47044696 A2 | IV 0 0 A O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

27 May 2004 (27.05.2004)

(10) International Publication Number

WO 2004/044696 A2

(51) International Patent Classification’: GO6F
(21) International Application Number:
PCT/US2003/035631

(22) International Filing Date:
7 November 2003 (07.11.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/425,058
60/425,670

8 November 2002 (08.11.2002)
12 November 2002 (12.11.2002)

UsS
Us

(71) Applicant (for all designated States except US): SITERAS
TECHNOLOGIES II LLC [US/US]; 811 Ashland Av-
enue, Wilmette, IL 60091 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FALK, Robert, J.
[US/US]; 710 W. Hackberry Drive, Arlington Heights, IL
60004 (US). RADI, Richard, J. [US/US]; 811 Ashland
Avenue, Wilmette, IL. 60091 (US).

(74) Agent: DARDEN, Loletta, L.; Sachnoff & Weaver, Ltd.,
30 South Wacker Drive, Suite 2900, Chicago, IL. 60606
(US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC,
SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US,UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,
SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
— of inventorship (Rule 4.17(iv)) for US only

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title:

A SYSTEM AND PROCESS FOR ELECTRONIC SUBROGATION, INTER-ORGANIZATION WORKFLOW

<& MANAGEMENT, INTER-ORGANIZATION TRANSACTION PROCESSING AND OPTIMIZED WEB-BASER USER

S

020

INTERACTION

(57) Abstract: An intelligent electronic subrogation network ("ESN") automates intraorganization workflow, inter-organization
workflow and collaboration for insurance subrogation. This ESN is facilitated by a novel system architecture and process that in-
cludes an interorganizational workflow management system, an inter-organizational transaction processing system, and a unique
mechanism for optimizing and enriching webbased user interaction within any such system.

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

TITLE

A SYSTEM AND PROCESS FOR ELECTRONIC SUBROGATION, INTER-
ORGANIZATION WORKFLOW MANAGEMENT, INTER-ORGANIZATION
TRANSACTION PROCESSING AND OPTIMIZED WEB-BASED USER
INTERACTION

CROSS-REFERENCE

This application is related to Provisional Application No. 60/425,058 filed on
November 8, 2002, entitled “Electronic Subrogation System and Process”, and
Provisional Application No. 60/425,670 filed on November 12, 2002, entitled “Electronic
Subrogation System and Process”.

FIELD OF THE INVENTION

The invention relates generally to an intelligent electronic subrogation network
(“ESN") that automates intra-organization workflow, inter-organization workflow and
collaboration for insurance subrogation. The invention also relates to a novel system
architecture and process that includes an inter-organizational workflow management
system, an inter-organizational transaction processing system, and a unique mechanism
for optimizing and enriching web-based user interaction within any such system. The
invention will primarily be discussed, at least initially, with reference to the operation of an
electronic subrogation network.

BACKGROUND OF THE INVENTION

During the 80's and 90's, many business transaction processing systems were
focused on integrating business processes and data that existed within an organization
(i.e., intra-organization). These systems cover a wide array of business applications, of
varying complexity, including production forecasting/scheduling, order processing,

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

human resources management, financial accounting, sales management, etc.
Commercial examples of such systems include offerings from SAP, Oracle, and
PeopleSoft. Organizations that successfully implemented such systems achieved
reduced costs, higher efficiency, and were more competitive. With the intra-organization
systems in place, these organizations are now looking to integrate the business
hrocesses and data that exist between trading partner organizations (i.e., inter-

organization).

Today, most inter-organizationai business transactions occur using paper as
the primary medium of exchange. This process is characterized by a high degree of
manual processing and lengthy transaction cycle times resuliting in high costs,
errors, and much inefficiency. In contrast, automating inter-organizational
processing systems have demonstrated substantial benefits including greater
efficiency, reduced costs, reduced transaction cycle times, and vastly improved
management information.

For example, within many industries, numerous opportunities exist for
automating the processing of inter-organizational business transactions, e.g.,
Insurance, Manufacturing, HealthCare, Banking, etc. Within the insurance industry,
one such opportunity exists related to subrogation. Insurance subrogation is defined
as the process by which one insurance company (demanding party) seeks
reimbursement from another company (responding party) or person for a claim it has
already paid. For more information related to subrogation, refer to the detailed

description below.

Within most insurance companies, the subrogation function is not highly
automated. Many of the larger carriers have implemented a rudimentary scoring
system for identifying subrogation, but very few have implemented automation for
enterprise-wide and inter-enterprise subrogation workflow. Paper and manual
processes still dominate the subrogation business practices in use today.

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Hence, there is needed in the marketplace an automated system with the
following capabilities unique to inter-organizational business transaction processing:
1) a centralized network hub (web-based) that facilitates the inter-connection of
various organizations and eliminates the proliferation of point-to-point interfaces, 2)
an inter-organizational workflow management system that provides a common
framework for managing the state and status of all transactions within the system, 3)
an inter-organizational transaction processing component that supports muitiple
organizations and their distinct relationship with each transaction while also ensuring
the security and privacy of each organization's data, 4) a unified data model
mechanism that allows common data elements to be exchanged while also
supporting organization specific interface requirements, and 5) application specific
data and functionality specific to the types of business transactions being processed.

Furthermore, within the insurance industry, an inter-organizational system for
subrogation claims is needed. Such a system would provide the application specific
data and functions unique to insurance subrogation workflow.

SUMMARY OF THE INVENTION

The electronic subrogation network (ESN) is a virtual clearinghouse for
subrogation claims designed to eliminate inefficiencies and manual tasks in subrogation
processing. Using the ESN, demanding parties can issue subrogation demands
electronically to responding parties. The ESN’s electronic folder supports both
structured and unstructured data so that the involved parties can share claim information
as well as any supporting documents. While the primary parties to the subrogation claim
often involve the demanding and responding insurance carriers, additional parties can
also take part in this business transaction (e.g., arbitration organizations, collection
organizations, attorneys, etc.) The ESN is unique in its ability to provide a common
workflow and collaboration process for subrogation that spans multiple distinct
organizations—i.e., inter-organizational workflow and transaction processing.

10

156

20

25

30

WO 2004/044696 PCT/US2003/035631

The ESN provides functions to manage inter-company workflow and
collaboration. The ESN manages workflow between the invofved parties through a
state-based workflow model that ensures workflow consistency among multiple parties.
Responding parties can create rules in the ESN to automaticélly route the incoming
subrogation demand to the appropriate file handlers. All involved parties can create
business rules in the ESN based on each company's business practices, which are used
to audit every file and identify exception conditions. Multiple parties can collaborate and
negotiate onfine through the ESN. The ESN provides functions for automatic settlement
of subrogation claims—without any human intervention—when claim files pass all
parties’ business rule audits and liability calls match. The ESN audits files against
comparative negligence regulations of each state and, when appropriate, automatically
generate counter claims that are linked to the original file. Any party using the ESN can
assign any file to a third party, e.g., arbitration firm, collection firm, outside attorney,

service provider, etc.

