(54) 发明名称
一种羧甲基赖氨酸的检测方法及应用

(57) 摘要
本发明公开了一种羧甲基赖氨酸(CML)的检测方法，其特征是结合HILIC亲水作用色谱柱在
较高有机相比例下对强极性CML的分离。采用高效液相色谱-串联质谱法测定食品中CML含量。粉碎
的食品经硼氢化钠还原、盐酸水解后，过MCX离子交换小柱萃取净化，样品溶液在HILIC色谱
柱中以甲醇-水(均含2mM乙酸铵和0.1%甲酸)为流动相进行梯度洗脱，CML与样品基质分离。选
用电喷雾离子源、正离子扫描，多反应监测模式，进行串联质谱分析。以D4-CML为内标物定量分
析，分析时间为12min。CML在保留时间3.47min处具有吸收峰。此种新的检测方法灵敏度高、准确
度高、精密度好，无需对样品进行衍生化，简化了样品前处理、缩短了检测时间，节省了检测成本。
1. 一种羧甲基赖氨酸 (CML) 的检测方法，其特征在于包括如下步骤：
称取一定质量的待测样品，任选的包括样品粉碎的步骤；
样品在硼酸钠缓冲溶液中经硼氢化钠还原，然后用体积比为 1:3:1 三氯甲烷去除脂肪并沉淀蛋白质；沉淀物经盐酸水解后，添加一定量的氘代羧甲基赖氨酸 (D4-CML)，过 MCX 阳离子交换小柱萃取净化；萃取液经氨吹浓缩后重新溶解在一定体积的体积比为 3:5:1 甲醇－水溶液中，得到待测液；
待测液在 HILIC 色谱柱中以含 1-3mM 乙酸铵和 0.05-0.15％甲酸的甲醇 (A)－水 (B) 为流动相进行梯度洗脱，D4-CML 和 CML 通过洗脱与样品基质分离；梯度洗脱参数为 0～3min, 80％～50％ A；3～6min, 50％ A；6.1min, 80％ A；6.1～12min, 80％ A；
选用电喷雾离子源 (ESI)，正离子扫描，多反应监测模式 (MRM)，进行对所分离的洗脱样品进行串联质谱分析，测定质谱图中 CML 特征峰与相对应的 D4-CML 的特征峰的高度之比，通过高度之比和所加入的 D4-CML 的量计算待测样品中 CML 的浓度。
2. 根据权利要求 1 所述的检测方法，其特征在于待测样品为奶粉、油条或薯条。
3. 根据权利要求 1 所述的检测方法，其特征在于所述的流动相为含 2mM 乙酸铵和 0.1％甲酸溶液的甲醇－水混合溶液，D4-CML 和 CML 的吸收峰位于 3.2～3.6min。
4. 权利要求 1-3 任意一项所述的检测方法的应用，其特征在于，是用以检测食品中的羧甲基赖氨酸含量。
一种羧甲基赖氨酸的检测方法及应用

技术领域
[0001] 本发明涉及食品中羧甲基赖氨酸的检测技术领域，确切地说是一种结合 HILIC 亲水作用液相色谱柱对羧甲基赖氨酸的分离，利用高效液相色谱—质谱联用技术检测食品中的羧甲基赖氨酸的方法。

背景技术
[0002] 近年来，利用美拉德反应赋予食物以诱人的色泽和风味的烹调方法倍受推崇。然而，近几年越来越多的研究表明一些美拉德反应产物对人体有害，其中已有研究证明食源性晚期糖基化终末产物 (AGEs) 与人类糖尿病、尿毒症、动脉粥样硬化和衰老等疾病的发生关系密切。羧甲基赖氨酸 (CML) 是食品中含量较高、发现较早的一种 AGEs，通常被用作食品中 AGEs 检出的标志性物质。国内外已有越来越多的学者致力于食品中 CML 检测方法的研究。
[0003] 目前对于食品中的 CML 还没有一种公认的标准检测方法，已报道的检测方法主要有：酶联免疫法 (ELISA)、高效液相色谱—质谱联用法 (HPLC—MS/MS) 和质谱—质谱联用法 (HPLC—MS/MS)。因 CML 极性极强，现有的 HPLC—MS/MS 法多数使用 C18 柱结合离子对试剂进行分离，对色谱柱和质谱离子源造成损害，缩短仪器的使用寿命。鉴于现有的食品中 CML 检测方法存在特异性抗体选择困难、样品处理复杂、准确度不高等问题，研究开发一种操作简单、准确、快速的检测新方法对于改善现有烹调方式、控制食源性 CML 的摄入量、促进人类健康饮食具有重要意义。

