(45) 授权公告日 2015.03.11

(21) 申请号 201010288878.1
(22) 申请日 2010.08.02
(30) 优先权数据
T020093000597 2009.07.31 IT

(72) 发明人 G·卡扎尼加 L·科罗纳多
B·希莫尼

(74) 专利代理机构 北京市金杜律师事务所
11256
代理人 王茂华 唐文静

(51) Int. Cl.
B81B 3/00(2006.01)
G01P 15/125(2006.01)

(56) 对比文件
DE 102007048882 A1, 2009.04.23,

(54) 发明名称
具有低的热漂移的微机电 z 轴探测结构

(57) 摘要
本发明描述了一种具有低的热漂移的微机电 z 轴探测结构。该 MEMS 探测结构，包括：具有顶表面的衬底，其上至少设置有第一固定电极装置；传感块，在平面 (xy) 内延伸，并且悬浮在所述衬底和所述第一固定电极装置之上一定分隔间距处；以及连接弹性元件，其支撑所述传感块，使其可以在所述平面 (xy) 外绕着旋转轴 (A) 自由旋转，根据所述探测的沿着与所述平面 (xy) 正交的轴 (z) 的量改变所述间距。MEMS 探测结构进一步包括；耦合块，悬浮在所述衬底之上并且通过所述连接弹性元件与所述传感块连接，以及锁固装置。
1. 一种MEMS探测结构(10)，包括：
- 具有顶表面(2a)的衬底(2)，其上至少设置有一固定电极装置(5a)；
- 传感块(3)，在一个平面(xy)内延伸，并且悬浮在所述衬底(2)和所述第一固定电极装置(5a)之上的分隔间距(gap)处；以及
- 连接弹性元件(8a,8b)，构造在支撑所述传感块(3)，使其可以在所述平面(xy)外绕
者旋转轴(A)自由旋转，根据将被探测的沿着与所述平面(xy)正交的轴(z)的量改变所述
间距(gap)；

还包括：
耦合块(12)；悬浮在所述衬底(2)之上并且通过所述连接弹性元件(8a,8b)与所述传
感块(3)连接；以及锚固装置(14,15)，构造在将所述耦合块(12)通过至少一个第一限制
点(13)锚固到所述衬底(2)上，设置在与所述旋转轴(A)隔开一定距离，且位于与所述第
一固定电极装置(5a)相应的位置；

其特征在于，所述锚固装置(14,15)包括至少一个与所述衬底(2)刚性地耦合的错
固元件(14)，以及至少一个支撑弹性元件(15)，所述支撑弹性元件(15)被配置为将所述耦
合块(12)与限定所述第一限制点(13)的所述锚固元件(14)连接在一起。

2. 根据权利要求1所述的结构，其中所述平面(xy)通过互相正交的第一轴(x)以及第
二轴(y)所限定；并且所述第一限制点(13)相对于所述平面(xy)设置在所述第一固定电
极装置(5a)的封套区内。

3. 根据权利要求2所述的结构，其中所述锚固装置(14,15)构造成为所述所述耦合块
(12)关于所述探测的量基本上是静止的，并且所述衬底(2)在所述第一限制点(13)沿着所
述正交轴(z)的位移引起所述耦合块(12)沿着所述正交轴(z)的相应的位移；并且
所述连接弹性元件(8a,8b)构造成为所述耦合块(12)的位移引起所述传感块(3)的相应位移。

4. 根据权利要求3所述的结构，其中所述锚固元件(14)和所述支撑弹性元件(15)被
构造在所述第一限制点(13)限定枢转元件。

5. 根据权利要求3所述的结构，其中所述第一限制点(13)设置在所述封套区沿着所
述平面(xy)的第二轴(y)和/或所述第一轴(x)的中间点的位置(a,b)。

6. 根据权利要求3所述的结构，其中所述锚固装置(14,15)构造成为使用另外的限制点
(13)将所述耦合块(12)锚固到所述衬底(2)上，从而所述衬底(2)沿着所述正交轴(z)在
所述第一和另外的限制点(13)的位移引起所述耦合块(12)沿着所述正交轴(z)的相应的
位移；所述耦合块(12)设计成源所述得到的位移，根据沿着所述正交轴(z)插入选所述相
应位移的平面在空间内位移。

7. 根据权利要求3所述的结构，其中所述第一限制点(13)设置在这样的位置(a,b)，
使得能够减小在所述第一限制点(13)周围区域内随着所述衬底(2)的变形而产生的，沿着
所述正交轴(z)的所述传感块(3)的位移(zmass)与所述衬底(2)的位移(zrea)之间的平均
偏差(S_mean)。

8. 根据权利要求7所述的结构，其中所述第一限制点(13)设置在能够最小化所述平均
偏差(S_mean)的位置(a,b)。

9. 根据权利要求7所述的结构，其中所述第一轴(x)基本上平行于所述旋转轴(A)，并
且所述封套区具有沿着所述第二轴（y）相对于所述旋转轴的坐标，以及沿着所述第一轴（x）的坐标。其中所述沿着第二轴（y）的坐标包含在第一最小值（x₁）与第一最大值（x₂）之间，所述沿着所述第一轴（x）的坐标包含在第二最小值（-w）与第二最大值（+w）之间，并且

所述第一限制点（13）设置在沿着所述第二轴（y）距离所述旋转轴（A）一定距离（b），其值位于所述第一最小值（x₁）与所述第一最大值（x₂）之间，并且具有沿着所述第一轴（x）的坐标（a），其包含在所述第二最小值（-w）与第二最大值（+w）之间。