The ESN provides payment-netting functions. Payments can be netted bi-
laterally or multi-laterally whereby the ESN will keep track of payments due between two
or more parties over a definable period of time then issue an alert to the party(s) that
needs to make a payment. In addition, the ESN will provide all parties with reconciliation
and file qllocation information.

All members of the ESN will have online access to comprehensive management
reporting including both demand-side and response-side reports. In addition, the ESN
provides a benchmarking function so that members can compare various aspects of

their demand-side and response-side performance against the industry.

The ESN provides sophisticated inter-organizational workflow, collaboration and
transaction processing capabilities. In doing so, the ESN is based on a core software
platform that consists of several generic technologies including the Inter-Organization
Workflow Subsystem, the Inter-Organization Transaction Processing System, and the
JView™ Subsystem.

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

The Inter-Organization Workflow Subsystem is designed to meet the
requirements of both intra- and inter-organizational workflow. It uses a series of
workflow tables (data structures) and a unique workflow algorithm to perform all workflow
management operations. The workflow tables are essentially a set of finite state
machines (FSM's), that define a closed loop system for the workflow related to a given
business process. The Workflow Subsystem manages the status of inter-organizational
workflow, the status of intra-organization workflow, ownership of the next action on a file,
navigation of functions that can be performed, and the state of the file.

The Inter-Organization Transaction Processing System provides the framework
for a central processing network that handles inter-organizational business transactions.
This framework insulates member organizations from each other, supports the exchange
of structured and unstructured information, supports multi-party transactions and
workflow, and provides extensive data security and privacy for each organization. This
system consists of four major areas—Interface Subsystems, Transaction Processing
Layer (TPL), System Services, and Application Logic. The Interface Subsystem
supports the unique interface requirements of any given source of transaction
origination. In doing so, the Interface subsystem supports transaction origination from
either automated systems (using electronic messaging interfaces) or interactive users
(using web-based interfaces). The Transaction Processing Layer is responsible for
coordinating the processing of all transaction requests within the system. The System
Services provide common components and services for locking and reservation, object
graph services, business rule and alert management, workflow management, security
management, individual and team ownership, external notifications, snapshot services,
reporting, and document management. The Application Logic layer provides the system
with the application specific functionality required for a given vertical business process.
This layer consists of the Unified Data Model—a mechanism for organizing and
modeling subrogation-specific business information, model-related application logic,
transaction-related application logic, and configuration.

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

The JView™ subsystem provides a'system and process for optimizing and
enriching the inter-organizational interaction. It significantly improves system response
time by offloading the HTML generation to the client system thereby substantially
reducing the processing performed on the server. It reduces the size of the messages
transmitted between the browser and the web server, thereby substantially reducing the
communication bandwidth required. It provides a rich set of local functions (performed
on the client system) that eliminate requests to the server. This further reduces the
processing load on the server and greatly enhances the overall responsiveness of the
system. Siteras JView™ fully utilizes existing web browser standards thereby
maintaining compatibility with existing client browsers (i.e., it supports a true thin-client
implementation and does not utilize any special browser extensions—e.g., browser plug-
ins, java applets, or ActiveX controls). |

Using this core technology, the combination of the ESN’s subrogation-specific
business functionality and advanced technology provide many unique benefits for the
insurance industry. Benefits of the Electronic Subrogation Network include streamlining
inter- and intra-company subrogation workflow; reducing the amount of paper handling of
subrogation documents and transactions; improving productivity of both subrogation
staffs (demanding party) and claim office staffs (responding party) by eliminating many
manual tasks; reducing cycle time of subrogation claims; increasing subrogation |
recoveries through better resource allocation and automatic counter-claims; reduce
claims loss costs through electronic auditing of subrogation files; improving customer
satisfaction by accelerating deductible refunds; reducing payment handling expenses;

and providing valuable management information.
BRIEF DESCRIPTION OF THE DRAWINGS

The features and inventive aspects of the present invention will become more
apparent upon reading the following detailed description, and drawings, of which the
following is a brief description:

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

FIG. 1 shows various interfaces with users that may be implemented in the

operation of an ESN in accordance with this invention;

FIG. 2 shows a block diagram of the various modules/subsystems that may be
included in an ESN formed in accordance with the teachings of this invention;

FIG. 3 shows a schematic and workflow process of how an initial demand may be
submitted to the ESN shown in FIG. 2;

FIG. 4 illustrates a workflow process showing how a shared electronic folder and
an audit trail may be created for files hosted on the ESN shown in FIG. 2;

FIG. 5 shows a schematic and workflow process for uploading electronic and
digital documents onto and for digitizing paper documents into the ESN;

FIG. 6 shows a schematic and workflow process of an on-network demand
routing for the ESN shown in FIG. 2;

FIG. 7 shows a schematic of an off-network demand routing and workflow
process for the ESN shown in FIG. 2;

FIG. 8 shows a no responding party response module and workflow process for
use with the ESN;

FIG. 9 shows a response options module and workflow process adapted for use
with the ESN shown in FIG. 2;

FIG. 10 shows an online negotiation module and workflow process adapted for
use with the ESN shown in FIG. 2;

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

FIG. 11 shows an on-line negotiation/automatic approval settlement module and
workflow process adapted for use with the ESN shown in FIG. 2;

FIG. 12 shows the workflow process for an electronic/automatic denial feature
adapted for use with the ESN shown in FIG. 2;

FIG. 13 shows an automatic settliement module and workflow process adapted
for use with the shown in FIG. 2;

FIG. 14 shows an automatic counterclaims module and workflow process
adapted for use with the ESN shown in FIG. 2;

FIG. 15 shows an assignment (to arbitrator) module and workflow process
adapted for use with the ESN shown in FIG. 2;

FIG. 16 shows an assignment (to vendors) module and workflow process
adapted for use with the ESN shown in FIG. 2;

FIG. 17 shows a manual payment module and workflow process adapted for use
with the ESN shown in FIG. 2;

FIG. 18 shows an electronic payment module and workflow process adapted for
use with the ESN shown in FIG. 1;

FIG. 19 shows a subrogation payment netting module and workflow process
adapted for use with the ESN shown in FIG. 2;

FIG. 20 shows a unified data model (module) adapted for use with the ESN
shown in FIG. 2;

FIG. 21 is a diagram showing STM object hierarchy in the JView™ subsystem;