发明内容
[0004] 本发明所要解决的技术问题之一在于针对现有 CML 的检测方法所存在的不足而提供一种新的 CML 的检测方法。
[0005] 本发明所要解决的技术问题之二在于该检测方法在食品中的应用。

[0006] 作为本发明第一方面的一种 CML (结构式

![结构式]

) 的检测方法，其特征是以氘代羧甲基赖氨酸 (D4-CML，结构式

![结构式]

) 为内标物进行内标法定量分析。CML 母离子 m/z 205.4 主要被打碎成 m/z 130.2 子离子碎片；D4-CML 母离子 m/z 209.0 主要被打碎成 m/z 87.7 子离子碎片。CML 的二级质谱图见图 1。分别测定内标物 D4-CML 和 CML 的峰面积（或峰高）并计算出相对校正因子，再根据合内标物的待测组分溶液色谱峰响应值，计算待测溶液中 CML 含量。将 CML 和 D4-CML 混合标准溶液进行高效液相色谱的 HILIC 亲水作用色谱柱，以甲醇—水 (均含 2mM 乙酸铵和 0.1% 甲酸溶液) 为流动相，采用梯度洗脱分离
后，经过串联质谱检测分析，分析时间为 12min，CML 和 D4-CML 在保留时间 3.47min 处都有吸收峰，如图 2。

【0007】所述 CML 和 D4-CML 混合标准溶液的配制方法如下：
【0008】用一定体积比的色谱纯甲醇和超纯水混合液溶解 10.00mg CML 标准品，定容至 100mL 容量瓶中，配制成 0.1mg / mL 的 CML 母液；另外，用一定体积比的色谱纯甲醇和超纯水混合液溶解 10.00mg 的 D4-CML 标准品，定容至 10mL 容量瓶中，配制成 0.1mg / mL 的 D4-CML 母液。再用一定体积比的色谱纯甲醇和超纯水混合液作为溶剂将两种母液稀释成一定浓度的混合标准溶液。
【0009】作为本发明第二方面的该检测方法在食品中的应用，其特征在于，本方法是用以检测食品中的 CML 含量。
【0010】该方法可用以检测食品中 CML 的含量，在实际操作时，需要对样品进行前处理，具体步骤如下：将成块状的样品剪碎后粉碎，称取一定质量（粉末状样品直接量取），在硼酸钠缓冲溶液中经硼氢化钠还原；用三氯甲烷-甲醇混合液（体积比为 2:1）去除脂肪并沉淀蛋白质；沉淀物经盐酸水解后，过 MCX 阳离子交换小柱萃取净化，萃取液经氮气吹扫浓缩后重新溶解在一定体积甲醇-水溶液中（体积比为 4:1），得到待测液；待测液在 HILIC 色谱柱中以甲醇-水（均含 2mM 乙酸铵和 0.1% 甲酸）为流动相进行梯度洗脱，CML 被保留并与样品基质分离。选用电喷雾离子源（ESI），正离子扫描，多反应监测模式（MRM），进行串联质谱分析。
【0011】本发明利用 HILIC 亲水作用色谱柱对极性的 CML 进行分离，建立的 HPLC-MS / MS 检测法成功地应用于食品中 CML 的检测。新建立的检测方法具有样品处理无需衍生化，检测时间短的优势，同时具有准确度高、灵敏度好等特点。

附图说明
【0012】图 1 为本发明 CML 的二级质谱图。
【0013】图 2 为本发明 CML 和 D4-CML 混合标准溶液的多反应监测色谱图。
【0014】图 3 为本发明油条 CML 提取液的多反应监测色谱图。

