PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: (11) International Publication Number: WO 00/33182
GOGF 9/32 A2 . .

(43) International Publication Date: 8 June 2000 (08.06.00)
(21) International Application Number: PCT/US99/28876 | (81) Designated States: JP, KR, European patent (AT, BE, CH, CcY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(22) International Filing Date: 3 December 1999 (03.12.99) SE).

(30) Priority Data: Published

09/204,792 3 December 1998 (03.12.98) uUs Without international search report and to be republished

upon receipt of that report.

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 San
Antonio Road, M/S PAL01-521, Palo Alto, CA 94303 (US).

(72) Inventor: TREMBLAY, Marc; 140 Hanna Way, Menlo Park,
CA 94025 (US).

(74) Agents: TERRILE, Stephen, A. et al; Skjerven, Morrill,
MacPherson, Franklin & Friel LLP, Suite 700, 25 Metro
Drive, San Jose, CA 95110 (US).

(54) Title: SOFTWARE BRANCH PREDICTION FILTERING FOR A MICROPROCESSOR

EASY
BRANCH? Yes ves-»| BRANCH

$§02

BRANCH BPAR-> DO NOT BRANCH
512 [€-Yes- TAKEN? 508

510

No

¥

DO NOT BRANCH
514

END

(57) Abstract

The present invention provides software branch prediction filtering for a microprocessor. In one embodiment, a method for a software
branch prediction filtering for a microprocessor includes determining whether a branch is "easy" to predict, and predicting the branch
using software branch prediction if the branch is easy to predict. Otherwise (i.e., the branch is "hard" to predict), the branch is predicted
using hardware branch prediction. Accordingly, more accurate but space-limited hardware branch prediction resources are conserved for
hard-to—predict branches.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ

BY
CA
CF
CcG
CH
CI
CcM
CN
Cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP

KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
T3
™
TR
TT
UA
UG
Us
UZ
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 00/33182 PCT/US99/28876

SOFTWARE BRANCH PREDICTION FILTERING FOR A MICROPROCESSOR

TECHNICAL FIELD

The present invention relates generally to microprocessors, and more particularly, to branch prediction

for a microprocessor.

BACKGROUND ART

Reduced Instruction Set Computing (RISC) microprocessors are well known. RISC microprocessors
are characterized by a smaller number of instructions, which are relatively simple to decode, and by having all
arithmetic/logic operations be performed register-to-register. RISC instructions are generally of only one length
(e.g., 32-bit instructions). RISC instruction execution is of the direct hardwired type, as opposed to microcoding.
There is a fixed instruction cycle time, and the instructions are defined to be relatively simple so that each

instruction generally executes in one relatively short cycle.

A RISC microprocessor typically includes an instruction for a conditional branch operation. Le., ifa
certain condition is present, then branch to a given location. It is known that a relatively small number of branch
operations cause most of the branch mispredictions. For example, it has been suggested that 80 percent of the
branch mispredictions result from 20 percent of the branch instructions for a given processor. Other branch
operations are relatively easy to predict. For example, if an array access is preceded by a check for a valid array
access, the check for a valid array access is accomplished in a typical RISC microprocessor by executing multiple

conditional branches. These branches are generally easy to predict.

DISCLOSURE OF INVENTION

Speed of execution is highly dependent on the sequentiality of the instruction stream executed by the
microprocessor. Branches in the instruction stream disrupt the sequentiality of the instruction stream executed by
the microprocessor and generate stalls while the prefetched instruction stream is flushed and a new instruction

stream begun.

Accordingly, the present invention provides software branch prediction filtering for a microprocessor.
For example, the present invention provides a cost-effective and high performance implementation of software
branch prediction filtering executed on a microprocessor that performs branch operations. By providing the
software branch prediction filtering, many easy-to-predict branches can be eliminated from a hardware-
implemented branch prediction table thereby freeing up space in the branch prediction table that would otherwise

be occupied by the easy-to-predict branches. In other words, easy-to-predict branches waste entries in a limited-

w

10

15

20

25

WO 00/33182 PCT/US99/28876

-2-

size branch prediction table and, thus, are eliminated from the branch prediction table. This robust approach to
software branch prediction filtering provides for improved branch prediction, which is desired in various
environments, such as a Java™ computing environment. For example, this method can be used for various

instruction sets such as Sun Microsystems, Inc.’s UltraJava™ instruction set.