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

FIG. 22 shows the concept of multiple parties and their “relationship” to a
transactional folder (e.g., insurance subrogation transaction) within the inter-
organizational workflow management system;

FIG. 23 shows an example of a JView “view”;

FIG. 24 shows an example of a JView “form”;

FIG. 25 is a entity-relationship diagram of the major data entities within the inter-
organization workflow management system;

FIG. 26 is a diagram showing the system architecture for inter-organizational

transaction processing;

FIG. 27 is a diagram showing the distinct layers of the appilication framework
architecture for inter-organizational transaction processing; and

FIG. 28 is a diagram showing a typical web-based transaction processing
architecture and the relationship of the application framework (for inter-organizational
transaction processing) within this architecture.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

BACKGROUND - Electronic Subrogation Network (ESN)

Subrogation Defined

Insurance subrogation is defined as the process by which one insurance
company (demanding party) seeks reimbursement from another company (responding
party) or person for a claim it has already paid. Examples of subrogation include:

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Sally’s vehicle is stopped at a stop sign when Pete’s vehicle rear-ends her
vehicle. Sally's car is damaged and she suffers some injuries. Sally files a claim with
her auto insurance company. Her insurance company pays for Sally’s damages and
injuries, but believes that Pete was at fault in the accident. Sally’s insurance company
(demanding party) will then subrogate against Pete’s insurance company (responding
party) to recover the cost of the claims they paid.

Tom’s house caught on fire as a result of a fire in the store next door. Tom files a
claim with his homeowner’s insurance company. Tom’s insurance company pays for
Tom’s damages, but believes the store was liable for causing the fire. Tom’s insurance
company then subrogates against the insurance company of the store for the amount of
the claims they paid.

Doug loses control of his sports utility vehicle and strikes a tree after his tires
unravel. Doug files a claim with his auto insurance company who pays for his damages
then subrogates against the SUV manufacturer and/or the tire manufacturer to recover
the cost of the claim.

Jane’s vehicle is hit by an uninsured motorist, Bob. Jane files a claim with her
auto insurance company. Her insurance company pays for Jane’s damages, but
believes that Bob was at fault in the accident. Jane’s insurance company will subrogate
against Bob for the cost of the claim.

Current Subrogation Process

Subrogation today is a very manual, paper-intensive process. Some insurance
carriers have information systems that help identify subrogation opportunities, but very
few have any electronic communications with other carriers.

The subrogation process starts when the claim is first reported to the insurance
carrier by the insured. During the claim investigation process, insurance carriers
determine if there is an opportunity for subrogation. If a claim is “scored” as having an

10

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

opportunity for subrogation, the file is transferred to the subrogation office (larger carriers
have specialized units for subrogation while smaller carriers typically handle subrogation
from their field offices with claim adjusters). Once the claim is paid, the subrogation
office prepares a subrogation file consisting of a demand letter and some supporting
documents. The demand letter contains basic information about the claim, e.g. claim
amount, claim number, etc. as well as how much the demanding carrier believes the
responding carrier is at fault. The subrogation file is then mailed to the responding
carrier. The supporting documents usually include a copy of the estimate of damage off
which the claim was paid, some proof of payment and copies of any associated invoices
(e.g., rental car bill). However, supporting documents may include many other types of
documents including police reports, photographs, vehicle valuation reports, witness
statements, etc. ‘Once assembled, the subrogation file (referred to as a “demand”) is
then mailed to the responding carrier. Subrogation departments often have difficulty
determining where to send subrogation demands especially when the responding party
is a large insurance carrier with hundreds or thousands of claim offices. As a result,
subrogation demands often are sent to the wrong location.

Typically, responding carriers receive and handle subrogation files in their field
offices. These claims are known as third parly claims. If a subrogation demand is sent
to the wrong office, it is re-routed to the proper office. This may add weeks or even
months to the process. Once the demand finally reaches the appropriate file handler
(usually a claims adjuster), the file handler will compare the facts of the demand to the
facts of the claim they have on file. Usually the responding carrier's insured will have
already filed a claim by the time the responding carrier receives the subrogation
demand. The responding carrier’s claims adjuster will then investigate the claim and
determine if the demanding carrier's demand is justifiable. Often this will include
obtaining additional documentation from the demanding carrier including damage
photos, witness statements, efc. if the adjuster agrees with the demand, then he will
authorize the claim for payment. Most auto subrogation files are settled this way, i.e.,
without any negotiation. If he does not agree with the demand, then he will deny the
claim or negotiate the claim with the demanding carrier. Typically, negotiation occurs via

11

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

the telephone and details of the negotiation are usually not documented. If settlement is
eventually reached, the responding carrier pays the agreed amount. If setilement is not
reached, then the file goes to arbitration or litigation. If the at-fault party is an uninsured
motorist (UM), most carriers outsource the collection effort to a collection agency.

Most of the major property and casualty carriers are members of arbitration
networks —non-profit organizations created to arbitrate subrogation claims between
carriers. Members of the arbitration networks always send their arbitration files to the
arbitration network’s arbitration service. The arbitration networks charge a fee per filing
and the arbitration process usually takes about 90 days. If either the demanding carrier
or responding carrier is not a member of the arbitration network then the file goes to
litigation.

Payment between carriers is also very inefficient. Typically, checks are cut for
each and every file between carriers. This may result in hundreds or thousands of
checks a day flowing in both directions between major carriers. Once payment is
collected, the demanding carrier refunds its insured for the deductible paid — again via

check.

Due in large part to all the paper and manual processes, subrogation cycle time is
often very long. A typical cycle time for an average auto subrogation file is 90-120 days.
Cycle time can be much longer for files that go to arbitration or litigation, total loss claims,

and uninsured motorist claims.

Management information on subrogation workflow (as typical of any paper-based
process) is usually poor. Some carriers have limited information on the demand-side
process and very few, if any, carriers have any meaningful management information on
the response-side.

Types of Subrogation
Auto Physical Damage

12

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Auto physical damage (“APD”) claims are those claims associated with the
physical damage to the vehicle of an insured usually due to a collision. The vehicle may
be repairable or it may be a total loss. Other claims that fall into this category include
stolen vehicles and vandalism.

MedPay/PiP
MedPay/PIP claims are the result of injuries or sickness to a person covered by
an insurance policy. MedPay/PIP claims include injuries from a vehicle collision.

Property
Property claims result from damage to real or personal property. Some property
subrogation claims can be straightforward while others can be very large and complex to
negotiate. Property claim volumes are much lower than auto claims, but property
subrogation is a very similar workflow to APD.

Product Liability
Product liability claims result from damages caused by a defect in a product.
Product liability subrogation claims usually involve complex negotiations and volumes

are small.