10. 根据权利要求9所述的结构，其中所述第一固定电极装置（5a）具有位于所述平面（xy）内基本上成矩形的封套区；

所述固定装置（14, 15）包括至少一个与所述衬底（2）刚性地耦合的另外的固定元件（14）以及至少一个另外的支撑弹性元件（15），所述另外的支撑弹性元件（15）被配置为将所述耦合块（12）与限定所述第一限制点（13）的所述另外的固定元件（14）连接在一起，从而除了通过所述第一限制点（13）之外，还通过至少一个也位于所述封套区内的第二限制点（13）将所述耦合块（12）固定到所述衬底（2）上；所述第一和第二限制点沿着所述第一轴（x）相对于所述封套区的中心轴以对称的方式设置，平行于所述第二轴（y）并且与所述第一轴（x）在原点（0）交叉，所述原点沿着所述第一轴（x）的坐标值为零，并且

所述第一限制点（13）沿着所述第一轴（x）的坐标（a）的绝对值满足下式：

0 < a < w

其中w是所述第二最小值（-w）以及所述第二最大值（+w）的绝对值。

11. 根据权利要求1所述的结构，其中所述支撑弹性元件（15）相对于所述连接弹性元件（8a, 8b）具有更高的硬度，从而使其相对于将被探测的沿着所述正交轴（z）的量而言基本上是刚性的。

12. 根据权利要求11所述的结构，其中所述固定元件（14）至少部分设置在所述第一固定电极装置（5a）关于所述平面（xy）的封套区内。

13. 根据权利要求11所述的结构，其中所述平面（xy）由互相正交的第一轴（x）以及第二轴（y）限定，并且

所述支撑弹性元件（15）包括沿着所述第二轴（y）直线延伸并且与所述耦合块（12）连接的第一扭转弹簧（15a），以及沿着所述第一轴（x）直线延伸并且与所述固定元件（14）连接的第二扭转弹簧（15b）；

所述第一扭转弹簧（15a）以及所述第二扭转弹簧（15b）具有一个共同端，位于与设计成定义所述第一限制点（13）的位置相应的位置。

14. 根据权利要求1所述的结构，其中所述传感块（3）具有贯穿开口（4），并且所述耦合块（12）和所述固定装置（14, 15）设置在所述贯穿开口（4）内，并且

所述连接弹性元件（8a, 8b）在所述贯穿开口（4）内延伸，并且对准以限定所述旋转轴（A）。

15. 根据权利要求1所述的结构，进一步包括设置在所述衬底（2）上的第二固定电极装置（5b），其设置在所述第一固定电极装置（5a）关于所述旋转轴（A）的相对侧；所述传感块（3）以这样的方式设置在所述衬底（2）之上，即分别与所述第一固定电极装置（5a）和第二固定电极装置（5b）形成第一探测电容（C1）和第二探测电容（C2），二者的电容值设计成作为所述将被探测的量的微分函数而变化。
16. 一种光电传感器 (42)，包括根据权利要求 1 所述的 MEMS 探测结构 (10)，以及与所述 MEMS 探测结构 (10) 电耦合的读取接口电路 (43)。

17. 根据权利要求 16 所述的传感器，其中所述 MEMS 探测结构 (10) 以及所述读取接口电路 (43) 形成 z 轴加速度计，并且所述将被探测的量是沿着与所述平面 (xy) 正交的所述轴 (z) 的加速度。

18. 一种电子设备 (40)，包括根据权利要求 16 所述的光电传感器 (42)，以及与所述读取接口电路 (43) 电连接的微处理单元 (44)；特别地，所述电子设备 (40) 选自下面的组，所述组包括：移动电话、个人数字助理 PDA、便携计算机、具有声音录制功能的数字音频播放器、照相机或者摄像机、视频游戏控制装置。

19. 一种用于制造根据权利要求 1 所述的 MEMS 探测结构 (10) 的方法，包括确定由所述支撑弹性元件 (15) 限定的所述第一限制点 (13) 的位置 (a, b) 的步骤，其最小化在所述第一限制点 (13) 周围区域内，随着所述衬底 (2) 的变形而产生的、沿着所述正交轴 (z) 的所述传感器 (3) 的位移 (Z_{sense}) 与所述衬底 (2) 的位移 (Z_{sub}) 之间的平均偏差 (S_{mean})。

20. 根据权利要求 19 所述的方法，其中所述确定步骤包括使用数字的以及迭代的方式确定所述第一限制点 (13) 的位置 (a, b)，使所述平均偏差 (S_{mean}) 最小化。

21. 根据权利要求 20 所述的方法，其中所述最小化步骤包括:
 - 确定所述衬底 (2) 沿着所述正交轴 (z) 的位移 (Z_{sub}) 的表达式，考虑所述衬底 (2) 的变形高达三次方变形；
 - 确定所述传感器 (3) 沿着所述正交轴 (z) 的位移 (Z_{sense}) 的表达式，迫使所述传感器 (3) 的位移 (Z_{sense}) 接近所述衬底 (2) 在所述第一限制点 (13) 的位移 (Z_{sub})；
 - 确定所述传感器 (3) 的位移 (Z_{sense}) 与所述衬底 (2) 的位移 (Z_{sub}) 之间的差值 (ΔZ) 的表达式；
 - 在所述第一固定电极装置 (5a) 的延伸面积 (Ω) 上对所述差值 (ΔZ) 进行积分，以此来获得平均偏差 (S_{mean}) 的表达式；以及
 - 迭代地确定所述第一限制点 (13) 的位置 (a, b)，其最小化平均偏差 (S_{mean}) 的所述表达式。

22. 根据权利要求 19 所述的方法，进一步包括确定所述 MEMS 探测结构 (10) 在探测所述将被探测的量的过程中根据所述衬底 (2) 变形产生的偏移量漂移和 / 或敏感度漂移的步骤，并且

所述确定所述第一限制点 (13) 的位置 (a, b) 的步骤包括迭代地确定最小化所述偏移量漂移和 / 或所述敏感度漂移的所述第一限制点 (13) 的位置 (a, b)。
具有低的热漂移的微机电 z 轴探测结构

技术领域
[0001] 本发明涉及一种微机电 (MEMS) z 轴探测结构，具有低的热漂移，特别地，将在下文清楚地涉及微机电 z 轴加速度计，但是这并不意味着丢失任何一般性。