具体实施方式
【0015】以下结合具体实施例来详细说明本发明，但本发明并不局限于实施例。
【0016】实施例 1
【0017】准确称取一定质量的奶粉，在硼酸钠缓冲溶液中经硼氢化钠还原；然后用三氯甲烷-甲醇混合液（体积比为 2:1）去除脂肪并沉淀蛋白质；沉淀物经盐酸水解后，添加一定浓度的 D4-CML 溶液，过 MCX 阳离子交换小柱萃取净化，萃取液经氮气吹扫浓缩后重新溶解在一定体积甲醇-水溶液中（体积比为 4:1），得到待测液；待测液在 HILIC 色谱柱中以甲醇-水（均含 2mM 乙酸铵和 0.1% 甲酸）为流动相进行梯度洗脱，CML 被保留并与样品基质分离。选用电喷雾离子源（ESI），正离子扫描，多反应监测模式（MRM），进行串联质谱分析。
【0018】用本发明的检测方法测得奶粉中 CML 含量为 0.16±0.03～0.32±0.01mg / kg。向奶粉中添加 CML 和 D4-CML 标准溶液，使加标量分别为 10、20、100 μg / kg，每个添加浓度平行测定 6 次（n=6），添加回收率为 87.2%～101.4%（添加回收率接近 100%），证明所建
立的检测方法的准确度比较高），相对标准偏差为 3.6% ~ 7.1%。

[0019] 实施例 2

[0020] 将油条剪碎后粉碎，将磷酸或缓冲溶液中经磷酸氢钠还原，然后用三氯甲烷-甲醇混合液（体积比为 2:1）去除脂肪并沉淀蛋白质；沉淀物经盐酸水解后，添加一定浓度的 D4-CML 溶液，过 MCX 阳离子交换小柱萃取净化；萃取液经氮气吹扫浓缩后重新溶解在一定体积甲醇-水溶液中（体积比为 4:1），得到待测溶液；待测液在 HILIC 色谱柱上以甲醇-水（含均 2mM 乙酸铵和 0.1% 甲酸）为流动相进行梯度洗脱，CML 被保留并与样品基质分离。选用电喷雾离子源（ESI），正离子扫描，多反应监测模式（MRM），进行串联质谱分析。图 3 为油条提取液中 CML 的多反应监测色谱图。

[0021] 用本发明的检测方法测得油条中 CML 含量为 5.3±0.5 ~ 15.4±0.3mg / kg。向油条中添加 CML 和 D4-CML 标准溶液，使加标量分别为 10.20、100μg / kg，每个添加浓度平行测定 6 次（n=6），添加回收率为 89.5% ~ 99.1%，相对标准偏差为 6.8% ~ 10.3%。

[0022] 实施例 3

[0023] 将薯条剪碎后粉碎，在磷酸钠缓冲溶液中经磷酸氢钠还原，然后用三氯甲烷-甲醇混合液（体积比为 2:1）去除脂肪并沉淀蛋白质；沉淀物经盐酸水解后，添加一定浓度的 D4-CML 溶液，过 MCX 阳离子交换小柱萃取净化；萃取液经氮气吹扫浓缩后重新溶解在一定体积甲醇-水溶液中（体积比为 4:1），得到待测溶液；待测液在 HILIC 色谱柱中以甲醇-水（均含 2mM 乙酸铵和 0.1% 甲酸）为流动相进行梯度洗脱，CML 被保留并与样品基质分离。选用电喷雾离子源（ESI），正离子扫描，多反应监测模式（MRM），进行串联质谱分析。

[0024] 用本发明的检测方法测得薯条中 CML 含量为 0.86±0.05 ~ 1.04±0.10mg / kg。向薯条中添加 CML 和 D4-CML 标准溶液，使加标量分别为 10.20、100μg / kg。每个添加浓度平行测定 6 次（n=6），添加回收率为 91.5% ~ 105.3%，相对标准偏差为 3.5% ~ 9.7%。

[0025] 以上所述，仅为本发明的具体实施方式，但本发明的保护范围并不局限于此，任何不经过创造性劳动想到的变化或替换，都应涵盖在本发明的保护范围之内。因此，本发明的保护范围应该以权利要求书所限定的保护范围为准。
图 1

D4-CML，m/z 209>87.7

CML-1，m/z 205.4>130.2

CML-2，m/z 205.4>83.8

总离子流

图 2
图 3

CML-1, m/z 205.4 > 130.2

CML-2, m/z 205.4 > 83.8

总离子流

时间（min）