Workers Compensation
Workers compensation claims result from injuries sustained in the course of
performing one’s occupation. Some workers comp subrogation claims can be
straightforward while others can be very complex to negotiate.

Health Insurance
Like property and casualty claims, health insurance claims are also subrogated

whenever the sickness or injury has been caused by negligence of another party.

Trends in Subrogation

13

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Insurance carriers started to dedicate staff to subrogation in the mid-1990’s.
Historically, field claims adjusters handled subrogation claims. As larger carriers began
to understand the significance and potential size of subrogation demand recovery
dollars, they created special subrogation centers (usually centralized or regionalized)

dedicated to recovering subrogation.

The subrogation function is not generally highly automated. Many of the larger
carriers have implemented a rudimentary scoring system for identifying subrogation, but
very few have implemented automation for enterprise-wide subrogation workflow. Paper
and manual processes still dominate subrogation processes.

Several years ago, the industry recognized the need for improving inter-company
communication of subrogation files. Through American National Standards Institute
(“ANSI"), the industry formed a standards committee that completed an EDI X12
specification for subrogation in February 2001. The standard has not been implemented
by any carrier. The standard defines business cases for only a subset of the real-world
business cases. In addition, it assumes every carrier supports the standard and
implements its own back-end software logic to interpret the data and execute its

workflow.

Thus, there is needed an electronic subrogation system and process for all types
of insurance claims, including those identified under the section entitled “Types of
Subrogation.” Benefits of the Electronic Subrogation Network (‘ESN”) of the present
invention include: streamlining inter- and intra-company subrogation workflow’; reducing
the amount of paper handling of subrogation documents and transactions; improving
productivity of both the demanding and responding parties; reducing cycle time of
subrogation claims; increase subrogation recoveries through automatic counter-claims;
reducing claims loss costs through electronic auditing of subrogation files; improving
customer satisfaction by accelerating deductible refunds; reducing payment handling
expenses; and providing valuable management information.

14

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

DETAILED DESCRIPTION — Electronic Subrogation Network (ESN)

The detailed description that follows may be presented in terms of programs, data
structures or procedures executed on a computer or network of computers. These
procedural descriptions and representations are the means used by those skilled in the
art to most effectively convey the substance of their work to others skilled in the art.

As indicated above, the ESN acts as an electronic clearinghouse for subrogation
demands and responses. The ESN is an Internet-based, computer implemented system
and process that allows insurance carriers to interact with each other as well as with
other parties (arbitrators, attorneys, collection agencies, etc.) involved in the subrogation
process. With the ESN, parties can electronically send and receive subrogation
demands, attach supporting documents (estimates, photos, police reports, etc.),
negotiate online, settle files automatically, assign files to arbitrators and vendors, view
and download online reports, automatically audit files, receive electronic alerts and
notifications, and much more. In addition, the ESN includes the ability to send and
receive electronic payments and net payments due. With the ESN’s online reporting,
parties have access to powerful management information on both subrogation demands
issued and third party demands received. Because the ESN is web-based, information
can be accessed anytime, anywhere provided the user has Internet access and
implementation is often simple and straightforward since there is no software to install. If
necessary, the ESN can interface directly to claims systems in virtually any format in a
real-time or batch mode.

The ESN relates to an Internet- or other network-based system and process for
electronically managing and settling inter-company subrogation transactions. The ESN
provides a system for facilitating subrogation transactions and workflow between all
parties involved in subrogation. As best seen in FIG. 2, the ESN may include data
translation, collaboration, workflow, demand routing, security, business functions,
business rules, electronic payments, subrogation folder reporting and connectivity

modules or subsystems. Each subsystem or module, one or more of which may be

15

WO 2004/044696 PCT/US2003/035631

used for processing a demand, may include software, hardware or both that facilitate

processing of a demand.

The Electronic Subrogation Network (“ESN”), as indicated in FIG. 2, is a method
for processing insurance subrogation claims through an electronic network. As best
seen in FIG. 2, the ESN contains a variety of components and processes:

Subrogation Demand Information Submission & Document Management;
Subrogation Community Workflow;
Subrogation Claim Routing;

Subrogation Follow-up Actions;
Subrogation Business Rules & Alerts;
Subrogation Advisor,

Subrogation Vehicle Valuation;
Subrogation Collaboration;

Subrogation Automatic Settlement,
Subrogation Automatic Counter Claims;
Subrogation Assignment to Third Parties;
Subrogation Payment Handling;
Subrogation Payment Netting;
Subrogation Management Reporting;
Subrogation Benchmarking; and

Unified Data Model for Subrogation.

Subrogation Demand Information Submission & Document Management
' As best seen in FIG 3, the ESN provides a method for submitting subrogation
demands so as to provide a mechanism for transmitting structured (claims data from
claims system) and unstructured (supporting documents and images) demand
information, and provides a mechanism to digitize paper supporting documents.

In operation then, the ESN provides a process and system to perform the

following operations: manually enter subrogation demand information into the ESN;

16

10

15

20

25

WO 2004/044696 PCT/US2003/035631

upload file of subrogation demand records into the ESN; transmit subrogation demand
files into the ESN via electronic interface.

The File Upload function allows a party to use the file upload capabilities within
the ESN ASP to manually upload a file of transactions for processing. This technique
can be used with any file format. It offers excellent security because it utilizes the same
HTTPS transport as all other ASP-based interactive functions. Of all interface
techniques, it requires the least amount of setup and configuration. To use File Upload,
the party creates a file of subrogation demand records from their claim or subrogation
system then uploads the file with the click of one button. The ESN then automatically
maps each record to the Unified Data Model.

The ESN supports both batch and transactional interfaces. The batch interface
allows a carrier to automatically send/receive a batch file of transactions to/from the ESN
on a regular basis. Typically, a file transfer protocol is utilized (e.g., FTP, etc.). The file
transfer is automated and does not require any manual processing. The transactional
interface allows a party to automatically send/receive individual transactions to/from the
ESN in a real-time event manner. This interface is fully automated and does not require
any manual processing. This type of interface is used where real-time information is
needed.

As best seen in FIG. 4, once the ESN receives a subrogation demand record, the
ESN creates an electronic subrogation folder, which can contain both structured and
unstructured information as well as a history file. The history file is a time-stamped event
log for every action taken on the folder. The history file contains a time-stamped event
log that tracks the documents that were affected by the event and the user ID of the user
who took the action that created the event. The history file provides both demanding
and responding parties with a comprehensive audit trail.

17

10

15

20

WO 2004/044696 PCT/US2003/035631

Through electronic interfaces or file uploads, the ESN can send and receive
messages in many formats, including EDI X12, XML, or ASCII files. The ESN also
supports the ANSI X12N 272 Automobile Subrogation Demand and Response standard.