背景技术
[0002] MEMS 类型的 z 轴惯性加速度计是人们所熟知的，其包括微机电结构，该微机电结构对作用在与其主延伸平面正交的方向上并且朝向相应的衬底的顶表面的加速度敏感（其也能够探测作用在相不同平面内的更多的加速度）。
[0003] 图 1a 和图 1b 半出了已知类型的 z 轴惯性加速度计的 MEMS 结构，整体使用参考标记 1 标示，其还进一步包括与 MEMS 结构耦合的电子读取接口（未示出）。
[0004] MEMS 结构 1 包括具有顶表面 2a 的衬底 2（例如，由半导体材料制成的，特别是硅），以及由导电材料例如多晶硅制成的传感块 3，该传感块 3 设置在衬底 2 上，悬浮于距离衬底 2 的顶表面 2a 一定距离处。传感块 3 在由互相正交的第一轴 x 和第二轴 y 所限定的传感器平面 xy 内具有主延伸，该传感器平面 xy 基本平行于衬底 2 的顶表面 2a（在非工作的状态下，也就是说，在非加速状态或者没有任何外部力量作用在 MEMS 结构 1 的状态下），并且该主延伸沿着正交的 z 轴是基本上没有维度的，该 z 轴与前述的传感器平面 xy 垂直（也与衬底 2 的顶表面 2a 垂直），并且与第一轴和第二轴 x, y 一起构成一组笛卡尔轴系 xyz。
[0005] 传感块 3 具有一个贯穿开口 4，其穿过传感块的厚度，在平面图上显示其具有长度方向沿着第一轴 x 延伸的基本为矩形的形状，并且设置在距离传感块 3 的质心（或者重心）一定距离处，因此贯穿开口 4 将传感块 3 分成第一部分 3a 和第二部分 3b，二者沿着第二轴 y 位于同一个贯穿开口的相对侧，与第二部分 3b 相比，第一部分 3a 沿着第二轴 y 具有更大的尺寸。
[0006] MEMS 结构 1 进一步包括第一固定电极 5a 和第二固定电极 5b，二者是由导电材料制成，并且设置在衬底 2 的顶表面 2a 上，沿着第二轴 y 位于贯穿开口 4 的两侧，这样就分别位于传感块 3 的第一和第二部分 3a, 3b 的下面。第一和第二固定电极 5a, 5b 在与传感器平面 xy 平行的平面上具有基本上成矩形的形状，沿着第一方向 x 伸长。第一和第二固定电极 5a, 5b 因此与传感块 3 一起限定了具有平面和平行板面的第一探测电容器和第二探测电容器，标示为 C_1, C_2，二者具有给定的静止（rest）电容。传感块 3 通过中心锚固元件 6 被锚固在衬底 2 上，该锚固元件 6 由在贯穿开口 4 内从衬底 2 的顶表面 2a 开始延伸的柱状元件构成，与同一贯穿开口 4 同心。中心锚固元件 6 因此沿着第二轴 y 的方向相对于固定电极 5a, 5b 等距设置，位于与标示为 0 的由固定电极 5a, 5b 组成的组件的重心（或者质心）对应的位置。重心 0 还用于笛卡尔参照系 xyz 的原点，对应着传感块 3 相对于衬底 2 的单个约束点。
[0007] 特别地，传感块 3 与中心锚固元件 6 通过第一连接弹性元件 8a 和第二连接弹性元件 8b 机械连接，这两个弹性元件在贯穿开口 4 内，沿着与第一轴 x 平行的旋转轴 A 对准，基本上成直线地延伸，位于中心锚固元件 6 和重心 0 的两侧。连接弹性元件 8a, 8b 构造成在
其延伸方向周围承担扭矩，这样能使传感器元件 3 在传感器平面 xy 之外沿着由相同的连接弹性元件 8a, 8b 所限定的旋转轴 A 转动。需要注意，旋转轴 A 穿过重心 0，而且构成中心锚固元件 6 和固定电极 5a, 5b 构成的组件的对称轴。

在使用时，在正交方向 z 存在加速度作用时，传感器元件 3 在惯性的作用下绕着旋转轴 A 转动，这样就接近两个固定电极 5a, 5b 中的一个（例如，第一固定电极 5a），并且相等地远离两个固定电极 5a, 5b 中的另一个（例如，远离第二固定电极 5b），产生探测电容器 C_1, C_2 的相反的电容变化。合适的加速度计的接口电子仪器（图 1a、1b 中未示出）与 MEMS 结构 1 电耦合，在输入端接收探测电容器 C_1, C_2 的电容变化，并且通过微分的方法处理它们，从而确定沿着正交轴 z 作用的加速度的值。

本申请人发现，上述的 MEMS 结构 1，虽然有利地能够探测沿着正交轴 z 作用的加速度，但是只要衬底 2 例如因为温度的变化产生变形，就会存在测量误差。一种已知的方法，微机电传感器的封装过程，因为所使用的材料的热膨胀系数不同，实际上会因为温度的变化而产生变形，使得包含在其中的 MEMS 结构的衬底也会相应地产生变形。类似的变化还可以由外部引起的特定的应力产生，例如当封装件被焊接在印刷电路板上的时候。因为衬底 2 的变形，直接约束在衬底 2 上的固定电极 5a, 5b（这些电极通常布置在衬底 2 的顶表面 2a 上），就会跟随这些变形，同时传感器元件 3 也随着中心锚固元件 6 的可能的变形而移位，然而，还保持精确的平面。