In one embodiment, a method for software branch prediction filtering for a microprocessor includes
determining whether a conditional branch operation is “easy”-to-predict and predicting whether to execute the
branch operation based on software branch prediction. However, “hard”-to-predict branches are predicted using

a hardware branch prediction (e.g., a limited size hardware branch prediction table).

Other aspects and advantages of the present invention will become apparent from the following detailed

description and accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 is a schematic block diagram illustrating a single integrated circuit chip implementation of a

processor in accordance with an embodiment of the present invention.
Figure 2 is a schematic block diagram showing the core of the processor.

Figure 3 shows a format of a branch instruction in accordance with one embodiment of the present

invention.

Figure 4 is a block diagram of an implementation of the branch instruction of Figure 3 in accordance

with one embodiment of the present invention.

Figure 5 is a flow diagram of the operation of the branch instruction of Figure 3 in accordance with one

embodiment of the present invention.

MODES FOR CARRYING OUT THE INVENTION

The present invention provides software branch prediction filtering for branch operations for a
microprocessor. In one embodiment, software branch prediction filtering uses hardware branch prediction only
for “hard”-to-predict branches (a branch in which historical operation of the branch taken is important in
determining whether the branch will be taken this time, €.g., an if..then statement) and uses software branch
prediction for “easy” to prediction branches (a branch in which the history is not important in determining
whether the branch will be taken for this particular branch, e.g., a loop). For example, the branch instruction can

be used in a computing environment in which compiled programs include a significant number of branch

10

15

20

25

WO 00/33182 PCT/US99/28876

-3

operations, such as in a Java™ computing environment or in a computing environment that is executing

compiled “C” programs.

For example, branch mispredictions generally slow down Java™ code executing on a typical
microprocessor, which is due to the time wasted fetching the branched to instruction(s). Even with advanced
compiler optimizations, it is difficult to eliminate all such branch mispredictions. Well-known Just-In-Time (JIT)
Java™ compilers that generate software branch predictions for a typical Reduced Instruction Set Computing
(RISC) microprocessor are currently about 75% accurate. Current hardware branch prediction is more accurate
at about 85-93% accurate. Hardware branch prediction is typically implemented using a hardware branch
prediction table. Because the hardware branch prediction table is limited in size (e.g., 512 entries), this approach
is not desirable if there are a significant number of branches (e.g., more than 1000 branches) that can lead to

aliasing effects (e.g., two different branches sharing the same entries will corrupt each others prediction state).

The present invention solves this problem by providing a branch instruction that includes a bit for
indicating whether the branch is easy to predict or hard to predict in accordance with one embodiment. If the
branch is hard to predict, then hardware branch prediction is used. Otherwise, software branch prediction is used.
Thus, the more accurate hardware branch prediction is efficiently reserved for hard-to-predict branches. For
example, a compiler can determine whether a branch is labeled as hard to predict or easy to predict (e.g., about
80% of the branches can be labeled easy to predict, and mechanisms may be added to update or modify these

predictions based on mispredictions, as further discussed below).

Referring to Figure 1, a schematic block diagram illustrates a single integrated circuit chip
implementation of a processor 100 that includes a memory interface 102, a geometry decompressor 104, two
media processing units 110 and 112, a shared data cache 106, and several interface controllers. The interface
controllers support an interactive graphics environment with real-time constraints by integrating fundamental
components of memory, graphics, and input/output bridge functionality on a single die. The components are
mutually linked and closely linked to the processor core with high bandwidth, low-latency communication
channels to manage multiple high-bandwidth data streams efficiently and with a low response time. The
interface controllers include a an UltraPort Architecture Interconnect (UPA) controller 116 and a peripheral
component interconnect (PCI) controller 120. The illustrative memory interface 102 is a direct Rambus dynamic
RAM (DRDRAM) controller. The shared data cache 106 is a dual-ported storage that is shared among the media
processing units 110 and 112 with one port allocated to each media processing unit. The data cache 106 is four-
way set associative, follows a write-back protocol, and supports hits in the fill buffer (not shown). The data
cache 106 allows fast data sharing and eliminates the need for a complex, error-prone cache coherency protocol

between the media processing units 110 and 112.