As best seen in FIG. 5, unstructured supporting documents can be uploaded into
the ESN generally with any of the following techniques.

When demands are submitted electronically, the electronic message (containing
the demand data) can specify the URL (Internet location) for one or more related
documents. Upon receipt of the electronic message, the ESN will automatically retrieve
the specified document from the specified URL. This capability requires the sender fo
make all related documents available on a server that can be accessed via the Internet.
Secure access to these documents can be provided in a number of ways (e.g., VPN,
secure login, client-side digital certificates, etc.).

Users attach electronic supporting documents using the ESN direct attach
function. Users browse to documents they wish to attach, select the document, select
the type of document from a pull-down menu, provide a title and/or description of the
document, select which parties have access to the document, then click an Attach button
to attach the documents to the folder. To use this function, the supporting document
must be available as a file on the local machine or on an available network server.
Supporting documents can be in any of the following formats:

18

10

15

WO 2004/044696 PCT/US2003/035631
“Type . _ .| Application or | File Extension’| MIME Type :| Standard
" v - Format o <l Come] e st Y 'Format
Document Microsoft Word | .DOC application/ms | pdf
word
Word Perfect | .wpd application/wor
dperfect5.1
Microsoft Excel | .xls vnd.ms-excel
Adobe Acrobat | .pdf application/pdf
Plain Text Axt text/plain
HTML him, .himl text/htmi
Graphics JPEG JPg, .jpeg image/jpeg pdf
GIF .gif image/gif
TIFF tif image/tiff
PNG .png image/png
Audio MP3 .mp3 audio/mpeg mp3
WAV wav audio/wav
Video MPEG .mpg, .mpeg video/mpeg mpeg

The ESN then converts the source document from its original format into a

standard format for universal viewing. Documents are converted into the following

formats:

Documents — Adobe Acrobat viewer/plug-in.

Graphics — Adobe Acrobat viewer/plug-in.

Audio — any standard MP3 player/plug-in (e.g., Microsoft Media Player)

Video — any standard MPEG player/plug-in (e.g., Microsoft Media Player)

Any paper documents can be sent to the ESN using its fax support. To use this

support, the user would first uses the "Quick Attach" function to select the type of

document then print a special fax cover sheet. This cover sheet is then placed on top of

the document to be faxed. The document can then be faxed to the ESN. Upon

receiving the fax, the ESN will automatically scan the special cover sheet (using OCR)

for special codes and information. Using this information, the system will attach the

document to the appropriate demand folder. The ESN manages multiple version of

supporting documents.

19

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Subrogation Community Workflow
The ESN manages workflow between parties (two or more) within the
subrogation process so as to provide consistent workflow for inter-company
collaboration, provide real time status information to all parties involved, and trigger
company-specific workflow based on events and exception conditions within the

workflow.

The subrogation specific workflow model includes inter-company workflow states,
transitions, conditionality, status, action flags, etc. Company-specific workflow is also
provided within the context of community workflow.

As best seen in TABLE 1, the ESN may support standard codes to represent the
state of a demand at any point in the process (i.e., the standard inter-company
subrogation workflow). These standard codes establish the basis for consistent
understanding and communication between parties regarding the status of a given
demand. As such, these codes represent the standard ESN inter-party subrogation file
status.

Additionally, the ESN may be configured to allow for the definition of party specific
status codes (i.e., intra-company subrogation workflow). These codes enable an
organization to define additional workflow states that are specific to their business
processes while still maintaining a standard process definition between organizations.

Subrogation Claim Routing

The ESN routes subrogation demands to responding parties. A routing
algorithm combines a demanding party specific index and a heuristic algorithm to
determine the responding party. Data never actually leaves the ESN'’s server; the
routing is virtual, and the file handler is notified of the demand on the ESN through an
electronic notification (e-mail, page, text message, etc.). If notified via email, then the
ESN provides a URL link for the user to access the ESN and the appropriate demand
file. As best seen in FIG. 6, a responding party that is a member of the ESN will

20

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

maintain routing rules in the ESN so that the ESN can electronically route incoming
subrogation files to the appropriate office, group, or file handler. The ESN supports both
Semi-Automated Routing and Automated Routing.

With Semi-Automatic Routing, the initial demand is routed to a responding party
coordinator (“router”) in a central, regional, or claim office location. Using the ESN, the
router can view all incoming demands (“Pending Routing”). Using their interal claim
system, routers can determine the responding party’s claim number associated with the
demand and the group or individual currently assigned to the file. The router will then
use the “Route Demand” function to update the demand with additional information (e.g.,
the claim number, the liability percentage, etb), and transfer the demand to the correct
group/individual within the party’s organization. After completing this function, the
system has now “queued” this demand to the specified group/individual (‘Pending

Response”).

With Automatic Routing, the responding party will upload to the ESN a “claim
index” file on a regular basis (e.g., daily). The claim index provides summary information
about a claim, which permits a search to be made of the ESN o locate the claim. When
the ESN receives an initial demand for this party, it may use the claim index to
automatically route the demand to the correct group/individual within the responding
party’s organization. The claim index file can also be the basis for supporting automated
agents within the ESN that can automatically review and respond to initial demands
based on business rules.

The ESN also provides a function for first notice of loss conditions in which the
ESN or the responding party can determine if the claim is a first notice of loss and
automatically route the file to the responding party’s loss reporting unit. When the
responding party receives the initial demand, if the “claimant” (as identified in the initial
demand) is insured/covered by the responding party, but no claim exists (within the
responding party’s claim system) for the specified loss date, then this demand

21

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

represents a First Notice of Loss. In this case, the responding party will first need to
establish a claim file (within their system) before processing this demand.

To support this workflow, the system will place this demand in a special state
“First Notice of Loss”. Thereby allowing the responding party to easily identify and
process all incoming demands in this condition. With automated routing, this condition
can be automatically identified with the addition of a policyholder index. With semi-
automated routing, the routing coordinator, which may be a human operator, can use the
“FNOL” function to move the demand into this state.

The ESN also supports the ability to reassign a file to another file handler through
the Assign function. This electronic routing function is available for parties who are
members of the ESN.

As best seen in FIG 7, a responding party that is not a member of the ESN will
receive email or fax notification of subrogation demand from the ESN. A responding |
user can click a link in email to access the specific subrogation demand file. Responding
parties who are not members of the ESN can reassign files by forwarding the ESN’s
email notification to the appropriate file handler. When an off-network responding user
logs onto the system for the first time, the system will present a tutorial that provides a
basic introduction to the ESN and familiarizes that user with the basic features they will
need to correctly respond to the demand that was issued. Demanding parties will have
access to online directory of off-network responding contacts, locations, and email
addresses. This directory will be automatically updated whenever a demand is issued to
a new off-network contact and is accessible by all demanding parties on the ESN.