本申请人再发现，特别地，在探测方向为沿着正交轴 z 的加速度时，衬底 2 的变形会同时引起偏移量漂移和静电容度漂移。

具体地，如果衬底 2 及相应的顶表面 2a，经历了相对于第二轴 y 沿着正交轴 z 的变形（以重心 0 为中心，对应着中心锚固元件 6 的中心），如图 2a 和 2b 中示意图的那样，由于该变形，平均距离（或者间隙）gap_1, gap_2 发生相等的改变，使传感器元件 3 在第一和第二固定电极 5a, 5b 处与衬底 2 分开。在图 2b 中，固定电极 5a, 5b 理想化地表示为设置在沿着第二轴 y 的它们的中心点且距离重心 0 的间隔为 m 的点状元件；中心锚固元件 6 也被理想化地表示为位于重心 0 的点。

在这种情况下，传感器由于探测电容器 C_1, C_2 的静止电容值的变化而产生敏感度漂移；同时当例如由于衬底 2 不是完美的平面，或者传感器元件 3 与衬底 2 不是完全地平行，两个间隙最初已经存在不同（关联的静电容也会不同）时，还会产生偏移量漂移。

另外，当衬底 2 相对于第二轴 y 沿着正交轴 z 存在三次（cubic）变形时（再次以重心 0 为中心），如图 3 所示（类似于之前的图 2b），平均距离 gap_1, gap_2 产生符号相反的变化，其使传感器元件 3 与第一和第二固定电极 5a, 5b 分开（相应的第一和第二电容器 C_1, C_2 也同样产生变化）。这些变化引起从传感器的接口电子仪器输出的电信号的改变，因此引起根据温度改变的传感器的偏移量改变。

发明内容

本发明的目的是解决之前所突出的问题，特别是提供一种沿着正交轴 z 敏感的微机电结构，该微机电结构的电特性具有低的温度漂移，特别是对偏移量和敏感度。

根据下文所记载的本发明，MEMS 探测结构，包括：

- 具有顶表面的衬底，在该衬底上至少设置有第一固定电极装置；
[0017] - 感应块，设置在所述衬底和所述第一固定电极装置之上
一定分隔间距处，以及
[0018] - 连接弹性元件，构造成支撑所述感应块，所以其可以在所述平面外绕着旋转轴自由旋转，根据所述平面正交的轴的量改变所述分隔间距。
[0019] 其特征在于，包括：一个耦合元件，设置在所述衬底之上并且通过所述连接弹性元件
与所述感应块连接；以及锁固装置，构造成将所述耦合元件通过至少一个第一限制点锁定
到所述衬底，设置在与所述旋转轴隔开一定距离处，并且位于与所述第一固定电极装置相应
的位置。

附图说明
[0020] 为了更好地理解本发明，现在将描述一个优选实施例，所述实施例仅用于非限定
性的示例，并且结合下述附图说明，其中：
[0021] 图 1a 是一种已知类型的 z 轴传感器的 MEMS 结构的平面图；
[0022] 图 1b 是图 1a 中的 MEMS 结构的沿着图 1a 中的 1-1 线的截面图；
[0023] 图 2a 是与图 1b 类似的截面图，其中存在着 MEMS 结构的衬底的二次变形；
[0024] 图 2b 示意地示出了图 1a 中的 MEMS 结构的衬底的二次变形的结果；
[0025] 图 3 意示地示出了图 1a 中的 MEMS 结构的衬底的三次变形的结果；
[0026] 图 4 是根据本发明的一个方面的 z 轴传感器的 MEMS 结构的平面示意图；
[0027] 图 5a，图 5b 示意地示出了图 4 中的 MEMS 结构的衬底的二次变形的结果；
[0028] 图 6 意示地示出了图 4 中的 MEMS 结构的衬底的二次变形的结果；
[0029] 图 7 是设计图 4 中的 MEMS 结构的过程的流程图重点步骤；
[0030] 图 8 和图 9 示出了关于图 7 的设计过程的几何量的线图；
[0031] 图 10a 是图 4 的 MEMS 结构的一个实施例的平面图；
[0032] 图 10b 是图 10a 中的 MEMS 结构沿着图 10a 中的 X-X 线的截面图；
[0033] 图 11 是根据本发明的另一个实施例的集成了 MEMS 结构以及相应的传感器的电子
设备的框图。

具体实施方式
[0034] 如下文中将要详述的，本发明的一个方面是设想一种对传感块与 MEMS 结构的衬
底的机械耦合（通过锚固或者支撑）的结构的合适的改变，使得：随着由于温度的变化而引
起的衬底的变形，传感块将经受的位移基本上与固定电极所经受的位移相一致，因此传感
块和固定电极之间的平均间隙的变化（以及关联的电容值的变化）不会发生（或者非常的小）。
这样，可能消除（或者明显减小）传感器的任何热漂移以及关联的测量误差，甚至在
衬底变形存在的情况下，也是如此。特别地，传感块通过位于对应于固定电极的位置的限制
点耦合到衬底上，采用这样的方式，在这些限制点的位置处的位移（在正交方向 z）基本上
与固定电极的位移一致，成为衬底变形的函数。
[0035] 更详细地说，首先参考图 4 中的示意图（其中与之前描述的元件类似的元件使用
相同的参考标记，这里不再缀述），z 轴传感器（特别地为加速度计）的 MEMS 结构，标示为
10，与结合图 1a 和图 1b 所描述的结构的不同之处主要在于传感块 3 与衬底 2 的机械耦合
的结构的不同的构造，其设计为提供一种传感块 3 的锚固结构，使其悬浮在衬底 2 上。

[0036] 尤其地，该示例中该机械耦合结构包括耦合块 12，其设置在贯穿开口 4 内，旋转轴 A 上，并且通过连接弹性元件 8a，8b（与之前所述的连接弹性元件具有相同的扭转特性）与传感块 3 连接。耦合块 12 构造成具有高的硬度（尤其地，其硬度值能够使耦合块 12 即使在衬底 2 存在最大可承受变形的情况下还能保持相当的平整度）的程度达到使其可以被认为是平面的（在非工作状态下，在传感器平面 xy 内延伸）并且是无形变的。耦合块 12 具有，例如在平面视图内基本上成矩形的形状，其长边沿着第一轴 x 的方向延伸。耦合块 12 例如可以是在形成传感块 3 的同一个工艺步骤中，通过对材料（例如多晶硅）的相同层进行化学刻蚀而形成的。

