2005/114454 A2 | I 1AV 0 00O O

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
1 December 2005 (01.12.2005)

PCT

AT OO0 O

(10) International Publication Number

WO 2005/114454 A2

GOG6F 15/173,

(51) International Patent Classification’:
15/16

(21) International Application Number:

PCT/US2005/018174
(22) International Filing Date: 23 May 2005 (23.05.2005)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/573,354 21 May 2004 (21.05.2004) US
60/573,717 21 May 2004 (21.05.2004) US
11/133,917 20 May 2005 (20.05.2005) US

(71) Applicant (for all designated States except US): BEA
SYSTEMS, INC. [US/US]; 2315 North First Street, San
Jose, California 95131 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PATRICK, Paul, B.
[US/US]; 9 Cobblestone Lane, Manchester, New Hamp-
shire 03109 (US). ALETTY, Ashok [US/US]; 20653
Oak Creek Lane, Saratoga, California 95070 (US). KASI,

(74)

(81)

(84)

Jayaram [US/US]; 5445 Century Meadow Court, San
Jose, California 95111 (US). KAPOOR, Chet [US/US];
San Francisco, California (US). URHAN, Tolga [US/US];
2518 Birch Street, Palo Alto, California 94306 (US).
MIHIC, Matthew [US/US]; San Francisco, California
(US).

Agents: MEYER, Sheldon, R. et al.; FLIESLER MEYER
LLP, Four Embarcadero Center, Fourth Floor, San Fran-
cisco, California 94111-4156 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: DYNAMIC SERVICE COMPOSITION AND ORCHESTRATION

SERVICE CONSUMERS ENTERPRI 1S1E SERVICES
114 6
Al A
[D (R
) SEEEEE— CONFIGURATION r————ﬁ
INFORMATION
.net 106 SAP Adapter
\Q w
T
Portal End Service Bus .
User 100 MQSeries
w w
Integration WebLogic
Process Server

=]

Console
104

(57) Abstract: A service infrastructure that enables dynamic service composition and orchestration. This description is not intended
to be a complete description of, or limit the scope of, the invention. Other features, aspects and objects of the invention can be
obtained from a review of the specification, the figures and the claims.

WO 2005/114454 A2 [0 000000 A0 0O 00

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Published:

ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), — without international search report and to be republished
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, upon receipt of that report

FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174

DYNAMIC SERVICE COMPOSITION AND ORCHESTRATION

CLAIM OF PRIORITY

This application claims priority from the following co-pending applications, which are
hereby incorporated in their entirety:

U.S. Provisional Application No. 60/573,354 entitled SYSTEM AND METHOD
FOR ENTERPRISE APPLICATION INTEGRATION BUS, by Matthew Mihic ef al.,
filed May 21, 2004 (Attorney Docket No. BEAS-01684US0).

U.S. Provisional Application No. 60/573,717 entitled LIQUID COMPUTING, by
Alfred Chang et al., filed May 21, 2004 (Attorney Docket No. BEAS-01703US0).

U.S. Patent Application No. __/__, entitled DYNAMIC SERVICE

COMPOSITION AND ORCHESTRATION, by Paul B. Patrick et al., filed May 20, 2005
(Attorney Docket No. BEAS-01825US0).

FIELD OF THE DISCLOSURE

The present disclosure relates generally to a switching fabric having message

processing capabilities through which processes can communicate and, more

particularly, to web service middleware.

BACKGROUND
The need for enterprise software applications to work together with web browser-

based front ends lead to the development of application servers. Application servers
provide a framework for integrating front-end web applications with back-end |
enterprise applications. Beyond simply invoking enterprise applications from
applications servers, a need arose to compose pieces of different enterprise
applications into composite applications. One way this can be done is to expose an
enterprise application as a set of reusable services that other systems can access.
However, enterprise applications are typically deployed on multiple application
platforms and in heterogeneous environments. These factors make the composition
effort proprietary and programming-driven, resulting in brittle and expensive
integrations. What is needed is an flexible infrastructure to dynamically compose

services and handle any incompatibilities that might arise between them.

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1a is an illustration of a system in an embodiment.

Figure 1b is an illustration of a service bus architecture in accordance to an
embodiment.

Figure 2 is an illustration metric aggregation and configuration propagation in
accordance to an embodiment.

Figure 3 is an illustration of message processing pipelines in accordance to an
embodiment.

Figures 4 is an illustration of a system for creating a unified information view in
accordance to an embodiment.

Figure 5 is a high level schematic of a liquid data integration engine in accordance to
an embodiment.

Figure 6 is an illustration of a security system to an embodiment.

Figure 7 is an illustration of an security service module in an embodiment.

Figure 8 is an illustration of system components to propagate security information in
accordance to an embodiment.

Figure 9 is an illustration of a system in accordance to an embodiment.

Figure 10 is an illustration of an integrated service composition system in accordance

to an embodiment.

DETAILED DESCRIPTION
The invention is illustrated by way of example and not by way of limitation in the

figures of the accompanying drawings in which like references indicate similar items.
References to embodiments in this disclosure are not necessarily to the same
embodiment, and such references mean at least one. While specific implementations
are discussed, it is understood that this is done for illustrative purposes. A person
skilled in the relevant art can recognize that other components and configurations
may be used without departing from the scope and spirit of the invention.

In the following description, numerous specific details are set forth to provide a
thorough description of the invention. However, it can be apparent to one skilled in the
art that the invention may be practiced without these specific details. In other
instances, well-known features have not been described in detail so as not to obscure

the invention.

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174

Although a diagram may depict components as logically separate, such depiction is
merely for illustrative purposes. It can be apparent to those skilled in the art that the
components portrayed can be combined or divided into separate software, firmware
and/or hardware components. For example, one or more of the embodiments
described herein can be implemented in a network accessible device/appliance such
as a router. Furthermore, it can also be apparent to those skilled in the art that such
components, regardless of how they are combined or divided, can execute on the
same computing device or can be distributed among different computing devices
connected by one or more networks or other suitable communication means.
Enterprise information is typically not all stored in a single data store, such as a
database, but can be instead stored in individual silos from which each enterprise
application must drink. Each silo can have its own differentiating features (e.g.,
storage mechanism, storage format, storage access mechanism, etc.). In an attempt
to bring some order to the sea of information chaos, enterprises are turning to a
Service Oriented Architecture (SOA) approach to integration. Using this architectural
approach, the capabilities of applications and the access mechanisms to information
sources are exposed as services. Services hide underlying implementation details
from application programs.