Subrogation Follow-Up Actions
The ESN sets and automatically triggers follow-up actions for demanding users.
As best seen in FIG. 8, if a responding party is not responding to subrogation demand, a
demanding party can send multiple email reminders to a responding party. A
demanding party can define company-specific follow-up action reminders in the ESN; for

22

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

example, the ESN can issue reminders to demanding users to contact a responding user
if there is no response in a specific timeframe defined by the demanding party. The ESN
can issue alerts, reminders and next actions either to 1) a pooled team of demand users
so that a given user in the pool gets the file that requires the next action, or 2) an
individual file handler.

Subrogation Business Rules & Alerts
The ESN models the unique business practices of each member of the network
and for handling workflow exception conditions so as to facilitate consistency between
each member's business practices and the network’s workflow.

The processing and functions performed by the ESN may be affected by a
number of party specific parameters and settings. Collectively, these settings represent
a party’s "business rules" and allow a party to customize the processing of the ESN to
support party specific business processes. Parties can define global or trading partner
specific ‘profiles and business rules. For example, when the ESN processes a given
transaction, the logic within the ESN references an identified party’s "business rules" and
uses them to control the processing of the transaction. The ESN permits party specific

business rules to be divided generally into a number of main categories as follows.

Company Rules
Define global settings for this party.

Workflow Rules
Define the party specific workflow.

Routing Rules
Define the party specific settings for semi-automated or automated demand
routing. These settings are typically used to control how the ESN will route an incoming
demand within a party’s organization.

23

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

File Audit Rules
Define the party specific rules for file audits and conditions. This includes the
following groups:

General
If total loss, was salvage deducted.

Demanding Party Specific
For any response received, is the Recovery percentage less than the
Minimum Recovery percentage.

Responding Party Specific

Abnormal damage amounts specified as a percentage against the collision
damage — i.e., rental reimbursement, towing, loss of use, etc. (by Demand
Amount Range).

Maximum thresholds for various damage amounts (by Demand Amount

Range.

Business Partner Rules
Define party specific settings applied to one or more business partners. A single
generic set of rules can be established for all partners. In addition, a specific set can be
established for a given business partner. In this case, these settings would then override

any of the generic settings for this specific partner.

The following rules may also be included: required attachments for demands (by
Demand Amount Range), and require attachments for demands based on each
coverage code claimed.

Members can configure company-specific business rules. Every file is audited
based on the business rules of all parties involved in the transaction. Alerts are triggered

by exception conditions or violations of the business rules based on multi-party

24

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

parameters (defined by ALL parties currently having access to the folder), e.g., a
responding party can be alerted based on parameters of the demanding party.

Alerts may be customized for a particular party. This feature permits a party to
determine specific exceptions conditions that will generate an alert. When viewing a file,
if any alerts exist, an "Alert Pane" will be displayed within the file. When taking an action
on a file, if any alerts exist or are newly detected, the user will be presented with a
warning message. To continue with the transaction, the user must explicitly override this
warning. In this case, the warnings and the user are logged in the history. The following
list illustrates standard or generic alerts that may be included in the ESN:

File Audit Alerts
These alerts relate to exception conditions that are detected based on the "File
Audit Rules" defined for a party.

Business Partner Exception Alerts
These alerts relate to exception conditions that are detected based on the
"Business Partner Rules" defined for a party.

Comparative Negligence Alerts
These alerts relate to exception conditions that are detected based on the
comparative negligence laws of the state where the loss occurred. For more

information, refer to "Comparative Negligence Support" below.

Statute of Limitations Alerts
These alerts relate to exception conditions that are detected based on the statute
of limitations laws for the applicable state.

Subrogation Advisor
The ESN assesses the best course of action within the subrogation process so as

to improve subrogation performance, increase recoveries, and lower costs. The ESN

25

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

can assess, for example, the cost-benefit of pursuing demand and/or pursuing a
particular course of action, e.g., pursue litigation, etc.

Subrogation Vehicle Valuation
The ESN assesses the validity of a subrogation demand from a third party. For
example, electronic audits for certain conditions of the file may be based on the
configurable parameters of the demanding party, responding party, and vehicle value,
e.g., total loss salvage, loss-of-use conditions, etc.

Subrogation Collaboration

The ESN provides a method for multiple parties including demanding party and
responding party to collaborate interactively. As best seen in FIG. 9, a responding party
can Accept (agree to pay), Counter (negotiate), or Deny (refuse to pay) a subrogation
demand. As best seen in FIG. 10, a responding party can prepare a counteroffer that
may include counters on liability percentage and/or damage amounts (e.g., amount of
collision damage, amount of rental reimbursement, etc.). A demanding party can define
minimum acceptable counteroffers on a file-by-file basis and the ESN will issue an alert
to the demanding party if a counteroffer is below a demanding party’s minimum. As best
seen in FIG. 11, a demanding party can define business rules regarding minimum
acceptable counteroffers including liability percentage, damage amounts, and/or total
demand, and the ESN can automatically approve counteroffers if the demanding party’s
business rules are met. As best seen in FIG. 12, a responding party can deny a demand
and provide standard denial codes back to the demanding party.

Business Functions
The ESN provides business functions that support subrogation workflow. In
addition to the standard functions provided in TABLE 2, the system allows a party to
define custom functions that are specific to their business process and workflow. These
custom functions can be defined to control data modification or display.

Subrogation Automatic Settlement

26

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

As best seen in FIG. 13, the ESN provides a method for settling subrogation
claims between parties automatically with little or no human intervention by eliminating
many manual tasks, and reduce cycle time for subrogation files. The ESN functions to
settle files electronically if the file passes both parties’ business rule audits and both
parties’ liability calls (the liability percentage assigned by each party to each party’s
insured) match or overlap. The liability call from the demanding party is provided in the
initial demand submission. The liability call from the responding party is read by the ESN
via an electronic interface to the responding party’s claim system or via a claim index
provided by the responding party. “Anti-gaming” capabilities eliminate responding
parties guessing at demanding parties’ business rules and/or liability calls.

Subrogation Automatic Counter Claims
As best seen in FIG. 14, the ESN may create counterclaims when in regulatory
compliance, i.e., is configured to include the relevant laws of the state where the loss
occurred, so as to help reduce lost counterclaim opportunities, and to help increase
subrogation recovery, to help improve productivity of both demanding parties and
responding parties by eliminating many manual tasks, and to help reduce cycle time for
subrogation files. |

Upon settlement of original demand, the ESN can audit liability percentage and
comparative negligence regulations of the appropriate state department of insurance
then, when the initial demand is settled at a liability percentage less than 100% for the
responding party and meets the comparative negligence regulations of the state of loss,
automatically prepare a counterclaim for the responding party against the demanding
party for their fair share of the liability. For example, if the loss was in a pure
comparative state and the two parties agreed on an 80% liability to the responding party
on the initial demand, the ESN will prepare a counterclaim demand for the responding
party for the 20% liability against the demanding party. Counterclaims are linked to the
original demand. The ESN will alert a demanding party if their business rule audits are
violated.

