
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0172041 A1

B0ccon-Gib0d et al. (43) Pub. Date:

US 20070172041A1

Jul. 26, 2007

(54)

(75)

(73)

(21)

(22)

(60)

DIGITAL RIGHTS MANAGEMENT ENGINE
SYSTEMIS AND METHODS

Inventors: Gilles Boccon-Gibod, Los Altos, CA
(US); Julien G. Boeuf, Paris (FR)

Correspondence Address:
FINNEGAN, HENDERSON, FARABOW,
GARRETT & DUNNER
LLP
901 NEW YORK AVENUE, NW
WASHINGTON, DC 20001-4413 (US)

Assignee: Intertrust Technologies Corporation,
Sunnyvale, CA

Appl. No.: 11/583,695

Filed: Oct. 18, 2006

Related U.S. Application Data

Provisional application No. 60/728,089, filed on Oct.
18, 2005. Provisional application No. 60/772,024,

100

(51)

(52)

(57)

filed on Feb. 9, 2006. Provisional application No.
60/744,574, filed on Apr. 10, 2006. Provisional appli
cation No. 60/791,179, filed on Apr. 10, 2006. Pro
visional application No. 60/746,712, filed on May 8,
2006. Provisional application No. 60/798,925, filed
on May 8, 2006. Provisional application No. 60/835,
061, filed on Aug. 1, 2006.

Publication Classification

Int. C.
H04M I/56 (2006.01)
H04M I5/06 (2006.01)
U.S. Cl. .. 379,142.1

ABSTRACT

Systems and methods are described for performing digital
rights management. In one embodiment, a digital rights
management engine is provided that evaluates license asso
ciated with protected content to determine if a requested
access or other use of the content is authorized. In some
embodiments, the licenses contain control programs that are
executable by the digital rights management engine.

108a

108

120

108C

Patent Application Publication Jul. 26, 2007 Sheet 1 of 44 US 2007/0172041 A1

108a

Content

108b.

108C

Patent Application Publication Jul. 26, 2007 Sheet 2 of 44 US 2007/0172041 A1

ska INTERFACE
210

SYSTEM MEMORY
OS - 220

DRM ENGINE - 232 R VM-222 PROCESSO

()- 208

FIG. 2

Patent Application Publication Jul. 26, 2007 Sheet 3 of 44 US 2007/0172041 A1

300b

HOST APPLICATION WEBSERVICES
304 305b

DRMENGINE SERVICES
303 306b

302.

CONTENT

30G
DRMENGINE WEBSERVICES

303C 305a
HOST APPLICATION SERVICES

3O4C 306a

HOST APPLICATION WEBSERVICES
304a 305a

DRMENGINE SERVICES
3O3a 306a

HOST APPLICATION
304d

DRMENGINE SERVICES
303d 306a

FIG. 3

Patent Application Publication Jul. 26, 2007 Sheet 4 of 44 US 2007/0172041 A1

MUSIC
SERVICE

SUBSCRIBERS
412

RIAA
APPROVED

414

CAREY
FAMILY
408

PUBLIC
LIBRARY

410

DEVICE
MANUFACTURER

416

PORTABLE
DEVICE
406

FIG. 4

Patent Application Publication Jul. 26, 2007 Sheet 5 of 44 US 2007/0172041 A1

START

RECEIVE REGUEST

EVALUATE LICENSE

AUTHORIZATION?

500

502

508

DENY REO UEST

506

GRANT REQUEST

FIG. 5

Jul. 26, 2007 Sheet 6 of 44 US 2007/0172041 A1 Patent Application Publication

HSVH ÅEXILNE LNO O

BE}} LNH LNO O

0 | 9

AEX LINELLNO?O

Z09 ESNEKOIT

CIENSIS =CD

US 2007/0172041 A1 Patent Application Publication Jul. 26, 2007 Sheet 7 of 44

\/ WELLSÅS

ZOA.

5ÕI EINISONE W&C)

Patent Application Publication Jul. 26, 2007 Sheet 8 of 44 US 2007/0172041 A1

FIG. 8

Patent Application Publication Jul. 26, 2007 Sheet 9 of 44 US 2007/0172041 A1

END

FIG. 9

Patent Application Publication Jul. 26, 2007 Sheet 10 of 44 US 2007/0172041 A1

START

1006 RETURN RESULT

START

FIG. 10

Patent Application Publication Jul. 26, 2007 Sheet 11 of 44 US 2007/0172041 A1

1102

constraint. check
Play. Perform

IsModeReachable (ul)

Getate

CMP Date, Start Date

Retur

FIG. 11

Patent Application Publication Jul. 26, 2007 Sheet 12 of 44 US 2007/0172041 A1

CALL isNodeReachable(User1) 1200

DOES A PATH TO
USer1 EXIST?

FOREACH LINK

EVALUATE CONTROL
PROGRAMIN LINK

YES NO

MORE LINKS

CURRENT DATE >
START DATE?

YES

1214

SUCCESS

Patent Application Publication Jul. 26, 2007 Sheet 13 of 44 US 2007/0172041 A1

1300

/
USER INTERFACE

1304

HOST APPLICATION
1302

MEDIA
RENDERING
ENGINE CRYPTO

HOST DRM CONTENT SERVICES 1312
CLIENT SERVICES SERVICES 1314
ENGINE INTERFACE 1310 o

1306 1308

FIG. 13

Patent Application Publication Jul. 26, 2007 Sheet 14 of 44 US 2007/0172041 A1

1400

/
USER INTERFACE

1404.

SERVICE GENERAL
ACCESS HOST APPLICATION CRYPTO
PONT 1402 SERVICES
1414 1410

DRM HOST MEDIA CONTENT
PACKAGING SERVICES FORMAT ENCRYPTION
ENGINE INTERFACE SERVICES TSERVICES
1416 1412 1406 1408

FIG. 14

Patent Application Publication Jul. 26, 2007 Sheet 15 of 44 US 2007/0172041 A1

1500C 1500a 1500b

2Z2 Z242 2Z2 3 Kprival É 1515a Kprive KprivC)
2ZZ Yaa
3 KIA 3 2ZZZZZZZZZZZ2 1925a 3.2% 2ZZZZZZZZ

ENCRYPTED ENCRYPTED
WITHKA) WITHK. (B)
OR Kub A) OR Kub (B)

OBTAINED FROM OBTAINED BY OBTANED BY
PERSONALITY PERSONALITY LINK PROCESSING

NODEA A-B LNKB-C

(2) = KEP SECRET BY ENTITY

GD = DECRYPT WITH PRIVATE OR FIG. 15
SYMMETRICKEY

Patent Application Publication Jul. 26, 2007 Sheet 16 of 44 US 2007/0172041 A1

16OO

DOMAIN MANAGER

1612

Patent Application Publication Jul. 26, 2007 Sheet 17 of 44 US 2007/0172041 A1

1706

SERVER

LINK
T: U1
FPC2
KEY INFO
CTRL PROC

1712

corer
E (Ku, CK)

FIG. 17

Patent Application Publication Jul. 26, 2007 Sheet 18 of 44 US 2007/0172041 A1

1. 1800

POLICY
Y as Y is as s SERVICE

1816

REGISTRATION
SERVICE

1812

DIRECTORY SERVER
1806

SERVICE ORCHESTRATION LAYER - 1810

v w

DRM PLUGN
1808

EDITING EMAIL
APP CLIENT
1802 1804

FIG. 18

Patent Application Publication Jul. 26, 2007 Sheet 19 of 44 US 2007/0172041 A1

DRECTORY POLICY
SERVER SERVICE

1916

RECUEST POLICY
LSEPs 1914 -Q) FOR "SPECIAL

FROM PROJECT TEAM"
POLICY

.

1908

PACKAGE AND CREATE
DRM PLUGIN CENSEACCORDING TO

POLICY

1913 1920
"SAVE WITH
PERMISSIONS ATTACHAND SEND

bu up protCTED
EDITING EMAIL FILE

PROTECTED
FILE

AND
LCENSE

CLIENT
1904

APP
1902

FIG. 19

Patent Application Publication

"e ELIVERNK CBJECT THAT
REPRESENTS GEORGE'S
MEMBERSHPINSPECIAL

prCC EAM

2014

Jul. 26, 2007 Sheet 20 of 44

2008 -

2010

e CHECKCURRENTAD GROUP
MEMBERSHIPS FORTHE USER

REGISTRATION
SERVICE
2OO2

ACTIVE DIRECTORY
2004

2006
REGULARLY CHECK REGISTRATION

SERVICE FORNEW OR RERESHE INKS

DRM PLUGIN
2OOO

FG. 20

US 2007/0172041 A1

US 2007/0172041 A1 Jul. 26, 2007 Sheet 21 of 44 Patent Application Publication

Patent Application Publication Jul. 26, 2007 Sheet 22 of 44 US 2007/0172041 A1

2200

N. POLICY
SERVICE
2216

routeSt"Special
us. EPs Q) PrCECTEAMDRM

FROM EMAte Policy
POLICY

DRM PLUGIN CENSEACCORDING TO
O PACKAGE AND CREATE

POLCY

f
“SEN WITH
PERMISSONS"

protected protect
UN- MSG. BOY FE

protected

AN AND
ICENSE CENSE

EDTING
APP
22O2

FIG. 22

Patent Application Publication Jul. 26, 2007 Sheet 23 of 44 US 2007/0172041 A1

MEDICAL
FOUNDATIONZ CARDIOLOGIST ALL DOCTORS

INSURANCE
DOCTORX COMPANY W

FG. 23

Patent Application Publication Jul. 26, 2007 Sheet 24 of 44 US 2007/0172041 A1

SUBSCRIPTION

SUBSCRIPTION O 2404
2422

2410 24OO

2424 2402 SUBSCRIPTION

2420 ALICEG123 MSP ALICEQXYZ ISP O

(E ALICEGABC CSP

PC
2401 2406

FIG. 24

Patent Application Publication Jul. 26, 2007 Sheet 25 of 44 US 2007/0172041 A1

CSP ACCOUNT

25O2 -O

2500
SMITH
FAMILY
DOMAIN

ALICE'S PC

CARL'S PVR

ALICES PHONE

JOE's PSP

FIG. 25

Patent Application Publication Jul. 26, 2007 Sheet 26 of 44 US 2007/0172041 A1

FIG. 26
newchastContext)

getFilesy

At the initialization of the session, the file
system will be accessed in order to deal with
read write operation in secure storage.

processObject(dmObject0)

verifySig

processObject(dmObject 1}

ature(signaturelnfo) drmObject.0 can be a control. If it is the case,
the signature of the control has to be verified
using a callback with the hostContext.

drinObject 1 can be the encrypted content Key,
processObject(dmObject2)

verifySignaturesignaturelnfo)

createdigesterdmotbject)
drinObject2 can be a controller. This one must
be signed and its signature verified and the
hash of the encrypted content key has to be
checked.

LP hostContext getDigesterogetDigest()

processObject(drmCbject3)

processObject(dmobject4)

operContent(contentref.)

dmObject3 can be the protector of the key.

dimObject4 can be the content.

new(session, conteritRef)
content contentref is the ID of the

drmObject4.

Optional call. Can be used to get
control metadata in order to get
human readable" info on what
the control means

anodontrar new(content play)

ch

When the action is checked, it
may very date and counter.
The answer to this will be a
result code that the hostApp

create A

can handle

When the action is performed, the
consequences are enforced. Here
for example, the counter of the
number of time you can play the

content.getsession();gethostCortext), getCurrentTime()

content.getSession0gettleSystern().getCounter(contentr

() foe
tget Se ssi on(get Fi le Syste n decrem un ter(co ?ter tr ef)

Patent Application Publication Jul. 26, 2007 Sheet 27 of 44

new hostContext)

getFiles

secureFileSystern

createcontence tertRefs)
new(session, contentref}

setDRMInfod

getSession). rel Key(nodelD)

essengeocolanaeace

get Fif e S y site m().9 et N od e Se

SS o r O get hi ostC n)-g e n e te R a d o m N U m t e f()

ission.0...gethostContext(),perfc

getSsssion().gethd

getDigesto 1

encrypt(nods SecretKey. con ten Key

ontext().createdigester)

ession():getHostContext().p

getDRMObjects()

getContemkeys(cortentRefso)

W pdat 8. C8 tart Ke

F.G. 27

At the initialization of the session, the
file system will be accessed in order
to deal with nodes and their keys in
order to encrypt the content key.

US 2007/0172041 A1

The content object is
created with one or
Thore content
references
representing the
number of tracks (i.e.,
the number of keys) to
be encrypted

The node representing the
user to whom the content
will be bind to is accessed
in order to get its secret
key.

A content key is created
using the random
Number generator
implemented by the host.

The content key will be
encrypted with the node's
secret key.

control objects must be
signed.

controller objects must
carry a hash of the content
key and must be signed
as well,

US 2007/0172041 A1 Jul. 26, 2007 Sheet 28 of 44 Patent Application Publication

wgz '914 >|ETTO?I NOO(JO 19ELO?ld

BunlwN?Is IXd (HETTO HINOO)S

LNE.LNO?C)

TORILNO OÅEIXA ILNEJLNOSO
EISNE OIT

Patent Application Publication Jul. 26, 2007 Sheet 29 of 44 US 2007/0172041 A1

ATTRIBUTES
(NODE TYPE, ETC) :

SvinieriesARINGRES N optional :
&SiS. Š (optional Š

(Italist : (optional)

PRIVATE SHARING KE
N optional)

CONTROL optional)

i? KEY DERVATION INFO :
optional) ... "

= SIGNED

Š = CONFEDENTIAL FIG. 28B

(ID = CERTIFED

US 2007/0172041 A1

ÅèJOWE W

06Z ~ ENI9NE WHO

Patent Application Publication Jul. 26, 2007 Sheet 30 of 44

Patent Application Publication Jul. 26, 2007 Sheet 31 of 44 US 2007/0172041 A1

3004 pkDS

Data Segment Image

Number of Entries N (32 bits)
Each Entry:

3009 nameSize (8 bits)

nameSize (nameSize 8 bits))
offset (32 bits)

3010

wnVersion (32 bits)
minDataMemory (32 bits)
Imin Call Stack (32 bits)
flags (32 bits)

FIG. 30

Patent Application Publication Jul. 26, 2007 Sheet 32 of 44 US 2007/0172041 A1

3112

3114 3116

-

H

FIG. 31A

312O

3122 31 24

-

H

FIG. 31B

3122 3130.
3132

FIG. 31C

Patent Application Publication Jul. 26, 2007 Sheet 33 of 44 US 2007/0172041 A1

3.162 3164. 3168

-- H

see-eeeeee,
3106

FIG. 31D

3170

3172 3174

--

FIG. 31E

Patent Application Publication Jul. 26, 2007 Sheet 34 of 44 US 2007/0172041 A1

1. 32OO

SOURCE
3212

REGUEST
32O2

RESPONSE
3204

CONFIRMATION
32O6

FIG. 32

Patent Application Publication Jul. 26, 2007 Sheet 35 of 44 US 2007/0172041 A1

SOURCE
3312

SETUP
3302

RUNAGENT
3304

CAN HAVE
O+ OF THESE

AGENTRESULT
3306

TEARDOWN
33O8

FIG. 33

Patent Application Publication Jul. 26, 2007 Sheet 36 of 44 US 2007/0172041 A1

3404 3406

CONTENTKEY 1 CONTROL

C () 6 controLLER (9 3405

3412

PKI MAC (CK1)
3410

FIG. 34

Patent Application Publication Jul. 26, 2007 Sheet 37 of 44 US 2007/0172041 A1

CONTENTKEY 2

CONTENTKEY 1 CONTROL

PK MAC (CK1)

MAC (CK2)

FIG. 35

Patent Application Publication Jul. 26, 2007 Sheet 38 of 44 US 2007/0172041 A1

3602

Setup Request E(PubB, {Q,S})

Setup Response

e

-
o 92
5. is g

T
Z
-

FIG. 36

Patent Application Publication Jul. 26, 2007 Sheet 39 of 44 US 2007/0172041 A1

3708
Y----
e s

1 e N N
1 n

/ N
/ N

/ N
/ N

M N
/ DEVICE 1 N

/ 3704 V
/ V

I V
V

PVR
3702

V I
V /
V /
V W
M M
N M
N /
N /
N /

n /
a. s e 1. 1.

DEVICE 2
3706

FIG. 37

Patent Application Publication Jul. 26, 2007 Sheet 40 of 44 US 2007/0172041 A1

3800

3804 CONTENT
RENDERING

CLIENT
3806

DRMCENSE
SERVICE

FIG. 38

Patent Application Publication Jul. 26, 2007 Sheet 41 of 44 US 2007/0172041 A1

3804
CONTENT
RENDERING
CENT

3800
DRMLCENSE
SERVICE

AUTHORIZATION AUTHORIZATION

MESSAGE SECURITY MESSAGE SECURITY

UNSECURED COMMUNICATIONS CHANNE

FIG. 39

Patent Application Publication Jul. 26, 2007 Sheet 42 of 44 US 2007/0172041 A1

CLIENT
SERVICE SERVICE

AUTHORIZATION

AUTHENTICATION ASSERTION
CACHE

KEYSTORE

MESSAGE SECURITY

UNSECURED COMMUNICATIONS CHANNE

FIG. 40

Patent Application Publication Jul. 26, 2007 Sheet 43 of 44 US 2007/0172041 A1

CLIENT SERVER

BootstrapRequestMessage

ChallengeRequestMessage

ChallengeResponseMessage

BootstrapRequestMessage

FIG. 41

Patent Application Publication Jul. 26, 2007 Sheet 44 of 44 US 2007/0172041 A1

oc.pus Cxml>" amo- <x>"

FG. 42

US 2007/0172041 A1

DIGITAL RIGHTS MANAGEMENT ENGINE
SYSTEMS AND METHODS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001) This application claims the benefit of U.S. Provi
sional Application No. 60/728,089, filed Oct. 18, 2005, U.S.
Provisional Application No. 60/772,024, filed Feb. 9, 2006,
U.S. Provisional Application No. 60/744,574, filed Apr. 10,
2006, U.S. Provisional Application No. 60/791,179, filed
Apr. 10, 2006, U.S. Provisional Application No. 60/746,712,
filed May 8, 2006, U.S. Provisional Application No. 60/798,
925, filed May 8, 2006, and U.S. Provisional Application
No. 60/835,061, filed Aug. 1, 2006. U.S. Provisional Appli
cation Nos. 60/728,089, 60/772,024, 60/744,574, 60/791,
179, 60/746,712, 60/798,925, and 60/835,061 are incorpo
rated herein by reference in their entirety for any purpose.

COPYRIGHT AUTHORIZATION

0002 A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND AND SUMMARY

0003. In modern computing systems, it is often desirable
to limit access to electronic content, services, and/or pro
cessing resources, and/or to allow only certain entities to
perform certain actions. A variety of techniques have been
developed or proposed to enable such control. These tech
niques are often referred to as digital rights management
(DRM) techniques because, in general terms, their goal is to
manage the rights of various entities in digital or other
electronic content, services, or resources. A problem with
many prior art techniques is that they are overly complex,
overly restrictive, relatively inflexible, fail to enable certain
natural types of relationships and processes, and/or are
uninteroperable with other DRM systems.
0004 Systems and methods are described herein that can
be used to ameliorate some or all of these problems. It
should be appreciated that embodiments of the presently
described inventive body of work can be implemented in
numerous ways, including as processes, apparatuses, sys
tems, devices, methods, computer readable media, and/or as
a combination thereof. Several illustrative embodiments are
described below.

BRIEF DESCRIPTION OF THE DRAWINGS

0005. The inventive body of work will be readily under
stood by referring to the following detailed description in
conjunction with the accompanying drawings, in which:
0006 FIG. 1 shows an illustrative system for managing
the use of electronic content.

0007 FIG. 2 shows a more detailed example of a system
that could be used to practice embodiments of the inventive
body of work.
0008 FIG. 3 shows how an illustrative digital rights
management (DRM) engine might function in a network that
uses DRM.

Jul. 26, 2007

0009 FIG. 4 shows a collection of nodes and links used
to model the relationships in a DRM system.

0010 FIG. 5 is a flowchart illustrating how an embodi
ment of a DRM engine might determine whether a requested
action is authorized.

0011 FIG. 6 shows an example of a DRM license in
accordance with one embodiment of the inventive body of
work.

0012 FIGS. 7A and 7B illustrate the use of agents in one
embodiment.

0013 FIG. 8 shows an example of a DRM license.
0014 FIG. 9 is a more detailed example of how a DRM
engine might determine whether a requested action is autho
rized.

0.015 FIG. 10 is a more detailed example of how a DRM
engine executes a control program in one embodiment
object.

0016 FIG. 11 shows an illustrative embodiment DRM
engine running on a device.

0017 FIG. 12 is a flowchart illustrating the steps
involved in executing a control program in one embodiment.

0018 FIG. 13 shows the elements that make up a content
consuming client application in one embodiment.

0019 FIG. 14 shows the elements that make up a content
packaging application in one embodiment.

0020 FIG. 15 shows a key derivation mechanism in
accordance with one embodiment.

0021 FIG. 16 shows an example of a DRM system.
0022 FIG. 17 shows an example of a DRM system that
provides for temporary login.

0023 FIG. 18 shows the high-level architecture of an
illustrative system for managing enterprise documents.

0024 FIG. 19 shows an example of a how a system such
as that shown in FIG. 18 can be used to manage access to or
other use of a document.

0025 FIG. 20 shows an additional example of a how a
system such as that shown in FIG. 18 can be used to manage
access to or other use of a document.

0026 FIG. 21 shows additional features of the example
shown in FIG. 20.

0027 FIG. 22 shows another illustrative system for man
aging electronic content within an enterprise.

0028 FIG. 23 illustrates how the systems and methods
described herein could be applied to manage healthcare
records.

0029 FIG. 24 is an illustration of how the systems and
methods presented herein could be used in a context of an
electronic Subscription service.

0030 FIG. 25 is an illustration of how the systems and
methods described herein could be used in a context of a
home network domain.

US 2007/0172041 A1

0031 FIG. 26 illustrates the interactions that take place
between a host application and a DRM client engine in one
example embodiment.
0032 FIG. 27 illustrates the interactions that take place
between a host application and a packaging engine in one
illustrative embodiment.

0033 FIG. 28A is a more detailed illustration of a license
in accordance with one embodiment.

0034 FIG. 28B illustrates the relationship between links
and nodes in one example embodiment.
0035 FIG. 29 illustrates the operating environment of an
illustrative implementation of a virtual machine.
0.036 FIG. 30 illustrates an extended status block data
structure in accordance with one embodiment.

0037 FIG.31A shows a memory image of a data segment
in one embodiment.

0038 FIG. 31B shows an example of the memory image
of a code segment in one embodiment.
0039 FIG. 31C shows an example of an export entry
memory image in one embodiment.
0040 FIG. 31D shows a generic example of an export
table entry in one embodiment.
0041 FIG. 31E shows an example of an export table
entry for an example entry point.

0.042 FIG. 32 shows an example of a license transfer
protocol.

0.043 FIG.33 shows another example of a license trans
fer protocol in accordance with one embodiment.
0044 FIG. 34 shows a mechanism for protecting the
integrity of license objects in one embodiment.
0045 FIG. 35 shows a mechanism for protecting the
integrity of license objects in another embodiment.
0046 FIG. 36 illustrates a proximity checking protocol in
accordance with one embodiment.

0047 FIG. 37 illustrates the use of a proximity check
protocol in accordance with one embodiment.
0.048 FIG. 38 illustrates an interaction between a client
and a license server in one embodiment.

0049 FIG. 39 is more detailed illustration of an interac
tion between a client and a license server in one embodi
ment.

0050 FIG. 40 shows an example of an entity with mul
tiple roles.
0051 FIG. 41 illustrates a bootstrap protocol in accor
dance with one embodiment.

0.052 FIG. 42 shows the relationship between c14n-ex
and an illustrative XML canonicalization in one embodi
ment.

DETAILED DESCRIPTION

0053 A detailed description of the inventive body of
work is provided below. While several embodiments are
described, it should be understood that the inventive body of

Jul. 26, 2007

work is not limited to any one embodiment, but instead
encompasses numerous alternatives, modifications, and
equivalents. In addition, while numerous specific details are
set forth in the following description in order to provide a
thorough understanding of the inventive body of work, some
embodiments can be practiced without some or all of these
details. Moreover, for the purpose of clarity, certain techni
cal material that is known in the related art has not been
described in detail in order to avoid unnecessarily obscuring
the inventive body work.
0054 Commonly-assigned U.S. patent application Ser.
No. 10/863,551, Pub. No. 2005/0027871 A1 (“the 551
application'), which is hereby incorporated by reference,
describes embodiments of a digital rights management
(DRM) architecture and a novel DRM engine that overcome
Some of the weaknesses that characterize many previous
DRM implementations. The present application describes
enhancements, extensions, and modifications to, as well as
alternative embodiments of the architecture and DRM
engine described in the 551 application, as well as new
components, architectures, and embodiments. It will thus be
appreciated that the material described herein can be used in
the context of an architecture and/or DRM engine such as
that described in the 551 application, as well as in other
COInteXtS.

1. Example DRM System
0.055 FIG. 1 shows an illustrative system 100 for man
aging electronic content. As shown in FIG. 1, an entity 102
holding rights in electronic content 103, packages the con
tent for distribution and consumption by end users 108a-e
(referred to collectively as “end users 108, where reference
numeral 108 refers interchangeably to the end user or the
end user's computing system, as will be clear from the
context). For example, entity 102 may comprise a content
owner, creator, or provider, Such as a musician, movie
studio, publishing house, Software company, author, mobile
service provider, Internet content download or subscription
service, cable or satellite television provider, the employee
of a corporation, or the like, or an entity acting on behalf
thereof, and content 103 may comprise any electronic con
tent, such as digital video, audio, or textual content, a movie,
a song, a Video game, a piece of software, an email message,
a text message, a word processing document, a report, or any
other entertainment, enterprise, or other content.
0056. In the example shown in FIG. 1, entity 102 uses a
packaging engine 109 to associate a license 106 with the
packaged content 104. License 106 is based on the policies
105 or other wishes of entity 102, and specifies permitted
and/or prohibited uses of the content and/or one or more
conditions that must be satisfied in order to make use of the
content, or that must be satisfied as a condition or conse
quence of use. The content may also be secured by one or
more cryptographic mechanisms such as encryption or digi
tal signature techniques, for which a trust authority 110 may
be used to obtain the appropriate cryptographic keys, cer
tificates, and/or the like.

0057. As shown in FIG. 1, packaged content 104 and
licenses 106 can be provided to end users 108 by any
suitable means, such as via a network 112 like the Internet,
a local area network 103, a wireless network, a virtual
private network 107, a wide area network, and/or the like,
via cable, satellite, broadcast, or cellular communication

US 2007/0172041 A1

114, and/or via recordable media 116 such as a compact disc
(CD), digital versatile disk (DVD), a flash memory card
(e.g., an Secure Digital (SD) card), and/or the like. Packaged
content 104 can be delivered to the user together with license
106 in a single package or transmission 113, or in separate
packages or transmissions received from the same or dif
ferent Sources.

0.058. The end user's system (e.g., a personal computer
108e, a mobile telephone 108a, a television and/or television
set-top box 108c, a portable audio and/or video player, an
eBook reader, and/or the like) contains application software
116, hardware, and/or special-purpose logic that is operable
to retrieve and render the content. The user's system also
includes software and/or hardware, referred to herein as a
digital rights management engine 118, for evaluating the
license 106 associated with the packaged content 104 and
enforcing the terms thereof (and/or enabling application 116
to enforce Such terms). Such as by selectively granting the
user access to the content only if permitted by the license
106. Digital rights management engine 118 may be struc
turally or functionally integrated with application 116, or
may comprise a separate piece of Software and/or hardware.
Alternatively, or in addition, a user's system, such as system
108c, may communicate with a remote system, Such as
system 108b, (e.g., a server, another device in the user's
network of devices, such as a personal computer or televi
sion set-top box, and/or the like) that uses a digital rights
management engine to make a determination 120 as to
whether to grant the user access to content previously
obtained or requested by the user.
0059. The digital rights management engine, and/or other
Software on the user's system, or in remote communication
therewith, may also record information regarding the user's
access to or other use of the protected content. In some
embodiments, some or all of this information might be
communicated to a remote party (e.g., a clearinghouse 122,
the content creator, owner, or provider 102, the user's
manager, an entity acting on behalf thereof, and/or the like),
e.g., for use in allocating revenue (Such as royalties, adver
tisement-based revenue, etc.), determining user preferences,
enforcing system policies (e.g., monitoring how and when
confidential information is used), and/or the like. It will be
appreciated that while FIG. 1 shows an illustrative DRM
architecture and a set of illustrative relationships, the sys
tems and methods described herein can be practiced in any
suitable context, and thus it will be appreciated that FIG. 1
is provided for purposes of illustration and explanation, not
for purposes of limitation.
0060 FIG. 2 shows a more detailed example of a system
200 that could be used to practice embodiments of the
inventive body of work. For example, system 200 might
comprise an embodiment of an end user's device 108, a
content provider's device 109, and/or the like. For example,
system 200 may comprise a general-purpose computing
device such as a personal computer 108e or network server
105, or a specialized computing device Such as a cellular
telephone 108a, personal digital assistant, portable audio or
Video player, television set-top box, kiosk, gaming system,
or the like. System 200 will typically include a processor
202, memory 204, a user interface 206, a port 207 for
accepting removable memory 208, a network interface 210,
and one or more buses 212 for connecting the aforemen
tioned elements. The operation of system 200 will typically

Jul. 26, 2007

be controlled by processor 202 operating under the guidance
of programs stored in memory 204. Memory 204 will
generally include both high-speed random-access memory
(RAM) and non-volatile memory such as a magnetic disk
and/or flash EEPROM. Some portions of memory 204 may
be restricted, such that they cannot be read from or written
to by other components of the system 200. Port 207 may
comprise a disk drive or memory slot for accepting com
puter-readable media 208 such as floppy diskettes, CD
ROMs, DVDs, memory cards, SD cards, other magnetic or
optical media, and/or the like. Network interface 210 is
typically operable to provide a connection between system
200 and other computing devices (and/or networks of com
puting devices) via a network 220 Such as the Internet or an
intranet (e.g., a LAN, WAN. VPN, etc.), and may employ
one or more communications technologies to physically
make Such connection (e.g., wireless, Ethernet, and/or the
like). In some embodiments, system 200 might also include
a processing unit 203 that is protected from tampering by a
user of system 200 or other entities. Such a secure process
ing unit can help enhance the security of sensitive operations
Such as key management, signature verification, and other
aspects of the digital rights management process.

0061 As shown in FIG. 2, memory 204 of computing
device 200 may include a variety of programs or modules for
controlling the operation of computing device 200. For
example, memory 204 will typically include an operating
system 220 for managing the execution of applications,
peripherals, and the like; a host application 230 for rendering
protected electronic content; and a DRM engine 232 for
implementing some or all of the rights management func
tionality described herein. As described elsewhere herein,
DRM engine 232 may comprise, interoperate with, and/or
control a variety of other modules, such as a virtual machine
222 for executing control programs, and a state database 224
for storing state information for use by virtual machine 222,
and/or one or more cryptographic modules 226 for perform
ing cryptographic operations such as encrypting and/or
decrypting content, computing hash functions and message
authentication codes, evaluating digital signatures, and/or
the like. Memory 204 will also typically include protected
content 228 and associated licenses 229, as well as crypto
graphic keys, certificates, and the like (not shown).

0062 One of ordinary skill in the art will appreciate that
the systems and methods described herein can be practiced
with computing devices similar or identical to that illustrated
in FIG. 2, or with virtually any other suitable computing
device, including computing devices that do not possess
Some of the components shown in FIG. 2 and/or computing
devices that possess other components that are not shown.
Thus it should be appreciated that FIG. 2 is provided for
purposes of illustration and not limitation.
0063 A digital rights management engine and related
systems and methods are described herein that can be used
to provide some or all of the rights management function
ality of systems such as those shown in FIGS. 1 and 2, or in
other types of systems. In addition, a variety of other
systems and methods are described below that could be used
in the context of systems such as those shown in FIGS. 1 and
2, as well as in other contexts, including contexts unrelated
to digital rights management.