[0037] 耦合块 12 在设置与固定电极 5a,5b 相对应的位置的多个限制点 13 处被限制在衬底 2 上，特别地位于相对于传感器平面 xy 的固定电极的体区（bulk）或者封套（envelope）区内。

[0038] 通常，针对与固定电极 5a,5b 关联的每个封套区都会提供至少一个限制点 13。在图 4 所示的实施例中，例如设想有四个限制点 13，其中两个设置于与一固定电极 5a 相对应的位置（特别地，如下文中将要详述的，相对于第一轴 x 的各自的端部），另外两个设置在与第二固定电极 5b 相对应的位置（再次，如下文中将要详述的，相对于第一轴 x 的各自的端部）。每个限制点 13 的位置通过沿着第一轴 x 的坐标值 a 和沿着第二轴 y 的坐标值 b 来限定，同样在图 4 中，w 表示固定电极 5a,5b 沿着第一轴 x 测量的长度的一半，x1 和 x3 分别表示与固定电极 5a,5b 相连的封套区沿着第二轴 y 的最小和最大坐标值。

[0039] 每个限制点 13 通过设置在衬底 2 的顶上并且与衬底 2 接触的各自的锚固元件 14（示意地示出在图 4 中）以及设计为将耦合块 12 与各自的锚固元件 14 机械耦合的各自的支撑弹力元件 15（也在图 4 中示意地示出）限定。

[0040] 特别地，每个支撑弹力元件 15 构造成，与各自的锚固元件 14 一起，在各自的限制点 13 被限定一个枢轴元件，其对衬底 2 关于限制点 13 的旋转不敏感，然而，代替地，它严格地跟随其所有方向的平移（特别是沿着正交的 z 轴的平移，沿着 x 轴与 y 轴的任何平移基本上对传感器的行为没有影响）。

[0041] 另外，支撑弹性元件 15 具有比连接弹性元件 8a,8b 高的多的硬度，这样可以认为耦合块 12 关于要探测的沿着正交轴 z 的外部加速度而言相对于传感块 3 保持基本上静止。

[0042] 关于外部加速度，MEMS 结构 10 的行为与之前结合附图 1a,1b 所描述的已知结构的方式来类似，其中传感块 3 在传感器平面 xy 之外绕着连接弹性元件 8a,8b 旋转，在探测到沿着正交轴 z 作用的加速时接近衬底 2。

[0043] 在衬底 2（以及与其固定在一起的固定电极 5a,5b）因为例如温度的变化造成的变化面沿着正交轴 z 存在位移的情况下，限制点 13 基本上以与固定电极 5a,5b 一致的方式沿着正交轴 z 移动，类似的位移通过支撑弹性元件 15（特别地，在耦合块 12 与支撑弹性元件的连接端）传递到耦合块 12。随着这些位移，耦合块 12 也发生位移，使自己进入一个插入到（例如根据最小二乘标准）由限制点 13 所采取的新位置的平面内。特别地，插入的平面和各个限制点 13 之间的误差通过支撑弹性元件 15 的变形来补偿，该支撑弹性元件 15 而且进一步补偿衬底 2 可能的膨胀。特别地，之前限定的枢轴元件在传感器平面 xy 内跟随衬底 2 的可能的变形，这些位移被支撑弹性元件 15 吸收而不是将其传递到耦合块 12 上，通过这
样的方式就避免了相同的耦合片 12 的断裂或者过多的应力。

[0044] 考虑到施加在 MEMS 结构 10 上的相同的外部加速度。然后因为支撑弹性元件 15 相对于外部加速度来说的硬度，传感块 3 以一种直接的方式跟随耦合片 12 的位移，在空间中相应地移动，从而满足作用在 MEMS 结构 10 上的力（和扭动力矩）的均衡。换句话说，传感块 3 与耦合片 12 刚性地连接在一起，使其可以沿着正交轴 z 跟随衬底 2 的变形。因此，传感块 3 经受与固定电极 5a, 5b 的位移基本上一致的位移，因此有效地减小了同样的传感块 3 和固定电极 5a, 5b 之间的（平均）间隙的变化。也就是说，就好像传感块 3 在限制点 13 处直接限制在衬底 2 上，经受沿着正交轴 z 的与固定电极 5a, 5b 在所述限制点 13 处所产生的位移一致的位移。

[0045] 如图 5a 中所示的，当衬底 2 产生二次变形时，在限制点 13 处，传感块 3 与衬底 2 之间的距离 gap1, gap2 在这种情况下与在非工作状态下的情况相比不会发生变化。直观地，而且如下文中将更详述的，可能确定限制点 13 沿着第二轴 y 的坐标值 b，使得二次变形不使传感块 3 与固定电极 5a, 5b 之间的距离的平均值产生可感知的变化（在它们沿着第二轴 y 的全部延伸上考虑），结果从传感器输出的输出量值和偏移量值不会发生可感知的变化。

[0046] 类似地，如图 5b 中所示的，存在这种直观的可能，为限制点 13 的位置沿第一轴 x 的坐标确定适当的值 a，使得传感块 3 和固定电极 5a, 5b 之间的距离的平均值 gap1, gap2（沿着它们的总长度 w）在温度变化的情况下相对于非工作状态也基本上保持恒定。

[0047] 同样在三次变形的情况下，如图 6 所示，在限制点 13 的位置的坐标处，传感块 3 与衬底 2 之间的距离 gap1, gap2 不发生变化（传感块 3 的平面实际上跟随位于中心 0 相对侧的限制点的相对方向的位移倾向）。直观地，还可能再次确定限制点 13 的最佳位置，使得传感块 3 与固定电极 5a, 5b 之间的距离的位移变化的最小化（在它们沿着第二轴 y 的全部延伸上考虑），这样传感器的输出对温度再一次不敏感，对敏感度值和偏移量值都是如此。