27

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Within the ESN, users can create counterclaims in one of two ways — 1) Using
the “Create Counterclaim" action, or 2) Issuing a new demand where the demanding and

responding claim numbers link to an existing demand (in a reverse relationship).

Create Counterclaim
Once the responding party has accepted a demand, the system will determine
whether or not a counterclaim opportunity exists for this demand (depending on the
liability percentage and the comparative negligence laws of the specific state which apply
to this demand).

In processing the “Accept” function for a demand, the system will analyze these
conditions. If this demand has the opportunity for a counterclaim, then the system will
automatically flag it as such. A responding party specific view “Counterclaim
Opportunities” will be provided that lists all demands that are candidates for issuing a
counterclaim.

To issue a counterclaim, the responding party will select one of the demands from
the “Counterclaim Opportunities” view. When that view is displayed, a new action will be
available “Create Counterclaim”. This action can be used to create a new demand
document that is linked to the initial demand. When this document is created (via Save),
the ESN automatically routes the counter claim to the demanding party that issued the
initial demand. In doing so, both the initial demand and the counterclaim will be cross-
linked (i.e., refer to one another).

Automatic Counterclaim Linking
When two companies issue demands to each other (independently) for the same
loss, at the point the second demand is issued, the ESN will recognize the counterclaim
relationship and automatically link the demands. This capability handles the situation
where both companies believe the other to be “at-fault”.

28

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

In general, any time the ESN detects that two demands have been issued
between two companies (where the demanding and responding claim numbers

reference each other); the system automatically "links" these demands.

Once a counterclaim relationship has been identified, the user can easily move
back and forth between both claims by selecting the link to the counterclaim. From that
point on, the collaboration capabilities for the counterclaim are exactly the same as for

the initial demand.

Additionally, the ESN will also apply its knowledge of the comparative negligence
laws of the appropriate state and issue warnings in the event a party's ability to issue, or
continue with, a counter claim is impaired.

Additional views are provided to enable the responding party to manage counter

claims that have been issued.

Within each state, comparative negligence laws are defined which govern the ability of a
given party to issue a counterclaim. When a demand is being "Accepted" by a
responding party, the ESN will apply the comparative negligence laws of the loss
location state. Based on these laws, if the demand is accepted, the ESN will issue
warnings to the user under the following situations: a counterclaim has not been issued,
but accepting this demand will prevent a counterclaim from being issued; and a
counterclaim has been issued, but accepting this demand may "invalidate” the counter
claim that is currently "in negotiation”. In this case, the system will require the user to
override this warning in order for the demand to be accepted.

Major Types of Comparative Negligence Laws
There are three major types of negligence laws — pure comparative, modified
comparative (49% and 50%), and none (i.e., contributory negligence). The following is a
summary of how these laws affect the ability to issue claims and counter-claims.

29

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Pure Comparative
The at-fault party can issue a counter-claim for any liability between 1% and 50%.

Modified Comparative 50%
Unless both parties agree to liability of 50%, the at-fault party cannot issue a
counter claim.

Modified Comparative 49%
The at-fault party cannot issue a counter-claim. If both parties agree to 50%
liability, then neither party can issue a claim to the other.

None

No subrogation is allowed. Neither party can file a claim.

Subrogation Assignment to Third Parties
The ESN provides a method for assigning subrogation files to third parties so as
to improve productivity of both demanding parties and responding parties, reduce
subrogation cycle time, and provide consistent management information.

As best seen in FIG. 15, a demanding party can place arbitration filing through
the ESN. Once the demanding party selects the arbitrate function, the ESN
electronically notifies the responding party that the demanding party is filing for
arbitration. This gives the responding party one more chances to settle prior to binding
arbitration. The demanding party can then electronically file arbitration at any time after
the initial notice is sent to the responding party.

Through its multi-party support function, the ESN notifies the arbitrator that the
demanding party has filed for arbitration and provides the arbitrator with a view of all
demands that have been filed for arbitration. The arbitrator can then enter hearing
dates, docket numbers and other information into the file. The responding party can
then review the arbitration filing online and file their answer. Once the hearing is

30

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

complete and the judgment is awarded, the arbitrator can notify both parties of the award
through the ESN. In this way, the ESN becomes an electronic “gearbox” for arbitration.

The ESN is designed to enable controlled access to each “shared” subrogation
folder by multiple parties. In doing so, each party typically has a specific “business
relationship” to that folder (Demander, Responder, Arbitrator, etc.). The ESN explicitly
defines these named relationships; and for each relationship, the ESN explicitly controls

what information is seen within the folder and what actions can be taken.

For example, suppose three parties are set up on the ESN — Gordon Insurance,
Acme Insurance, and Arbco. If Gordon issues a demand to Acme, then when the
subrogation folder for that demand is created, the demanding party will be Gordon
(Demander relationship) and the responding party will be Acme (Responder
relationship). As such, all users of Gordon will be limited to the data and functions
associated with the “Demander” relationship when accessing this folder; and all users of
Acme will be limited to the data and functions associated with the “Responder”

relationship when accessing this folder.

Additionally, if Gordon submits the file for arbitration, then their arbitrator (Arbco)
will be given access to the file. In doing so, all users of Arbco will be limited to the data
and functions associated with the “Arbitrator” relationship when accessing this folder.
Furthermore, if Acme had submitted a demand to Gordon, then the

- Demander/Responder relationships would be flipped for that specific subrogation folder.

When a company is setup on the ESN, all possible relationships for a given
company are defined. In the example above, both Gordon and Acme would be
configured to support both the “Demander’ and “Responder” relationships. However,
Arbco would be configured to only support the “Arbitrator” relationship (since it cannot
directly issue or respond to subrogation demands).

31

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

As best seen in FIG. 16, either a demanding party or a responding party can
electronically assign a subrogation file to a vendor (e.g. collection agencies, outside
attorneys, service providers, etc.) through the ESN. When a demanding party or
responding party uses the assign function, the ESN automatically notifies the third party
that there is a file they need to work. Depending on the interface from the third party, the
ESN either notifies through an e-mail with a URL link or actually passes the file
information through an interface to the third party’s system. The ESN also provides the
ability for third parties to enter status updates in the ESN.

Subrogation Payment Handling
The ESN provides a method for handling payments between parties involved in a
subrogation claim so as to improve productivity of both demanding parties and
responding parties by eliminating many manual tasks, and lower the costs of payment
handling.