US 2007/0172041 A1

2. DRM Engine Architecture
0064. In one embodiment a relatively simple, open, and
flexible digital rights management (DRM) engine is used to
implement core DRM functions. In a preferred embodiment,
this DRM engine is designed to integrate relatively easily
into a web services environment such as that described in the
551 application, and into virtually any host environment or
software architecture. In a preferred embodiment, the DRM
engine is independent of particular media formats and
cryptographic protocols, allowing designers the flexibility to
use standardized or proprietary technologies as required by
the particular situation. The governance model used by
preferred embodiments of the DRM engine is simple, but
can be used to express Sophisticated relationships and busi
ness models.

0065. Some of the illustrative embodiments of a DRM
engine that are described below relate to an example imple
mentation referred to as “Octopus'; however, it will be
appreciated that the present inventions are not limited to the
specific details of the Octopus example, which are provided
for purposes of illustration, not limitation.
0066)
0067 FIG. 3 shows how an illustrative DRM engine
303a might function in a system 302 that uses DRM. As
shown in FIG. 3, in one embodiment DRM engine 303a is
embedded or integrated within a host application 304a (e.g.,
a content rendering application such as an audio and/or
Video player, a text-rendering application Such as an email
program, word processor, eBook reader, or document reader,
and/or the like) or is in communication therewith. In one
embodiment, DRM engine 303a performs DRM functions
and relies on host application 304a for services such as
encryption, decryption, file management, and/or other func
tions can be more effectively provided by the host. For
example, in a preferred embodiment DRM engine 303a is
operable to manipulate the DRM objects 305 which com
prise a license 306 to protected content 308. In some
embodiments, DRM engine 303a may also delivers keys to
host application 304a. As shown in FIG. 3, either or both of
DRM engine 303a and host application 304a may make use
of web services 305a and/or host services 306.a for process
ing and/or information needed to complete their respective
tasks. The 551 application provides examples of such
services, and the manner in which a DRM engine 303a and
host application 304a might interoperate therewith.
0068. In the example shown in FIG. 3, DRM engine
303a, host application 304a, host services 306a, and web
services interface 305a are loaded onto a device 300a, such
as an end user's personal computer (PC). Device 300a is
communicatively coupled to a server 300b, from which
content 308 and license 306 were obtained, as well as a
portable device 300d, to which device 300a may forward
content 308 and/or license 306. Each of these other devices
may include a DRM engine 303 that is similar or identical
to DRM engine 300a, which can be integrated with the
particular host application and host environment of the
device. For example, server 300b might include a host
application 304b that performs bulk packaging of content
and/or licenses, and makes use of a DRM engine 300a to
evaluate controls associated with the content that is being
packaged in order to comply with any redistribution restric
tions. Similarly, device 300c might include a host applica

1.1. Overview

Jul. 26, 2007

tion 304c that is capable of both rendering and packaging
content, while device 300a might include a host application
that is simply able to render content. As yet another example
of the potential diversity of host environments, device 300d
might not include a web services interface, but may instead
rely on communication with device 300a, and web services
interface 305a to the extent host application 304d and/or
DRM engine 303d require the use of any web services. FIG.
3 is only one example of a system in which a DRM engine
might be used; it will be appreciated that embodiments of the
DRM engines described herein can be implemented and
integrated with applications and systems in many different
ways, and are not limited to the illustrative examples shown
in FIG. 3.

0069) 1.2. Objects
0070. In preferred embodiments, content protection and
governance objects are used to represent entities in a system,
to protect content, to associate usage rules with the content,
and to determine if access can be granted when requested.
0071. As described in more detail below, in one embodi
ment, the following objects are used:

Object Type Function

Node Represents entities
Link Represents a directed relationship between

entities
Content Represents content (e.g., media content)
ContentKey Represents encryption keys used to encrypt

content
Control Represents usage rules that govern interaction

with content
Controller Represents associations between Control and

ContentKey objects
Protector Represents associations between Content and

ContentKey objects

0072 1.2.1. Node Objects
0073 Node objects are used to represent entities in the
system. In practice, a node will usually represent a user, a
device, or a group. Node objects will also typically have
associated attributes that represent certain properties of the
entity associated with the node.
0074 For example, FIG. 4 shows two users (Xan 400 and
Knox 402), two devices (PC 404 and portable device 406),
and several entities that represent groups (e.g., members of
the Carey family 408, members of the public library 410.
subscribers to a particular music service 412, RIAA-ap
proved devices 414, and devices manufactured by a specific
company 416), each having an associated node object.
0075. In one embodiment node objects include attributes
that define what the node represents. One example of an
attribute is a node type. Besides representing users, groups,
or devices, the node type attribute could be used to represent
other entities. In some embodiments, a node object can also
include cryptographic key information, Such as when an
embodiment of the key derivation and distribution tech
niques described elsewhere herein is used.
0076. In some embodiments, node objects also include a
confidentiality asymmetric key pair that is used for targeting
confidential information to the Subsystems that have access

US 2007/0172041 A1

to the confidential parts of the node object. This could be the
entity that the node represents (for example, the Music
Service 412) or some entity responsible for managing the
node (for example, the end user (e.g., Knox 402) could be
responsible for managing his or her portable device 406).
0077 1.2.2. Link Objects
0078. In a preferred embodiment, link objects are signed
objects used to show the relationship between two nodes.
For example, in FIG. 4 the link 418 from the PC node 404
to Knox 402 shows ownership. The link from Knox 402 to
the Carey family node 408 shows membership, as does the
link from the Carey family node 408 to the Music Service
Subscribers node 412. In one embodiment, link objects
express the relationship between two nodes, and thus the
relationships shown in FIG. 4 could be represented using ten
links.

0079. As shown in FIG. 4, a graph 420 can be used to
express the relationship between nodes, where link objects
are the directed edges between nodes. For example, in FIG.
4, the relationship between the Carey family node 408 and
the Music Service node 412 asserts that there exists a
directed edge 422 in the graph whose vertices are the Carey
family node 408 and the Music Service node 412. Knox 402
and Xan 400 are members of the Carey family 408. Because
Knox 402 is linked to the Carey family 408 and the Carey
family 408 is linked to the Music Service 412 there is said
to be a path between Knox 402 and the Music Service 412.
A DRM engine considers a node to be reachable from
another node when there is a path from that node to the other
node. This allows a control to be written that allows per
mission to access protected content based on the condition
that a node is reachable from the device where the applica
tion that requests access to the protected content is execut
1ng.

0080. As described in more detail below, link objects can
also optionally contain some cryptographic data that allows
derivation of content keys. Link objects may also contain
control programs that define the conditions under which the
link may be deemed to be valid. Such control programs can
be executed or interpreted (these terms are used interchange
ably herein) by a DRM engine's virtual machine to evaluate
the validity of a link (e.g., to determine whether the link may
be used to reach a given node in an authorization graph).
0081. In one embodiment, links are signed. Any suitable
digital signature mechanism can be used, and in one embodi
ment the DRM engine does not define how the link objects
are signed and does not evaluate any associated certificates,
instead, it relies on the host system to verify any Such
signatures and/or certificates. This allows the system archi
tect or administrator to define the lifetime of a link object,
to revoke it, and so on (e.g., by using expiring keys or
certificates, revocation, and/or the like), thus providing an
additional layer of policy management and security on top of
the policy management and security provided by the DRM
engine's evaluation of control programs and DRM objects in
the context of specific pieces of protected content and/or
links (for example, expiration of a link could alternatively,
or in addition, be implemented by including an appropriate
control program in the link object itself, which, when
executed would enforce the expiration date or other validity
period). In one embodiment, the DRM engine is generic, and
works with any suitable encryption, digital signature, revo

Jul. 26, 2007

cation, and/or other security scheme that is used by the host
application and/or environment. Thus, for example, if the
DRM engine needs to determine if a particular link has been
properly signed, it might simply call the host application
(and/or a host or system cryptographic service) to Verify the
signature in accordance with the particular signature scheme
chosen by the system designer, the details of which the DRM
engine itself may be unaware. In other embodiments, the
DRM engine itself performs the actual signature evaluation,
relying on the host simply to indicate the appropriate sig
nature algorithm to use.

0082 1.2.3. Content Protection and Governance
0083) Referring once again to FIG. 3, in a typical sce
nario, a content provider 300b uses an application 304b that
includes a packaging engine to encrypt or otherwise cryp
tographically secure a piece of electronic content 308 and
creates a license 306 that governs access to or other use of
that content. In one embodiment, license 308 comprises a set
of objects 305 that specify how content 308 may be used,
and also includes the contents encryption key(s) and/or the
information needed to obtain them. In one embodiment,
content 308 and license 306 are logically separate, but are
bound together by internal references (e.g., using object IDs
310). In many situations it may be convenient to store and/or
deliver the content and the license together; however, this is
not required in preferred embodiments. In one embodiment,
a license can apply to more than one item of content, and
more than one license can apply to any single item of
COntent.

0084 As shown in FIG. 3, when a host application 304a
running on a client device 300a wants to perform an action
on a particular piece of content 308, it asks DRM engine
303a to check if the action it intends to perform (e.g., “play”)
is allowed. In one embodiment, the DRM engine 303a will,
from the information contained in the objects 305 compris
ing content license 306, load and execute a control program
associated with content 308, and permission to perform the
action will be granted or denied based on the result returned
by the control program. Permission will typically require
that Some conditions be met, such as the condition that a
node be reachable from the node representing the requesting
entity/device 300a.

0085 FIG. 5 is a flowchart illustrating how an embodi
ment of a DRM engine might determine whether a requested
action (e.g., viewing a piece of content) is authorized. As
shown in FIG. 5, a request to evaluate a license for a given
action is received (500). For example, this request might be
received from the host application, after the host received a
request from a user to perform the specified action. As
shown in FIG. 5, the DRM engine evaluates the specified
license (502), and determines whether the requested action
is authorized (504). For example, the license may contain a
control program that the DRM engine executes, the output
of which is used to make the authorization decision. If the
license authorizes the requested action (i.e., a “yes” exit
from block 504), then the DRM engine indicates to the host
application that the request is granted (506). Otherwise, the
DRM engine indicates to the host application that the
request is denied (508). In some embodiments, the DRM
engine may also return to the host application a variety of
metadata that e.g., associates conditions with a grant of
authorization (e.g., obligations and/or callbacks), or pro

US 2007/0172041 A1

vides additional information regarding the cause of a denial
of authorization. For example, the DRM engine may indi
cate that the requested action is allowed only if the host
application logs certain information regarding performance
of the requested action, or as long as the host application
calls the DRM engine back at predefined time intervals to,
e.g., re-evaluate the license. Additional information on Such
obligations, callbacks, and other metadata returned by the
DRM engine is provided below. If the requested action is
authorized, the content key will be retrieved (e.g., from the
license's ContentKey object), and used to release the content
for the requested use.

0086)
0087 As shown in FIG. 6, in preferred embodiment a
license 600 is a collection of objects. In the example shown
in FIG. 6, license 600 comprises a ContentKey object 602,
a protector object 604, a controller object 606, and a control
object 608. As shown in FIG. 6, ContentKey object 602
includes encrypted key data 610 (e.g., an encrypted version
of the key needed to decrypt encrypted content item 612)
and information regarding the cryptosystem used to encrypt
the key data. Protector object 604 binds ContentKey object
602 to one or more content objects 614. As shown in FIG.
6, control object 608 includes and protects a control program
616 that specifies how content object 614 is governed. In a
preferred embodiment, control program 616 is a piece of
executable bytecode that runs on a virtual machine operated
by the DRM engine. The control program governs whether
certain actions can be performed on the content by checking
for satisfaction of conditions specified in the control pro
gram, Such as whether certain nodes are reachable using
valid link objects, whether certain state objects have been
stored, whether the host environment has certain character
istics, and/or the like. Referring once again to FIG. 6.
controller object 606 is used to bind one or more Content
Key object 602 to control object 608.

1.2.4. License DRM Objects

0088 License 600 may also comprise additional objects,
Such as metadata providing a machine- or human-readable
description of the content-access conditions required by the
license. Alternatively, or in addition, such metadata can be
included as a resource extension of one of the other objects
(e.g., control object 608). In the embodiment shown in FIG.
6, control object 608 and controller object 606 are both
signed, so that the system can verify that the control infor
mation is from a trusted Source before using it to make
content-access decisions. In one embodiment, the validity of
control object 608 can also be checked through verification
of a secure hash included in controller object 606. Controller
object 606 can also contain a hash value for each of the keys
or other key data contained in the ContentKey object(s) 602
that it references, thereby rendering it relatively difficult for
an attacker to tamper with the binding between the key data
and the ContentKey object.

0089. As shown in FIG. 6, in one embodiment content
612 is encrypted and is included in a content object 614. The
decryption key 610 that is used is included within (or
referenced by) ContentKey object 602, and the binding
between the two is represented by the protector object 604.
As shown in FIG. 6, unique IDs are used to facilitate the
binding between content object 614 and ContentKey object
602. The rules that govern the use of key 610 to decrypt
content 612 are included within control object 608, and the

Jul. 26, 2007

binding between control object 608 and Contentkey 602 is
represented by controller object 606, again using unique
IDS.

0090. It will be appreciated that while FIG. 6 shows the
objects that comprise a license in one preferred embodiment,
the DRM systems and methods described herein are not
limited to the use of this license structure. For example,
without limitation, licenses could be used in which the
functionality of the various objects shown in FIG. 6 are
combined in a smaller number of objects, or spread out over
additional objects, or broken up between objects in a dif
ferent manner. Alternatively, or in addition, embodiments of
the systems and methods described herein can be practiced
with licenses that lack some of the functionality enabled by
the license structure shown in FIG. 6, and/or that provide
additional functionality. Thus it will be appreciated that any
Suitable mechanism for associating licenses with content can
be used in accordance with the principles described herein,
although in preferred embodiments the advantageous struc
ture shown in FIG. 6 is used.

0091)
0092. In one embodiment, the DRM engine includes, or
has access to, a secure, persistent object store that can be
used to provide a secure state storage mechanism. Such a
facility is useful to enable control programs to be able to
read and write state information that is persistent from
invocation to invocation. Such a state database can be used
to store state objects such as play-counts, date of first use,
accumulated rendering times, and/or the like, as well as
membership status, and/or any other Suitable data. In some
embodiments, a DRM engine executing on a first system
may not have access to a local state database, and may be
operable to access a remote state database, e.g., using web
and/or host services. In some situations, it may be necessary
for a DRM engine executing on a first system to access state
information stored in a database on a remote system. For
example the first system may not include a state database, or
may not have the information it needs in its own state
database. In some embodiments, when a DRM engine is
faced with Such a situation, it might access a remote state
database via a services interface, and/or by using agent
programs, as described in more detail below.

0093)
0094. The systems and methods described herein make
use of control programs in a variety of contexts. For
example, control programs contained in control objects can
be used to express the rules and conditions governing the use
of protect content. In addition, control programs in link
objects can be used to express the rules and conditions used
to determine whether the link is valid for a given purpose
(e.g., a node reachability analysis). Such control programs
are sometimes referred to herein as link constraints. Yet
another context in which control programs may be used is in
agent or delegate objects, were the control code is used to
perform an action on behalf of another entity (in the case of
agent control programs) or on behalf of another control (in
the case of delegate control programs).

0095. In one embodiment, control programs are executed
or interpreted by a virtual machine hosted by a DRM engine,
as opposed to being executed directly by a physical proces
sor. It will be appreciated, however, that a physical processor

1.3. State Database

1.4. About Control Programs

US 2007/0172041 A1

or other hardware logic could be readily constructed to
execute control programs. In one embodiment, the control
programs are in byte-code format, which facilitates interop
erability across platforms.
0096. In a preferred embodiment, control programs are
written in assembly language and converted into byte code
by an assembler program. In other embodiments, templates
and/or high-level rights expression languages could be used
to provide the initial expression of rights, rules, and/or
conditions, and a compiler could be used to convert the
high-level expression into byte code for execution by an
embodiment of the DRM engine described herein. For
example, rights expressions written in a proprietary DRM
format could, with an appropriate compiler, be converted or
translated into a functionally equivalent byte code expres
sion for execution on an embodiment of the DRM engine
described herein, thus enabling a protected piece of content
to be used, in accordance with the conditions specified by
the content provider, on systems that understand the propri
etary DRM format, as well as systems that included a DRM
engine such as that described herein. It should also be
appreciated that the digital rights management engine sys
tems and methods described herein are not limited to the use
of byte code rights expressions, interpreted by a virtual
machine. Instead, in some embodiments, rights can be
expressed in any suitable manner (e.g., using a high-level
rights expression language (REL), a template, etc.), and the
authorization graph and/or other techniques described herein
performed using an application program designed to recog
nize and evaluate such rights expressions.
0097 1.4.1. Conditions
0.098 As previously indicated, control programs typi
cally express one or more conditions that must be satisfied
in order for a request to use a piece of content to be granted,
for a link to be deemed valid, and/or the like. Any suitable
conditions can be used, depending on the requirements of
the content provider or system architect, and/or the func
tionality provided by the system.

0099. In preferred embodiments, the virtual machine
used by the DRM engine supports arbitrarily complex
programs that are capable of testing for conditions such as
some or all of the following:

0.100 Time-based conditions: Comparing a client time
value to a value or values specified in the control
program.

0101 Targeting a particular node: Checking whether a
certain node is reachable from another node. This
concept provides Support for Such models as domains,
Subscriptions, memberships, and the like.

0102 Testing if certain node attributes match specified
values: Checking any of a nodes attributes, such as, for
example, whether the rendering capabilities of a device
associated with a node meet fidelity requirements.

0.103 Testing if the security-related metadata at the
client is up-to-date: Checking, for example, whether the
client has an acceptable version of the client software
and an accurate measure of time. In some embodiment,
Such a check might rely, for example, on assertions in
one or more certificates from a data certification ser
W1C.

Jul. 26, 2007

0.104 State-based conditions: Checking information in
the state database. For example, the state database may
contain information generated as a result of previous
execution of control programs, and/or tokens attesting
to ownership of Subscriptions, membership, and/or the
like, thereby enabling evaluation of conditions involv
ing counters (e.g., number of plays, number of exports,
elapsed time limits, etc.) and other information regard
ing recorded events and conditions.

0105 Environmental characteristics: For example,
checking whether hardware and/or software in the host
environment has certain characteristics. Such as the
ability to recognize and enforce obligations; checking
for the presence or absence of certain software or
hardware components, such as a secure output channel;
checking proximity information, such as the proximity
of a requesting device to another device or application;
checking the characteristics of, and/or data stored on,
remote systems using network services and/or agents;
and/or the like.

0106 Using these or any other suitable conditions, a
control object can express rules that govern how content can
be rendered, transferred, exported, and/or the like. It will be
appreciated that the above list of conditions is illustrative in
nature, and that any Suitable conditions could be defined and
used by, e.g., implementing a system call for use in testing
for the desired condition. For example, without limitation, if
it were desired to require that a device be located on a
particular Sub-network, a system call could be defined (e.g.,
GetIPConfig) that would be operable to return the host
device's IPConfig information (or a remote device's IPCon
fig information, if the system call were run on a remote
device using an agent), which could be used by a control
program to test for whether the device was located on the
prescribed sub-network.
0107 1.4.2. Agents
0108 Preferred embodiments of the DRM engine-related
systems and methods described herein provide support for
independent objects that carry control programs. Such
“agents' can be distributed to a DRM engine running on a
remote system in order to accomplish specified functions,
such as writing into the remote DRM engine's secure state
store. For example, an agent could be sent as a consequence
of contacting a remote service, or executing a remote control
program. An agent can also be used to effect a content move
operation, to initialize a counter, to deregister a node, and/or
the like. As yet another example, an agent could be used to
perform a reachability analysis from a remote node to
another node. Such an agent could, e.g., be useful in
enforcing a policy that prohibited a device registered to a
first user from being registered to a second user. If the
second user requested registration, an agent could be sent to
the device by the second user, or a registration service acting
on his or her behalf, to determine if the device was already
registered to the first user, in which case the second user's
registration request would be denied.
0109 FIGS. 7A and 7B illustrate the use of agents in one
embodiment. As shown in FIG. 7A, assume that two enti
ties—system A 700 and system B 702 wish to communi
cate with each other over a computer network 703, and that
a DRM system is being used that is capable of describing
and enforcing rules for certain operations, such as accessing

US 2007/0172041 A1

protected content, or creating DRM objects that can be used
to represent memberships, registration status, and/or the
like. In some cases, the rule(s) will be evaluated on system
A 700, but will require information that depends on the state
of system B 702. That information needs to be trusted by the
DRM system 704 that is enforcing the rule(s) on system A
700.

0110. For example, the DRM system 704 on system A
700 may be evaluating/enforcing a rule for performing a
remote rendering of content from system A 700 to system B
702, and the rule might indicate that such an operation is
permitted only if system B 702 is part of a certain group of
devices, where the membership in that group is asserted by
the presence of a state object 711 in a secure state database
716 accessible on system B 702.
0111. A method used in a preferred embodiment to handle
Such situations makes use of agents. For example, if system
A 700 needs information from system B 702, system A 700
prepares an agent 705, which, in one embodiment, is a
control program (e.g., a sequence of instructions that can be
executed by a DRM engine) that is sent from system A 700
to system B 702. In one embodiment, system A 700 sends
agent code 705 to system B 702 over an authenticated
communication channel 720 so that system A 700 can be
confident that it is indeed on system B 702 that agent 705
will run. In some embodiments, along with agent code 705,
system A 700 may also communicates to system B 702 one
or more parameters that may be used by agent code 705 to
perform its work.
0112. As shown in FIG. 7B, system B 702 receives agent
705 and any associated agent parameters, and runs the agent
code 705. When agent 705 is run on system B 702, it
accesses system B's state database 716, retrieves state
information 711 and/or performs one or more computations
therewith, and sends the results 713 back to system A 700,
preferably over authenticated communication channel 710.
At this point, system A 700 has the information it needs to
continue with its evaluation.

0113 1.4.3. Link Constraints
0114. In one embodiment, the set of routines that repre
sent the rules that govern the performance of a certain
operation (such as "play') on a content item is called an
“action control. The set of routines that represent validity
constraints on a link object is called a “link constraint'. Like
action controls, in preferred embodiments link constraints
can express any suitable combination of conditions. Also
like action controls, link constraints can be evaluated locally
and/or remotely using a services interface or an agent.
0115 1.4.4. Obligations and Callbacks
0116. In one embodiment, certain actions, when granted,
require further participation from the host application. Obli
gations represent operations that need to be performed by
the host application upon or after the use of the content key
it is requesting. Callbacks represent calls to one or more of
the control program's routines that need to be performed by
the host application upon or after the use of the content key
it is requesting. Examples of obligations include, without
limitation, a requirement that certain outputs and/or controls
be turned off while content is being rendered (e.g., to prevent
writing the content to an unprotected output or to prevent
fast-forwarding through certain important segments of the

Jul. 26, 2007

content); a requirement that information regarding use of the
content be recorded (e.g., metering or audit information)
and/or sent to a remote site (e.g., a clearinghouse, service
provider, or the like); a requirement that an agent program
be executed locally or remotely; and/or the like. Examples
of callbacks include, without limitation a requirement that
the host call the control program back at a certain absolute
time, after a certain elapsed time (e.g., an elapsed time of
content usage), after occurrence of a certain event (e.g., the
completion of a trial content-rendering period), when the
content has stopped being used, and/or the like. For
example, a callback after a certain elapsed time could be
used to increment or decrement budgets, play counts, and the
like (e.g., only debiting the users budget if they use a piece
of content for at least a certain amount of time), thus
protecting the user from having his or her account debited if
he or she accidentally presses the play button but immedi
ately presses stop.

0.117) In one embodiment, there are different types of
obligations and callbacks, and if an application encounters
any critical obligation or callback that it does not support, or
does not understand (for example because the obligation
type may have been defined after the application was
implemented), the application is required to refuse to con
tinue the action for which this obligation or callback param
eter was returned.

0118 1.4.5. Example

0119 FIGS. 8-12 show an example of how an illustrative
embodiment of a DRM engine might control the use of a
piece of content. Referring to FIG. 8, assume that the DRM
engine has received a request to play a group 800 of content
items 802, 804. For example, content items 802, 804 might
comprise different Sub-parts of a multimedia presentation,
different tracks of an album, different pieces of content
obtained from a subscription service, email attachments, or
the like. The request may have been received by the DRM
engine from a host application, which, in turn, received the
request from a user of the computing device upon which the
host application was running. The request from the host
application will typically identify the requested action, the
piece or pieces of content upon which the action is to be
taken, and the license(s) that govern the content. DRM
engine follows the process illustrated in FIG. 5 to determine
whether the request should be granted.

0120 FIGS. 8 and 9 provide a more detailed non-limiting
example of the process shown in FIG. 5. Referring to FIG.
9, upon receiving the request to access content items 802 and
804 (block 900), the DRM engine examines the license(s)
identified in the request, or otherwise in its possession, to see
if a valid license exists. For example, the DRM engine might
first identify the protector objects 806 and 808 that contain
the unique identifiers of content items 802 and 804 (i.e.,
NS:007 and NS:008, respectively) (block 902 in FIG. 9).
Next, the DRM engine locates the Contentkey objects 810
and 812 identified in protector objects 806 and 808 (block
904 in FIG. 9), which, in turn, enables the DRM engine to
identify controller 814 which references both ContentKey
objects 810 and 812 (block 906 in FIG. 9). In a preferred
embodiment, controller 814 is signed, and DRM engine
verifies its signature (or asks host services to verify it). The
DRM engine uses controller 814 to identify the control
object 816 that governs use of ContentKey objects 810 and

US 2007/0172041 A1

812 (and, thus, content items 802 and 804)(block 908 in
FIG. 9). In a preferred embodiment, the DRM engine
verifies the integrity of control object 816 (e.g., by comput
ing a digest of control object 816 and comparing it to a digest
contained in controller 814. If the integrity verification
Succeeds, the DRM engine executes the control code con
tained in control object 816 (block 910), and returns the
result (block 912) to the host application, which uses it to
grant or deny the user's request to access the content. The
result of the control code might also optionally specify one
or more obligations or callbacks which the host application
will need to fulfill.

0121 FIG. 10 is a more detailed example of how a DRM
engine might perform the actions specified in blocks 910 and
912 of FIG. 9 (i.e., executing a control program and return
ing the result). As shown in FIG. 10, upon identifying the
relevant control object, the DRM engine loads the byte code
contained in the control object into a virtual machine that is
preferably hosted by the DRM engine (block 1000). The
DRM engine and/or the virtual machine will also typically
initialize the virtual machine's runtime environment (block
1002). For example, the virtual machine might allocate the
memory needed for execution of the control program, ini
tialize registers and other environment variables, and/or
obtain information about the host environment in which the
virtual machine is operating (e.g., by making a System. Host
..GetObject call, as described below). It will be appreciated
that in some embodiments blocks 1000 and 1002 could
effectively be combined or interleaved, and/or their order
reversed. As shown in FIG. 10, the virtual machine next
executes the control programs byte code (block 1004). As
described elsewhere herein, this may involve making calls to
other virtual machine code, retrieving state information from
secure storage, and/or the like. When the control program
has finished executing, it provides an output (e.g., in a
preferred embodiment, an ExtendedStatusBlock) that may,
for example, be used by the calling application to determine
whether a request has been granted, and, if so, whether any
obligations or callbacks are associated therewith; whether a
request has been denied, and, if so, the reason for denial; or
whether any errors occurred during execution (block 1006).
0122). As previously indicated, the control code contained
in control object 816 specifies the conditions or other
requirements that must be satisfied in order to make the
requested use of content items 802 and 804. The systems and
methods described herein enable the specification of arbi
trarily complex sets of conditions; however, for purposes of
this example, assume that the control program is designed to
require that, in order to play content items 802 and 804, (a)
a given user's node must be reachable from the device on
which the request to play the content was made, and (b) the
current date must be after a specified date.
0123 FIG. 11 shows how an illustrative embodiment of
a DRM engine 1100 running on a device 1102 might execute
the example control program described above, and FIG. 12
is a flowchart of the steps involved in the execution process.
As shown in FIG. 11, DRM engine 1100 creates a virtual
machine execution context (e.g., by calling System
..Host.SpawnVm) 1104 and loads the control program. Vir
tual machine 1104 begins execution of the control program
at the entry point specified by DRM engine 1100 (e.g., at the
location of the Control. Actions. Play-perform routine). In
this example, the control program needs to determine

Jul. 26, 2007

whether a given node is reachable from the personality node
of the device 1102 on which the DRM engine 1100 is
running. To make this determination, the control program
makes a call 1105 to a link manager service 1106 provided
by the DRM engine 1100, specifying the node to which
linkage is required (block 1200 in FIG. 12). Link manager
1106 is responsible for evaluating link objects to determine
if one node is reachable from another. To do this efficiently,
link manager 1106 may pre-compute whether a path exists
from the personality node 1110 of device 1102 to the various
nodes 1114 specified in any link objects that device 1102
possesses. That is, link manager 1106 may, simply by
checking the “to” and “from fields of the links to which it
as access, determine which nodes are potentially reachable
from the personality node 1110 of device 1102. When link
manager 1106 receives the call 1105 from virtual machine
1104, it determines whether the specified node 1112 is
reachable by first determining if a path exists from person
ality node 1110 to the specified node 1112 (e.g., by checking
for the node's ID in the list of nodes that it previously
determined to be theoretically reachable)(block 1202 in FIG.
12). If a path exists, link manager 1106 evaluates any control
programs contained in the links to see if the links are valid
(blocks 1204-1210 in FIG. 12). To evaluate the control
programs in the link objects (block 1206 in FIG. 12), link
manager 1106 may use its own virtual machine 1108, on
which it executes the control programs included in the link
objects. Link manager 1106 returns the results of its deter
mination (i.e., whether the given node is reachable) to the
control program executing in virtual machine 1104, where it
is used in the overall evaluation of whether the request to
play the piece of content will be granted. Upon determining
that the specified node 1112 is reachable from the person
ality node 1110 of device 1102, the control program execut
ing on virtual machine 1104 next determines if the specified
date restriction is met (block 1212 in FIG. 12). If the date
restriction has been met (i.e., a “yes” exit from block 1212),
then the control program returns a result indicating that the
specified conditions have been met (block 1214 in FIG. 12);
otherwise, control program returns a result indicating that
the specified conditions were not satisfied (block 1216 in
FIG. 12).