In one embodiment, information sources are exposed as services. This concept
focuses on hiding the implementation and access mechanism details of a given
information source behind a service based interface (or fagade). While an SOA
approach could be done with any number of technologies, one embodiment uses of
XML and Web Services. Using this approach, it is possible to hide whether the
information source requires a SQL query, for example, to access the information
within. Application development becomes focused on making service requests and
handling service responses. In one embodiment, an information source can be turned
into a service through use of a service proxy or a service adapter.

A service proxy can serve as an external wrapper which is installed in front of an
information source, an application or a service. The proxy acts as a gateway and a
facade through which access to the information source is performed. By way of
illustration, a service proxy for accessing files in a file system could be created to
access a file anywhere in a file system or be restricted to only certain areas of the file
system. By way of further illustration, service proxies can hide the details of what a

requesting entity or “consumer” is required to do in order to establish a session with

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174

the information source, transform the service request into the appropriate set of
interactions in order to retrieve or update the information service, and then format the
information to be returned to the consumer. By way of yet another illustration, the
service proxy may hide the additional steps required to determine the actual resulits to
be returned (e.g., the retrieval of additional meta-data, such as data sensitivity labels
that may be stored in yet another information store, that need to be retrieved and
evaluated before particular portions of the result set are to be returned).

In one embodiment, a service adapter is an embedded or integrated form of a service
proxy. A service adapter is integrated into the request/response processing logic of a
process (e.g., an information source) rather than operating externally from it.

In one embodiment, the SOA approach is extended with a service bus switching
fabric. The service bus can provide the flexibility to allow data transformations and
other services to be “plugged” into the bus and then reused by any number of different
services and application components. This removes the need to hardwire a particular
processing flow of services by allowing the processing flow to be described and then
dynamically assembled. In one embodiment, applications can be assembled from any
of the services which are “plugged” into the bus to create new information-based
applications. In addition, through the orchestration of services, using standards such
as Business Process Execution Language (BPEL), it is possible to dynamically
change how an information technology infrastructure utilizes information sources,
performs the data transformations, and incorporates capabilities provided by and to
external partners to allow an enterprise to more efficiently execute its mission.

With reference to Figure 1a and by way of illustration, the system includes a service
bus 100 that represents a fusion of message brokering, web services, business-to-
business (B2B) web services gateway and web services management concepts into a
combination centered around a runtime configuration information directory/repository
106 and console 104. The service bus is an easy to use configuration-driven
intermediary that accomplishes (without limitation) the following efficiently and with
high availability, scalability and reliability:

e Bridges the gap between what message sender 114 sends and what receiver 116
expects in the area of envelope protocol, transport protocol, security scheme, payload
contents, one way and request/response paradigms, synchronous and asynchronous

communication, point-to-point, and publish/subscribe.

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174

e Provides additional computing capability to perform tasks such as (but not limited
to) multi-destination publish, content based routing, authentication and authorization,
and credential mapping.

e Provides monitoring capability with metrics collection and display, alert displays,
tracking event collection and use, message archiving and Service Level Agreement

(SLA) management.

Figure 1b is an illustration of a system in accordance to an embodiment. In one
embodiment, the system includes a service bus 100 which can act as an intermediary
between a client and a service. Note that a client may itself be a service. Messages to
the service bus arrive on a transport 108 and can be processed to determine, by way
of a example, a destination to route and/or publish the message to, a transformation
to perform on the message, and/or security processing. The message then is sent out
on transport 110 bound for a service or another service bus. In one embodiment, a
response to the message can follow an inverse path through the service bus.

In one embodiment, the service bus can be implemented partially or wholly on an
application server 102 such as WebLogic® Server, available from BEA Systems, Inc.
The system is driven by configuration information 106 which can specified through the
configuration/monitoring console 104 which provides a user interface for creating,
modifying and deleting configuration information. All aspects of the system are
dynamically configurable. By way of a non-limiting example, a user interface can
include one or more of the following: 1) a graphical user interface (GUI) rendered on a
display device or projected onto a user’s retina; 2) an ability to respond to sounds
and/or voice commands; 3) an ability to respond to input from a remote control device
(e.g., a cellular telephone, a PDA, or other suitable remote control); 4) an ability to
respond to gestures (e.g., facial and otherwise); 5) an ability to respond to commands
from a process on the same or another computing device; and 6) an ability to respond
to input from a computer mouse and/or keyboard. This disclosure is not limited to any
particular user interface. Those of skill in the art will recognize that many other user
interfaces are possible and fully within the scope and spirit of this disclosure.

In one embodiment and with reference to Figure 2, the configuration information is
distributed throughout an enterprise by an administrative server 112 to one or more
managed servers 100 hosting service buses. In aspects of these embodiments,

managed servers can be deployed in clusters as is well known in the art.

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174

Configuration information can be automatically propagated to managed servers for
fast local retrieval by service buses. Likewise, monitoring metrics can be automatically
collected from all managed servers for aggregation and display on the console.

In one embodiment, a service hosted by the service bus (“service proxies”) and
services not hosted by the service bus (“external services”) but which are invoked by
service proxies are both modeled as services. Service proxies act as stand-ins for, or
facades of, services (i.e., external services and service proxies). By way of a non-
limiting example, a service can include:

e A set of concrete interfaces called ports (also called endpoints), each with a
transport address and associated configuration. In one embodiment, the set of ports
constitutes load balancing and failover alternatives for the service.

e An optional abstract interface which in one embodiment is a definition of the
structure of message parts in the interface possibly broken down by operations.

e A binding that defines the packaging of message parts in the abstract interface to a
concrete message and the binding of that message to the transport.

e Policies for Web Services Security (WSS) and Web Services Reliable Messaging
(WS-RM), authorization policies, and actions needed to be performed transparently by
the binding layer (e.g., logging).

