576] Byte Code: stream of bytes that encode execut-
able instructions and their operands

[0577]

[0578] In one embodiment, a control object contains a
control program. The control program includes a code
module containing byte-code that is executable by a virtual
machine, and a list of named routines (e.g., entries in the
export table).

[0579] In one embodiment, the set of routines that repre-
sent the rules that govern the performance of a certain
operation (such as “play”) on a content item is called an
‘action control’. The set of routines that represent validity
constraints on a link object is called a “link constraint”. The
set of routines that are intended to be executed on behalf of
a remote entity (such as during a protocol session with a
DRM engine running on a different host) is called an
“agent”. The set of routines that are intended to be executed
on behalf of another control (such as when a control program
uses the System.Host.CallVm system call) is called a “del-
egate”.

[0580]

[0581] Inoneembodiment, control programs are executed
by a virtual machine running in a host environment. The host
environment can be implemented in any suitable manner;
however, for ease of explanation and for purposes of illus-
tration, it will be assumed in the following discussion that
the implementation of the virtual machine’s host environ-
ment can be logically separated into two parts: a host
application, and a DRM engine. It will be appreciated,
however, that other embodiments may have a different
logical separation of functions, which may be equivalent to
the logical structure described above.

[0582] As was shown in FIG. 29, in preferred embodi-
ments, the DRM engine 2908 is the logical interface
between the host application 2900 and control programs
2906. The host application 2900 makes logical requests to
the engine 2908, such as requesting access to a content key
for a certain purpose (e.g., to play or render a content
stream). In one embodiment, the engine 2908 ensures that
the interaction protocol described below is implemented
correctly, such as by ensuring that any guarantees regarding
a control program’s initialization, call sequence, and other
interaction details are met.

[0583] When the host application 2900 requests the use of
content keys for a set of content IDs, the DRM engine 2908
determines which Control object to use. The Protector
objects allow the engine to resolve which ContentKey
objects need to be accessed for the requested content IDs.
The engine then finds the Controller object that references
those ContentKey objects. In one embodiment, a Controller
object can reference more than one ContentKey object. This
allows multiple ContentKey objects to be governed by the
same Control object. When the host application requests
access to a content key by invoking an action, it can request

1.27. Control Programs

1.27.1. Interface to Control Programs

Jul. 26, 2007

content IDs as a group, to the extent that the ContentKey
objects that correspond to them are referenced by the same
Controller object. In one embodiment, a request to access a
group of content keys referenced by more than one control-
ler object is not allowed.

[0584] In one embodiment, the DRM engine follows a
convention for mapping actions to routine names. For
example, in one embodiment, for each of the routines
described below, the name that appears in the Export Table
entry in the code module is the respective string shown
below in Sections 9.1.4-9.1.7.

[0585] 1.27.1.1. Control Loading

[0586] In one embodiment, before the engine can make
calls to control routines, it needs to load the control’s code
module into the virtual machine. In one embodiment, only
one code module per VM is loaded.

[0587] 1.27.1.2. Atomicity

[0588] In one embodiment, the engine ensures that calls to
routines within control programs are atomic with respect to
the resources it makes available to the routine, such as the
object (or “state”) database. Thus, in such an embodiment,
the engine needs to ensure that those resources remain
unmodified during the execution of any of the routines it
calls. This may be done by effectively locking those
resources during a routine call, or by preventing multiple
VMs to run concurrently. However, the engine need not
guarantee that those resources are unmodified across suc-
cessive routine invocations.

[0589] 1.27.2. Control Protocol

[0590] In one embodiment, the routine naming, the input/
output interface, and the data structures for each routine in
a code module, together, constitute a Control Protocol. The
protocol implemented by a code module is signaled in the
Control object’s “protocol” field. The illustrative Control
Protocol described below will be called the Standard Control
Protocol, and its identifier (the value of the ‘protocol” field)
is “http://www.octopus-drm.com/specs/scp-1_0”.

[0591] In one embodiment, before the DRM engine loads
a code module and calls routines in the control program, it
needs to guarantee that the interaction with the control
program will be consistent with the specification for the
specific protocol id signaled in the protocol field. That
includes any guarantee about the features of the virtual
machine that need to be implemented, guarantees about the
size of the address space available to the control program,
and the like.

[0592] 1t is possible for control protocols, such as the
Standard Control Protocol, to evolve over time without
having to create a new protocol specification. As long as the
changes made to the protocol are consistent with previous
revisions of the specification, and as long as existing imple-
mentations of the DRM engine, as well as existing control
programs that comply with that protocol, continue to per-
form according to the specification, then the changes are
deemed compatible. Such changes may include, for
instance, new action types.

[0593] 1.27.3. Byte Code Type

[0594] In the illustrative embodiment described above
involving the Standard Control Protocol, the type of the

US 2007/0172041 Al

byte-code module is “Plankton byte-code module version
1.0”. In this example embodiment, the value for the “type”
field of the Control object is “http://www.octopus-drm.com/
specs/pkem-1_ 0.

[0595] 1.27.4. General Control Routines

[0596] General routines are routines that are applicable to
the control as a whole, and are not specific to a given action
or link constraint. The following general control routines are
used in one illustrative embodiment:

[0597] 1.27.4.1. Control.Init

[0598] This routine is optional (i.e., it is not required in all
controls). If this routine is used, the engine calls it once
before any other control routine is called. The routine has no
inputs, and returns a ResultCode to the top of the stack as an
output. The ResultCode is 0 on success, or a negative error
code on failure. In one embodiment, if the ResultCode is not
0, the engine aborts the current control operation and does
not make any further calls to routines for this control.

[0599] 1.27.4.2. Control.Describe

[0600] This routine is optional. The routine is called when
the application requests a description of the meaning of the
rules represented by the control program in general (i.e. not
for a specific action). The routine has no inputs, and returns
a ResultCode and a StatusBlockPointer to the top of the
stack as outputs, where the ResultCode is an integer value (0
if the routine completed successfully, or a negative error
code otherwise), and where the StatusBlockPointer is the
address of a standard ExtendedStatusBlock. The Extended-
StatusBlock contains information that an application can
interpret and use to provide information to the user regard-
ing the meaning of the rules represented by the control
program.

[0601] 1.27.4.3. Control.Release

[0602] This routine is optional. If this routine exists, the
DRM engine calls it once after it no longer needs to call any
other routine for the control. No other routine will be called
for the control unless a new use of the control is initiated (in
which case, the Control.Init routine will be called again).
The routine has no inputs, and returns a ResultCode to the
top of the stack as an output. The ResultCode is 0 on success,
or a negative error code on failure.

[0603] 1.27.5. Action Routines

[0604] Each possible action has a name (e.g., play, trans-
fer, export, etc.). In one illustrative embodiment, for a given
action <Action>, the following routine names are defined
(where “<Action>" denotes the actual name of the action

2 < 29 <

(e.g., “play”, “transfer”, “export”, etc.)):

[0605] 1.27.5.1. Control.Actions.<Action>.Init

[0606] This routine is optional. If it exists, the engine calls
it once before any other routine is called for this action. The
routine has no inputs, and returns a ResultCode to the top of
the stack as an output. The ResultCode is 0 on success, or a
negative error code on failure. In one embodiment, if
ResultCode is not 0, the engine aborts the current action and
does not make any further calls to routines for this action in
this control.

Jul. 26, 2007

[0607] 1.27.5.2. Control.Actions.<Action>.Check

[0608] In the illustrate embodiment being discussed, this
routine is required, and is called to check, without actually
performing a given action, what the return status would be
if the Perform routine were to be called for that action. It is
important for this routine not to have any side effects. Note
that if the Perform routine also has no side effects, the Check
and Perform entries in the control’s Entries Table can point
to the same routine. This routine has the same inputs and
outputs as the Perform routine described below.

[0609]

[0610] In one embodiment, this routine is required, and is
called when the application is about to perform the action.
The routine has no inputs, and returns a ResultCode and a
StatusBlockPointer to the top of the stack as outputs, where
the ResultCode is an integer value (0 if the routine com-
pleted successfully, or a negative error code otherwise), and
where the StatusBlockPointer is the address of a standard
ExtendedStatusBlock. Note that in one embodiment a suc-
cess ResultCode (i.e., 0) does not mean that the request was
granted. It only means that the routine was able to run
without error. It is the ExtendedStatusBlock that indicates
whether the request was granted or denied. However, if the
ResultCode indicates a failure, the host application proceeds
as if the request was denied. For example, in one embodi-
ment the StatusBlock’s category should be ACTION_DE-
NIED, or the returned ExtendedStatusBlock is rejected, and
the host application aborts the action.

1.27.5.3. Control.Actions.<Action>.Perform

[0611] When an action is performed, only the Perform
routine needs to be called. The engine does not need to call
the Check routine beforehand. An implementation of the
Perform routine can call the Check routine internally if it
chooses to do so, but should not assume that the system will
have called the Check routine beforehand.

[0612] 1.27.5.4. Control.Actions.<Action>.Describe

[0613] This routine is optional, and is called when an
application requests a description of the meaning of the rules
and conditions represented by the control program for the
given action. The routine has no inputs, and returns a
ResultCode and a StatusBlockPointer to the top of the stack
as outputs, where the ResultCode is an integer value (0 if the
routine completed successfully, or a negative error code
otherwise), and where the StatusBlockPointer is the address
of a standard ExtendedStatusBlock.

[0614] 1.27.5.5. Control.Actions.<Action>.Release

[0615] This routine is optional. If it exists, it is called once
after the DRM engine no longer needs to call any other
routines for the given action. No other routine are called for
the given action unless a new use of the action is initiated (in
which case, the Init routine will be called again). The routine
has no inputs, and returns a ResultCode to the top of the
stack as an output. The ResultCode is 0 on success and a
negative error code on failure. If the ResultCode is not 0, the
engine does not make any further calls to routines for the
given action

[0616]

[0617] In one embodiment, when a link object has an
embedded control, the DRM engine calls the link constraint

1.27.6. Link Constraint Routines

US 2007/0172041 Al

routines in that control to verify the validity of the link
object. The following link constraint routines are used in one
illustrative embodiment:

[0618] 1.27.6.1. Control.Link.Constraint.Init

[0619] This routine is optional, and, if it exists, is called
exactly once before any other routine is called for the given
link constraint. The routine has no inputs, and returns a
ResultCode to the top of the stack as an output. The
ResultCode is 0 on success and a negative error code on
failure. If the ResultCode is not 0, the engine deems the
validity constraint for the link object to be unsatisfied, and
avoids making further calls to routines for the link control.

[0620]

[0621] Inthe illustrative embodiment being discussed, this
routine is required, and is called to check if the validity
constraint for a given link is satisfied. The routine has no
inputs, and returns a ResultCode and a StatusBlockPointer
to the top of the stack as outputs, where the ResultCode is
an integer value (0 if the routine completed successfully, or
anegative error code otherwise), and where the StatusBlock-
Pointer is the address of a standard ExtendedStatusBlock. If
the ResultCode is not O, the engine deems the validity
constraint for the link object to be unsatisfied, and avoids
making further calls to routines for the link control. Even if
the ResultCode is 0 (success), this does not mean that the
constraint has been satisfied; it only means that the routine
was able to run without error. It is the StatusBlock that
indicates whether the constraint is satisfied or not.

[0622]

1.27.6.2. Control.Link.Constraint.Check

1.27.6.3. Control.Link.Constraint.Describe

[0623] This routine is optional, and is called when the
application requests a description of the meaning of the
constraint represented by the control program for a given
link. The routine has no inputs, and returns a ResultCode and
a StatusBlockPointer to the top of the stack as outputs,
where the ResultCode is an integer value (0 if the routine
completed successfully, or a negative error code otherwise),
and where the StatusBlockPointer is the address of a stan-
dard ExtendedStatusBlock.

[0624] 1.27.6.4. Control.Link.Constraint.Release

[0625] This routine is optional, and, if it exists, is called by
the engine once after the engine no longer needs to call any
other routine for the given constraint. The routine has no
inputs, and returns a ResultCode to the top of the stack as an
output. The ResultCode is 0 on success and a negative error
code on failure. In the embodiment being discussed, after
calling this routine, no other routine can be called for the
given constraint unless a new cycle is initiated (in which
case, the Init routine is called again). Similarly, if the
ResultCode is not 0, the engine does not make further calls
to routines for the given link constraint.

[0626]

[0627] Inone embodiment, an agent is a control object that
is designed to run on behalf of an entity. Agents are typically
used in the context of a service interaction between two
endpoints, where one endpoint needs to execute some virtual
machine code within the context of the second endpoint, and
possibly obtain the result of that execution. In one embodi-
ment, a control can contain multiple agents, and each agent

1.27.7. Agent Routines

Jul. 26, 2007

can contain any number of routines that can be executed;
however, in practice, agents typically have a single routine.

[0628] In one illustrative embodiment, the following entry
points are defined for agents, where <Agent> is a name
string that refers to the actual name of an agent.

[0629]

[0630] This routine is optional, and, if it exists, the engine
calls it once before any other routine is called for the given
agent. The routine has no inputs, and returns a ResultCode
to the top of the stack as an output. The ResultCode is 0 on
success and a negative error code on failure.

[0631] 1.27.7.2. Control.Agents.<Agent>Run

[0632] In the illustrative embodiment under discussion,
this routine is required, and is the main routine of the agent.
The routine has no inputs, and returns a ResultCode, a
ReturnBlockAddress, and a ReturnBlockSize to the top of
the stack as outputs. The ResultCode is an integer value (0
if the routine completed successfully, or a negative error
code otherwise), the ReturnBlockAddress is the address of
a block of memory that contains data that the agent code is
expected to return to the caller (if the routine does not need
to return anything, the address is 0), and the ReturnBlock-
Size is the size in bytes of the block of memory at the
ReturnBlockAddress. In one embodiment, if ReturnBlock-
Address is 0, the value of ReturnBlockSize is also 0.

[0633]

1.27.7.1. Control. Agents.<Agent>.Init

1.27.7.3. Control. Agents.<Agent>.Describe

[0634] This routine is optional, and is called when an
application request a description of a given agent. The
routine has no inputs, and returns a ResultCode and a
StatusBlockPointer to the top of the stack as outputs, where
the ResultCode is an integer value (0 if the routine com-
pleted successfully, or a negative error code otherwise), and
where the StatusBlockPointer is the address of a standard
ExtendedStatusBlock.

[0635] 1.27.7.4. Control.Agents.<Agent>Release

[0636] This routine is optional, and, if it exists, the engine
calls it once after the engine no longer needs to call any other
routines for this agent. No other routine will be called for
this agent unless a new cycle is initiated (in which case, the
Init routine will be called again). The routine has no inputs,
and returns a ResultCode to the top of the stack as an output.
The ResultCode is 0 on success and a negative error code on
failure.

[0637] 1.28. Extended Status Blocks

[0638] The following example definitions are applicable
to the ExtendedStatusBlock data structures returned by
illustrative embodiments of several of the routines described
above. Examples of ExtendedStatusBlock data structures are
described in connection with the description of the virtual
machine.

[0639] In one embodiment, there are no global Extended-
StatusBlock flags. In this embodiment, control programs set
the GlobalFlag field of the ExtendedStatuBlock to 0.

[0640] 1.28.1. Categories

[0641] The following paragraphs define values for the
Category field of ExtendedStatusBlocks in accordance with
one embodiment. In one embodiment, none of these catego-
ries have sub-categories, and thus the value of the SubCat-
egory field of the ExtendedStatusBlocks is set to O.

US 2007/0172041 Al

43

Jul. 26, 2007

[0646] In the table shown above, the parameter list that is
referred to is the “Parameters” field of the ExtendedStatus-

[0642] In one embodiment, the following category codes
are defined:
[0643] 1.28.1.1. Actions Check and Perform Routines

Block data structure.

Value Name

Description

0 ACTION_GRANTED

1 ACTION_DENIED

The application is authorized to use the content
keys controlled by the control program for the purpose of
the requested action.

The parameter list of the returned
ExtendedStatusBlock should not contain any of
the constraint parameters, but may contain
obligation and/or callback parameters.

The application is not authorized to use the content
keys controlled by the control program for the
purpose of the requested action.

When an action is denied, the control program
should include in the parameter list of the returned
ExtendedStatusBlock one or more of the
constraints that were not met and caused the action
to be denied (the constraints that were not
evaluated and the constraints that did not cause the
action to fail should be omitted).

In one embodiment, the parameter list of the
returned ExtendedStatusBlock must not contain
any obligation or callback parameter.

[0644] In one embodiment, in the context of Extended-
StatusBlock parameters returned by action routines, a con-
straint means a condition that is required to be true or a
criterion that is required to be met in order for the result of
the routine to return an ExtendedStatusBlock with the cat-
egory ACTION_GRANTED.

[0645] Inone embodiment, values for the LocalFlags field
common to both categories described above include:

[0647]

[0648] In one embodiment, no category codes are defined
for Describe routines. In one embodiment, the same local
flags as the ones defined for Action routines apply to
Describe routines, and Describe routines should include in
their retuned ExtendedStatusBlock a parameter named
‘Description’ as specified below. In one embodiment,
Describe routines do not contain in their retuned Extended-

1.28.1.2. Describe Routine Category Codes

Bit
Index (0 is LSB) Name

Description

0 OBLIGATION_ NOTICE

1 CALLBACK_NOTICE

2 GENERIC__CONSTRAINT

3 TEMPORAL__ CONSTRAINT

4 SPATIAL__CONSTRAINT

5 GROUP_CONSTRAINT

6 DEVICE_CONSTRAINT

7 COUNTER_CONSTRAINT

The parameter list contains one or
more parameters that are related to
obligations

The parameter list contains one or
more parameters that are related to
callbacks

The parameter list contains one or
more parameters that are related to
generic constraints

The parameter list contains one or
more parameters that are related to
temporal constraints

The parameter list contains one or
more parameters that are related to
spatial constraints

The parameter list contains one or
more parameters that are related to
group constraints

The parameter list contains one or
more parameters that are related to
device constraints

The parameter list contains one or
more parameters that are related to
counter constraints

US 2007/0172041 Al

StatusBlock any obligation or callback parameters; how-
ever, Describe routines should include in their returned
ExtendedStatusBlock parameters that describe some or all of
the constraints that are applicable for the corresponding
action or link constraint.

[0649] 1.28.1.3. Link Constraint Routine Category Codes

Value Name Description

0 LINK_VALID The link constrained by this control program is
valid.
The parameter list of the returned ESB should
not contain any of the constraint parameters,
and, in one embodiment, must not contain
obligation or callback parameters
1 LINK_INVALID The link constrained by this control program is

invalid.

When a link is invalid, the control program

should include in the parameter list of the

returned ESB one or more of the

constraints that were not met and caused

the link to be invalid (the constraints

that were not evaluated and the

constraints that did not cause the action

to fail should be omitted). In one

embodiment, the parameter list of the

returned ESB must not contain any

obligation or callback parameter.

[0650] Inone embodiment, the same local flags as the ones
defined for Action routines apply for each of these catego-
ries.

[0651] In one embodiment, in the context of Extended-
StatusBlock parameters returned by link constraint routines,
a constraint means a condition that is required to be true or
a criterion that is required to be met in order for the result
of the routine to return an ExtendedStatusBlock with the
category LINK_VALID.

[0652] 1.28.2. Cache Durations

[0653] The CacheDuration field of an ExtendedStatus-
Block is an indication of the validity period of the informa-
tion encoded in the ExtendedStatusBlock. When an Extend-
edStatusBlock has a non-zero validity period, it means that
the ExtendedStatusBlock can be stored in a cache, and that
during that period of time a call to the exact same routine call
with the same parameters would return the same Extended-
StatusBlock, so the cached value may be returned to the host
application instead of calling the routine.

[0654]

[0655] Some parameters are used to convey detailed infor-
mation about the return status, as well as variable bindings
for template processing (see Section 9.4).

[0656] In one embodiment, except for obligations and
callbacks, all the constraints described here are strictly for
the purpose of helping the host application classify and
display, not for enforcement of the usage rules. The enforce-
ment of the rules is the responsibility of the control program.

[0657] In one embodiment, the parameters defined in the
following section are encoded either as a ParameterBlock, if
no parameter flags are applicable, or as an ExtendedParam-
eterBlock, of one or more flags are applicable. Representa-
tive flags are described below:

1.28.3. Parameters

Jul. 26, 2007

[0658] 1.28.3.1. Description

[0659] Parameter Name: Description

[0660] Parameter Type: ValueList

[0661] Description: List of description parameters. Each

value in the list is of type Parameter or Extended Parameter.
In one embodiment, the following parameters are defined:
Default, Short and Long. Each of them, if present has for a
value the ID of one of the control’s resources. That resource
should contain a textual payload, or a template payload. If
the resource is a template, it is processed to obtain a textual
description of the result (either a description of the entire
control program, or of a specific action). The template is
processed using as variable bindings the other parameters of
the list in which the ‘Description’ parameter appears.

[0662] Inoneembodiment, the ‘Short” and ‘Long’ descrip-
tions can only be included if a ‘Default’ description is also
included.

Name Type Description
Default Resource Id of the resource that contains

the normal description text or template
Short Resource Id of the resource that contains

the short description text or template
Long Resource Id of the resource that contains

the long description text or template

[0663] 1.28.3.2. Constraints

[0664] In one embodiment, constraint parameters are
grouped in lists that contain constraints of similar types. In
one embodiment, standard constraints are defined for some
of the types. In one embodiment, controls may return
constraint parameters that are not included in the set of
standard constraints, provided that the name of the con-
straint parameters be a URN in a namespace that guarantees
the uniqueness of that name. This may include vendor-
specific constraints, or constraints defined in other specifi-
cations.

[0665] 1.28.3.2.1. Generic Constraints

[0666] Parameter Name: GenericConstraints
[0667] Parameter Type: ValueList

[0668] Description: List of generic constraints that may be
applicable. Each value in the list is of type Parameter or
ExtendedParameter.

[0669] In one embodiment, generic constraints are con-
straints that do not belong to any of the other constraint types
defined in this section. In one embodiment, no generic
constraint parameters are defined.

[0670] 1.28.3.2.2. Temporal Constraints
[0671] Parameter Name: TemporalConstraints
[0672] Parameter Type: ValueList

[0673] Description: List of temporal constraints that may
be applicable. Each value in the list is of type Parameter or
Extended Parameter. Temporal constraints are constraints

US 2007/0172041 Al

that are related to time, date, duration, and/or the like. In one
embodiment, the following temporal constraint parameters
are defined:

Name Type Description

NotBefore Date Date before which the action is denied
NotAfter Date Date after which the action is denied
NotDuring ValueList List of 2 values of type Date. The first

value is the start of the period, and the
second is the end of the period that
is excluded.

NotLongerThan Integer Max number of seconds after first use.
In one embodiment, this value is unsigned.
NotMoreThan Integer Max number of seconds of accumulated
use time. In one embodiment, this value
is unsigned.
[0674] 1.28.3.2.3. Spatial Constraints
[0675] Parameter Name: SpatialConstraints
[0676] Parameter Type: ValueList
[0677] Description: List of spatial constraints that may be

applicable. In one embodiment, each value in the list is of
type Parameter or ExtendedParameter. Spatial constraints
are constraints that are related to physical locations. In one
embodiment, no standard spatial constraints are defined.

[0678] 1.28.3.2.4. Group Constraints

[0679] Parameter Name: GroupConstraints

[0680] Parameter Type: ValueList

[0681] Description: List of group constraints that may be

applicable. Each value in the list is of type Parameter or
Extended Parameter. Group constraints are constraints that
are related to groups, group membership, identity groups,
and/or the like. In one embodiment, the following param-
eters are defined:

Name Type Description

MembershipRequired Resource Id of the resource that contains the
text or template for the name or
identifier of a group of which a
membership is required

IdentityRequired Resource Id of the resource that contains the
text or template for the name or
identifier of an individual

[0682] 1.28.3.2.5. Device Constraints

[0683] Parameter Name: DeviceConstraints

[0684] Parameter Type: ValueList

[0685] Description: List of device constraints that may be

applicable. Each value in the list is of type Parameter or
Extended Parameter. Device constraints are constraints that
are related to characteristics of a device, such as features,
attributes, names, identifiers, and/or the like. In one embodi-
ment, the following parameters are defined:

Jul. 26, 2007

Name Type Description

Id of the resource that contains the
text or template for the type of host
device that is required

Id of the resource that contains

the text or template for name of
feature that the host device

must have

Id that the device is required to
have. This Id may be any string
that can be used to identify the
device (e.g., device name,

device serial number, a node

id, and/or the like).

DeviceTypeRequired Resource

DeviceFeatureRequired ~ Resource

DeviceIldRequired String

[0686] 1.28.3.2.6. Counter Constraints

[0687] Parameter Name: CounterConstraints
[0688] Parameter Type: ValueList

[0689] Description: List of counter constraints that may be
applicable. Each value in the list is of type Parameter or
ExtendedParameter. Counter constraints are constraints that
are related to counted values, such as play counts, accumu-
lated counts, and/or the like. In one embodiment, no stan-
dard counter constraints are defined.

[0690] 1.28.3.3. Parameter Flags

[0691] In one embodiment, the following flags may be
used for all the parameters described in Section 9.2.3, when
they are encoded as an ExtendedStatusBlock:

Bit
Index
(0 is
LSB) Name Description
0 CRITICAL The semantics associated with this

parameter need to be understood by the
host application. If they are not, the
entire ExtendedStatusBlock should

be treated as not understood

and rejected.

In one embodiment, this flag should not
be used for parameters that are
descriptive in nature.

1 HUMAN_READABLE This parameter represents a value
whose name and value are suitable to
display in a textual or graphical user
interface. Any parameter that does
not have this flag set should be reserved
for the host application, and not be
shown to a user. For parameter
values of type Resource, it
is not the resource ID, but the resource
data payload referenced by the ID,
that is human-readable.

[0692] 1.29. Obligations and Callbacks

[0693] In one embodiment, certain actions, when granted,
require further participation from the host application. Obli-
gations represent operations that need to be performed by

US 2007/0172041 Al

46

the host application upon or after the use of the content key
it is requesting. Callbacks represent calls to one or more of
the control program routines that need to be performed by
the host application upon or after the use of the content key
they are requesting.

[0694] In one embodiment, if an application encounters
any critical obligation or callback that it does not support, or
does not understand (for example because the obligation
type may have been defined after the application was
implemented), it must refuse to continue the action for
which this obligation or callback parameter was returned. In
one embodiment, a critical obligation or callback is indi-
cated by setting the CRITICAL parameter flag for the
parameter that describes it.

[0695] If a control has side effects (such as decrementing
a play count, for example), it should use the OnAccept
callback to require the host application to call a certain
routine if it is able to understand and comply with all critical
obligations and callbacks. The side effect should happen in
the callback routine. In one example embodiment, imple-
mentations are required to understand and implement the
OnAccept callback, since it can be useful in preventing side
effects (e.g., updates to the state database) from occuring
prematurely (e.g., before the host application determines
that it is unable to comply with a given critical obligation or
callback and needs to terminate performance of an action),
thus providing a measure of transactional atomicity.

[0696]

[0697] The following parameters define several types of
obligations and callbacks that can be returned in Extended-
StatusBlock data structures.

1.29.1. Parameters

[0698] 1.29.1.1. Obligations

[0699] Parameter Name: Obligations

[0700] Parameter Type: ValueList

[0701] Description: List of obligation parameters. Each

value in the list is of type Parameter or Extended Parameter.
In one embodiment, the following obligation parameters are
defined:

Jul. 26, 2007

Name Type Description

RunAgentOnPeer ValueList The host application needs to send an
agent control to run on a peer of the
currently running protocol session

Type Description

Id of the Control that contains
the agent to run.
Name of the agent to run.

String

String
Integer Instance Id. This value is used
to uniquely identify this agent
obligation instance. This id
will also allow the system to
correlate this agent obligation
with an OnAgentCompletion
callback parameter.

Context Id. This Id will be
visible to the running agent on

String

the peer under the agent’s
session context Host Object
path:
Octopus/Agent/Parameters/
Session/Contextld.

List of values of type
Parameter. All those

ValueList

parameters will be
visible to the agent as input
parameters.

[0702] 1.29.1.2. Callbacks

[0703] Parameter Name: Callbacks

[0704] Parameter Type: ValueList

[0705] Description: List of callback parameters. Each

value in the list is of type Parameter or Extended Parameter.
In one embodiment, the following callbacks parameters are
defined:

Name

Type Description

OnAccept

OnTime

OnTimeElapsed

Callback The host application must call back if it is able to
understand all the critical obligations and callback
parameters contained in this ESB.

In one embodiment, there can be at most one
OnAccept callback parameter in a list of callback
parameters. If other callback parameters are
specified in the list, the OnAccept is executed first.
The host application must call back after the
specified date/time.

Type Description

ValueList

Date The date after which the host
application needs to perform the
callback.

Routine to call back, and associated
cookie.

The host application must call back after the
specified duration has elapsed (the counting starts
when the host application actually performs the
action for which the permission that was granted).

Callback

ValueList

US 2007/0172041 Al

Jul. 26, 2007

47

-continued
Name Type Description
Type Description
Integer Number of seconds. The value is
unsigned.
Callback Routine to call back, and associated
cookie.
OnEvent ValueList The host application must call back when a certain

OnAgentCompletion ValueList

event occurs.

Type Description
String Event Name
Integer Event Flags (the integer valus is

interpreted as a bit-field)

Event Parameter

Routine to call back, and associated
cookie.

See the paragraph about events for more details
about the events.

The host application must call back when an agent
specified in one of the obligation parameters has
completed, or failed to run.

Integer
Callback

Type Description

Integer Agent instance id.
The instance id specified in an agent
obligation.

Callback Routine to call back, and associated
cookie.

When calling back, the host application must
provide the following ArgumentsBlock:

Type Encoding Description
32-bit 4 bytes in Completion status
integer big-endian code.

order
32-bit 4 bytes in Agent result code
integer big-endian

order

8-bit byte Byte Agent ReturnBlock

array sequence

The completion status code value is 0 if the agent
was able to run or a negative error code if it was

not.

The agent ReturnBlock is the data returned by the
agent. This is omitted if the agent was unable to run

(the Completion status code is not 0).

[0706] In one embodiment, the ‘Callback’ type mentioned
in the table above is a ValueListBlock with three ValueBlock
elements:

Value
Type Description

Integer ID of the callback type. In one embodiment, two types of
callbacks are defined:
D Description

RESET =0 All pending callbacks requests and active
obligations are cancelled upon calling the
callback routine. The callback routine
returns an ESB that indicates if and how the
application can continue with the current
operation.

The callback routine is called while all
other pending callback requests and active
obligations remain in effect. The callback
routine returns a simple result code. The

CONTINUE = 1

-continued

Value
Type Description

application can continue with the current
operation unless that result code indicates a
failure.

String Entry point to call in the code module. In one embodiment,
this must be one of the entries in the Export Table of the code
module for the same control as the one containing the routine
that returned the ESB with this parameter.

Integer Cookie. This value will be passed on the stack to the
routine that is called.

[0707]

[0708] In one embodiment, the same parameter flags as
defined in the previous section are used. In one embodiment,
callbacks and obligations that a caller is required to imple-
ment are marked as CRITICAL, so as to avoid giving a host
application the choice to ignore these parameters.

1.29.1.3. Parameter Flags

US 2007/0172041 Al

[0709]

[0710] In one embodiment, events are specified by name.
Depending on the type of event, there may be a set of flags
defined that further specify the event. In one embodiment, if
no flags are defined for a specific event, the value of the flag
field is set to 0. Also, some events may specify that some
information be supplied to the callback routine when the
event occurs. In one embodiment, if no special information
is required from the host application, the host application
must call with an empty ArgumentsBlock (see the descrip-
tion of the callback routine interface in section 3.3, below).