0.124. An example of a control program such as that
described above is shown below:

Sample Control

This Control checks that a user node is reachable
and that the date is after a specific start date
and before a specific end date
The values are retrieved from attributes in the control

s

s

s

s

s

s

s

s constants

equ DEBUG PRINT SYSCALL,
equ FIND SYSCALL BY NAME,
equ SYSTEM HOST GET OBJECT SYSCALL,
equ SUCCESS,
..equ FAILURE,

ControlTargetNodeIdAttributePath:
..string “Octopus/Control/Attributes/TargetNodeId'

US 2007/0172041 A1

-continued

ControlStartDate:AttributePath:
..string “Octopus/Control/Attributes/StartDate'

ControlEndDate:AttributePath:
..string “Octopus/Control/Attributes/EndDate'

TargetNodeId:
.Zeros 256

StartDate:
..long O

End Date:
..long-1

IsNodeReachableFunctionName:
..string “Octopus. Links. IsNodeReachable

IsNodeReachableFunctionNumber:
..long O

GetTimeStampFunctionName:
..string “System. Host.GetLocalTime'

GetTimeStampFunctionNumber:
..long O

Global. OnLoad:
; load global functions

; get the syscall number for Octopus. Links. IsNodeReachable
PUSH (a)IsNodeReachableFunctionName
PUSH FIND SYSCALL BY NAME
CALL
DUP
PUS
POKE
BRN OnLoad Fail
; get the syscall number for System. Host.GetTimeStamp

(a)GetTimeStampFunctionName
FIND SYSCALL BY NAME

(a)IsNodeReachableFunctionNumber

s t C

CALL

U S (a)GetTimeStampFunctionNumber
OKE
BRN OnLoad Fail

PUSHO

OnLoad Fail:
USH FAILURE

trol. Actions. Play. Init:
; get the values from the attributes
; get the target node (guaranteed to be there)
PUSH 256 : Return BufferSize (256 bytes)
PUSH (a TargetNodeId : Return value
PUSH (a ControlTargetNodeIdAttributePath : Name
USHO : Parent = root container
PUSH SYSTEM HOST GET OBJECT SYSCALL

CALL
; get the start date
PUSH 4 : ReturnBufferSize (4 bytes)
PUSH (a StartDate : Return value
PUSH (a ControlStartDate:AttributePath : Name
PUSHO : Parent = root container
PUSH SYSTEM HOST GET OBJECT SYSCALL
C
; get the end date
PUSH 4 : ReturnBufferSize (4 bytes)
PUSH (a End Date : Return value
PUSH (a Control End Date:AttributePath : Name
PUSHO : Parent = root container
PUSH SYSTEM HOST GET OBJECT SYSCALL
CALL
; Success
PUSHO
PUSH SUCCESS
STOP

Control. Actions. Play. Perform:
Control. Actions. Play. Check:

; check that the target node is reachable

Jul. 26, 2007

-continued

PUSH (a TargetNodeId
PUSH (a)IsNodeReachableFunctionNumber
PEEK
CALL
BRN Play Fail
: put the current time on the stack
PUSH (a GetTimeStampFunctionNumber
PEEK
CALL
: check that the date is before the end date
DUP ; current time
PUSH (a End Date
PEEK
SWAP
CMP
BRN Play Fail
check that the date is after the start date

; the current time is on the stack

RN Play Fail
; Success
PUSHO
PUSH SUCCESS

STOP
..export Global.On Load
..export Control. Actions. Play. Init
..export Control. Actions. Play. Check
..export Control. Actions. Play. Perform

0.125. An additional example of a control program is
included in Appendix E.
3. Content Consumption and Packaging Applications
0.126 The following is a more detailed description of
illustrative embodiments of an application that consumes
DRM-protected content (e.g., a media player, a word pro
cessor, an email client, etc., such as applications 303a, 303c.
and 303d in FIG. 3), and a packaging application, such as
application 303b, that packages content targeted to consum
ing applications.
0.127 1.5. Content-Consuming Application Architecture
0128. A content-consuming application will typically
focus on accessing protected content, or could be part of a
general-purpose application that also performs other func
tions, such as packaging content. In various embodiments, a
content-consuming application might perform some or all of
the following:

0129. Provide an interface by which a user can request
access to protected content objects and receive infor
mation about the content or error information;

0.130 Manage interaction with the file system;
0131 Recognize the format of protected content
objects;

0.132 Request a DRM engine to evaluate licenses for
pieces of content to see if permission to access the
content can be granted;

0.133 Verify digital signatures and deal with other
general-purpose cryptographic functions that the DRM
engine needs performed;

US 2007/0172041 A1

0.134 Request the DRM engine to provide the keys
needed to decrypt protected content; and/or

0.135 Decrypt the protected content and interact with
media rendering services to render the content.

0136. In one embodiment, a DRM client engine evaluates
the licenses associated with content, confirms or denies
permission to use the content, and provides decryption keys
to the content-consuming application. The DRM client
engine may also issue one or more obligations and/or
callbacks to the content-consuming application, requiring
the application to perform certain actions as a consequence
of having been given access to the content.
0137 FIG. 13 shows the elements that make up a content
consuming client application 1300 in one embodiment. As
shown in FIG. 13, host application 1302 is the logical central
point of the client. It is responsible for driving the interaction
pattern between the other modules, as well as interaction
with the user through user interface 1304. The host appli
cation 1302 provides a set of services to DRM engine 1306
via a host services interface 1308. The host services inter
face 1308 allows the DRM engine 1306 to get access to data
managed by the host application 1302, as well as certain
library functions implemented by the host application 1302.
In one embodiment, the host services interface 1308 it is the
only outbound interface for the DRM engine 1306.
0.138. In one embodiment, the DRM engine 1306 does
not interact directly with the multimedia content managed
by the host application 1302. The host application 1302
logically interacts with content services 1310 for accessing
the multimedia content, and passes on to the DRM engine
1306 only the portions of data that must be processed by the
engine. Other interactions with the content are performed by
the media rendering engine 1312. For example, in one
embodiment content services 1310 are responsible for
acquiring content from media servers, and storing and
managing the content on the clients persistent storage,
while media rendering engine 1312 is the Subsystem respon
sible for accessing the multimedia content and rendering it
(e.g., on a video and/or audio output). In one embodiment,
the media rendering engine 1312 receives some information
from DRM engine 1306 (such as content decryption keys),
but in one embodiment the DRM engine 1306 does not
interact with media rendering engine 1312 directly, but
rather through the host application 1302.
0.139. Some of the information needed by the DRM
engine 1306 might be available in-band with the multimedia
content, and can be acquired and managed through the
content services 1310, but some of this information may
need to be obtained via means of other services such as a
personalization service or a membership service (not
shown).
0140. In the embodiment shown in FIG. 13, crypto
graphic operations (e.g., encryption, signature verification,
etc.) are handled by crypto services block 1314. In one
embodiment, the DRM engine 1306 does not interact
directly with the crypto services block 1314, but instead
interacts indirectly via the host 1302 (using host services
interface 1308), which forward its requests. Crypto services
1314 may also be used by, e.g., the media rendering engine
1312 in order to perform content decryption
0141. It will be appreciated that FIG. 13 is provided for
purposes of illustration, and that in other embodiments the

Jul. 26, 2007

various components shown in FIG. 13 could be rearranged,
merged, separated, eliminated, and/or new components
could be added. For example, without limitation, the logical
division of functionality between the DRM engine and the
host application in FIG. 13 is simply illustrative of one
possible embodiment, and in practical implementations
variations can be made. For example, the DRM engine could
be integrated wholly or partially with the host application.
Thus, it will be appreciated that any suitable division of
functionality between host application and DRM engine can
be used.

0142)
0.143. The following provides an example of the func
tions that a packaging engine might perform for a host
application that packages electronic content. In practice, a
packaging application may focus on packaging specifically,
or could be part of a general-purpose application operating
at a user system that also accesses protected content (either
packaged locally or elsewhere, e.g., on a network).
0144. In various embodiments, a packaging host appli
cation might perform some or all of the following:

1.6. Packager Architecture

0145 Provide a user interface by which content and
license information can be specified;

0146) Encrypt content;
0147 Create the DRM objects that make up a license:
and/or

0.148 Create a content object that contains or refer
ences the content and contains or references a license

0.149 FIG. 14 shows the elements that make up a pack
aging application 1400 in one embodiment. DRM packaging
engine 1416 is responsible for packaging licenses such as
those described herein (e.g., licenses comprising DRM
objects such as controls, controllers, protectors, and the
like). In some embodiments, DRM packaging engine 1416
may also associate metadata a license to explain, in human
readable form, what the license does.
0150. In one embodiment, a host application 1402 pro
vides a user interface 1404 and is responsible for obtaining
information Such as content references and the action(s) the
user (typically a content owner or provider) wants to per
form (e.g., to whom to bind content, what content-usage
conditions to include in a license, etc). User interface 1404
can also display information about the packaging process,
Such as the text of the license issued and, if a failure occurs,
the reason for the failure. In some embodiments, some
information needed by the host application 1402 may
require the use of other services, such as authentication or
authorization services, and/or membership through a Service
Access Point (SAP). Thus, in some embodiments the pack
aging application 1400 and/or the host application 1402 may
need to implement some or all of the following:

0151 Media format services 1406: In one embodi
ment, this element is responsible for managing media
format operations such as transcoding and packaging. It
is responsible as well for content encryption, which is
achieved via content encryption services module 1408.

0152 General-purpose cryptographic services 1410:
In one embodiment, this element is responsible for
issuing/verifying signatures, as well as encrypting/

US 2007/0172041 A1

decrypting some data. Requests for Such operations
could be issued by the Service Access Point 1414 or by
the DRM packaging engine 1416 via host services
interface 1412.

0.153 Content encryption services 1408: In one
embodiment, this module is logically separated from
the general-purpose cryptographic services 1410
because it does not know about the application. It is
driven by the media format services at content pack
aging time with a set of keys previously issued by the
DRM packaging engine 1416.

4. Key Derivation
0154) The following describes a key derivation system
that fits naturally with preferred embodiments of the DRM
engine and system architecture described herein, and/or can
be used in other contexts. Some of the examples in the
following section are taken from a reference implementation
of a preferred embodiment of this key derivation system
known as "Scuba'. Additional embodiments are described in
the 551 application.
0155 As shown in FIG. 15, in some embodiments link
objects 1530a, 1530b are used to distribute keys, in addition
to their primary purpose of establishing relationships
between nodes 1500a, 1500b, 1500c. As described above, a
control object can contain a control program that can be used
to decide if a request to perform an action should be granted
or not. To do this, the control program may check whether
a specific node is reachable via a chain of links. The key
derivation techniques described herein take advantage of the
existence of this chain of links to facilitate the distribution
of a key, such that the key can be made available to the DRM
engine that is executing the control program.
0156. In one illustrative embodiment, each node object
1500a, 1500b, 1500c in a given deployment that uses the
optional key distribution system has a set of keys that are
used to encrypt content keys and other nodes' keys. Link
objects 1530a, 1530b created for use in the same deploy
ment contain some cryptographic data as a payload that
allows key information do be derived when chains of links
are processed by a DRM engine.
0157 With nodes and links carrying keys in this manner,
given a chain of links 1530a, 1530b from a node A 1500a to
a node C 1500C, an entity (e.g., the DRM engine of a client
host application) that has access to the secret sharing keys of
node A 1515a, 1525a, also has access to the secret sharing
keys of node C 1515c, 1525c. Having access to node Cs
secret sharing keys gives the entity access to any content key
encrypted with those keys.
0158) 1.7. Nodes, Entities, and Keys
0159) 1.7.1. Entities
0160 In one embodiment of a DRM system, nodes are
data objects, not active participants in the system. Active
participants, in this context, are called entities. Examples of
entities are media players, devices, a Subscription service,
content packagers, and the like. Entities typically have nodes
associated with them. An entity that consumes content uses
a DRM engine and manages at least one node object that
constitutes its personality. In one embodiment, an entity is
assumed to have access to all the data of the node objects it
manages, including all the private information of those
objects.

12
Jul. 26, 2007

0161) 1.7.2. Nodes
0162 Node objects that participate in an illustrative
embodiment of the key derivation system contain keys as
part of their data. In one embodiment, nodes may contain
two general types of keys: sharing keys and confidentiality
keys. The following sections list the different key types that
can be used in various embodiments. It will be appreciated,
however, that a specific deployment may use only a Subset
of these keys. For example, a system could be configured to
work only with key pairs, omitting the use of Secret sym
metric keys. Or a system could be deployed without provi
Sioning nodes with confidentiality keys if it only needed to
use the sharing keys.

0163 1.7.2.1. Sharing Keys
0.164 Sharing keys are public/private key pairs and/or
symmetric keys that are shared by a node N and all the nodes
PX for which there exists a link from PX to N that contains
key derivation extensions.
0.165 Sharing Public Key: Kpub-shareN) This is the
public part of a pair of public/private keys for the public key
cipher. This key typically comes with a certificate so that its
credentials can be verified by entities that want to crypto
graphically bind confidential information to it.
0166 Sharing Private Key: Kpriv-share N This is the
private part of the public/private key pair. The entity that
manages the node is responsible for ensuring that this
private key is kept secret. For that reason, this private key
will generally be stored and transported separately from the
rest of the node information. This private key can be shared
downstream with other nodes through the key derivation
extensions of links.

0.167 Sharing Symmetric Key: Ks-share NThis is a key
that is used with a symmetric cipher. As with the private key,
this key is confidential, and the entity that manages the node
is responsible for keeping it secret. This secret key can be
shared downstream with other nodes through the key deri
Vation extensions of links.

0168 1.7.2.2. Confidentiality Keys
0.169 Confidentiality keys are key pairs and/or symmet
ric keys that are only known to the entity that manages the
node to which they belong. The difference between these
keys and the sharing keys described above is that they will
not be shared with other nodes through the key derivation
extensions in links.

0170 Confidentiality Public Key: Kpub-confNThis is
the public part of a pair of public/private keys for the public
key cipher. This key typically comes with a certificate so that
its credentials can be verified by entities that want to
cryptographically bind confidential information to it.
0171 Confidentiality Private Key: Kpriv-confNThis is
the private part of the public/private key pair. The entity that
manages the node is responsible for ensuring that this
private key is kept secret. For that reason, this private key
will generally be stored and transported separately from the
rest of the node information.

0172 Confidentiality Symmetric Key: Ks-confN This
is a key that is used with a symmetric cipher. As with the
confidentiality private key, this key is kept secret.

US 2007/0172041 A1

0173
0174 Preferred embodiments of the key derivation and
distribution systems described herein can be implemented
using a variety of different cryptographic algorithms, and are
not restricted to any specific choice of cryptographic algo
rithm. Nevertheless, for a given deployment or profile, all
participating entities will generally need to agree on a set of
supported algorithms (where the term profile will generally
refer to the specification of a set of actual technologies used
in a particular implementation (e.g., an RSA for key deri
vation; XML for encoding objects; MP4 for the file format,
etc.) and/or other representation of the semantic context that
exists when objects are defined in a practical deployment).
0175. In one embodiment, deployments include support
for at least one public key cipher (such as RSA) and one
symmetric key cipher (such as AES).

1.8. Cryptographic Elements

0176) The following notation will be used when referring
to cryptographic functions:

0177 Ep(KpubN), M) means “the message, M,
encrypted with the public key, Kpub, of node, N, using
a public key cipher

0.178 Dp(KprivN), M) means “the message, M.
decrypted with the private key, Kpriv. of node, N, using
a public key cipher

0179 Es(KsNJ, M) means “the message, M,
encrypted with the symmetric key, Ks, of node, N.
using a symmetric key cipher

0180 Ds(KSN), M) means “the message, M.
decrypted with the symmetric key, Ks, of node, N.
using a symmetric key cipher

0181
0182. In a preferred embodiment, two types of crypto
graphic targeting are used. Targeting a content key to a target
node's sharing keys means making that key available to all
entities that share the secret sharing keys of that target node.
Targeting a content key to a node's confidentiality keys
means making that key available only to the entity that
manages that node. Targeting of a content key is done by
encrypting the content key, CK, carried in a ContentKey
object using one or both of the following methods:

0183) Public Binding: Create a ContentKey object that
contains Ep(KpubN), CK)

1.9. Targeting of Content Keys

0.184 Symmetric Binding: Create a ContentKey object
that contains Es(KSN). CK)

0185. In a preferred embodiment, symmetric binding is
used where possible, as it involves a less computationally
intensive algorithm, and therefore makes it less onerous to
the receiving entity. However, the entity (typically, a content
packager) that creates the ContentKey object may not
always have access to KSN). If the packager does not have
KSN), then it can use public binding, since KpubN is not
confidential information and therefore can be made available
to entities that need to do public binding. KpubN will
usually be made available to entities that need to target
content keys, accompanied by a certificate that can be
inspected by the entity to decide whether KpubN is indeed
the key of a node that can be trusted to handle the content
key in accordance with some agreed-upon policy (e.g., that

Jul. 26, 2007

the node corresponds to an entity running a DRM engine and
host application that comply with the functional, opera
tional, and security policies of the system).

0186 1.10. Derivation of Keys. Using Links
0187 To allow an entity to have access to the sharing
keys of all the nodes reachable from its personality node, in
one embodiment link objects contain an optional key exten
sion payload. This key extension payload allows entities that
have access to the private/secret keys of the link’s “from
node to also have access to the private/secret sharing keys of
the link’s “to node. In this way, an entity can decrypt any
content key targeted to a node that is reachable from its
personality node (if the targeting was done using the target
node's sharing keys).

0188 In one embodiment, when a DRM engine processes
link objects, it processes the key extension payload of each
link in order to update an internal chain of keys to which it
has access. In one embodiment, the key extension payload of
a link, L, from node, F, to node, T. comprises either:

0189 Public derivation information: Ep(Kpub-share
F), Ks-shareT), Kpriv-shareT})

0.190 or
0191) Symmetric derivation information: Es(Ks-share

F), Ks-shareT), Kpriv-shareT})
0.192 Where Ks-shareT), Kpriv-shareT} is a data
structure containing Ks-share T and Kpriv-shareT.

0193 The public derivation information is used to con
vey the secret sharing keys of node T. Ks-share T and
Kpriv-shareT), to any entity that has access to the private
sharing key of node F. Kpriv-shareF).

0194 The symmetric derivation information is used to
convey the secret sharing keys of node T. Ks-shareIT and
Kpriv-shareT), to any entity that has access to the symmet
ric sharing key of node F. Ks-shareF).
0.195 As for targeting content keys to nodes, the pre
ferred payload to include in a link is the symmetric deriva
tion information. This is possible when the link creator has
access to Ks-shareF). If not, then the link creator will fall
back to including the public derivation information as the
payload for the link.
0.196 Assuming that the DRM engine processing a link
already had Ks-share F and Kpriv-share F in its internal
key chain, after processing the link, LF->T), it will also
have Ks-share T and Kpriv-shareT).
0197) Since, in one embodiment, links can be processed
in any order, the DRM engine may not be able to do the key
derivation computations at the time a given link, L, is
processed. This might be due to the fact that, at that time, the
DRM engine's key chain might not yet contain the keys of
the “from node of that link. In this case, the link is
remembered, and processed again when new information
becomes available to the DRM engine, such as after pro
cessing a new link, P. If the “to node of link P is the same
as the “from node of link L, and the “from node of link P
is a reachable node, then the “from node of link L will also
be reachable, and the key derivation step adds the private
sharing keys of the “from node of link L to the key chain.

US 2007/0172041 A1

5. Implementation Examples
0198 Several examples are provided below to illustrate
how various embodiments of the systems and methods
described herein could be applied in practice. The systems
and methods described herein can enable a wide range of
rights management and other functionality, and thus it will
be appreciated that the specific examples that are given here
are not intended to be exhaustive, but are rather illustrative
of the scope of the inventive body of work.
0199.
0200 Assume that you want to implement a DRM system
that ties the right to play content to a particular user, and you
want to make it easy for the user to play content on all the
playback devices that he or she owns. Assume that you
decide that you are going to provide users with Software that
enables them to add playback devices as needed (e.g.,
mobile players). Also assume, however, that you want to set
Some policy to limit the number of general-purpose devices
to which the user can transfer the content, so that the user
does not have the ability to act as a distribution agency.

1.11. Example: Users, PCs, and Devices

0201 Based on these system requirements, it might, for
example, make sense to tie the licenses you create to users,
and to establish relationships between users and the devices
that they use. Thus, in this example, you might first decide
what kinds of nodes you need to establish the sorts of
relationships that you require. For example, you might
define the following types of nodes:

0202 User (e.g., an individual who owns the rights to
use the content)

0203 PC (e.g., a software application, running on a
personal computer, that can play content and specify
additional playback devices)

0204 Device (e.g.,
device)

a portable content-rendering

0205 Each node object can include a type attribute that
indicates whether the object represents a user, a PC, or a
device.

0206 Say, for example, that you decide to restrict the
maximum number of PC node objects that can be attached
to any one user at a particular time to four (4). You decide
there is no need to restrict the number of devices attached to
the user as long as you provide restriction on the number of
PCs. Based on this, a control program can be set up to allow
access if a relationship can be established between the user
node and the node that requests access. That node, then,
could be either a PC or a device.

0207 FIG. 16 shows a system designed to fulfill the
foregoing requirements. Server 1600 assigns a user node
object 1602a, 1602b to each new user 1604a, 1604b, and
manages the ability of users 1604a, 1604b to associate
devices 1606, 1608 and PCs 1610, 1612 therewith for the
purpose of accessing protected content. When a user 1604a
wishes to associate a new device 1606 with his or her user
node 1602a, server 1600 determines whether the device
1606 already contains personalization information 1614, as
might be the case if the device 1606 was personalized at the
time manufacture. If the device does contain personalization
information 1614, server 1600 uses that personalization
information 1614 to create a link 1616 from the device 1606

Jul. 26, 2007

to the user's node 1602a, and sends link 1616 to the user's
device 1606. When user 1604a obtains protected content
1618 (e.g., from server 1600 or from some other content
provider), that content 1618 is targeted to the user's node
1602a (e.g., by encrypting the contents decryption key with
one of the secret sharing keys associated with the user's
node 1602a) and a license 1619 is associated therewith
specifying the conditions under which the content can be
accessed. When user 1604a attempts to play content 1618 on
device 1606, the DRM engine 1620 running on device 1606
evaluates the license 1619, which indicates that the content
1618 can be played as long as user node 1602a is reachable.
DRM engine 1620 evaluates link 1616, which shows that
user node 1602a is reachable from device 1606, and grants
user 1604a's request to access content 1618, e.g., by autho
rizing decryption of the content decryption key contained
within license 1619.

0208 Since the content decryption key, in this example,
is encrypted using a secret key associated with the user's
node 1602a, this secret key will need to be obtained in order
to decrypt the content decryption key. If the optional key
derivation techniques described elsewhere herein have been
used, the user node's key can be obtained simply by decrypt
ing the key derivation information contained in link 1616
using one of device 1606's secret keys. The decrypted key
derivation information will contain the key needed to
decrypt the content decryption key contained in license 1619
(or information from which it can be derived or obtained).
0209 Referring once again to FIG. 16, assume user
1604a wishes to associate a new PC 1610 with his or her
user node 1602a. Server 1600 verifies that the maximum
number of PCs have not already been associated with user
node 1602a, and authorizes PC 1610 to be associated with
user node 1602a. To perform the association, however,
server 1600 needs to obtain personalization information
from PC 1610 (e.g., cryptographic keys, a unique identifier,
etc.). If, however, the PC 1610 has not been previously
personalized (as might be the case if the user simply
downloaded a copy of the PC software) server 1600 will
perform the personalization process (e.g., by creating a PC
node object using the bootstrap protocol described else
where herein) or direct the user to a service provider who
can perform the personalization process. Upon completion
of the personalization process, server 1600 can create a link
1624 from PC 1610 to user node 1602a and send the link to
the PC 1610, which could continue to use it as long as it
remained valid.

0210. The user could request to add additional PCs later,
and the server would enforce the policy that limits the
number of PC node objects per user to 4 (typically it would
also provide the ability for users to remove PCs from its
active list as needed).
0211. As yet another example, assume now that the
service provider has decided that users should be able to play
any content that they own on any device that they own. The
service provider might also wish to allow the user's PC
software to create links to each of his or her devices, rather
than requiring the user to contact server 1600. In such an
embodiment, when the user wished to play content on a new
device, the user's PC software would access the new
device's confidential personalization information and use it
to create a new link for that device (e.g., a link from the new

US 2007/0172041 A1

device to the user's node 1602a). If the device was not
personalized, then the PC software might access a remote
service, or direct the device to access the remote service, to
perform the personalization process. The PC software would
then send the link to the new device, at which point the new
device would be able to play the content as long as it
remained valid, since, in one embodiment, once a link object
exists there is no need to create another one unless the link
object expires or is otherwise invalidated.
0212. In the examples shown above, content is targeted to
the user. To do this, a packager application chooses a new ID
for the content, or uses an existing one, creates an encryption
key and associated ContentKey object, as well as a protector
object to bind the content object and the ContentKey object.
The packager then creates a control object with a control
program (e.g., compiled in byte code executable by the
DRM engine's virtual machine) that allows the “play' action
to take place if and only if the user node is reachable from
the PC or device node that is requesting the action. Typically,
the control, controller, protector and ContentKey objects are
embedded in the packaged content if appropriate, so that the
PCs and devices do not have to obtain them separately.
0213. In one embodiment, when a device or a PC wants
to play content, it follows a process Such as that previously
described in connection with FIG. 9. That is, the DRM
engine finds the protector object for the content ID of the
content, then the ContentKey object referenced by that
protector, then the controller object that references that
ContentKey object, and finally the control object referenced
by that controller. The DRM engine executes the control
program of the control object, which checks whether or not
the user node is reachable. If the device or PC node has the
necessary link objects to verify that there exists a path
between its node and the user node, then the condition is met
and the control program allows the use of the key repre
sented in the ContentKey object. The media rendering
engine of the device or PC can then decrypt and play the
COntent.

0214) 1.12. Example: Temporary Login
0215 FIG. 17 is another example of a potential applica
tion of the DRM systems and methods described herein.
This example is similar to the example in the preceding
section, except here the policy that governs creation of link
objects between PC node objects and user node objects
allows for a temporary login of no more than 12 hours, as
long as the user does not already have a temporary login on
another PC. This feature would allow a user 1700 to take his
content 1702 to a friend’s PC 1704, log in to that PC 1704
for a period of time, and play the content 1702 on the
friends PC 1704.

0216) To accomplish this, a link object 1710 would be
created with a limited validity period. In one embodiment,
this could be done as follows:

0217 For ease of explanation, assume that the DRM
enabled consuming software 1714 required to play the
DRM-protected content 1702 is already present on the
friend’s PC 1704. The file containing the content 1702 and
license 1708 is transferred to the friends PC 1704. When the
user tries to play the content 1702, the software 1714
recognizes that there is no valid link object linking the local
PC node with the node of the user who owns the content.

Jul. 26, 2007

Software 1714 prompts the user for his credentials 1712
(this could be provided via a username?password, a mobile
phone authentication protocol, a Smartcard, or any authen
tication system allowed under the policy of the system) and
communicates with a backend system 1706. The backend
system 1706 checks the attributes of the user node object and
PC node object for which the link is requested, and checks
that there is no active temporary login link object still valid.
If those conditions are met, the backend service 1706 creates
a link object 1710 linking the friends PC node object and
user's node, with a validity period limited to the requested
login duration (e.g., less than 12 hours, to comply with the
policy in this example). Having the link object 1710 now
enables the friend’s PC 1704 to play the user's content 1702
until the link 1710 expires.

0218)
0219 FIG. 18 shows the high-level architecture of an
illustrative system 1800 for managing enterprise documents
(e.g., email, word processing documents, presentation
slides, instant messaging text, and/or the like). In the
example shown in FIG. 18, a document editing application
(e.g., a word processor) 1802, an email client 1804, and a
directory server (e.g., an Active Directory server) 1806 make
use of a digital rights management (DRM) plug-in 1808, a
network service orchestration layer 1810, a registration
service 1812, and a policy service 1816 to facilitate man
agement of documents, email messages, and/or the like in
accordance with policies. In a preferred embodiment, the
DRM plug-in 1808, network service orchestration layer
1810, policy service 1816, and registration service 1812 are
implemented using the DRM engine and service orchestra
tion technologies described elsewhere herein and in the 551
application. For example, in one embodiment DRM plug-in
1808 may comprise an embodiment of the DRM engine
described above. It will be appreciated that while FIG. 18
shows an embodiment in which existing applications such as
word processor 1802 and email client 1804 are integrated
with the DRM engine via a plugin that the applications can
call, in other embodiments the DRM engine could be
included as an integral part of either or both of the appli
cations themselves. It will also be appreciated that the
illustrative system shown in FIG. 18 can be implemented
within a single enterprise or may span multiple enterprises.

0220. In the illustration shown in FIG. 18, the directory
server 1806 may, for example, contain user profiles and
group definitions. For example, a group called “Special
Projects Team” may be set up by a company’s system
administrator to identify the members of the company’s
Special Projects Team.

0221) In one embodiment the directory server 1806 may
comprise an Active Directory server running web services,
such as those described in the 551 application (and imple
mented, e.g., with standard IIS based technologies on the
Windows(R platform), that issue nodes, links, and licenses to
the people in the Special Projects Team group based on
content that is accessed. If membership changes in the
group, then new tokens may be issued. For revocation of
rights, the directory server 1806 can run a security metadata
service based on technology Such as that described in the
551 application (occasionally referred to herein as
“NEMO technology). In some embodiments, the client can
be required to have an to-date time value or notion of time

1.13. Example: Enterprise Content Management

US 2007/0172041 A1

(based on whatever freshness value the company chooses to
define (e.g., 1 week, 1 day, 1 hour, every 5 minutes, etc.)) in
order to use DRM licenses. For example, a token that the
security metadata service provides might include a trusted
and authenticable time value. In some embodiments, the
client can identify user nodeIDS in security metadata service
interactions. Security metadata can be evaluated directly in
the context of license controls to determine if a user still has
a given membership. Security metadata can also return
agents that can determine if relationships such as being a
member in the Special Projects Team are valid. Thus, in
Some embodiments it is possible to leverage a company’s
existing authorization and authentication infrastructure (e.g.,
the company’s Active Directory server) with just the addi
tion of a few well-defined web services.

0222 FIG. 19 shows an example of how a system such as
that shown in FIG. 18 can be used to manage access to or
other use of a document. In this example, a particular
employee (John) might frequently work on highly confiden
tial strategic projects, and may have already installed the
DRM plugin 1908 for his applications (e.g., a word pro
cessing program 1902, an email program 1904, a calendar
program, a program or program Suite that integrates Such
programs, and/or the like). At some point during the creation
of his document, John accesses a “permissions’ pull-down
menu item that has been added to his applications toolbar
(action 1913). A permissions dialog box appears which
contacts his company's Active Directory Server 1906 for a
directory of individuals and groups that have been set up on
the system. He selects “Special Projects Team from the list,
and elects to give everyone on the team permission to view,
edit, and print the document. Using the NEMO service
orchestration technologies described in the 551 application,
the DRM plugin 1908 contacts a NEMO-enabled Policy
Service extension 1916 to the Active Directory 1906 and
requests a copy of the Policy to use to protect files for the
Special Projects Team (action 1914). When John saves the
document, the DRM plugin automatically encrypts the file
1912, and creates a license object targeted and bound to the
group known as “Special Projects Team’1910. The license
1910 allows the file 1912 to be accessed (e.g., viewed,
edited, printed, etc.) by any device that can produce a valid
chain of links from its Device Node to the Special Projects
Team Group Node.

0223 John can access the document 1912 because his
device has a link to John's User Node, and it also has a link
from John's User Node to the “Special Projects Team”
Group Node. Likewise, if he forwards this document to
others, they can only access it if they also can produce a
valid chain of links to the “Special Projects Team Group
Node (e.g., by requiring that the Special Projects Team Node
be reachable by the device).
0224 John might save the file (already protected) on his
computer, and later attach it to an email message (action
1920). For example, he might open an old email to his boss
(George), attach the file as he normally does, and send the
message. As shown in FIG. 20, George also has the DRM
plugin 2000 installed on his computer 2014. When he logged
in to his computer 2014, the plugin 2000 opportunistically
checked all of the groups that he has been added to (action
2006), and downloaded new, refreshed links for any that had
expired (action 2012). If he had been added to “Special
Projects Team” since his last login, his plugin 2000 would

Jul. 26, 2007

download a Link Object 2008 that links his User Node to the
“Special Projects Team” Group Node. This Link 2008
signifies that User Node “George' is a member of the Group
Node "Special Projects Team”. In this example, assume Link
Object 2008 has an expiration date after which it will no
longer be valid (e.g., 3 days).

0225. As shown in FIG. 21, when George tries to open
the document (actions 2130, 2132), the DRM plugin 2108
checks the embedded (or attached) license, and learns that
the “Special Projects Team' node must be reachable. His
plugin 2108 constructs (and validates) a chain of links 2120.
2122 from his computer's Device Node to the User Node
“George'; and from User Node “George' to Group Node
“Special Projects Team” (action 2134). Since the device has
a valid chain of Links 2120, 2122, his plugin 2108 permits
access to the file.

0226. As described elsewhere herein, in some embodi
ments links can also carry a secure chain of keys. Thus, in
Some embodiments, by producing a chain of Links to the
Special Projects Team Node, the plugin can not only prove
that it is permitted to access the content, but also that it is
capable of decrypting a chain of keys that enable it to
decrypt the content.
0227) If, for example, another employee (“Carol')
receives John's email accidentally, and attempts to open the
document, her DRM plugin will retrieve the license bundled
with the file and evaluate the terms of the license. Her PC
has a link to her User Node "Carol'; but since she is not a
member of the team, there is no Link from "Carol' to the
“Special Projects Team” Group Node. Since “Special
Projects Team' is not reachable, she is not permitted to
access the file.