[0048] 限制点 13 紧邻固定电极 5a, 5b 的布置因此是有好处的，只要它引起传感块 3 经受与固定电极 5a, 5b 的平均位移近似，因此减小了从传感器输出的电信号的热漂移。在任何情况下，通过 MEMS 结构 10 的数学建模，可以有力地确定限制点 13 的优化的精确位置（以及相应的锚固元件 14 的位置），这样可有效地最小化传感块 3 与固定电极 5a, 5b 之间的距离 gap1, gap2 的平均变化（在它们沿着第一和第二轴 x, y 的全部延伸上考虑）。

[0049] 换句话说，还可能定义一个迭代的过程，用于在 MEMS 结构的设计和制造阶段中确定限制点 13 的最佳位置，其可在衬底 2 存在变形的情况下使传感器的敏感度和偏移量漂移最小化。有利地，这种程序可使用对 MEMS 结构 10 的固定电极 5a, 5b 的任何几何结构和构造都适用的通用方式来实现。

[0050] 详细地说，如图 7 所示，程序的开始步骤，标示为 20，设想选择限制点 13 的最初位置，采用沿着第一轴和第二轴 x, y 的坐标值 a 和 b 的形式。

[0051] 然后（步骤 21），衬底 2 的变形 Z_{xx} 通过下式确定（也就是沿着正交轴 z 的位移作为沿着第一和第二轴 x, y 的坐标值的函数）：

\[Z_{xx} = C_0 + C_1 \cdot x + C_2 \cdot y + C_3 \cdot x \cdot y + C_4 \cdot x^2 + C_5 \cdot y^2 + C_6 \cdot x \cdot y + C_7 \cdot x^2 + C_8 \cdot y^2 + C_9 \cdot x^3 + C_{10} \cdot y^3 \]

[0052] 假定次方大于三次（相应于三次变形）的分量都略去。实际上已知在具有小的尺寸的结构中（例如精确的 MEMS 结构），线性的，抛物线的，以及三次变形是用来描述机械
行为的主要变形，而更高次方的变形通常可被略去。

然后（步骤 22），确定沿着正交轴 z 的位移以及所得的耦合块 12 的布置（以及因此刚性地连结在其中的传感器块 3，刚性连接的程度使得可以将其看作是一个单独的悬浮的块的点）。为了获得更高的精度，可以采用 FEM（有限元法）模拟，将不规则的机械结构分割为（通过自身已知的方式）合适数量的规则的部分。传感器块 3，假定是平面的，因此其沿着正交轴 z 的位移 Z_{mass} 可由下式给出：

\[Z_{mass} = b_y + b_z + x + b_y \cdot y \]

使用平面插值，限制点 13 的位置 \((x = a; y = b)\)，使用最小二乘法，可得到关于传感器块 3 的位移 Z_{mass} 的下述表达式：

\[Z_{mass} = (C_0 + C_4 \cdot a^2 + C_5 \cdot b^2) + (C_7 + C_8 \cdot a^2 + C_9 \cdot b^2) \cdot x + (C_2 + C_8 \cdot a^2 + C_9 \cdot b^2) \cdot y \]

在下面的步骤（步骤 23）中，针对固定电极 5a, 5b 中每一个（具体是针对相应的封套中的每一个）的平均偏差可以被确定，在衬底 2 的变形和传感器块 3 的位移之间，执行在电极的整个面积（具体地，相应的封套的面积）上的积分。衬底 2 的变形和传感器块 3 位移之间的偏差通过下式给出：

\[\Delta Z = Z_{mass} - Z_{sub} \]

平均偏差 S_mean 通过对该偏差在积分面积内（每个固定电极 5a, 5b 的面积 Ω）的积分得到：

\[S_{mean} = \frac{\int \Delta Z \cdot dΩ}{\int dΩ} \]

为了确定参数 a 和 b 的最佳值，因此有可能实施数字的以及迭代的方法（步骤 24）来最小化平均偏差，如上面公式那样。为了这个目的，有可能为参数 a 和 b 迭代设置新的值（回到步骤 20）并且确定新的平均偏差，直到达到前述的表达式的最小化。如步骤 25 中所述。

另外，也可能进行确定由衬底 2 的变形引起的偏移量漂移（offset）和敏感度漂移（sens）（使用一种附图中没有示出的方式），其使用下述表达式：

\[\text{offset} = S \cdot (\text{dist}_{12} - \text{dist}_{11}) \]

\[\text{sens} = \frac{\text{dist}_{12} + \text{dist}_{13}}{\text{dist}_{11} + \text{dist}_{12}} \]

其中，S 对加速度的敏感度（也就是说，输出端的加速度相对于已经产生的位移的值，表示为 \(m^2/s^2/m\)；dist_{11} 和 dist_{12} 是在衬底 2 存在变形的情况下，第 i 和第 j 个固定电极 5a, 5b 与传感器块 3 之间的长度；以及 dist_{12} 和 dist_{13} 是在衬底不存在变形的情况下衬底 2 和固定电极 5a, 5b 之间的长度，表示为（非工作状态下下的长度）。

在获得了偏移量值和敏感度值的基础上，因此就有可能开始迭代地选择辅助件的新的位置并且继续程序，直到确定在衬底 2 的任何变形的情况下达到偏移量和敏感度漂移的最小化的限制点 13 的位置。

在上述示例的情况下，固定电极 5a, 5b 是矩形几何形状（在传感器平面 xy 内），以及首先将变形看做是单独的 y 坐标的函数，以便确定关于限制点 13 沿着第二轴 y 的最佳位置的参数 b，上述表达式可以简化为：

\[Z_{sub} = C_0 + C_8 \cdot y + C_8 \cdot y^2 + C_9 \cdot y^3 \]
说明书中

\[
Z_{mass} = (C_0 + C_5 \cdot b^3) + (C_2 + C_9 \cdot b^3) \cdot y
\]

\[
\Delta Z = -C_5 \cdot b^2 - C_9 \cdot b^2 \cdot y + C_5 \cdot y^2 + C_9 \cdot y^3
\]

\[
S_{mean} = \frac{\int_{x_i}^{x_j} \Delta Z \cdot dy}{x_j - x_i}
\]