[0711] In one embodiment, if the name of an event in a
callback parameter marked CRITICAL is not understood or
not supported by the host application, the host application
must consider this parameter as a not-understood CRITI-
CAL parameter (and the action for which permission was
requested must not be performed).

[0712]
defined:

1.29.2. Events

In one embodiment, the following event names are

Jul. 26, 2007

[0713] 1.29.3. Callback Routines

[0714] In one embodiment, callback routines take the
same input:

[0715] Input: Top of stack:

Cookie
ArgumentsBlockSize
...data. ..

[0716] Cookie: the value of the Cookie field that was
specified in the callback parameter.

[0717] ArgumentsBlockSize: number of bytes of data
passed on the stack below this parameter. When the routine
is called, the stack contains the value ArgumentsBlockSize
supplied by the caller, indicating the size of the arguments
block at the top, followed by ArgumentsBlockSize bytes of
data. In one embodiment, if the size is not a multiple of 4,

Event

Event Name FEvent Flags Parameter Description

OnPlay None None The host application must call back
when the multimedia object starts
playing.

OnStop None None The host application must call back
when the multimedia stops playing (or is
paused)

OnTimecode None Presentation The host application must call back
time when the specified presentation time has
expressed in been reached or exceeded (during
number of normal real-time playback or after a
seconds since seek). The origin of the presentation
the start of time is when the rendering begins. The
the presentation time relates to the source
presentation media time, not the wall-clock time

(e.g., when a presentation is paused, the
presentation time does not change).

OnSeek None None The host application must call back

when a direct access to an arbitrary point
in a multimedia presentation occurs.

In one embodiment, when calling back,
the host application must provide the
following data in a ArgumentsBlock:

Type Encoding Description
32-bit 4 bytes in Seek
unsigned big-endian position
integer order offset
32-bit 4 bytes in Seek
unsigned big-endian position
integer order range

The position within the multimedia
presentation is offset “marks™ out of
range total “marks™ in the presentation.
For instance, for a presentation that is
327 seconds long, seeking to the 60
second can be represented with

offset = 60, range = 327. It is up to the
caller to choose the unit that corresponds
to the measurement of the offset and
range (it could be a time unit, a byte-size
unit, or any other unit), provided that the
“marks” are homogeneously distributed
over the entire presentation. The value
of offset must be less than or equal to the
value of range.

US 2007/0172041 Al

the data on the stack will be padded with 0-value bytes to
ensure that the stack pointer remains a multiple of 4.

[0718] 1.29.3.1. CONTINUE Callbacks

[0719] In one embodiment, callbacks with the type CON-
TINUE (type ID=0) have the following output:

[0720] Output: Top of stack:

ResultCode

[0721] ResultCode: an integer value. The result value is 0
if the routine was able to execute or a negative error code if
an error occurred.

[0722] Description: if the ResultCode indicates that the
callback routine was able to run (i.e., the value is 0), the host
application can continue the current operation. If the Result-
Code indicates that an error occurred, the host application
aborts the current operation and cancels all pending call-
backs and obligations.

[0723] 1.29.3.2. RESET Callbacks

[0724] When a control routine has specified one or more
callbacks of type RESET in the ESB returned from a routine,
the host application will call any specified callback routine
when the condition for that callback is met. In one embodi-
ment, as soon as the conditions of any of the callbacks are
met, the host application needs to:

[0725] Cancel all other pending callbacks
[0726] Cancel all current obligations

[0727] Provide the required parameters (if any) for that
callback

[0728] Call the specified callback routine.

[0729] The return status from the routine indicates to the
host application if it can continue performing the current
operation. In one embodiment, if the permission is denied or
the routine fails to execute successfully, the host application
must abort the performance of the current operation. Simi-
larly, if the permission is granted, the host application must
comply with any obligation or callback that may be returned
in an ESB, just as if it had called the original
Control. Actions.<Action>.Perform routine. Previous obli-
gations or callback specifications are no longer valid.

[0730] In one embodiment, all routines specified as call-
back entry points for this type of callback have the following
output:

[0731] Output: Top of stack:

ResultCode
StatusBlockPointer

[0732] ResultCode: an integer value. The result value is 0
if the routine was able to execute, or a negative error code
if an error occurred.

Jul. 26, 2007

[0733] StatusBlockPointer: address of a standard Extend-
edStatusBlock.

[0734] Description: the return semantics of this routine are
equivalent to what is described for the
Control. Actions.<Action>.Perform routine.

[0735] 1.30. Metadata Resources

[0736] In one embodiment, control objects can contain
metadata resources, which can be referenced from the
parameters returned in ExtendedStatusBlock data structures.
Resources can be simple text, text templates, or other data
types. Each resource is identified by a resource ID, and can
contain one or more text strings or encoded data, one for
each version in a different language. It is not required that
resources be provided for all languages. It is up to the host
application to choose which language version is most appro-
priate for its needs.

Field Type Description

Resource

Id ASCII String URI (typically a URN referring to

the Id of an Extension of the

Control object that contains the

code module with the routine that is

currently running)

MIME-type of the resource data as

described in IETF RFC 2046

List of all the different versions of

the resource, for different locales

LocalizedData

Type ASCII String

Data List of
LocalizedData

Language ASCII String Language code as specified in IETF
RFC 3066
Data Type depends The actual data for the resource
on the specified (text, etc...)
mime type

[0737] Resources accompany control programs by being
included as Extensions in a Control object. The resource 1d
maps to the Id of an internal extension of the Control object
that contains the code module with the routine that is
currently running.

[0738] For the purpose of computing the canonical byte
sequence for Resource objects, in one embodiment the data
structure description is the following:

class LocalizedData {
string language
byte|] data;

class Resource {
string id
string type;
LocalizedData data;

}

[0739]
[0740]

1.30.1. Simple Text
Simple text is specified as MIME-type ‘text’
[0741] 1.30.2. Text Templates

[0742] In addition to the standard text resources, in one
embodiment, a text template type is defined. The MIME-
type for this is ‘text/vnd.intertrust.octopus-text-template’.

US 2007/0172041 Al

[0743] 1In one embodiment, a text template contains text
characters encoded in UTF-8, as well as named placeholders
that are to be replaced by text values obtained from param-
eters returned in the parameters list, such as that of an
ExtendedStatusBlock. The syntax for a placeholder is
PLACEHOLDERY’, where PLACEHOLDER specifies the
name of a Parameter Block and an optional formatting hint.
In one embodiment, the template processor must replace the
entire token “PLACEHOLDERY’ with the formatted repre-
sentation of the Value field of that Parameter Block, and the
formatting of the Value data is specified below in Section
42.1.

[0744] In one embodiment, if the character ‘\” appears in
the text outside of a placeholder, it must be encoded as “\V,
and all occurrences of ‘\\’ in the text will be reverted to \’
by the template processor.

[0745] The syntax for the placeholder is:
FORMAT|NAME, where NAME is the name of a Parameter
Block, and FORMAT is the formatting hint to convert the
parameter’s data into text. If the default formatting rules for
the parameter value’s data type are sufficient, then the
formatting hint can be omitted, and the placeholder is simply
NAME.

[0746] 1.30.2.1. Formatting
[0747] 1.30.2.1.1. Default Formatting
[0748] Inoneembodiment, the default formatting rules for

the different value types are:

Jul. 26, 2007

Name Formatting

Hex Hexadecimal representation of an integer value interpreted as
unsigned. In one embodiment, this formatting hint should be

ignored for data types that are not integers.

[0751] 1.31. Context Objects

[0752] In one embodiment, when a control routine is
executing, it has access to a number of context objects

through the use of the System.Host.GetObject system call.
[0753] 1.31.1. General Context

[0754] In one embodiment, the following context is
present for running controls.

Name Type Description

ID of the current
personality Node
Attributes of the current
personality Node

Octopus/Personality/Id String

Octopus/Personality/Attributes Container of
Attributes

Type Formatting

Integer

Text representation of the integer value as a signed
decimal. The text is composed only of the characters for

the digits “0” to “9” and the character “—>. If the value is 0,
the text is the string “0”. If the value is not 0, the text does
not start with the character “0”. If the value is negative, the
text starts with the character “—". If the value is positive, the

text starts with a non-zero digit character.

Real Text representation of the floating point value in decimal.
The integral part of the value is represented using the same rules
as for Integer values. The decimal separator is represented
with the host application’s preferred decimal separator. The
factional part of the value consists of up to 6 “0” characters

followed by up to 3 non-zero digit characters.
String The string value itself

Date A human readable representation of the date, according to

the host’s preferred text representation of dates

Parameter The text “<name>=<value>”, where <name> is the
parameter name, and <value> is the parameter value
formatted according to the default formatting rules for its type.
ExtendedParameter Same as for Parameter
Resource Text string of the resource’s data. In one embodiment, the
resource referenced by the placeholder must have a MIMI-
type that is text-based (e.g., text or
text/vnd.intertrust.octopus-text-template).
ValueList The text “<value>, <value>, . . . ” with all the values in the
list formatted according to the default formatting rules for
their type.
[0749] 1.30.2.1.2. Explicit Formatting [0755] 1.31.2. Runtime Context
[0756] In one embodiment, the following context is

[0750] Explicit format names can be used as the FORMAT
part of a placeholder tag. If an unknown FORMAT name is
encountered, the template processing engine will use the
default formatting rules.

present for all controls that are running in a VM that has
been created using the System.Host.SpawnVm system call.
In one embodiment, this context must be non-existent or an
empty container for controls that are running in a VM that
was not created using System.Host.SpawnVm.

US 2007/0172041 Al

Name Type Description

Octopus/Runtime/Parent/Id Container The identity under which the
of unnamed caller of the system call is
String running.
objects

[0757]

[0758] In one embodiment, the following context is
present whenever a routine of a control is running:

1.31.3. Control Context

Name Type Description

Octopus/Control/Id String Id of the running control

Octopus/Control/ Container Attributes of the running control.
Attributes This object may be omitted if the

control has no attributes.
[0759] 1.31.4. Controller Context

[0760] In one embodiment, the following context is
present whenever a routine of a control is running and the
control was pointed to by a controller object (e.g., when
accessing a ContentKey object in order to consume pro-
tected content).

Name Type Description

Octopus/Controller/Id ~ String Id of the Controller that points to the

currently running control

Octopus/Controller/ Container Attributes of the Controller pointing

Attributes to the currently running control. This
object may be omitted if the
controller has no attributes.

[0761] In embodiments where a host application is

allowed to only group content keys that are controlled by a
single controller object, for a given action, there will be only
one applicable controller object.

[0762]

[0763] In one embodiment, the following context is
present whenever a control is called for the purpose of
controlling an Action.

1.31.5. Action Context

Name Type Description

Octopus/Action/ Container
Parameters

Array of Name/Value pairs
representing the parameters that are
relevant for the current action, if any.
In one embodiment, each action type
defines a list of optional and required
parameters. This container may be
omitted if the action has no parameters.

[0764]

[0765] In one embodiment, the following context is
present whenever a control is called for the purpose of

1.31.6. Link Context

Jul. 26, 2007

limiting the validity of a link object (e.g., a control object
embedded in a link object):

Name Type Description
Octopus/Link/Id String Id of the Link object
Octopus/Link/Attributes Container Attributes of the Link object that

contains the running control. This
object may be omitted if the link
has no attributes.

[0766]

Name Type Description

Octopus/Agent/Parameters Container Array of Name/Value parameter
pairs representing the input
parameters for the agent.
Identifier for the session context
in which the agent is running.

Octopus/Agent/Session/ String
ContextId

[0767] The Parameter and Session containers are normally
used to allow the protocols that require one entity to send
and run an agent on another entity to specify which input
parameters to pass to the agent, and which session context
objects the host needs to set under certain conditions. The
presence or absence of certain session context objects may
allow the agent code to decide whether it is running as part
of the protocol it was designed to support, or if it is running
out of context, in which case it may refuse to run. For
example, an agent whose purpose is to create a state object
on the host on which it runs may refuse to run unless it is
being executed during a specific protocol interaction.

[0768] 1.32. Actions

[0769] In one embodiment, each action has a name and a
list of parameters. In one embodiment, some parameters are
required—the application must provide them when perform-
ing this action—and some are optional—the application may
provide them or may omit them.

[0770] In one embodiment, the following standard actions
are defined:
[0771] 1.32.1. Play

[0772] Description: Normal real-time playback of the
multimedia content.

[0773] 1.32.2. Transfer

[0774] Description: Transfer to a compatible target sys-
tem.

[0775] Transferring to a compatible target system is used
when the content has to be made available to a system with
the same DRM technology, such that the target system can
use the same license as the one that contains this control, but
state information may need to be changed on the source, the
sink, or both. The system from which the transfer is being
done is called the source. The target system to which the
transfer is being done is called the sink.

[0776] This action is intended to be used in conjunction
with a service protocol that allows an Agent to be transferred

US 2007/0172041 Al

from the source to the sink in order to do the necessary
updates in the source’s and sink’s persistent states (e.g.,
objects in the state database described herein). In one
embodiment, a control uses the RunAgentOnPeer obligation
for that purpose. Additional information about illustrative
embodiments of this service protocol are provided below in
connection with the discussion of the state database.

[0777] Parameters:

Jul. 26, 2007

original license. The system from which the transfer is being
done is called the source. The target system to which the
transfer is being done is called the sink.

[0781] In one embodiment, in the Extended Status result
for the Describe, Check, and Perform methods of this action,
the following parameter shall be set:

Name Type Description

Sink/Id String Node Id of the Sink

Sink/Attributes Container Attributes of the Sink’s node. This container may be

omitted if the node has no attributes.
TransferMode String

Transfer Mode ID indicating in which mode the content is

being transferred. This ID can be a standard mode as
defined below, or a URN for a system proprietary mode.
In one embodiment, the following standard modes are

defined:

ID Description

Render The sink is receiving the content for the
purpose of rendering

Copy The sink is receiving a copy of the content

Move The content is being moved to the sink.

CheckOut The content is being checked-out to the

sink. This is similar to Move but with the
distinction that the resulting state on the
sink may prevent any other move than a

move back to the source.
TransferCount Integer

Integer value indicating how many instances of the state

counters associated with this control need to be transferred

to the sink.

In one embodiment, this parameter is optional. If it is not
present, only one instance is being transferred. It should not
be present when the transfer mode is Render or Copy.

[0778] 1.32.3. Bxport

[0779] Description: Export to a foreign target system.

[0780] Exporting to a foreign target system is an action
that is used when the content has to be exported to a system
where the original content license cannot be used. This could
be a system with a different DRM technology, a system with
no DRM technology, or a system with the same technology
but under a situation that requires a license different from the

Name Type Description

ExportInfo Any Information that is relevant when exporting content to
the target system specified in the action parameters.
The actual type and content of this information is
specific to each target system. For example, for
CCl-based systems, this would contain the CCI bits

to set for the exported content.

[0782]

Name

Parameters:

Type Description

TargetSystem

ExportMode

String System ID of the foreign system to which the export is

being made. This ID is a URN.
String Export Mode ID indicating in which mode the content is

being exported. This ID can be a standard mode as

defined below, or a URN for a system proprietary mode.

In one embodiment, the following standard modes are defined:

ID Description

DontKnow The caller does not know what the sink’s
intended mode is. In this case, the control
program should assume that any of the
allowed modes for the TargetSystem can
be assumed by the sink, and should

US 2007/0172041 Al

-continued

Jul. 26, 2007
53

Parameters:

Name

Type

Description

Render

indicate any restriction in the return
status of the action routines. For
example, for a CCI-based system, the
control can return CCI bits that will
either allow the equivalent of Render or
Copy depending on what the license
permits.

The sink is receiving the content for the
purpose of rendering, and will not retain
a usable copy of the content except for

caching purposes as specified by each

target system
Copy
content
Move

The sink is receiving a copy of the

The content is being moved to the sink.

[0783] Other input parameters may be required by specific
target systems.

[0784] 1.32.3.1. Standard Target Systems
[0785] 1.32.3.1.1. Audio CD or DVD
[0786] In one embodiment, the standard TargetSystem ID

‘CleartextPcmAudio’ is used when the target system is an
unencrypted medium onto which uncompressed PCM audio
is written, such as a writeable audio CD or DVD. For this
target system, the Exportlnfo parameter is a single Integer
parameter representing a copyright flag. This flag is indi-
cated in the least significant bit of the integer value.

Bit index Description

0 (LSB) When this flag is set, the Copyright bit or flag must be
set in the format of the recoded audio if the format supports

the signaling of such a bit or flag.

10. State Database

[0787] A secure object store that can be used by preferred
embodiments of a DRM engine to provide a secure state
storage mechanism is described below. Such a facility is
useful to enable control programs to be able to read and
write in a protected state database that is persistent from
invocation to invocation. Such a state database can be used
to store state objects such as play-counts, date of first use,
accumulated rendering times, and/or the like. In a preferred
embodiment, the secure database is implemented in non-
volatile memory, such as flash memory on a portable device,
or an encrypted area of the hard disk drive on a PC. It will
be appreciated, however, that the secure database could
implemented on any suitable medium.

[0788] The term “object”, as used in this section, generally
refers to the data objects contained within the secure object

store, and not to the objects (e.g., controls, controllers, links,
etc.) discussed elsewhere herein; if necessary to distinguish
between these two categories of objects, the term “DRM
object” will be used to refer to the objects described else-
where herein (i.e., controls, controllers, protectors, Content-
Keys, links, nodes, and the like), while the term “state
object” will be used to refer to the objects stored within the
state database. In the following discussion, reference will
occasionally be made to an illustrative implementation of
the state database, called “Seashell,” which is used in
connection with the Octopus DRM engine embodiment
described elsewhere herein. It will be appreciated; however,
that embodiments of the systems and methods described
herein can be practiced without some or all of the features
of this illustrative implementation.

[0789] 1.33. Database Objects

[0790] The object store (e.g., a database) contains data
objects. In one embodiment, objects are arranged in a logical
hierarchy, where container objects are parents of their con-
tained children objects. In one embodiment, there are four
types of objects: string, integer, byte array, and container.
Each object has associated metadata and a type. Depending
on its type, an object can also have a value.

[0791] In one embodiment, state objects can be accessed
from virtual machine programs using the System.Host.Ge-
tObject and System.Host.SetObject system calls, and, as
described in more detail below, object metadata can be
accessed using virtual names. In one embodiment, some of
the metadata fields can be changed by clients of the database
(i.e., they are read-write (RW) accessible), while other
metadata fields are read-only (RO).

[0792] In one embodiment, the metadata fields shown in
the following table are defined:

Field

Type Accessibility Description

Name

String RO Name of the object. In one

embodiment only the following

US 2007/0172041 Al

Jul
54

-continued
Field Type Accessibility Description
characters are allowed as object
names (all the other ones are
reserved): a—z, A-Z, 0-9, *_°, -,
R A A
Owner String RW Id of the owner of that object
CreationDate Unsigned RO Time at which the object was
32-bit created, expressed as the number
integer of minutes elapsed since Jan 1
1970 00:00:00 local time.
ModificationDate Unsigned RO Time at which the object was last
32-bit modified, expressed as the number
integer of minutes elapsed since Jan 1

. 26,2007

1970 00:00:00 local time.

For container objects, this is the time
at which a child was last added to or
removed from the container. For other
objects, this is the time at which their

value was last changed.

ExpirationDate Unsigned RW Time at which the object expires, expressed
32-bit as the number of minutes elapsed since
integer Jan 1 1970 00:00:00 local time. A value of

0 means the object does not expire.

Flags 32-bit bit RW Set of boolean flags indicating properties
field of the object.

[0793] Inone embodiment, the metadata flag shown in the [0799]

following table is defined:

Bit index Name Meaning

0 (LSB) PUBLIC_READ If set, indicates that the access
control for this object is such that any

client can read the object and its metadata.

[0794] As previously indicated, in one embodiment there
are four types of state objects: strings, integers, byte arrays,
and container. In this embodiment, the value of a string
object is a UTF-8 encoded character string, the value an
integer object is a 32-bit integer value, and the value of a
byte array object is an array of bytes. In this embodiment, a
container object contains zero or more objects. A container
object is referred to as the parent of the objects it contains.
The contained objects are referred to as the children of the
container. All the container objects that make up the chain of
an object’s parent, the parent’s parent, and so on, are called
the object’s ancestors. If an object has another object as it
ancestor, that object is called a descendant of the ancestor
object.

[0795]

[0796] In one embodiment, the lifetime of objects in the
state database follows a number of rules. Objects can be
explicitly destroyed, or implicitly destroyed. Objects can
also be destroyed as the result of a database garbage col-
lection. Regardless of how an object is destroyed, in one
embodiment the following rules apply:

1.34. Object Lifetime

[0797] The ModificationDate for the parent container of
that object is set to current local time.

[0798] If the object is a container, all its children are
destroyed when the object is destroyed.

1.34.1. Explicit Object Destruction

[0800] Explicit object destruction happens when a client
of the database requests that an object be removed (see
Object Access for more details on how this can be done
using the Host.SetObject system call).

[0801]

[0802] Implicit object destruction happens when an object
is being destroyed as the result of one of the objects in its
ancestry being destroyed.

[0803] 1.34.3. Garbage Collection

[0804] Inone embodiment, the state database destroys any
object that has expired. An object is considered to have
expired when the local time on the system that implements
the database is later than the ExpirationDate field of the
object’s metadata. An implementation may periodically scan
the database for expired objects and destroy them, or it may
wait until an object is accessed to check its expiration date.
In one embodiment, an implementation must not return to a
client an expired object. In one embodiment, when a con-
tainer object is destroyed (e.g., because it has expired), its
children objects are also destroyed (and all their descen-
dants, recursively) even if they have not expired yet.

[0805] 1.35. Object Access

[0806] In one embodiment, the objects in the state data-
base can be accessed from virtual machine programs
through a pair of system calls: System.Host.GetObject to
read the value of an object, and System.Host.SetObject to
create, destroy, or set the value of an object.

[0807] In one embodiment, to be visible as a tree of host
objects, the state database is “mounted” under a certain
name in the host object tree. This way, the database is visible
as a sub-tree in the more general tree of host objects. To
achieve this, in one embodiment the state database contains
a top-level, built-in root container object that always exists.

1.34.2. Implicit Object Destruction

US 2007/0172041 Al

This root container is essentially the name of the database.
All other objects in the database are descendants of the root
container. Multiple state databases can be mounted at dif-
ferent places in the host object tree (for two databases to be
mounted under the same host container, they need to have
different names for their root container). For example, if a
state database whose root container is named Databasel,
contains a single integer child object named Childl, the
database could be mounted under the host object container
“/SeaShell”, in which case the Childl object would be
visible as “/SeaShell/Databasel/Child1”. In one embodi-
ment, accesses to objects in the state database are governed
by an access policy.

[0808] 1.35.1. Reading Objects

[0809] The value of an object can be read by using the
system call System.Host.GetObject. In one embodiment of
the state database, the four object types (integer, string, byte
array, and container) that can exist in the database map
directly onto their counterparts in the virtual machine. The
object values can be accessed in the normal way, and the
standard virtual names can be implemented.

[0810] 1.35.2. Creating Objects

[0811] Objects can be created calling System.Host.SetO-
bject for an object name that does not already exist. The
object creation is done according to the system call speci-
fication. In one embodiment, when an object is created, the
state database does the following:

[0812] Sets the “owner” field of the object metadata to
the value of the “owner” field of the parent container
object’s metadata.

[0813] Sets the CreationDate field of the metadata to the
current local time.

[0814] Sets the ModificationDate field of the metadata
to the current local time.

[0815] Sets the ExpirationDate field of the metadata to
0 (does not expire).

[0816] Sets the Flags field of the metadata to O.

[0817] Sets the ModificationDate of the parent con-
tainer to the current local time.

[0818] When creating an object under a path deeper than
the existing container hierarchy, in one embodiment the state
database implicitly creates the container objects that need to
exist to create a path to the object being created. In one
embodiment, implicit container object creation follows the
same rules as an explicit creation. For example, if there is a
container “A” with no children, a request to set “A/B/C/
SomeObject” will implicitly create containers “A/B” and
“A/B/C” before creating “A/B/C/SomeObject”.

[0819] 1.35.3. Writing Objects

[0820] The value of objects can be changed by calling
System.Host.SetObject for an object that already exists. If
the specified ObjectType does not match the type ID of the
existing object, ERROR_INVALID_PARAMETER is
returned. In one embodiment, if the type ID is OBJECT-
_TYPE_CONTAINER, no value needs to be specified (the
ObjectAddress must be non-zero, but its value will be
ignored). When an existing object is set, the state database
sets the ModificationDate of object to the current local time.

Jul. 26, 2007

[0821] 1.35.4. Destroying Objects

[0822] Objects can be explicitly destroyed by calling
System.Host.SetObject for an object that already exists, with
an ObjectAddress value of 0. When an object is destroyed,
the state database preferably:

[0823] Sets the ModificationDate of the parent con-
tainer to the current local time.

[0824] Destroys all its child objects if the destroyed
object is a container.

[0825] 1.35.5. Object Metadata

[0826] Inone embodiment, the metadata for state database
objects is accessed by using the System.Host.GetObject and
System.Host.SetObject system calls with virtual names. The
following table lists the standard and extended virtual names
that are available for objects in one embodiment of the state
database, and how they map to the metadata fields.

Virtual Name Type Description

@Name String The Name field of the object
metada

@Owner String The Owner field of the object
metadata

@CreationDate 32-bit unsigned The CreationDate field of the

integer object metadata

@ModificationDate 32-bit unsigned The ModificationDate field of the
integer object metadata

@ZExpirationDate 32-bit unsigned The ExpirationDate field of the

integer object metadata
@Flags 32-bit bit field The Flags field of the object
metadata
[0827] Inoneembodiment, an implementation must refuse

a request to set the Flags metadata field if one or more
undefined flags are set to 1. In this case, the return value for
the System.Host.SetObject is ERROR_INVALID_PARAM-
ETER. In one embodiment, when reading the Flags meta-
data field, a client must ignore any flag that is not predefined,
and when setting the Flags field of an object, a client must
first read its existing value and preserve the value of any flag
that is not predefined (e.g., in a system specification).

[0828] 1.36. Object Ownership and Access Control

[0829] In one embodiment, whenever a request is made to
read, write, create, or destroy an object, the state database
implementation first checks whether the caller has the per-
mission to perform the request. The policy that governs
access to objects is based on the concepts of principal
identities and delegation. In order for the policy to be
implemented, the trust model under which the implementa-
tion operates needs to support the notion of authenticated
control programs. This is typically done by having the
virtual machine code module that contains the program be
digitally signed (directly or indirectly through a secure
reference) with the private key of a PKI key pair, and having
a name certificate that associates a principal name with the
signing key; however, it will be appreciated that different
ways of determining control program identities are possible,
any suitable one of which could be used.

US 2007/0172041 Al

[0830] In one embodiment, the access policy for the
objects in the state database is comprised of a few simple
rules:

[0831] Read access to an object’s value is granted if the
caller’s identity is the same as the owner of the object
or if the PUBLIC_READ flag is set in the object’s
Flags metadata field.

[0832] Read access to an object’s value is granted if the
caller has Read access to the object’s parent container.

[0833] Write access to an object’s value is granted if the
caller’s identity is the same as the owner of the object.

[0834] Write access to an object’s value is granted if the
caller has Write access to the object’s parent container.

[0835] Create or Destroy access to an object is granted
if the caller has Write access to the parent container of
the object.

[0836] Read and Write access to an object’s metadata
(using virtual names) follows the same policy as Read
and Write access to the object’s value, with the addi-
tional restriction that read-only fields cannot be written
to.

[0837] Inone embodiment, when the access policy denies
a client’s request, the return value of the system call for the
request is ERROR_PERMISSION_DENIED.

[0838] The root container of the state database is prefer-
ably fixed when the database is created. When an object is
created, the value of its Owner metadata field is set to the
same value as that of its parent container Owner metadata
field. Ownership of an object can change. To change the
ownership of an object, the value of the Owner metadata
field can be set by calling the Sytem.Host.SetObject system
call for the ‘@Owner’ virtual name of that object, provided
that it is permitted under the access control rules.

[0839] In embodiments where it is not possible for a
control program to access objects that are not owned by the
same principal as the one whose identity it is running under,
a control program needs to delegate access to “foreign”
objects to programs loaded from code modules that have the
ability to run under the identity of the owner of the “foreign”
object. To do this, a control program may use the System-
.Host.SpawnVm, System.Host.CallVm, and System.Hos-
t.ReleaseVm system calls in the control virtual machine.

[0840]

[0841] The storage of state information in a database such
as that described above enables rights to be moved between
devices or exported from a domain (e.g., by transferring the
state information to another device). The following section
describes embodiments of protocols by which the state of a
database can be transferred from a source to a sink. Note that
although this process will be referred to as a license transfer
protocol, it is the state of the state database that is being
transferred, as opposed to merely an actual license (e.g., a
control object, etc.). The protocol is referred to as a license
transfer protocol because, in one embodiment, the transfer is
initiated by execution of a transfer action in a control
program, and because transfer of the state information
enables the sink to successfully execute the relevant license
for a piece of content.

1.37. License Transfer Protocol

Jul. 26, 2007

[0842] FIG. 32 shows an example of a license transfer
3200 composed of three messages 3202, 3204, 3206. In the
example shown in FIG. 32, the protocol is initiated by sink
3210 by sending a request 3202 to source 3212. In one
embodiment, request 3202 holds the ID of a piece of content
to be transferred. Source 3212 sends a response 3204 to sink
3210, containing (i) an agent that will set a state in the state
database of sink 3210, as well as (ii) the ContentKey
object(s) targeted to the sink 3210. As shown in FIG. 32 sink
3210 sends the source 3212 a confirmation 3206 that the
agent has run. Upon receiving the Content Key(s) and/or the
piece of content, the sink may then use the content (e.g., play
it through speakers, display it on a video screen, and/or
render it in some other manner) in accordance with its
associated controls.

[0843] While the approach shown in FIG. 32 can be used
in some embodiments, some potential problems include:

[0844] There is no way to proactively tell the source that
rendering is over. In one embodiment, the protocol shown in
FIG. 32 supports two modes where this is a problem: (i)
render (no stop render), and (ii) checkout (no check-in).
Because of this problem, control issuers may be led to issue
timeouts on the states that are transferred. However, this can
result in a bad consumer experience when, for example, a
user wants to render content on one device but decides that
she actually wants to render this content on another one:
with the current design, it is likely that she will have to wait
for the entire piece of content to be rendered on the first
device before she is able to render it on the other device.
This might be undesirable if the content is relatively long
(e.g., a movie).

[0845] It can be difficult to resolve the license associated
with the Content IDs in the request. In one embodiment, the
request contains only the Content IDs, and the source
retrieves the license associated with the Content IDs from its
license database. However, this process can be prone to
error, since the licenses may be stored on a removable
media, and at the time of engagement of the protocol, a
particular license may not be available if the media has been
removed. Moreover, even if the licenses are available, it can
be cumbersome to perform a lookup for the licenses in the
license store. Also, because there can be multiple licenses
associated with a set of Content IDs, it may be difficult to
determine if the resolved license is the same as the one that
was intended in the request.

[0846] There is no way for the Control program to pro-
actively ask for a proximity check. In one embodiment, the
set of system calls/callbacks/obligations does not support a
way for a Control to ask for proximity checking of a peer.
Instead, a control can only read a value of a host object
Octopus/Action/Parameters/Sink/Proximity/LastProbe that
is populated by the application during a transfer with a value
it got from a previous execution of a proximity checking
protocol. This can be a problem in the case where it may be
desirable to avoid a proximity check if such a proximity
check is not needed (e.g., if the sink is known to be within
a certain domain).