0228 If Carol is eventually added to the group “Special
Projects Team'. The next time her DRM plugin refreshes her
memberships, it will detect this new group, and download a
Link Object that links her User Node to the Special Projects
Team Node. Her plugin now has all of the links it needs to
construct a chain from her Device Node to her User Node to
the Special Projects Team Node. The Special Projects Team
node now "is reachable' and she can open any documents or
emails that are targeted to the Special Projects Team—even
those that were created before she joined the team.
0229 Assume that a month later George moves on to a
new role and is removed from the Special Projects Team
Group in the Active Directory. The next time George logs in,
his plugin does not receive a new, refreshed Link Object
associating his User Node “George' to the “Special Projects
Team. When, weeks later, he tries to open John's file, his
plugin attempts to construct a chain of links to the Special
Projects Team. His PC still has a link to the User Node
“George' (George's PC still belongs to him); but the Link
from “George' to the “Special Projects Team has expired.
Since “Special Projects Team is not reachable, he is not
permitted to access the file.
0230 Assume that the company has a policy that requires
access to all confidential information to be logged. In one
such an embodiment, the policy for the Special Projects
Team dictates that all licenses that are created for this group
also need to require collection and reporting of usage
information to, e.g., a central repository. Thus, in this
example, when evaluating (e.g., executing) the control pro

US 2007/0172041 A1

gram in the license, the plugin executes the requirement to
log the access and does so. For example, activity of conse
quences can be logged in a local protected State database
Such as that described herein, and when network connectiv
ity is re-established the relevant content can be reported via
services previously described.
0231 FIG.22 shows another illustrative system 2200 for
managing electronic content within an enterprise. In the
example shown in FIG. 22 an LDAP server 2206 is used to
manage user profiles, group definitions, and role assign
ments, and contains a group definition called “Special
Projects Team’, and a role definition of “Attorney'.
0232 Assume that John is an attorney and wishes to send
an email with an attachment to other members of the Special
Projects Team. When John installs the DRM plug-in 2208
for his applications, it also installs items to his email toolbar.
At some point during his composition of the email message,
John accesses “Set Permissions” from a pull-down menu
that was added to his toolbar. The DRM plug-in 2208
contacts a Policy Service 2216 and displays a list of corpo
rate messaging policies from which to choose. John selects
“Special Project DRM Template” and the DRM plug-in
2208 uses the NEMO protocol to request and ensure the
authenticity, integrity, and confidentiality of policy object
that it receives. The policy describes how the licenses that
use this template should be created, including how they
should be targeted and bound.
0233. When John hits “Send’, the DRM plugin 2208
encrypts the message and attachment, and generates the
associated license(s). The license requires that in order to
access the email or the attachment, either the Special
Projects Team Group Node or the “Attorneys' Group Node
must be reachable.

0234. The license(s) are bundled with the encrypted
message payload and encrypted attachment. The message is
Subsequently sent to a list of recipients using standard email
functionality. Since the license rules and encryption are not
dependent on the addressing of the email, the fact that an
incorrect email recipient might be erroneously included does
not put the contents of the email or attachment at risk.
0235 Since such an unintended recipient will not have a
valid Link Object linking his User Node to the Special
Projects Team, he is not permitted to access the content if
and when he attempts to do so. Furthermore, since his device
does not have the necessary chain of Links (and the keys
they contain), his device does not even have the capability
to decrypt the content.
0236. However, if the unintended recipient, in turn, for
wards the same, unmodified email using standard email
functionality to a member of the Special Projects Team. That
member will have a Link Object that Links his User Node
to the “Special Projects Team Group Node, and will be able
to access the email's contents.

0237 Assume that another attorney (“Bill') at the com
pany has also received a Link Object that associates him
with the “Special Projects Team Group Node. Bill can also
view the file. If he forwards the message to a paralegal
(“Trent'), who is neither an attorney nor associated with the
Special Projects Team, Trent will not have a Link Object that
connects him with the “Special Projects Team Group Node,
and he will not be able to access the document.

Jul. 26, 2007

0238 If Trent is subsequently added to the Special
Projects Team group in the LDAP directory 2206, he will be
given the necessary Link Object(s) and will be able to access
the previously forwarded email.
0239). If, as previously discussed, the company has a
policy indicating that a reporting requirement be included in
all licenses, then, in one embodiment, whenever a control
program within one of these licenses is executed (e.g., when
someone attempts to access the file), a reporting event can
be triggered. The reporting step can additionally include an
indicator as to whether or not access was granted or
denied—this is a matter of implementation choice. If such an
indicator is used, a log can be maintained of the number of
attempts to access a particular document, and status or other
information on each (e.g., Success, failure, etc.).
0240. As yet another example, assume that one of the
members (“Stephen') of the Special Projects Team travels to
another company to perform work on the special project.
Before leaving for the other company, Stephen's email client
downloads a local copy of all the email in is Inbox. The
protected report attached to one of these emails also includes
an embedded (or attached) license. This license object
includes both the rules for accessing the content as well as
an encrypted content key. The only “missing link' required
to access the content is the necessary link objects to reach
the “Special Projects Team” Group Node.
0241 Since, in this example, the company’s policy is to
allow Link Objects to remain valid for 3 days, the Link
Object that links Stephen's User Node to the Special
Projects Team Node, will remain valid while he is traveling
and disconnected. If he attempts to access the file while
offline, the Special Projects Team Group Node will still be
reachable, and he will be permitted to access the file.
0242) If, however, Stephen stays offline for more than
three days, the Link Object linking him to the Special
Projects Team will expire. The Special Projects Team Group
Node will then no longer be reachable, and he will not be
permitted to access the file.
0243 If Stephen eventually travels to a location where he
can connect to the company's system (e.g., via VPN), his
DRM plug-in will request refreshed copies of Link Objects
for each of the groups to which he belongs. Since he is still
part of the “Special Projects Team’ group, he will receive a
new link object from his User Node to the Special Projects
Team Group Node. This link replaces the old link which
has expired and is no longer valid.
0244 Since the “Special Projects Team” Node is now
reachable using this new, refreshed Link, he is once again
able to access the protected report. The new link object will
be valid for a period of 3 days, after which it will also expire.
0245. As yet another example, assume that a member
("Sally”) of the Special Projects Team wishes to communi
cate with another team member via an instant messenger,
save a copy of the communication, and give it to another
member of the team (e.g., via an email attachment, a
diskette, a dongle, or the like). In this example, the instant
messenger client (and, potentially any other messaging or
communication products which the company offers its
employees) is linked to a DRM plugin which, as in the
previous examples, accesses the Policy “Special Project
DRM Template” that dictates how licenses are to be targeted

US 2007/0172041 A1

and bound. When Sally attempts to save her instant mes
saging conversation (e.g., by selecting "Save-As”), the plug
in chooses an encryption key (e.g., randomly) and packages
(encrypts) the text of the conversation. Per company policy,
the DRM plugin then generates a license object that is
targeted and bound to the Special Projects Team Group
Node.

0246 The file containing the protected IM transcript is
bundled with the license to access the transcript contents. As
in the previous examples, the License contains both the rules
that govern access to the content, as well as an encrypted
copy of the content key. Sally can transfer this bundled file
to an email, USB dongle, diskette, etc. using standard drag
and drop procedures, and send it to someone else. Provided
that the recipient’s device can produce valid links to the
Special Project Group Node, access to the content is per
mitted and possible.
0247 Assume that Sally gives the file to John, who is also
a member of the Special Projects Team. If John has a
recently-refreshed Link Object that identifies him as a
member of the Special Projects Team, he will be able to
access the file. Per the company’s policy, this Link Object
contains an expiration date that will cause it to expire in
three days. Therefore, even if John remains disconnected, he
will still have access as long as that link remains valid.
0248 If, at some later time, John leaves the Special
Projects Team for another job assignment, and finds the USB
dongle from Sally in his bag and attempts to open the file
using his desktop computer, the Link Object associating his
User Node to the Special Projects Team will have expired.
Since he is no longer part of the team, the DRM plugin on
his device no longer can acquire new, refreshed links. Since
the “Special Projects Team Group Node is no longer
reachable by his device, access is not permitted.
0249 Figuring that his laptop has not been connected to
the network since he changed jobs, he also tries to open the
file with that device. Since the maximum allotted time has
passed, that Link is also no longer valid. In some embodi
ments, each time he attempts to access the file, a report can
be generated and queued to be sent to a central repository.
0250) The central repository receives multiple reports of
unsuccessful attempts to access the file and flags a manager
via email. The manager reminds John that he is no longer
permitted to access the confidential material and asks for all
files to be destroyed (even though the system indicates that
access has not been granted).
0251 As yet another example, assume that a governmen

tal agency or outside auditor wishes to investigate or audit
the Special Projects Teams handling of confidential infor
mation. To Support the investigation, the company wishes to
demonstrate audit records for access to sensitive information
related to the Special Project.
0252) To this end, the company first scans all cleartext
message archives for any messages related to the Special
Project. To their relief, they discover that, in adherence to
company policy, no employees sent messages discussing the
Special Project without appropriate DRM protection (e.g.
outside of the system).
0253) The company then uses the DRM access records to
produce an audit trail detailing who was given access to
protected information, and when.

Jul. 26, 2007

0254 Per company procedure, when the Special Projects
Team Group was established, it also included the Chief
Compliance Officer (CCO) by default. A Link Object for
Chief Compliance Officer was created and saved to the
archive server, which allows him or her to review the
contents of all messages if needed in the future.
0255 In this example, the policy defined for the Special
Projects Team indicated that all Licenses generated by the
team must include the requirement to report any attempted
access to the file, including the date and time. UserNode, and
whether or not access was granted. These reports were saved
in an access log on a central repository.
0256 The CCO checks the access logs for all accesses
associated with the Special Projects Team prior to the date
when any leak or other irregularity was suspected to have
occurred. The CCO also searches the email, IM, and net
work backup archives for all message traffic and system files
on or before that date. Since each file has an attached license
(with content key), and the CCO has the necessary Link
Objects to satisfy the requirements of the License, he or she
is permitted to access the contents of each and every
message that was accessed prior to the time in question.
0257 The access logs and unencrypted message contents
are made fully available to the agency/auditor as part of the
investigation.
0258. In some embodiments the policy for the Special
Projects Team could also have included the requirement to
set an expiration date for the all licenses related to the
Special Project. For example, if the company were only
statutorily required to keep records of this nature for a period
of 1 year, they could indicate in the policy that Licenses
expire one year following date of issue. In that case, the
company might only keep records as long as legally required
to do so. Even the CCO would not have access after that
time.

0259. In the foregoing discussion, reference has occa
sionally been made to “targeting and “binding. In pre
ferred embodiments, targeting and binding represent two
different, yet closely related processes. In preferred embodi
ments, “binding is primarily a cryptographic process, con
cerned with protecting the key that was used to encrypt the
content. When a License is bound to a Node (for example
the “Special Projects Team Node), it can mean, e.g., that the
content key is encrypted with the public key associated with
that Node. Thus, only devices that have access to the private
key of the Node will have the necessary key to decrypt the
content (and in preferred embodiments, the only way to get
access to the private key of a Node is to decrypt a chain of
Links to that Node); however, simply having the correct
private key only indicates that the device has the capability
to decrypt the content, if it is also permitted to do so.
0260. In preferred embodiments, whether or not a device

is permitted to access the content is determined by a Control
Program within the License, and specifically, how it is
“targeted”. “Targeting” refers to adding a requirement in the
Control Program to specify that a particular node (or nodes)
“are reachable' to perform a use of the content. In the
examples shown above, the Control Program typically
specifies that a particular Node "Special Projects Team is
reachable by the consuming device.
0261. In some instances, it may be desirable to have
licenses targeted to more than one Node. Such as a new

US 2007/0172041 A1

product development team at a company (“Company’) that
is working with multiple Suppliers to bid on components for
a new top secret product. Assume that during the early stages
of the project, Supplier A and Supplier B (competitors) both
have links to “SecretProjectX. Supplier A wants its ideas to
be shared with all members of SecretProjectX, but does not
want them to inadvertently leak to Supplier B. Supplier A
can target these licenses such that: (“SecretProjectX is
reachable') AND (“Supplier A is reachable' or “Company is
reachable'). If Company inadvertently shares this informa
tion to everyone in Secret Project X (including Supplier B),
those at supplier B will not be permitted to look at it, limiting
any non-disclosure risk to Company and eliminating the
prospect of Supplier A losing its trade-secrets.
0262)
0263 FIG. 23 illustrates how the systems and methods
described herein could be applied to manage healthcare
records. Assume that medical records have different levels of
confidentiality, and that it is desirable to grant different
access rights to different entities in the system (e.g., patients,
doctors, insurance companies, and the like). For example, it
may be desirable to permit some records to be viewed only
by the patient, to permit some records to be viewed only by
the patient’s doctor, to permit some records to be viewable
by the patient but only editable by the patient’s doctor, to
permit some records to be viewable by all doctors, to permit
Some records to be viewed by all insurance companies, to
permit some records to be viewable only by the patients
insurance company, and/or the like.
0264. As shown in FIG. 23, this healthcare ecosystem
2300 can be modeled using DRM objects like nodes and
links, such as those describe elsewhere herein. For example,
nodes could be assigned to the patient 2302, the patients
doctors 2304, the patients insurance company 2306, the
patient’s devices (2308, 2310) a specific one of patients
doctors 2312, the doctor's computing devices 2314, 2316,
the group of all doctors 2318, the group of doctors of a
certain specialty 2320, a medical institution 2322, an insur
ance company 2324, the computing devices used by the
insurance company 2326, the group of all insurance com
panies 2328, and the like.
0265 Assume that the patient’s doctor uses his or her PC
to create a medical record regarding the patient. For
example, the medical record may comprise a document
template with a number of fields for his or her notes,
diagnoses, prescription instructions, instructions for the
patient and/or the like. The template may also allow the
doctor to select the security policies for governing the
document and/or the individual field thereof. For example,
the doctor's application may present a set of standard
security policy choices, and, upon obtaining the doctor's
selection, may automatically generate a license based on
those choices and associate with the protected (e.g.,
encrypted) content of the medical record.

1.14. Example: Healthcare Records

0266 For purposes of this example, assume the license
grants viewing access to the patient, to all healthcare pro
viders who treat the patient, and to all insurance companies
that provide coverage for the patient. Further assume, for the
sake of illustration, that the license grants editing rights only
to cardiologists at medical institution X.
0267 The packaging application accepts the doctors
policy specification input (which may simply comprise a

Jul. 26, 2007

mouse click on a standard template) and generates a license
that includes a control program Such as that shown below:

Action. Edit. Perform() {
if (IsNodeReachable(“MedicalFoundationX) &&.

IsNodeReachable(“Cardiologist')) {
return new ESB(ACTION GRANTED);

return new ESB(ACTION DENIED);

Action.View.Perform() {
if (IsNodeReachable(“PatientY) ||

IsNodeReachable(“HCPsPatientY) ||
IsNodeReachable(“ICsPatientY) {
return new ESB(ACTION GRANTED);
else if (EmergencyException == TRUE) {
return new ESB(ACTION GRANTED, new
NotificationObligation()); }

else {
return new ESB(ACTION DENIED);

0268. The medical record and its associated license might
then be stored in a central database of medical records, a
database operated by the particular medical foundation,
and/or the like. If patient Y subsequently visits another
healthcare provider, and authorizes that healthcare provider
as one of his approved healthcare providers (e.g., by signing
an authorization form), that healthcare provider will obtain
a link to the patient y approved healthcare providers node,
which the healthcare provider would store on his computer
system. If that healthcare provider were to then obtain the
medical record created by doctor X, he would be able to gain
viewing access to that medical record, since patient y's
approved healthcare provider node would be reachable from
the new healthcare provider's computer system. If on the
other hand, an unapproved healthcare provider were to
obtain a copy of the (encrypted) medical record, he would be
unable to access it since none of the required nodes (i.e.,
patient y's node, the node for all of patient y's approved
healthcare providers, and the node for all of patient y's
approved insurance companies) would be reachable from his
computing system.
0269. Note, however, that the example control program
shown above includes an override feature that can be
invoked, e.g., in emergencies if, for example, a healthcare
provider needs to access the protected medical record, but is
unable to satisfy the conditions of the control program (e.g.,
because the healthcare provider attempting to make emer
gency access to the medical record has not previously been
registered as a healthcare provider of patient Y). Note also,
however, that invocation of the emergency access exception
will cause information to be automatically recorded regard
ing the invocation and/or other circumstances, and, in this
example, will also cause a notification to be sent (e.g., to the
patient’s preferred healthcare provider—i.e., an entity
explicitly authorized by the patient—and/or the patient
himself). The association of such obligations with the emer
gency exception may discourage abuse of the exception,
since a record of the abuse would exist.

0270. It will be appreciated that this example program
has been provided to facilitate explanation of certain
embodiments of the systems and methods described herein.

US 2007/0172041 A1

For example, whether a system includes Support for emer
gency exceptions will typically depend on the requirements
and desires of the system architect. Thus, for example, some
embodiments may not support emergency exceptions, others
may support emergency exceptions, but limit the class of
entities who can invoke such exceptions to the class of “all
doctors' (e.g., by requiring that the EmergencyException
flag be set to “true' AND the All Doctors node be reachable),
and others still may support emergency exceptions, but not
associate mandatory obligations therewith (since inability to
comply with the obligation would, in a preferred embodi
ment, render the content inaccessible), relying instead on
non-technical, legal or institutional means for enforcement
(e.g., by trusting healthcare providers not to abuse the ability
to invoke the exception, and/or relying on industry certifi
cation and the legal system to prevent abuse).

0271. Yet another variation that could be made to the
examples provided above might be to require stronger proof
that a doctor, or a specifically named doctor, was actually the
one accessing a medical record, as opposed to someone else
sitting at the computer that the doctor uses to access records
(and thus a computer potentially containing the links nec
essary to satisfy a reachability analysis). Such a stronger
form of authentication could be enforced in any suitable
manner. For example, it could be wholly or partially
enforced at the application or system level by protecting the
doctor's computer and/or the Software used to access medi
cal records using passwords, dongles, biometric identifica
tion mechanisms, and/or the like. Alternatively, or in addi
tion, the control programs associated with certain medical
records could themselves include an obligation or condition
require Such stronger identification, such as checking for the
presence of a dongle, requiring the host to obtain a pass
word, and/or the like.

0272) 1.15. Example: Subscriptions

0273 FIG. 24 is an illustration of how the systems and
methods presented herein could be used in the context of an
electronic Subscription service. Say, for example, that a user
(Alice) wishes to obtain a Subscription to jazz music from an
Internet service provider (XYZ ISP). The Internet service
provider may offer a variety of different subscription
options, including a trial Subscription that is free of charge,
but can only be used to play Subscription content five times
before expiring (e.g., by playing one song five times, by
playing five different songs once each, or the like). The trial
subscription also will only make the content available in
slightly degraded form (e.g., reduced fidelity or resolution).
Alice uses her personal computer to access the service
provider's Internet website, and opts for the trial subscrip
tion. The service provider then issues a link object 2400 and
an agent 2401 and sends them to Alice's personal computer
2406. The agent 2401 is operable to initialize a state in
Alice's secure state database that will be used to keep track
of the number of times Alice has used trial content. The link
2400 is from Alice's ISP account node (Alice(a)XYZ. ISP)
2402 to subscription node 2404 and includes a control
program that, when Alice requests to play a piece of content,
checks the current value of the state variable set by the agent
2401 to see if additional plays are allowed.

0274. When Alice downloads a piece of content to her PC
and attempts to play it, the DRM engine on her PC evaluates
the license associated with the content, which indicates that

20
Jul. 26, 2007

subscription node 2404 must be reachable in order to play
the content. Alice had previously registered her PC with her
ISP, at which time she received a link 2405 from her PC
node 2406 to her account node 2402. The DRM engine thus
possess link objects 2405, 2400 connecting PC node 2406 to
subscription node 2404; however, before granting Alice's
request to play the content, the DRM engine first determines
whether the links are valid by executing any control pro
grams that the links contain. When the control program in
link 2400 is executed, the DRM engine checks the state
database entry to determine if 5 plays have already been
made, and, if they have not, grants her request to play the
content, but also issues an obligation to the host application.
The obligation requires the host to degrade the content
before rendering. The host application determines that it is
able to fulfill this obligation, and proceeds to render the
content. In order to enable Alice to preview content before
counting that content against her five free trial-offer plays,
the control program might also include a callback that
checks, e.g., 20 seconds after a request to play a piece of
content has been granted, to see if the content is still being
played. If the content is still being played, the play count is
decremented, otherwise it is not. Thus, Alice can select from
any of the content items offered by the subscription service,
and play any five of them before her trial subscription
expires.

0275 Once Alice's trial subscription expires, Alice
decides to purchase a full, monthly subscription which
enables her to play as many content items as she wishes for
a monthly fee. Alice uses her PC to sign up for the
subscription, and receives a link 2410 from her account node
2402 to the subscription node 2404. The link includes a
control program indicating that the link is only valid for one
month (e.g., the control program checks an entry in the State
database to see if one month has elapsed since the link was
issued). This link 2410 is sent to Alice's PC, along with an
agent program that is operable to initialize an appropriate
entry in the state database of the PC's DRM engine indi
cating the date on which the link was issued. When Alice
downloads a piece of content from the Subscription service
and attempts to play it, her PC's DRM engine determines
that a path to the Subscription node exists comprised of links
2405, 2410. The DRM engine executes any control pro
grams contained in links 2405,2410 to determine if the links
are valid. If less than a month has elapsed since link 2410
was issued, the control program in link 2410 will return a
result indicating that link 2410 is still valid, and Alice's
request to play the piece of content. If Alice attempts to play
a piece of content she previously obtained during her free
trial period, the DRM engine on her PC will perform the
same analysis and grant her request. Since the license
associated with the piece of content obtained during the trial
period indicates that if the TrialState variable in the secure
database is not set, the only condition is that the Subscription
node must be reachable, Alice can now access that content
once again since the Subscription node is once again reach
able from Alice's PC, this time via link 2410, not link 2400,
which is no longer valid. Thus, Alice does not need to obtain
a second copy of the content item to replace the copy she
obtained during the free trial offer. Similarly, if Alice obtains
a piece of subscription content from her friend, Bob, who is
also a subscriber to the same service, Alice will, in this
example, be able to play that content, too, since the contents

US 2007/0172041 A1

license simply requires that the Subscription node be reach
able, not that it be reachable via Bob’s PC or account.

0276. It will be appreciated that the above examples are
simply intended to illustrate some of the functionality that
can be enabled by the systems and methods described
herein, and is not intended to Suggest that Subscriptions must
be implemented in precisely the manner described above.
For example, in other embodiments, the license associated
with a piece of Subscription content might be bound to a
user's node, rather than the Subscription node, thus prevent
ing two subscribers from sharing content like Bob and Alice
were able to do in the example described above. It will be
appreciated that many other variations to the above
examples could be made.

0277. The table below provides some illustrative pseudo
code for the agent, link, and license control programs in the
example described above:

The Subscription trial gives you access to up to 5 pieces of
Subscription content. The content will be marked as rendered only after
20 seconds of rendering. Content rendered in the context of the trial
will have to be degraded by the rendering applicatio.
The real subscription will be renewed every month and has no such
limitations on the number or quality of the renderings.
The code of the agent is as follows:

TrialAgent()
SetObject(Tri al S t at e 5);

Control. Link.Constraint.Check() {
if (GetObject("TrialState”, 5) > 0) {

return SUCCESS;
else {

When Alice registers for real to the subscription service, she gets back
a link (from: Alice, to: Subscription) and an agent
The code of the agent is as follows:

RealSubscription Agent() {
fi erase the TrialState if present
trialState = GetObject("TrialState');
if (trialState := NULL) {

SetObject("TrialState', NULL); // erase

Control. Link.Constraint.Check() {
if (GetTrustedTime() < ExpirationDate) {

return SUCCESS;

return FAILURE;

The content licenses targeted to the Subscription all have the same
control program:

Action.Play. Perform() {
i? first check if the subscription node is reachable
if (IsNodeReachable(“SubscriptionNode)) {

return new ESB(ACTION DENIED);

Jul. 26, 2007

-continued

fi now check if the TrialState is present
if (GetObject(“TrialState) = NULL) {

if were in the trial mode: we need a callback and an obligation
return new ESB(ACTION GRANTED,

new OnTimeElapsedCallback (20, DecrementCounter),
new DegradeRendering0bligation());

// were in paid subscription mode: just return ACTION GRANTED
return new ESB(ACTION GRANTED);

fi code of the callback function of OnTimeElapsed
DecrementCounter() {

SetObject("TrialState', GetObject(“TrialState') - 1); }

0278 Referring once again to FIG. 24, Alice also has an
account 2420 with her mobile service provider, which
remains valid as long as she remains connected to the
network. Alice is not required to make a special payment for
the Subscription, in exchange for which she gets sent a link:
instead renewal links 2424 are sent to her phone automati
cally when she connects to the network. These links enable
her to access any of the content items or services offered by
the mobile service provider, which have licenses that require
only that the subscription node 2422 be reachable. If Alice
changes mobile service providers, she will unable to access
previously acquired content once her links 2424 expire.

0279 FIG. 25 shows an example of how a service pro
vider might interact with a home network domain 2500. In
this example, devices are registered to a home network
domain which enforces a policy that allows up to 5 devices
to belong to the domain at any one time. Although the Smith
family's cable service provider did not provide the domain
manager Software used to set up the home network domain
2500, cable service provider knows that the domain manager
has been implemented by a certified provider of home
network domain manager Software, and thus trusts the
domain manager Software to operate as intended. As shown
in FIG. 25, the Smith family connects Alice's phone and PC,
Carl's PVR, and Joe's PSP to the domain 2500, resulting in
links being issued from each of these devices to the domain
node 2500. When new content is received, e.g., at the PVR,
discovery services such as those described in the 551
application enable the other devices in the domain to auto
matically obtain the content and any necessary links. Links
are issued from the domain node 2500 to the service
provider account node 2502. Some of the cable service
provider's content has a license with an obligation that fast
forward and rewind must be disabled so that advertisements
will be viewed. Carls PVR and PC Alice’s PC are able to
enforce the obligation, and thus can play the content. Alice's
mobile phone is unable to enforce the obligation and thus
denies access to the content.

0280) 1.16. Additional Examples: Content and Rights
Sharing

0281. As the preceding examples illustrate, embodiments
of the systems and methods presented herein enable elec
tronic content to be shared in natural ways. For example, the
systems and methods described herein can be used to enable
consumers to share entertainment content with their friends
and family members, and/or enjoy it on all of their family's

US 2007/0172041 A1

devices, while simultaneously protecting against wider,
unauthorized distribution. For example, automated peer-to
peer discovery and notification services can be used. Such
that when one device obtains content or associated rights,
other devices can automatically become aware of that con
tent, thereby providing a virtual distributed library that can
be automatically updated. For example, in one embodiment
if one user obtains content or rights on a portable device at
one location, then comes home, the user's family's devices
can automatically discover and make use of those rights.
Conversely, if a user obtains rights on a device on his or her
home network, his or her portable devices can discover and
carry away that content for use elsewhere. Preferred embodi
ments of the systems and methods described herein can be
used to create services and rights objects that allow the
above-described scenarios to be completely automated,
using, for example, the service discovery and inspection
techniques described in the 551 application. For example,
the devices registered to a particular domain may provide
services to each other (e.g., sharing of rights and content),
and/or remote services can be invoked to facilitate local
sharing of content. The systems and methods described
enable the creation of DRM frameworks that are not focused
on preventing the creation of copies per se, but rather are
designed to work harmoniously with network technology to
allow content to be shared, while protecting against con
Sumers becoming illicit distributors of the content.
0282 Preferred embodiments of the DRM systems and
methods described herein also enable the determination of
rights without the verbose types of rights expressions char
acteristic of some other DRM systems. Instead, preferred
embodiments use a set of crafted rights objects that can
interact contextually. These objects describe relationships
and controls among entities such as users, devices, content,
and groups thereof. For example, such contextual interac
tions might allow a device to determine that a given piece of
content can be played because (a) the content was obtained
from a legitimate content service that the user currently
Subscribes to, (b) the user is part of a specific family group,
and (c) the device is associated with this specific family
group. There are numerous types of relationships such as
those described in this example, which users understand
intuitively, and preferred embodiments of the systems and
methods described herein enable the creation of systems that
naturally understand these kinds of relationships. The rela
tionships among entities can be created, destroyed, and
changed over time, and preferred embodiments provide a
natural way of determining rights in a dynamic networked
environment—an environment that consumers can naturally
understand. Nevertheless, if a content deployer wants to use
a more traditional rights expression approach, preferred
embodiments can accommodate that as well. For example,
tools can be used to translate traditional rights expressions
into sets of objects such as those described above, and/or a
DRM engine can be implemented that operates directly on
Such rights expressions. Alternatively, in Some embodi
ments, devices do not need to understand Such traditional
rights expressions, and are not constrained by their limita
tions.

0283 Preferred embodiments of the systems and meth
ods described herein also have a very general notion of a
media service. Abroadcast service and an Internet download
or Subscription service are examples of media services.
Restrictions associated with these services can make content

22
Jul. 26, 2007

difficult to share. With preferred embodiments of the sys
tems and methods described herein, content can be obtained
on broadcast, broadband, and mobile services, and shared on
a group of networked devices in the home, including por
table devices. Alternatively, or in addition, services can be
offered by individual devices in a peer-to-peer fashion via
wireless connectivity. For example, the new generation of
WiFi enabled cellphones can provide content catalog ser
vices to other devices. Such a service allows other devices
to 'see' what content is available to be shared from the
device. The service provides information that can be used to
determine the rights so that any limitations can be accepted
or easily eliminated.
0284 Preferred embodiments of the systems and meth
ods described herein are not confined to one service or to one
platform. As explained above, preferred embodiments are
capable of working with numerous services, including “per
Sonal” services. This is becoming more and more important
as home and personal networks become more ubiquitous.
For example, digital cameras are now available with WiFi
connectivity, making it very convenient to share photos over
networks. It is nice to be able to automate the sharing of
photographs, but the camera will encounter many different
networks as it is carried about. Automated sharing is con
venient, but personal photos are, of course, personal.
Embodiments of the systems and methods described herein
make it easy to share photos within a family on the family's
devices, but not with arbitrary devices that happen to
encounter the camera on a network. In general, as more
devices become networked, it is going to be increasingly
important to manage the rights of all content on those
devices. Although the purpose of networking is to allow
information on the networked devices to be shared, net
works will overlap and merge into one another. Networks
enable content to be shared easily but it should not be shared
arbitrarily. Thus, it is desirable to have a DRM system that
is network-aware and that can use the context provided by
the content, the user, the network, and characteristics of
devices to determine if and how content should be shared.
Preferred embodiments of systems and methods described
herein enable such an approach.
6. Reference Architecture for Content Consumption and
Packaging

0285) The following is a description of a reference archi
tecture for a consuming application (e.g., a media player)
that consumes DRM-protected content, and a packaging
application (e.g., an application residing on a server) that
packages content targeted to consuming applications.

0286) 1.17. Client Architecture
0287. The following provides an example of functions
that an illustrative embodiment of a DRM engine might
perform for a host application that consumes content.
0288 1.17.1. Host Application to DRM Engine Interface
0289 Although in a preferred embodiment there is no
required API for DRM engines, the following are high-level
descriptions of the type of interface provided by an illus
trative DRM engine (referred to as the “Octopus” DRM
engine) to a host application in one illustrative embodiment:
0290 Octopus::CreateSession(hostContextObject)->
Session—Creates a session given a Host Application Con

US 2007/0172041 A1

text. The context object is used by the Octopus DRM engine
to make callbacks into the application.
0291 Session::ProcessObject(drmObject). This func
tion should be called by the host application when it encoun
ters certain types of objects in the media files that can be
identified as belonging to the DRM subsystem. Such objects
include content control programs, membership tokens, etc.
The syntax and semantics of those objects is opaque to the
host application.
0292 Session::OpenContent(contentReference)->Con
tent—The host application calls this function when it needs
to interact with a multimedia content file. The DRM engine
returns a Content object that can be used Subsequently for
retrieving DRM information about the content, and inter
acting with it.