因此通过对前述的平均偏差 \(S_{mean} \) 的简化表达式求最小值而得到参数 \(b \) 的值。

图8示出了平在三次变形（虚线）和二次变形（实线）两种情况下，均偏差 \(S_{mean} \)
作为参数 \(b \) 的值的函数的曲线图（已经设定了 \(x_i \) 和 \(x_j \) 的值），使用圆圈突出显示了平均偏差为零的坐标 \(b \) 的值。两个最佳点非常接近，所以在设计阶段中，根据衬底 2 由于温度而产生特定变形（与所使用的具体的封装有关）的知识，选择一个折衷的值。

在任何情况下，在该情形下最佳的坐标 \(b \) 满足下述关系：

\[x_i < b < x_j \]

特别地，在示出的情况下，

\[x_i + 0.5 \cdot (x_j - x_i) < b < x_i + 0.7 \cdot (x_j - x_i) \]

因此限制点 13 的最佳位置基本上对应于与固定电极 5a, 5b 关联的封套区沿着第二轴 \(y \) 的中间点（或者质心）。

类似地，将变形看作单独的 \(x \) 坐标的函数，以便确定关于限制点 13 沿着第一轴 \(x \)的位置的参数 \(a \)，可得到下列简化了的表达式：

\[
Z_{sub} = C_0 + C_4 \cdot x + C_7 \cdot x^2 + C_8 \cdot x^3
\]

\[
Z_{mass} = (C_0 + C_4 \cdot a^3) + (C_7 + C_8 \cdot a^2) \cdot x
\]

\[
\Delta Z = -C_4 \cdot a^2 - C_7 \cdot a^2 \cdot x + C_7 \cdot x^2 + C_8 \cdot x^3
\]

\[
S_{mean} = \frac{\int_{-w}^{w} \Delta Z \cdot dx}{2w}
\]

再一次，通过对上述表达式求最小值得到坐标值 \(a \) 的值。在这种情况下，在给定的 \(-w \) 到 \(w \) 的对称的积分区间内，变形的三次方分量明显地不产生贡献。

图9示出了在二次变形的情况下，平均偏差 \(S_{mean} \) 作为坐标 \(a \) 的函数的曲线图（已经设定了固定电极 5a, 5b 的半长度 \(w \) 的值），其中平均偏差为零的坐标 \(a \) 的值（最佳点）通过一个圆圈被突出显示。最佳坐标值 \(a \) 满足关系：

\[0 < a < w \]

特别地，在示出的情况下，

\[0.5 \cdot w < a < 0.6 \cdot w \]

特别地，可以看出，在图示的电极具有矩形形状的情况下，坐标值 \(a \) 的最佳值（关于值 \(w \)）由下式给出：

\[a = \frac{w}{\sqrt{3}} \]

再一次，限制点 13 的位置因此基本上对应于固定电极 5a, 5b 的封套区的每个半个部分（关于原点 0 考虑）沿着第一轴 \(x \) 的中间点（或者质心）。

在该结构的实际实现中，锚固元件 14 以及支撑弹性元件 15 (二者一起定义出传感
块 3 相对于衬底 2 的限制点 13) 的布置不但源于设计阶段中确定的限制点 13 的最佳位置（如之前记载的），而且源于所用的技术和加工过程。

例如，MEMS 结构 10 的一种可能的实施例图示于附图 10a 和 10b 中，其考虑到生产工艺中的技术限制。

详细地说，锚固元件 14 由具有第一支架件构成，设置在与各自的固定电极 5a, 5b 紧邻的位置，具体地至少部分位于在各自的固定电极 5a, 5b 内形成的四处 30 内。因此，沿着每个固定电极 5a, 5b 的边，提供了两个凹处 30，其被设计为容纳各自的锚固元件 14 的至少一部分。在传感块 3 内设计与四处 30 对应的相似的凹处，其朝着贯穿开口 4 的方向开口并且与之结合在一起。

这里的支撑弹性元件 15 由位于各自的锚固元件 14 侧边（相对于第一轴 x）的基础上以直线的方式沿着第二轴 y 延伸的第一扭转元件 15a，以及位于各自的锚固元件 14 侧边（相对于第二轴 y）的基础上以直线的方式沿着第一轴 x 延伸的第二扭转元件 15b 构成，该第二扭转元件 15b 与第一扭转元件 15a 具有一个共同的端部。另外，第一扭转元件 15a 还有一个端部与耦合块 12 相连，而第二扭转元件 15b 的另一个端部通过连接元件 32 与各自的锚固元件 14 相连，该连接元件沿着第二轴 y 与第二扭转元件正交地延伸。

第一和第二扭转元件 15a, 15b 具有这样的结构和机械特性，在它们的公共端部相应的位置，定义了各自的限制点 13，并且具有类似扭转的操作（如上文中所述的）。特别地，该公共端部的位置与设计阶段中确定的限制点 13 的位置重合，如上文中所述的，以这种方式，在衬底 2 发生任何变形的时候，最小化固定电极 5a, 5b 与传感块 3 的沿着正交轴 z 的位移之间的差值。特别地，假设需要将各自的锚固元件 14 设置在至少部分位于相同高度（相对于正交的 z 轴），限制点 13 实际上位于各自的固定电极 5a, 5b 的有效轮廓的外部；在任何情况下，很清楚，相同的限制点 13 的位置落入各自的固定电极 5a, 5b 的封套区内。

更详细地说，每个扭转元件 15a, 15b 是由细长的棒组成，并且构造成为可绕着其自身的轴（轴 x 或者 y，根据其长度延伸的方向而定）自由旋转，以及关于其它类型的旋转 / 位移来说是刚性的。