[0847] There are only three rounds to the protocol. In the
embodiment shown in FIG. 32, the protocol is limited to
three rounds. This can be a serious limitation, since the
protocol will be unable to handle the case where the
OnAgentCompletion callback returns an extended status

US 2007/0172041 Al

block with another RunAgentOnPeer obligation. Moreover,
after the protocol is finished, the sink will not really know
if the protocol has succeeded or not. In addition, the prox-
imity check will need to occur before the response is sent
(see previous problem) but this is not needed in the case
where the source and the sink are in the same domain. In
addition, in the protocol shown in FIG. 32, the source gives
the content key to the sink without knowing if this content
key will ever be used.

[0848] No way in the ESB to hint that a License Transfer
is needed. In the embodiment shown in FIG. 32, when a
DRM Client evaluates a license (e.g. Control. Actions.Play-
.Check), there is no easy way for the control writer to hint
that a license transfer is needed in order to get the state that
will enable a successful evaluation of the control.

[0849] The source cannot initiate the transfer. In the pro-
tocol shown in FIG. 32, the license transfer is initiated by the
sink. It would be desirable for the source to be able to initiate
the transfer as well.

[0850]

[0851] The embodiments described below can solve or
ameliorate some or all of the problems described above.

Improved Embodiments

[0852] Solution for the release problem. In one embodi-
ment, a new release operation is introduced. When this
operation is specified in the request, the Transfer Mode ID
is set to Release. In order, for the client to do the correlation
between a render/checkout and a release operation, an
optional element Sessionld is added to the request (see
section below). In one embodiment, when this element is
present, it is reflected in the host object tree of the Transfer
Action context under Sessionld.

[0853] The sink knows that it has to send this Sessionld in
the release request if the Extended Status Block it will get in
the Teardown message (see below) contains a parameter:

[0854] Parameter Name: Sessionld

[0855] Parameter Type: String

[0856] The flag of this parameter is set to CRITICAL.
[0857] Solution for the license resolution problem (refac-

toring the request). In one embodiment, the solution consists
of having the sink device put the license bundle(s) in the
request so that there is essentially a guarantee that the sink
and the source will execute the same license. In the embodi-
ment shown in FIG. 32, the XML schema for the request is
the following:

<xs:complexType name="LicenseTransferRequestPayloadType”>
<xsisequences
<xs:element ref="ContentIdList”/>
<xs:element ref="Operation™/>
<xs:element ref="oct:Bundle”/>
</xs:sequences>
</xs:complexType>

[0858] Where the ContentIdList contains the list of Con-
tent IDs (one per track/stream) identifying the content, the
Operation contains the type of license transfer operation, and
the Bundle contains the Personality node of the requestor
and the associated signature.

Jul. 26, 2007

[0859] To avoid the license resolution problem described
above, the license bundle(s) can be included in the request,
e.g., by amending the schema as follows:

<!---new elements —
<xs:element name="LicensePart” type="LicensePartType”/>
<xs:complexType name="LicensePartType”>
<xsisequences
<xs:element ref="oct:Bundle” minOccurs="0"/>
</xs:sequences>
<xs:attribute name="“contentld” use="optional”/>
</xs:complexType>
<xs:element name="License” type="LicenseType”/>
<xs:complexType name="LicenseType”>
<xsisequences
<xs:element ref="LicensePart” maxOccurs="unbounded”/>
</xs:sequences>
</xs:complexType>
<!-- modified LicenseTransferRequestPayloadType -->
<xs:complexType name="LicenseTransferRequestPayloadType”>
<xsisequences
<xs:element ref="License”/> <!-- see above for definition -->
<xs:element ref="Operation”/>
<xs:element ref="oct:Bundle”/>
<xs:element name="Sessionld” type="xs:string” minOccurs="0"/>
<xs:element name="“NeedsContentKeys” type="xs:boolean”
minOccurs="0"/>
</xs:sequences>
</xs:complexType>

[0860] In this schema, the ContentldList element is
replaced by a License element. This element carries a set of
LicensePart elements. A LicensePart element carries an
oct:Bundle element containing license objects as well as an
optional Contentld attribute indicating that the license
objects are applied to this particular Contentld. A
LicensePart element with no Contentld attribute means that
the objects contained in the underlying bundle are applied to
all Content IDs (generally the controller and the control
objects).

[0861] Inoneembodiment, the Sessionld optional element
cannot be present, except if the operation is urn:marlin:core:
1-2:service:license-transfer:release in which case it may be
present if a Sessionld parameter was received in the
Extended Status Block of the corresponding render or
checkout action (see above).

[0862] In one embodiment, the NeedsContentKeys
optional element should be present with a value of false if
the sink knows that it is already capable of decrypting the
content keys. The absence of this element means that the
source has to re-encrypt the Content Keys of the sink in case
of success of the protocol.

[0863] Inoneembodiment, when receiving such a request,
the license element will be processed as follows:

[0864] (1) Collect all the Contentld attributes found in the
LicensePart elements.

[0865] (2) Process all the Bundle elements found in the
LicensePart elements.

[0866] (3) Open the set of content IDs collected above.

[0867] (4) Verify the appropriate signatures on the relevant
objects.

[0868] (5) Optionally invoke the Control.Actions.Trans-
fer.Check method on the processed Control object.

US 2007/0172041 Al

[0869] (6) Invoke the Control.Actions.Transfer.Perform
on the process Control object.

[0870] Allowing the Control programs to proactively ask
for proximity check of the sink. In order to allow Control
programs to do this, a new pair of Obligations/Callbacks can
be defined. Specifically, the control can put a “Proximity-
CheckSink™ obligation in its extended status block. This
indicates to the application that proximity with the sink has
to be checked. When the proximity check is done, the
application will call back the control using the “OnSink-
ProximityChecked” callback.

[0871] In one embodiment, a ProximityCheck obligation
is defined that is only applicable in the context of a License
Transfer. In this embodiment, there needs to be zero or one
such obligation per extended status block, and, if present, an
OnSinkProximityChecked callback needs to be present as
well.

Name Type Description

ProximityCheck ValueList The host application needs to perform

a proximity check protocol with the sink

device.

Type Description

String Id of the Personality Node
that has to be proximity
checked

[0872] OnSinkProximityChecked callback

Name Type Description
OnProximityChecked Value The host application needs to call back
List when a proximity check in one of the
obligation parameters has completed.
Type Description
Callback Routine to call back, and

associated cookie.

[0873] Allowing multiple round trips in the protocol. FIG.
33 outlines a modification of the protocol that would allow
multiple round trips. In the embodiment shown in FIG. 33,
the Setup message 3302 can, for example, be the same as the
improved license transfer request message described above
in connection with the license resolution problem/solution.

[0874] As shown in FIG. 33, after the Setup 3302, the
application will run the Control as explained above and will
get an Extended Status Block (ESB). This ESB may contain
a RunAgentOnPeer obligation/OnAgentCompletion call-
back. In one embodiment, the RunAgentOnPeer obligation
will contain all the parameters that the Source 3312 appli-
cation needs to build the RunAgent message 3304. Note that
in one embodiment, the RunAgent message 3304 will also
be sent if the application encounters another RunAgentOn-
Peer/OnAgentCompletion callback/obligation pair in the
Extended Status Block of the OnAgentCompletion callback
(after one or more RunAgent/AgentResult message
exchanges).

[0875] In one embodiment, if the ESB does not contain a
RunAgentOnPeer obligation/OnAgentCompletion callback,

Jul. 26, 2007

it means that the Teardown message (see below) needs to be
sent. Note that this ESB may contain a ProximityCheck
obligation OnSinkProximityChecked callback in which case
the proximity check protocol will be performed and the
result will be read from the ESB of the OnSinkProximity
checked callback before sending the Teardown message.

[0876] In one embodiment, the payload of the RunAgent
message 3304 is identical to the Response message of the
previous design except that it does not carry a ContentKey-
List.

[0877] As shown in FIG. 33, after the sink 3310 has run
the agent sent by the source in the RunAgent message 3304,
the sink 3310 sends an AgentResult message 3306 to the
source 3312. In one embodiment, the message payload is the

same as the Confirmation message described in connection
with FIG. 32.

[0878] As shown in FIG. 33, the Teardown message 3308
is sent by the Source application 3312 when the extended
status block of the OnAgentCompletion does not carry any
RunAgentOnPeer/OnAgentCompletion callback/obligation
pair which means that the protocol is over. In one embodi-
ment, the Teardown message 3308 carries two pieces of
information: (i) a description of the protocol result so that
the sink 3310 knows if the protocol has succeeded or not and
if not, an indication of why it failed (see below for more
details), and (ii) in case of success of the protocol, the
updated ContentKey objects (the ContentKeyList of the
Response in the previous message) if the NeedsContentKey
element of the setup message is set to true or not present.

[0879] In one embodiment, the description of the protocol
result is actually the Extended Status Block (ESB) of the last
invocation of the control carrying no agent related obliga-
tion/callback pair.

[0880] In case of failure, the parameters of the ESB may
point to resources. In one embodiment, these resources are
located in the ResourceList extension of the Control that was
sent in the Setup message.

[0881] In case of success, in one embodiment the cache
duration will indicate for how much time the Content Keys
may be used without asking the control again.

[0882] An example of such an ESB XML representation is
shown below, and can be added to the virtual machine
schema:

<xs:element name="CacheDuration” type="CacheDurationType”/>
<!-- CacheDurationType -->
<xs:complexType name="“CacheDurationType”>
<xs:attribute name="type” type="xs:int”/>
<xs:attribute name="value” type="xs:int”/>
</xs:complexType>
<xs:element name="ExtendedStatusBlock”
type=“ExtendedStatusBlockType’/>
<!-- ExtendedStatusBlockType -->
<xs:complexType name="ExtendedStatusBlockType”>
<xsisequences
<xs:element ref="CacheDuration”/>
<xs:element name="Parameters” type="“ValueListBlockType”
minOccurs=“0"/>
</xs:sequences>
<xs:attribute name="globalFlags” type="xs:int” default="0"
use="“optional”/>

US 2007/0172041 Al

-continued

59

Jul. 26, 2007

<xs:attribute name="category” type="xs:int” use="required”/>

<xs:attribute name="subcategory” type="xs:int” use="optional”/>

<xs:attribute name="localFlags” type="xs:int” use="“required”/>
</xs:complexType>

[0883] The following is an example of a rendering use
case in accordance with an embodiment of the improved
license transfer mechanisms described above. In this
example, a broadcast import function imports a piece of
content with the following license:

[0884] Play: OK if a local state is present
[0885] Transfer:

[0886] Render OK if sink is in domain X or if sink is in
proximity. Only one parallel stream can be rendered at
a time.

[0887] Assume a Core DRMClientl requests permission
to render the content stream. A Setup Request is sent from
the sink (Core DRMClientl) to the Source (BC Import
function) containing the following parameters:

[0888] License: the license associated with the content that
the sink wants to render

[0889] Operation=urn: marlin:core: 1-0: service: license-
transfer:render

[0890] Bundle=Personality node of the sink

[0891] Upon receiving the request, the source application
populates the relevant host objects and invokes the Contro-
1. Actions. Transfer.Perform method. Illustrative pseudo-code
for the method governing rendering transfer is shown below:

/* pseudo-code of the method governing
rendering transfer */
ESB* TransferRenderPerform(HostObjectTree* t) {
// check the lock
if (t->GetObject(“SeaShell/.../lock™) 1= NULL) {
return new ESB(ACTION__DENIED);
}else {
// time limited lock, we will unlock in case of failure
t->SetObject(“SeaShell/.../lock”, 1);
t->SetObject(“SeaShell/.../lock@ExpirationTime,
Time.GetCurrent() + 180);
// return an ESB that contains a RunAgentOnPeer
// obligation and a OnAgentCompleted callback
return new ESB(ACTION_GRANTED,
new obligation(RUN_AGENT_ON_ PEER,
CheckDomainAgent),
new Callback(ON_AGENT_COMPLETED,
RenderAgentCompleted));

[0892] Assuming that the rendering is not locked, the
RunAgentOnPeer obligation is executed. A RunAgent mes-
sage is sent with the Control containing the CheckDomai-
nAgent Method. Upon receiving this message, the sink will
populate the relevant host objects and invoke the CheckDo-
mainAgent method. Illustrative pseudo-code for the Check-
DomainAgent is shown below:

/* pseudo-code of the CheckDomainAgent */
AgentResult* CheckDomainAgent(HostObjectTree* t) {
// check if the domain node is reachable

return new AgentResult(SUCCESS);

}else {

return new AgentResult(FAILURE);

[0893] Assume for purposes of this illustration that the
sink is indeed in the domain. The sink will then send an
AgentResult message containing this agent result. Upon
receiving the AgentResult, the Source will invoke the call-
back method. Illustrative pseudo-code for RenderAgent-
Completed is shown below:

/* pseudo-code of the RenderAgentCompleted */
ESB* RenderAgentCompleted(HostObjectTree™ t,
AgentResult* ar)

if (ar->IsSuccess()) {
// give an ESB with no obligation/callback
// and a Cache duration
return new ESB(ACTION__GRANTED, new CacheDuration(0));
}else {
// try to do a proximity check
return new ESB(ACTION__GRANTED,
new obligation(CHECK__ PROXIMITY,
t->GetObject(*.../Sink/Id”),
new
Callback(ON__SINK_ PROXIMITY_ CHECKED,
ProximityCheckCompleted));

[0894] We had assumed that the agent successfully
checked the domain membership on the sink. A Teardown
message is sent with (i) the re-encrypted content keys for the
sink (using the keys provided with the sink node in the Setup
request), and (ii) the ESB carrying the cache duration
specified above (0 in this case, meaning that the sink has to
re-ask next time it wants to access the content). When the
sink receives this message, it knows it is allowed to render
the content and has the needed content keys.

[0895] Now assume that the user wants to render the
content on his other device, DRMClient2. The problem is
that the content is locked for 180 minutes on the source.
Fortunately, when the user presses STOP on DRMClientl,
DRMClientl will initiate a new license transfer protocol
with the operation: Release. Upon receiving the request, the
source application will populate the relevant host objects
and invoke the Control.Actions. Transfer.Perform method.
Tlustrative pseudo-code for the method governing transfer
release is shown below:

/* pseudo-code of the method governing
transfer release */
ESB* TransferReleasePerform(HostObjectTree* t) {
// check the lock
if (t->GetObject(“SeaShell/.../lock™) 1= NULL) {
t->SetObject(“SeaShell/.../lock, NULL); // delete

US 2007/0172041 Al

-continued

return new ESB(ACTION_GRANTED);

}else {

return new ESB(ACTION__DENIED);

[0896] Since no obligation/callback is found in the ESB,
this means that a Teardown message will be sent back with
this ESB.

[0897] This rendering use case thus illustrates that, in
certain embodiments, there is no need for the requesting
DRMClient of a render operation to re-evaluate the control
locally, state does not have to be transferred from the source
to the sink, the control can proactively ask for a proximity
check, and the content can be released when the renderer is
done with it.

11. Certificates

[0898] In one embodiment, certificates are used to check
the credentials associated with cryptographic keys before
making decisions based on the digital signature created with
those keys.

[0899] In some embodiments, the DRM engine is
designed to be compatible with standard certificate tech-
nologies, and can leverage information found in the ele-
ments of such certificates, such as validity periods, names,
and the like. In addition to those basic constraints, in some
embodiments additional constraints can be defined about
what a certified key can and cannot be used for. This can
accomplished by, for example, using key-usage extensions
available as part of the standard encoding of the certificates.
The information encoded in such extensions allows the
DRM engine to check if the key that has signed a specific
object was authorized to be used for that purpose. For
example, a certain key may have a certificate that allows it
to sign link objects only if the link is from a node with a
specific attribute, to a node with another specific attribute,
and no other link. Since the semantics of the generic
technology used to express the certificate will generally not
be capable of expressing such a constraint, as it will have no
way of expressing conditions that relate to DRM engine-
specific elements such as links and nodes, in one embodi-
ment such DRM engine-specific constraints are conveyed as
a key usage extension of the basic certificate that will be
processed by applications that have been configured to use
the DRM engine.

[0900] In one embodiment, the constraints in the key
usage extension are expressed by a usage category and a VM
constraint program. The usage category specifies what type
of'objects a key is authorized to sign. The constraint program
can express dynamic conditions based on context. In one
embodiment, any verifier that is being asked to verify the
validity of such a certificate is required to understand the
DRM engine semantics, and delegates the evaluation of the
key usage extension expression to a DRM engine, which
uses an instance of the virtual machine to execute the
program. The certificate is considered valid if the result of
the execution of that program is successful.

[0901] In one embodiment, the role of a constraint pro-
gram is to return a boolean value. “True” means that the

Jul. 26, 2007

constraint conditions are met, and “false” means that they
are not met. In one embodiment the control program will
have access to some context information that can be used to
reach a decision, such as information available to the pro-
gram through the virtual machine’s Host Object interface.
The information available as context depends on what type
of decision the DRM engine is trying to make when it
requests the verification of the certificate. For example,
before using the information in a link object, in one embodi-
ment a DRM engine will need to verify that the certificate of
the key that signed the object allows that key to be used for
that purpose. When executing the constraint program, the
virtual machine’s environment will be populated with infor-
mation regarding the link’s attributes, as well as the
attributes of the nodes referenced by the link.

[0902] Inoneembodiment, the constraint program embed-
ded in the key usage extension is encoded as a virtual
machine code module that exports at least one entry point
named “Octopus.Certificate.<Category>.Check”, where
“Category” a name indicating which category of certificates
needs to be checked. Parameters to the verification program
will be pushed on the stack before calling the entry point.
The number and types of parameters passed on the stack will
generally depend on the category of certificate extension
being evaluated.

12. Digital Signatures

[0903] In preferred embodiments, some or all of the
objects used by the DRM engine are signed. The following
is a description of how objects are digitally signed in one
embodiment using the XML digital signature specification
(http://www.w3.org/TR/xmldsig-core) (“XMLDSig”). In
addition, a canonicalization method of XML compatible
with the XML exclusive canonicalization (http:/
www.w3.org/TR/xml-exc-c14n/) (“cl4n-ex”) is also
described, the output of which can be processed by a
non-XML-namespace-aware parser. Appendix D provides
more information on an exemplary object serialization,
including an illustrative way to compute a canonical byte
sequence for objects in an encoding-independent manner.

[0904] As shown in FIGS. 28, 34, and 35 in preferred
embodiments certain elements in a DRM license are signed.
Techniques such as those shown in FIGS. 28, 34, and 35 are
useful in prevent or impeding tampering with or replacement
of the license components. As shown in FIG. 34, in a
preferred embodiment, controller object 3402 includes cryp-
tographic digests or hashes (or other suitable bindings)
3405, 3407 of contentkey object 3404 and control object
3406, respectively. Controller 3402 is itself signed with a
MAC (or, preferably, an HMAC that makes use of the
content key) and a public key signature (typically of the
content or license provider) 3412. In a preferred embodi-
ment, the public key signature of the controller 3412 is itself
signed with an HMAC 3410 using the content key. It will be
appreciated that in other embodiments, other signature
schemes could be used, depending on the desired level of
security and/or other system requirements. For example,
different signature schemes could be used for the signature
of the controller and/or control, such as PKI, standard
MACs, and/or the like. As another example, a separate MAC
signature could be computed for both the control and the
controller, rather than including a digest of the control in the
controller and computing a single MAC signature of the

US 2007/0172041 Al

controller. In yet another example, the controller could be
signed with both a MAC and a public key signature.
Alternatively or in addition different keys than those
described above could be used to generate the various
signatures. Thus while FIGS. 28, 34, and 35 illustrate several
advantageous signature techniques in accordance with some
embodiments, it will be appreciated that these techniques are
illustrative and non-limiting. FIG. 35 illustrates an embodi-
ment in which a controller references multiple content keys.
As shown in FIG. 35, in one embodiment, each of the
content keys is used to generate an HMAC of the controller
and the PKI signature.

[0905] In one embodiment the data mode, processing,
input parameters, and output data for XML canonicalization
are the same as for Exclusive Canonical XML (c14n-ex)
except that namespace prefixes are removed (namespaces
are indicated using the default namespace mechanism) and
external entities are not supported, only character entities
are. The first limitation implies that an attribute and its
element need to be in the same namespace.

[0906] FIG. 42 shows the relationship between cl4n-ex
and an illustrative XML canonicalization in one embodi-
ment, where <xml> is any valid XML, and where <xml>'=
<xml>" only if <xml> has no external entities and no
namespace prefixes.

[0907] A simple example of the simplified signature
scheme is provided below: In a preferred embodiment,
however, the standard XML canonicalization is used.

original <nl:elem? id=“foo”
xmlns:n0="foo:bar”
xmlns:nl="http://example.net”
xmlns:n3="ftp://example.org”>
<n3:stufl/>
</nl:elem2>
processed <elem?2 xmlns="http://example.net” id="foo”>

<stuff xmlns="“ftp://example.org”/>
</elem2>

[0908] The signature elements discussed in this section
belong to the XMLDSig namespace (xmlns=http://
www.w3.0rg/2000/09/xmldsig#) and are defined in the
XML schema defined in the XMLDSig specification. In one
embodiment, the container element of the XML represen-
tation of DRM objects is the <Bundle> element.

[0909] In one embodiment, the following objects need to
be signed:

[0910] Nodes

[0911] Links

[0912] Controllers

[0913] Controls (optional)

[0914] Extensions (depending on the data they carry)
[0915] In one embodiment, the signatures need to be

detached and the <Signature> element needs to be present in
the <Bundle> object that contains the XML representation of
the objects that need to be signed.

Jul. 26, 2007

[0916]
contain:

In one embodiment, the <Signature> block will

[0917] A <SignedInfo> element
[0918] A <SignatureValue> element
[0919] A <Keylnfo> element

[0920] In one embodiment, the <SignedInfo> embeds the
following elements:

[0921] <CanonicalizationMethod>—In one embodiment,
the <CanonicalizationMethod> element is empty and its
Algorithm attribute has the following wvalue: http:/
www.w3.0rg/2001/10/xml-exc-c14n#

[0922] <SignatureMethod>—In one embodiment, the
<SignatureMethod> element is empty and its Algorithm
attribute can have the following values:

[0923] http://www.w3.0rg/2000/09/xrnldsig#hmac-shal
(HMAC signature)

[0924] http://www.w3.0rg/2000/09/xmldsig#rsa-shal
(Public Key Signature)

[0925] <Reference>—In one embodiment, there can be
one or more <Reference> elements inside the <SignedInfo>
block if more than one objects need to be signed by the same
key (e.g., this would be the case for the Control and the
Controller object).

[0926] In one embodiment, when signing an object, the
value of the ‘URI” attribute of the <Reference> element is
the ID of the referenced object. When signing a local XML
element (for example, in the multiple signature case of the
public signature method for Controller objects), the value of
the URI is the value of the ‘Id’ attribute of the referenced
element.

[0927] In one embodiment, when a reference points to an
object, what is digested in the reference is not the XML
representation of the object but its canonical byte sequence.
This transform of the object is indicated in XMLDSig by the
means of the <Tranforms> block. Therefore, in one embodi-
ment, the <Reference> element will embed this block:

<Tranforms>
<Transform Algorithm="“http://www.intertrust.com/octopus/cbs-1_0"/>
</Tranforms>

[0928] Appendix D provides additional information. In
one embodiment, no other <Tranform> is allowed for object
references.

[0929] In one embodiment, the <DigestMethod> element
is empty and its Algorithm attribute has the following value:
http://www.w3.0rg/2000/09/xmldsig#shal

[0930] The <DigestValue> element contains the base64
encoded value of the digest.

[0931] <SignatureValue>—1In one embodiment, the signa-
ture value is the base64 encoded value of the signature of the
canonicalized (ex-c14n) <SignedInfo> element with the key
described in the <KeyInfo> element.

US 2007/0172041 Al

[0932] <Keylnfo>

[0933] HMAC-SHA1 Case for Signatures of Controller
Objects

[0934] Inoneembodiment, in this case the <KeyInfo> will
only have one child: <KeyName> that will indicate the ID
of the key that has been used for the HMAC signature.

[0935] Example:

<KeyInfo>
<KeyName>urn:x-octopus:secret-key:1001 </KeyName>
</KeyInfo>

[0936] RSA-SHAI Case

[0937] Inoneembodiment, in this case the public key used
to verify the signature will be carried in an X.509 v3
certificate, and may be accompanied by other certificates
that may be necessary to complete the certificate path to a
CA root.

[0938] These certificates are carried, encoded in base64, in
<X509Certificate> elements. These <X509Certificate> ele-
ments are embedded in an <X509Data> element child of the
<KeyInfo> element, and appear in sequential order, starting
from the signing key’s certificate. The certificate of the root
is usually omitted.

Jul. 26, 2007

[0939] Example (for the sake of brevity, the entire values
of the example certificates have not been reproduced; the
material that has been deleted is indicated by ellipses):

<KeyInfo>
<X509Data>

<!-- cert of the signing public key -->
<X509Certificate>MIICh...</X509Certificate>
<!-- intermediate cert to the trust root -->
<X509Certificate>MIICo...</X509Certificate>
</X509Data>

</KeyInfo>

[0940] In one embodiment, controller objects need to have
at least one HMAC signature for each ContentKey refer-
enced in their list of controlled targets. The key used for each
of those signatures is the value of the content key contained
in the ContentKey object referenced.

[0941] Controllers may also have an RSA signature. In
one embodiment, if such a signature is present, this signature
also appears as a <Reference> in each of the HMAC
signatures for the object. To achieve this, in one embodiment
the <Signature> element for the RSA signature must have an
‘1d’ attribute, unique within the enclosing XML document,
which is used as the ‘URI’ attribute in one of the <Refer-
ence> elements of each of the HMAC signatures. In one
embodiment, the verifier must reject RSA signatures that are
not corroborated by the HMAC signature.

[0942] Example:

<Signature Id="Signature.0” xmlns="“http://www.w3.0rg/2000/09/xmldsig#”>

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#"/>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal”/>
<Reference URI="urn:x-octopus.intertrust.com:controller:37A50262EE3389A14ABCOBC7BE5D43E5”>

<Transforms>

<Transform Algorithm="http://www.intertrust.com/Octopus/xmldsig#cbs-1_ 0"/>

</Transforms>

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal”/>
<DigestValue>G1zXF9Sz/zCwH6MaFm0ObOQcxuk=</DigestValue>

</Reference>
</SignedInfo>

<SignatureValue>mjoy W+w2S9iZDG/ha4eWYD1RmhQuqRuuSN977NODpzwUDO2FdsAICVjAcw7{4nF
WuvtawW/clFzZYP/pjFebESCvurHUsEaR 1/LYLDkpWWxI/LIEp4r3yROkUsOAU5a4BDxDxQE7nUdqU9
YMpnjAZEGpuxdPeZIM1vyKgqNDpTk94=</SignatureValue>

<KeylInfo>

<X509Data><X509Certificate>MIICh...</X509Certificate></X509Data> </KeyInfo>

</Signature>

<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#”>

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#"/>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#hmac-shal”/>
<Reference URI="#Signature.0”>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal”/>
<DigestValue>AqPV0nvNj/ve51IcMyKIngGNKtM=</DigestValue>

</Reference>

<Reference URI="urn:x-octopus.intertrust.com:controller:1357”>

<Transforms>

<Transform Algorithm="http://www.intertrust.com/Octopus/xmldsig#cbs-1_ 0"/>

</Transforms>

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal”/>
<DigestValue>G1zXF9Sz/zCwH6MaFm0ObOQcxuk=</DigestValue>

</Reference>

US 2007/0172041 Al

-continued

Jul. 26, 2007

</SignedInfo>
<SignatureValue>TcKBsZZy+Yp3doOkZ62LTY+ntQ=</SignatureValue>
<Keynfo>
<KeyName>urn:x-octopus.intertrust.com:secret-key:2001 </KeyName>
</Keylnfo>
</Signature>

13. Proximity Check Protocol

[0943] In some embodiments, it may be desirable to
restrict access to content, services, and/or other system
resources based on the physical proximity of the requesting
entity (e.g., to help enforce rules indicating that a protected
piece of content cannot be copied outside a user’s home
network, office complex, and/or the like). Embodiments of
a proximity check protocol are described below that provide
security without unduly impeding the performance of the
proximity check itself. The proximity check protocol lends
itself to application in a wide variety of contexts, one of
which is, as indicated above, in the context of digital rights
management controls; however, it will be appreciated that
the proximity checking systems and methods described
below are not limited in application to the digital rights
management context. For example, without limitation, the
proximity checking techniques presented herein can also be
used in the context of a network service orchestration system
such as that described in the *551 application and/or any
other suitable context.

[0944] In one embodiment, a proximity check is per-
formed by measuring the amount of time it takes a first
computing node to receive a response from a second com-
puting node to the first computing node’s request. If the
amount of time is less than a predefined threshold (generally
indicating that the second computing node is within a certain
physical distance of the first computing node), then the
proximity check is deemed a success.

[0945] 1t will be appreciated that due to the wide variety
of different network connections over which the request
and/or the response might be sent, a given amount of time
may correspond to range of possible distances. In some
embodiments, this variation is simply ignored, and the
proximity check is deemed a success if the round-trip time
of the request/response exchange is less than the predefined
threshold (e.g., 8 milliseconds, or any other suitable amount
of time), regardless of whether, e.g., a fast network connec-
tion is being used that could mean that the requesting and
responding nodes are actually relatively distant from each
other. In other embodiments, a determination could be made
as to the type of network connection being used, and
different round-trip time requirements could be applied to
each different network connection.

[0946] In a preferred embodiment, the proximity check
allows an anchor (e.g., a client) to check the proximity of a
target (e.g., a service). In one embodiment, the protocol is
asymmetric, in that the anchor generates the secret seed that
is used, and is the only one that makes use of a secure timer.
Moreover, the target does not need to trust the anchor.
Preferred embodiments of the proximity check are also
cryptographically efficient: in one embodiment making use
of only two public key operations.

[0947] Generation of a Set, R, of Q Pairs from a Seed, S

[0948] Inone embodiment, a set R is obtained from a seed
S according to the following formula: R;=H?<(S). Where
H(M) is the digest value of the hash function H over the
message M, and H*(M)=H(H™*(M)) for n>=1 and H°(M)=
M. It will be appreciated that this is simply one illustrative
technique for generating a shared secret, and that in other
embodiments other techniques could be used without depart-
ing from the principles hereof.

[0949] Inone embodiment, the algorithm used for the hash
function H is SHA1 (see, e.g., FIPS PUB 180-1. Secure
Hash Standard. U.S. Department of Commerce/National
Institute of Standards and Technology), although it will be
appreciated that in other embodiments, other hash, message
digest, or functions could be used.

[0950] In one embodiment, a proximity check is per-
formed as follows, where “A” is the anchor (e.g., client) and
“B” is the target (e.g., service):

[0951] (a) A generates a set R of Q pairs of random
numbers {Ry, R}, {Ro, Rs} . .. {Rogoo, Rag i}, as shown
above.

[0952] (b) A sends to B: E(PubB, {Q,S}), where E(Y, X)
denotes the encryption of X with the key Y, and PubB
denotes B’s public key in a public/private key pair.

[0953] (c) B decrypts {Q,S} and precomputes R as shown
above.

[0954] (d) B sends A an acknowledgement to indicate that
it is ready to proceed.

[0955] (e) A sets a loop counter, k, to zero.

[0956] (f) A measures Ty=current time.

[0957] (g) A sends to B: {k, R« }.

[0958] (h) If the value of R, is correct, B responds with
Ryepss-

[0959] (i) A measures D=new current time-T,,.

[0960] (j) If B responded to A with the correct value for

Rowpi1, and D is less than a predefined threshold, then the
proximity check is deemed a success.