In one embodiment, a Web Services Description Language (WSDL) representation of
the abstract interface, concrete interface and binding is possible for Simple Object
Access Protocol (SOAP) web services based on Hypertext Transfer Protocol
(Security) HTTP(S) or Java Messaging Service (JMS) transports. In aspects of this
embodiment, a WSDL resource or an existing service could be used as a template for
a definition of a new service's interface. Also suppdrted are email, file, WS-RM and
File Transport Protocol (FTP) transports. In one embodiment, the service bus could
periodically poll a file system directory to determine if a file is ready for processing in
the case of a file transport. The service bus can support request/response and one-
way paradigms for HTTP and JMS asynchronous transports. It optionally supports
ordered delivery of messages if the underlying transport supports it. In a further
embodiment, service bus supports eXternal Markup Language (XML), non XML
(structure described with MFL), binary, Multipurpose Internet Mail Extensions (MIME)
with attachments (email), and SOAP packaging.

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174

A service/service proxy can have multiple ports for the same binding. A
service/service proxy can define the load balancing policy to use for its ports. In one
embodiment, the policies can include round robin and random (weighted or not
weighted). The ports can also service as fail-over alternatives on failure. The two
concepts are coupled together for a high-availability load balancing scheme.

A service proxy can also define the retry policies on failure and (for request/response)
a timeout policy and security policies that apply to messages in its interface. This can
be specified at the service level (applies to all messages) or individual messages for
the operations of the service. In one embodiment, services are categorized by one or
more category schemes. For example, categories can be key hames and category
values can be values for the key name. A service can have multiple values for
multiple category name. Categories are useful for discovery purposes. There are a
number of well-known ontologies (or category schemes) that define the key name and
allowed hierarchy of values. In aspects of this embodiment, leaf values in a category
hierarchy are used to categorize services. In one embodiment, a service consumer
can be categorized for searching. Service consumers can be an organization or an
application and can send messages (or receive sync responses). In yet another
embodiment, a service consumer is associated with credentials and is tied to a user
so it can belong to roles for authorization.

In one embodiment, the implementation of a service proxy includes at least one
message processing pipeline definition. For example, this can include a definition of a
request pipeline definition and a response pipeline. Pipelines are message processing
nodes that specify what actions are performed on request messages to the service
proxy before invoking an external (or another proxy) service, and what processing is
performed on responses from the service invoked by the service proxy before the
service proxy returns a response to a client. Each pipeline can include a sequence of
stages. A stage implements a programmatic interface and/or a protocol that is
compatible with the pipeline. Messages fed into the pipelines are accompanied by a
set of message context variables (that includes variables that contain the message
contents) that can be accessed or modified by the pipeline stages.

By way of illustration, common pipeline stages include:

e A transformation stage allows flow control “if” structures to be nested to select a
transformation to be performed that affects the context. A web services callout or

database lookup can be an alternative to an XML Query (XQuery) or Extensible

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174

Stylesheet Language Transformation (XSLT) transformation to set the output context
variable.

e A routing stage allows “if” structures and “case” structures to be combined (and
nested) to define a single endpoint and operation to route the message to. A set of
transformations that affects context variables can be defined before the message is

published to each endpoint. A web services callout or database lookup can be an

alternative to an XQuery or XSLT transformation to set the context variable.

e A publish stage allows “if” structures and “case” structures to be combined (and
nested) to define the set of endpoints and operations to publish the message to. A set
of transformations that affects context variables can be defined before the message is
published to each endpoint. A web services callout or database lookup can be an
alternative to an XQuery or XSLT transformation to set the context variable. In one
embodiment, the changes to the context are isolated to each published endpoint and
do not affect subsequent processing by the pipeline. In one embodiment, WSS
processing as well as authorization can be performed in the binding layer.

In one embodiment, the following are exempléry stages:

e A tracking stage allows writing a tracking record with user defined information so the
tracking system can be used to search by a user defined criteria.

e An archiving stage writes the message to an archive for historical and record
keeping purposes.

e A logging stage allows logging of selected context to the system log for debugging
purposes.

e A validation stage validates a document against an XML of MFL schema.

e A custom stage that implements a programmatic interface and/or protocol that is

compatible with pipelines.

Figure 3 is an illustration of message processing pipelines in accordance to an
embodiment. An operational pipeline can process a message based on an operation
indicated by the contents of the message. In one embodiment, the determination of
the operation is performed through a user-selected criteria. By way of illustration,
each pipeline can include one or more stages (e.g., 302, 304, 308, 310). A single
service level request pipeline 300 can branch out into a plurality of operational
pipelines 306 and 312. The response processing starts with the relevant operation
pipeline (314, 316) which then joins into a single service level response pipeline 318.

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174

In one embodiment, in the case of one-way operations being invoked, the response
pipeline is executed with an empty message. This permits a response to be
constructed for the service proxy so bridging between request/response and one-way
operations is possible (e.g., the service proxy input could be one-way while its output
is request/response or vice versa). The service proxy either absorbs the response
from the invoked service or generates one for the client.

In one embodiment, a context is shared across both the request pipeline and
response pipeline, and other message processing nodes, and its value includes
individual request/response messages. In aspects of this embodiment, the context is
a set of predefined XML variables. New variables can be added and deleted to the
context dynamically. The predefined context variables have by way of a non-limiting
example, information about the message, the transport headers, security principals,
the configuration information for the current service proxy and the configuration
information for the primary routing and subscription services invoked by the service
proxy. In one embodiment, the context can be read and modified by XQuery/Xupdate
expressions by the stages.

By way of further illustration, the context can include the variables $header, $body
and $attachments. Thesé are wrapper variables that contain the SOAP headers, the
SOAP body contents and the MIME attachments respectively. The context gives the
impression that all messages are soap messages and non SOAP messages are
mapped into this paradigm. In the case of binary or MFL data, the XML element that
represents the document in $attachments or $body refers to the actual document with
a unique identifier. In the case of SOAP RPC, the body content is itself a wrapper
element that contains the typed RPC parameters.

In one embodiment, the system has a built-in type system that is available for use if
desired at design time. When creating an XQuery expression in a condition or
transformation at design time, the variable can be declared to be of one or more types
in an editor to assist in easily creating the XQuery. In a further embodiment, the types
can be specified in XML schemas, MFLs or WSDL resources. This type declaration
process is aware of the nature of the variable to be typed (is a wrapper for elements
of the types or the types themselves). It also provides assistance to access SOAP
RPC parameters or documents in $body easily.

In one embodiment, a stage can have a sequence of steps to execute if an error

occurs in that stage. This sequence of steps constitute an error pipeline or handler for

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174
10

that stage. In addition an error handler can be defined for the whole pipeline or a
whole service proxy. The lowest scoped error handler that exists is invoked on an
error. This error handler allows the message to be published to an endpoint, formulate
an error response message to be returned to the invoker of the service proxy, log the
message, continue after modifying the context, or raise an exception. Raising an
exception can transfer control to the next higher scoped error pipeline.