The UPA controller 116 is a custom interface that attains a suitable balance between high-performance

computational and graphic subsystems. The UPA is a cache-coherent, processor-memory interconnect. The

10

15

20

25

30

WO 00/33182 PCT/US99/28876

-4-

UPA attains several advantageous characteristics including a scaleable bandwidth through support of multiple

bused interconnects for data and addresses, packets that are switched for improved bus utilization, higher
bandwidth, and precise interrupt processing. The UPA performs low latency memory accesses with high
throughput paths to memory. The UPA includes a buffered cross-bar memory interface for increased bandwidth
and improved scaleability. The UPA supports high-performance graphics with two-cycle single-word writes on
the 64-bit UPA interconnect. The UPA interconnect architecture utilizes point-to-point packet switched
messages from a centralized system controller to maintain cache coherence. Packet switching improves bus

bandwidth utilization by removing the latencies commonly associated with transaction-based designs.

The PCI controller 120 is used as the primary system 1/O interface for connecting standard, high-
volume, low-cost peripheral devices, although other standard interfaces may also be used. The PCI bus
effectively transfers data among high bandwidth peripherals and low bandwidth peripherals, such as CD-ROM

players, DVD players, and digital cameras.

Two media processing units 110 and 112 are included in a single integrated circuit chip to support an
execution environment exploiting thread level parallelism in which two independent threads can execute
simultaneously. The threads may arise from any sources such as the same application, different applications, the
operating system, or the runtime environment. Parallelism is exploited at the thread level since parallelism is rare
beyond four, or even two, instructions per cycle in general purpose code. For example, the illustrative processor
100 is an eight-wide machine with eight execution units for executing instructions. A typical “general-purpose”
processing code has an instruction level parallelism of about two so that, on average, most (about six) of the eight
execution units would be idle at any time. The illustrative processor 100 employs thread level parallelism and
operates on two independent threads, possibly attaining twice the performance of a processor having the same

resources and clock rate but utilizing traditional non-thread parallelism.

Thread level parallelism is particularly useful for Java™ applications which are bound to have multiple
threads of execution. Java™ methods including “suspend”, “resume”, “sleep”, and the like include effective
support for threaded program code. In addition, Java™ class libraries are thread-safe to promote parallelism.
Furthermore, the thread model of the processor 100 supports a dynamic compiler which runs as a separate thread
using one media processing unit 110 while the second media processing unit 112 is used by the current
application. In the illustrative system, the compiler applies optimizations based on “on-the-fly” profile feedback
information while dynamically modifying the executing code to improve execution on each subsequent run. For
example, a “garbage collector” may be executed on a first media processing unit 110, copying objects or

gathering pointer information, while the application is executing on the other media processing unit 112.

Although the processor 100 shown in Figure 1 includes two processing units on an integrated circuit
chip, the architecture is highly scaleable so that one to several closely-coupled processors may be formed in a

message-based coherent architecture and resident on the same die to process multiple threads of execution. Thus,

10

15

20

25

WO 00/33182 PCT/US99/28876

-5-

in the processor 100, a limitation on the number of processors formed on a single die thus arises from capacity
constraints of integrated circuit technology rather than from architectural constraints relating to the interactions

and interconnections between processors.

Referring to Figure 2, a schematic block diagram shows the core of the processor 100. The media
processing units 110 and 112 each include an instruction cache 210, an instruction aligner 212, an instruction
buffer 214, a pipeline control unit 226, a split register file 216, a plurality of execution units, and a load/store unit
218. In the illustrative processor 100, the media processing units 110 and 112 use a plurality of execution units
for executing instructions. The execution units for a media processing unit 110 include three media functional
units (MFU) 222 and one general functional unit (GFU) 220. The media functional units 222 are multiple single-
instruction-multiple-datapath (MSIMD) media functional units. Each of the media functional units 222 is
capable of processing parallel 16-bit components. Various parallel 16-bit operations supply the single-
instruction-multiple-datapath capability for the processor 100 including add, multiply-add, shift, compare, and
the like. The media functional units 222 operate in combination as tightly-coupled digital signal processors
(DSPs). Each media functional unit 222 has an separate and individual sub-instruction stream, but all three
media functional units 222 execute synchronously so that the subinstructions progress lock-step through pipeline

stages.

The general functional unit 220 is a RISC processor capable of executing arithmetic logic unit (ALU)
operations, loads and stores, branches, and various specialized and esoteric functions such as parallel power
operations, reciprocal squareroot operations, and many others. The general functional unit 220 supports less

common parallel operations such as the parallel reciprocal square root instruction.