[0961] If k+1<Q, A can retry a new measurement by
incrementing k and going to step (). If it is needed to
perform more than Q measurements, A can start from step
(a) with a new set R. For example, in some embodiments the
proximity check can be performed repeatedly (or a pre-
defined number of times) until a correct response is received
within the predefined threshold (or if correct responses are
received within the predefined threshold more than a pre-
defined percentage of a sequence of challenge/responses),
since even if two computing nodes are within the required

US 2007/0172041 Al

proximity of each other, an abnormally slow network con-
nection, heavy traffic, noise, and/or the like can cause B’s
response to be delayed.

[0962] FIG. 36 illustrates an embodiment of the protocol
described above, in which anchor (A) determines whether
target (B) is within an acceptable proximity of anchor (A).
For example, as shown in FIG. 36, A may comprise a
computing node 3602 that contains protected content (e.g.,
music, video, text, software, and/or the like) and/or content-
access material (e.g., a link, a key, and/or the like) needed by
a remote computing node (B) 3606 to access protected
content stored at, or accessible to, computing node B 3606.
Controls associated with the content or content-access mate-
rial may indicate that it can only be shared with devices
within a certain proximity of node A 3602 (e.g., to approxi-
mate limiting the distribution of the content to a home
network). Alternatively, or in addition, such a policy may be
enforced at the system level of computing node A 3602
(which may, for example, comprise the domain manager of
a home or enterprise network). That is, the proximity check
need not be a condition in a control program executed by a
virtual machine; it could instead simply be something that
computing node A 3602 requires as a matter of operational
policy before sending content or content access material to
computing node B 3606. To enforce such controls and/or
policies, software and/or hardware running on computing
node A 3602 can perform the proximity checking protocol
described above each time a request is made to distribute
protected content or content-access material to computing
node B 3606. Alternatively, or in addition, a proximity check
could be performed at predefined intervals (e.g., once a day)
to determine if node B 3606 is in the required proximity,
and, if the proximity check is successful, node B 3606 could
be treated as being within the required proximity for a
predefined period (e.g., until the next check is performed,
until a predefined amount of time elapse, and/or the like).

[0963] As shown in FIG. 36, once A and B complete any
initial set-up steps (e.g., steps (a) through (e), above) 3604,
3608, A and B engage in a secure, timed, challenge-response
exchange (e.g., steps (f) through (i), above) 3610 that
enables A to determine whether B is within an acceptable
proximity.

[0964] As shown in FIG. 36, in one embodiment A 3602
sends B 3606 a Setup Request 3604 comprising E(PubB, {Q,
S})—i.e., the number of pairs, Q, as well as the secret pairs
seed, S, encrypted with B’s public encryption key (e.g., a
key used by B in the context of service orchestration). In one
embodiment, {Q, S} is the byte stream concatenation of Q
(1 byte) and S (16 bytes) in network byte order. In one
embodiment, the encryption is performed using RSA public
key encryption (e.g., as described in B. Kaliski, J. Staddon,
PKCS #1: RSA Cryptography Specifications Version 2.0.
IETF RFC2437. October 1998). In a preferred embodiment,
PubB will have been previously accessed by A through
inspection, and its certificate will have been verified.
Although a Setup Response 3608 from B 3606 to A 3602 is
shown in FIG. 36, in other embodiments, a Setup Response
3608 is not used. As previously indicated, after receiving the
Setup Request 3604, B 3606 preferably precomputes the set
R, so as to facilitate rapid response to subsequent challenges
from A 3602.

[0965] As shown in FIG. 36, A 36-2 sends B a Challenge
Request 3612 consisting of [k, R,]—i.e., the index, k, and

Jul. 26, 2007

the corresponding secret computed from the seed. In one
embodiment, [k, R,.,] is the byte stream concatenation of k
(1 byte) and R,., (20 bytes) in network byte order, encoded
in base64 for transport. As shown in FIG. 36, in one
embodiment, B 3606 is operable to send a Challenge
Response 3614 to A 3602, the Challenge Response 3614
consisting of R, ,—i.e., the corresponding secret from the
Challenge Request 3612. In one embodiment, R,.,,, is the
byte stream of R,.,,, (20 bytes) in network byte order,
encoded in base64 for transport.

[0966] FIG. 37 shows an example of how an embodiment
of the proximity check protocol described above could be
used to control access to protected content. Referring to FIG.
37, assume that a cable or satellite content provider has a
policy of allowing all devices within a predefined proximity
3708 of a user’s personal video recorder (PVR) 3702 to
access content through the PVR. Thus, for example, domain
manager software running on the PVR 3702 might perform
a proximity check on device 3704 and 3706 requesting
access to content through PVR 3702. In the example, shown
in FIG. 37, device 3706 is not within the proximity 3708
defined by the service provider’s policy, and would be
denied access by PVR 3702. In contrast, device 3704 is
within the proximity, and would be provided with access
(e.g., by receiving the content along with an expiring link
from device 3704 to the PVR 3702. Alternatively, or in
addition, the link might contain a control program that was
itself operable to initiate a proximity check with PVR 3702,
and deny device 3704 further access to the content if device
3704 moved beyond the predefined proximity 3708 of PVR
3702.

[0967] Security Considerations

[0968] In preferred embodiments, care should be taken to
adhere to some or all of the following:

[0969] The loop comprising steps (f) through (i) is not
repeated with the same value of k for any set R.

[0970] The protocol is aborted if an unexpected mes-
sage is received by either party, including:

[0971] If B receives an incorrect value for R,., in
step (g)

[0972]
[0973]
[0974]

If Q is not within a specified range in step (a)
If k is repeated in the loop
If k exceeds Q

[0975] The protocol can alternatively or in addition be
aborted if A receives an incorrect value of R, in step (h).
In other embodiments, a certain number of incorrect
responses from B may be tolerated.

[0976] 1t will be appreciated that optimal values for Q and
the predefined time threshold will typically depend on the
unique circumstances of the application at hand (e.g., the
speed of the network, the importance of ensuring a relatively
tight proximity, etc.). Therefore, implementations should
preferably provide for flexibility in configuring these values.
In one embodiment, it is assumed that implementations will
support a minimum value of 64 for Q and a value of 8 ms
for the threshold (where, at some of today’s network speeds,
8 ms may correspond to a proximity of a few miles).

US 2007/0172041 Al

[0977] Protocol Security Policies

[0978] In a preferred embodiment, no additional security
is needed for the exchange of the request and the response.
Because of the size of the messages being exchanged (e.g.,
20 bytes), and their effective randomness (through use of the
SHAI1 hashing algorithm or other method), it will be cryp-
tographically infeasible for an attacker to determine the
correct response, even if the attacker manages to intercept
the request.

[0979] Tt should be appreciated that the above-described
embodiments are illustrative, and that numerous modifica-
tions could be made without departing from the inventive
principles presented herein. For example, while a recur-
sively hashed secret seed is described above, any suitable
shared secret could be used for the challenge/response. In
one embodiment, the shared secret might simply comprise
an encrypted number/message sent from A to B, and the
challenge/response could simply comprise A and B exchang-
ing portions of the number/message (e.g., A sends B the first
character of the message, and B sends A the second character
of the message, and so forth). Although such a technique
may lack the security of the embodiment described in
connection with FIG. 36 (since a character in a message
would be much easier to guess than a 20 byte hash), in some
embodiments such a level of security may be adequate
(especially where, for example, the variability of network
delays makes the proximity checking mechanism a fairly
coarse control of actual proximity anyway), and in other
embodiments security could be enhanced by performing the
proximity check multiple times, where, although any par-
ticular digit or bit may be relatively easy to guess, the
likelihood that an attacker would be able to correctly guess
a given sequence of digits or bits will rapidly decrease with
the length of the sequence. In such an embodiment, the
proximity check could be deemed a success only if B is able
to provide more than a predefined number of consecutive
correct responses (or a predefined percentage of correct
responses).

[0980] For purposes of illustration and explanation, an
additional illustrative example of a proximity check protocol
is provided below. In this example, a first device, SRC,
communicates with a second device, SNK, over a commu-
nication channel (e.g., a computer network). We want to be
able to securely determine if SRC and SNK are within
proximity of each other, as measured by the time it takes for
SNK to respond to a communication request from SRC. A
challenge or probe message is sent from SRC to SNK, and
SNK replies with a response message. The period of time
between the emission of the challenge and the reception of
the response will be called the round trip time or RTT. To
avoid introducing unnecessary overhead in the time it takes
SNK to compute and send back a response to the challenge,
it will generally be desirable to make the challenge/response
communication as lightweight as practical. In particular, it
will typically be desirable to avoid requiring cryptographic
operations by SRC or SNK between the emission of the
challenge and the reception of the response.

[0981] Also, to ensure that only SNK is able to produce a
valid response to the challenge from SRC (e.g., to avoid a
man-in-the-middle attack, where a third party could inter-
cept the challenge from SRC and send a response back, as
if SNK had responded), the protocol could proceed as
follows:

Jul. 26, 2007

[0982] (1) SRC creates a secret. This secret is composed of
one or more pairs of random or pseudo-random numbers.

[0983] (2) SRC sends to SNK the secret. This part of the
protocol is not time-sensitive. The secret is kept confidential
by SRC and SNK. The secret is also sent in a way that
ensures that only SNK knows it. This typically involves
sending the secret over a secure authenticated channel
between SRC and SNK (for example, SRC can encrypt the
secret data with a public key for which it knows that only
SNK has the corresponding private key). The secret data
does not have to be the pair(s) of random or pseudo-random
numbers described above. Even in embodiments where such
pairs are used, the secret data transmitted in this step only
needs to be enough information to allow SNK to compute or
deduct the values of the pair(s) of numbers. For example, the
secret data could be a random seed number from which one
or more pair(s) of pseudo-random numbers can be generated
using a seeded pseudo-random number generator.

[0984] (3) Once SRC knows that SNK is ready to receive
a challenge (for example, SNK may send a READY message
after receiving and processing the secret data), SRC creates
a challenge message. To create the challenge message. For
example, in a preferred embodiment, SRC selects one of the
random number pairs. If more than one pair is used, the
challenge message data contains the information to indicate
which pair was chosen, as well as one of the two numbers
in that pair.

[0985] (4) SRC measures the value of the current time, TO0.
Immediately after, SRC sends the challenge message (no
need for encryption or digital signature), to SNK and waits
for the response. Alternatively, SRC could measure the
current time, T0, immediately before sending the challenge
message, although preferably after any concomitant crypto-
graphic operations (e.g., encryption, signing, and/or the like)
had been performed.

[0986] (5) SNK receives the challenge, from which it can
identify one of the pairs it has received previously. SNK
checks that the random number in the challenge is part of the
pair, and constructs a response message that contains the
value of the other random number of that pair.

[0987] (6) SNK sends the response message to SRC (no
need for encryption or digital signature).

[0988] (7) SRC receives the response message, and mea-
sures the value of the current time, T1. The round trip time
RTT is equal to T1-T0.

[0989] (8) SRC verifies that the number received in the
response is equal to the other value in the pair that was
chosen for the challenge. If the numbers match, the chal-
lenge response is successful, and SRC can be assured that
SNK was within the proximity indicated by the roundtrip
time. If the numbers do not match, SRC can abort the
protocol, or, if more than one pair was shared, and there is
at least one pair that has not been used, go back to step (3),
and use a different pair.

[0990] 1t will be appreciated that a number of variations
could be made to the illustrative proximity checking proto-
cols described above without departing from the principles
thereof. For example, without limitation, different crypto-
graphic algorithms could be used, different shared secrets
could be used, and/or the like.

US 2007/0172041 Al

14. Security

[0991] In practical applications of the systems and meth-
ods described herein, security can be provided at a variety of
different levels and using a variety of different techniques.
The discussion herein has focused primarily on the design
and operation of a DRM engine and related host application
for use in efficiently regulating potentially complex business
relationships. When the DRM engine and host application
operate as intended, content is protected from unauthorized
access or other use by the enforcement of the license terms
associated therewith.

[0992] Protection of the DRM engine and/or the environ-
ment in which the DRM engine runs (e.g., the applications
and hardware with which it interacts) from malicious tam-
pering or modification can be done using any suitable
combination of security techniques. For example, crypto-
graphic mechanisms such as encryption, digital signatures,
digital certificates, message authentication codes, and the
like can be employed, e.g., as described elsewhere herein, to
protect the DRM engine, host application, and/or other
system software or hardware from tampering and/or other
attack, as could structural and/or tactical security measures
such as software obfuscation, self-checking, customization,
watermarking, anti-debugging, and/or other mechanisms.
Representative examples of such techniques can be found,
for example, in U.S. Pat. No. 6,668,325 B1, Obfuscation
Techniques for Enhancing Software Security, and in com-
monly assigned U.S. patent application Ser. No. 11/102,306,
published as US-2005-0183072-A1; U.S. patent application
Ser. No. 09/629,807; U.S. patent application Ser. No.
10/172,682, published as US-2003-0023856-A1; U.S. patent
application Ser. No. 11/338,187, published as US-2006-
0123249-A1; and U.S. Pat. No. 7,124,170 B1, Secure Pro-
cessing Unit Systems and Methods, each of which is hereby
incorporated by reference herein in its entirety. Alternatively
or in addition, physical security techniques (e.g., the use of
relatively inaccessible memory, secure processors, secure
memory management units, hardware-protected operating
system modes, and/or the like) can be used to further
enhance security. Such security techniques will be well-
known to one of ordinary skill in the art, and it will be
appreciated that any suitable combination of some, none, or
all of these techniques could be used depending on desired
level of protection and/or the details of the particular appli-
cation at hand. Thus, it will be appreciated that while certain
security mechanisms (e.g., key derivation techniques, digital
signature techniques, encryption techniques, and the like)
are described herein in connection with certain embodi-
ments, use of these techniques is not required in all embodi-
ments.

[0993] Yet another form of security can be provided by the
institutional design and operation of the system, and by the
legal and social regulation of the participants therein. For
example, in order to obtain a personality node, keying

Jul. 26, 2007

material, protected content, and/or the like, a device or entity
may be required to contractually agree to adhere to system
specifications and requirements, may need to submit to a
certification process during which the entity’s compliance
with system requirements could be verified, and/or the like.
For example, a device or application may be required to
implement the DRM engine in a way that is compatible with
other implementations in the environment, and/or be
required to provide a certain type or level of tamper resis-
tance or other security. Digital certificates could be issued
that attested to a device’s or other entity’s compliance with
such requirements, and these certificates could be verified
before allowing the device or entity to participate in the
system, or as a condition of allowing continuing access.

[0994] Additional, non-limiting information on security
techniques that can be used in connection with the inventive
body of work is provided below.

[0995] System Security

[0996] In some embodiments, a system designer may
choose to use a combination of renewability, refusal, and/or
remediation techniques to manage risks and mitigate threats
that may arise from attacks on and compromise of devices,
applications, and services. Examples of various technical
mechanisms that can be used to mitigate threats are pre-
sented below.

[0997] Renewal mechanisms can be used to serve at least
two distinct purposes. First, they can be used to convey
up-to-date information to trusted system entities that allow
them to refuse access or service to untrusted system entities.
Second, renewal mechanisms enable an untrusted entity to
regain trusted status by updating any compromised compo-
nent(s). Refusal countermeasures can be further character-
ized as exhibiting one or more of the following behaviors:

[0998] Revocation, or annulling a credential (typically
by blacklisting some entity)

[0999] Exclusion, or denying access by applying cryp-
tographic or policy enforcement mechanisms

[1000] Shunning, or denying access or a service based
on an identity or some other attribute bound to a
credential

[1001] Expiration, or annulling a credential or privilege
based on a temporal event.

[1002] For example, refusal mechanisms can be used to
counter threats such as device cloning, impersonation attack,
protocol failures, policy enforcement failures, application
security failures, and stale or suspicious information.

[1003] The following table provides examples of potential
threats, some of the risks they pose, and mechanisms to
remedy the threat and renew system security.

Remediation Renewal
Threat Risks Mechanism Mechanism
Cloned Device Free-access devices. Broadcast BKB Update.
Encryption
Compromised Unauthorized licenses, Certificate CRL Distribution.

US 2007/0172041 Al

Jul. 26, 2007

-continued
Remediation Renewal
Threat Risks Mechanism Mechanism
Certified Key links, device state, Revocation Key renewal.

identities, service access.
Recipes for device

hacking.

Compromised keys.
Ungoverned access to
licensed content.

Bogus service interaction.
Clock rollback, reliance

on compromised information.

Implementation
Failure
Protocol Failure

Specification
Version Assertion

Assertion

Stale Security

Metadata Assertion

Software upgrade
Security Metadata Software upgrade
Security Metadata Security Metadata

update service.
Software upgrade.

[1004] Revocation

[1005] Revocation can be viewed as a remediation mecha-
nism that relies on blacklisting an entity. Typically, what is
revoked is a credential such as a public-key certificate. Upon
revoking the credential, the blacklist will need to be updated
and a renewal mechanism used to convey the update so that
a relying party may benefit therefrom.

[1006] Thus, for example, devices, users, and/or other
entities can be required to present identity certificates, other
credentials, and a variety of security data before they are
given the information necessary to consume content or a
service. Similarly, in order for a client to trust a service, the
service may need to provide its credentials to the client.

[1007] Examples of ways that an entity can effectively
invalidate information necessary for accessing a service
include:

[1008] Certificate Revocation Lists (CRLs)

[1009] Credential and data validity services, such as an
Online Certificate Status Protocol (OCSP) responder

[1010] Commands for self-destruction of credentials
and data

[1011] Certificate Revocation Lists (CRLs)

[1012] Revocation lists can be used by different entities to
revoke identity certificates, licenses, links, and other secu-
rity assertions. This mechanism is most effective to remedy
the situation which results from a service being compro-
mised. A number of techniques can be used for distributing
CRLs. For example, some systems may employ an indirect
CRL, so that there is a single CRL governing the entire
ecosystem. In addition, entities can advertise (or publish) the
CRL(s) in their possession, and/or subscribe to an update
service. CRL(s) can be distributed peer-to-peer in a viral
fashion and/or portable devices can receive published
CRL(s) when tethered. The service orchestration techniques
described in the 551 application can also be used for this

purpose.
[1013] Validity Services

[1014] Validity services can be used to provide up-to-date
information on the status of credentials and other security
related data. Validity services can perform either active
validation operations on behalf of a relying party or they can
be used to manage security information on behalf of relying
parties. An example of an active validity service is one that
can check the validity of a credential or attribute. Examples

of validity services that manage security information are
those which disseminate CRL or security policy updates, or
provide a secure time service. The use of validity services
can help ensure that relying parties have current data to
inform governance decisions.

[1015] Typically, not all system entities will need up-to-
the-minute information on the validity of credentials and
security data. For example, not all consumer devices will use
an Online Certificate Status Protocol (OCSP) service to
validate a license server’s certificate chain each time a
license is used or a new license is obtained. However, a
license server may use an OCSP service with some fre-
quency to check the validity of subscriber credentials. Policy
(which can be easily updated) can determine when and what
services must be used. By providing an opportunity to
dynamically update policy, license servers can adapt to
operational changes. Thus, security policy can evolve based
on experience, technological progress, and market factors.

[1016] Directed Self-Destruction of Security Objects

[1017] Self-destruction of credentials and data by an entity
is appropriate when the integrity of the entity’s security
processing is not suspect. When this option is available, it is
often the most straightforward, expeditious, and efficient
method of revocation. It can be particularly useful when
there is little or no suspicion of breach of integrity, and
bi-directional communication supports a protocol allowing
specific directions for destruction along with verification
that destruction has been completed.

[1018] There are a number of security objects that will
often be useful to have destroyed or disabled. For example,
when a device leaves a domain, or a content license times
out, it will be useful for the associated objects that contain
keys and can be used to access content to be destroyed. The
agent control programs described in more detail elsewhere
herein are well-suited to the implementation of self-destruc-
tion mechanisms. Agents can be crafted to destroy state in
secure storage (e.g., the state database) to affect changes in
domain membership or to remove keys that are no longer
usable (e.g., due to changes in membership or policy).

[1019] Exclusion

[1020] Exclusion is a remediation mechanism which bars
a bad actor (or group of bad actors) from participating in
future consumption of goods and services. Due to the severe
consequences exclusion imposes, it is typically only used as
a last resort when circumstances warrant. Exclusion relies on
a mechanism that effectively blacklists the bad actors,

US 2007/0172041 Al

thereby prohibiting them from consuming media and media-
related services. Dissemination of the blacklist relies upon a
renewal mechanism to enable this remediation. However,
exclusion does not necessarily provide a renewal mechanism
to restore a bad actor to a trusted status.

[1021] Key Exclusion

[1022] Key exclusion is a key management mechanism
that is used to broadcast key information to a set of receivers
in such a way that at any given time a decision can be made
to logically exclude some subset of receivers from the ability
to decrypt future content. This is activated by using efficient
techniques to construct a Broadcast Key Block (BKB) that
includes information necessary for each member of a large
group of receivers to decrypt content. The BKB is structured
in such a way that it can be easily updated, excluding one or
more members of the group from the ability to decrypt the
content. In other words, the design of the BKB allows for an
authority to update the system with a new BKB, so that a
content provider can specifically exclude a target set of
devices from making use of the BKB, even though s/he may
have access to it.

[1023] This mechanism is particularly effective against a
cloning attack, where a pirate reverse engineers a legitimate
device, extracts its keys, and then deploys copies of those
keys to clone devices. The clones externally act like the
original, except that these clones will not necessarily adhere
to the governance model. Once the compromise is discov-
ered, an updated BKB can be deployed that excludes the
compromised device and all of its clones. However, key
exclusion incurs some storage, transport, and computation
overhead that in some situations make it less efficient than
other methods. This is especially true when the content is not
broadcast or when there is a back channel.

[1024] Shunning

[1025] Shunning is a remediation mechanism very similar
in behavior to exclusion but with less severe repercussions.
Essentially, it is a means for refusing service because of a
runtime policy decision. Instead of more heavy-handed
approaches to disable a device’s capability through directed
self-destruction or access denial via key exclusion, shunning
offers a simple approach to disabling a device by having
service providers refuse to supply it with services. With the
current trend towards extending the value of devices by
using externally provided services, shunning becomes a
more effective security mechanism.

[1026] Device shunning is driven by policy and can be
used to discriminate against entities (e.g., clients, servers,
and specific role players) that do not produce all of the
appropriate credentials that policy requires. Policy could, for
example, require that an entity demonstrate it has adminis-
tered the latest security update. Therefore shunning can be
either a consequence of revocation or the failure to take
some specific action. Shunning can be facilitated in a
peer-to-peer fashion using the inspection services and ser-
vices such as those describe in the *551 application. Also, a
data certification service (e.g., an instance of a validity
service) can perform shunning at policy enforcement time.
After a system entity has been shunned, it can be informed
of the specific credential or object that is failing to comply
with the policy of the service. This can trigger the shunned
entity to renew the object through an appropriate service
interface.

Jul. 26, 2007

[1027] Expiration

[1028] Expiration is a remediation mechanism that relies
upon some temporal event to invalidate a credential or
object. Expiration is effective in enabling temporary access
to media or media services; once these have expired, the
governance model ensures that access is no longer permit-
ted. Effective use of expiration may require renewal mecha-
nisms whereby the credential or object can be refreshed to
enable continued access to media or media services.

[1029] Expiration of Credentials

[1030] Certified keys can have various expiry attributes
assigned to protect relying parties. Expiration of credentials
can be used to ensure that entities whose certificates have
expired are refused service and used in conjunction with key
rollover and key renewal procedures. When entities are
expected to be frequently connected to a wide area network,
best-practice dictates renewing credentials and other secu-
rity data regularly. Another best-practice is to keep the
validity period of these objects as short as reasonable.
Various techniques such as overlapping validity periods and
grace periods in validity checking policies can be used to
ensure smooth operation during transitions. Short validity
periods also help to reduce the size of CRLs.

[1031] Expiration of Links

[1032] As previously described, link objects may be
assigned validity periods. Upon expiration, a link is deemed
invalid and a DRM engine will not consider it in the
construction of its graph. This mechanism can be used to
enable temporary access to goods and services. Links can be
renewed so that continued access to media may be granted
as long as it is permitted by policy. Because, in one embodi-
ment, links are relatively lightweight, self-protected objects
they can be easily distributed over peer-to-peer protocols.

[1033] Renewability Mechanisms: Application and Policy
Renewability

[1034] Efficient renewability will typically entail the rapid
deployment of remedies to protocol failures, which are often
the dominant security problems seen in security applications
(including in DRM systems). Software updates can then be
used to update the business logic and security protocols.
When applications are designed to separate security policy
and trust policy from application logic, a separate mecha-
nism can be used to update policy; this is a less risky
approach. In fact, peer-to-peer publishing mechanisms can
be used to rapidly update policy. Otherwise, the application
deployer’s software update methods can be used to update
security and trust policy.

[1035] Using the Right Tool for the Right Job

[1036] 1t will generally be desirable to use relatively
lightweight tools when possible. Using credentials with
limited validity periods and policies that check validity dates
can help keep the overall population of entities to a man-
ageable size and eliminate the need for growing CRLs too
rapidly. Shunning an entity rather than excluding it from
access to keys can extend the lifetime of BKBs; moreover,
it has the advantage of enabling fine-grained policies that
can be temporary and change with circumstances. Different
CRLs that track specific types of credentials of interest to
different role players can be used instead of BKBs which can
be deployed where they are most effective (such as dealing

US 2007/0172041 Al

with cloned receivers). Policies can direct the use of online
validity services when those services can be expected to
provide a reasonable return on investment of time and effort,
where fresh credentials are very important, and where
slower revocation mechanisms are inadequate. When a node
is likely to have integrity and can be expected to do the right
thing, and when a license or security object (such as a link
for a subscription or a domain link) needs to be revoked,
then a reasonable approach will typically be to tell the node
to destroy the object. In such a situation, there is no need to
tell the world that the license is invalid and there is no need
to deploy a BKB or re-key a domain. Self-destruction driven
by local policy or by an authoritative command is one of the
more efficient methods for revocation.

[1037] 1t will be appreciated that while a variety of revo-
cation, renewal, remediation, and other technologies and
practices have been described, it will be appreciated that
different situations call for different tools, and that preferred
embodiments of the systems and methods described herein
can be practiced using any suitable combination of some or
none of these techniques.

[1038] Network Services Security

[1039] The following discussion illustrates some of the
security considerations and techniques that can be relevant
to embodiments in which the DRM engine and applications
described above are used in connection with networked
service orchestration systems and methods such as those
described in the ’551 application.

[1040] Practical implementations of DRM systems
employing a DRM engine and architecture such as those
disclosed herein will often perform networked transactions
for accessing content and DRM objects. In such a context,
the systems and methods described in the *551 application
can be used to inter alia standardize message-layer security,
including entity authentication and formats for authorization
attributes (roles).

[1041] For the sake of discussion, the transactions that
occur in a DRM system can be separated into at least two
general categories based on the type of information being
accessed, acquired, or manipulated:

[1042] Content Access Transactions involve direct access
to or manipulation of media or enterprise content or other
sensitive information protected by the DRM system.
Examples of content access transactions include rendering a
protected video clip, burning a copy of a protected audio
track to a compact disc, moving a protected file to a portable
device, emailing a confidential document, and the like.
Content access transactions typically involve direct access to
a content protection key and are performed at the point of
consumption under the direction of a user.

[1043] Object Transactions are transactions in which a
user or system acquires or interacts with objects defined by
the DRM system that in some way govern access to pro-
tected content. Such objects include DRM licenses, mem-
bership tokens, revocation lists, and so forth. One or more
object transactions are usually required before all of the
collateral necessary to perform a content access transaction
is available. Object transactions are typically characterized
by the use of some type of communications network to
assemble DRM objects at the point of consumption.

Jul. 26, 2007

[1044] These two types of transactions define two points
of governance that are generally relevant to most DRM
systems. FIG. 38 shows a typical pair of interactions in
which a DRM-enabled client 3800 requests a DRM license
3802 from an appropriate DRM license service 3804. In the
example shown in FIG. 38, the DRM license 3802 is sent
from the DRM license service 3804 to the client 3800, where
it is evaluated in order to provide access to content 3806.

[1045] DRM systems typically require that both content
access and object transactions be performed in a manner that
prevents unauthorized access to content and creation of
objects that protect the content. However, the security con-
cerns for the two types of transactions are naturally different.
For example:

[1046] Content Access Transactions may require authen-
ticating a human principal, checking a secure render count,
evaluating a DRM license to derive a content protection key,
etc. A major threat against legitimate execution of a content
access transaction is breach of the tamper-resistant boundary
that protects the objects and the data inside.

[1047] Object Transactions usually involve a communica-
tions channel between the entity that requires the DRM
object and the entity that can provide it. As such, object
transactions face communications-based threats such as
man-in-the-middle attacks, replay attacks, denial-of-service
attacks, and attacks in which unauthorized entities acquire
DRM objects that they should not legitimately possess.

[1048] In general, object transactions involve authentica-
tion of two interacting entities, the protection of the mes-
sages passed between them, and authorization of the trans-
action. The primary purpose of such transactions is to gather
integrity-protected DRM objects from legitimate sources so
that content access transactions can be performed. From the
perspective of a content access transaction, the mechanisms
by which legitimate DRM objects are obtained and the
collateral information used in obtaining them are essentially
irrelevant; these mechanisms can (and preferably should) be
invisible to the content access itself. This natural separation
of concerns leads, in a preferred embodiment, to a layered
communications model that distinguishes the trusted com-
munications framework from applications that are built on
top of it.

[1049] The simplified license acquisition and consumption
example shown in FIG. 38 obscures some details that will
generally be important in practical applications. For
example, it does not show how the DRM license service
verifies that the entity requesting a DRM license is in fact a
legitimate DRM client and not a malicious entity attempting
to obtain an unauthorized license or to deny service to
legitimate clients by consuming network bandwidth and
processing power. Nor does it show how sensitive informa-
tion is protected for confidentiality and integrity as it moves
through the communications channels connecting the client
and service.

[1050] A more detailed view of this example transaction is
shown in FIG. 39. Referring to FIG. 39, the dotted line
represents the logical transaction from the point of view of
the application-layer content rendering client 3800 and
DRM license server 3804. The stack 3900 below represents
the layers of processing used to ensure trusted and protected
delivery between the two endpoints.

US 2007/0172041 Al

[1051] In FIG. 39 a rendering client 3800 requests a
license 3802 from a DRM license server 3804. The dotted
line in the diagram indicates that the original source and
ultimate consumer of the information are the content ren-
dering client 3800 and the DRM license server 3804. How-
ever, in practice the message payload may actually be
handled by several layers of processing interposed between
the application-layer logic and the unsecured communica-
tions channel 3902 connecting the two endpoints.

[1052] The processing layers that separate the application
layer components from the unsecured communications
channel will be referred to collectively as the security stack.
The security stack can be thought of as a secure messaging
framework that ensures integrity-protected, confidential
delivery of messages between trusted endpoints. The layered
stack model offers advantages such as:

[1053] (1) Designers of the application layer logic do not
need to expend effort developing the underlying secure
communications mechanisms that connect endpoints. The
trusted messaging infrastructure is a common design pattern
that, once designed, can be deployed in many different
situations regardless of the application layer logic that they
are supporting.

[1054] (2) The messaging framework itself can remain
agnostic to the precise semantics of the messages it is
conveying and focus its efforts on preventing communica-
tions-related attacks and attacks on the authenticity of the
messaging endpoints.

[1055] 1In one embodiment, the security stack consists of
several distinct layers of processing, as described below. In
one embodiment the service orchestration systems and
methods described in the 551 application can be used to
provide some or all of the operations of the security stack.

[1056] Authentication

[1057] In one embodiment, messaging endpoints may be
authenticated. Authentication is a process by which a given
endpoint demonstrates to another that it has been given a
valid name by an authority trusted for this purpose. The
naming authority should be trusted by the relying endpoint
in a transaction; establishing such an authority is typically
undertaken by the organizations deploying the trusted tech-
nology.