0293 Content::GetDrmInfo() Returns DRM metadata
about the content that is otherwise not available in the
regular metadata for the file.
0294 Content::CreateAction(actionInfo)->Action. The
host application calls this function when it wants to interact
with a Content object. The actionInfo parameter specifies
what type of action the application needs to perform (e.g.,
Play), as well as any associated parameters, if necessary. The
function returns an Action object that can then be used to
perform the action and retrieve the content key.
0295) Action::GetKey Info()—Returns information that

is necessary for the decryption subsystem to decrypt the
COntent.

0296 Action:Check(). Checks whether the DRM sub
system will authorize the performance of this action (i.e
whether Action::Perform() would succeed).
0297 Action::Perform()—Performs the action, and car
ries out any consequences (with their side effects) as speci
fied by the rule that governs this action.
0298) 1.17.2. DRM Engine to Host Services Interface
0299 The following is an example of the type of Host
Services interface needed by an illustrative embodiment of
a DRM engine from an illustrative embodiment of a host
application.
0300 HostContext:GetFileSystem(type)->FileSys
tem—Returns a virtual FileSystem object that the DRM
subsystem has exclusive access to. This virtual FileSystem
will be used to store DRM state information. The data within
this FileSystem should only be readable and writeable by the
DRM subsystem.

0301 HostContext:GetCurrentTime()—Returns the
current date/time as maintained by the host system.
0302) HostContext::GetIdentity()—Returns the unique
ID of this host.

0303 HostContext::ProcessObject(dataObject) Gives
back to the host services a data object that may have been
embedded inside a DRM object, but that the DRM sub
system has identified as being managed by the host (e.g.,
certificates).
0304 HostContext:VerifySignature(signatureInfo)—
Checks the validity of a digital signature over a data object.
In one embodiment the signatureInfo object contains infor

Jul. 26, 2007

mation equivalent to the information found in an XMLSig
element. The Host Services are responsible for managing the
keys and key certificates necessary to validate the signature.
0305 HostContext::CreateCipher(cipherType, key
Info)->Cipher Creates a Cipher object that the DRM sub
system can use to encrypt and decrypt data. A minimal set
of cipher types will be defined, and for each a format for
describing the key info required by the cipher implementa
tion.

0306 Cipher:Encrypt(data)
0307 Cipher::Decrypt(data)
0308) HostContext::CreateDigester(digesterType)->Di
gester Creates a Digester object that the DRM subsystem
can use to compute a secure hash over Some data. In one
embodiment, a minimal set of digest types can be defined.
0309
0310
0311
0312 FIG. 26 illustrates the use of the illustrative APIs
set forth in the preceding sections, and the interactions that
take place between the host application and the DRM client
engine in an exemplary embodiment.

0313)

Digester::Update(data)
Digester::GetDigest()
1.17.3. UML Sequence Diagram

1.18. Packager Reference Architecture
0314. The following provides an example of the func
tions that a packaging engine might perform for a host
application that packages content. In practice, a packaging
application may focus on packaging specifically, or could be
part of a general purpose application operating at a user
system that also accesses protected content (either packaged
locally or elsewhere in a network).
0315)
Interface

1.18.1. Host Application to Packaging Engine

0316. This section provides a high-level description of an
illustrative API between a host application and a packaging
engine used in connection with a reference DRM engine
referred to as “Octopus'.
0317 Octopus::CreateSession(hostContextObject)->
Session. Creates a session given a host application context.
The context object that is returned by this function is used
by the packaging engine to make callbacks into the appli
cation.

0318 Session:CreateContent(contentReferences)->
Content. The host application calls this function in order to
create a content object that will be associated with license
objects in Subsequent steps. Having more than one content
reference in the contentReferences array implies that these
are bound together in abundle (e.g., one audio and one video
track) and that the license issued should be targeted to these
as one indivisible group.
0319 Content:SetDrmInfo(drm Info). The drmInfo
parameter specifies the metadata of the license that will be
issued. The drmInfo will act as a guideline to translate the
license into bytecode for the virtual machine.
0320 Content::GetDRMObjects(format)->drmObjects.
This function is called when the host application is ready to
get the drmObjects that the packager engine created. The

US 2007/0172041 A1

format parameter will indicate the format expected for these
objects (e.g., XML or binary atoms).
0321 Content::GetKeys()->keys. This function is
called by the host packaging application when it needs keys
in order to encrypt content. In one embodiment, there is one
key per content reference.

0322
face

1.18.2. Packaging Engine to Host Services Inter

0323 The following is an example of the type of inter
face that an illustrative packaging engine needs the host
application to provide in one embodiment.
0324 HostContext:GetFileSystem(type)->FileSystem.
Returns a virtual FileSystem object that the DRM subsystem
has exclusive access to. This virtual FileSystem can be used
to store DRM state information. The data within this File
System should only be readable and writeable by the DRM
Subsystem.

0325 HostContext:GetCurrentTime()->Time. Returns
the current date/time as maintained by the host system.
0326) HostContext:GetIdentity()->ID. Returns the
unique ID of this host.
0327 HostContext::PerformSignature(signatureInfo,
data). Some DRM objects created by the packaging engine
will have to be trusted. This service provided by the host will
be used to sign a specified object.
0328 HostContext::CreateCipher(cipherType, key
Info)->Cipher. Creates a cipher object (an object that is able
to encrypt and decrypt data) that the packaging engine can
use to encrypt and decrypt data. In one embodiment, the
cipher object is used to encrypt the content key data in the
ContentKey object.

0329. Cipher::Encrypt(data). Encrypts data.
0330 Cipher::Decrypt(data). Decrypts data.
0331 HostContext::CreateDigester(digesterType)->Di
gester. Creates a digester object that the packaging engine
can use to compute a secure hash over Some data.
0332 Digester::Update(data). Feeds data to the digester
object.

0333 Digester::GetDigest(). Computes a digest.

0334 HostContext::GenerateRandomNumber(). Gener
ates a random number that can be used for generating a key.
0335 FIG. 27 is a UML diagram showing an example of
the use of the illustrative APIs set forth above, and the
interactions that take place between the host application and
the packaging engine in one illustrative embodiment.
7. Objects

0336. This section provides more information regarding
the DRM objects that serve as the building blocks of an
illustrative implementation of a DRM engine. First, a rela
tively high-level overview is given of the types of objects the
DRM engine uses for content protection and governance.
Next, a more detailed description of these objects and the
information they convey is provided, along with some
example data structures used in one illustrative embodiment.

24
Jul. 26, 2007

0337) 1.19. Content Protection and Governance DRM
Objects

0338. As previously described in connection with FIG. 6,
content governance objects (sometimes referred to, collec
tively with node and link objects, as “DRM objects”) are
used to associate usage rules and conditions with protected
content. Together, these objects form a license.
0339. As shown in FIG. 6, the data represented by
content object 614 is encrypted using a key. That key needed
to decrypt the content is represented by ContentKey object
602, and the binding between the content and the key used
to encrypt it is represented by protector object 604. The rules
that govern the use of the decryption key are represented by
control object 608, and the binding between the ContentKey
602 and the control object 608 is represented by controller
object 606. In one embodiment, trusted systems will only
make use of the content decryption key under governance of
the rules expressed by the byte code in control object 608.
FIG. 28A is a more detailed illustration of a license such as
that shown in FIG. 6, and illustrates a signature scheme that
is used in one embodiment.

0340
0341 In one embodiment, objects share common basic

traits: they can each have an ID, a list of attributes, and a list
of extensions.

0342 1.19.1.1. IDs
0343 Objects that are referenced by other objects have a
unique ID. In one embodiment, IDs are simply URIs, and the
convention is that those URIs are URNs

0344) 1.19.1.2. Attributes
0345 Attributes are typed values. Attributes can be
named or unnamed. The name of a named attribute is a
simple string or URI. The value of an attribute is of a simple
type (String, integer, or byte array) or a compound type (list
and array). Attributes of type list contain an unordered list
of named attributes. Attributes of type array contain an
ordered array of unnamed attributes.
0346. An objects attributes' field is a (possibly empty)
unordered collection of named attributes.

0347)
0348 Extensions are elements that can be added to
objects to carry optional or mandatory extra data. Extensions
are typed, and have unique IDs as well. Extensions can be
internal or external.

0349)
0350 Internal extensions are contained in the object they
extend. They have a critical flag that indicates whether the
specific extension data type for the extension is required to
be known to the implementation that uses the object. In one
embodiment, if an implementation encounters an object with
a critical extension with a data type that it does not under
stand, it must reject the entire object.
0351. In one embodiment, the ID of an internal extension
needs to be locally unique: an object cannot contain two
extensions with the same ID, but it is possible that two
different objects each contain an extension with the same ID
as that of an extension of the other object.

1.19.1. Common Elements

1.19.1.3. Extensions

1.19.1.3.1. Internal Extensions

US 2007/0172041 A1

0352 An object’s extensions field is a (possibly empty)
unordered collection of internal extensions.

0353) 1.19.1.3.2. External Extensions
0354 External extensions are not contained in the object
they extend. They appear independently of the object, and
have a subject field that contains the ID of the object they
extend. In one embodiment, the ID of an external extension
needs to be globally unique.

0355) 1.19.2. Content
0356. In one embodiment, the content object is an “exter
nal object. Its format and storage are not under the control
of the DRM engine, but under the content management
Subsystem of the host application (for instance, the content
could be an MP4 movie file, an MP3 music track, etc.). In
one embodiment, the format for the content needs to provide
Support for associating an ID with the content payload data.
The content payload is encrypted in a format-dependent
manner (typically with a symmetric cipher, Such as AES).
0357 119.3. ContentKey
0358. The ContentKey object represents a unique encryp
tion key, and associates an ID with it. The purpose of the ID
is to enable Protector objects and Controller objects to make
references to ContentKey objects. The actual key data
encapsulated in the ContentKey object is itself encrypted so
that it can only be read by the recipients that are authorized
to decrypt the content. The ContentKey object specifies
which cryptosystem was used to encrypt the key data. The
cryptosystem used to protect the content key data is called
the Key Distribution System. Different Key Distribution
Systems can be used. An example of a Key Distribution
System is the Scuba Key Distribution System described
above.

0359) 1.19.4. Protector
0360 The Protector object contains the information that
makes it possible to find out which key was used to encrypt
the data of Content objects. It also contains information
about which encryption algorithm was used to encrypt that
data. In one embodiment, the Protector object contains one
or more IDs that are references to Content objects, and
exactly one ID that is a reference to the Contentkey object
that represents the key that was used to encrypt the data. If
the Protector points to more than one Content object, all
those Content objects represent data that has been encrypted
using the same encryption algorithm and the same key. In
one embodiment, unless the cryptosystem used allows a safe
way of using the same key for different data items, it is not
recommended that a Protector object point to more than one
Content object.

0361) 1.19.5. Control
0362. The control object contains the information that
allows the DRM engine to make decisions regarding
whether certain actions on the content should be permitted
when requested by the host application. In one embodiment,
the rules that govern the use of content keys are encoded in
the control object as byte code for execution by the virtual
machine. The control object also has a unique ID So that it
can be referenced by a controller object. In one embodiment,
control objects are signed, so that the DRM engine can
verify that the control byte code is valid and trusted before

Jul. 26, 2007

it is used to make decisions. The validity of the control
object can also optionally be derived through the verification
of a secure hash contained in a controller object.
0363 1.19.6. Controller
0364 The controller object contains the information that
allows the DRM engine to find out which control governs
the use of one or more keys represented by ContentKey
objects. The controller object contains information that
binds it to the ContentKey objects and the control object that
it references. In one embodiment, controller objects are
signed (e.g., by a packager application that has a certificate
allowing it to sign controller objects), so that the validity of
the binding between the ContentKey and the control object
that governs it, as well as the validity of the binding between
the Contentkey ID and the actual key data, can be estab
lished. The signature of the controller object can be a public
key signature or a symmetric key signature, or a combina
tion of both. Also, when the digest of the control object
referenced by the controller object is included in the con
troller object, the validity of the control object can be
derived without having to separately verify the signature of
the control object.
0365)
0366. In one embodiment, this is the preferred type of
signature for controller objects, and is implemented by
computing a Message Authentication Code (MAC) of the
controller object, keyed with the same key as the key
represented by the corresponding ContentKey object. In one
embodiment, the canonical method for this MAC is to use
HMAC with the same hashing algorithm as the one chosen
for the PKI signature algorithm used in the same deploy
ment.

0367)
0368. This type of signature is used when the identity of
the signer of the controller object needs to be known. This
type of signature is implemented with a public key signature
algorithm, signing with the private key of the principal who
is asserting the validity of this object. In one embodiment,
when using this type of signature, a symmetric key signature
will also be present, and sign both the controller object as
well as the public key signature, so that is can be guaranteed
that the principal who signed with its private key also had
knowledge of the actual value of the content key carried in
the ContentKey object.
0369) 1.20. Identity and Key Management DRM Objects

1.19.6.1. Symmetric Key Signature

1.19.6.2. Public Key Signature

0370. As previously described, node objects represent
entities in a DRM profile, and no implicit or explicit
semantics are used to define what the node objects represent.
A given deployment (DRM profile) of a system will define
what types of principals exist, and what roles and identities
different node objects represent. That semantic information
is typically expressed using attributes of the node object.
0371 Link objects represent relationships between
nodes. Link objects can also optionally contain some cryp
tographic data that allows the link to be used for content key
derivation. Just as for nodes, in one embodiment no implicit
or explicit semantics are used to define what a link relation
ship means. Depending on what the from and to nodes of the
link represent in a given DRM Profile, the meaning of the
link relationship can express membership, ownership, asso

US 2007/0172041 A1

ciation, and/or many other types of relationships. In a typical
DRM profile, some node objects could represent users, other
nodes could represent devices, and other nodes could rep
resent user groups or authorized domains (ADS). In Such a
context, links between devices and users might represent an
ownership relationship, and links between users and user
groups or authorization domains might represent member
ship relationships. FIG. 28B illustrates the structure and
interrelationship between nodes and links in one example
embodiment.

0372) 1.20.1. Node
0373 The node object represents an entity in the system.
The node objects attributes define certain aspects of what
the node object represents, such as the role or identity
represented by the node object in the context of a DRM
profile. The node object may also have a confidentiality
asymmetric key pair that is used for targeting confidential
information to the Subsystems that have access to the
confidential parts of the node object (typically, the entity
represented by the node, or some entity that is responsible
for managing that node). Confidential information targeted
at a node can be encrypted with that node's confidentiality
public key. The node object may also have a sharing
asymmetric key pair and a sharing symmetric key can be
used in conjunction with link objects when the system uses
a ContentKey derivation system for ContentKey distribu
tion, such as that described elsewhere herein. In a preferred
embodiment, only entities that need to be referenced by link
or control objects, or to receive cryptographically targeted
information, need to have corresponding node objects.
0374) 1.20.2. Link
0375. The link object is a signed assertion that there
exists a directed edge in the graph whose vertices are the
node objects. For a given set of nodes and links, we say that
there is a path between a node X and a node Y if there exists
a directed path between the node X vertex and the node Y
vertex in the graph. When there is a path between node X
and node Y, we say that node Y is reachable from node X.
The assertions represented by link objects are used to
express which nodes are reachable from other nodes. The
controls that govern content objects can check, before they
allow an action to be performed, that certain nodes are
reachable from the node associated with the entity perform
ing the action. For example, if node D represents a device
that wants to perform the “play' action on a content object,
a control that governs the content object can test if a certain
node, U, representing a certain user, is reachable from node
D. To determine if node U is reachable, the DRM engine can
check whether there is a set of link objects that can establish
a path between node D and node U.
0376. In one embodiment, the DRM engine verifies link
objects before it uses them to decide the existence of paths
in the node graph. Depending on the specific features of the
certificate system (e.g., X.509v3) used to sign link objects,
link objects can be given limited lifetimes, be revoked, etc.
In one embodiment, the policies that govern which keys can
sign link objects, which link objects can be created, and the
lifetime of link objects are not directly handled by the DRM
engine. Instead, those policies leverage the node's attribute
information. To facilitate the task of enforcing certain poli
cies, in one embodiment, a way to extend standard certificate
formats with additional constraint checking is provided.

26
Jul. 26, 2007

These extensions make it possible to express validity con
straints on certificates for keys that sign links, such that
constraints such as what type of nodes the link is connecting,
as well as other attributes, can be checked before a link is
considered valid.

0377. In one embodiment, a link object can contain a
control object that will be used to constrain the validity of
the link. In addition, in one embodiment a link object may
contain cryptographic key derivation data that provides the
user with sharing keys for key distribution. That crypto
graphic data will contain, in addition to metadata, the private
and/or symmetric sharing keys of the “from node,
encrypted with the sharing public key and/or the sharing
symmetric key of the “to node.
0378)
0379 The following paragraphs describe, in more detail,
an illustrative object model for the objects discussed above,
defining the fields that each type of object has in one
illustrative embodiment. Data structures are described using
a relatively simple object description syntax. Each object
type is defined by a class that can extend a parent class (this
is an "is-a” relationship). The class descriptions are in terms
of the simple abstract types “string” (character strings), “int'
(integer value), “byte” (8-bit value), and “boolean’ (true or
false) but do not define any specific encoding for those data
types, or for compound structures containing those types.
The way objects are encoded, or represented, can vary
depending on the implementation of the engine. In practice,
a given profile of use of the DRM engine can specify how
the fields are represented (e.g., using an XML schema).
0380. In one illustrative embodiment, the following nota
tions are used:

1.21. Data Structures

class ClassName { Defines a class type. A class type is a
field1; heterogeneous compound data type
field 2: (also called object type). This

compound type is made up of one or
more fields, each of a simple or
compound type. Each field can be of a
different type.

type Defines a homogeneous compound data
type (also called list or array type). This
compound type is made up of O or more
elements of the same type (0 when the
list is empty).

String Simple type: represents a character
String

Int Simple type: represents an integer value
Byte Simple type: represents an integer value

between 0 and 255
Boolean Simple type: represents a boolean value

(true or false)
Defines a class type that extends
another class type. A class that extends
another one contains all the fields of the
class it extends (called the Superclass)
in addition to its own fields.
Defines an abstract class type. Abstract
class types are types that can be
extended, but are never used by
themselves.

class SubClass extends
SuperClass {...}

Abstract class {...}

{type field; Defines an optional field. An optional
field is a field that may be omitted from
the compound data type that contains it.

(type field:) Defines a field that will be skipped
when computing the canonical byte
sequence for the enclosing compound
field

US 2007/0172041 A1

-continued

class SubClass extends Defines a Subclass of a class type and
SuperClass (field=value) {...} specifies that for all instances of that

subclass, the value of a certain field of
the Superclass is always equal to a fixed
value.

0381) 1.21.1. Common Structures

0382. In one illustrative embodiment, the following com
mon structures are used:

abstract class Octobject {
{string id:
Attribute attributes;
InternalExtension extensions:

class Transform {
string algorithm;

class Digest {
Transform transforms;
string algorithm;
byte value;

class Reference {
String id:
{Digest digest:

0383) 1.21.1.1. Attributes

0384. In one embodiment, there are four kinds of
attributes: IntegerAttribute, String Attribute, ByteArray At
tribute, and List Attribute, each having a name and a type.

abstract class Attribute {
{string name:
string type:

class IntegerAttribute extends Attribute(type=int) {
int value;

class String Attribute extends Attribute(type='string) {
string value;

class ByteArray Attribute extends Attribute(type='bytes) {
byte value;

Class List Attribute extends Attribute(type=list) {
Attribute attributes; if must all be named

Class Array Attribute extends Attribute(type= array) {
Attribute attributes; if must all be unnamed

0385) 1.21.1.2. Extensions

0386. In the illustrative embodiment under discussion,
there are two types of extensions: internal extensions, which
are carried inside the Octobject, and external extensions,
which are carried outside the Octobject.

27
Jul. 26, 2007

abstract class ExtensionData {
string type:

abstract class Extension {
string id:

class ExternalExtension extends Extension {
string Subject;
ExtensionData data:

class InternalExtension extends Extension {
boolean critical;
{Digest dataDigest:}
(ExtensionData data;)

0387. In some embodiments, it will be important to be
able to verify the signature of an object even if a particular
type of ExtensionData is not understood by a given imple
mentation. Thus, in one embodiment, a level of indirection
with the dataDigest field is added. If the specification of the
ExtensionData mandates that the data is part of the signature
within the context of a particular object, then the dataDigest
field will be present. An implementation that understands
this ExtensionData, and is therefore capable of computing
its canonical representation, can then verify the digest. If, in
Such an embodiment, the specification of this ExtensionData
mandates that the data is not part of the signature, then the
dataDigest field will not be present.
0388 1.21.2. Node Objects

class Node extends Octobject {

0389) 1.21.3. Link Objects

class Link extends Octobject {
string fromId;
string told:
{Control control;

0390) 1.21.4. Control Objects

class Control extends Octobject {
string protocol;
string type:
byte codeModule:

0391) 1.21.5. ContentKey Objects

abstract class Key {
string id:
String usage;

US 2007/0172041 A1

-continued

string format;
byte data:

abstract class Paired Key extends Key {
string paird;

class ContentKey extends Octobject {
Key secretKey:

0392. In one embodiment, each key has a unique id, a
format, a usage (that can be null), and data. The usage field,
if it is not empty, specifies the purpose for which the key can
be used. For normal content keys, this field is empty. In
embodiments in which a key distribution scheme such as
that described above is used, this field may specify if this is
a sharing key or a confidentiality key. The format field
specifies the format of the data field (such as, for example,
RAW for symmetric keys, or PKCSH8 for RSA private
keys, etc.). The data field contains the actual key data,
formatted according to the format field.
0393 For keys that are part of a key pair (such as RSA
keys), the extra field pairld gives a unique identifier for the
pair, so that the pair can be referenced from other data
Structures.

0394. In one embodiment the data field in the key object
is the plaintext value of the actual key (i.e., it is the plaintext
value of the key that will be hashed), even though the
object’s actual representation contains an encrypted copy of
the key.
0395) 1.21.6. Controller Objects

class Controller extends Octobject {
Reference controlRef:
Reference contentKey Refs;

8. Virtual Machine

0396 Preferred embodiments of the DRM engine
described herein use a virtual machine (sometimes referred
to herein as the “control virtual machine, the “control VM,
or simply the “VM) to execute control programs that
govern access to content. Illustrative embodiments of Such
a virtual machine are described below, as are various modi
fications and design considerations that could be made to
this illustrative embodiment. The integration of an illustra
tive embodiment of the virtual machine (referred to as the
“Plankton virtual machine) with an illustrative embodiment
of the DRM engine (referred to as “Octopus') is also
described. It should be appreciated, however, that embodi
ments of the digital rights management engine, architecture,
and other systems and methods described herein can be used
with any suitable virtual machine, or, in Some embodiments,
without a virtual machine at all, and thus it will be appre
ciated that the details provided below regarding example
embodiments of a virtual machine are for purposes of
illustration and not limitation.

0397. In a preferred embodiment, the control VM is a
traditional virtual machine, designed to be easy to imple

28
Jul. 26, 2007

ment using various programming languages with a very
Small code footprint. It is based on a simple, stack-oriented
instruction set that is designed to be minimalist, without
undue concern for execution speed or code density. In
situations where compact code is required, data compression
techniques can be used to compress the virtual machine's
byte code.
0398. In preferred embodiments, the control virtual
machine is designed to be suitable as a target for low or high
level programming languages, and Supports assembler, C.
and FORTH. In addition, it will be appreciated that com
pilers for other languages, such as Java or custom languages,
can be created in a relatively straightforward fashion to
compile code into the format (e.g., byte code) used by the
virtual machine. In one embodiment the control virtual
machine is designed to be hosted within a host environment,
not run directly on a processor or in silicon. In preferred
embodiments, the natural host environment for the virtual
machine is the DRM engine, although it will be appreciated
that the virtual machine architecture described herein could
alternatively, or in addition, be used in other contexts.
0399 FIG. 29 illustrates the operating environment of an
illustrative implementation of the control virtual machine
2902. As shown in FIG. 29, in one embodiment virtual
machine 2902 runs within the context of its host environ
ment 2904, which implements some of the functions needed
by the virtual machine as it executes programs 2906. Typi
cally, the control VM runs within the DRM engine 2908,
which implements its host environment. As shown in FIG.
29, in a preferred database, the virtual machine 2902 and the
DRM engine 2908 have access to a secure database 2910 for
presistant storage of State information.
04.00) 1.22. Architecture
0401 1.22.1. Execution Model
0402. In preferred embodiments, the VM runs programs
by executing instructions stored in byte code in code mod
ules. Some of these instructions can call functions imple
mented outside of the program itself by making system calls.
System calls can be implemented by the VM itself or
delegated to the host environment.
0403. In one embodiment, the VM executes instructions
stored in code modules as a stream of byte codes loaded into
memory. The VM maintains a virtual register called the
Program Counter (PC), which is incremented as instructions
are executed. The VM executes each instruction, in
sequence, until an OP STOP instruction is encountered, an
OP RET instruction is encountered with an empty call
stack, or a runtime exception occurs. Jumps are specified
either as a relative jump (specified as a byte offset from the
current value of PC), or as an absolute address.
0404 1.22.2. Memory Model
0405. In one embodiment, the VM uses a relatively
simple memory model, in which memory is separated into
data memory and code memory. For example, data memory
can be implemented as a single, flat, contiguous memory
space, starting at address 0, and can be implemented as an
array of bytes allocated within the heap memory of the host
application or host environment. In one embodiment,
attempts to access memory outside of the allocated space
will cause a runtime exception which will cause program
execution to terminate.

US 2007/0172041 A1

0406 Data memory is potentially shared between several
code modules concurrently loaded by the virtual machine.
The data in the data memory can be accessed by memory
access instructions, which, in one embodiment, can be either
32-bit or 8-bit accesses. 32-bit memory accesses are per
formed using big-endian byte order. In a preferred embodi
ment, no assumptions are made with regards to alignment
between the virtual machine-visible memory and the host
managed memory (i.e., the host CPU virtual or physical
memory).

0407. In one embodiment, code memory is a flat, con
tiguous memory space, starting at address 0, and can be
implemented as an array of bytes allocated within the heap
memory of the host application or host environment.

0408. The VM may support loading more than one code
module. If the VM loads several code modules, in one
embodiment all the code modules share the same data
memory (although each module’s data is preferably loaded
at a different address), but each has its own code memory,
thus preventing a jump instruction in one code module to
cause a jump to code in another code module.

04.09
0410. In one embodiment, the VM has the notion of a
data stack, which represents 32-bit data cells stored in the
data memory. The VM maintains a virtual register called the
Stack Pointer (SP). After reset, the SP points to the end of
the data memory, and the stackgrows downward (when data
is pushed on the data stack, the SP register is decremented).
The 32-bit data cells on the stack are interpreted either as
32-bit addresses or 32-bit integers, depending on the instruc
tion referencing the stack data. Addresses are unsigned
integers. In one embodiment, all other 32-bit integer values
on the data stack are interpreted as signed integers unless
otherwise specified.

0411
0412. In one embodiment, the VM manages a call stack
used for making Subroutine calls. In one embodiment, the
values pushed on this stack cannot be read or written directly
by the memory-access instructions. This stack is used inter
nally by the VM when executing OP JSR, OP JSRR, and
OP RET instructions. For a given VM implementation, the
size of this return address stack can be fixed to a maximum,
which will allow only a certain number of nested calls.

0413

0414. In one embodiment, the VM reserves a small
address space at the beginning of data memory to map
pseudo-registers. In one embodiment, the addresses of these
pseudo-registers are fixed. For example, the following reg
isters could be defined:

1.22.3. Data Stack

1.22.4. Call Stack

1.22.5. Pseudo Registers

Address Size Name Description

O 4 ID 32-bit ID of the currently executing code
segment. This ID is chosen by the VM
when a module is loaded. The VM
changes this register if it changes from
the code segment of one module to the
code segment of another module

29
Jul. 26, 2007

-continued

Address Size Name Description

32-bit value set to the absolute data
address at which the data segment of the
currently executing module has been
loaded. This value is determined by the
VM's module loader
32-bit value set to the absolute code
address at which the code segment of the
currently executing module has been
loaded. This value is determined by the
VM's module loader.
32-bit value set to the absolute data
address of the first byte following the
region of the data memory space where
the data segments of code modules have
been loaded.

12 4 UM

0415 1.22.6. Memory Map
0416) The following shows the layout of data memory
and code memory in an illustrative embodiment:

0417. Data Memory

Address Range Description

Data Memory

O to 15
16 to 127
128 to 255
256 to DS - 1

Pseudo-registers
Reserved for future VM/System use
Reserved for application use
Unspecified. The VM may load the data
segments of code modules at any address at or
above 256. If it chooses an address larger than
256, the use of the address space between 256
and DS is left unspecified. This means that the
virtual machine implementation is free to use it
any way it sees fit.
Image of the data segments of one or more code
modules loaded by the virtual machine.
Shared address space. The code modules data
and the data stack share this space. The data stack
is located at the end of that space and grows
down. The end represents the last address of the
data memory space. The size of the data memory
space is fixed by the VM based on memory
requirements contained in the code module and
implementation requirements.

Code Memory

DS to UM - 1

UM to End

O to CS - 1 Unspecified. The virtual machine may load the
code segments of code modules at any address at
or above O. If it chooses an address larger than 0,
the use of the address space between 0 and CS is
left unspecified. This means that the virtual
machine is free to use it in any way it sees fit.

CS to CS + size (code Image of the code segment of a code module
segment) - 1 loaded by the virtual machine

0418 1.22.7. Executing Routines

0419 Before executing a code routine, in one embodi
ment the virtual machine implementation resets the data
stack pointer to point to the top of the initialized data stack.
The initialized data stack contains the routine’s input data,
and extends to the end of the data memory. The initialized
data stack may be used as a way to pass input arguments to
a routine. When there is no initialized data stack, the data

US 2007/0172041 A1
30

stack pointer points to the end of the data memory. In one
embodiment, the initial call stack is either empty or contains
a single terminal return address pointing to an OP STOP
instruction, which will force execution of the routine to end
on an OP STOP instruction in case the routine finished with
an OP RET instruction.

0420 When execution stops, either because a final
OP RET instruction with an empty call stack has been
executed or a final OP STOP instruction has been executed,
any data left on the data stack is considered to be the output
of the routine.

0421)
0422. In one embodiment, any of the following condi
tions is considered to be a runtime exception which causes
execution to stop immediately:

1.22.8. Runtime Exceptions

0423. An attempt to access data memory outside the
current data memory address space.

0424. An attempt to set the PC to, or cause the PC to,
reach a code address outside the current code memory
address space.

0425. An attempt to execute undefined byte code.
0426. An attempt to execute an OP DIV instruction
with a top-of-stack operand equal to 0.

OP CODE

OP NOP

O P PUSH

O P DROP

P DUP

P SWAP
P ADD
P MUL

P SUB

O P DIV

P MOD
P NEG g

OP CMP

OP AND

OP OR

OP XOR

OP NOT

OP SEHL

OP SEHR

P JMP
P JSR

Jul. 26, 2007

0427. An attempt to execute an OP MOD instruction
with a top-of-stack operand equal to 0.

0428. An overflow or underflow of the Call Stack.

0429) 1.23. Instruction Set

0430. In one embodiment, the control VM uses a rela
tively simple instruction set. Though limited, the number of
instructions is Sufficient to express programs of arbitrary
complexity. Instructions and their operands are represented
by a stream of byte codes. In one embodiment, the instruc
tion set is stack-based, and except for the OP PUSH instruc
tion, none of the instructions have direct operands. Operands
are read from the data Stack, and results pushed on the data
stack. In one embodiment, the VM is a 32-bit VM: all the
instructions operate on 32-bit stack operands, representing
either memory addresses or signed integers. Signed integers
are represented with 2 S complement binary encoding. An
illustrative embodiment of an instruction set for use with the
control VM is shown in the following table. In the table, the
stack operands for instructions with two operands are listed
as “A.B' where the operand on the top of the stack is listed
last (i.e., “B”). Unless otherwise specified, the term “push.”
as used in the following description of one illustrative
embodiment, refers to pushing a 32-bit value onto the top of
the data stack.