The illustrative instruction cache 210 has a 16 Kbyte capacity and includes hardware support to
maintain coherence, allowing dynamic optimizations through self-modifying code. Software is used to indicate
that the instruction storage is being modified when modifications occur. The 16K capacity is suitable for
performing graphic loops, other multimedia tasks or processes, and general-purpose Java™ code. Coherency is
maintained by hardware that supports write-through, non-allocating caching. Self-modifying code is supported
through explicit use of “store-to-instruction-space” instructions store2i. Software uses the store2i instruction to
maintain coherency with the instruction cache 210 so that the instruction caches 210 do not have to be snooped

on every single store operation issued by the media processing unit 110.

The pipeline control unit 226 is connected between the instruction buffer 214 and the functional units
and schedules the transfer of instructions to the functional units. The pipeline control unit 226 also receives
status signals from the functional units and the load/store unit 218 and uses the status signals to perform several
control functions. The pipeline control unit 226 maintains a scoreboard, generates stalls and bypass controls.

The pipeline control unit 226 also generates traps and maintains special registers.

10

15

20

25

WO 00/33182 PCT/US99/28876

-6-

Each media processing unit 110 and 112 includes a split register file 216, a single logical register file
including 128 thirty-two bit registers. The split register file 216 is split into a plurality of register file segments
224 to form a multi-ported structure that is replicated to reduce the integrated circuit die area and to reduce
access time. A separate register file segment 224 is allocated to each of the media functional units 222 and the
general functional unit 220. In the illustrative embodiment, each register file segment 224 has 128 32-bit
registers. The first 96 registers (0-95) in the register file segment 224 are global registers. All functional units
can write to the 96 global registers. The global registers are coherent across all functional units (MFU and GFU)
so that any write operation to a global register by any functional unit is broadcast to all register file segments 224.
Registers 96-127 in the register file segments 224 are local registers. Local registers aliocated to a functional unit

are not accessible or “visible” to other functional units.

The media processing units 110 and 112 are highly structured computation blocks that execute software-
scheduled data computation operations with fixed, deterministic and relatively short instruction latencies,
operational characteristics yielding simplification in both function and cycle time. The operational characteristics
support multiple instruction issue through a pragmatic very large instruction word (VLIW) approach that avoids
hardware interlocks to account for software that does not schedule operations properly. Such hardware interlocks
are typically complex, error-prone, and create multiple critical paths. A VLIW instruction word always includes
one instruction that executes in the general functional unit (GFU) 220 and from zero to three instructions that
execute in the media functional units (MFU) 222. A MFU instruction field within the VLIW instruction word
includes an operation code (opcode) field, three source register (or immediate) fields, and one destination register

field.

Instructions are executed in-order in the processor 100 but loads can finish out-of-order with respect to
other instructions and with respect to other loads, allowing loads to be moved up in the instruction stream so that
data can be streamed from main memory. The execution model eliminates the usage and overhead resources of
an instruction window, reservation stations, a re-order buffer, or other blocks for handling instruction ordering.
Elimination of the instruction ordering structures and overhead resources is highly advantageous since the
eliminated blocks typically consume a large portion of an integrated circuit die. For example, the eliminated

blocks consume about 30% of the die area of a Pentium II processor.

To avoid software scheduling errors, the media processing units 110 and 112 are high-performance but
simplified with respect to both compilation and execution. The media processing units 110 and 112 are most
generally classified as a simple 2-scalar execution engine with full bypassing and hardware interlocks on load
operations. The instructions include loads, stores, arithmetic and logic (ALU) instructions, and branch
instructions so that scheduling for the processor 100 is essentially equivalent to scheduling for a simple 2-scalar

execution engine for each of the two media processing units 110 and 112.

10

15

20

25

30

WO 00/33182 PCT/US99/28876

-7-

The processor 100 supports full bypasses between the first two execution units within the media
processing unit 110 and 112 and has a scoreboard in the general functional unit 220 for load operations so that
the compiler does not need to handle nondeterministic latencies due to cache misses. The processor 100
scoreboards long latency operations that are executed in the general functional unit 220, for example a reciprocal
square-root operation, to simplify scheduling across execution units. The scoreboard (not shown) operates by
tracking a record of an instruction packet or group from the time the instruction enters a functional unit until the
instruction is finished and the result becomes available. A VLIW instruction packet contains one GFU
instruction and from zero to three MFU instructions. The source and destination registers of all instructions in an
incoming VLIW instruction packet are checked ag'ainst the scoreboard. Any true dependencies or output
dependencies stall the entire packet until the result is ready. Use of a scoreboarded result as an operand causes
instruction issue to stall for a sufficient number of cycles to allow the result to become available. If the
referencing instruction that provokes the stall executes on the general functional unit 220 or the first media
functional unit 222, then the stall only endures until the result is available for intra-unit bypass. For the case of a
Joad instruction that hits in the data cache 106, the stall may last only one cycle. If the referencing instruction is
on the second or third media functional units 222, then the stall endures until the result reaches the writeback