[1058] A common mechanism for demonstrating posses-
sion of a valid name uses public key cryptography and
digital signatures. Using this approach, an entity is provided
with three pieces of information:

[1059] (1) A distinguished name that provides an identifier
for the entity;

[1060] (2) An asymmetric key pair, consisting of a public
key and a secret private key; and

[1061] (3) A digitally signed certificate that asserts that the
holder of the private key has the given distinguished name.

[1062] The certificate binds the distinguished name and
the private key. An entity that uses the private key to sign a
piece of information is trusted to have the given distin-
guished name. The signature can be verified using only the
public key. For example, authentication can be based on the
X.509v3 standard.

Jul. 26, 2007

[1063] Since, in one embodiment, an entity that can dem-
onstrate possession of a certified private key is trusted to
have the distinguished name indicated in the certificate,
protecting the private key used to sign information becomes
an important consideration. In effect, the ability to use the
private signing key defines the boundaries of the entity
identified by the distinguished name. At the application
layer, senders and recipients need to know that messages
originate from trusted counterparts. As such, in one embodi-
ment it is important that the application layer logic itself be
part of the authenticated entity. For this reason, in one
embodiment the security stack and the application layers
that rely upon it are preferably enclosed in a trust boundary,
such that a subsystem contained within the trust boundary is
assumed to share access to the entity’s private message
signing key.

[1064] Authorization

[1065] The authentication mechanism described above
proves to distributed messaging endpoints that their corre-
spondent’s identity is trustworthy. In many applications, this
information is too coarse—more detailed information about
the capabilities and properties of the endpoints may be
needed to make policy decisions about certain transactions.
For example, in the context of FIG. 38, the content rendering
client may need to know not only that it is communicating
with an authenticated endpoint, but also whether it is com-
municating with a service that has been deemed competent
to provide valid DRM license objects.

[1066] Embodiments of the security stack provide a
mechanism for asserting, conveying, and applying policy
that is based on more fine-grained attributes about authen-
ticated entities via an authorization mechanism. Using this
mechanism, entities that already possess authentication cre-
dentials are assigned role assertions that associate a named
set of capabilities with the distinguished name of the entity.
For example, role names can be defined for a DRM client
and a DRM license server.

[1067] The named roles are intended to convey specific
capabilities held by an entity. In practice, roles can be
attached to an entity by asserting an association between the
entity’s distinguished name and the role name. As with
authentication certificates, which associate keys with distin-
guished names, in one embodiment role assertions used for
authorization are signed by a trusted role authority that may
be different from the name issuer. Inside an entity, role
assertions are verified along with the authentication creden-
tials as a condition for granting access to a messaging
endpoint’s application layer.

[1068] An entity may hold as many role attributes as are
required by the application being built. The example in FIG.
40 shows an entity with multiple roles: one role that indi-
cates the ability to function as a DRM client and two service
roles. For example, one entity may be simultaneously a
DRM client, a DRM object provider, and a security data
provider. In one embodiment, SAML 1.1 is used for asser-
tions regarding entity attributes.

[1069] Message Security

[1070] The bottom layer of the security stack is the
message security layer, which provides integrity, confiden-
tiality, and freshness protection for messages, and mitigates

US 2007/0172041 Al

the risk of attacks on the communications channel such as
replay attacks. In the message security layer:

[1071] Messages between application layer processes
are signed using the entity’s private message signing
key, providing integrity protection and resistance to
man-in-the-middle attacks.

[1072] Messages are encrypted using a public key held
by the destination entity. This guarantees that unin-
tended recipients cannot read messages intercepted in
transit.

[1073] Nonces and timestamps are added to the mes-
sage, providing immunity to replay attacks and facili-
tating proofs of liveness between the messaging end-
points.

[1074] Using server timestamps for updating trusted
time of the DRM engine

[1075] In one illustrative embodiment, support is provided
for AES symmetric encryption, RSA public key cryptogra-
phy, SHA-256 signature digests, and mechanisms to signal
other algorithms in messages.

15. Bootstrap Protocol

[1076] In some embodiments, a bootstrap protocol is used
to deliver initial confidential configuration data to entities
such as devices and software clients. For example, when an
entity wishes to join a larger network or system and com-
municate with other entities using cryptographic protocols,
it may need to be configured with personalized data, includ-
ing a set of keys (shared, secret, and public). When it is not
possible or practical for the entity to be pre-configured with
personalized data, it will need to “bootstrap” itself using a
cryptographic protocol.

[1077] The example protocol described below uses a
shared secret as the basis for bootstrapping an entity with a
set of keys and other configuration data. In the following
sections, the following notation will be used:

[1078] E(K, D) is the encryption of some data D with a
key K.

[1079] D(K, D) is the decryption of some encrypted
data D with a key K.

[1080] S(K, D) is the signature of some data D with a
key K. This can be a Public Key signature, or a MAC.

[1081] H(D) is the message digest of data D.

[1082] V(K, D) is the verification of the signature over
some data D with a key K. It can be the verification of
a Public Key signature or of a MAC.

[1083] CertChain(K) is the certificate chain associated
with Public Key K. The value of K is included in the
first certificate in the chain.

[1084] CertVerify(RootCert, CertChain) is the verifica-
tion that the certificate chain CertChain (including the
Public Key found in the first certificate of the chain) is
valid under the root certificate RootCert

[1085] AB|C| . . . is the byte sequence obtained by
concatenating the individual byte sequences A, B, C, .

[1086] CN(A) is the canonical byte sequence for A

Jul. 26, 2007

[1087] CN(A, B, C,...) is the canonical byte sequence
for compound fields A, B, C . ..

[1088] 1.38. Initial State
[1089] 1.38.1. Client
[1090] Inone embodiment, the client has the following set

of' bootstrap tokens (preloaded at manufacturing time and/or
in firmware/software):

[1091] One or more read-only certificates that are the
root of trust for the bootstrap process: BootRootCer-
tificate

[1092] One or more secret Bootstrap Authentication
Keys: BAK (shared)

[1093] An optional secret Bootstrap Seed Generation
Key (unique to each client) BSGK. If the client has a
good source of random data, this seed is not needed.

[1094] Some information, ClientInformation, the client
will need to give to the Bootstrap service in order to get
its confidentiality key (e.g., ClientInformation can
include a device’s serial number, the name of the
manufacturer, etc.). This information consists of a list
of attributes. Each attribute is a (name, value) pair.

[1095] The client may be configured with multiple
BootRootCertificate certificates and BAK authentication
keys, in order to be able to participate in the Boot Protocol
with different Boot Servers that may require different trust
domains.

[1096]

[1097]
tokens:

1.38.2. Server

In one embodiment the server has the following

[1098] At least one of the client’s Bootstrap Authenti-
cation Keys: BAK (the shared secret)

[1099] A Public/Private Key pair used for signature:
(Es, Ds)

[1100] A certificate chain ServerCertificatechain=
CertChain(Es) that is valid under one of the root
certificates: BootRootCertificate

[1101] A Public/Private Key Pair used for Encryption:
(Ee/De)

[1102] 1.39. Protocol Description

[1103] An illustrative embodiment of a bootstrap protocol
is shown in FIG. 41 and described below. A failure during
the process (for example, when verifying a signature or a
certificate chain) will lead to an error and stop the protocol
progression.

[1104] BootstrapRequestMessage

[1105] The client sends a request to the server, indicating
that it wants to initiate a bootstrap session and provides some
initial parameters (e.g., protocol version, profile, etc.), as
well as a session ID (to prevent replay attacks) and a list of
Trust Domains in which it can participate. The following
table shows an illustrative format for a BootStrapRequest-
Message:

US 2007/0172041 Al

Name BootstrapRequestMessage
Attributes Name Description

Protocol Symbolic name of the protocol

Version Protocol Version

Profile Name of the Profile for this protocol/version
Direction Client — Server
Payload BootstrapRequest

Name Type Description

Sessionld String Unique session ID
chosen by the client
TrustDomains List of Strings Names of all the Trust
Domains in which the client
can participate.
Expected ChallengeRequestMessage

Response

[1106] The Protocol and Version message attributes
specify which protocol specification the client is using, and

Jul. 26, 2007
72

[1109] In one embodiment, the server receives the Boot-
strapRequestMessage and performs the following steps:

[1110] Checks that it supports the specified Protocol,
Version, and Profile requested by the client.

[1111] Generates a Nonce (strongly random number).

[1112] Optionally generates a Cookie in order to carry
information such as a timestamp, session token, or any
other server-side information that will persist through-
out the session. The value of the cookie is meaningful
only to the server, and is considered as an opaque data
block by the client.

[1113] Extract the value of Sessionld from the Boot-
strapRequestMessage.

[1114] Generate a challenge: Challenge=[Nonce, FEe,
Cookie, Sessionld].

[1115] Compute S(Ds, Challenge) to sign the challenge
with Ds.

[1116] Construct a ChallengeRequestMessage and send
it back to the client in response.

[1117] ChallengeRequestMessage

[1118] The following table shows an illustrative format for
a ChallengeRequestMessage:

Name
Direction
Payload

In Response To

ChallengeRequestMessage
Server — Client

Challenge
Name Type Description
Nonce Byte Sequence Server-generated random nonce

ServerEncryptionKey Byte Sequence Encoded Public Key Ee used for
message payload encryption

Cookie Byte Sequence Server-generated opaque data
Sessionld String Client-generated session ID
Signature Byte Sequence Encoded Digital Signature S(Ds,

CN(Challenge)) of the

Challenge’s canonical byte sequence
Canon(Challenge) = CN(CN(Nonce),
CN(ServerEncryptionKey),
CN(Cookie), CN(Sessionld))

ServerCertificateChain
Name Type Description
TrustDomain String Trust Domain in which the certificate chain is

valid
Certificates List of Byte An list of Encoded Certificates that form a
Sequences chain: CertChain(Es). The first certificate
in the array certifies the Public Key Es, and
each of the following certificates, in turn,
certify the Public Key of the preceding
certificate. The last certificate in the array has
a public key certified by the Root CA
Certificate for the Trust Domain
BootstrapRequestMessage

the Profile field identifies a predefined set of cryptographic
protocols and encoding formats used for exchanging mes-
sages and data.

[1107] The Client chooses a Sessionld, which should be
unique to that client and not re-used. For example, a unique
ID for the client and an incrementing counter value can be
used as a way to generate a unique session ID.

[1108] In one embodiment, the Client also sends a list of
all the Trust Domains for which it has been configured.

[1119] In one embodiment, after receiving the Challeng-
eRequestMessage, the client performs the following steps:

[1120] Verify that the certificate chain ServerCertificat-
eChain is valid under the root certificate BootRootCer-
tificate: CertVerif(BootRootcertificate, ServerCertifi-
cateChain).

[1121] Extract the Public Key ES from the ServerCer-
tificateChain.

US 2007/0172041 Al

[1122] Verify the signature of the challenge: V(Es,
Challenge)

[1123] Check that the Sessionld matches the one chosen
for the session when the BootRequestMessage was
sent.

[1124] Construct a ChallengeResponseMessage and
send it to the server.

Jul. 26, 2007

[1132] Encrypt the signed ChallengeResponse with SK:
E(SK, [ChallengeResponse, S(BAK, ChallengeRe-
sponse)]

[1133] Encrypt the SessionKey with the Server’s Public
Key Ee

[1134] Construct a ChallengeResponseMessage and send
it to the server

Name ChallengeResponseMessage
Direction Client — Server
Payload SessionKey [encrypted with Ee]
Name Type Description
SessionKey Byte Encoded Session key SK encrypted with the Server’s Public
Sequence Key Ee
ChallengeResponse [encrypted with SK]
Name Type Description
Challenge Object Challenge
Name Type Description
Nonce Byte Server-generated
Sequence random nonce
Cookie Byte Server-generated
Sequence opaque data
Sessionld String Unique session
1D
ClientInformation Array of Array of O or more Attribute Objects:
Attributes Attribute
Name Type Description
Name String Name of the
attribute
Value String Value of the
attribute
SessionKey Byte Encoded value of secret session key SK
Sequence
Signature Byte Encoded Digital Signature S(BAK,
Sequence CN(ChallengeResponse)) of the canonical byte
sequence CN(ChallengeResponse) = CN
(CN(Challenge),
CN(ClientInformation), CN(SessionKey))
Expected BootstrapResponseMessage
Response

[1125] ChallengeResponseMessage

[1126] To generate a ChallengeResponseMessage, the cli-
ent performs the following steps:

[1127] Generate a Session Key SK using one of the two
following methods:

[1128] Directly using a secure random key generator

[1129] Indirectly using the Nonce and BSGK: com-
pute HSK=H(BSGK|Nonce), and set SK=First N
bytes of HSK

[1130] Generate a ChallengeRepsonse object that con-
tains [Challenge, ClientInformation, SessionKey].
Here, the Challenge is the one from the previously
received ChallengeRequestMessage, with the Server-
EncryptionKey omitted.

[1131] Compute S(BAK, ChallengeResponse) to sign
the response with BAK.

[1135] The server receives the BootstrapChallengeRe-
sponse and performs the following steps:

[1136] Decrypt the session key SK using its private key
De: D(De, SessionKey)

[1137] Decrypt the ChallengeResponse with the session
key SK from the previous step: D(SK, Challenge)

[1138] Verify the signature of the challenge: V(BAK,
ChallengeResponse)

[1139] Check that the session key SK matches the one
used to decrypt

[1140] Check the Cookie and Nonce values if needed
(e.g., a timestamp)

[1141] Check that the Sessionld matches the one chosen
for the session when the BootRequestMessage was
sent.

US 2007/0172041 Al

[1142] Construct a BootstrapResponseMessage and
send it to the Server.

[1143] BootstrapResponseMessage

[1144] To generate a BootstrapResponseMessage, the
server performs the following steps:

[1145] Parse the ClientInformation received in the
ChallengeResponseMessage and lookup or generate
the client configuration Data that needs to be sent for
this bootstrap request (this may include confidentiality
keys (Ec/Dc) for the node that represents the client).
The server will typically use the value of the Nonce and
Cookie to help retrieve the correct information for the
client.

[1146] Create a BootstrapResponse with the Sessionld
and the configuration Data

[1147] Compute S(Ds, BootstrapResponse) to sign Data
with Ds

[1148] Encrypt the signed BootstrapResponse with the
session key SK: E(SK, [BootstrapResponse, S(Ds, Bootstra-
pResponse)])

Name BootstrapResponseMessage

Direction Server — Client

Payload BootstrapResponse [encrypted with SK]
Name Type Description
Sessionld String Session ID

Data Byte Configuration data for the client
Sequence
Signature Signature Digital Signature S (Ds,

CN(BootstrapResponse)) of the

canonical byte sequence

CN(BootstrapResponse) =

CN(CN(SessionID), CN(Data))
In Response To ChallengeResponseMessage

[1149]

[1150] In one embodiment, each trust domain includes a
Root Certificate Authority and a unique name for the

1.40. Trust Domains

Jul. 26, 2007

domain. When a client sends a BootstrapRequest, it identi-
fies all the trust domains that it is willing to accept (i.e.
which certificates it will consider valid). The server selects
a trust domain from the list sent by the client, if it supports
any.

[1151]

[1152] In one embodiment, whenever signatures are used
in message payloads, the signatures are computed over a
canonical byte sequence for the data fields contained in the
signed portion(s) of the message. The canonical byte
sequence is computed from the field values, not from the
encoding of the field values. Each profile preferably defines
the algorithm used to compute the canonical byte sequence
of the fields for each message type.

[1153] 1.42. Profiles

[1154] A profile of the bootstrap protocol is a set of
choices for the various cryptographic ciphers and serializa-
tion formats. Each profile preferably has a unique name, and
includes choice of:

1.41. Signatures

[1155] Public Key Encryption Algorithm
[1156] Public Key Signature Algorithm
[1157] Secret Key Encryption Algorithm
[1158] Secret Key Signature Algorithm
[1159] Public Key encoding

[1160] Digest Algorithm

[1161] Canonical Object Serialization
[1162] Certificate Format

[1163] Minimum Nonce Size

[1164] Message Marshalling

APPENDIX A

[1165] The following is an example of a controller object
with multiple, interlocking signatures. NOTE: in this
example, the content keys are not encrypted

<Controller xmlns=“http://www.intertrust.com/Octopus/1.0” id="urn:x-
octopus.intertrust.com:controller:37A50262EE3389A14ABCOBC7BESD43E5”>

<ControlReference>

<Id>urn:x-octopus. intertrust.com:control:0001 </Id>

<Digest>

<DigestMethod xmlns="http://www.w3.0rg/2000/09/xmldsig#”
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal” />

<DigestValue

xmlns="http://www.w3.0rg/2000/09/xmldsig#”>1795n10V7CBiKs/rSQdXvKyZmfA=</DigestValue>

</Digest>

</ControlReference>
<Controlled Targets>
<ContentKeyReference>

<Id>urn:x-octopus. intertrust.com:content-key:2001 </Id>

</ContentKeyReference>

<ContentKeyReference>

<Id>urn:x-octopus. intertrust.com:content-key:2002 </Id>

</ContentKeyReference>

<ContentKeyReference>

<Id>urn:x-octopus. intertrust.com:content-key:2003 </Id>

</ContentKeyReference>

US 2007/0172041 Al Jul. 26, 2007

-continued
</Controlled Targets>
</Controller>
<Signature Id="Signature.0” xmlns="http://www.w3.0rg/2000/09/xmldsig#”>
<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#” />

<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal” />
<Reference URI="urn:x-octopus.intertrust.com:controller:37A50262EE3389A14ABCOBC7BESD43E5”>
<Transforms>

<Transform Algorithm="http://www.intertrust.com/Octopus/xmldsig#cbs-1_0" />

</Transforms>

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal” />

<DigestValue>G1zXF9Sz/zCwH6MaFm0ObOQcxuk=</DigestValue>

</Reference>

</SignedInfo>
<SignatureValue>mjoyW+w2S9iZDG/ha4eWYD1RmhQuqRuuSN977NODpzwUDO2FdsAICVjAcw7{4n
FWuvtawW/clFzYP/pjFebESCvurHUsEaR I/LYLDkpWWxWLIEp4r3yR9kUsOAUSa4BDxDxQE7nUdqU
9YMpnjAZEGpuxdPeZIM1vyKqNDpTk94=</SignatureValue>
<Keynfo>
<X509Data>
<X509Certificate>MIIC 6jCCAIOgAWIBAGIBBjANBgkghkiGOWOBAQUFADCBszELMAKGA1UEBhM
CVVM=xEzZARBgNVBAgTCkNhbGImb3 JuaWEXFDASBgNVBAcTC1NhbnRhIENsYXThMSAwHgYDV
QQKExdJbnRIcnRydXNOIFRIY2hub2xvZ21lczZEUMBIGATUECXMLT2NOb3B1cyBEUKOXGDAWBgNV
BAMTDO09jdG9wdXMgVGVzdCBDQTEnMCUGCSqGSIb3DQEJARY Yb2NOb3B1cy10ZXNOLWNhQ
DhwdXMubmVOMB4XDTAOMDQwWODAWNTUyOVoXDTAOMDUwWODAwWNTUyOVowgcExCzAIBg
NVBAYTAIVIMRMwWEQYDVQQIEwpDYWxpZm9ybmlhMRQwWEgYDVQQHEwWtTYWS50YSBDbGFy
YTEgMB4GA1UEChMXSW50ZXJ0cnVzdCBUZW Nobm9sb2dpZXMxFDASBgNVBAsTC09jdGowdX
MgRFINMRSWHQYDVQQDEXZPY3RvcHVzZIFRIc3QgTmOkZSAWMDAXMS4wLAYTKoZIhveNAQKB
FhovY3RveHVZLXRIe3QtbmOkZSOWMDAXQDhwdXMubmVOMIGIMAOGCSqGSIb3DQEBAQUAA4
GNADCBIQKBgQDUBAJQArIg+VTuwUO2fMv5sCtimZECyJjAOvbgQe+cPXpfeld ACICL1nleml/ZLIu
7ZaRwQeolylSeK57bxv+zhW14F1jngS/IKLG84RG1eoMiOT11hErb2nU3XxTOKCgxsEXFAbfwAYnLX7
hpy/1ho2mTmIbgksWoPrPw3xMPCYWIDAQABMAOGCSqGSIb3DQEBBQUAA4GBAHIrHStXcQkFm
cYhl5zck6twsNIRF+/1HZGuTGKeb6+J2ZLk6sNUWXLOID10oPRMde7X1RiqpDNkbG4xoPox HiK9Vdf
BstjvoQRiUceziMIXVV/q+XIMd7THIBIq25XqBScS9/RAKKKwuRRkQHEV3uBABVLSCzIRSTHObFuYz
NeVne</X509Certificate>

</X509Data>

</KeyInfo>

</Signature>
<Signature xmlns="“http://www.w3.0rg/2000/09/xmldsig#”’>
<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#” />

<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#hmac-shal” />
<Reference URI="#Signature.0”>

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal” />

<DigestValue>AqPV0nvNj/ve51IeMyKIngGNKtM=</DigestValue>

</Reference>
<Reference URI="urn:x-octopus.intertrust.com:controller:37A50262EE3389A14ABCOBC7BESD43E5”>
<Transforms>

<Transform Algorithm="http://www.intertrust.com/Octopus/xmldsig#cbs-1_0" />

</Transforms>

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal” />

<DigestValue>G1zXF9Sz/zCwH6MaFm0ObOQcxuk=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>TcKBsZZy+Yp3doOkZ62LTfY+ntQ=</SignatureValue>
<Keynfo>

<KeyName>urn:x-octopus.intertrust.com:secret-key:2001 </KeyName>

</KeyInfo>

</Signature>
<Signature xmlns="“http://www.w3.0rg/2000/09/xmldsig#”’>
<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#” />

<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#hmac-shal” />
<Reference URI="#0">

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal” />

<DigestValue>AqPV0nvNj/ve51IeMyKIngGNKtM=</DigestValue>

</Reference>
<Reference URI="urn:x-octopus.intertrust.com:controller:37A50262EE3389A14ABCOBC7BESD43E5”>
<Transforms>

<Transform Algorithm="http://www.intertrust.com/Octopus/xmldsig#cbs-1_ 0" />

</Transforms>

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal” />

<DigestValue>G1zXF9Sz/zCwH6MaFm0ObOQcxuk=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>qAunQpXC18kl8Veo8UHbcX TqHCA=</SignatureValue>
<Keynfo>

US 2007/0172041 Al

-continued

76

Jul. 26, 2007

<KeyName>urn:x-octopus.intertrust.com:secret-key:2002 </KeyName>
</KeyInfo>
</Signature>
<Signature xmlns="“http://www.w3.0rg/2000/09/xmldsig#”’>
<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#” />
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#hmac-shal” />

<Reference URI="#0">

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal” />

<DigestValue>AqPV0nvNj/ve51IeMyKIngGNKtM=</DigestValue>
</Reference>

<Reference URI="urn:x-octopus.intertrust.com:controller:37A50262EE3389A14ABCOBC7BESD43E5”>

<Transforms>

<Transform Algorithm="http://www.intertrust.com/Octopus/xmldsig#cbs-1_0" />

</Transforms>

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal” />

<DigestValue>G1zXF9Sz/zCwH6MaFm0ObOQcxuk=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>bRxLSM82d4ktWsYz6uhBxzJfsOo=</SignatureValue>
<Keynfo>

<KeyName>urn:x-octopus.intertrust.com:secret-key: 2003 </KeyName>

</KeyInfo>

</Signature>

</Bundle>

APPENDIX B

[1166] This Appendix B presents the XML encoding of
objects in one embodiment of a system using the example
Octopus DRM engine described elsewhere herein. For a
particular application, an application-specific XML schema
can be created by importing the XML schema shown below
(the “Octopus XML Schema”) and adding elements specific
to the application (e.g., extensions used for revocation). In
one embodiment, the encoding of objects in XML need to be
able to be validated against the application-specific XML
schema. Additional possible constraints on these XML
encodings can be found below.

[1167] In the example illustrated in this Appendix B, the
base XML-Schema Type for all the DRM objects is Octo-
pusObjectType. This means that all the objects support
attributes and extensions. The type of each Octopus object
element is derived from this base type. These types may

aggregate other elements such as the SecretKey element for
the ContentKeyType for instance.

[1168] In this example embodiment, the Scuba key distri-
bution system keys are described in terms of an extension:
the ScubaKeys element will then be a child of the extension
element. The same applies for revocation keys with the
Torpedo extension.

[1169] As described elsewhere herein, there are different
kinds of Octopus Objects (e.g., ContentKey, Protector, Con-
troller, Control, Node, and Link). These objects can be
bundled together along with extensions using the <Bundle>
element. In one embodiment, if objects or extensions are
signed within the <Bundle>, the <Bundle> will contain
<Signature> elements as described elsewhere herein.

[1170] Octopus XML Schema (Octopus.xsd):

<?xml version="1.0" encoding="UTF-8”?>

<xs:schema targetNamespace="http:/intertrust.com/Octopus/1.0”
xmlns="“http://intertrust.com/Octopus/1.0” xmlns:xs=“http://www.w3.0rg/2001/XMLSchema”
xmlns:ds="“http://www.w3.0rg/2000/09/xmldsig#” xmlns:xenc="http://www.w3.0rg/2001/04/xmlenc#”
elementFormDefault="qualified” attributeFormDefault="unqualified”>

<!-- imports -->

<xs:import namespace="http://www.w3.0rg/2000/09/xmldsig#” schemal.ocation="xmldsig-core-

schema.xsd”/>

<xs:import namespace="http://www.w3.0rg/2001/04/xmlenc#” schemal.ocation="xenc-schema.xsd”/>
<!-- top level elements -->
<xs:element name=“RootLevelObject” type="“RootLevelObjectType” abstract="true”/>
<xs:element name="OctopusObject” type=“OctopusObjectType” abstract="true”/>

<!-- base element -->

<xs:element name=“Bundle” type=“BundleType”/>

<xs:element name=“Link” type="LinkType” substitutionGroup="RootLevelObject”/>

<xs:element name="“Node” type="“NodeType” substitutionGroup="RootLevelObject”/>

<xs:element name=“Control” type="ControlType” substitutionGroup="RootLevelObject”/>
<xs:element name=“Controller” type=“ControllerType” substitutionGroup=“RootLevelObject”/>
<xs:element name="“Protector” type="“ProtectorType” substitutionGroup=“RootLevelObject”/>
<xs:element name=“ContentKey” type=“ContentKeyType” substitutionGroup=“RootLevelObject”/>

<!-- key elements -->

US 2007/0172041 Al
77

-continued

<xs:element name="SecretKey” type="KeyType”/>
<xs:element name="PublicKey” type="PairedKeyType”/>
<xs:element name="PrivateKey” type="PairedKeyType”/>
<xs:element name="KeyData” type=“KeyDataType”/>
<!-- other elements -->
<xs:element name="AttributeList” type="AttributeListType”/>
<xs:element name="Attribute” type="AttributeType”/>
<xs:element name="ExtensionList” type=“ExtensionListType”/>
<xs:element name="Extension” type="ExtensionType” substitutionGroup=“RootLevelObject”/>
<xs:element name="LinkFrom” type=“OctopusObjectReferenceType”/>
<xs:element name="LinkTo” type="OctopusObjectReferenceType”/>
<xs:element name="Id" type="xs:string”/>
<xs:element name="Digest” type="DigestType”/>
<xs:element name="ControlProgram” type=“ControlProgramType”/>
<xs:element name="CodeModule” type=“CodeModuleType”/>
<xs:element name="ControlReference” type="OctopusObjectReferenceType”/>
<xs:element name="ContentKeyReference” type="OctopusObjectReferenceType”/>
<xs:element name="ContentReference” type="OctopusObjectReferenceType”/>
<xs:element name="Protected Targets” type="“ProtectedTargetsType”/>
<xs:element name="ControlledTargets” type="ControlledTargetsType”/>
<!-- scuba -->
<xs:element name="ScubaKeys” type="“ScubaKeysType”/>
<!-- base type for Octopus Objects -->
<xs:complexType name="“RootLevelObjectType”/>
<xs:complexType name="“OctopusObjectType”>
<xs:complexContent>
<xs:extension base=“RootLevelObjectType”>
<xs:sequences>
<xs:element ref="AttributeList” minOccurs="0"/>
<xs:element ref="ExtensionList” minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id” type="xs:string” use="“optional”/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="“AnyContainerType”>
<xs:complexContent>
<xs:extension base=“RootLevelObjectType”>
<xs:sequences>
<xs:any processContents="lax”/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ExtensionType”>
<xs:complexContent>
<xs:extension base="AnyContainerType”>
<xs:sequence minOccurs=“0">
<xs:element ref="Digest” minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id” type="xs:string” use="“required”/>
<xs:attribute name="“subject” type="xs:string”/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ExtensionListType”>
<xs:sequence>
<xs:element ref="Extension” maxOccurs="unbounded”/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="AttributeListType”>
<xs:sequence>
<xs:element ref="Attribure” maxOccurs="unbounded”/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="“AttributeType”>
<xs:simpleContent>
<xs:extension base="xs:string”>
<xs:attribute name="“name” type="xs:string” use="required”/>
<xs:attribute name="“type” type="xs:string” default="string”/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="DigestType”>
<xs:sequence>
<xs:element ref="ds:DigestMethod”/>

Jul. 26, 2007

US 2007/0172041 Al
78

-continued

<xs:element ref="ds:DigestValue”/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="“OctopusObjectReferenceType”>
<xs:sequence>
<xs:element ref="Id"/>
<xs:element ref="Digest” minOccurs="“0"/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="Protected Targets Type”>
<xs:sequence>
<xs:element ref="ContentReference” maxOccurs="unbounded”/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="“ControlledTargetsType”>
<xs:sequence>
<xs:element ref="ContentKeyReference” maxOccurs=“unbounded”/>
</Xs:sequence>
</xs:complexType>
<!-- Bundle Type -->
<xs:complexType name=“BundleType”>
<xs:sequence>
<xs:element ref="RootLevelObject” maxOccurs=“unbounded”/>

<xs:element ref="ds:Signature” minOccurs="0" maxOccurs="“unbounded”/>

</Xs:sequence>
</xs:complexType>
<!-- Node Types -->
<xs:complexType name="“NodeType”>
<xs:complexContent>
<xs:extension base="OctopusObjectType™/>
</xs:complexContent>
</xs:complexType>
<!-- Link Types -->
<xs:complexType name="LinkType”>
<xs:complexContent>
<xs:extension base=“OctopusObjectType”>
<xs:sequences>
<xs:element ref="LinkFrom”/>
<xs:element ref="LinkTo”/>
<xs:element ref="Control” minOccurs="0"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<!-- Protector Types -->
<xs:complexType name="ProtectorType”>
<xs:complexContent>
<xs:extension base=“OctopusObjectType”>
<xs:sequences>
<xs:element ref="ContentKeyReference”/>
<xs:element ref="ProtectedTargets”/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<!-- Control Types -->
<xs:complexType name=“CodeModuleType”>
<xs:simpleContent>
<xs:extension base="xs:string”>
<xs:attribute name="“byteCodeType” use="required”/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="“ControlProgramType”>
<xs:sequence>
<xs:element ref="CodeModule”/>
</Xs:sequence>
<xs:attribute name="type” use="required”/>
</xs:complexType>
<xs:complexType name="“ControlType”>
<xs:complexContent>
<xs:extension base=“OctopusObjectType”>
<xs:sequences>
<xs:element ref="ControlProgram”/>
</xs:sequence>
</xs:extension>

Jul. 26, 2007

US 2007/0172041 Al

-continued

79

</xs:complexContent>
</xs:complexType>
<!-- Controller Type -->
<xs:complexType name="“ControllerType”>
<xs:complexContent>
<xs:extension base=“OctopusObjectType”>
<xs:sequences>
<xs:element ref="ControlReference’/>
<xs:element ref="ControlledTargets”/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<!-- Key types -->
<xs:complexType name="KeyType”>
<xs:sequence>
<xs:element ref="KeyData”/>
</Xs:sequence>
<xs:attribute name="id” type="xs:string” use="required”/>

<xs:attribute name="usage” type="xs:string” use="optional”/>

</xs:complexType>
<xs:complexType name="PairedKey Type”>
<xs:complexContent>
<xs:extension base="KeyType”>

<xs:attribute name="pair” type="xs:string” use="required”/>

</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="KeyDataType” mixed="true”>
<xsisequences

<xs:element ref="xenc:EncryptedData” minOccurs="0"/>

</Xs:sequence>
<xs:attribute name="encoding” use="required”>
<xs:simpleType>
<xs:restriction base="xs:string”>
<xs:enumeration value="xmlenc”/>
<xs:enumeration value="base64”/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="format” use="required”>
<xs:simpleType>
<xs:restriction base="xs:string”>
<xs:enumeration value="PKCS#8"/>
<xs:enumeration value="X.509"/>
<xs:enumeration value="RAW”/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<!-- ContentKey Types -->
<xs:complexType name="“ContentKeyType”>
<xs:complexContent>
<xs:extension base=“OctopusObjectType”>
<xs:sequences>
<xs:element ref="SecretKey”/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<!-- Scuba extensions -->
<xs:complexType name="ScubaKeysType”>
<xs:sequence>

<xs:element ref="SecretKey” minOccurs="0" maxOccurs="unbounded”/>
<xs:element ref="PublicKey” minOccurs=“0" maxOccurs=“unbounded”/>
<xs:element ref="PrivateKey” minOccurs=“0" maxOccur=“unbounded”/>

</xs:sequences>
</xs:complexType>
</xs:schema>

Jul. 26, 2007

US 2007/0172041 Al

[1171] An lustrative Application-Specific Schema:

Jul. 26, 2007

<?xml version="1.0" encoding="“UTF-8"7>
<xs:schema targetNamespace="http://intertrust.com/kformat/1.0”

xmlns="“http://intertrust.com/kformat/1.0” xmlns:oct="http://intertrust.com/Octopus/1.0”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema” xmlns:ds="http://www.w3.0rg/2000/09/xmldsigt”
xmlns:xenc="http://www.w3.0rg/2001/04/xmlenc#” elementFormDefault="qualified”

attributeFormDefault="unqualified”>
<!-- imports -->

<xs:import namespace="http:/intertrust.com/Octopus/1.0” schemal.ocation="Octopus.xsd™/>

<!-- elements -->
<xs:element name="Torpedo” type="TorpedoType”/>
<xs:element name="BroadcastKey” type="BroadcastKeyType”/>

<xs:element name="BroadcastKeyMethod” type="BroadcastKeyMethodType”/>

<!-- types -->
<xs:complexType name="TorpedoType”>
<xs:sequence>
<xs:element ref="BroadcastKey”/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="BroadcastKeyType”>
<xs:sequence>
<xs:element ref="BroadcastKeyMethod”/>
<xs:element ref="oct:KeyData”/>
</Xs:sequence>
<!-- the id is the name of the MNK -->
<xs:attribute name="id” type="“xs:string”/>
<!-- the source is the name of the MKT -->
<xs:attribute name="“source” type="xs:string”/>
</xs:complexType>
<xs:complexType name="“BroadcastKeyMethodType”>

<xs:attribute name="Algorithm” fixed="http://marlin-drm.com/mangrove/1.0”/>

</xs:complexType>
</xs:schema>

B.1. Additional Constraints
[1172] B.1.1. Nodes

[1173] In one embodiment, the following types of nodes
are defined:

[1174] Octopus Personality nodes, which are the root
nodes of a given DRM engine (e.g., Device Node or PC
Software Node).