Although exposing information sources and other processes as services provides a
number of benefits, it does not address a number of issues such as unified views of
information and data transformations. For example, portal applications can be used as
the presentation service of web-based applications by aggregating information from a
number of back-end information sources (e.g., heterogeneous data sources such as
relational databases, XML files, Web services, and custom applications) and
assembling generated pages. The portal needs to understand each of the information
sources available, what information pieces are stored in each source, the
relationships between those pieces of information, and the necessary transformations
required to create a single virtual view. The result of this approach is a portal that is
prone to breaking when any of the underlying services on which it depends change or
when the portal is migrated to a different operating environment.

In one embodiment, these problems can be overcome by creating a unified view of
information on behalf of applications such as portals. In one embodiment, this
capability can be provided by the Liquid Data product, available from BEA Systems,
Inc. A unified information view makes the complex task of aggregating data from
distributed systems easy, allowing developers to access and share business entities
without having to deal with the complexities of different data structures, relationships
or semantics.

Figures 4-5 are functional block diagrams illustrating a system for creating a unified
information view in accordance to an embodiment. As shown in Figure 4, a liquid data
framework 400 is used to provide a mechanism by which a set of applications, or
application portals 402-410, can integrate with, or otherwise access, a plurality of
services. Such services may include a Materials Requirements and Planning (MRP)
system 418, a purchasing system 420, a third-party relational database system 422, a
sales forecast system 424 and a variety of other data-related services 426. Although

not shown in Figure 4 for clarity, in one embodiment, one or more of the services may

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174
11

interact with one or more other services through the liquid data framework 400 as
well.

The liquid data framework 400 employs a liquid data integration engine 416 to
process requests from the set of portals to the services. The integration engine 416
allows access to a wide variety of services, including data storage services, server-
based or peer-based applications, Web services and other services capable of being
delivered by one or more computational devices are contemplated in various
embodiments. A services model 414 provides a structured view of the available
services to the application portals. In one embodiment, the services model provides a
plurality of views 412 that may be filtered, molded, or shaped views of data and/or
services into a format specifically suited for each portal application. In one
embodiment, data returned by services to a particular application (or other service
acting as a requestor or client) is mapped to the view associated with that application
(or service) by the liquid data framework. Embodiments providing multiple views of
available services can enable organizations to compartmentalize or strearnline access
to services, thereby increasing the security of the organization’s information
technology infrastructure. In one embodiment, the services model may be stored in a
repository 428 of service models. Embodiments providing multiple services models
can enable organizations to increase the flexibility in changing or adapting the
organization’s information technology infrastructure by lessening dependence on
service implementations.

Figure 5 is a high level schematic of a liquid data integration engine 416 in
accordance to an embodiment. The liquid data integration engine includes an
interface processing layer 502, a query compilation layer 518 and a query execution
layer 534. The interface layer includes a request processor 508, which takes a
request 500 and transforms it into an XML query 516 and in one embodiment
provides it to the query compilation layer. In another embodiment, the interface layer
also includes access control mechanism 512, which can determine based upon at
least one policy 506 whether the client, portal application, service or other process
making the request is authorized to access the resources and services required to
satisfy the request. Provided that the client, application service or other process is
authorized to make the request, the interface layer sends the XML query to the query
compilation layer.

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174
12

Within the query compilation layer, a query parsing and analysis mechanism 524
receives the query, parses it and sends the results of the parsing to a query rewrite
optimizer 530. In one embodiment, the query rewrite optimizer determines whether
the query can be rewritten in order fo improve performance of servicing the query
based upon one or more of execution time, resource use, efficiency or other
performance criteria. The query rewrite optimizer may rewrite or reformat the query
based upon input from one or more of a source description 526 and a function
description 528 if it is determined that performance may be enhanced by doing so. A
runtime query plan generator 532 generates a query plan for the query provided by
the query rewrite optimizer based upon input from one or more of the source
description and the function description.

The query compilation layer passes the query plan output from the runtime query plan
generator to a runtime query engine 536 in the query execution layer. The runtime
query engine is coupled with one or more functions 540 that may be used in
conjunction with formulating queries and fetch requests to sources 542, which are
passed on to the appropriate service(s). The service responds to the queries and
fetch requests with results from sources 544. The runtime query engine of the query
execution layer translates the results into a format usable by the client or portal
application, such as without limitation XML, in order to form the XML query results
520.

In one embodiment, before responses or results are passed back to the client or
portal application making the request, a query result filter 514 in the interface layer
determines based upon filter parameters 522 what portion of the results will be
passed back to the client or portal application, forming a filtered query response 504.
Although not shown for clarity, filter parameters may accompany the service request
in one embodiment. In yet a further embodiment, the query result filter can also
determine based upon access policies what portions of the filtered query response a
requestor is permitted to access and may redact the filtered query response
accordingly.

In one embodiment, a set of security services is provided which allow enforcement to
be performed close to the resources. In a further embodiment, the implementation
details of each security service are abstracted through a programmatic service
interface. The security infrastructure provided through this approach can be utilized in

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174
13

both the service proxy and service adapter approaches, as well as within applications
themselves.

Figure 6 is an illustration of a security system to an embodiment. Various client
requestors 600-608 can interact with the system by generating a request 610 to
access one or more resources 632-642. Requestors can include web portals 600,
web services 602, business processes 604, legacy applications 606, third party
systems 608, and/or any program/device capable of generating a request. In one
embodiment, resources can include relational database management systems 632,
web services 634, XML documents 636, in-flight XML 638, legacy applications 640,
third party systems 642, and/or any program/device capable of responding to a
request. In one embodiment, the request is processed by a gatekeeper called a
Security Service Module (SSM) 618 before reaching a resource. In various
embodiments, an SSM can be integrated with a server, application server, web
server, a process or any other suitable hdst such as network firewalls, routers, relays,
etc. In aspects of these embodiments, a container (e.g., an Enterprise JavaBean or
servlet container) can intercept the request and present it to the SSM. By way of
illustration, the SSM can be provided with a request context that includes subject that
holds an authenticated identity (e.g., an authenticated user), a resource identifier,
user/group information, and/or an object through which the SSM can obtain additional
information about the context of the request.