stage in the pipeline where the result is bypassed in transmission to the split register file 216.

The scoreboard automatically manages load delays that occur during a load hit. In an illustrative
embodiment, all loads enter the scoreboard to simplify software scheduling and eliminate NOPs in the instruction

stream.

The scoreboard is used to manage most interlocks between the general functional unit 220 and the
media functional units 222. All loads and non-pipelined long-latency operations of the general functional unit
220 are scoreboarded. The long-latency operations include division idiv, fdiv instructions, reciprocal squareroot
frecsqrt, precsqrt instructions, and power ppower instructions. None of the results of the media functional units
927 is scoreboarded. Non-scoreboarded results are available to subsequent operations on the functional unit that

produces the results following the latency of the instruction.

The illustrative processor 100 has a rendering rate of over fifty million triangles per second without
accounting for operating system overhead. Therefore, data feeding specifications of the processor 100 are far
beyond the capabilities of cost-effective memory systems. Sufficient data bandwidth is achieved by rendering of
compressed geometry using the geometry decompressor 104, an on-chip real-time geometry decompression
engine. Data geometry is stored in main memory in a compressed format. At render time, the data geometry is
fetched and decompressed in real-time on the integrated circuit of the processor 100. The geometry
decompressor 104 advantageously saves memory space and memory transfer bandwidth. The compressed
geometry uses an optimized generalized mesh structure that explicitly calls out most shared vertices between

triangles, allowing the processor 100 to transform and light most vertices only once. In a typical compressed

10

15

20

25

WO 00/33182 PCT/US99/28876

-8-

mesh, the triangle throughput of the transform-and-light stage is increased by a factor of four or more over the
throughput for isolated triangles. For example, during processing of triangles, multiple vertices are operated
upon in parallel so that the utilization rate of resources is high, achieving effective spatial software pipelining.
Thus operations are overlapped in time by operating on several vertices simultaneously, rather than overlapping
several loop iterations in time. For other types of applications with high instruction level parallelism, high trip

count loops are software-pipelined so that most media functional units 222 are fully utilized.

Figure 3 shows a format of a branch instruction in accordance with one embodiment of the present
invention. The branch instruction 300 includes a bit 302 for indicating that the branch is easy to predict (e.g., 0)
or hard to predict (e.g., 1). The branch instruction includes a bit 304 for indicating a software branch prediction
that the branch is taken (e.g., 0) or not taken (e.g., 1). The software branch prediction loaded in bit 304 is used to
predict the outcome of the branch if the branch is easy to predict (e.g., bit 302 is set to 0). Branch instruction 300
also includes opcode 306, which corresponds to the opcode for a branch instruction, destination portion 308,
which sets forth the destination register (e.g., where the condition resides), and relative offset portion 310, which

sets forth the relative offset of the branch target when the branch is taken.

Accordingly, software branch prediction filtering migrates some of the complexity associated with
conditional branches to the compiler. It is observed that, for example: graphics code has few branches, or very
predictable branches; JAVA applications have more unconditional branches than typical C or Fortran
applications (mainly due to the extensive usage of jumps or calls); a dynamic compiler has better observability
and has the capability to update software-controlled prediction bits; software branch prediction with simple
heuristics can predict branches successfully > 75% of the time, or possibly even > 83% for brute force heuristics.

See, ¢.g., Thomas Ball, James Larus, Branch Prediction for Free, Programming Languages Design &

Implementation, 1993, New Mexico, pp300 - 312.