Byte
Name Code Operands Description

No O Do Nothing
Operation
Push 1 N (direct) Push a 32-bit constant
Constant
Drop 2 Remove the top cell of the data

Stack
Duplicate 3 Duplicate the top cell of the

data stack
Swap 4 Swap top two stack cells
Add 5 A, B Push the sum of A and B (A + B)
Multiply 6 A, B Push the product of A and B

(A * B)
Subtract 7 A, B Push the difference between A

and B (A - B)
Divide 8 A, B Push the division of A by B

(A/B)
Modulo 9 A, B Push A modulo B (A% B)
Negate O A Push the 2's complement

negation of A (-A)
Compare 1 A, B Push -1 if Aless than B, 0 if A

equals B, and 1 if Agreater
han B

And 2 A, B Push bit-wise AND of A and B
(A & B)

Or 3 A, B Push the bit-wise OR of A and
B (A|B)

Exclusive 4 A, B Push the bit-wise eXclusive OR
Or of A and B (A^B)
Logical 5 A Push the logical negation of A
Negate (1 if A is 0, and 0 if A is not O)
Shift Left 6 A, B Push A logically shifted left by

B bits (A << B)
Shift Right 7 A, B Push A logically shifted right

by B bits (A >> B)
Jump 8. A ump to A
Jump to 9 A ump to Subroutine at absolute
Subroutine address A. The current value of

PC is pushed on the call stack.

US 2007/0172041 A1 Jul. 26, 2007

-continued

Byte
OP CODE Name Code Operands Description

OP JSRR ump to 2O A Jump to subroutine at PC + A.
Subroutine The current value of PC is
(Relative) pushed on the call stack.

OP RET Return from 21 Return from Subroutine to the
Subroutine return address popped from the

call stack.
OP BRA Branch 22 A ump to PC + A

Always
OP BRP Branch if 23 A, B ump to PC + B if A > 0

Positive
OP BRN Branch if 24 A, B ump to PC + B if A < 0

Negative
OP BRZ. Branch if 25 A, B ump to PC + B if A is 0

Zero
OP PEEK Peek 26 A Push the 32-bit value at address A
OP POKE Poke 27 A, B Store the 32-bit value A at

address B
OP PEEKB Peek Byte 28 A Read the 8-bit value at address

A, O-extend it to 32-bits and
push it on the data stack

OP POKEB Poke Byte 29 A, B Store the least significant 8 bits
of value A at address B

OP PUSHSP Push Stack 30 Push the value of SP
Pointer

OP POPSP Pop Stack 31 A Set the value of SP to A
Pointer

OP CALL System Call 32 A Perform System Call with
index A

OP STOP Stop 255 Terminate Execution

0431) 1.24. Code Modules only loads the data bytes 3116 of the memory image 3105,
0432. In a preferred embodiment, code modules are
stored in an atom-based format, similar or identical to that
used for the MPEG-4 file format, in which atoms contain a
32-bit size (e.g., represented by 4 bytes in big-endian byte
order), followed by a 4-byte type (e.g., bytes that correspond
to ASCII values of letters of the alphabet), followed by a
payload (e.g., 8 bytes).

0433 FIG. 30 shows the format of an illustrative code
module 3000. Referring to FIG. 30, pkCM atom 3002 is the
top-level code module atom. It contains a sequence of
sub-atoms. In one embodiment, pkCM atom 3002 contains
one pkDS atom 3004, one pkCS atom 3006, one pkEX atom
3008, and possibly one pkRQ atom 3010. The pkCM atom
3002 may also contain any number of other atoms that, in
one embodiment, are ignored if present. In one embodiment,
the order of the Sub-atoms is not specified, so implementa
tions should not assume a specific order.
0434) 1.24.1. pkDS Atom
0435. As shown in FIG. 30, pkDS atom 3004 contains a
memory image 3005 of a data segment that can be loaded
into data memory. As shown in FIG. 31A, in one embodi
ment memory image 3005 is represented by a sequence of
bytes 3112, consisting of one header byte 3114 followed by
Zero or more data bytes 3116. Header byte 3114 encodes a
version number that identifies the format of the bytes that
follow 3116.

0436. In one embodiment, only one version number is
defined (i.e., DataSegmentFormatVersion=0), and in this
format the data bytes of the memory image represent a raw
image to be loaded into memory. The virtual machine loader

not including the header byte 3114. In one embodiment, the
virtual machine loader is operable to refuse to load an image
in any other format.
0437) 1.24.2. pkCS Atom
0438. As shown in FIG. 30, pkCS atom 3006 contains a
memory image 3007 of a code segment that can be loaded
into code memory. As shown in FIG. 31B, in one embodi
ment memory image 3007 is represented by a sequence of
bytes 3120 consisting of one header byte 3122 followed by
Zero or more data bytes 3124. Header byte 3122 encodes a
version number that identifies the format of the bytes that
follow 3124.

0439. In one embodiment, only one version number is
defined (i.e., CodeSegmentFormatVersion=0), and, as
shown in FIG. 31C, in this version the byte following header
byte 3122 contains another header byte 3130 containing a
version number that identifies the byte code encoding of the
following bytes 3132. In the example shown in FIG. 31C,
header byte 3130 identifies ByteCodeVersion=0, which
specifies that data bytes 3132 contain a raw byte sequence
with byte code values such as those defined in the example
instruction set that is set forth above. In a preferred embodi
ment, the virtual machine loader only loads the byte code
portion 3132 of the data bytes, not the two header bytes
3122., 3130.

0440) 1.24.3. pkEX Atom
0441 Referring once again to FIG. 30, the pkEX atom
3008 contains a list of export entries. In the example shown
in FIG. 30, the first four bytes 3009 of pkEX atom 3008
encode a 32-bit unsigned integer in big-endian byte order

US 2007/0172041 A1

equal to the number of entries that follow. As shown in FIG.
31D, each following export entry 3160 consists of a name,
encoded as one byte 3162 containing the name size, S.
followed by S bytes 3164 containing the ASCII characters of
the name, including a terminating Zero 3166, followed by a
32-bit unsigned integer 3168 in big-endian byte order rep
resenting the byte offset of the named entry point, measured
from the start of the byte code data stored in the 3 ICS atom.
FIG.31E shows an example of an export table entry 3170 for
the entry point MAIN at offset 64, in which the first byte
3172 indicates that the size of the name (i.e., “MAIN), plus
the terminating Zero, is five bytes, and in which the last four
bytes 3174 indicate that the byte offset is 64.
0442 1.24.4. pkRQ Atom
0443) As shown in FIG. 30, pkRQ atom 3010 contains
requirements that need to be met by the virtual machine
implementation in order to execute the code in the code
module. In one embodiment, this atom is optional, and if it
is not present, the virtual machine uses default implemen
tation settings, such as may be defined by an implementation
profile.

0444. In one embodiment, the pkRQ atom consists of an
array of 32-bit unsigned integer values, one for each field:

Field Name Description

vmVersion
minDataMemory.Size

Version ID of the VM Spec
Minimum size in bytes of the data memory
available to the code. This includes the data
memory used to load the image of the Data
Segment, as well as the data memory used by
the Data Stack. In one embodiment, the VM
must refuse to load the module if it cannot
satisfy this requirement.
Minimum number of nested Subroutine calls
(OP JSR and OP JSRR) that must be
supported by the VM. In one embodiment,
the VM must refuse to load the module if it
cannot satisfy this requirement.

Flags Set of bit-flags to signal required features of
the VM.
In one embodiment, a VM implementation
must refuse to load a code module that has
any unknown flag set. For example, if there
are no flags defined, in one embodiment a
VM implementation must check that this flag
is set to 0.

minCallStackDepth

0445 1.24.5. Module Loader
0446. The virtual machine is responsible for loading code
modules. When a code module is loaded, the Data Segment

Mnemonic

SYS NOP

SYS DEBUG PRINT
SYS FIND SYSTEM CALL BY NAME

SYS SYSTEM HOST GET OBJECT

SYS SYSTEM HOST SET OBJECT

32
Jul. 26, 2007

memory image encoded in the pkDS atom is loaded at a
memory address in the Data Memory. That address is chosen
by the VM loader, and is stored in the DS pseudo-register
when the code executes.

0447 The Code Segment memory image encoded in the
pkCS atom is loaded at a memory address in the Code
Memory. That address is chosen by the VM loader, and is
stored in the CS pseudo-register when the code executes.
0448. When a code module is loaded, the special routine
named “Global.OnLoad' is executed if this routine is found
in the entries of the Export table. This routine takes no
argument on the stack, and returns an integer status upon
return, 0 signifying Success, and a negative error code
signifying an error condition.
0449 When a code module is unloaded (or when the
virtual machine that has loaded the module is disposed of),
the special routine named “Global.OnUnload' is executed if
it is found in the Export table. This routine takes no
argument on the stack, and returns an integer status upon
return, 0 signifying Success, and a negative error code
signifying an error condition.
0450) 1.25. System Calls
0451. The virtual machine's programs can call functions
implemented outside of their code module’s Code Segment.
This is done through the use of the OP CALL instruction,
which takes an integer stack operand specifying the System
Call Number to call. Depending on the System Call, the
implementation can be a byte code routine in a different code
module (for instance, a library of utility functions), executed
directly by the VM in the VM's native implementation
format, or delegated to an external Software module. Such as
the VM’s host environment.

0452. In one embodiment, if an OP CALL instruction is
executed with an operand that contains a number that does
not correspond to any System Call, the VM behaves as if the
SYS NOP system call was called.
0453) 1.25.1. System Call Numbers Allocation
0454. In the illustrative embodiment under discussion,
System Call Numbers 0 to 1023 are reserved for fixed
System Calls (these System Calls will have the same number
on all VM implementations). System Call Numbers 1024 to
16383 are available for the VM to assign dynamically (for
example, the System Call Numbers returned by System
..FindSystemCallByName can be allocated dynamically by
the VM, and do not have to be the same numbers on all VM
implementations).
0455. In one example embodiment, the following fixed
System Call Numbers are specified:

Number System Call

System.NoOperation
System. DebugPrint
System. FindSystemCallByName
System. Host.GetObject
System. Host. SetObject

US 2007/0172041 A1

0456)
0457. In one embodiment, a few standard system calls are
Supported that are useful for writing control programs. These
calls include the fixed-number system calls listed in the table
above, as well as system calls that have dynamically deter
mined numbers (i.e., their system call number is retrieved by
calling the System. FindSystemCallByName system call
with their name passed as the argument).

0458 In one embodiment, the system calls specified in
this section that can return a negative error code may return
error codes with any negative value. Section 8.4.4 defines
specific, illustrative values. In one embodiment, if negative
error code values are returned that are not predefined, they
are interpreted as if they were the generic error code value
FAILURE.

1.25.2. Standard System Calls

0459 System.NoOperation. This call takes no inputs and
returns no outputs, and simply returns without doing any
thing. It is used primarily for testing the VM.

0460 System. DebugPrint. This call takes as its input,
from the top of the stack, the address of a memory location
containing a null-terminated String, and returns no output. A
call to this function causes the string of text to be printed to
a debug output, which can be useful in debugging. If the VM
implementation does not include a facility to output debug
text (such as might be the case in a non-development
environment), the VM may ignore the call and treat it as if
System.NoOperation had been called.

0461 System. FindSystemCallByName. This call finds
the number of a system call given its name. The call takes
as its input (from the top of the stack) the address of a
null-terminated ASCII string containing the name of the
system call for which to look, and returns (to the top of the
stack) the system call number if a system call with the
specified name is implemented, an ERROR NO SU
CH ITEM if the system call is not implemented, and a
negative error code if an error occurs.

0462 System. Host.GetLocalTime. This call takes no
inputs, and returns, to the top of the stack, the current value
of the local time of the host, which, in one embodiment, is
expressed as a 32-bit signed integer equal to the number of
minutes elapsed since Jan. 1, 1970 00:00:00, or a negative
error code.

0463 System. Host.GetLocalTimeOffset. This call takes
no inputs, and returns, to the top of the stack, the current
time offset (from UTC time) of the host, which, in one
embodiment, is expressed as a 32-bit signed integer number
equal to the number of minutes difference between local
time and UTC time (i.e. LocalTime UTC).

0464 System. Host.GetTrustedTime. This call takes no
inputs, and returns, to the top of the stack, the trusted time
and the value of one or more flags. In one embodiment, the
trusted time is the current value of the trusted time clock (if
the system includes such a trusted clock), or a negative error
code if the trusted time is not available. In one embodiment,
the value of trusted time is expressed as a 32-bit signed
integer equal to the number of minutes elapsed since Jan. 1,
1970 00:00:00 UTC, or a negative error code. In one
embodiment the flags are the bit-set of flags that further
define the current state of the trusted clock. In one embodi

Jul. 26, 2007

ment, if an error has occurred (e.g., the value of TrustedTime
is a negative error code) the value returned for the flags is 0.
0465. In one embodiment, the following flag is defined:

Bit index (0 is
LSB) Name Description

The value of TrustedTime is
known to not be at its most
accurate value, and therefore
should be considered
an estimate.

O TIME IS ESTIMATE

0466. This system call is relevant on systems that imple
ment a trusted clock that can be synchronized with a trusted
time source and maintain a monotonic time counter. The
value of the trusted time is not guaranteed to always be
accurate, but in one embodiment the following properties
are required to be true:

0467. The value of the trusted time is expressed as a
UTC time value (the trusted time is not in the local time
Zone, as the current locality usually cannot be securely
determined).

0468. The trusted time never goes back.

0469 The trusted clock does not advance faster than
real time.

0470 Therefore, in this example embodiment, the value
of TrustedTime is between the value of the last synchronized
time (synchronized with a trusted time source) and the
current real time. If the system is able to determine that its
trusted clock has been operating and updating continuously
and normally without interruption since the last synchroni
Zation with a trusted time source, it can determine that the
value of TrustedTime is not an estimate, but an accurate
value, and set the TIME IS ESTIMATE flag to 0.
0471. In one embodiment, if the trusted clock detects that
a hardware or software failure condition has occurred, and
it is unable to return even an estimate of the trusted time, an
error code is returned, and the value of the returned flags is
set to 0.

0472 System. Host.Get Object: This system call is a
generic interface that allows a program to access objects
provided by the virtual machine's host. The System. Host
..GetObject call takes the following inputs (listed from the
top of the stack downwards): Parent, Name, Return Buffer,
and ReturnBuffer Size. Where “Parent is the 32-bit handle
of the parent container: “Name' is the address of a null
terminated String containing the path to the requested object,
relative to the parent container: “Return Buffer is the
address of a memory buffer where the value of the object is
to be stored; and “Return BufferSize' is a 32-bit integer
indicating the size in bytes of the memory buffer in which
the value of the object is to be stored.
0473. The System. Host.GetObject call produces the fol
lowing outputs (listed from the top of the stack downwards):
TypeID, Size. Where “Typeld” is the object type id, or a
negative error code if the call failed. If the requested object
does not exist, the error returned is ERROR NO SU
CH ITEM. If the buffer supplied for the return value is too

US 2007/0172041 A1

small, the error returned is ERROR INSUFFI
CIENT SPACE. If the part of the object tree that is being
accessed is access-controlled, and the calling program does
not have the permission to access the object, ERROR PER
MISSION DENIED is returned. Other error codes may be
returned. “Size' is a 32-bit integer indicating the size in
bytes of the data returned in the buffer supplied by the caller,
or the size required if the caller provided a buffer that was
too small.

0474. In one embodiment, there are four types of host
objects: Strings, integers, byte arrays, and containers.

Object Type Type Id Name Type Id Value

Container OBJECT TYPE CONTAINER
Integer OBJECT TYPE INTEGER
String OBJECT TYPE STRING
ByteArray OBJECT TYPE. BYTE ARRAY

0475. In one embodiment, the value of a byte array object
is an array of 8-bit bytes, the value of a string object is a
null-terminated character string incoded in UTF-8, and the
value of an integer object is a 32-bit signed integer value.
Containers are generic containers that contain a sequence of
any number of objects of any combination of types. Objects
contained in a container are called the children of that
container. The value of a container is a 32-bit container
handle that is unique within a given VM instance. In one
embodiment, the root container / has the fixed handle value
O.

0476. In one embodiment, the namespace for host objects
is hierarchical, where the name of a container's child object
is constructed by appending the name of the child to the
name of the parent container, separated by a 7 character.
String and integer objects do not have children. For
example, if a container is named /Node/Attributes, and has
a string child named Type, then /Node/Attributes/Type
refers to the child string.
0477 The root of the namespace is /. All absolute
names start with a f. Names that do not start with a fare
relative names. Relative names are relative to a parent
container. For example, the name Attributes/Type, relative
to parent /Node', is the object with the absolute name
/Node/Attributes/Type.

0478. In one embodiment, container objects can also
have real and virtual child objects that be accessed by using
virtual names. Virtual names are names that are not attached
to host objects, but a convention to identify either unnamed
child objects, child objects with a different name, or virtual
child objects (child objects that are not real children of the
container, but created dynamically when requested).
0479. In one embodiment, for objects, the following
virtual names are defined as virtual child object names:

Virtual Name Description

(a)Name Virtual string object: the name of the object.
If the object is unnamed, the value is an empty

34
Jul. 26, 2007

-continued

Virtual Name Description

string. Note that unnamed objects are only
accessible through the (c)3ns virtual name of a
container object (see below)
Virtual integer object. The integer value is equal
to the size in bytes required to store this object.
For integers, this value is 4: for strings, it is the
number of bytes needed to store the UTF-8
string plus a null byte terminator. For byte
arrays, this is the number of bytes in the array.
Virtual integer object. The integer value is equal
to the object's Type Id.

(a)Size

(a)Type

0480. For containers, the following virtual names are
defined as virtual child object names in one embodiment:

Virtual Name Description

Virtual (a)<ns Virtual object: the <n>th object in a container.
Index The first object in a container has index 0. <ns

is expressed as a decimal number.
Example: if Attributes is a container that
contains 5 child objects, Attributes (a)4 is the
5 child of the container.

Virtual (a)Size Virtual integer object. The integer value is
Size equal to the number of objects in the container.

EXAMPLES

0481. The following table shows an example of a hier
archy of Host Objects:

Chil
Name Value dren

Node 1 Name Value Children

Type “Device'
Name Value Children

Attri- 2 Name Value Children

butes Color “Red
Name Value Children

Size 78
Name Value Children

Domain “TopLevel

0482 In this example, calling System. Host.GetObject
(parent=0, name="Node') returns a type ID of 0 (i.e.,
container), and causes the handle value of 1 to be written in
the buffer supplied by the caller. The size of the value is 4
bytes.
0483 Calling System. Host.Get Object(parent=0, name=
“Node/Attributes/Domain”) returns a type ID of 2 (i.e.,
string), and causes the string “TopLevel to be written in the
buffer supplied by the caller. The size of the value is 9 bytes.
0484 Calling System. Host.Get Object(parent=1, name=
“Attributes/(a) 1) returns a type ID of 1 (i.e., integer), and

US 2007/0172041 A1

causes the integer 78 to be written in the buffer supplied by
the called. The size of the value is 4 bytes.
0485 Calling System. Host.GetObject(parent=00, name=
“DoesNotExist”) returns the error code ERROR NO SU
CH ITEM.

0486 System. Host. SetObject. This system call is a
generic interface that allows a program to create, write, and
destroy objects provided by the virtual machine's host. The
description of the object names and types is the same as for
the System. Host.Get Object call described above. Not all
host objects Support being written to or destroyed, and not
all containers Support having child objects created. When a
SetObject call is made for an object that does not support the
operation, ERROR PERMISSION DENIED is returned.
0487. The System. Host.SetObject system call takes as
input the following parameters, listed from the top of the
stack downwards:

Top of stack

Parent
Name
ObjectAddress
ObjectType
ObjectSize

0488 Parent: 32-bit handle of the parent container.
0489 Name: address of a null-terminated string contain
ing the path to the object, relative to the parent container.
0490 ObjectAddress: address of a memory buffer where
the value of the object is stored. If the address is 0, the call
is interpreted as a request to destroy the object. The data at
the address depends on the type of the object.
0491) ObjectType: the type ID of the object.
0492) ObjectSize: 32-bit integer indicating size in bytes
of the memory buffer where the value of the object is stored.
In the illustrative embodiment under discussion, the size is
set to 4 for integer objects, and to the size of the memory
buffer, including the null terminator, for string objects. For
byte array objects, the size is the number of bytes in the
array.

0493 The System. Host.SetObject system call returns a
ResultCode to the top of the stack as an output. The
ResultCode is 0 if the call succeeded, and a negative error
code if the call failed. If the call is a request to destroy an
object and the requested object does not exist, or the call is
a request to create or write an object and the object’s parent
does not exist, the error code returned is ERROR NO SU
CH ITEM. If the part of the object tree that is being
accessed is access-controlled, and the calling program does
not have the permission to access the object, ERROR PER
MISSION DENIED is returned. Other error codes may also
be returned.

0494 There is a special case when the object refers to a
container and the ObjectAddress is not 0. In this case the
ObjectSize parameter is set to 0 and the value of Object Ad
dress is ignored. If the container already exists, nothing is
done, and a SUCCESS ResultCode is returned. If the

Jul. 26, 2007

container does not exist, and the parent of the container is
writeable, an empty container is created.
0495 Octopus. Links. IsNodeReachable. This system call

is used by control programs to check whether a given node
is reachable from the node associated with the entity hosting
this instance of the virtual machine. The call takes as its
input a NodeId from the top of the stack, where the NodeId
is a null-terminated String containing the ID of the target
node to be tested for reachability. As output, the call returns
a ResultCode and a StatusBlockPointer to the top of the
stack. The ResultCode is an integer value that is 0 if the node
is reachable, or a negative error code if it is not. The
StatusBlockPointer is the address of a standard Extended
StatusBlock, or 0 if no status block is returned.
0496 System. Host. SpawnVm. This system call is used
by control programs to request that a new instance of a
virtual machine be created, and a new code module loaded.
In one embodiment, the host of the newly created virtual
machine exposes the same host objects as the ones exposed
to the caller, except the host object “/Octopus/Runtime/
Parent/Id' is set to the identity of the caller. In one embodi
ment, this host object is a container. The children of this
container are objects of type string, each with a value
representing a name. In one embodiment, the semantics and
specific details of those names are specified by the specifi
cation of the virtual mchine's host.

0497. In one embodiment, when the virtual machine that
is running the code for the caller terminates, any spawned
virtual machine that has not been explicitly released by
calling System. Host. ReleaseVm is automatically released
by the system as if System. Host. ReleaseVm had been called.
0498. The System. Host. SpawnVm call takes as its input
a Moduled from the top of the stack. The Moduled
identifies the code module to be loaded into the new virtual
machine instance. In one embodiment, the specification of
the virtual machine's host describes the mechanism by
which the actual code module corresponding to this module
ID is to be located.

0499. The System. Host.SpawnVm call returns a Result
Code and a VmHandle to the top of the stack. The Result
Code is an integer value that is 0 if the call was successful,
and a negative error code if it failed. The VmHandle is an
integer value identifying the instance of the virtual machine
that has been created. If the call fails, this handle is set to 0.
In one embodiment, this handle is only guaranteed to be
unique within the virtual machine in which this call is made.
0500 System. Host...CallVm. This system call is used by
control programs to call routines that are implemented in
code modules loaded in virtual machine instances created
using the System. Host.SpawnVm system call. This system
call takes the following input from the top of the stack:

Top of stack:

VmHandle
Entry Point
ParameterBlockAddress
ParameterBlockSize
ReturnBufferAddress
ReturnBufferSize

0501 VmHandle: an integer value representing the
handle of a virtual machine that was created by calling
System. Host.SpawnVm.

US 2007/0172041 A1

0502 EntryPoint: the address of a null-terminated string
that specifies the name of the entry point to call. This name
needs to match one of the entry points in the Export Table
of the code module that was loaded into the virtual machine
instance that corresponds to the VmHandle parameter.
0503 ParameterBlockAddress: the address of a memory
block that contains data to be passed to the callee. If no
parameters are passed to the callee, this address is set to 0.
0504 ParameterBlockSize: the size in bytes of the
memory block at address ParameterBlock Address, or 0 if
ParameterBlock Address is 0.

0505) Return BufferAddress: the address of a memory
buffer where the caller can receive data from the callee. If
the caller does not expect any data back from the callee, this
address is set to 0.

0506 Return BufferSize: the size in bytes of the memory
buffer at address ReturnBufferAddress, or 0 if ReturnBuf
ferAddress is 0.

0507. The System. Host...CallVm call returns the follow
ing output to the top of the stack:

Top of Stack:

SystemResultCode
CalleeResultCode
ReturnBlockSize

0508 SystemResultCode: an integer value that is 0 if the
call was successful or a negative error code if it failed. This
value is determined by the system, not by the callee. Success
only indicates that the system was able to successfully find
the routine to call, execute the routine, and get the return
value from the routine. The return value from the routine
itself is returned in the CalleeResultCode value.

0509 CalleeResultCode: an integer value that is returned
by the callee.
0510) Return BlockSize: the size in bytes of the data
returned in the buffer supplied by the caller, or the size
required if the caller provided a buffer that was too small. If
no data was returned by the callee, the value is 0.
0511. In the illustrative embodiment under discussion,
the called routine complies with the following interface
conventions: When the routine is called, the top of the stack
contains the value ParameterBlockSize, supplied by the
caller, indicating the size of the parameter block, followed
by ParameterBlockSize bytes of data. If the size is not a
multiple of 4, the data on the stack will be padded with Zeros
to ensure that the stack pointer remains a multiple of 4. Upon
return, the called routine provides the following return
values on the stack:

Top of stack:

ResultCode
ReturnBlock Address
ReturnBlockSize

36
Jul. 26, 2007

0512 Return BlockAddress: the address of a memory
block that contains data to be returned to the caller. If no data
is returned, this address is set to 0.

0513) Return BlockSize: size in bytes of the memory
block at address ReturnBlock Address, or 0 if ReturnBlock
Address is 0.

0514 System. Host. ReleaseVm. This system call is used
by control programs to release a virtual machine that was
spawned by a previous call to System. Host.SpawnVm. Any
virtual machines spawned by the released virtual machine
are released, and so on, recursively. The System. Host. Re
leaseVm call takes as its input a VmHandle from the top of
the stack, the VmHandle representing the handle of a virtual
machine that was created by calling System
..Host.SpawnVm. The System. Host. ReleaseVm call returns a
ResultCode to the top of the stack as an output. The
ResultCode is an integer value that is 0 if the call was
Successful or a negative error code if it failed.

0515 1.25.3. Standard Data Structures
0516. The following are standard data structures used by
Some of the standard system calls.

0517) 1.25.3.1. Standard Parameters

ParameterBlock:

Name Type

Name NameBlock
Value ValueBlock

0518) Name: name of the parameter.

0519) Value: value of the parameter

Extended ParameterBlock:

Name Type

Flags 32-bit bit field
Parameter ParameterBlock

0520 Flags: vector of boolean flags.

0521 Parameter: parameter block containing a name and
a value.

NameBlock:

Name Type

Size 32-bit integer
Characters Array of 8-bit characters

0522 Size: 32-bit unsigned integer equal to the size in
bytes of the “characters' field that follows. If this value is 0.
the characters field is left empty (i.e., nothing follows).

US 2007/0172041 A1

0523 Characters: Null-terminated UTF-8 string.

ValueBlock:

Name Type

Type 32-bit integer
Size 32-bit integer
Data Array of 8-bit bytes

0524 Type: 32-bit type identifier. In one embodiment, the
following types are defined:

Identifier Type Name Description

O Integer 32-bit integer value,
encoded as four 8-bit bytes
in big-endian byte order. In
one embodiment the value
is considered signed unless
otherwise specified.
32-bit floating point value,
encoded as IEEE-754 in
big-endian byte order
Null-terminated UTF-8
string
32-bit unsigned integer
value, representing the
number of minutes elapsed
since January 1, 1970
00:00:00. In one
embodiment, unless
otherwise specified, the
value is considered to be a
UTC date, the most
significant bit of which
must be 0.
ParameterBlock structure
Extended ParameterBlock
Structure
The value is a resource. The
resource here is referenced
by ID: the Data field of the
value is a null-terminated
ASCII string containing the
D of the resource that
should be de-referenced to
produce the actual data.
An array of values (encoded
as a ValueListBlock)
The value is an array of 8
bit bytes

1 Real

2 String

3 Date

4 Parameter
Extended Parameter 5

6 Resource

7 ValueList

8 ByteArray

0525) Size: 32-bit unsigned integer equal to the size in
bytes of the “data” field that follows. If this value is 0, the
data field is left empty (i.e., nothing follows the size field in
the ValueBlock).
0526 Data: array of 8-bit bytes representing a value. The
actual bytes depend on the data encoding specified by the
type field.

ValueListBlock:

Name Type

ValueCount 32-bit integer
WalueO ValueBlock

37
Jul. 26, 2007

-continued

ValueListBlock:

Name Type

Value1 ValueBlock

0527 ValueCount: 32-bit unsigned integer equal to the
number of ValueBlock structures that follow. If this value is
0, no ValueBlocks follow.
0528 ValueO, Value1,
ValueBlock structures.

0529) 1.25.3.2. Standard ExtendedStatus
0530. The standard ExtendedStatusBlock is a data struc
ture typically used to convey extended information as a
return status from a call to a routine or a system call. It is a
generic data structure that can be used in a variety of
contexts, with a range of different possible values for its
fields. In one embodiment, an ExtendedStatusBlock is
defined as follows:

0531) ExtendedStatusBlock:

Sequence of Zero or more

Name Type

GlobalFlags 32-bit bit field
Category 32-bit integer
SubCategory 32-bit integer
LocalFlags 32-bit bit field
Cacheduration CachedurationBlock
Parameters ValueListBlock

0532 GlobalFlags: boolean flags whose semantics are
the same regardless of the category field. The position and
meaning of the flags are defined by profiles that use standard
ExtendedStatusBlock data structures.

0533. Category: Unique integer identifier of a category to
which this status belongs. The category identifier values are
defined by profiles that use standard ExtendedStatusBlock
data structures.

0534 SubCategory: Integer identifier (unique within the
category) of a sub-category that further classifies the type of
status described by this block.
0535 LocalFlags: Boolean flags whose semantics are
local to the category and Subcategory of this status block.
The position and meaning of the flags are defined by profiles
that define and use the semantics of the category.
0536 Cachel Duration: Indicates the duration for which
this status can be cached (i.e remains valid). See the defi
nition of the Cachel DurationBlock type, below, for how the
actual value of the duration is defined.

0537) Parameters: List of Zero or more ValueBlocks.
Each ValueBlock contains a parameter encoded as a value of
type Parameter or ExtendedParameter. Each parameter binds
a name to a typed value, and is used to encode flexible
variable data that describes the status block in more detail
than just the category, Sub-category, cache duration, and
flags.

US 2007/0172041 A1

0538 CachelDurationBlock:

Name Type

Type 32-bit integer
Value 32-bit integer

0539 Type: Integer identifier for the type of the value. In
one embodiment, the following types are defined:

Type Description

O The value is a 32-bit unsigned integer that
represents the number of seconds from the
current time. A value of O means that the
status cannot be cached at all, and therefore
can only be used once. The special value
0xFFFFFFFF is interpreted as an infinite
duration (i.e., the status can be cached
indefinitely).

1 The value is a 32-bit unsigned integer that
represents an absolute local time, expressed
as the number of minutes elapsed since
January 1, 1970 00:00:00. In one
embodiment, the most significant bit must be
O.

0540 Value: 32-bit integer, the meaning of which
depends on the Type field.

0541) 1.25.4. Standard Result Codes
0542 Standard result codes are used in various APIs.
Other result codes may be defined for use in more specific
API.S.

Value Name Description

O SUCCESS Success
-1 FAILURE Unspecified failure
-2 ERROR INTERNAL An internal

(implementation) error
has occurred

ROR INVALID PARAMETER A parameter has an
invalid value
Not enough memory
available to complete
Successfully

ROR OUT OF RESOURCES Not enough resources
available to complete
Successfully
The requested item
does not exist or was
not found
Not enough memory
Supplied by the caller
(typically used when a
return buffer is too
Small)
Permission to perform
the call is denied to the
caller.