In one embodiment, the SSM determines what roles (if any) the identity of the
requestor belongs to based on predefined roles 614. This is called role mapping. Role
mapping can occur just prior to when an access decision is rendered for a resource.
The SMM also determines what policies 616 (if any) apply to the request based on the
mapped roles, the target resource and requested action. Access to the resource is
granted or denied based on evaluation of the applicable polices.

In one embodiment, if access to the target resource is granted, the request is
provided to request processor 620 which can convert the request into an XML Query
(“XQuery”) 622 or other suitable form. XQuery is a query language for XML that uses
the structure of XML to express queries involving varied types of data either physically
stored in an XML document or viewed as such. In other embodiments, the request
can take the form of a Structured Query Language (SQL) expression or any other

means for identifying sought after information. It will be appreciated by those of skill in

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174
14

the art that the present disclosure is not limited to or dependent upon the format of the
request.

In one embodiment, the XQuery can then be provided to a query compiler/optimizer
626 which parses the query and determines whether the query can be rewritten in
order to improve performance of servicing the query based upon one or more of
execution time, resource use, efficiency or other performance criteria. A query plan
can be generated and provided to distributed query processor 630 which propagates
queries to one or more services (632 — 642) based on the query plan. Result(s) from
the service(s) are assembled and transformed in the result integrator 628 into a result
format 624 (e.g., an XML document or other data format) usable by the requestor. In
one embodiment, BEA Liquid Data for WebLogic®, available from BEA Systems, Inc.,
can be used to provide the functionality of components 620, 626, 628 and 630.

In one embodiment, the result 624 is intercepted by the SSM before it reaches the
requestor in order to determine if any data |n the result should be redacted. In aspects
of this embodiment, the SSM evaluates one or more polices directed to specific parts
of the result 624. Only the parts to which the requestor is granted access are returned
in the final result 612. Alternatively, the parts to which the requestor is not granted
access can be encrypted in the final result 612. In a further embodiment, polices can
be used to deny access to specific combinations of data in the result 624. This
embodiment allows data to be aggregated from disparate sources (632-642), each of
which the requestor might be authorized to access, but when brought together might
exceed the requestor’'s authorization.

Figure 7 is an illustration of an SSM in an embodiment. In aspects of these
embodiments, the SSM includes several functional layers that can reside in one or
more processes. An adaptation layer 700 ties a framework layer 704 and a services
layer 710 to a run-time environment. The adaptation layer includes an Application
Program Interface (API) 702 to allow exploitation of the framework layer in the run-
time environment. In aspects of these embodiments, an API can comprise a
programmatic interface (e.g., class, method and/or function definitions), a
communication interface such as a Web service or other suitable mechanism for
exchanging messages, and/or any other suitable protocol for invoking functionality
and exchanging information. The present disclosure is not limited to or dependent on
any APl implementation presently known or yet to be developed, as will be
appreciated by those of skill in the art.

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174
15

The adaptation layer can invoke services of the framework layer via a framework
programming interface (FPI) 706. In one embodiment, the adaptation layer invokes
the FPI to process inbound requests 610 and outbound results 624, which in turn
affords each service provider module 712-720 in the services layer the opportunity to
process the request/result. The framework layer can invoke services of the services
layer via a service provider interface (SP1) 708. As with the adaptation layer API, the
FPI and SPI can comprise a programmatic interface (e.g., class, method énd/or
function definitions), a communication interface such as a web service or other
suitable mechanism for exchanging messages, and/or any other suitable protocol for
invoking functionality and exchanging information. The present disclosure is not
limited to or dependent on any FPI/SPI implementation presently known or yet to be
developed, as will be appreciated by those of skill in the art.

In aspects of these embodiments, the FPI can translate API invocations into one or
more SPI invocations. The FP! also hides the SP! from the adaptation layer, thus
preventing any dependency on the SPI from forming. The SPI provides the FPI
access to a set of dynamically configurable security services represented as “plug in”
security provider modules (“providers”) 712 - 720. Each provider is compatible with
the SPI (e.g., each provider implements the SPI). The services layer can
accommodate more than one provider of the same type. In another embodiment, the
adaptation layer can communicate directly with the services layer, without an
intervening framework layer (e.g., the AP! could invoke the SPI directly).

In one embodiment and by way of illustration, authenticator 712 is used to access a
credential exchange service which allows the exchange of the current requestor’s
identity to be used to obtain the appropriate set of credentials with which to
authenticate target resource(s). In one embodiment, role mapping provider(s) 720
dynamically determine applicable roles based on role definitions 614 before
authorization provider(s) 714 - 716 are invoked to individually render a decision
regarding whether or not a requestor is authorized to submit the request or receive
the response. In aspects of this embodiment, an authorization provider can evaluate
policies 616 based on mapped roles to determine whether or not access to a resource
should be granted. In yet another embodiment, the determination of each
authorization provider is used to render a final grant or deny decision by the
adjudicator provider 718. For example, the adjudicator may grant access to a

resource only if all authorization providers would grant access. Other provider types

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174
16

are possible (not shown): authentication provider(s) can authenticate, verify, and map
security tokens to an internal format and support, for example, a single sign-on
capability; audit provider(s) can audit some or all security actions taken by the
framework layer; and credential mapping provider(s) can map authentication
credentials for a user to legacy application for single sign-on.

In one embodiment, the response 624 can have an authorization check performed
against its contents prior to returning it to the requestor (as response 612). In aspects
of this embodiment, the eXtensible Access Control Markup Language (XACML),
indicated as XACML Layer 726 in Figure 7, provides a general-purpose language for
representing and evaluating access control policies in this regard. The XACML
standard is maintained by the Organization for the Advancement of Structured
Information Standards (OASIS), a global consortium. (An implementation of XACML
for the Java® programming language is available from Sun Microsystems, Inc.)
XACML supports the use of XPath expressions for addressing locations within
structured data, such as an XML document, allowing the document to have policies
written against its contents.

In one embodiment, an authorization provider 716 can act as a XACML Policy
Enforcement Point (PEP). The PEP communicates with an XACML context handler
722 which has access to the result 624. In order to enforce policy, the context handler
can formalize attributes 736 describing the requestor at Policy Information Point (PIP)
730 and delegate the authorization decision to a Policy Decision Point (PDP) 728.
Applicable policies are located in a policy store 734 and are evaluated at the PDP,
which then returns an access decision to the context handler. In one embodiment,
policies 616 can be automatically translated to XACML policies 734, and vice versa.
In another embodiment, all policies in the system are represented as XACML policies
and wherein an authorization provider can elect to use the policies and further elect to
translate the policies to a form suitable for evaluation.