Based on these observations, branch instructions have 2 bits that the compiler can set to let the processor
know (a) if the branch is easy or hard to predict, and (b) the branch is predicted taken, which is a software branch
prediction (e.g., determined by the compiler at compile time). In this way, when the microprocessor encounters
an easy-to-predict branch, it simply uses the software branch prediction provided by the other bit. On the other
hand, when the microprocessor encounters a hard-to-predict branch, it can use a simple hardware-based branch
prediction or a more robust hardware-based branch prediction. In this way it is possible to dedicate a hardware-
based branch prediction mechanism only to those branches that the software cannot predict very well.
Measurements show that a reduction of the number of mispredictions between 20 - 40 percent is achievable.
Alternately, the prediction efficiency can be kept at the same level, while the size of the branch prediction table

can be reduced.

Figure 4 is a block diagram of an implementation of the branch instruction of Figure 4 in accordance

with one embodiment of the present invention. MPU 400 includes an instruction fetch unit 402, which fetches

10

15

20

25

30

WO 00/33182 PCT/US99/28876

-9-

instruction data from an instruction cache unit (see Figure 1). Instruction fetch unit 402 is coupled to a branch
prediction circuit 404. Branch prediction circuit 404 includes a branch prediction table 406, such as a
conventional 512-entry branch prediction table. Instruction fetch unit 402 is also coupled to a decoder 408,
which decodes an instruction for execution by execution unit 410. One of ordinary skill in the art will recognize
that there are various way to implement the circuitry and logic for performing the branch prediction operation in

a microprocessor, such as a pipelined microprocessor.

Figure 5 is a flow diagram of the operation of the branch instruction of Figure 5 in accordance with one
embodiment of the present invention. The operation of the branch instruction begins at stage of operation 502.
At stage 502, whether the branch is easy to predict is determined. If so, then software branch prediction is used
to predict whether the branch is taken. At stage 504, whether the software branch prediction predicts that the
branch is taken is determined. If so, then the branch is taken at stage 506. Otherwise, the branch is not taken at

stage 508.

Otherwise (i.e., the branch is hard to predict), a hardware branch prediction mechanism (e.g., the branch
prediction circuit of Figure 5) is used to determine if the branch is predicted to be taken. If the branch is
predicted take by the hardware branch prediction circuit (e.g., branch prediction array (bpar)), then the branch is
taken at stage 512 (e.g., the offset is added to the current program counter to provide a new address sequence to
be fetched). Otherwise, the branch is not taken at stage 514 (e.g., the present instruction stream is continued in

sequence).

In one embodiment, a branch misprediction by the software branch prediction causes a modification of
the software branch prediction bit (e.g., toggles bit 504 of Figure 5 using self-modifying code). A hardware
branch misprediction causes a modification in the hardware branch prediction table (e.g., an entry in branch

prediction table 506 of Figure 5 is modified).

In one embodiment, the software branch prediction utilizes heuristics involving code analysis such as

that set forth in Ball et al.
In one embodiment, the hardware branch prediction utilizes the following branch prediction scheme:
if offset < 0 (backward branch) then predict taken
else (i.e., offset > 0) (forward branch) predict not taken.

The displacement of an unconditional branch is treated as an offset and added to the program counter
(not shown) to form the target address of the next instruction if the branch is taken. Alternatively, a more robust
hardware branch prediction approach utilizes a branch prediction table (e.g., 512-entry branch prediction table)

and associates a state machine to each branch. For example, a 2-bit counter is used to describe four states:

10

15

WO 00/33182 PCT/US99/28876

=10 -

strongly taken, likely taken, likely not taken, and strongly not taken. The branch prediction table is implemented

as a branch prediction array.

In one embodiment, a JIT compiler for JAVA™ source code provides software branch prediction (e.g.,
sets bit 504) and indicates whether a compiled branch is easy to predict or hard to predict (e.g., sets bit 502). The
software branch prediction filtering can reduce misprediction rates by about 25% and considering that about 20%
of compiled JAVA™ code can be branches, this embodiment provides a significant improvement. The present
invention can also be applied to statically compiled C code or to static compilation of other computer
programming languages. Also, this approach reduces the risk of polluting the hardware branch prediction table

by conserving the hardware branch prediction table for hard-to-predict branches.

Although particular embodiments of the present invention have been shown and described, it will be
obvious to those skilled in the art that changes and modifications can be made without departing from the present
invention in its broader aspects. For example, different approaches to software branch prediction and to
hardware branch prediction can be used. Also, dynamic software branch prediction or dynamic hardware branch
prediction (or both) can be utilized in accordance with one embodiment of the present invention. The present
invention is not limited by any particular processor architecture, the presence or structure of caches or memory,
or the number of bits in any register or memory location. Therefore, the appended claims are to encompass

within their scope all such changes and modifications that fall within the true scope of the present invention.