在这个实施例中，耦合块 12 在平面图（在传感器平面 xy 内）中具有沿着第一轴 x 方向伸长的基本上为矩形的形状，并且具有本体 12a 和两个端部（沿着第一轴 x 的方向）12b, 12c，两个端部分别构成类似“C”形和类似“反向 C”。具体地，每个端部 12b, 12c 通过两个延长元件 34, 35 形成，二者以悬浮的方式在衬底 2 之上从本体 12a 突出，并且在本体 12a 与衬底 2 中间限定出空穴 36。

连接弹性元件 8a, 8b 在空穴 36 内部延伸，与本体 12a 连接。每个支撑弹性元件 15 的第一扭转元件 15a 改为与各自的延长元件 34, 35 的一个自由端连接。

得益于上述的结构布置，传感块 3 钢性地连接到耦合块 12，跟随衬底 2 的变形，以基本上与固定电极 5a, 5b 的位移相一致的方式，在限制点 13 沿着正交轴 z 产生位移，从而最小化了同样的传感块与固定电极之间的相对间隙的改变。具体地，根据锚固元件 14 与支撑弹性元件 15 的结构，存在很多端点（限制点 13，例如 4 个）处传感块 3 沿着正交轴 z 的位移基本上与衬底 2（以及因此固定电极 5a, 5b) 由于其变形而产生的位移一致（除了内插误差）。

所提出的微机电探测结构的优点在前面的描述中得以清楚展现。

12
[0103] 在任何情况下，再一次强调具体实施例以及传感器 3 相对于衬底 2 的限制点 13 的
布置使得对沿着正交轴 z 的加速度的探测表现出实际上对衬底的变形（例如因为温度的改
变或者任何外部应力，例如由焊接到印刷电路板而引发的）不敏感。作为衬底 2 的变形的
函数的传感器的偏移量和敏感度漂移，实际上明显地减小了（基本上被消除），热漂移也因
此得以最小化。

[0104] 而且，描述的传感器 3 相对于衬底 2 的锚固以及支撑的方案不需要对外部加速度
的探测模式以及传感器的通常操作方法做出任何实质上的改变。有利地，与传统的解决方
案（也就是设想在旋转轴 A 上设定单个的中心锚固件的解决方案）相比，MEMS 结构 10 具
有同样的整体尺寸以及同样的辅助设施 (encumbrance)。

[0105] 这些特点因此使 MEMS 结构 10 以及相应的 z 轴加速度传感器在电子设备 40 中的
使用变得特别有利，如图 11 中所示。具体地，在图 11 中，微机电传感器标示为 42，其包括上
文中所述的 MEMS 结构 10 以及 ASIC 43，ASIC 43 用于实现相应的读取接口（可与 MEMS 结
构 10 提供在同一个模具 (die) 中，或者位于不同的模具中，但是无论如何可安置在同一封
装件内）。

[0106] 电子设备 40 优选是便携式移动通讯设备，例如移动电话、PDA（个人数字助理）、便
携计算机、或者是具有声音录制功能的数字音频播放器、照相机或摄像机、视频游戏控制器
等，电子设备 40 通常能够处理、存储和 / 或传输以及接收信号和信息。

[0107] 电子设备 40 包括：微处理器 44，其接收微机电传感器 42 所探测到的加速度信号
以及输入 / 输出接口 45，例如提供有与微处理器 44 相连的键盘和显示器。另外，电子设备
40 可以包括扬声器 47 以及内存 48，其中扬声器 47 用于在音频输出端（未示出）产生声音。

[0108] 最后，很清楚可以对此文中描述以及说明的内容进行修改或者改变，而不偏离由
附属的权利要求书所限定的本发明的范围。

[0109] 具体的，很清楚用于将传感器 3 机械耦合到衬底 2 上的限制点 13 的个数可相对于
图示的内容来改变；实际上有可能使用更少的或者更多的限制点 13。使用限制点的个数
少于四个使得针对衬底 2 的变形的补偿能力逐渐地减小，而使用较多数目的限制点，虽然
能够提供对更高次方的变形（第四，或者第五，或者更高次方的变形）的补偿，就更可为平
均距离变化的最小化提供更多的自由度，但是却使得 MEMS 结构更加复杂。在任何情况下，
有可能，例如，提供针对固定电极 5a, 5b 的每一个封套只存在一个限制点 13 的 MEMS 结构
（在重心的正向或者反向），该限制点 13 例如恰好设置在与沿着轴 x 和 y 的封套的中间
点相一致的位置。

[0110] 另外，MEMS 结构 10 的一些方面可以改变，而不需要对所提出的用于锚固和悬浮传
感器 3 的解决方案做出实质上的改变。例如，相对于示例说明的内容，固定电极的个数做
出改变；可以存在更大数目目的固定电极（例如，根据将固定电极设计成与传感器 3 作为一
个整体形成两个检测电容 C1, C2 的适当设置来产生相互短路），或者甚至只使用一个固定电
极。在这种情况下微分探测的方法不能使用。特别地，也是在采用更大数量的固定电极的情
况下，限制点 13 的位置在任何情况下都包括于其中的封套区，在旋转轴 A 的两侧都包围其
上提供有同样的电极的全部面积，固定电极的全部布置在这种情况下被整体考虑以便确定
封套区。而且，固定电极的形状是可以关于示例说明的内容做出改变的，封套区（相对于传
感器平面 xy）通常位于相同电极的轮廓沿着 x 轴和 y 轴的最小和最大坐标值之间。
最后，很清楚此文中描述的解决方案还可有利地应用于各种类型的需要探测沿着正交轴 z 的电容变化的传感器，例如陀螺仪、麦克风，或者压力传感器。而且还需要说明，这里所描述的方法也可等价地用于单轴传感器或者能够沿着第一轴 x 和 / 或第二轴 y 探测加速度的双轴或者三轴传感器（这些传感器安置用于以本身已知的方式制备和布置的更多移动和固定电极）。
图 7