[1175] Other types of nodes, such as User Nodes, or
nodes for group of users, such as Subscription Nodes or
Membership Nodes.

[1176] In one embodiment, nodes contain keys (e.g., in
Extensions such as ScubaKeys) and it is necessary to be able
to separate the public information of the node (e.g., the id,
attributes, and public keys) and its private extensions (that
will, e.g., carry the secret and private keys). Moreover, there
will be one signature per part (the public and the private) so
that the public node with its signature can be exported as is
(as a parameter of the request to the license service for
example).

[1177] In one embodiment, the private extensions will be
carried in an ExternalExtension and signed. The public node
and its private extensions can be packaged in the same
<Bundle> element or can arrive separately. An example of a
signed Octopus Personality Node is given below in Annex A
to Appendix B.

[1178] B.1.1.1 Atiributes

[1179] In one embodiment, each XML encoding of a Node
object will carry an <AttributeList> with the following
<Attribute>(s):

[1180] For Octopus Personalities:

<AttributeList xmlns="http://intertrust.com/Octopus/1.0”>
<Attribute name="urn:x-marlin.intertrust.com:type”>...</Attribute>
<Attribute name=*“urn:x-marlin.intertrust.com:dnk__ id”>...</Attribute>
<Attribute name="urn:x-marlin.intertrust.com:manufacturer”>
</Attribute>
<Attribute name="urn:x-marlin.intertrust.com:model”>...</Attribute>
<Attribute name="urn:x-marlin.intertrust.com:version”>...</Attribute>
</AttributeList>

[1181] For other type of nodes:

<AttributeList xmlns="http://intertrust.com/Octopus/1.0”>
<Attribute name="urn:x-marlin.intertrust.com:type”>...</Attribute>
</AttributeList>

[1182] B.1.1.2 Extensions

[1183] As shown in Annex A to this Appendix B, in one
embodiment Octopus personality nodes carry extensions for
ScubaKeys (both sharing and confidentiality keys) and Tor-
pedo (broadcast secret key). Other types of nodes carry only
Scuba sharing keys.

[1184] All the public keys are carried inside the <Node>
element in an <Extension> element in the <ExtensionList>.
Other keys are carried in a separate <Extension> element
outside of the <Node> element.

US 2007/0172041 Al

[1185] In one embodiment, the <ScubaKeys> extensions
are signed in the <Node>. In this embodiment, the internal
<Extension> carrying <ScubaKeys> inside the <Node>
(public keys) will need to include a <ds:DigestMethod>
element as well as a <ds:DigestValue> element. The private
keys carried in an external <Extension> will need to be
signed and this by signing the whole extension. Likewise,
the <Torpedo> extension will be signed.

[1186] B.1.2 Links

[1187] In one embodiment, the <LinkTo> and <Link-
From> elements of the <Link> element contain only an <Id>
element and no <Digest> element. The <Control> element is
optional. Annex C to this Appendix B contains an example
of a signed link object.

[1188] B.1.1.1 Atiributes

[1189] In one embodiment, links do not have mandatory
attributes. This means that the <AttributeList> is not
required and will be ignored by a compliant implementation.

[1190] B.1.1.2 Extensions

[1191] In the example embodiment shown in this Appen-
dix B, links have <ScubaKeys> internal extensions carried
inside the <Link>, and thus the <ExtensionList> element is
mandatory. In addition, the <ScubaKeys> extension in a link
is not signed, and thus, no <ds:DigestMethod> and <ds:Di-

Jul. 26, 2007

gestValue> element are carried inside the <Extension> ele-
ment. This <ScubaKeys> extension contains an encrypted
version of the private/secret Scuba Sharing keys (in a
<PrivateKey> and a <SecretKey> element) of the “To Node”
with the public or secret Scuba Sharing key of the “From
Node”. This encryption is signaled using the XML encryp-
tion syntax. In the embodiment illustrated in this Appendix
B, the “encoding” attribute of the <KeyData> element, child
of the <PrivateKey> and <SecretKey> elements, is set to
“xmlenc”. The child of this <KeyData> element will be an
<xenc:EncryptedData> element. The name of the encryption
key will be advertised in the <Keylnfo>/<KeyName> ele-
ment.

[1192] In one embodiment, if the encryption key is a
public key, then:

[1193] The <KeyName> element is the name of the pair
to which the key belongs.

[1194] If the encrypted data (e.g., a private key) is too
big to get encrypted directly with a public key, an
intermediary 128-bit secret key is generated. The data
is then encrypted with this intermediary key using, e.g.,
aes-128-cbc, and the intermediary key is encrypted
with the public key (using the <EncryptedKey> ele-
ment).

[1195] The XML chunk will then look like:

<!---E(I, data) -->
<EncryptedData xmlns="“http://www.w3.0rg/2001/04/xmlenc#’>
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#aes1 28-cbc™/>
<KeyInfo xmlns=“http://www.w3.0rg/2000/09/xmldsigt”>
<!-- E(PUBa,I) -->
<EncryptedKey xmlns=“http://www.w3.0rg/2001/04/xmlenc#”>
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1_5"/>
<KeyInfo xmlns=“http://www.w3.0rg/2000/09/xmldsig#’>
<KeyName>urn:x-octopus.intertrust.com:key-pair:300a</KeyName>
</KeyInfo>
<CipherData>
<CipherValue>
fFeGD4KAPEmMESz/jW 6CkbRegpM5kyHOOy/0/uDQ78PaShtvUMoozeO4a0b785YnB
13QalZUEYqROVSTCUaOcH7wxxvBEIsd1nYKkVOgW/kFnR198UDFVU90PRqaEP/SA
Bb+JuAUmvxYX47qOVQqBQGGqzFssBDKmUk+s98dkPR8=
</CipherValue>
</CipherData>
</EncryptedKey>

</KeyInfo>
<CipherData>

<CipherValue>
c8LBj4BLzGOYV/GT3Y4w2XcewTYbr8fHNThCOQjULuvoha/QYvZKKCpUY+nuCXC/s
t9TU+8tMtaMt1 GUpkCZQhSaTNcluCSxOyBoA6Xh/bmyZLDJ78+al/sITmfNpJGdb
vTal7x9DD1Mp ImvFEjp AU TTvruN32g4bxsF7FD8C1RWNAc4hS96nFDgrmzoO5pR
dda6mswFKG5BOkY7mYbhacblowXkAk1We/OuXA+QLHdUthxeajoXNPfAGRz9FM3b
pulxbxDAaaAIDxoReiTtS1nGaHhqalhvLCpKk1zHBowHyvTvDLEILjHYEPeG6xSH
BbzpT298tdKUhXfaY6vvdceMdVXuBVL3eZP1jkIHDxeaBylce8xIQKZpo6Pjuxlb
bnSKUMUPxWp7rLa5s786S740cwuN63+ZR gienxPK1CnYO3htMI7hh/agvO9IyUD
RvegnSEY9KASExy/6g1S/gouljFU8r7056XcE4/IBod TWDk{yli/y8q5QA/OVaD9
Y30ER1p3pYuHwn/IeXM4gsBD31cgd7nviK7IKYkZjowR9P6pSy57a+K4LZKDm{UH
zG/gZs2XcoPb9o6mVAEEej7+alwqmoileykkR+0pkFntvqvX YRPkphheVdzjzIMV
scpXBXfWx7wbQURXkiew7R4RhQy3wev+ZFIpl9NsAE1yqyWy4rBobzZ 7c TNMtfR
znhVIt+ Wwq5GOIBxzU9WIFzFd/Rn2HOLATI71 LCad4 VR 3uNpf+XM8Ip9Lj LPRUnNI
28KrMdAddeeyop YyilF5p8idfh0//a/LKdE7IAkOq9ewk19ryqfl6 CFeKI50OMjh
kzNx3BR/iHxm31HIe3ZKtA==</CipherValue>

</CipherData>

</EncryptedData>

US 2007/0172041 Al

[1196] B.1.3 License Objects

[1197] Annex C to this Appendix B provides an example
of a signed license (before the first revocation has occurred,
see the ContentKey section, below).

[1198] B.1.3.1 Protector

[1199] In the example embodiment shown in this Appen-
dix B, the <ContentKeyReference> element and the <Con-
tentReference> elements (e.g., inside the <ProtectedTar-
gets> element) contain only an <Id> element and no
<Digest> element. In this illustrative embodiment, Protector
objects contain no mandatory attributes or extensions; the
<AttributeList> and <ExtensionList> elements are optional
and will be ignored.

[1200] B.1.3.2 ContentKey

[1201] In the example embodiment shown in this Appen-
dix B, ContentKey objects contain no mandatory attributes
or extensions. Therefore, the <AttributeList> and <Exten-
sionList> elements are optional and will be ignored.

[1202] 1In one embodiment, <ContentKey> elements con-
tain a <SecretKey> element which represent the actual key
that will be used to decrypt the content. The <KeyData>
associated with the <SecretKey> is encrypted. In one
embodiment, it is mandatory that the “encoding” attribute of
<KeyData> is set to “xmlenc”.

[1203] Inone embodiment, there are two distinct cases for
ContentKey objects: (1) Before the first revocation of a
device or a PC application: in this case, the content key Kc
represented by the <SecretKey> element will be only
encrypted by the Scuba key (public or secret) of the entity
the content is bound to (the user for example). (2) After the
first revocation where the content key is encrypted according
to the Mangrove broadcast encryption scheme. The resulting
data is then encrypted with the Scuba key (public or secret)
of the entity the content is bound to. In this case, we have
super-encryption.

[1204] Tllustrative methods for encrypting the <Encrypt-
edData> element in case of super-encryption are described
elsewhere herein. The following explains how to apply this
to case b.

[1205] In one embodiment, the xmlenc syntax for the
encryption of the content key Kc with the Mangrove Broad-
cast Encryption scheme is:

<EncryptedData xmlns="“http://www.w3.0rg/2001/04/xmlenc#’>
<EncryptionMethod Algorithm="see (*)”/>
<KeyInfo xmlns="‘http://www.w3.0rg/2000/09/xmldsig#”>
<KeyName>see (**)</KeyName>
</KeyInfo>
<CipherData>
<CipherValue>see (***)</CipherValue>
</CipherData>
</EncryptedData>
(*) is the URL identifying the Mangrove Broadcast Encryption scheme,
which, in one embodiment, is also the <BroadcastKeyMethod>
Algorithm of the <Torpedo> extension in an application-specific xml
schema call “kformat.xsd”.

Jul. 26, 2007

-continued

(**) is the name of the Mangrove Key Tree. In one embodiment, this
value must be the same as the source attribute of the <BroadcastKey>
element defined in kformat.xsd.
(***) is the base64 encoded value of the ASN.1 sequence representing
the encryption of the content key Kc according to the Mangrove
Broadcast Key algorithm:
SEQUENCE {
tags BIT STRING
keys OCTET STRING

[1206] In one embodiment, the byte sequence of the
<EncryptedData> referred to above is encrypted with the
scuba sharing key (public or secret) of the entity the license
is bound to. If the public key is used, then the same
conventions apply as the one described in below (e.g., see
encrypting with a public key) and an intermediary key is
needed if the byte sequence of the <EncryptedData> is too
big for a RSA 1024 public key. An example of the XML
encoding of such a ContentKey object can be found in
Annex D to this Appendix B.

[1207] B.1.3.3 Controller

[1208] In one embodiment, controller objects contain no
mandatory attributes or extensions. Therefore the
<AttributeList> and <ExtensionList> elements are optional
and will be ignored by a compliant implementation.

[1209] In one embodiment, the value of the Algorithm
attribute of the <DigestMethod> elements is always http://
www.w3.0rg/2000/09/xmldsig#shal.

[1210] In one embodiment, the <ControlReference> must
have a <Digest> element. The <DigestValue> element must
contain the base64 encoding of the digest of the referenced
control.

[1211] In one embodiment, if the signature over the Con-
troller is a PKI signature (rsa-shal), the <ContentKey-
Refence> elements (within the <ControlledTargets> ele-
ments) need to include a <Digest> element and the
<DigestValue> element must contain the digest of the plain-
text content key embedded in the ContentKey object.

[1212] B.1.3.4 Control

[1213] In one embodiment, control objects contain no
mandatory attributes or extensions. Therefore the
<AttributeList> and <ExtensionList> elements are optional
and will be ignored by a compliant implementation.

[1214] Inone embodiment, the type attribute of the <Con-
trolProgram> element is set to “plankton,” and the byteCo-
deType attribute of the <CodeModule> element is set to
“Plankton-1-0.”

[1215] Appendix B—Annex A: Example of Signed Octo-
pus Personality Node

US 2007/0172041 Al Jul. 26, 2007
&3

<Bundle xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#”
xmlns:xenc="http://www.w3.0rg/2001/04/xmlenc#” xmlns="“http://intertrust.com/Octopus/1.0”
xmlns:xsi=“http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemal.ocation="http://intertrust.com/kformat/1.0
C:\DOCUME~1\julien\Desktop‘\kformat\kformat.xsd”>
<!-- FIRST THE NODE with PUBLIC INFO-->
<Node id="urn:kformat:device:0001”>
<AttributeList>
<Attribute name="urn:x-marlin.intertrust.com:type”>device</Attribute>
<Attribute name="urn:x-marlin.intertrust.com:dnk__id”>urn:kformat:mangrove:0001 </Attribute>
<Attribute name="urn:x-marlin.intertrust.com:manufacturer__id”>SONY </Attribute>
<Attribute name="urn:x-marlin.intertrust.com:model”>urn:sony :walkman</Attribute>
<Attribute name="urn:x-marlin.intertrust.com:version”>urn:sony:walkman:002a</Attribute>
</AttributeList>
<ExtensionList>
<Extension id="“urn:kformat:device:0001:scuba:public”>
<ScubaKeys>
<PublicKey id="“urn:kformat:device:0001 :scuba:public:sharing”
pair="urn:kformat:device:0001:scuba:pair:sharing”>
<KeyData encoding="base64” format="X509">MIIC...MEbB</KeyData>
</PublicKey>
<PublicKey id="“urn:kformat:device:0001 :scuba:public:confidentiality”
usage="confidentiality”
pair="urn:kformat:device:0001:scuba:pair:confidentiality”>
<KeyData encoding="base64” format=*X.509”>MIIChDCC... vh8BM52</KeyData>
</PublicKey>
</ScubaKeys>
<Digest>
<DigestMethod xmlns="http://www.w3.0rg/2000/09/xmldsig#”
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal’/>
<DigestValue xmlns="http://www.w3.0rg/2000/09/xmldsigh’>0GZGBY80pQXs</DigestValue>
</Digest>
</Extension>
</ExtensionList>
</Node>
<!-- THEN the PRIVATE Scuba extension -->
<Extension id="“urn:kformat:device:0001:scuba:private” subject="urn:kformat:device:0001”>
<ScubaKeys>
<PrivateKey id="urn:kformat:device:0001 :scuba:private:sharing”
pair="urn:kformat:device:0001:scuba:pair:sharing”>
<KeyData encoding="base64” format="PKCS8”’>MIICdgIBADAN... DXywQLg==</KeyData>
</PrivateKey>
<PrivateKey id="urn:kformat:device:0001 :scuba:private:confidentiality”
usage="confidentiality”
pair="urn:kformat:device:0001:scuba:pair:confidentiality”>
<KeyData encoding="base64” format=“PKCS8”’>MIICdwIBADAN... g4olog34=</KeyData>
</PrivateKey>
<SecretKey id="urn:kformat:device:0001:scuba:secret:sharing”>
<KeyData encoding="base64” format="RAW”>Z1n2/2cbz100/{Z09xtmyA==</KeyData>
</SecretKey>
<SecretKey id="urn:kformat:device:0001:scuba:secret:confidentiality”
usage="confidentiality”>
<KeyData encoding="base64” format="RAW”>0CI8bcORW6GLX4GzT7XKvg==</KeyData>
</SecretKey>
</ScubaKeys>
</Extension>
<!-- Then the PRIVATE Torpedo extension -->
<Extension id="“urn:kformat:device:0001:torpedo” subject="urn:kformat:device:0001”>
<Torpedo xmlns="http://intertrust.com/kformat/1.0”>
<BroadcastKey id="urn:kformat:mangrove:0001”>
<BroadcastKeyMethod Algorithm="http://marlin-drm.com/mangrove/1.0”/>
<KeyData xmlns="“http://intertrust.com/Octopus/1.0” encoding="base64”
format="RAW”>....</KeyData>
</BroadcastKey>
</Torpedo>
</Extension>
<!-- Then the signature on the public part -->
<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#”’>
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#"/>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal”/>
<Reference URI="urn:kformat:device:0001”>
<Transforms>
<Transform Algorithm="http://www.octopus-drm.com/2004/07/format-independent-cano#”/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal”/>

US 2007/0172041 Al Jul. 26, 2007
&4

-continued

<DigestValue>gI5QoD7MUAgjcpkPiciZhoSHbEQ=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>gI5QoD7MUAgjcpkPiciZhoSHbEQ=</SignatureValue>
<KeyInfo>
<X509Data>
<!-- Put the public key cert of the signing key here -->
<X509Certificate>...</X509Certificate>
<!-- and the certificate chain without the root if needed -->
<X509Certificate>...</X509Certificate>
</X509Data>
</KeyInfo>
</Signature>
<!-- Then the signature on the private part -->
<Signature xmlns="“http://www.w3.0rg/2000/09/xmldsig#”’>
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#"/>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal”/>
<Reference URI="urn:kformat:0001:scuba:private”>
<Transforms>
<Transform Algorithm="http://www.octopus-drm.com/2004/07/format-independent-cano#”/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal”/>
<DigestValue>gI5QoD7MUAgjcpkPiciZhoSHbEQ=</DigestValue>
</Reference>
<Reference URI="urn:kformat:device:0001:torpedo”>
<Transforms>
<Transform Algorithm="http://www.octopus-drm.com/2004/07/format-independent-cano#”/>
</Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal”/>
<ds:DigestValue>97mDinwOvF/ECQHcevDk</ds:DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>gI5QoD7MUAgjcpkPiciZhoSHbEQ=</SignatureValue>
<KeyInfo>
<X509Data>
<!-- Put the public key cert of the signing key here -->
<X509Certificate>...</X509Certificate>
<!-- and the certificate chain without the root if needed -->
<X509Certificate>...</X509Certificate>
</X509Data>
</KeyInfo>
</Signature>
</Bundle>

[1216] Appendix B—Annex B: Example of a Signed
Octopus Link

<?xml version="1.0" encoding="“UTF-8”?>
<!--Sample XML file generated by XMLSPY v2004 rel. 2 U (http://www.xmlspy.com)-->
<Bundle xmlns=“http://intertrust.com/Octopus/1.0” xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#”
xmlns:xenc="http://www.w3.0rg/2001/04/xmlenc#” xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance” xsi:schemal.ocation="http://intertrust.com/Octopus/1.0
C:ws\Octopus\Source\Xml\Schemas\Octopus.xsd”>
<Link id="urn:kformat:link:device:0001:to:user:1234>
<ExtensionList>
<Extension id="urn:kformat:link:device:0001:to:user:1234:scuba”>
<ScubaKeys>
<!-- E(PUBdevice, PRIVuser) -->
<PrivateKey id="“urn:kformat:user:1234:scuba:private:sharing”
pair=“urn:kformat:user:1234:scuba:pair:sharing”>
<KeyData encoding="xmlenc” format="PKCS8”>
<!-- E(I, PRIVuser) I: intermediate key-->
<EncryptedData xmlns=“http://www.w3.0rg/2001/04/xmlenc#”>
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#aes1 28-cbc™/>
<KeylInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#”>
<!-- E(PUBdevice, I) -->
<EncryptedKey xmlns=“http://www.w3.0rg/2001/04/xmlenc#”>
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1_5"/>
<KeyInfo xmlns="“http://www.w3.0rg/2000/09/xmldsigt”>

US 2007/0172041 Al
&5

-continued

<KeyNames>urn:kformat:device:0001:scuba:pair:sharing</KeyName>
</KeyInfo>
<CipherData>
<CipherValue>{fFeGD4K... s98dkPR8=</CipherValue>
</CipherData>
</EncryptedKey>
</Keylnfo>
<CipherData>
<CipherValue>
c8LBj4BLzGOYv...HIe3ZKtA==</CipherValue>
</CipherData>
</EncryptedData>
</KeyData>
</PrivateKey>
<!-- E(PUBdevice, Suser) -->
<SecretKey id="urn:kformat:user:1234:secret:sharing”>
<KeyData encoding="xmlenc” format="RAW”>
<EncryptedData xmlns=“http://www.w3.0rg/2001/04/xmlenc#”>
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1_ 5"/>
<KeylInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#”>
<KeyNames>urn:kformat:device:0001:scuba:pair:sharing</KeyName>
</Keylnfo>
<CipherData>
<CipherValue>OHVaH... kjLA=</CipherValue>
</CipherData>
</EncryptedData>
</KeyData>
</SecretKey>
</ScubaKeys>
</Extension>
</ExtensionList>
<LinkFrom>
<Id>urn:kformat:device:0001 </Id>
</LinkFrom>
<LinkTo>
<Id>urn:kformat:user:1234</Id>
</LinkTo>
</Link>
<Signature xmlns="“http://www.w3.0rg/2000/09/xmldsigt”>
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#"/>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal”/>
<Reference URI="urn:kformat:link:device:0001:to:user:1234>
<Transforms>
<Transform Algorithm="http://www.octopus-drm.com/2004/07/format-independent-cano#”/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal’/>
<DigestValue>gI5QoD7MUAgjcpkPiciZhoSHbEQ=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>gI5QoD7MUAgjcpkPiciZhoSHbEQ=</SignatureValue>
<KeyInfo>
<X509Data>
<!-- Put the public key cert of the signing key here -->
<X509Certificate>...</X509Certificate>
<!-- and the certificate chain without the root if needed -->
<X509Certificate>...</X509Certificate>
</X509Data>
</KeyInfo>
</Signature>
</Bundle>

[1217] Appendix B—Annex C: Example of a Signed
Octopus License (without Revocation)

<Bundle xmlns="http://intertrust.com/Octopus/1.0” xmlns:xsi=“http://www.w3.0rg/2001/XMLSchema-
instance” xsi:schemal.ocation="http://intertrust.com/Octopus/1.0
C:ws\Octopus\Source\Xml\Schemas\Octopus.xsd”>
<ContentKey id="urn:x-octopus.intertrust.com:content-key:2002”>
<SecretKey id="urn:x-octopus.intertrust.com:secret-key:2002”>

Jul. 26, 2007

US 2007/0172041 Al Jul. 26, 2007
86

-continued

<KeyData encoding="“xmlenc” format="RAW”>
<EncryptedData xmlns="“http://www.w3.0rg/2001/04/xmlenc#”>
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenct#aes128-cbc’/>
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#”>
<KeyNames>urn:x-octopus.intertrust.com:secret-key:303c</KeyName>
</Keylnfo>
<CipherData>
<CipherValue>
MCROLGaoyu0206zsIW9IrOOSMthuZCtV20094/0fQ5dHbII3q2vZrgwRbIepLvRa
</CipherValue>
</CipherData>
</EncryptedData>
</KeyData>
</SecretKey>
</ContentKey>
<ContentKey id="urn:x-octopus.intertrust.com:content-key:2001”>
<SecretKey id="urn:x-octopus.intertrust.com:secret-key:2001”>
<KeyData encoding="“xmlenc” format="RAW”>
<EncryptedData xmlns="“http://www.w3.0rg/2001/04/xmlenc#”>
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1_ 5"/>
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#”>
<KeyNames>urn:x-octopus.intertrust.com:key-pair:300c</KeyName>
</Keylnfo>
<CipherData>
<CipherValue>
LD51¢I71Bswwhb2GttPoPjMytFn300el7vhZPASmKY06R82KZjxFDtcCmbOIYZ5Hv
61dqQ3hy74/mQF3AJ1jRXa9/ymmasVBxsInv426B9/TkzTT4CGgNjS+WPOKLINZC
qnRWguImk8dQ+jaxW51SQSjp4MCpGZB63zfveuBD7qE=
</CipherValue>
</CipherData>
</EncryptedData>
</KeyData>
</SecretKey>
</ContentKey>
<Control id="“urn:x-octopus.intertrust.com:control:0001”>
<ControlProgram type="“Plankton”>
<CodeModule byteCodeType="“Plankton-1-0">
AAABUNBrQOOAAAA2cGIFWAAAAAIOR2xvYmFsLkOuTGOhZAAA AAAAEKFjdGIvbi5QbGF5LkNo
ZWNrAAAAAFgAAACMcGtDUWEAAAAEGEEAAAAABQEAAAACIAMBAAAABBoBAAAAHGUb
AQAAACWYAQAAAAQaAQAAACIFAQAAAAIGAWEAAAAEGEEAAAATBRsBAAAABhgBAAAA
ABUB/////XxUBAAAABBoBAAAAPWUBAAAABBoBAAAAHgUaIAEAAAAgGAEAAAAEGGEAAAA
7BRogAQEOX30LAQAAAAYYAQAAAAAVAT////SVAAAAbNBrRFNPY3RvcHVzLkxpbmtzLklzZTm9
kZVIITYWNoYWIsZQAAAAAAU31zdGVtLkhve3QUR2VOVGItZVNOYWIWAAAAAABlecm46eCl1vY3
RveHVZLmludGVydHI1c3QuY29tOmSvZGUSMDAWMWA=
</CodeModule>
</ControlPrograms>
</Control>
<Protector>
<ContentKeyReference>
<Id>urn:x-octopus.intertrust.com:content-key:2002</Id>
</ContentKeyReference>
<ProtectedTargets>
<ContentReference>
<Id>urn:x-octopus. intertrust.com:content:2001</Id>
</ContentReference>
<ContentReference>
<Id>urn:x-octopus. intertrust.com:content:2002</Id>
</ContentReference>
</ProtectedTargets>
</Protector>
<Protector>
<ContentKeyReference>
<Id>urn:x-octopus.intertrust.com:content-key:2001 </Id>
</ContentKeyReference>
<ProtectedTargets>
<ContentReference>
<Id>urn:x-octopus. intertrust.com:content:2003</Id>
</ContentReference>
<ContentReference>
<Id>urn:x-octopus. intertrust.com:content:2004</Id>
</ContentReference>
</ProtectedTargets>
</Protector>
<Controller id="“urn:x-octopus.intertrust.com:controller:0001”>
<ControlReference>
<Id>urn:x-octopus.intertrust.com:control :0001 </Id>

US 2007/0172041 Al Jul. 26, 2007
87

-continued

<Digest>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal”>
xmlns="“http://www.w3.0rg/2000/09/xmldsig#”’/>
<DigestValue
xmins="http://www.w3.0rg/2000/09/xmldsig#”>02ACF5674287FF45CFA5A66D70125FF5601A63F7</Digest
Value>
</Digest>
</ControlReference>
<Controlled Targets>
<ContentKeyReference>
<Id>urn:x-octopus. intertrust.com:content-key:2002 </Id>
</ContentKeyReference>
<ContentKeyReference>
<Id>urn:x-octopus. intertrust.com:content-key:2001 </Id>
</ContentKeyReference>

</Controlled Targets>

</Controller>

<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#”’>
<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#"/>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#hmac-shal”/>
<Reference URI="urn:x-octopus.intertrust.com:controller:0001”>
<Transforms>
<Transform Algorithm="http://www.octopus-drm.com/2004/07/format-independent-cano#”/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal />
<DigestValue>A42CZFK4DQvb/MOwqOLZRnyiS1Y=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>gI5QoD7MUAgjcpkPiciZhoSHbEQ=</SignatureValue>
<KeyInfo>
<KeyName>urn:x-octopus.intertrust.com:secret-key: 2002 ;;urn:x-octopus. intertrust.com:secret-
key:2001</KeyName>
</KeyInfo>
</Signature>
</Bundle>

[1218] Appendix B—Annex D: Example of a ContentKey
with Revocation

<ContentKey id="urn:x-octopus.intertrust.com:content-key:2001”>
<SecretKey id="urn:x-octopus.intertrust.com:secret-key:2001”>
<KeyData encoding="“xmlenc” format="RAW”>
<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#”>
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#aes128-cbc™/>
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#”>
<EncryptedKey xmlns="http://www.w3.0rg/2001/04/xmlenc#”’>
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1_ 5"/>
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#”>
<KeyNames>urn:kformat:user:0001 :scuba:pair:sharing</KeyName>
</Keylnfo>
<CipherData>
<CipherValue>E(PUBuser, I)</CipherValue>
</CipherData>
</EncryptedKey>
</Keylnfo>
<CipherData>
<CipherValue>
Encryption of the EncryptedData element containing
the encryption of Ke¢ with the broadcast encryption
scheme (see note on xmlenc and broadcast key encryption
in the ContentKey section) with the intermediate key 1.
</CipherValue>
</CipherData>
</EncryptedData>
</KeyData>
</SecretKey>
</ContentKey>

US 2007/0172041 Al

APPENDIX C

[1219] This Appendix C shows an example of simple
profile for use with the bootstrap protocol described above.
Also provided are a simple canonical serialization, an
example XML marshalling, and example WSDL for the
Octopus Bootstrap SOAP Web Service.