WO 00/33182 PCT/US99/28876

11 -

WE CLAIM

1. A process for software branch prediction filtering for a microprocessor, comprising:
determining whether the branch is easy to predict; and

predicting the branch using software branch prediction if the branch is easy to predict.

2. The process of Claim 1 further comprising:

predicting the branch using hardware branch prediction if the branch is hard to predict.

3. The process of Claim 2 further comprising:
checking a first bit of an instruction that indicates whether the branch is easy to predict or hard to

predict.

4. The process of Claim 3 further comprising:
checking a second bit of the instruction that indicates whether the branch is predicted taken or not taken

by the software branch prediction.

5. The process of Claim 4 further comprising:

modifying the second bit if the software branch prediction mispredicts the branch.

6. The process of Claim 2 further comprising:

modifying a branch prediction table if the hardware branch prediction mispredicts the branch.

7. The process of Claim 6 wherein the hardware branch prediction comprises incrementing and

decrementing a counter based on a state machine.

8. The process of Claim 6 wherein the software branch prediction comprises utilizing heuristics.
9. The process of Claim 3 wherein the first bit is set by a compiler that compiled the instruction.
10. The process of Claim 9 wherein the compiler is a Java™ Just-In-Time compiler.

1. An apparatus for software branch prediction filtering for a microprocessor, comprising:

branch prediction circuitry, the branch prediction circuitry comprising a branch prediction table; and

w

AN Wn s

WO 00/33182 PCT/US99/28876

212 -

software branch prediction filtering logic coupled to the branch prediction circuitry, the software branch
prediction filtering logic executing a branch instruction and determining whether the branch is
easy to predict, and the software branch prediction filtering logic predicting the branch using

the software branch prediction if the branch is easy to predict.

12. The apparatus of Claim 11, wherein the software branch prediction filtering logic further

comprises predicting the branch using the hardware branch prediction circuitry if the branch is hard to predict.

13. The apparatus of Claim 12 wherein a first bit of the branch instruction provides an indication of

whether the branch is easy to predict, and a second bit provides an indication of the software branch prediction.

14. The apparatus of Claim 13 wherein the software branch prediction filtering logic further

comprises modifying the second bit if the software branch prediction mispredicts the branch.

15. The apparatus of Claim 14 wherein the hardware branch prediction circuitry comprises a 512-

entry branch prediction table.

16. The apparatus of Claim 15 wherein the branch instruction comprises a compiled Java™

instruction.

WO 00/33182
1/4

1.6 GB/s

242 MB/s

rre. L
% PCI
% DRDRAM

m[UPA-N, 1 GB/s

joe

PCT/US99/28876

[veas 1665

PCT/US99/28876

2/4

WO 00/33182

RrASEE!

BOIY UOIBZIUOIOUAS pue 37d8)) Bje(] Pareys

4

:

812 812
) \
L [
jiuf) 9101§/peo] [2101§/peo]
773 3 £y i | a2
22 w mvzmn_uogmmwom .“ "_ Sa[l mn_uoummwo,m ! Ho
H H H 3 P Sz 3 1 v g
b~ (11D [NN 4 ENAN b~ (14D [AN (AN AN
3«\ AV N..hu AV an AV da«\ 0 ori AV Nun\ 0 qu AV 2322 7 Av
12%°
N Nod Nod
A A A A A A A A
1z Isyng uonoNysu] Ioyyng uononnsuy || iz
A A i,
%12 — IouSIpy uononnsuj IouSIy uononysuj 1+
912 3o UONONISU] 27oB) UONONISU]
T~ ot J
| INdN d IndIN I0d —~—

WO 00/33182 3/4 PCT/US99/28876

'/300

OPCODE
306 302

RD OFFSET
308 310

8

Figure 3

FROM
ICACHE

l BRANCH
PREDICTION
404

INST. FETCH
UNIT >
402 TABLE

406

DECODER
408

EXECUTION
UNIT
410

Figure 4

WO 00/33182

BRANCH
512

EASY
BRANCH?
502

No

BPAR->
TAKEN?
510

No

DO NOT BRANCH
514

a/4

BRANCH
Yes’YesB
No

DO NOT BRANCH
508

Y
END

Figure 5

A

PCT/US99/28876

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