An XACML policy comprises a set of rules, an optional set of obligations, and the
identity of a rule-combining algorithm to adjudicate results from more than one policy
to yield a single result. Obligations for rules evaluated by the PDP are provided by the
PDP to the PEP for enforcement upon a grant or deny authorization decision by the
PDP. An obligation can be used to trigger any kind of action in the PEP, including in
one embodiment removing data from (or encrypting data in) the result 624 which the

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174
17

requestor is not authorized to see or access. The modified result 612 can then be
safely provided to the requestor.

In one embodiment, SSMs are part of a distributed security network. Figure 8 is an
illustration of system components to propagate security information in accordance to
an embodiment. In one embodiment, policy and/or SSM configuration information
(hereinafter “security information”) is distributed to SSMs via Security Control

Mangers (SCMs) 802. This is referred to as “provisioning”. SCMs can reside

.anywhere on a computer network. In one embodiment, an SCM resides locally on

systems that have one or more SSMs. An administration server 800 can provision the
security information to an SCM periodically. In one embodiment, the information
provisioned to an SCM is only relevant to SSMs deployed on the same system as the
SCM. In aspects of these embodiments, only changes (“deltas”) to this information are
propagated to SCMs. This is desirable since it can reduce the amount of information
that needs to be transmitted between the administration server and the SCMs. By way
of illustration, this can be accomplished by associating a version number with
provisioning information or subsets thereof.

SCMs can cache provisioned information in a local store 804 and further provision it
to one or more SSMs. In one embodiment, an SCM provisions information to SSMs
that reside on the same system as the SCM. In various embodiments, provisioned
information can specify security providers, locations of directory servers, databases,
XACML configuration information, and other suitable information. By way of
illustration, an SSM can dynamically incorporate security providers based on
configuration information supplied to it by an SCM.

The SCM has many architectural benefits for the system. Firstly, the SCM can serve
as the sole external management interface for all SSM components. This can
eliminate redundant management infrastructure in system components, thus allowing
all system components to take advantage of improvements in future versions of the
SCM management interface. Secondly, having a single management interface per
computing device has security benefits. An SCM-enabled host can expose a single
management communication channel rather than one per SSM. This eliminates the
need for a listen port in each SSM process, drastically reducing the number of open
ports that are required to be secured and monitored. Finally, the use of the SCM can

greatly simplify SSM configuration. Rather than relying on instance specific

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174
18

configuration files, an SSM can retrieve its entire configuration from the SCM via a
well-known communication port.

In one embodiment, an SCM can supply provisioned information to SSMs as needed
(e.g., in response to requests by SSMs). In another embodiment, the SCM can also
convey the information automatically without being requested to do so. In aspects of
these embodiments, an SCM only provides provisioning information to an SSM is that
relevant to that SSM and, in further aspects, only provides deltas to SSMs. In various
embodiments, communication between system components can be accomplished
with secure protocols. By way of illustration, mutually authenticated Transport Layer
Security (TSL) connections can be utilized between components. In addition, the SCM
and SSM can exchange Public-Key Infrastructure (X.509) certificates to establish
identity and trust.

To facilitate the management of a potentially large number of distributed SSMs, the
administration server uses a remote administration mechanism to distribute security
information to each SSM. In various embodiments, the SCM is a component of this
remote administration mechanism. Each SCM is responsible for storing 804 and
maintaining policy and configuration information for all SSMs that it are associated
with. In one embodiment, an SCM is associated with the SSMs on its local machine.
When a change to an SSM'’s configuration or policy is made and distributed from an
administration console, an SCM receives the change and updates its cached copy of
the configuration. The change is then propagated to the SSM which can adapt to the
configuration change dynamically or at a later time. In addition to facilitating
management, the SCM enables SSMs to operate in the absence of the administration
server. Since SCMs maintain a persistent copy of each configuration, new SSMs can
be started and existing SSMs can continue to function, even if the Administration
server goes down.

In one embodiment, the administration console can provide a graphical user interface
for defining policies. For example, the user interface could provide a rendering of the
XML document 624 that would allow a user to interactively select elements of the
document and define the policy required to access those elements. In a further
embodiment, a graphical editor or wizard that would present the user with easy-to-
follow steps for defining a policy, such that the user would not require any knowledge

of the underlying policy mechanism.

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174
19

Although this embodiment was described with reference to a graphical user interface,
a user interface is not limited to such and can include one or more of the following: an
ability to respond to sounds and/or voice commands; an ability to respond to input
from a remote control device (e.g., a cellular telephone, a PDA, or other suitable
remote control); an ability to respond to gestures (e.g., facial and otherwise); an ability
to respond to commands from a process on the same or another computing device;
and an ability to respond to input from a computer mouse and/or keyboard. This
disclosure is not limited to any particular user interface. Those of skill in the art will
recognize that many other user interfaces presently known and yet to be developed
are possible and fully within the scope and spirit of this disclosure.

When coupled with concepts such as data transformation services and Enterprise
Service Bus, the system allows enterprises to dynamically assembly new applications
with minimal developer involvement. Figure 9 is an illustration of a system in
accordance to an embodiment. In one embodiment, applications/services/processes
924 communicate with each other and with other applications/services/processes
through a common messaging framework 926 which acts as a logical bus. Together,
the messaging framework and its services (902-912 and 922) comprise a service
infrastructure 900. The messaging framework is made possible through messaging
services 904 (e.g., service bus) which provide message management, a service
registry and service management. Data services 906 (e.qg., liquid data) include
functionality for unified data modeling and composite data management. Security
services 908 (e.g., SSM, SCM) provide distributed application security management
and federated identity management. Management services 902 allow dynamic
configuration of the service infrastructure.

Composition services 910 include processor orchestration mechanisms such as
business process management, business rules, enterprise connectivity and business
activity management. Information needed to compose services is included in the
meta-data repository 912. Services such as performance monitoring, service level
agreements, data views, etc., are available to all services/applications through one or
more shared services 922. Clients 914 such as web browsers and other applications
can communicate with the processes such as portals, web services and web services
which are included in the presentation tier 916. Likewise, presentation tier processes
can communicate with logic components 918 such as other web services. Finally,

logic components can access backend data sources 920 such as relational

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174
20

databases. Each of these elements 914-920 can interact with the other through the
messaging framework.