-9 ERROR RUNTIME EXCEPTION An error has occurred
during execution of
byte code
Error caused by data
with an invalid format

3 E R

4 E R ROR OUT OF MEMORY

5 E R

6 E R ROR NO SUCH ITEM

7 E R ROR INSUFFICIENT SPACE

-8 ERROR PERMISSION DENIED

-10 ERROR INVALID FORMAT

Jul. 26, 2007

-continued

Value Name Description

(for example, invalid
data in a code module)

0543) 1.26. Assembler Syntax

0544 This section describes an example syntax for use in
compiling programs into the bytecode format described
elsewhere herein. It should be appreciated that this is just
one example of one possible syntax, and that any Suitable
Syntax could be used. As previously indicated, it should also
be understood that the bytecode format presented herein is
also just an example, and the systems and methods described
herein could be used with any other suitable byte code
format or other code format.

0545 An assembler reads source files containing code,
data, and processing instructions, and produces binary code
modules that can be loaded by a control virtual machine. In
one illustrative embodiment, the assembler processes a
Source file sequentially, line by line. Lines can be Zero or
more characters, followed by a newline. Each line can be
one of an empty line (whitespace only), a segment directive,
a data directive, an assembler directive, a code instruction,
a label, or an export directive. In addition, each line can end
with a comment, which starts with a '.' character and
continues until the end of the line.

0546) Data and instructions read from the source files
have an implicit destination segment (i.e., where they end up
when loaded by the VM). At any point during the parsing
process, the assembler will have a "current segment which
is the implicit destination segment for data and instructions.
The current segment can be changed using segment direc
tives.

0547 1.26.1. Segment Directives

0548 Segment directives change the current segment of
the parser. In one embodiment, the Supported segment
directives are code and data. The code segment holds the
byte code instructions, and the data segment holds global
variables.

0549) 1.26.2. Data Directives
0550 Data directives specify data (e.g., integers and
strings) that will be loaded in the virtual machine's data
segment. In one embodiment, the Supported data directives
a.

0551 string “-some chars> Specifies a string of
characters. In one embodiment, the assembler adds an
octet with value 0 at the end of the string.

0552 byte <values Specifies an 8-bit value.
<values can be expressed as a decimal number, or a
hexadecimal number (prefixed by Ox).

0553 long <values Specifies a 32-bit value.
<values can be expressed as a decimal number, or a
hexadecimal number (prefixed by Ox).

US 2007/0172041 A1

0554
0555. In one embodiment, the supported assembler direc
tives are equ <symbold, <valued, which sets the symbol
<symbold to be equal to the value <values. Symbols are
typically used as operands or code instructions.
0556) 1.26.4. Labels

1.26.3. Assembler Directives

0557 Labels are symbols that point to locations within
segments. Labels pointing to instructions in the code seg
ment are typically used for jump/branch instructions. Labels
pointing to data in the data segment are typically used to
refer to variables. In one embodiment, the syntax for a label
is: <LABEL>:

0558) Note that there is nothing after the “:”, except an
optional comment. A label points to the location of the next
data or instruction. In one embodiment, it is ok to have more
than one label pointing to the same address.
0559) 1.26.5. Export Directives
0560 Export directives are used to create entries in the
“export’ section of the code module produced by the assem
bler. Each entry in the export section is a (name, address)
pair. In the illustrative embodiment under discussion, only
addresses within the code segment can be specified in the
export section.
0561. The syntax of the export directive is: export
<labeld, which will export the address pointed to by <labeld,
with the name “-labels’.

0562
0563. When compiling data destined for the code seg
ment, the assembler reads instructions that map directly, or
indirectly, into byte codes. In the example instruction set
shown above, most virtual machine byte codes have no
direct operands, and appear with a simple mnemonic on a
single line. To make the assembler syntax more readable,
Some instructions accept pseudo-operands, which look as if
they were byte code operands, but are not really; in this case,
the assembler generates one or more byte code instructions
to produce the same effect as if the instruction did have a
direct operand. For example, the branch instructions use
pseudo-operands.

0564) 1.26.6.1. Branch Operands

1.26.6. Code Instructions

0565 Branch instructions can be specified verbatim
(without any operand), or with an optional operand that will
be converted by the assembler into a corresponding byte
code sequence. The optional operand is an integer constant
or a symbol. When the operand is a symbol, the assembler
computes the correct integer relative offset so that the branch
ends up at the address corresponding to the symbol.

0566) 1.26.6.2. Push Operands
0567. In one embodiment, the PUSH instruction always
takes one operand. The operand can be one of an integer
constant, a symbol, or the prefix "(a)” directly followed by
a label name. When the operand is a symbol, the value that
is pushed is the direct value of that symbol, whether the
symbol is a label or an equ Symbol (the value is not
incremented by a segment offset). When the operand is a
label name prefixed with “(a), the value pushed depends on
what the label points to. The value pushed on the stack is the

39
Jul. 26, 2007

absolute address represented by the label (i.e., the local label
value added to the segment offset).
0568 1.26.7. Examples

: constants
..equ SOMECONST, 7

; what follows goes into the data segment
.data

VAR1:
.byte 8

VAR2:
..string “hello\0”

VAR3:
..long 0xFFFCDAO7

VAR4:
..long O

; what follows goes into the code segment
.code

FOO:
PUSH 1
ADD
RET

BAR:
PUSH 2
PUSH (a FOO ; push the address of the label FOO
SR ; jump to the code at label FOO
PUSH SOMECONST : push the value 7
PUSH (a)VAR1 ; push the addr of VAR1
PUSHWAR1 ; push the offset of VAR1 within the data

segment
PUSH (a)VAR3 ; push the addr of VAR3
PEEK ; push the value of VAR3
PUSH (a)VAR4 ; push the addr of VAR4
POKE ; store the value on top of the stack into

VAR4
PUSH (a)VAR2 ; push the addr of the string “hello'

0569 1.26.8. Command Line Syntax
0570. In one embodiment, the assembler is a command
line tool that can be invoked with the following syntax:
“PktAssembler options
<input file path><output file path>, where the options
can be: -cs int, -ds int, -Xml id., or -h, where “-cs int' is a
Code Segment Address Value (default=8), “-ds int' is a Data
Segment Address Value (default=4), “-xml id' is used to
output a control object as an XML file with the specified ID,
and '-h' is used to display help information.
9. Controls

0571. This section describes illustrative embodiments of
control objects. Control objects can be used to represent
rules that govern access to content by granting or denying
the use of the Contentkey objects they control. They can
also be used to represent constraints on the validity of a link
object in which they are embedded. They can also be used
as standalone program containers that are run on behalf of
another entity, such as in agents or delegates. In one embodi
ment, controls contain metadata and byte-code programs,
which implement a specific interaction protocol. The pur
pose of a Control Protocol is to specify the interaction
between the DRM engine and a control program or between
a host application and a control program through the DRM
engine. This section also describes illustrative actions the
application can perform on the content, which action param
eters should be supplied to the control program, and how the
control program encodes the return status indicating that the
requested action can or cannot be performed, as well as
parameters that can further describe the return status.

US 2007/0172041 A1

0572 In this section, the following abbreviations and
acronyms are used:

0573 ESB: Extended Status Block
0574 LSB: Least Significant Bit
0575 Byte: 8-bit value, or octet
0576 Byte Code: stream of bytes that encode execut
able instructions and their operands

0577)
0578. In one embodiment, a control object contains a
control program. The control program includes a code
module containing byte-code that is executable by a virtual
machine, and a list of named routines (e.g., entries in the
export table).
0579. In one embodiment, the set of routines that repre
sent the rules that govern the performance of a certain
operation (such as "play') on a content item is called an
action control. The set of routines that represent validity
constraints on a link object is called a “link constraint'. The
set of routines that are intended to be executed on behalf of
a remote entity (such as during a protocol session with a
DRM engine running on a different host) is called an
“agent'. The set of routines that are intended to be executed
on behalf of another control (such as when a control program
uses the System. Host.CallVm system call) is called a “del
egate'.

0580)
0581. In one embodiment, control programs are executed
by a virtual machine running in a host environment. The host
environment can be implemented in any suitable manner;
however, for ease of explanation and for purposes of illus
tration, it will be assumed in the following discussion that
the implementation of the virtual machine's host environ
ment can be logically separated into two parts: a host
application, and a DRM engine. It will be appreciated,
however, that other embodiments may have a different
logical separation of functions, which may be equivalent to
the logical structure described above.
0582. As was shown in FIG. 29, in preferred embodi
ments, the DRM engine 2908 is the logical interface
between the host application 2900 and control programs
2906. The host application 2900 makes logical requests to
the engine 2908, Such as requesting access to a content key
for a certain purpose (e.g., to play or render a content
stream). In one embodiment, the engine 2908 ensures that
the interaction protocol described below is implemented
correctly, Such as by ensuring that any guarantees regarding
a control programs initialization, call sequence, and other
interaction details are met.

0583. When the host application 2900 requests the use of
content keys for a set of content IDs, the DRM engine 2908
determines which Control object to use. The Protector
objects allow the engine to resolve which ContentKey
objects need to be accessed for the requested content IDs.
The engine then finds the Controller object that references
those ContentKey objects. In one embodiment, a Controller
object can reference more than one Contentkey object. This
allows multiple ContentKey objects to be governed by the
same Control object. When the host application requests
access to a content key by invoking an action, it can request

1.27. Control Programs

1.27.1. Interface to Control Programs

40
Jul. 26, 2007

content IDs as a group, to the extent that the ContentKey
objects that correspond to them are referenced by the same
Controller object. In one embodiment, a request to access a
group of content keys referenced by more than one control
ler object is not allowed.
0584) In one embodiment, the DRM engine follows a
convention for mapping actions to routine names. For
example, in one embodiment, for each of the routines
described below, the name that appears in the Export Table
entry in the code module is the respective string shown
below in Sections 9.1.4-9.17.

0585) 1.27.1.1. Control Loading
0586. In one embodiment, before the engine can make
calls to control routines, it needs to load the control’s code
module into the virtual machine. In one embodiment, only
one code module per VM is loaded.
0587) 1.27.1.2. Atomicity
0588. In one embodiment, the engine ensures that calls to
routines within control programs are atomic with respect to
the resources it makes available to the routine, Such as the
object (or “state') database. Thus, in such an embodiment,
the engine needs to ensure that those resources remain
unmodified during the execution of any of the routines it
calls. This may be done by effectively locking those
resources during a routine call, or by preventing multiple
VMs to run concurrently. However, the engine need not
guarantee that those resources are unmodified across suc
cessive routine invocations.

0589) 1.27.2. Control Protocol
0590. In one embodiment, the routine naming, the input/
output interface, and the data structures for each routine in
a code module, together, constitute a Control Protocol. The
protocol implemented by a code module is signaled in the
Control object’s “protocol field. The illustrative Control
Protocol described below will be called the Standard Control
Protocol, and its identifier (the value of the protocol field)
is "http://www.octopus-drm.com/specs/scp-1. O”.

0591. In one embodiment, before the DRM engine loads
a code module and calls routines in the control program, it
needs to guarantee that the interaction with the control
program will be consistent with the specification for the
specific protocol id signaled in the protocol field. That
includes any guarantee about the features of the virtual
machine that need to be implemented, guarantees about the
size of the address space available to the control program,
and the like.

0592. It is possible for control protocols, such as the
Standard Control Protocol, to evolve over time without
having to create a new protocol specification. As long as the
changes made to the protocol are consistent with previous
revisions of the specification, and as long as existing imple
mentations of the DRM engine, as well as existing control
programs that comply with that protocol, continue to per
form according to the specification, then the changes are
deemed compatible. Such changes may include, for
instance, new action types.
0593] 1.27.3. Byte Code Type
0594. In the illustrative embodiment described above
involving the Standard Control Protocol, the type of the

US 2007/0172041 A1

byte-code module is “Plankton byte-code module version
1.0. In this example embodiment, the value for the “type'
field of the Control object is "http://www.octopus-drm.com/
specs/pkcm-1 0'.

0595) 1.27.4. General Control Routines
0596 General routines are routines that are applicable to
the control as a whole, and are not specific to a given action
or link constraint. The following general control routines are
used in one illustrative embodiment:

0597 1274.1. Control. Init
0598. This routine is optional (i.e., it is not required in all
controls). If this routine is used, the engine calls it once
before any other control routine is called. The routine has no
inputs, and returns a ResultCode to the top of the stack as an
output. The ResultCode is 0 on Success, or a negative error
code on failure. In one embodiment, if the ResultCode is not
0, the engine aborts the current control operation and does
not make any further calls to routines for this control.

0599) 1.27.4.2. Control.Describe
0600 This routine is optional. The routine is called when
the application requests a description of the meaning of the
rules represented by the control program in general (i.e. not
for a specific action). The routine has no inputs, and returns
a ResultCode and a StatusBlockPointer to the top of the
stack as outputs, where the ResultCode is an integer value (O
if the routine completed Successfully, or a negative error
code otherwise), and where the StatusBlockPointer is the
address of a standard ExtendedStatusBlock. The Extended
StatusBlock contains information that an application can
interpret and use to provide information to the user regard
ing the meaning of the rules represented by the control
program.

0601 1.27.4.3. Control. Release
0602. This routine is optional. If this routine exists, the
DRM engine calls it once after it no longer needs to call any
other routine for the control. No other routine will be called
for the control unless a new use of the control is initiated (in
which case, the Control. Init routine will be called again).
The routine has no inputs, and returns a ResultCode to the
top of the stack as an output. The ResultCode is 0 on Success,
or a negative error code on failure.

0603) 1.27.5. Action Routines
0604 Each possible action has a name (e.g., play, trans
fer, export, etc.). In one illustrative embodiment, for a given
action <Action>, the following routine names are defined
(where “-Action>' denotes the actual name of the action
(e.g., "play”, “transfer”, “export', etc.)):

0605) 1.27.5.1. Control. Actions.<Action>Init
0606. This routine is optional. If it exists, the engine calls

it once before any other routine is called for this action. The
routine has no inputs, and returns a ResultCode to the top of
the stack as an output. The ResultCode is 0 on Success, or a
negative error code on failure. In one embodiment, if
ResultCode is not 0, the engine aborts the current action and
does not make any further calls to routines for this action in
this control.

Jul. 26, 2007

0607 1.27.5.2. Control. Actions.<Action>.Check
0608. In the illustrate embodiment being discussed, this
routine is required, and is called to check, without actually
performing a given action, what the return status would be
if the Perform routine were to be called for that action. It is
important for this routine not to have any side effects. Note
that if the Perform routine also has no side effects, the Check
and Perform entries in the controls Entries Table can point
to the same routine. This routine has the same inputs and
outputs as the Perform routine described below.

0609)
0610. In one embodiment, this routine is required, and is
called when the application is about to perform the action.
The routine has no inputs, and returns a ResultCode and a
StatusBlockPointer to the top of the stack as outputs, where
the ResultCode is an integer value (0 if the routine com
pleted Successfully, or a negative error code otherwise), and
where the StatusBlockPointer is the address of a standard
ExtendedStatusBlock. Note that in one embodiment a suc
cess ResultCode (i.e., 0) does not mean that the request was
granted. It only means that the routine was able to run
without error. It is the ExtendedStatusBlock that indicates
whether the request was granted or denied. However, if the
ResultCode indicates a failure, the host application proceeds
as if the request was denied. For example, in one embodi
ment the StatusBlock's category should be ACTION DE
NIED, or the returned ExtendedStatusBlock is rejected, and
the host application aborts the action.

1.27.5.3. Control. Actions.<Action>.Perform

0611 When an action is performed, only the Perform
routine needs to be called. The engine does not need to call
the Check routine beforehand. An implementation of the
Perform routine can call the Check routine internally if it
chooses to do so, but should not assume that the system will
have called the Check routine beforehand.

0612 1.27.5.4. Control. Actions.<Action>.Describe
0613. This routine is optional, and is called when an
application requests a description of the meaning of the rules
and conditions represented by the control program for the
given action. The routine has no inputs, and returns a
ResultCode and a StatusBlockPointer to the top of the stack
as outputs, where the ResultCode is an integer value (0 if the
routine completed Successfully, or a negative error code
otherwise), and where the StatusBlockPointer is the address
of a standard ExtendedStatusBlock.

0.614 1.27.5.5. Control. Actions.<Action>.Release
0615. This routine is optional. If it exists, it is called once
after the DRM engine no longer needs to call any other
routines for the given action. No other routine are called for
the given action unless a new use of the action is initiated (in
which case, the Init routine will be called again). The routine
has no inputs, and returns a ResultCode to the top of the
stack as an output. The ResultCode is 0 on Success and a
negative error code on failure. If the ResultCode is not 0, the
engine does not make any further calls to routines for the
given action

0616)

0.617. In one embodiment, when a link object has an
embedded control, the DRM engine calls the link constraint

1.27.6. Link Constraint Routines

US 2007/0172041 A1

routines in that control to verify the validity of the link
object. The following link constraint routines are used in one
illustrative embodiment:

0618) 1.27.6.1. Control. Link.Constraint. Init
0619. This routine is optional, and, if it exists, is called
exactly once before any other routine is called for the given
link constraint. The routine has no inputs, and returns a
ResultCode to the top of the stack as an output. The
ResultCode is 0 on Success and a negative error code on
failure. If the ResultCode is not 0, the engine deems the
validity constraint for the link object to be unsatisfied, and
avoids making further calls to routines for the link control.

0620)
0621. In the illustrative embodiment being discussed, this
routine is required, and is called to check if the validity
constraint for a given link is satisfied. The routine has no
inputs, and returns a ResultCode and a StatusBlockPointer
to the top of the stack as outputs, where the ResultCode is
an integer value (0 if the routine completed Successfully, or
a negative error code otherwise), and where the StatusBlock
Pointer is the address of a standard ExtendedStatusBlock. If
the ResultCode is not 0, the engine deems the validity
constraint for the link object to be unsatisfied, and avoids
making further calls to routines for the link control. Even if
the ResultCode is 0 (success), this does not mean that the
constraint has been satisfied; it only means that the routine
was able to run without error. It is the StatusBlock that
indicates whether the constraint is satisfied or not.

0622)

1.27.6.2. Control. Link.Constraint.Check

1.27.6.3. Control. Link.Constraint.Describe

0623 This routine is optional, and is called when the
application requests a description of the meaning of the
constraint represented by the control program for a given
link. The routine has no inputs, and returns a ResultCode and
a StatusBlockPointer to the top of the stack as outputs,
where the ResultCode is an integer value (0 if the routine
completed Successfully, or a negative error code otherwise),
and where the StatusBlockPointer is the address of a stan
dard ExtendedStatusBlock.

0624 1.27.6.4. Control. Link.Constraint. Release
0625. This routine is optional, and, if it exists, is called by
the engine once after the engine no longer needs to call any
other routine for the given constraint. The routine has no
inputs, and returns a ResultCode to the top of the stack as an
output. The ResultCode is 0 on Success and a negative error
code on failure. In the embodiment being discussed, after
calling this routine, no other routine can be called for the
given constraint unless a new cycle is initiated (in which
case, the Init routine is called again). Similarly, if the
ResultCode is not 0, the engine does not make further calls
to routines for the given link constraint.

0626)
0627. In one embodiment, an agent is a control object that

is designed to run on behalf of an entity. Agents are typically
used in the context of a service interaction between two
endpoints, where one endpoint needs to execute some virtual
machine code within the context of the second endpoint, and
possibly obtain the result of that execution. In one embodi
ment, a control can contain multiple agents, and each agent

1.27.7. Agent Routines

42
Jul. 26, 2007

can contain any number of routines that can be executed;
however, in practice, agents typically have a single routine.
0628. In one illustrative embodiment, the following entry
points are defined for agents, where <Agent> is a name
string that refers to the actual name of an agent.
0629)
0630. This routine is optional, and, if it exists, the engine
calls it once before any other routine is called for the given
agent. The routine has no inputs, and returns a ResultCode
to the top of the stack as an output. The ResultCode is 0 on
Success and a negative error code on failure.
0631 1.27.7.2. Control. Agents.<Agent>.Run
0632. In the illustrative embodiment under discussion,
this routine is required, and is the main routine of the agent.
The routine has no inputs, and returns a ResultCode, a
ReturnBlock Address, and a Return BlockSize to the top of
the stack as outputs. The ResultCode is an integer value (O
if the routine completed Successfully, or a negative error
code otherwise), the ReturnBlock Address is the address of
a block of memory that contains data that the agent code is
expected to return to the caller (if the routine does not need
to return anything, the address is 0), and the Return Block
Size is the size in bytes of the block of memory at the
ReturnBlock Address. In one embodiment, if ReturnBlock
Address is 0, the value of ReturnBlockSize is also 0.

0633)

1.27.7.1. Control. Agents.<Agent>. Init

1.27.7.3. Control. Agents.<Agent>. Describe
0634. This routine is optional, and is called when an
application request a description of a given agent. The
routine has no inputs, and returns a ResultCode and a
StatusBlockPointer to the top of the stack as outputs, where
the ResultCode is an integer value (0 if the routine com
pleted Successfully, or a negative error code otherwise), and
where the StatusBlockPointer is the address of a standard
ExtendedStatusBlock.

0635 1.27.7.4. Control. Agents.<Agent>. Release
0636. This routine is optional, and, if it exists, the engine
calls it once after the engine no longer needs to call any other
routines for this agent. No other routine will be called for
this agent unless a new cycle is initiated (in which case, the
Init routine will be called again). The routine has no inputs,
and returns a ResultCode to the top of the stack as an output.
The ResultCode is 0 on success and a negative error code on
failure.

0637) 1.28. Extended Status Blocks
0638. The following example definitions are applicable
to the ExtendedStatusBlock data structures returned by
illustrative embodiments of several of the routines described
above. Examples of ExtendedStatusBlock data structures are
described in connection with the description of the virtual
machine.

0639. In one embodiment, there are no global Extended
StatusBlock flags. In this embodiment, control programs set
the GlobalFlag field of the ExtendedStatuBlock to 0.
0640) 1.28.1. Categories
0641. The following paragraphs define values for the
Category field of ExtendedStatusBlocks in accordance with
one embodiment. In one embodiment, none of these catego
ries have sub-categories, and thus the value of the SubCat
egory field of the ExtendedStatusBlocks is set to 0.

US 2007/0172041 A1
43

0642. In one embodiment, the following category codes 0646)
are defined:

0643) 1.28.1.1. Actions Check and Perform Routines

Value Name Description

Jul. 26, 2007

In the table shown above, the parameter list that is
referred to is the “Parameters’ field of the ExtendedStatus

O ACTION GRANTED The application is authorized to use the content
keys control
he requeste

ExtendedSta

keys control
purpose of
When an ac

constraints
o be denie

action to fai

ed by the control program for the purpose of
action.

The parameter list of the returned
tusBlock should not contain any of

he constraint parameters, but may contain
obligation and/or callback parameters.

1 ACTION DENIED The applicat ion is not authorized to use the content
ed by the control program for the
he requested action.
ion is denied, the control program

should include in the parameter list of the returned
ExtendedStatusBlock one or more of the

hat were not met and caused the action

(the constraints that were not
evaluated and the constraints that did not cause the

should be omitted).
in one embodiment, the parameter list of the
returned Ex endedStatusBlock must not contain
any obligation or callback parameter.

0644. In one embodiment, in the context of Extended- 0647)
StatusBlock parameters returned by action routines, a con
straint means a condition that is required to be true or a
criterion that is required to be met in order for the result of
the routine to return an ExtendedStatusBlock with the cat
egory ACTION GRANTED.
0645. In one embodiment, values for the LocalFlags field
common to both categories described above include:

0648)

Block data structure.

1.28.1.2. Describe Routine Category Codes
In one embodiment, no category codes are defined

for Describe routines. In one embodiment, the same local
flags as the ones defined for Action routines apply to
Describe routines, and Describe routines should include in
their retuned ExtendedStatusBlock a parameter named

Bit
Index (0 is LSB) Name Description

O OBLIGATION NOTICE The parameter list contains one or
O 88teS 880 86 O

obligations
1 CALLBACK NOTICE The parameter list contains one or

O 88teS 880 86 O

callbacks
2 GENERIC CONSTRAINT The parameter list contains one or

O 88teS 880 86 O

generic constraints
3 TEMPORAL CONSTRAINT The parameter list contains one or

O 88teS 880 86 O

temporal constraints
4 SPATIAL CONSTRAINT The parameter list contains one or

O 88teS 880 86 O

spatial constraints
5 GROUP CONSTRAINT The parameter list contains one or

O 88teS 880 86 O

group constraints
6 DEVICE CONSTRAINT The parameter list contains one or

O 88teS 880 86 O

evice constraints
7 COUNTER CONSTRAINT The parameter list contains one or

O 88teS 880 86 O

counter constraints

Description as specified below. In one embodiment,
Describe routines do not contain in their retuned Extended

US 2007/0172041 A1

StatusBlock any obligation or callback parameters; how
ever, Describe routines should include in their returned
ExtendedStatusBlock parameters that describe some or all of
the constraints that are applicable for the corresponding
action or link constraint.

0649) 1.28.1.3. Link Constraint Routine Category Codes

Value Name Description

O LINK VALID The link constrained by this control program is
valid.
The parameter list of the returned ESB should
not contain any of the constraint parameters,
and, in one embodiment, must not contain
obligation or callback parameters

1 LINK INVALID The link constrained by this control program is
invalid.
When a link is invalid, the control program
should include in the parameter list of the
returned ESB one or more of the
constraints that were not met and caused
the link to be invalid (the constraints
that were not evaluated and the
constraints that did not cause the action
to fail should be omitted). In one
embodiment, the parameter list of the
returned ESB must not contain any
obligation or callback parameter.

0650 In one embodiment, the same local flags as the ones
defined for Action routines apply for each of these catego
ries.

0651. In one embodiment, in the context of Extended
StatusBlock parameters returned by link constraint routines,
a constraint means a condition that is required to be true or
a criterion that is required to be met in order for the result
of the routine to return an ExtendedStatusBlock with the
category LINK VALID.
0652) 1.28.2. Cache Durations
0653) The CachelDuration field of an ExtendedStatus
Block is an indication of the validity period of the informa
tion encoded in the ExtendedStatusBlock. When an Extend
edStatusBlock has a non-zero validity period, it means that
the ExtendedStatusBlock can be stored in a cache, and that
during that period of time a call to the exact same routine call
with the same parameters would return the same Extended
StatusBlock, so the cached value may be returned to the host
application instead of calling the routine.
0654)
0655 Some parameters are used to convey detailed infor
mation about the return status, as well as variable bindings
for template processing (see Section 9.4).
0656. In one embodiment, except for obligations and
callbacks, all the constraints described here are strictly for
the purpose of helping the host application classify and
display, not for enforcement of the usage rules. The enforce
ment of the rules is the responsibility of the control program.
0657. In one embodiment, the parameters defined in the
following section are encoded either as a ParameterBlock, if
no parameter flags are applicable, or as an ExtendedParam
eterBlock, of one or more flags are applicable. Representa
tive flags are described below:

1.28.3. Parameters

44
Jul. 26, 2007

0658) 1.28.3.1. Description
0659 Parameter Name: Description

0660 Parameter Type: ValueList
0661. Description: List of description parameters. Each
value in the list is of type Parameter or Extended Parameter.
In one embodiment, the following parameters are defined:
Default, Short and Long. Each of them, if present has for a
value the ID of one of the controls resources. That resource
should contain a textual payload, or a template payload. If
the resource is a template, it is processed to obtain a textual
description of the result (either a description of the entire
control program, or of a specific action). The template is
processed using as variable bindings the other parameters of
the list in which the Description parameter appears.

0662. In one embodiment, the Short and Long descrip
tions can only be included if a Default description is also
included.

Name Type Description

Default Resource Id of the resource that contains
the normal description text or template

Short Resource Id of the resource that contains
the short description text or template

Long Resource Id of the resource that contains
the long description text or template

0663 1.28.3.2. Constraints
0664) In one embodiment, constraint parameters are
grouped in lists that contain constraints of similar types. In
one embodiment, standard constraints are defined for some
of the types. In one embodiment, controls may return
constraint parameters that are not included in the set of
standard constraints, provided that the name of the con
straint parameters be a URN in a namespace that guarantees
the uniqueness of that name. This may include vendor
specific constraints, or constraints defined in other specifi
cations.

0665) 1.28.3.2.1. Generic Constraints
0.666 Parameter Name: GenericConstraints
0667 Parameter Type: ValueList
0668. Description: List of generic constraints that may be
applicable. Each value in the list is of type Parameter or
ExtendedParameter.

0669. In one embodiment, generic constraints are con
straints that do not belong to any of the other constraint types
defined in this section. In one embodiment, no generic
constraint parameters are defined.

0670) 1.28.3.2.2. Temporal Constraints
0671 Parameter Name: TemporalConstraints

0672 Parameter Type: ValueList
0673 Description: List of temporal constraints that may
be applicable. Each value in the list is of type Parameter or
Extended Parameter. Temporal constraints are constraints

US 2007/0172041 A1

that are related to time, date, duration, and/or the like. In one
embodiment, the following temporal constraint parameters
are defined:

Name Type Description

NotEefore Date Date before which the action is denied
NotAfter Date Date after which the action is denied
NotDuring ValueList List of 2 values of type Date. The first

value is the start of the period, and the
second is the end of the period that
is excluded.

NotLongerThan Integer Max number of seconds after first use.
In one embodiment, this value is unsigned.

NotMoreThan Integer Max number of seconds of accumulated
use time. In one embodiment, this value
is unsigned.

0674) 1.28.3.2.3. Spatial Constraints

0675 Parameter Name: SpatialConstraints

0676 Parameter Type: ValueList

0677. Description: List of spatial constraints that may be
applicable. In one embodiment, each value in the list is of
type Parameter or ExtendedParameter. Spatial constraints
are constraints that are related to physical locations. In one
embodiment, no standard spatial constraints are defined.

0678) 1.28.3.2.4. Group Constraints

0679 Parameter Name: GroupConstraints

0680 Parameter Type: ValueList

0681. Description: List of group constraints that may be
applicable. Each value in the list is of type Parameter or
Extended Parameter. Group constraints are constraints that
are related to groups, group membership, identity groups,
and/or the like. In one embodiment, the following param
eters are defined:

Name Type Description

Id of the resource that contains the
text or template for the name or
identifier of a group of which a
membership is required
Id of the resource that contains the
text or template for the name or
identifier of an individual

MembershipRequired Resource

Identity Required Resource

0682) 1.28.3.2.5. Device Constraints

0683 Parameter Name: DeviceConstraints

0684 Parameter Type: ValueList

0685. Description: List of device constraints that may be
applicable. Each value in the list is of type Parameter or
Extended Parameter. Device constraints are constraints that
are related to characteristics of a device, such as features,
attributes, names, identifiers, and/or the like. In one embodi
ment, the following parameters are defined:

Jul. 26, 2007

Name Type Description

Id of the resource that contains the
text or template for the type of host
device that is required
Id of the resource that contains
the text or template for name of
feature that the host device
must have
Id that the device is required to
have. This Id may be any string
that can be used to identify the
device (e.g., device name,
device serial number, a node
id, and/or the like).

DeviceTypeRequired Resource

DeviceFeatureRequired Resource

DeviceIdRequired String

0686) 1.28.3.2.6. Counter Constraints

0687 Parameter Name: CounterConstraints

0688 Parameter Type: ValueList

0689. Description: List of counter constraints that may be
applicable. Each value in the list is of type Parameter or
ExtendedParameter. Counter constraints are constraints that

are related to counted values, such as play counts, accumu
lated counts, and/or the like. In one embodiment, no stan
dard counter constraints are defined.

0690) 1.28.3.3. Parameter Flags

0.691. In one embodiment, the following flags may be
used for all the parameters described in Section 9.2.3, when
they are encoded as an ExtendedStatusBlock:

Bit
Index
(O is
LSB) Name Description

O CRITICAL The semantics associated with this
parameter need to be understood by the
host application. If they are not, the
entire ExtendedStatusBlock should
be treated as not understood
and rejected.
In one embodiment, this flag should not
be used for parameters that are
descriptive in nature.

1 HUMAN READABLE This parameter represents a value
whose name and value are suitable to
display in a textual or graphical user
interface. Any parameter that does
not have this flag set should be reserved
for the host application, and not be
shown to a user. For parameter
values of type Resource, it
is not the resource ID, but the resource
data payload referenced by the ID,
that is human-readable.