[1220] Simple Profile

[1221] 1In one embodiment, a simple profile is used that
consists of the following:

Profile Name SimpleProfile

Public Key http://www.w3.0rg/2001/04/xmlenc#rsa-1_5
Encryption Algorithm

Public Key http://www.w3.0rg/2000/09/xmldsig#rsa-shal
Signature Algorithm

Secret Key http://www.w3.0rg/2001/04/xmlenc#aes1 28-cbe
Encryption Algorithm

Secret Key http//www.w3.0rg/2000/09/xmldsig#hmac-shal
Signature Algorithm

Digest Algorithm http://www.w3.0rg/2000/09/xmldsig#shal

Certificate Format X.509 (version 3)

Message Marshalling Simple XML Marshalling 1.0
Minimum Nonce Size 16 bytes

Canonical Object Simple Canonical Serialization 1.0
Serialization

[1222] Simple Canonical Serialization 1.0

[1223] In one embodiment, the simple canonical byte
sequence used in the simple profile described above consists
of constructing sequences of bytes from the values of the
fields of the objects in the messages. Each message and each
object is made of one or more fields. Each field is either a
simple field, or a compound field.

[1224] Simple fields can be one of four types: integer,
string, byte sequence, or arrays of fields. Compound fields
consist of one or more sub-fields, each sub-field being
simple or compound.

[1225] In one embodiment, the rules for constructing the
canonical byte sequence for each field type are as follows:

[1226] Compound Fields

Field 0 Field 1 Field 2

Jul. 26, 2007

[1227] The canonical byte sequence is the concatenation
of the canonical byte sequences of each sub-field (optional
fields are not skipped, but serialized according to the rule for
optional fields).

[1228] Arrays of Fields

Field count Field 0 Field 1

[1229] The field count, encoded as a sequence of 4 bytes
in big-endian order, followed by each field’s canonical byte
sequence. If the field count is 0, then nothing follows the
4-bytes field count (in this case, all 4 bytes have the value
0).

[1230] Integer

10 11 12 3

[1231] 32-bit signed value, encoded as a sequence of 4
bytes, in big-endian order.

[1232] String

Byte Count Byte 0 Byte 1

[1233] The string is represented by a UTF-8 encoded
sequence of 8-bit bytes. The byte count of the encoded byte
sequence is encoded as a sequence of 4 bytes in big-endian
order. The byte count is followed by the sequence of bytes
of the UTF-8 encoded string.

[1234] Byte Sequence

Byte Count Byte 0 Byte 1

[1235] The byte count is encoded as a sequence of 4 bytes
in big-endian order (if the byte sequence is empty, or the
corresponding field has been omitted, the Byte Count is O,
and no byte value follows the 4-byte byte count). Each byte
is encoded as-is.

[1236] Simple XML Marshalling 1.0
[1237] Schema SimpleBootProtocol xsd

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema” elementFormDefault="qualified”>
<xs:element name="BootstrapRequestMessage’”>
<xs:complexType>
<xs:sequence>

<xs:element ref="BootstrapRequest”/>

</xs:sequences>

<xs:attribute name="Protocol” type="xs:string” use="required”/>

<xs:attribute name="Profile” type="xs:string” use="“required”/>

<xs:attribute name="“Version” type="xs:decimal” use="“required”/>
</xs:complexType>

</xs:element>

<xs:element name="BootstrapRequest”>
<xs:complexType>

US 2007/0172041 Al Jul. 26, 2007
&9

-continued

<xs:sequences>
<xs:element ref="Sessionld”/>
<xs:element ref="TrustDomain” maxOccurs="unbounded”/>
</xs:sequence>
</xs:complex Type>
</xs:element>
<xs:element name="ChallengeRequestMessage”>
<xs:complexType>
<xs:sequences>
<xs:element ref="ChallengeRequest”/>
</xs:sequence>
</xs:complex Type>
</xs:element>
<xs:element name="ChallengeRequest”>
<xs:complexType>
<xs:sequences>
<xs:element ref="Challenge”/>
<xs:element ref="Signature”/>
<xs:element ref="CertificateChain”/>
</xs:sequence>
</xs:complex Type>
</xs:element>
<xs:element name="ChallengeResponseMessage”>
<xs:complexType>
<xs:sequences>
<xs:element ref="SessionKey”/>
<xs:element ref="EncryptedChallengeResponse™/>
</xs:sequence>
</xs:complex Type>
</xs:element>
<xs:element name="EncryptedChallengeResponse™ type="xs:base64Binary”/>
<xs:element name="ChallengeResponse”>
<xs:complexType>
<xs:sequences>
<xs:element ref="ClientInfo”/>
<xs:element ref="Challenge”/>
<xs:element ref="SessionKey”/>
<xs:element ref="Signature”/>
</xs:sequence>
</xs:complex Type>
</xs:element>
<xs:element name="Challenge”>
<xs:complexType>
<xs:sequences>
<xs:element ref=""Cookie”/>
<xs:element ref="Nonce”/>
<xs:element ref="Sessionld”/>
<xs:element ref="EncryptionKey” minOccurs="0"/>
</xs:sequence>
</xs:complex Type>
</xs:element>
<xs:element name="BootstrapResponseMessage”>
<xs:complexType>
<xs:sequences>
<xs:element ref="EncryptedBootstrapResponse™/>
</xs:sequence>
</xs:complex Type>
</xs:element>
<xs:element name="EncryptedBootstrapResponse™ type="xs:base64Binary”/>
<xs:element name="BootstrapResponse”>
<xs:complexType>
<xs:sequences>
<xs:element ref="Sessionld”/>
<xs:element ref="Data”/>
<xs:element ref="Signature”/>
</xs:sequence>
</xs:complex Type>
</xs:element>
<xs:element name="ErrorResponseMessage”>
<xs:complexType>
<xs:sequences>
<xs:element ref="ErrorResponse”/>
</xs:sequence>
</xs:complex Type>
</xs:element>
<xs:element name="ErrorResponse” type="xs:string”/>

US 2007/0172041 Al
90

-continued

<xs:element name="CertificateChain”>
<xs:complex Type>
<xsisequences
<xs:element ref="Certificate” maxOccurs="unbounded”/>
</Xs:sequence>
<xs:attribute name="TrustDomain” type="xs:string” use="required”/>
</xs:complex Type>
</xs:element>
<xs:element name="Certificate” type="xs:base64Binary”/>
<xs:element name="ClientInfo”>
<xs:complex Type>
<xsisequences
<xs:element ref="Attribute”/>
</Xs:sequence>
</xs:complex Type>
</xs:element>
<xs:element name="Attribute” type="xs:string”/>
<xs:element name="Cookie” type="“xs:base64Binary”/>
<xs:element name="Data” type="xs:base64Binary”/>
<xs:element name="EncryptionKey” type="xs:base64Binary”/>
<xs:element name="Nonce” type="xs:base64Binary’”/>
<xs:element name="Sessionld” type="xs:string”/>
<xs:element name="SessionKey” type="xs:base64Binary”/>
<xs:element name="Signature” type="xs:base64Binary”/>
<xs:element name="TrustDomain” type="xs:string”/>
</xs:schema>

[1238] Example:

<BootstrapRequestMessage Protocol="OctopusSimpleBoot” Profile=“SimpleProfile” Version=*1.0">
<BootstrapRequest>
<Sessionld>some-unique-session-id-0008 </Sessionld>
<TrustDomain>urn:x-octopus. intertrust.com:scuba:boot:trust-domain:test001</TrustDomain>
</BootstrapRequest>
</BootstrapRequestMessage>
<ChallengeRequestMessage>
<ChallengeRequest>
<Challenge>
<Cookie>c29tZS11bmlxdWUtc2Vze2lvbil pZCOWMDA4</Cookie>
<Nonce>Mv5VIv73cxo5b+gisQIP8Q==</Nonce>
<Sessionld>some-unique-session-id-0008</Sessionld>
<EncryptionKey>
MIGIMAOGCSqGSIb3DQEBAQUAA4GNADCBIQKBgQCpMY4wvgTIVVPTufNVbdIf TUwWOI4FZPtzi
3ezetY9gx5106dfRn+LKPqInlsSXCRSZIVRUyoNZC0Qc3SLobUhXD6uTsr VSxtRKOSXZTLtSDZ15At
ddSrAAfF9baDGMIi5SKQPOW7qB2CI/MmYha4Jix1iUltvOzZWIKmSpytgHC81/QIDAQAB
</EncryptionKey>
</Challenge>
<Signature>
GsWP3yPT361r3eljZfulUS7xpSw2ei7iTsAT/YD13fX+pSTrpeKAtq2BTzHQ1 AclOorP JwzWHDanc
cui9/rinlg3Drw52bQXLzhZbZLXadIGFP3YP1gTKPuazUCYCLAjY TIbdulWinTKDtmf{34/66H0sz
DCCyxQsdFZhSNk6pyQE=

</Signature>
<CertificateChain TrustDomain="urn:x-octopus.intertrust.com:scuba:boot:trust-domain:test001”>
<Certificate>
MIID...<!-- End entity cert -->
</Certificate>
MIID...<!-- intermediary cert -->
<Certificate>
MIIE...<!-- intermediary cert -->
</Certificate>
<Certificate>
MIID...<!-- cert that chains directly to the trust anchor -->
</Certificate>
</CertificateChain>
</ChallengeRequest>

</ChallengeRequestMessage>
<ChallengeResponseMessage>
<SessionKey>
PtzJcFT2s1sW70RZ1a+HASARMZerdpk4QArFZWYIkUWZcIZTN2 g2 YeCQwORq2J9QX OksUbutKm
OmgfEHY151UdcMFake3CwquvVN6w/7mFHOqtDoc+GhuKe9eQXN2RHa3 SThfRSShF2 A/cwZHdA4Nk

Jul. 26, 2007

US 2007/0172041 Al Jul. 26, 2007
91

-continued

nt4w8MWMDDn3SUDd6aS/ZI=
</SessionKey>
<EncryptedChallengeResponse>
mQCKkPL560D00o...
</EncryptedChallengeResponse>
</ChallengeResponseMessage>
<ChallengeResponse>
<ClientInfo>
<Attribute Name="SomeAttribute”>Bla Bla</Attribute>
</ClientInfo>
<Challenge>
<Cookie>c29tZS 11bmlxdWUte2Vze2lvbilpZCOwMD A4</Cookie>
<Nonce>Mv5VIv73cxo5b+gisQIP8Q==</Nonce>
<Sessionld>some-unique-session-id-0008 </Sessionld>
</Challenge>
<SessionKey>bbBG8IsGaApFdNJIq6hFrIQ==</SessionKey>
<Signature>WYMULPpF4l0J6MiAxd1lueN7p/4=</Signature>
</ChallengeResponse>
<BootstrapResponseMessage>
<EncryptedBootstrapResponse>
chXTp20+y17/i1pHLawFOLXdGb...
</EncryptedBootstrapResponse>
</BootstrapResponseMessage>
<BootstrapResponse>
<Sessionld>some-unique-session-id-0008</Sessionld>
<Data>
PD94bWwgdmVye...
</Data>
<Signature>
XqCeVRb4YaYAKOIIj60BSR1hQO3tFpHPw3WwMMATbeUfqCpEXfAB7u2/qnjs9jLgW TOOVLDESC5a
VVMyvzlnRnDvOGHLIs6g43HusVx7fpazwHoFrb3M3eKwXMo YsI6xpd Yy2BX 1bs5QT2xdwBv2CIBjo7
KzQfmb/3bYEO+xGdg48=
</Signature>
</BootstrapResponse>
<ErrorResponseMessage>
<ErrorResponse Code="6">Some Error Info</ErrorResponse>
</ErrorResponseMessage>

[1239] WSDL for the Bootstrap SOAP Web Service

<?xml version="1.0" encoding="“UTF-8"7>
<!--
This wsdl file describes the interface for a stateless multiround bootstrap protocol
The protocol works this way:
1. C->8: BootstrapRequestMessage
2. S->C: ChallengeRequestMessage
3. C->8: ChallengeResponseMessage
4. S->C: BootstrapResponseMessage
-->
<wsdl:definitions name="OctopusBootstrap”
targetNamespace="http://www.intertrust.com/services/OctopusBootstrap”
xmlns="“http://schemas.xmlsoap.org/wsd/” xmlns:apachesoap="http://xml.apache.org/xml-soap”
xmlns:impl=“http://www.intertrust.com/services/OctopusBootstrap™
xmlns:intf="http://www.intertrust.com/services/OctopusBootstrap”
xmlns:soapenc="http://schemas.xmlsoap.Org/soap/encoding/”
xmlns:tnstype="http://www.intertrust.com/services/OctopusBootstrap™
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/” xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema”
xmlns:ob="http://www.intertrust.com/Octopus/Bootstrap/1.0”
xmlns:ne="http://www.intertrust.com/core”>
<wsdl:types>
<schema targetNamespace="http://www.intertrust.com/services/OctopusBootstrap”
xmlns="“http://www.w3.0rg/2001/XMLSchema”>
<!-- imports -->
<import namespace="http://www.intertrust.com/Octopus/Bootstrap/1.0”
schemal.ocation="./SimpleBootProtocol.xsd™/>
<!-- elements -->
<element name="requestdata”>
<complex Type>
<!-- This is a multiround stateless (thanks to the cookie) protocol:

US 2007/0172041 Al

92

-continued

Jul. 26, 2007

the client can send a BootstrapRequestMessage or
ChallengeReponseMessage -->
<choice>
<element ref="ob:BootstrapRequestMessage”/>
<element ref="ob:ChallengeResponseMessage”/>
</choice>
</complex Type>
</element>
<element name="responsedata”>
<complex Type>

<!-- This is a multiround stateless (thanks to the cookie) protocol:

the server can send back a ChallengeRequestMessage or

BootstrapResponseMessage or an ErrorResponseMessage -->

<choice>
<element ref="ob:ChallengeRequestMessage”/>
<element ref="ob:BootstrapResponseMessage™/>
<element ref="ob:ErrorResponseMessage”/>
</choice>
</complex Type>
</element>
</schema>
</wsdl:types>
<!-- message declarations -->
<wsdl:message name="invokeRequest”>
<wsdl:part element="tnstype:requestdata” name="invokeRequest™/>
</wsdl:message>
<wsdl:message name="invokeResponse”>
<wsdl:part element="tnstype:responsedata” name="invokeResponse”/>
</wsdl:message>
<!-- port type declarations -->
<wsdl:portType name="“OctopusBootstrap”>
<wsdl:operation name="“invoke”>

<wsdl:input message="“impl:invokeRequest” name=“invokeRequest”/>
<wsdl:output message="impl:invokeResponse” name="invokeResponse’/>

</wsdl:operation>
</wsdl:portType>
<!-- binding declarations -->

<wsdl:binding name="OctopusBootstrapSoapBinding” type="impl:OctopusBootstrap”>
<wsdlsoap:binding style="document” transport="http://schemas.xmlsoap.org/soap/http”/>

<wsdl:operation name="“invoke”>
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="invokeRequest”>
<wsdlsoap:body encodingStyle=""

namespace="http://www.intertrust.com/services/OctopusBootstrap” use="literal”/>

</wsdl:input>
<wsdl:output name="invokeResponse”>
<wsdlsoap:body encodingStyle=""

namespace="http://www.intertrust.com/services/OctopusBootstrap” use="literal”/>

</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<!-- service declarations -->
<wsdl:service name=“OctopusBootstrapService”>

<wsdl:port binding="“impl:OctopusBootstrapSoapBinding” name=“OctopusBootstrap”>
<wsdlsoap:address location="http://localhost:8080/OctopusBootstrap/services/OctopusBootstrap™/>

</wsdl:port>
</wsdl:service>
</wsdl:definitions>

APPENDIX D

[1240] An encoding-neutral way of computing a canonical
byte sequence (CBS) for objects is presented below and
used, in preferred embodiments, in the calculation of digests
for use digitally signing objects. This byte sequence is
independent of the way the objects are represented or
transmitted, thus enabling the same digest and signature
values to be used throughout systems in which multiple
encoding formats (e.g., XML, ANSI), programming lan-
guages, or the like are used.

1. Canonical Byte Sequence Algorithm

[1241] The canonical byte sequence algorithm consists of
constructing sequences of bytes from value of fields. Each
field has a value with a simple type or a compound type.
Some fields can be specified to be optional (the field may be
present or omitted).

[1242] In one embodiment, simple types are: integer,
string, byte, and boolean.

[1243] Compound types consist of one or more sub-fields;
each sub-field having a value with a simple or compound

US 2007/0172041 Al

type. Compound types are either heterogeneous or homog-
enous, meaning that there are one or more sub-field values
(simple or compound) of different types (i.e., heteroge-
neous), or that there are one or more sub-field values (simple
or compound) all of the same type (homogeneous).

[1244] The canonical byte sequence of a field is obtained
by applying the encoding rule to the field’s value when the
field is always present or the encoding rule for optional fields
when the field is specified to be optional. In the following
encoding rule descriptions, the term byte means an 8-bit
value (octet):

1.1. Optional Fields

[1245] If an optional field is present, its value is serialized
as the byte value 1 followed by the canonical byte sequence
of the field value. If it is omitted, its value is serialized as the
byte value 0.

1.2. Heterogeneous Compound

[1246] The canonical byte sequence is the concatenation
of the canonical byte sequences of each sub-field value
(optional fields are not skipped, but serialized according to
the rule for optional fields).

1.3. Homogeneous Compound

[1247] The canonical byte sequence is the sub-field count,
encoded as a sequence of 4 bytes in big-endian order,
followed by the concatenation of each sub-field value’s
canonical byte sequence. If the sub-field count is 0, then
nothing follows the 4-bytes field count (in this case, all 4
bytes have the value 0).

1.4. Integer

[1248] 32-bit integer value, encoded as a sequence of 4
bytes, in big-endian order.

[1249] 1.5. String

Byte Count Byte 0 Byte 1

[1250] Strings are represented by a UTF-8 encoded byte
sequence (not null-terminated). The canonical byte sequence
for a string consists of (1) the byte count of the string,
encoded as a sequence of 4 bytes in big-endian order,
followed by (2) the sequence of bytes of the string.

1.6. Byte

[1251] 8-bit value

1.7. Boolean

[1252] 8-bit value: O for false, and 1 for true
2. Application to Octopus Objects

[1253] In one embodiment, the canonical byte sequence
for an Octopus object is the concatenation of the canonical
byte sequences of each of its fields, in the order they are
defined in the object model.

[1254] For heterogeneous compound types, the order of
the fields is the one specified in the type definition. For
homogeneous compound types, the order of the elements is
specified in the following paragraphs.

Jul. 26, 2007

[1255] Attributes

[1256] An object’s “attributes” field is treated as an
unnamed attribute of type “list” (it is an unsorted container
of named attributes). Named attributes contained in the
value of attributes of type “list” are sorted lexicographically
by their “name” field. Unnamed Attributes contained in the
value attribute of type “array” are not sorted (they are
serialized in their array order).

[1257] Extensions

[1258] An object’s internal extensions are sorted lexico-
graphically by their ‘id’ field. In one embodiment, for
internal extensions, the ‘extensionData’ field is not used in
the computation of the canonical byte sequence. For such
extensions, if they need to be included in the computation of
a digest for the purpose of a signature, they will contain a
‘digest’ field that will represent the digest of the actual data
carried in the ‘extensionData’. For each type of extension
data, a definition will be given that allows the computation
of its canonical byte sequence.

[1259] Controller

[1260] ContentKey references are sorted lexicographi-
cally by their ‘id’ field.

3. ScubaKeys

[1261] The keys in the ‘publicKeys’, ‘privateKeys’ and
‘secretKeys’ fields are sorted lexicographically by their ‘id’
field.

[1262] 4. Example

Class X {
int i;
int j;

}

class A {
int a[J;
string s;

class B extends A {
{X optional_x;}
X x;
(string toDiscardInCano;)
string s2;

[1263] The canonical byte sequence of an instance of class
B where a[]={7,8,9}, s=“Abc”, x={5,4}, s2=*"", and optional
X is not present is serialized as:

“Abc” as
3 7 8 9 3 UTF-8 0 Cano(X) ©
4 4 4 4 4 3 bytes 1 8 bytes 4
bytes bytes bytes bytes bytes byte bytes

US 2007/0172041 Al

[1264] Where Cano(X) is:

4 bytes 4 bytes

APPENDIX E

[1265] An example of a control program is provided
below. In this example, the license indicates that the play
action can be granted if the membership state (provisioned
during registration) or the license state (provisioned during
a license transfer) can be found in the state database
(referred to as the “Seashell” database in this example

Jul. 26, 2007

embodiment). The license also allows a peer to request a
license transfer. This transfer will be granted if the two peers
are in a given proximity. The license contains an agent that
will set the license state on the peer.

[1266] In the code files that follow, “MovableDomain-
BoundLicense.asm” is the main control, “LicenseUtils/*”
are helpers for the license, “GenericUtils/*” are generic
helpers that perform functions such as computing the length
of a string, comparing strings, manipulating the stack, and/or
the like, and “ExtendedStatusBlockParameters/*” contains
an XML description of an extended status block parameter
and the corresponding representation as a series of bytes
compiled from the XML.

[1267] E.1 MovableDomainBound.asm

3SR R R SR R SR SR SR SR SR SRR SRR O SR K OISR SRR IR SRR T SR ST IR SRR KR SR IO K SKSOHORR SR KR
>

; File Name: MovableDomainBoundLicense.asm

; Description: Example of a movable license
REEETELELEELEE LSS L EL LSS L LTS
;

>

; constants

.equ DEBUG__PRINT__SYSCALL,

.equ FIND_SYSCALL_ BY_ NAME_ SYSCALL,
.equ SYSTEM_HOST_GET_OBJECT__SYSCALL,
.equ SYSTEM_HOST_SET_OBJECT_SYSCALL,
.equ SUCCESS,

.equ FAILURE,

.equ ERROR_NO__SUCH_ITEM,

.equ CONTAINER__IGNORED__ADDRESS,

oy = O AW~

;
; includes

;
.include “StrCmp.asm”
.include “PrintInt.asm”
.include “MembershipUtils.asm”
.include “LicenseStateUtils.asm”

;
; data

;
.data

GetTrustedTimeFunctionName:
.string “System.Host.GetTrusted Time”
GetTrustedTimeFunctionNumber:

long 0

ActionGrantedNoObligationX Status:

long 0x00000000 ; global flags

long 0x00000000 ; category = ACTION_GRANTED

Jlong 0x00000000 ; sub-category

long 0x00000000 ; local flags

Jlong 0x00000000 ; cache duration type

long 0x00000000 ; cache duration value

Jlong 0x00000000 ; value list size = 0
ActionDeniedXStatus:

long 0x00000000 ; global flags

long 0x00000001 ; category = ACTION__DENIED

Jlong 0x00000000 ; sub-category

long 0x00000000 ; local flags

Jlong 0x00000000 ; cache duration type

long 0x00000000 ; cache duration value

Jlong 0x00000000 ; value list size = 0
TransferGrantedProximityNotChecked:

long 0x00000000 ; global flags

long 0x00000000 ; category = ACTION_GRANTED

Jlong 0x00000000 ; sub-category

Jlong 0x00000003 ; local flags: Obligation and Callback Notices

Jlong 0x00000000 ; cache duration type

long 0x00000000 ; cache duration value

.nclude “TransferX StatusProximityCheckFailed.asm”

US 2007/0172041 Al Jul. 26, 2007
95

-continued

TransferGrantedProximityChecked:

long 0x00000000 ; global flags

long 0x00000000 ; category = ACTION_GRANTED

Jlong 0x00000000 ; sub-category

Jlong 0x00000003 ; local flags: Obligation and Callback Notices

Jlong 0x00000000 ; cache duration type

long 0x00000000 ; cache duration value

.nclude “TransferXStatusProximityCheckSucceed.asm”
AgentContextPath:

.string “Octopus/Agent/Session/Contextld”
AgentContextDesired Value:

.string “MoveStateContent0023”
AgentContextValue:

.zeros 32
SinkProximityLastProbePath:

.string “Octopus/Action/Parameters/Sink/Proximity/LastProbe™
SinkProximityLastProbeResult:

Jong -1
AgentProximityCheckedPath:

.string “Octopus/Agent/Parameters/ProximityChecked”
AgentProximityCheckedValue:

long 0
ControllerTimestampAttributePath:

.string “Octopus/Controller/Attributes/Import-time™
ControllerTimestampAttributeValue:

long 0
; debug

.ifdef DEBUG

Controller. Timestamp.Query.Debug:

.string “--------- Entering Controller. Timestamp.Query ------------

\n”

Control.Actions.Play.Perform.Debug:

.string “--------- Entering Control. Actions.Play.Perform ----------

——\n”

Control. Agents.SetStateContent0023.Run.Debug:

Control. Agents.SetStateContent0023.0nAgentCompletion.Debug:
.string “--------- Entering
Control. Agents.SetStateContent0023.0nAgentCompletion

Transfer_ OK_ Proximity_ Not_ Checked.Debug:
.string “#H## Transfer OK_ Proximity_ Not_ Checked ###H##H##\n”
Transfer OK_ Proximity_ Checked.Debug:
.string “#H## Transfer. OK_ Proximity_ Checked #######\n”
Agent_ Failure.Debug:
.string “### Agent Failure #H#H##H## 0
Agent_ Success.Debug:
.string “HHH#H## Agent Success #HH#H##H D
Action_ Granted.Debug:
.string “#HH### Action Granted #H#HHH D"
Action_ Denied.Debug:
.string “#H##H## Action Denied ##t###H#\n”
.endif

; code

.code
; Global.OnLoad

Global.OnLoad:
; get the GetTrustedTime functionNumber
PUSH @GetTrustedTimeFunctionName
PUSH FIND_SYSCALL_BY_ NAME_SYSCALL
CALL
DUP
PUSH @GetTrustedTimeFunctionNumber
POKE
BRN OnLoad_ Failed
; ok
PUSH SUCCESS
STOP

US 2007/0172041 Al
96

-continued

; fail

OnLoad_ Failed:
PUSH FAILURE
STOP

; Controller. Timestamp.Query

Controller. Timestamp.Query:
.ifdef DEBUG
;debug
PUSH @Controller. Timestamp.Query.Debug
PUSH DEBUG__PRINT_SYSCALL
CALL
.endif
; get the timestamp attribute in the controller object
PUSH 4 ; ReturnBufferSize (4
bytes)
PUSH @ControllerTimestamp AttributeValue ; ReturnBuffer (type is
long)
PUSH @ControllerTimestamp AttributePath ; Name
PUSH 0 ; Parent = root container
PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL
CALL
RET

; Control.Actions.Play.Check
Control.Actions.Play.Check:
; Control.Actions.Play.Perform

Control.Actions.Play.Perform:
; query the state paths
JSR MembershipStatePath.Query
BRN Action_ Denied
JSR LicenseStatePath.Query
BRN Action_ Denied
.ifdef DEBUG
;debug
PUSH @Control.Actions.Play.Perform.Debug
PUSH DEBUG__PRINT_SYSCALL
CALL
.endif
; if the timestamp of the membership state is >
; to the timestamp of the controller
JSR MembershipStateValue.Query
BRN Action_ Denied
JSR Controller. Timestamp.Query
BRN Action_ Denied
PUSH @MembershipStateValue
PEEK
PUSH @ControllerTimestamp AttributeValue
PEEK
SUB
BRP Action__Granted ; we don’t need to check for the license state
; in this case
; we just check that the state is present
JSR LicenseStateValue.Query
BRN Action_ Denied
Action__Granted:
.ifdef DEBUG
;debug
PUSH @Action_ Granted.Debug
PUSH DEBUG__PRINT_SYSCALL
CALL
.endif
PUSH @ActionGrantedNoObligationX Status
PUSH SUCCESS
STOP
Action__Denied:
.ifdef DEBUG
;debug
PUSH @Action_ Denied.Debug
PUSH DEBUG__PRINT_SYSCALL
CALL
.endif

Jul. 26, 2007

US 2007/0172041 Al

-continued

97

PUSH @ActionDeniedXStatus
PUSH SUCCESS
STOP

; Control.Actions. Transfer.Check
Control.Actions. Transfer.Check:
; Control.Actions.Transfer.Perform

Control.Actions. Transfer.Perform:
; query the state paths
JSR MembershipStatePath.Query
BRN Action_ Denied
JSR LicenseStatePath.Query
BRN Action_ Denied
.ifdef DEBUG
;debug
PUSH @Control.Actions. Transfer.Perform.Debug
PUSH DEBUG__PRINT_SYSCALL

CALL
.endif
; get the last time proximity has been checked
PUSH 4 ; ReturnBufferSize

PUSH @SinkProximityLastProbeResult ; ReturnBuffer

PUSH @SinkProximityLastProbePath ; Name

PUSH 0 ; Parent = root container

PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL

CALL

; if the object is not visible, proximity has not been checked.