Figure 10 is an illustration of an integrated service composition system in accordance
to an embodiment. The bottommost application platform services layer 1000 provides
a runtime environment for a service implementation, such as J2EE or .Net. Above this
layer, a message services layer 1002, data and information services layer 1004, and
security services layer 1006 provide functionality as described above in relation to
service infrastructure components 904, 906 and 908, respectively. A process
orchestration layer 1008 is logically dependent on these underlying layers and allows
the programming language independent composition of services through user
interfaces which present services as entities that can be connected through the
service infrastructure. User interaction components 1010 allow services and
composed services to face a user through a user interface such as, but not limited to,
a web portal.

Various embodiments may be implemented using a conventional general purpose or
specialized digital computer(s) and/or processor(s) programmed according to the
teachings of the present disclosure, as can be apparent to those skilled in the
computer art. Apbropriate software coding can readily be prepared by skilled
programmers based on the teachings of the present disclosure, as can be apparent to
those skilled in the software art. The invention may also be implemented by the
preparation of integrated circuits and/or by interconnecting an appropriate network of
conventional component circuits, as can be readily apparent to those skilled in the art.
Various embodiments include a computer program product which is a storage
medium (media) having instructions stored thereon/in which can be used to program a
general purpose or specialized computing processor(s)/device(s) to perform any of
the features presented herein. The storage medium can include, but is not limited to,
one or more of the following: any type of physical media including floppy disks,
optical discs, DVDs, CD-ROMs, microdrives, magneto-optical disks, holographic
storage, ROMs, RAMs, PRAMS, EPROMs, EEPROMs, DRAMs, VRAMSs, flash
memory devices, magnetic or optical cards, nanosystems (including molecular
memory ICs); paper or paper-based media; and any type of media or device suitable
for storing instructions and/or information. Various embodiments include a computer
program product that can be transmitted in whole or in parts and over one or more
public and/or private networks wherein the transmission includes instructions which

10

15

WO 2005/114454 PCT/US2005/018174
21

can be used by one or more processors to perform any of the features presented
herein. [n various embodiments, the transmission may include a plurality of separate
transmissions.

Stored one or more of the computer readable medium (media), the present disclosure
includes software for controlling both the hardware of general purpose/specialized
computer(s) and/or processor(s), and for enabling the computer(s) and/or
processor(s) to interact with a human user or other mechanism utilizing the results of

the present invention. Such software may include, but is not limited to, device drivers,

operating systems, execution environments/containers, user interfaces and

applications.

The foregoing description of the preferred embodiments of the present invention has
been provided for purposes of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise forms disclosed. Many modifications
and variations can be apparent to the practitioner skilled in the art. Embodiments were
chosen and described in order to best explain the principles of the invention and its
practical application, thereby enabling others skilled in the relevant art to understand
the invention. It is infended that the scope of the invention be defined by the following

claims and their equivalents.

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174

22
CLAIMS

What is claimed is:

1. A method for interconnecting a plurality of processes in a switching fabric,

~ comprising:

resolving transport protocol variances dynamically among the plurality of
processes;

resolving message format variances dynamically among the plurality of
processes;

conveying message traffic between the plurality of processes; and

wherein a process in the plurality of processes is one of: a client, a service, a

web service, and a service proxy.

2. The method of claim 1, further comprising:
satisfying authentication and/or authorization requirements among the plurality

of processes.

3. The method of claim 1 wherein the conveying includes:
routing a message to a process in the plurality of processes based on

information in the message.

4, The method of claim 1 wherein the resolving message format incompatibilities
includes:
converting a message to a format that is compatible with a destination process

in the plurality of processes.

5. The method of claim 1 wherein the resolving transport protocol incompatibilities
includes:
sending a message to a destination process in the plurality of processes via a

transport protocol that is compatible with the destination process.

6. The method of claim 1 wherein:

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174
23

a transport protocol is one of: File Transfer Protocol (FTP), Hypertext Transfer
Protocol (HTTP), HTTP/Secure (HTTPS), Java Message Service (JMS), file and

electronic mail.

7. The method of claim 1 wherein:
the switching fabric is a message processing graph that includes a plurality of
interconnected message processing nodes through which the message traffic is

conveyed.

8. A machine readable medium having instructions stored thereon that when used
cause a system to:

resolve transport protocol variances dynamically among a plurality of
processes;

resolve message format variances dynamically among the plurality of
processes;

convey message traffic between the plurality of processes; and

wherein a process in the plurality of processes is one of: a client, a service, a

web service, and a service proxy.

9. A service infrastructure comprising:

a message services layer configured to interconnect a plurality of processes
through at least one service proxy;

a information services layer configured to provide a unified view of information
obtained from a plurality of information sources;

a security services layer configured to provide distributed security to the
message services layer; and

wherein a process in the plurality of processes is one of: a client, a service, a

web service, and a service proxy.
10. The service infrastructure of claim 9 wherein:
the information services layer is further configured to redact a portion of the

information obtained based on a security policy.

11. The service infrastructure of claim 9 wherein:

10

15

20

25

30

WO 2005/114454 PCT/US2005/018174
24

the security services layer is further configured to provision security

information.

12. The service infrastructure of claim 9 wherein:
the security services layer is further configured to guard a resource.

13. The service infrastructure of claim 9, wherein the message services layer
further comprises:
a plurality of message processing nodes that are each configured to perform at

least one action based message traffic flowing between the plurality of processes.

14. The service infrastructure of claim 13 wherein:

an action is one of: resolving transport protocol variances dynamically among
the plurality of processes; resolving message format variances dynamically among
the plurality of processes; conveying message traffic between the plurality of
processes; and satisfying authentication and/or authorization requirements among the

plurality of processes.

15. A network accessible device configured to perform the steps of claim 1.

16. A system comprising one or more components capable of performing the
following steps:

resolving transport protocol variances dynamically among a plurality of
processes;

resolving message format variances dynamically among the plurality of
processes;

conveying message traffic between the plurality of processes; and

wherein a process in the plurality of processes is one of: a client, a service, a

web service, and a service proxy.

17. The system of claim 16, further capable of performing the following step:
satisfying authentication and/or authorization requirements among the plurality

of processes.