0692 1.29. Obligations and Callbacks

0.693. In one embodiment, certain actions, when granted,
require further participation from the host application. Obli
gations represent operations that need to be performed by

US 2007/0172041 A1
46

the host application upon or after the use of the content key
it is requesting. Callbacks represent calls to one or more of
the control program routines that need to be performed by
the host application upon or after the use of the content key
they are requesting.
0694. In one embodiment, if an application encounters
any critical obligation or callback that it does not support, or
does not understand (for example because the obligation
type may have been defined after the application was
implemented), it must refuse to continue the action for
which this obligation or callback parameter was returned. In
one embodiment, a critical obligation or callback is indi
cated by setting the CRITICAL parameter flag for the
parameter that describes it.
0695). If a control has side effects (such as decrementing
a play count, for example), it should use the OnAccept
callback to require the host application to call a certain
routine if it is able to understand and comply with all critical
obligations and callbacks. The side effect should happen in
the callback routine. In one example embodiment, imple
mentations are required to understand and implement the
OnAccept callback, since it can be useful in preventing side
effects (e.g., updates to the State database) from occuring
prematurely (e.g., before the host application determines
that it is unable to comply with a given critical obligation or
callback and needs to terminate performance of an action),
thus providing a measure of transactional atomicity.
0696)
0697 The following parameters define several types of
obligations and callbacks that can be returned in Extended
StatusBlock data structures.

0698) 1.29.1.1. Obligations
0699 Parameter Name: Obligations
0700 Parameter Type: ValueList

1.29.1. Parameters

0701. Description: List of obligation parameters. Each
value in the list is of type Parameter or Extended Parameter.
In one embodiment, the following obligation parameters are
defined:

Name

OnAccept

OnTime

OnTimeElapsed

Jul. 26, 2007

Name Type Description

RunAgentOnPeer ValueList The host application needs to send an
agent control to run on a peer of the
currently running protocol session
Type Description

Id of the Control that contains
the agent to run.
Name of the agent to run.

String

String
Integer Instance Id. This value is used

to uniquely identify this agent
obligation instance. This id
will also allow the system to
correlate this agent obligation
with an On AgentCompletion
callback parameter.
Context Id. This Id will be

visible to the running agent on
String

the peer under the agent's
session context Host Object
path:
Octopus Agent Parameters
Session? ContextId.

List of values of type
Parameter. All those

ValueList

parameters will be
visible to the agent as input
parameters.

07.02 1.29.1.2. Callbacks

0703 Parameter Name: Callbacks

0704 Parameter Type: ValueList

0705. Description: List of callback parameters. Each
value in the list is of type Parameter or Extended Parameter.
In one embodiment, the following callbacks parameters are
defined:

Type Description

Callback The host application must call back if it is able to
understand all the critical obligations and callback
parameters contained in this ESB.
In one embodiment, there can be at most one
OnAccept callback parameter in a list of callback
parameters. If other callback parameters are
specified in the list, the OnAccept is executed first.
The host application must call back after the
specified date/time.
Type Description

ValueList

Date The date after which the host
application needs to perform the
callback.
Routine to call back, and associated
cookie.

The host application must call back after the
specified duration has elapsed (the counting starts
when the host application actually performs the
action for which the permission that was granted).

Callback

ValueList

US 2007/0172041 A1

Name

OnBwent

On AgentCompletion ValueList

0706)

Value
Type

Integer

47
Jul. 26, 2007

-continued

Type Description

Type Description

Integer Number of seconds. The value is
unsigned.

Callback Routine to call back, and associated
cookie.

ValueList The host application must call back when a certain
event occurs.
Type Description

String Event Name
Integer Event Flags (the integer valus is

interpreted as a bit-field)
Integer Event Parameter
Callback Routine to call back, and associated

cookie.
See the paragraph about events for more details
about the events.
The host application must call back when an agent
specified in one of the obligation parameters has
completed, or failed to run.
Type Description

Integer Agent instance id.
The instance id specified in an agent
obligation.

Callback Routine to call back, and associated
cookie.

When calling back, the host application must
provide the following ArgumentsBlock:
Type Encoding Description

32-bit 4 bytes in Completion status
integer big-endian code.

order
32-bit 4 bytes in Agent result code
integer big-endian

order
8-bit byte Byte Agent ReturnBlock

array Sequence
The completion status code value is 0 if the agent
was able to run or a negative error code if it was
not.

The agent ReturnBlock is the data returned by the
agent. This is omitted if the agent was unable to run
(the Completion status code is not O).

In one embodiment, the Callback type mentioned
in the table above is a Value listBlock with three ValueBlock
elements:

Description

ID of the callback type. In one embodiment, two types of
callbacks are defined:
ID

RESET = O

CONTINUE = 1

Description

All pending callbacks requests and active
obligations are cancelled upon calling the
callback routine. The callback routine
returns an ESB that indicates if and how the
application can continue with the current
operation.
The callback routine is called while all
other pending callback requests and active
obligations remain in effect. The callback
routine returns a simple result code. The

-continued

Value
Type Description

application can continue with the current
operation unless that result code indicates a
failure.

String Entry point to call in the code module. In one embodiment,
this must be one of the entries in the Export Table of the code
module for the same control as the one containing the routine
that returned the ESB with this parameter.

Integer Cookie. This value will be passed on the stack to the
routine that is called.

0707 1.29.1.3. Parameter Flags
0708. In one embodiment, the same parameter flags as
defined in the previous section are used. In one embodiment,
callbacks and obligations that a caller is required to imple
ment are marked as CRITICAL, so as to avoid giving a host
application the choice to ignore these parameters.

US 2007/0172041 A1

0709)
0710. In one embodiment, events are specified by name.
Depending on the type of event, there may be a set of flags
defined that further specify the event. In one embodiment, if
no flags are defined for a specific event, the value of the flag
field is set to 0. Also, Some events may specify that some
information be supplied to the callback routine when the
event occurs. In one embodiment, if no special information
is required from the host application, the host application
must call with an empty ArgumentsBlock (see the descrip
tion of the callback routine interface in section 3.3, below).
0711. In one embodiment, if the name of an event in a
callback parameter marked CRITICAL is not understood or
not supported by the host application, the host application
must consider this parameter as a not-understood CRITI
CAL parameter (and the action for which permission was
requested must not be performed).

0712)
defined:

1.29.2. Events

In one embodiment, the following event names are

48
Jul. 26, 2007

0713 1.29.3. Callback Routines
0714. In one embodiment, callback routines take the
same input:
0715 Input: Top of stack:

Cookie
ArgumentsBlockSize
. . . data . . .

0716) Cookie: the value of the Cookie field that was
specified in the callback parameter.
0717 ArgumentsBlockSize: number of bytes of data
passed on the stack below this parameter. When the routine
is called, the stack contains the value ArgumentsBlockSize
Supplied by the caller, indicating the size of the arguments
block at the top, followed by ArgumentsBlockSize bytes of
data. In one embodiment, if the size is not a multiple of 4.

Event
Event Name Event Flags Parameter Description

OnPlay None None The host application must call back
when the multimedia object starts
playing.

OnStop None None The host application must call back
when the multimedia stops playing (or is
paused)

OnTimecode None Presentation The host application must call back
time when the specified presentation time has
expressed in
number of

been reached or exceeded (during
normal real-time playback or after a

seconds since seek). The origin of the presentation
the start of ime is when the rendering begins. The
the presentation time relates to the source
presentation media time, not the wall-clock time

(e.g., when a presentation is paused, the
presentation time does not change).

On Seek None None The host application must call back
when a direct access to an arbitrary point
in a multimedia presentation occurs.
in one embodiment, when calling back,
he host application must provide the
ollowing data in a ArgumentsBlock:
Type Encoding Description

32-bit 4 bytes in Seek
unsigned big-endian position
integer order offset
32-bit 4 bytes in Seek
unsigned big-endian position
integer order range
The position within the multimedia
presentation is offset “marks' out of
range total marks in the presentation.
For instance, for a presentation that is
327 seconds long, seeking to the 60"
Second can be represented with
offset = 60, range = 327. It is up to the
caller to choose the unit that corresponds
to the measurement of the offset and
range (it could be a time unit, a byte-size
unit, or any other unit), provided that the
“marks' are homogeneously distributed
over the entire presentation. The value
of offset must be less than or equal to the
value of range.

US 2007/0172041 A1

the data on the stack will be padded with 0-value bytes to
ensure that the Stack pointer remains a multiple of 4.
0718) 1.29.3.1. CONTINUE Callbacks
0719. In one embodiment, callbacks with the type CON
TINUE (type ID=0) have the following output:
0720 Output: Top of stack:

ResultCode

0721 ResultCode: an integer value. The result value is 0
if the routine was able to execute or a negative error code if
an error occurred.

0722 Description: if the ResultCode indicates that the
callback routine was able to run (i.e., the value is 0), the host
application can continue the current operation. If the Result
Code indicates that an error occurred, the host application
aborts the current operation and cancels all pending call
backs and obligations.
0723) 1.29.3.2. RESET Callbacks
0724 When a control routine has specified one or more
callbacks of type RESET in the ESB returned from a routine,
the host application will call any specified callback routine
when the condition for that callback is met. In one embodi
ment, as soon as the conditions of any of the callbacks are
met, the host application needs to:

0725 Cancel all other pending callbacks
0726 Cancel all current obligations
0727 Provide the required parameters (if any) for that
callback

0728 Call the specified callback routine.

0729. The return status from the routine indicates to the
host application if it can continue performing the current
operation. In one embodiment, if the permission is denied or
the routine fails to execute successfully, the host application
must abort the performance of the current operation. Simi
larly, if the permission is granted, the host application must
comply with any obligation or callback that may be returned
in an ESB, just as if it had called the original
Control. Actions.<Action>. Perform routine. Previous obli
gations or callback specifications are no longer valid.
0730. In one embodiment, all routines specified as call
back entry points for this type of callback have the following
output:

0731 Output: Top of stack:

ResultCode
StatusBlockPointer

0732 ResultCode: an integer value. The result value is 0
if the routine was able to execute, or a negative error code
if an error occurred.

49
Jul. 26, 2007

0733 StatusBlockPointer: address of a standard Extend
edStatusBlock.

0734. Description: the return semantics of this routine are
equivalent to what is described for the
Control. Actions.<Action>. Perform routine.

0735) 1.30. Metadata Resources
0736. In one embodiment, control objects can contain
metadata resources, which can be referenced from the
parameters returned in ExtendedStatusBlock data structures.
Resources can be simple text, text templates, or other data
types. Each resource is identified by a resource ID, and can
contain one or more text strings or encoded data, one for
each version in a different language. It is not required that
resources be provided for all languages. It is up to the host
application to choose which language version is most appro
priate for its needs.

Field Type Description

Resource

Id ASCII String URI (typically a URN referring to
the Id of an Extension of the
Control object that contains the
code module with the routine that is
currently running)
MIME-type of the resource data as
described in IETF RFC 2046
List of all the different versions of
the resource, for different locales

LocalizedData

Type ASCII String

Data List of
LocalizedData

Language ASCII String Language code as specified in IETF
RFC 3066

Data Type depends The actual data for the resource
on the specified (text, etc . . .)
mime type

0737. Resources accompany control programs by being
included as Extensions in a Control object. The resource Id
maps to the Id of an internal extension of the Control object
that contains the code module with the routine that is
currently running.
0738 For the purpose of computing the canonical byte
sequence for Resource objects, in one embodiment the data
structure description is the following:

class LocalizedData {
String language
byte data:

class Resource {
string id
string type:
LocalizedData data:

0739 1.30.1. Simple Text
0740 Simple text is specified as MIME-type text
0741) 1.30.2. Text Templates
0742. In addition to the standard text resources, in one
embodiment, a text template type is defined. The MIME
type for this is text/vnd.intertrust.octopus-text-template.

US 2007/0172041 A1

0743. In one embodiment, a text template contains text
characters encoded in UTF-8, as well as named placeholders
that are to be replaced by text values obtained from param
eters returned in the parameters list, such as that of an
ExtendedStatusBlock. The syntax for a placeholder is
\PLACEHOLDER\, where PLACEHOLDER specifies the
name of a Parameter Block and an optional formatting hint.
In one embodiment, the template processor must replace the
entire token \PLACEHOLDERA with the formatted repre
sentation of the Value field of that Parameter Block, and the
formatting of the Value data is specified below in Section
4.2.1.

0744. In one embodiment, if the character \' appears in
the text outside of a placeholder, it must be encoded as \\,
and all occurrences of \\ in the text will be reverted to \
by the template processor.
0745) The syntax for the placeholder is:
FORMATINAME, where NAME is the name of a Parameter
Block, and FORMAT is the formatting hint to convert the
parameter's data into text. If the default formatting rules for
the parameter value's data type are sufficient, then the
formatting hint can be omitted, and the placeholder is simply
NAME.

0746) 1.30.2.1. Formatting
0747 1.30.2.1.1. Default Formatting
0748. In one embodiment, the default formatting rules for
the different value types are:

Type Formatting

Integer

50

Text representation of the integer value as a signed
decimal. The text is composed only of the characters for

Jul. 26, 2007

Name Formatting

Hex Hexadecimal representation of an integer value interpreted as
unsigned. In one embodiment, this formatting hint should be
ignored for data types that are not integers.

0751) 1.31. Context Objects

0752. In one embodiment, when a control routine is
executing, it has access to a number of context objects
through the use of the System. Host.Get Object system call.

0753) 1.31.1. General Context

0754) In one embodiment, the following context is
present for running controls.

Name Type Description

ID of the current
personality Node
Attributes of the current
personality Node

Octopus/Personality/Id String

Octopus/Personality/Attributes Container of
Attributes

the digits “0” to '9' and the character “ . If the value is 0,
the text is the string “O’. If the value is not 0, the text does
not start with the character “O. If the value is negative, the
text starts with the character “ . If the value is positive, the
text starts with a non-zero digit character.

Real Text representation of the floating point value in decimal.
The integral part of the value is represented using the same rules
as for Integer values. The decimal separator is represented
with the host application's preferred decimal separator. The
actional part of the value consists of up to 6 "O' characters
ollowed by up to 3 non-zero digit characters.

String The string value itself
Date A human readable representation of the date, according to

he host's preferred text representation of dates
Parameter The text-name>=<values, where <name> is the

parameter name, and <values is the parameter value
ormatted according to the default formatting rules for its type.

Extended Parameter Same as for Parameter
Resource Text string of the resource's data. In one embodiment, the

resource referenced by the placeholder must have a MIMI
type that is text-based (e.g., text or
extivnd.intertrust.octopus-text-template).

ValueList The text-values, <values, with all the values in the
ist formatted according to the default formatting rules for
heir type.

0749 1.30.2.1.2. Explicit Formatting 0755 1.31.2. Runtime Context
0756. In one embodiment, the following context is

0750 Explicit format names can be used as the FORMAT
part of a placeholder tag. If an unknown FORMAT name is
encountered, the template processing engine will use the
default formatting rules.

present for all controls that are running in a VM that has
been created using the System. Host.SpawnVm system call.
In one embodiment, this context must be non-existent or an
empty container for controls that are running in a VM that
was not created using System. Host.SpawnVm.

US 2007/0172041 A1

Name Type Description

Octopus Runtime/Parent Id Container The identity under which the
of unnamed caller of the system call is
String running.
objects

0757
0758. In one embodiment, the following context is
present whenever a routine of a control is running:

1.3.1.3. Control Context

Name Type Description

Octopus Control/Id String Id of the running control
Octopus Control? Container Attributes of the running control.
Attributes This object may be omitted if the

control has no attributes.

0759 1.31.4. Controller Context
0760. In one embodiment, the following context is
present whenever a routine of a control is running and the
control was pointed to by a controller object (e.g., when
accessing a ContentKey object in order to consume pro
tected content).

Name Type Description

Octopus Controller Id String Id of the Controller that points to the
currently running control

Octopus Controller? Container Attributes of the Controller pointing
Attributes to the currently running control. This

object may be omitted if the
controller has no attributes.

0761. In embodiments where a host application is
allowed to only group content keys that are controlled by a
single controller object, for a given action, there will be only
one applicable controller object.
0762)
0763. In one embodiment, the following context is
present whenever a control is called for the purpose of
controlling an Action.

1.31.5. Action Context

Name Type Description

Octopus Action? Container
Parameters

Array of Name/Value pairs
representing the parameters that are
relevant for the current action, if any.
In one embodiment, each action type
defines a list of optional and required
parameters. This container may be
omitted if the action has no parameters.

0764)
0765. In one embodiment, the following context is
present whenever a control is called for the purpose of

1.3.1.6. Link Context

Jul. 26, 2007

limiting the validity of a link object (e.g., a control object
embedded in a link object):

Name Type Description

OctopusLink/Id String Id of the Link object
OctopusLink? Attributes Container Attributes of the Link object that

contains the running control. This
object may be omitted if the link
has no attributes.

0766)

Name Type Description

Octopus Agent Parameters Container Array of Name/Value parameter
pairs representing the input
parameters for the agent.
Identifier for the session context
in which the agent is running.

Octopus Agent Session String
ContextId

0767 The Parameter and Session containers are normally
used to allow the protocols that require one entity to send
and run an agent on another entity to specify which input
parameters to pass to the agent, and which session context
objects the host needs to set under certain conditions. The
presence or absence of certain session context objects may
allow the agent code to decide whether it is running as part
of the protocol it was designed to Support, or if it is running
out of context, in which case it may refuse to run. For
example, an agent whose purpose is to create a state object
on the host on which it runs may refuse to run unless it is
being executed during a specific protocol interaction.

0768 1.32. Actions
0769. In one embodiment, each action has a name and a

list of parameters. In one embodiment, some parameters are
required—the application must provide them when perform
ing this action—and some are optional—the application may
provide them or may omit them.
0770. In one embodiment, the following standard actions
are defined:

0771) 1.32.1. Play
0772. Description: Normal real-time playback of the
multimedia content.

0773) 1.32.2. Transfer
0774. Description: Transfer to a compatible target sys
tem.

0775 Transferring to a compatible target system is used
when the content has to be made available to a system with
the same DRM technology, such that the target system can
use the same license as the one that contains this control, but
state information may need to be changed on the source, the
sink, or both. The system from which the transfer is being
done is called the source. The target system to which the
transfer is being done is called the sink.
0776 This action is intended to be used in conjunction
with a service protocol that allows an Agent to be transferred

US 2007/0172041 A1

from the source to the sink in order to do the necessary
updates in the sources and sink's persistent states (e.g.,
objects in the state database described herein). In one
embodiment, a control uses the RunAgentOnPeer obligation
for that purpose. Additional information about illustrative
embodiments of this service protocol are provided below in
connection with the discussion of the state database.

0777 Parameters:

Name Type Description

Sinki Id String Node Id of the Sink

52
Jul. 26, 2007

original license. The system from which the transfer is being
done is called the source. The target system to which the
transfer is being done is called the sink.

0781. In one embodiment, in the Extended Status result
for the Describe, Check, and Perform methods of this action,
the following parameter shall be set:

Sink? Attributes Container Attributes of the Sink's node. This container may be
omitted if the node has no attributes.

TransferMode String Transfer Mode ID indicating in which mode the content is
being transferred. This ID can be a standard mode as
defined below, or a URN for a system proprietary mode.
In one embodiment, the following standard modes are
defined:
ID Description

Render The sink is receiving the content for the
purpose of rendering

Copy The sink is receiving a copy of the content
Mowe The content is being moved to the sink.
CheckOut The content is being checked-out to the

sink. This is similar to Move but with the
distinction that the resulting state on the
sink may prevent any other move than a
move back to the source.

TransferCount Integer Integer value indicating how many instances of the state
counters associated with this control need to be transferred
to the sink.
In one embodiment, this parameter is optional. If it is not
present, only one instance is being transferred. It should not
be present when the transfer mode is Render or Copy.

0778 1.32.3. Export

0779) Description: Export to a foreign target system.

0780 Exporting to a foreign target system is an action
that is used when the content has to be exported to a system
where the original content license cannot be used. This could
be a system with a different DRM technology, a system with
no DRM technology, or a system with the same technology
but under a situation that requires a license different from the

Name

TargetSystem

ExportMode

Name Type Description

ExportInfo Any Information that is relevant when exporting content to
the target system specified in the action parameters.
The actual type and content of this information is
specific to each target system. For example, for
CCI-based systems, this would contain the CCI bits
to set for the exported content.

0782)

Parameters:

Type Description

String System ID of the foreign system to which the export is
being made. This ID is a URN.

String Export Mode ID indicating in which mode the content is
being exported. This ID can be a standard mode as
defined below, or a URN for a system proprietary mode.
In one embodiment, the following standard modes are defined:
P- Description

DontKnow The caller does not know what the sinks
intended mode is. In this case, the control
program should assume that any of the
allowed modes for the TargetSystem can
be assumed by the sink, and should

US 2007/0172041 A1

-continued

Parameters:

Name Description

53

indicate any restriction in the return
status of the action routines. For
example, for a CCI-based system, the
control can return CCI bits that will
either allow the equivalent of Render or
Copy depending on what the license
permits.

Render

Jul. 26, 2007

The sink is receiving the content for the
purpose of rendering, and will not retain
a usable copy of the content except for
caching purposes as specified by each
target system

Copy
content

Mowe

0783. Other input parameters may be required by specific
target systems.

0784) 1.32.3.1. Standard Target Systems
0785) 1.32.3.1.1. Audio CD or DVD
0786. In one embodiment, the standard TargetSystem ID
CleartextPemAudio is used when the target system is an
unencrypted medium onto which uncompressed PCM audio
is written, such as a writeable audio CD or DVD. For this
target system, the ExportInfo parameter is a single Integer
parameter representing a copyright flag. This flag is indi
cated in the least significant bit of the integer value.

Bit index Description

O (LSB) When this flag is set, the Copyright bit or flag must be
set in the format of the recoded audio if the format supports
the signaling of Such a bit or flag.

10. State Database

0787. A secure object store that can be used by preferred
embodiments of a DRM engine to provide a secure state
storage mechanism is described below. Such a facility is
useful to enable control programs to be able to read and
write in a protected State database that is persistent from
invocation to invocation. Such a state database can be used
to store state objects such as play-counts, date of first use,
accumulated rendering times, and/or the like. In a preferred
embodiment, the secure database is implemented in non
Volatile memory, Such as flash memory on a portable device,
or an encrypted area of the hard disk drive on a PC. It will
be appreciated, however, that the secure database could
implemented on any suitable medium.
0788. The term “object', as used in this section, generally
refers to the data objects contained within the secure object

Field

Name

The sink is receiving a copy of the

The content is being moved to the sink.

store, and not to the objects (e.g., controls, controllers, links,
etc.) discussed elsewhere herein; if necessary to distinguish
between these two categories of objects, the term “DRM
object will be used to refer to the objects described else
where herein (i.e., controls, controllers, protectors, Content
Keys, links, nodes, and the like), while the term “state
object will be used to refer to the objects stored within the
state database. In the following discussion, reference will
occasionally be made to an illustrative implementation of
the state database, called "Seashell,” which is used in
connection with the Octopus DRM engine embodiment
described elsewhere herein. It will be appreciated; however,
that embodiments of the systems and methods described
herein can be practiced without some or all of the features
of this illustrative implementation.

0789 1.33. Database Objects

0790 The object store (e.g., a database) contains data
objects. In one embodiment, objects are arranged in a logical
hierarchy, where container objects are parents of their con
tained children objects. In one embodiment, there are four
types of objects: String, integer, byte array, and container.
Each object has associated metadata and a type. Depending
on its type, an object can also have a value.

0791. In one embodiment, state objects can be accessed
from virtual machine programs using the System. Host.Ge
tObject and System. Host. SetObject system calls, and, as
described in more detail below, object metadata can be
accessed using virtual names. In one embodiment, some of
the metadata fields can be changed by clients of the database
(i.e., they are read-write (RW) accessible), while other
metadata fields are read-only (RO).

0792. In one embodiment, the metadata fields shown in
the following table are defined:

Type Accessibility Description

String RO Name of the object. In one
embodiment only the following

US 2007/0172041 A1

-continued

Field Type Accessibility Description

characters are allowed as object
names (all the other ones are
reserved): a-Z, A-Z, 0-9, , -,
* , ; , , S: , , ; ,

Owner String RW
CreationDate Unsigned RO

integer
1970 00:00:00 local time.

ModificationDate Unsigned RO

integer
1970 00:00:00 local time.

54

Id of the owner of that object
Time at which the object was

32-bit created, expressed as the number
of minutes elapsed since Jan 1

Time at which the object was last
32-bit modified, expressed as the number

of minutes elapsed since Jan 1

Jul. 26, 2007

For container objects, this is the time
at which a child was last added to or
removed from the container. For other
objects, this is the time at which their
value was last changed.

ExpirationDate Unsigned RW Time at which the object expires, expressed
32-bit as the number of minutes elapsed since
integer Jan 1 1970 00:00:00 local time. A value of

O means the object does not expire.
Flags 32-bit bit RW Set of boolean flags indicating properties

field of the object.

0793. In one embodiment, the metadata flag shown in the 0799) 1.34.1. Explicit Object Destruction
following table is defined:

Bit index Name Meaning

O (LSB) PUBLIC READ If set, indicates that the access
control for this object is such that any
client can read the object and its metadata.

0794. As previously indicated, in one embodiment there
are four types of state objects: Strings, integers, byte arrays,
and container. In this embodiment, the value of a string
object is a UTF-8 encoded character string, the value an
integer object is a 32-bit integer value, and the value of a
byte array object is an array of bytes. In this embodiment, a
container object contains Zero or more objects. A container
object is referred to as the parent of the objects it contains.
The contained objects are referred to as the children of the
container. All the container objects that make up the chain of
an object's parent, the parent’s parent, and so on, are called
the objects ancestors. If an object has another object as it
ancestor, that object is called a descendant of the ancestor
object.

0795)
0796. In one embodiment, the lifetime of objects in the
state database follows a number of rules. Objects can be
explicitly destroyed, or implicitly destroyed. Objects can
also be destroyed as the result of a database garbage col
lection. Regardless of how an object is destroyed, in one
embodiment the following rules apply:

1.34. Object Lifetime

0797 The Modification Date for the parent container of
that object is set to current local time.

0798 If the object is a container, all its children are
destroyed when the object is destroyed.

0800 Explicit object destruction happens when a client
of the database requests that an object be removed (see
Object Access for more details on how this can be done
using the Host.SetObject system call).

0801)
0802 Implicit object destruction happens when an object

is being destroyed as the result of one of the objects in its
ancestry being destroyed.

0803) 1.34.3. Garbage Collection
0804. In one embodiment, the state database destroys any
object that has expired. An object is considered to have
expired when the local time on the system that implements
the database is later than the Expiration Date field of the
objects metadata. An implementation may periodically scan
the database for expired objects and destroy them, or it may
wait until an object is accessed to check its expiration date.
In one embodiment, an implementation must not return to a
client an expired object. In one embodiment, when a con
tainer object is destroyed (e.g., because it has expired), its
children objects are also destroyed (and all their descen
dants, recursively) even if they have not expired yet.

0805) 1.35. Object Access
0806. In one embodiment, the objects in the state data
base can be accessed from virtual machine programs
through a pair of system calls: System. Host.Get Object to
read the value of an object, and System. Host. SetObject to
create, destroy, or set the value of an object.

0807. In one embodiment, to be visible as a tree of host
objects, the state database is “mounted under a certain
name in the host object tree. This way, the database is visible
as a Sub-tree in the more general tree of host objects. To
achieve this, in one embodiment the state database contains
a top-level, built-in root container object that always exists.

1.34.2. Implicit Object Destruction

US 2007/0172041 A1

This root container is essentially the name of the database.
All other objects in the database are descendants of the root
container. Multiple state databases can be mounted at dif
ferent places in the host object tree (for two databases to be
mounted under the same host container, they need to have
different names for their root container). For example, if a
state database whose root container is named Databasel,
contains a single integer child object named Child 1, the
database could be mounted under the host object container
“/SeaShell”, in which case the Child1 object would be
visible as “/SeaShell/Database1/Child1. In one embodi
ment, accesses to objects in the state database are governed
by an access policy.
0808 1.35.1. Reading Objects
0809. The value of an object can be read by using the
system call System. Host.GetObject. In one embodiment of
the state database, the four object types (integer, string, byte
array, and container) that can exist in the database map
directly onto their counterparts in the virtual machine. The
object values can be accessed in the normal way, and the
standard virtual names can be implemented.
0810) 1.35.2. Creating Objects
0811. Objects can be created calling System. Host.SetO
bject for an object name that does not already exist. The
object creation is done according to the system call speci
fication. In one embodiment, when an object is created, the
state database does the following:

0812 Sets the “owner field of the object metadata to
the value of the “owner field of the parent container
objects metadata.

0813 Sets the Creation Date field of the metadata to the
current local time.

0814 Sets the Modification Date field of the metadata
to the current local time.

0815 Sets the Expiration Date field of the metadata to
0 (does not expire).

0816 Sets the Flags field of the metadata to 0.
0817 Sets the ModificationDate of the parent con
tainer to the current local time.

0818 When creating an object under a path deeper than
the existing container hierarchy, in one embodiment the State
database implicitly creates the container objects that need to
exist to create a path to the object being created. In one
embodiment, implicit container object creation follows the
same rules as an explicit creation. For example, if there is a
container “A” with no children, a request to set “A/B/C/
SomeObject will implicitly create containers “A/B and
“A/B/C before creating “A/B/C/SomeObject”.
0819) 1.35.3. Writing Objects
0820) The value of objects can be changed by calling
System. Host.SetObject for an object that already exists. If
the specified ObjectType does not match the type ID of the
existing object, ERROR INVALID PARAMETER is
returned. In one embodiment, if the type ID is OBJECT
TYPE CONTAINER, no value needs to be specified (the

ObjectAddress must be non-zero, but its value will be
ignored). When an existing object is set, the state database
sets the ModificationDate of object to the current local time.

Jul. 26, 2007

0821) 1.35.4. Destroying Objects

0822. Objects can be explicitly destroyed by calling
System. Host.SetObject for an object that already exists, with
an ObjectAddress value of 0. When an object is destroyed,
the state database preferably:

0823. Sets the ModificationDate of the parent con
tainer to the current local time.

0824 Destroys all its child objects if the destroyed
object is a container.

0825) 1.35.5. Object Metadata

0826. In one embodiment, the metadata for state database
objects is accessed by using the System. Host.GetObject and
System. Host.SetObject system calls with virtual names. The
following table lists the standard and extended virtual names
that are available for objects in one embodiment of the state
database, and how they map to the metadata fields.

Virtual Name Type Description

(a)Name String The Name field of the object
metada

(a)Owner String The Owner field of the object
metadata

(a)CreationDate 32-bit unsigned The CreationDate field of the
integer object metadata

(a)ModificationDate 32-bit unsigned The ModificationDate field of the
integer object metadata

(a) ExpirationDate 32-bit unsigned The ExpirationDate field of the
integer object metadata

(aFlags 32-bit bit field The Flags field of the object
metadata

0827. In one embodiment, an implementation must refuse
a request to set the Flags metadata field if one or more
undefined flags are set to 1. In this case, the return value for
the System. Host.SetObject is ERROR INVALID PARAM
ETER. In one embodiment, when reading the Flags meta
data field, a client must ignore any flag that is not predefined,
and when setting the Flags field of an object, a client must
first read its existing value and preserve the value of any flag
that is not predefined (e.g., in a system specification).

0828 1.36. Object Ownership and Access Control

0829. In one embodiment, whenever a request is made to
read, write, create, or destroy an object, the state database
implementation first checks whether the caller has the per
mission to perform the request. The policy that governs
access to objects is based on the concepts of principal
identities and delegation. In order for the policy to be
implemented, the trust model under which the implementa
tion operates needs to Support the notion of authenticated
control programs. This is typically done by having the
virtual machine code module that contains the program be
digitally signed (directly or indirectly through a secure
reference) with the private key of a PKI key pair, and having
a name certificate that associates a principal name with the
signing key; however, it will be appreciated that different
ways of determining control program identities are possible,
any suitable one of which could be used.