; the resulting agent (look at the
TransferXStatusProximityCheckFailed.xml

; file on line 23). The agent will then make sure that the agent is
part

; of the domain before setting the state

BRN Transfer_ OK_ Proximity_ Not_ Checked

; check that proximity has been checked in the last 10 minutes

DROP ; we know that the type id is

long

DROP ; we know that the size is 4

PUSH @GetTrustedTimeFunctionNumber
PEEK
CALL
SWAP
DROP ; we just need the value
PUSH @SinkProximityLastProbeResult
PEEK
SUB
PUSH 10
SWAP
SUB
; last time proximity was checked is more than 10’ ago: same thing
; as if proximity had not been checked at all (see above)
BRN Transfer_ OK_ Proximity_ Not_ Checked
; proximity has been checked successfully
.ifdef DEBUG
;debug
PUSH @Transfer_ OK_ Proximity_ Checked.Debug
PUSH DEBUG__PRINT_SYSCALL
CALL
.endif
PUSH @TransferGrantedProximityChecked
PUSH SUCCESS
STOP
Transfer OK_ Proximity_ Not_ Checked:
.ifdef DEBUG
;debug
PUSH @Transfer_ OK_ Proximity_ Not_ Checked.Debug
PUSH DEBUG__PRINT_SYSCALL
CALL
.endif
; give back the RunAgentOnPeer Obligation (indicating that
; proximity has not been checked) and the OnAgentCompletion
Callback
PUSH @TransferGrantedProximityNotChecked
PUSH SUCCESS

Jul. 26, 2007

US 2007/0172041 Al Jul. 26, 2007

98
-continued
STOP
; Control. Agents.SetStateContent0023.Run
Control. Agents.SetStateContent0023.Run:
; query the state paths
JSR MembershipStatePath.Query
BRN Agent_ Run_ Failed
JSR LicenseStatePath.Query
BRN Agent_ Run_ Failed
.ifdef DEBUG
;debug
PUSH @Control. Agents.SetStateContent0023.Run.Debug
PUSH DEBUG__PRINT_SYSCALL
CALL
.endif
; if the peer is in the domain we don’t need to do anything
JSR Membership.Check
BRZ Agent_ Success
; check that the context is set
PUSH 32 ; ReturnBufferSize
PUSH @AgentContextValue ; ReturnBuffer
PUSH @AgentContextPath ; Name
PUSH 0 ; Parent = root container
PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL
CALL
; check the result
BRN Agent_ Run_ Failed
DROP ; we know that the type id is
string
DROP ; we don’t care about the size
PUSH @AgentContextValue
PUSH @AgentContextDesired Value
JSR streq ; make sure we’re in the good
context
BRN Agent_ Run_ Failed
; check if the source has successfully proxmity checked the sink
PUSH 4 ; ReturnBufferSize
PUSH @AgentProximityCheckedValue ; ReturnBuffer
PUSH @AgentProximityCheckedPath ; Name
PUSH 0 ; Parent = root container
PUSH SYSTEM__HOST_GET_OBJECT_SYSCALL
CALL
; check the result
BRN Agent_ Run_ Failed ; this parameter should always
be set
; by the app when receiving the
agent
DROP ; we know that the type id is
long
DROP ; we know that the size is 4
PUSH @AgentProximityCheckedValue
PEEK
NOT

BRZ Agent_ Set_ State
Agent Run_ Failed:
.ifdef DEBUG
;debug
PUSH @Agent_ Failure.Debug
PUSH DEBUG__PRINT_SYSCALL

CALL

.endif
PUSH 0 ; Return Block Size
PUSH 0 ; Return Block Address
PUSH FAILURE ; Result Code
STOP

Agent_ Set_ State:
; set the state
JSR LicenseState.Set
BRN Agent_ Run_ Failed
Agent__Success:
.ifdef DEBUG
;debug
PUSH @Agent__Success.Debug
PUSH DEBUG__PRINT_SYSCALL
CALL

US 2007/0172041 Al
99

-continued
.endif
; success
PUSH 0 ; Return Block Size
PUSH 0 ; Return Block Address
PUSH SUCCESS ; Result Code
STOP
; Control. Agents.SetStateContent0023.0nAgentCompletion callback (of
type RESET)
Control. Agents.SetStateContent0023.0nAgentCompletion:
.ifdef DEBUG
;debug

PUSH @Control. Agents.SetStateContent0023.0OnAgentCompletion. Debug
PUSH DEBUG__PRINT_SYSCALL

CALL
.endif

; check that the agent result code is OK

; the stack is:

; ... AgentResultCode CompletionStatusCode ArgumentsBlockSize
Cookie

DROP ; we don’t need the cookie

DROP ; we don’t need the arguments
block size

BRN Action_ Denied ; if the agent was not able to
run, failure

BRN Action_ Denied ; same thing if the agent was
not able to set the state on the peer

; success

PUSH @ActionGrantedNoObligationX Status
PUSH SUCCESS
STOP
Agent_ Completion_ Failed:
PUSH FAILURE
STOP

B

; exports

.export Global.OnLoad

.export Control. Actions.Play.Check

.export Control. Actions.Play.Perform

.export Control. Actions. Transfer. Check

.export Control. Actions. Transfer. Perform

.export Control. Agents.SetStateContent0023.Run

.export Control. Agents.SetStateContent0023.0nAgentCompletion

E.2 LicenseUtils
[1268] E.2.1 LicenseStateUtils.asm

3SR R R SRR S SR SR SR SR SR SRR K R OR O SR K SIOI SR SRR R SRR T KK SRR SRR KK SRR RS SROIOIK SORKOR K O
>

; File Name: LicenseStateUtils.asm

; Description: Utils for License States
BRI EEEEEELEE LSS ELELEE LS L L)
; ;

5
; data

.data
LicenseStatePathControl Attribute:
.string “Octopus/Control/Attributes/LicenseStatePath”
LicenseStatePath:
.zeros 256
LicenseStateValue:
long 0
; debug
LicenseStatePath.Query.Debug:
.string “--------- Entering LicenseStatePath.Query -------------- \n”

Jul. 26, 2007

US 2007/0172041 Al Jul. 26, 2007
100

-continued

LicenseState.Erase.Debug:
-- Entering LicenseState.Erase ----

; code

B

.code
; LicenseStatePath.Query

LicenseStatePath.Query:
;debug
PUSH @LicenseStatePath.Query.Debug
PUSH DEBUG_ PRINT_SYSCALL
CALL
PUSH 256 ; ReturnBufferSize
PUSH @LicenseStatePath ; ReturnBuffer
PUSH @LicenseStatePathControl Attribute ; Name
PUSH 0 ; Parent = root container
PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL
CALL
RET

; LicenseStateValue.Query
LicenseStateValue.Query:
;debug
PUSH @LicenseStateValue.Query.Debug
PUSH DEBUG__PRINT_SYSCALL
CALL
PUSH 4 ; ReturnBufferSize (4 bytes)
PUSH @LicenseStateValue ; ReturnBuffer (type is long)
PUSH @LicenseStatePath ; Name
PUSH 0 ; Parent = root container
PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL
CALL
RET
; LicenseState.Erase
LicenseState.Erase:
;debug
PUSH @LicenseState.Erase.Debug
PUSH DEBUG__PRINT_SYSCALL

CALL

; erase the local state

PUSH 0 ; Object Size (container)
PUSH 0 ; Object Type (container)
PUSH 0 ; Delete the container
PUSH @LicenseStatePath ; Name

PUSH 0 ; Parent = root container
PUSH SYSTEM__HOST_SET_OBJECT__SYSCALL

CALL

RET

; LicenseState.Set

LicenseState.Set:
;debug
PUSH @LicenseState.Set. Debug
PUSH DEBUG_PRINT_SYSCALL

CALL

; set the state

PUSH 0 ; Object Size (container)
PUSH 0 ; Object Type (container)
PUSH CONTAINER_IGNORED__ADDRESS

PUSH @LicenseStatePath ; Name

PUSH 0 ; Parent = root container
PUSH SYSTEM_HOST__SET_OBJECT_SYSCALL

CALL

RET

US 2007/0172041 Al

[1269] E.2.2 MembershipUtils.asm

3SR R R SRR S SR SR SR SR SR SRR K R OR O SR K SIOI SR SRR R SRR T KK SRR SRR KK SRR RS SROIOIK SORKOR K O
>

; File Name: MembershipUtils.asm
; Description: Utils for Broadcast Membership

>
-3 SRR R SRR S SRR ST SR SR SR R SRR KR SRR IO K SR R SR KR SRR K SK OISR SRR SRR ROK SR SKRORR SR 0K
> >

5
; data

.data
MembershipStatePathControl Attribute:
.string “Octopus/Control/Attributes/MembershipStatePath”

MembershipStatePath:
.zeros 256
MembershipStateValue:
long 0
; debug
intStrOutput:
.string “.oevnne ”
MembershipStatePath.Query.Debug:
.string “--------- Entering MembershipStatePath.Query ----------- \n”
MembershipStateValue.Query.Debug:
.string “--------- Entering MembershipStateValue.Query --------- \n”
Membership.Check.Debug:
.string “--------- Entering Membership.Check -------------- \n”

Membership_ Check_Success.Debug:

.string “#H## Membership Check Success ####H##H#\n”
Membership_ Check_ Failure.Debug:

.string “#HH#### Membership Check Failure ######\n”
MembershipPath.Debug:

.string “MembershipState path: »
MembershipGetObjOutput.Debug:

.string “MembershipState get object returns: ”
Membership_ Expired.Debug:

.string “MembershipState has expired. Check the Value of the

Membership SeaShell token against the local time.”

NewlineString:

.string “\n”

B

; code

B

.code
; MembershipStatePath.Query

MembershipStatePath.Query:

;debug

PUSH @MembershipStatePath.Query.Debug
PUSH DEBUG__PRINT_SYSCALL

CALL
PUSH 256 ; ReturnBufferSize
PUSH @MembershipStatePath ; ReturnBuffer

PUSH @MembershipStatePathControlAttribute ; Name

PUSH 0 ; Parent =
root container

PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL

CALL

RET

; MembershipStateValue.Query

MembershipStateValue.Query:
;debug
PUSH @MembershipStateValue.Query.Debug
PUSH DEBUG__PRINT_SYSCALL
CALL
PUSH @MembershipPath.Debug
PUSH DEBUG__PRINT_SYSCALL
CALL
PUSH @MembershipStatePath
PUSH DEBUG__PRINT_SYSCALL
CALL
PUSH @NewlineString
PUSH DEBUG__PRINT_SYSCALL
CALL

101

Jul. 26, 2007
-continued
PUSH 4 ; ReturnBufferSize
(4 bytes)
PUSH @MembershipStateValue ; ReturnBuffer (type
is long)
PUSH @MembershipStatePath ; Name

PUSH 0 ; Parent = root
container
PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL
CALL

PUSH @MembershipGetObjOutput.Debug

PUSH DEBUG__PRINT__SYSCALL

CALL

; print result -- first convert int to string

DUP

PUSH @intStrOutput

ADD

SWAP

JSR printInt

; call print result

PUSH @intStrOutput

PUSH DEBUG__PRINT__SYSCALL

CALL

PUSH @NewlineString

PUSH DEBUG__PRINT__SYSCALL

CALL

RET

; Membership.Check

Membership.Check:

;debug

PUSH @Membership.Check.Debug

PUSH DEBUG__PRINT_SYSCALL

CALL

; query the membership state

JSR MembershipStateValue.Query

; see if we succeeded

BRN Membership_ Check_ Failed

; check that time is < the one retrieved in the membership state
PUSH @MembershipStateValue ; timestamp
PEEK

PUSH @GetTrusted TimeFunctionNumber
PEEK

CALL

SWAP

DROP ; we just need the value (not the estimate)
SUB

BRN Membership_ Expired

; success

;debug

PUSH @Membership_ Check_Success.Debug
PUSH DEBUG__PRINT_SYSCALL

CALL

PUSH SUCCESS

RET

Membership_ Expired:

;debug

PUSH @Membership_ Expired.Debug
PUSH DEBUG__PRINT_SYSCALL
CALL

BRA Membership_ Check_ Failed

Membership_ Check_ Failed:

;debug

PUSH @Membership_ Check_ Failure.Debug
PUSH DEBUG_ PRINT__SYSCALL

CALL

PUSH FAILURE

RET

US 2007/0172041 Al

E.3 GlobalUtils

[1270] E.3.1 IntUtils.asm

3SR R R SRR S SR SR SR SR SR SRR K R OR O SR K SIOI SR SRR R SRR T KK SRR SRR KK SRR RS SROIOIK SORKOR K O
>

; File Name: IntUtils.asm

; Description: utils for comparing 2 ints
RETETELEEEELEEEES LSS ELEL LSS L TS
;

;
; includes

.include “StackUtils.asm”

B

; code

5
.code
5

; min

; computes the min between 2 ints
;input:...ab
; output: . . . a<b?a:b
min:
DUP ;...abb
PUSH 2
JSR pick -
CMP .
BRN Swap__Stack I
DROP
RET ;a
Swap__Stack:
SWAP
DROP
RET ;b

.abba
.abcmp_result
ab

; max
; computes the max between 2 ints
;input:...ab
; output: . . . a>b?a:b
max:

DUP ;...abb
PUSH 2
JSR pick -
CMP .
NEG
BRN Swap__Stack
DROP
RET ;a

.abba
.abcmp_result

[1271] E.3.2 PrintInt.asm

3SR R R SRR S SR SR SR SR SR SRR K R OR O SR K SIOI SR SRR R SRR T KK SRR SRR KK SRR RS SROIOIK SORKOR K O
>

; File Name: PrintInt.asm
; Description: converts an integer (signed or unsigned) into a
string
;**
;3 NOTE: requires “StackUtils.asm” to have been included already
; data section
.data
; code section
.code
; converts an integer into string representation
; params: dest, int
printInt:
; duplicate dest param
SWAP
DUP

102

Jul. 26, 2007

-continued
PUSH 2
JSR pick
; STACK: origval, startstring, startstring,
unsignedval

; now, we end up with an extra copy of int at bottom
; we use this to test original sign later

printIntLoop:

fliploop:

; get the single digit

DUP

PUSH 10

MOD

; convert to ascii

PUSH 48 ; ASCII for ‘0’

ADD

; get the address for the output buffer
PUSH 2

JSR pick

POKEB ; print to the buffer

; move our buffer pointer along

SWAP

PUSH 1

ADD

SWAP

; divide by 10 and see where we’re at
PUSH 10

DIV

DUP

BRP printIntLoop

DROP ; gets rid of the 0 at the top

; STACK = orignum, startofstring, endofstring
; if original number was negative, put a minus sign
; terminate with a null

DUP

PUSH 0

SWAP

POKEB

; move end of string up 1, so don’t flip terminator
PUSH 1

SUB

; we’re done: just need to reverse string

; get second byte

DUP

PEEKB

; get first byte

PUSH 2

JSR pick

PEEKB

; put first byte in last place
PUSH 2

JSR pick

POKEB

; put last byte in first place
PUSH 2

JSR pick

POKEB

; move the end pointer up one
PUSH 1

SUB

; move the start pointer down one
SWAP

PUSH 1

ADD

SWAP

; see if the pointers have met
; must dup the values first
DUP

PUSH 2

JSR pick

SUB

US 2007/0172041 Al

-continued

BRP fliploop

; get rid of some detritus on the stack
DROP

DROP

DROP

RET

[1272] E.3.3 StackUtils.asm

3SR R R SRR S SR SR SR SR SR SRR K R OR O SR K SIOI SR SRR R SRR T KK SRR SRR KK SRR RS SROIOIK SORKOR K O
>

; File Name: StackUtils.asm
; Description: Stack utile functions inspired from FORTH

>
3SR R R SRR S SR SR SR SR SR SRR K R OR O SR K SIOI SR SRR R SRR T KK SRR SRR KK SRR RS SROIOIK SORKOR K O
>

.ifndef _ STACK_UTILS__
.define _ STACK__ UTILS__

; code

5
.code

5

; over

5

; copy the second item on the stack
5

;input: ...ab

;output: ..aba

>

over:
PUSH 1
JSR pick
RET

; pick

; input: ... v3 v2 vl vON
; output: ... v3 v2 vl vO vN

pick:
PUSH 1
ADD
PUSH 4
MUL
PUSHSP
ADD
PEEK
RET
.endif ; _ STACK_UTILS__

[1273] E3.4 StdLib.asm

; Standard Library for Plankton
.equ HEAP__ADDR, 16
; data section
; code section
.code
strlen:
DUP
loop:
DUP
PEEKB
BRZ done
PUSH 1
ADD
BRA loop
done:
SWAP

103

Jul. 26, 2007

-continued

SUB
RET
.export strlen

[1274] E.3.5 StrCmp.asm

A P e L E e PR Y
>

; File Name: StrCmp.asm

; Description: streq tests for the equality of two strings
RELEETEEELEELEELES L LSS EE T
;

.ifndef _STR_CMP__

.define _STR_CMP__

B

; includes

.include “StackUtils.asm”

B

; code

5
.code
5

; streq

; test for the equality of two strings
; input: ... @strl @str2
; output: ... res (res = 0 if strings are equal, -1 otherwise)

streq:
; get the offset btw the 2 strings
JSR over
SUB
SWAP
streqloop:
; get the cur char of strl
DUP
PEEKB ; ... offset @strl charl
; get the cur char of str2
JSR over ;... offset @strl charl @strl
PUSH 3
JSR pick
ADD
PEEKB ; ... offset @strl charl char2
; now compare the two chars
JSR over
SUB ; ... offset @strl charl charl-char2
; fail if the charl != char2
NOT
BRZ streqfailure
; if charl is O (charl == char2 == 0) we’re done
BRZ stregsuccess ; ... offset @strl
; increment the @strl pointer and loop
PUSH 1
ADD
BRA streqloop
streqfailure:
; ... offset @strl charl
DROP
DROP
DROP
PUSH -1
RET
streqsuccess:
; ... offset @strl
DROP
DROP
PUSH 0
RET
.endif ; _ STR_CMP__

; ... offset @strl

; ... offset @strl charl @strl offset

US 2007/0172041 Al
104

E.4 ExtendedStatusBlock Parameters

[1275] E4.1 TransferXStatusProximity-
CheckSucceeded.xml

- <ValueListBlock>
- <ValueBlock type="“Parameter”>
- <ParameterBlock name="“Obligations”>
- <ValueBlock type="ValueList”>
- <ValueListBlock>
- <ValueBlock type=“ExtendedParameter”>
- <ParameterBlock name=“RunAgentOnPeer” flags="1">
- <ValueBlock type=“ValueList”>
- <ValueListBlock>
- <!-- Control ID -->
<ValueBlock type="“String”>urn:marlin:control:0023 </ValueBlock>
- <!-- Agent Name -->
<ValueBlock type="String”>SetStateContent0023</ValueBlock>
- <!-- instance ID -->
<ValueBlock type=“Integer”>240343 </ValueBlock>
- <!-- Context ID -->
<ValueBlock type="“String”>MoveStateContent0023 </ValueBlock>
- <!-- additional parameters -->
- <ValueBlock type=“ValueList”>
- <ValueListBlock>
- <ValueBlock type=“Parameter”>
- <!-- The ONLY thing that changes with
TransferXStatusProximityCheckFailed.xml -->
- <ParameterBlock name="ProximityChecked”>
<ValueBlock type=“Integer”>1</ValueBlock>
</ParameterBlock>
</ValueBlock>
</ValueListBlock>
</ValueBlock>
</ValueListBlock>
</ValueBlock>
</ParameterBlock>
</ValueBlock>
</ValueListBlock>
</ValueBlock>
</ParameterBlock>
</ValueBlock>
- <ValueBlock type="“Parameter”>
- <ParameterBlock name="“Callbacks™>
- <ValueBlock type="“ValueList”>
- <ValueListBlock>
- <ValueBlock type=“ExtendedParameter”>
- <ParameterBlock name=“OnAgentCompletion” flags="1">
- <ValueBlock type=“ValueList”>
- <ValueListBlock>
- <!-- Agent instance ID -->
<ValueBlock type="“String”>240343 </ValueBlock>
- <!-- Callback Routine -->
- <ValueBlock type=“ValueList”>
- <ValueListBlock>
- <!-- RESET -->
<ValueBlock type="Integer”>0</ValueBlock>
- <!-- Name -->
<ValueBlock
type="String”>Control. Agents.SetStateContent0023.0OnAgentCompletion</ValueBlock>
- <!-- cookie -->
<ValueBlock type="Integer”>0</ValueBlock>
</ValueListBlock>
</ValueBlock>
</ValueListBlock>
</ValueBlock>
</ParameterBlock>
</ValueBlock>
</ValueListBlock>
</ValueBlock>
</ParameterBlock>
</ValueBlock>
</ValueListBlock>

Jul. 26, 2007

US 2007/0172041 Al
105

[1276] E.4.2 TransferXStatusProximityCheckFailed.xml

- <ValueListBlock>
- <ValueBlock type="“Parameter”>
- <ParameterBlock name="“Obligations”>
- <ValueBlock type=“ValueList”>
- <ValueListBlock>
- <ValueBlock type=“ExtendedParameter”>
- <ParameterBlock name=“RunAgentOnPeer” flags="1">
- <ValueBlock type="“ValueList”>
- <ValueListBlock>
- <!-- Control ID -->
<ValueBlock type="String”>urn:marlin:control:0023 </ValueBlock>
- <!-- Agent Name -->
<ValueBlock type="String”>SetStateContent0023 </ValueBlock>

- <! --instance ID -->
<ValueBlock type="“Integer”>240343</ValueBlock>
- <! ContextID -->
<ValueBlock type="String”>MoveStateContent0023</ValueBlock>
- <!-- additional parameters -->
- <ValueBlock type="ValueList”>
- <ValueListBlock>

- <ValueBlock type=“Parameter”>

- <!-- The ONLY thing that changes with TransferXStatusProximityCheckSucceed.xml -->

- <ParameterBlock name="ProximityChecked”>
<ValueBlock type="Integer”>0</ValueBlock>
</ParameterBlock>
</ValueBlock>
</ValueListBlock>
</ValueBlock>
</ValueListBlock>
</ValueBlock>
</ParameterBlock>
</ValueBlock>
</ValueListBlock>
</ValueBlock>
</ParameterBlock>
</ValueBlock>
- <ValueBlock type="“Parameter”>
- <ParameterBlock name="“Callbacks™>
- <ValueBlock type="“ValueList”>
- <ValueListBlock>
- <ValueBlock type=“ExtendedParameter”>
- <ParameterBlock name=“OnAgentCompletion” flags="1">
- <ValueBlock type=“ValueList”>

- <ValueListBlock>
- <!-- Agent instance ID >
<ValueBlock type="String”>240343</ValueBlock>
- <!-- Callback Routine -->
- <ValueBlock type="“ValueList”>
- <ValueListBlock>

- <!-- RESET -->
<ValueBlock type=“Integer”>0</ValueBlock>
- <!-- Name -->
<ValueBlock type="“String”>Control.Agents.SetStateContent0023.0nAgentCompletion</ValueBlock>
- <!-- cookie -->
<ValueBlock type=“Integer”>0</ValueBlock>
</ValueListBlock>
</ValueBlock>
</ValueListBlock>
</ValueBlock>
</ParameterBlock>
</ValueBlock>
</ValueListBlock>
</ValueBlock>
</ParameterBlock>
</ValueBlock>
</ValueListBlock>

Jul. 26, 2007

US 2007/0172041 Al Jul. 26, 2007
106

[1277] EA43 TransferXStatusProximity-
CheckSucceeded.asm

0x00 0x00 0x00 0x02 0x00 0x00 O0x00 0x04 0x00 0x00 0x00 0x20

0x00 0x00 0x00 O0Ox0C Ox4F 0x62 O0x6C 0x69 0x67 0x61 0x74 0x69

Ox6F Ox6E 0x73 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x0C
0x00 0x00 0x00 0x01 0x00 0x00 O0x00 0x05 0x00 0x00 0x00 0x04

0x00 0x00 0x00 0x01 0x00 O0x00 O0x00 OxOF 0x52 O0x75 Ox6E 0x41

0x67 0x65 Ox6E 0x74 Ox4F Ox6E 0x50 0x65 0x65 0x72 0x00 0x00

0x00 0x00 0x07 0x00 0x00 0x00 0x92 0x00 0x00 0x00 0x05 0x00

0x00 0x00 0x02 0x00 0x00 O0x00 O0x18 0x75 0x72 Ox6E 0x3A 0x6D
0x61 0x72 0x6C 0x69 Ox6E O0x3A 0x63 Ox6F Ox6E 0x74 0x72 Ox6F
0x6C O0x3A 0x30 0x30 0x32 0x33 0x00 0x00 0x00 0x00 0x02 0x00

0x00 0x00 0x14 0x53 O0x65 0x74 0x53 0x74 0Ox61 O0x74 0x65 0x43

Ox6F Ox6E 0x74 0x65 Ox6E 0x74 0x30 0x30 0x32 0x33 0x00 0x00

0x00 0x00 0x00 0x00 0x00 O0x00 0x04 0x00 0x03 OxAA 0xD7 0x00

0x00 0x00 0x02 0x00 0x00 O0x00 O0x15 O0x4D Ox6F 0x76 0x65 0x53

0x74 0x61 0x74 0x65 0x43 Ox6F Ox6E 0x74 0x65 Ox6E 0x74 0x30

0x30 0x32 0x33 0x00 0x00 0x00 O0x00 0x07 0x00 0x00 0x00 0x25

0x00 0x00 0x00 0x01 0x00 0x00 O0x00 0x04 0x00 0x00 0x00 0x1D
0x00 0x00 0x00 Ox11 0x50 O0x72 Ox6F 0x78 0x69 0x6D 0x69 0x74

0x79 0x43 0x68 0x65 0x63 O0x6B 0x65 0x64 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x04 O0x00 O0x00 0x00 0x01 0x00 0x00 0x00

0x04 0x00 0x00 0x00 Ox1E 0x00 0x00 0x00 Ox0A 0x43 0x61 0x6C
0x6C 0x62 0x61 0x63 O0x6B 0x73 0x00 0x00 0x00 0x00 0x07 0x00

0x00 0x00 0x0C 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x05 0x00

0x00 0x00 0x04 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x12 Ox4F
Ox6E 0x41 0x67 0x65 Ox6E 0x74 0x43 Ox6F 0x6D 0x70 0x6C 0x65

0x74 0x69 O0x6F Ox6E 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00

0x6C 0x00 0x00 0x00 0x02 0x00 O0x00 0x00 0x02 0x00 0x00 0x00

0x07 0x32 0x34 0x30 0x33 0x34 0x33 0x00 0x00 0x00 0x00 0x07

0x00 0x00 0x00 0x55 0x00 0x00 O0x00 0x03 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x04 0x00 0x00 O0x00 0x00 0x00 0x00 0x00 0x02

0x00 0x00 0x00 0x35 0x43 Ox6F Ox6E 0x74 0x72 Ox6F 0x6C O0x2E
0x41 0x67 0x65 Ox6E 0x74 0x73 Ox2E 0x53 0x65 0x74 0x53 0x74

0x61 0x74 0x65 0x43 Ox6F Ox6E 0x74 0x65 Ox6E 0x74 0x30 0x30

0x32 0x33 Ox2E Ox4F Ox6E O0x41 0x67 0x65 Ox6E 0x74 0x43 Ox6F
0x6D 0x70 0x6C 0x65 0x74 0x69 Ox6F Ox6E 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x04 0x00 O0x00 0x00 0x00

[1278] E.4.4 TransferXStatusProximityCheckFailed.asm

0x00 0x00 0x00 0x02 0x00 0x00 O0x00 0x04 0x00 0x00 0x00 0x20
0x00 0x00 0x00 O0Ox0C Ox4F 0x62 O0x6C 0x69 0x67 0x61 0x74 0x69
Ox6F Ox6E 0x73 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x0C
0x00 0x00 0x00 0x01 0x00 0x00 O0x00 0x05 0x00 0x00 0x00 0x04
0x00 0x00 0x00 0x01 0x00 O0x00 O0x00 OxOF 0x52 O0x75 Ox6E 0x41
0x67 0x65 Ox6E 0x74 Ox4F Ox6E 0x50 0x65 0x65 0x72 0x00 0x00
0x00 0x00 0x07 0x00 0x00 0x00 0x92 0x00 0x00 0x00 0x05 0x00
0x00 0x00 0x02 0x00 0x00 O0x00 O0x18 0x75 0x72 Ox6E 0x3A 0x6D
0x61 0x72 0x6C 0x69 Ox6E O0x3A 0x63 Ox6F Ox6E 0x74 0x72 Ox6F
0x6C O0x3A 0x30 0x30 0x32 0x33 0x00 0x00 0x00 0x00 0x02 0x00
0x00 0x00 0x14 0x53 O0x65 0x74 0x53 0x74 0Ox61 O0x74 0x65 0x43
Ox6F Ox6E 0x74 0x65 Ox6E 0x74 0x30 0x30 0x32 0x33 0x00 0x00
0x00 0x00 0x00 0x00 0x00 O0x00 0x04 0x00 0x03 OxAA 0xD7 0x00
0x00 0x00 0x02 0x00 0x00 O0x00 O0x15 O0x4D Ox6F 0x76 0x65 0x53
0x74 0x61 0x74 0x65 0x43 Ox6F Ox6E 0x74 0x65 Ox6E 0x74 0x30
0x30 0x32 0x33 0x00 0x00 0x00 O0x00 0x07 0x00 0x00 0x00 0x25
0x00 0x00 0x00 0x01 0x00 0x00 O0x00 0x04 0x00 0x00 0x00 0x1D
0x00 0x00 0x00 Ox11 0x50 O0x72 Ox6F 0x78 0x69 0x6D 0x69 0x74
0x79 0x43 0x68 0x65 0x63 O0x6B 0x65 0x64 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x04 0x00 O0x00 0x00 0x00 0x00 0x00 0x00
0x04 0x00 0x00 0x00 Ox1E 0x00 0x00 0x00 Ox0A 0x43 0x61 0x6C
0x6C 0x62 0x61 0x63 O0x6B 0x73 0x00 0x00 0x00 0x00 0x07 0x00
0x00 0x00 0x0C 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x05 0x00
0x00 0x00 0x04 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x12 Ox4F
Ox6E 0x41 0x67 0x65 Ox6E 0x74 0x43 Ox6F 0x6D 0x70 0x6C 0x65
0x74 0x69 O0x6F Ox6E 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00
0x6C 0x00 0x00 0x00 0x02 0x00 O0x00 0x00 0x02 0x00 0x00 0x00
0x07 0x32 0x34 0x30 0x33 0x34 0x33 0x00 0x00 0x00 0x00 0x07

US 2007/0172041 Al

Jul. 26, 2007

107
-continued

0x00 0x00 0x00 0x55 0x00 0x00 O0x00 0x03 0x00 O0x00 0x00 0x00
0x00 0x00 0x00 0x04 0x00 0x00 O0x00 0x00 0x00 O0x00 0x00 0x02
0x00 0x00 0x00 0x35 0x43 Ox6F O0x6E 0x74 0x72 O0x6F 0x6C 0x2E
0x41 0x67 0x65 Ox6E 0x74 0x73 O0x2E 0x53 O0x65 0x74 0x53 0x74
0x61 0x74 0x65 0x43 O0x6F Ox6E 0x74 0x65 Ox6E 0x74 0x30 0x30
0x32 0x33 O0x2E Ox4F O0x6E Ox4l 0x67 0x65 Ox6E 0x74 0x43 Ox6F
0x6D 0x70 0x6C 0x65 0x74 0x69 O0x6F Ox6E 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x04 0x00 0x00 0x00 O0x00

[1279] Although the foregoing has been described in some
detail for purposes of clarity, it will be apparent that certain
changes and modifications may be made within the scope of
the appended claims. It should be noted that there are many
alternative ways of implementing both the processes and
apparatuses described herein. Accordingly, the present
embodiments are to be considered as illustrative and not
restrictive, and the inventive body of work is not to be
limited to the details given herein, but may be modified
within the scope and equivalents of the appended claims.

1. A method of determining whether a first entity is within
a predefined proximity of a second entity, the method
comprising:

generating a set of random number pairs at the first entity;

sending from the first entity to the second entity encrypted
information from which the second entity can derive
the set of random number pairs:

decrypting the encrypted information at the second entity;

deriving the set of random number pairs at the second
entity;

sending an acknowledgement from the second entity to
the first entity;

measuring a first time value at the first entity;

sending from the first entity to the second entity a first
number from the set of random number pairs;

verifying, at the second entity, that said first number is
from the set of random number pairs;

sending from the second entity to the first entity, a
corresponding random number from said set of random
number pairs; and

receiving the corresponding random number at the first
entity; and

measuring a second value of time at the first entity.

2. The method of claim 1, further comprising:

computing a difference between the first value of time and
the second value of time, and

comparing the difference to a threshold.
3. The method of claim 2, further comprising:

denying the second entity access to a computing resource
if the difference is greater than said threshold.
4. The method of claim 2, further comprising:

granting the second entity access to a computing resource
if the difference is less than said threshold.
5. A method of determining the proximity of a first entity
to a second entity, the method comprising:

sending a first secret from the first entity to the second
entity;

receiving an acknowledgement from the second entity;

measuring a first time value at the first entity;

sending from the first entity to the second entity a portion
of the first secret;

receiving a corresponding portion of the first secret from
the second entity;

measuring a second time value at the first entity; and

computing a difference between the first time value and
the second time value.
6. The method of claim 5, further comprising:

comparing the difference to a threshold.
7. The method of claim 6, further comprising:

denying the second entity access to a computing resource
if the difference is greater than said threshold.
8. The method of claim 6, further comprising:

granting the second entity access to a computing resource
if the difference is less than said threshold.