10

WO 2005/114454 PCT/US2005/018174
25
18. The system of claim 16, further capable of performing the following step:

routing the message to a process in the plurality of processes based on
information in the message.

19. The system of claim 16, further capable of performing the following step:
converting the message to a format that is compatible with a destination
process in the plurality of processes.

20. The system of claim 16, further capable of performing the following step:
sending the message to a destination process in the plurality of processes via
a transport protocol that is compatible with the destination process.

WO 2005/114454

PCT/US2005/018174

1/11

SERVICE CONSUMERS ENTERPRISE SERVICES
114 116
A AL
[)
CONFIGURATION
INFORMATION
.net 106 SAP Adapt]
)
Portal End Service Bus .
User 100 M QSGFIGS]
Integration WebLogic
Process Server

I I
]

Console
104

FIG. 1A

SUBSTITUTE SHEET (RULE 26)

WO 2005/114454

PCT/US2005/018174

2/11

Console
104

108

CONFIGURATION

INFORMATION

106

y

Service Bus
100

Server
102

FIG. 1B

SUBSTITUTE SHEET (RULE 26)

Admin Server

112

WO 2005/114454 PCT/US2005/018174
3/11

Service Bus/
Managed Server Config
100 Propogation

Admin Server

Service Bus/
[:::> Managed Server
100

T
—

112
Inbound ‘
Transport Load
Balancing Service Bus/ :
Managed Server Meric
100 Aggregation

CONFIGURATION

INFORMATION

Console
104

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 2005/114454 PCT/US2005/018174
4/11
InboundTransport
300~ Stage X -1 318
302
Commonrequest Commonresponse
Pipeline Pipeline
Stage Y
- 304
3())6 {} U 312 ﬁ ﬁ
\ 7
Stage A
\-308
OperationA OperationB OperationA OperationB
requestPipeline requestPipeline responsePipeline] |responsePipeline
Stage B
- 310 R

!

S TR I

OutboundTransport

FIG. 3

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/018174

WO 2005/114454

5/11

00y |

¥ Ol vap 2y ozp 8Ly
YA YA ~ w %
WALSAS WALSAS
¥aHLO 1SYHIN04 VIva WILSAS W3LSAS
STIVS | | ALuveQuiL| [ONISYHOUNd) |+ el
A A A A A
| _ | _ _
INIONT NOILYHOILNI YIYa ainDI
oy
iy
hv
7 Caman_> Caman_>
7 i \ <
WLNOd
WINOd WLNOd WLINOd W14Od
¥37ddns YINLHVd SIS H3NOLSNO ANFWIDYNVA
olr - gov -/ 9oy’ oy - 200~

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/018174

G Old

WO 2005/114454

6/11

y | STOUNOS NOY| |SOUNOS OL SLSINDIY _
S1INSTY HOL34 3 SANIND - _
: == NOILVHaNTO NV oLaaa] |
Y) AYIND IWLINNY NOLLONNA
SNOILONN Emmﬁ m__”___mhz:m ces” A 825
- il] NOLLNOZG NOILVZINILAO %
0vS 9ES Ad3NOX [ALIMMIY AYIND A 304003
\.A/wl.\ poc— 08G -~/ A 928
SaX | NOIYHANOD] SISATVNV/ONISHVA AM3AND
SYW3HOS AENOX. aor
304N0S y \. T ves A J
8eg -/ S1INS3Y Bl
0zs | AN3ND X 915 — AYIND TWX
vmmmmgéﬁ_ (—
S| oo | 7 | fofons
314 + 905
LINSTY A¥IND g0g | 408S300%d
plo 183n03y
_ A
205
pog —| 3SNOdST w%mmwm 00
oty T AYAND qIHILTH | S

\

SUBSTITUTE SHEET (RULE 26)

WO 2005/114454

7/11

PCT/US2005/018174

Business |4
Processes |}

T
b Mo L

S

<=

Policies

616

Query Compiler/Optimizer
626

Resuit Integrator
628

Distributed Query Processor

Possibly
Redacted

]

SUBSTITUTE SHEET (RULE 26)

Al 19
| Third Party {3
; Systems)i

WO 2005/114454 PCT/US2005/018174

8/11
Security Service
Module
618
. ("
Adaptation Application Provider Interface
Layer 702
700 L
r— 4
Framework Provider Interface
Framework
Layer
704
-
Services Authenticat
Layer 712
710
Context
& Handler
722
XACML " - Attributes
Layer Policy Decision Pt. 736
726
Policies
734

SUBSTITUTE SHEET (RULE 26)

WO 2005/114454 PCT/US2005/018174
9/11

Administration ®
Server
800
Storage Sss‘;gn iy
804

==ty

YD

SEmT:
SR
AEES

7

S

;
e

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 2005/114454 PCT/US2005/018174
10/11

Service
Infra-
structure
900

?

\ J i s A R e

i Presentation
Data. Services
906 P

Security

Services |efmmm—]g-

908
.

926 yomauwely Buibessapy

P S
Comp.

Services |- i
910 N R WL M

 SEEEEEa—

Meta-Data

Repository |«
912

| U —

(areq |

Shared
Services 4———> i

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/018174

WO 2005/114454

11/11

0l Old

5 = I =7) |)
000} —— $89IMBS Wiofield uoneonddy)
[{ fisibay aoineg || juewsBeuey sbessapy | A
| Jabeuepy 8oineg _
200l —H— $80IM0g abesso|y J1| souvop
([__bujepow eiea peyin___| [Aloysodey ejeq el pauuny | |
_ Juswabeuepy eleq m“_manoO _ Juswiuo .__>Cm
| aouabi||sju) ssauisng _ uomsodwion
p00} — 11— $BIIAISS UOIBUWLIOIU| pUB Ble(] | ssocuon | PEMRIBEI
f Juswabeuely Ajunoag uoneslddy painglsid B)
uswabeuepy Ausp) pajeiopo4 i
900} —jH— $90IAI8S Allindeg)
ﬂh Jusiwiabeue)y uoljoeIB}Y| _j { Juswabeuepy AyARoY ssauisng N Hold
uoneioqe|jon I Ajaposuuog esudisuy |
[ouuByo-nIN] Se|ny Ssauisng sepdn
[eLod || | | ueuwebeueyy sseooid ssauisng
(___uopoessjujiesy)| UopensayoiQ sseaold)
04008 —~ 8004 —

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