As best seen in FIG. 17, after receiving payment from responding parties,
demanding parties can enter payment information manually into the ESN or upload files
of payment information (payment amounts, dates, associated claim numbers, etc.) into
the ESN. The ESN will automatically close out files where payment has been made in
full. As bestseen in FIG. 18, EFT payments can be triggered automatically upon
acceptance by the responding party—the ESN can generate a message to a responding
party’s bank to trigger EFT or the ESN can generate a message to a responding party’s
system that in turn will initiate a message to a bank to trigger EFT (in the latter case, a
responding party’s system will send an EFT confirmation message back to the ESN),

Subrogation Payment Netting
As best seen in FIG. 19, the ESN provides a method for netting payments
between parties involved in a subrogation claim so as to improve productivity of both
demanding parties and responding parties by eliminating many manual steps, and lower
the cost of payment handling.

32

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

The ESN functions to track payments owed and payments due over any time
period for any member and provides information on or automatically triggers a payment.
Payments can be netted bi-laterally (e.g., between two parties as best seen in FIG. 19)
or multi-laterally (between a party and the ESN, which represents all members
participating in the netting service). In bi-lateral netting, the ESN keeps track of the
payments owed between two parties and initiates a notice for EFT to the party who has
the payment balance at the end of any time period defined by the two parties. For
example, if Party A and Party B agree to net payments every week, the ESN will track
the amount of all the payments owed from A to B in the week and all the payments owed
from B to A in the week, determine which party owes more and initiate a payment notice
to the appropriate party. In multi-lateral netting, the ESN nets all payments and receipts
with all the parties participating in the netting service for a given party. The ESN is then
paid by the party or pays the party depending on the balance. Parties can configure the
ESN to define party-specific netting periods. The ESN will provide management
information and reconciliation file to allocate netted payments to each appropriate file.

Subrogation Management Reporting
The ESN provides management information to members of the network so as to

improve subrogation performance for all parties, and provide better management
information to both subrogation managers and claims managers. The ESN provides two
types of online reporting - detail and summary. For subrogation, a number of standard
reports may be provided with the ESN (listed below). The ESN allows members to filter,
sort, and view management reports online. In addition to the standard reports, a
member can define custom reports that are specific to their organization’s business

process and workflow.

For summary reports, typically data can be aggregated along the major
dimensions of time period, geography, party, office, region, department, file
handlerteam, and status. Within these dimensions, the main data elements that can be
summarized may include Demand Total Dollar, Response Total Dollar, Recovery

Percentage Cycle Time or other relevant or desired data elements. For any of the

33

WO 2004/044696

PCT/US2003/035631

identified data elements, the following summary statistics are generally supported: sum,

average, weighted average, percentage, maximum, minimum, and count. However,

other needed statistics may be supported.

Typical Demander Reports

Pending Files

Total Payments — Amount demanding party paid to close
coverage

Total Demands — Amount demanding party demanded
Number of Files — Number of open files

Dollars Recovered Files

Total Dollars Recovered — Total Dollars recovered from all closed
files

Avg. Recovery Percentage - Total Dollars recovered divided by
the total Dollars demanded

No. of Files — Total number of closed files

Avg. Cycle Time — Date of demand issuance to payment receipt

Cycle Time

Date of Loss to Demand Issuance (days)
Demand Issuance to Promise-to-Pay (days)
Demand Issuance to Payment Receipt (days)
Date of Loss to Payment Receipt (days)

Responder Reports

Pending Files

Total Payments — Amount demanding party paid to close
coverage

Total Demands — Amount demanding party demanded
Number of Files — Number of open files

Paid Files

Total Dollars Paid — Total Dollars paid from all closed files

Avg. Payment Percentage -- Total Dollar paid divided by the total
Dollars demanded

No. of Files — Total number of closed files

Avg. Cycle Time — Date of demand issuance to payment receipt

Cycle Time

Demand Issuance to Promise-to-Pay (days)
Demand Issuance to Payment Receipt (days)

Counter Claims

Total Dollars Recovered — Total Dollars recovered from all closed
files

Avg. Recovery Percentage -- Total Dollars recovered divided by
the total Dollars demanded

No. of Files — Total number of closed files

Avg. Cycle Time — Date of counter claim issuance to payment
receipt

Operational Reports

34

10

15

20

25

WO 2004/044696 PCT/US2003/035631

Operational Reports are designed to provide management information to system
administrators. Standard reports include User Profile Reports and Usage Reports.

Subrogation Benchmarking

The ESN provides a method for members of the network to conduct benchmarks
of best practices across the insurance industry so as to improve subrogation
performance in all insurance carriers, and provide better management information to
both subrogation managers and claims managers. The ESN allows members to
benchmark various parameters of their subrogation and/or claims operation against the
aggregate industry based on the ESN’s database. For example, demanding parties may
benchmark their recovery ratios against the industry for a specific geographic area;
responding parties may benchmark their payout ratios against the industry for a specific

geographic area.

Unified Data Model (UDM) for Subrogation

As best seen in FIG. 20, the ESN provides a method for organizing and modeling
subrogation-specific business information so as to provide consistent data to both
demanding parties and responding parties, and provide translation of data from one
format to another format. The ESN provides entities, attributes, and relationships
specific to subrogation workflow. Incoming data formats are translated from their source
format to the UDM format. UDM data formats are translated to outgoing data formats.
Symantec translations occur such that the meaning of any particular element is

consistent from file-to-file.

35

WO 2004/044696

PCT/US2003/035631

TABLE 1

Inter-company States (Status)

A demand file can only be in one of the following discrete “inter-company” states

at a time.

Discrete State

Description

Pending Issuance

Indicates that the demand file has been received by the ESN
(either electronically or via demand file upload) and that the
ESN detected an error that is preventing this demand from
being issued (e.g., missing or invalid data). At this point, the
demand has not been issued to the responding party and can
only be viewed by the demanding party.

Pending Routing

Indicates that the demand has been issued and assigned to a
responding party, but this party has not “routed” this demand
within its organization. For responding parties using semi-
automated routing, this status is normal. For responding
parties using automated routing, this status is rare.

Pending FNOL

Upon receipt of the demand, if the demand represents the
“First Notice of Loss” for the responding party, then this status
indicates that the responding parly is in the process of setting
up a claim file within their claim system.

Pending Response

Indicates that the demand has been routed to a file handler
within the responding party’s organization and is awaiting an
initial response.

Pending Investigation

Indicates that the demand has been initially reviewed and is
being investigated by the responding party.

Counter Offer Issued

Indicates that the responding party reviewed the demand,
and that a counter offer has been made for consideration by
the (D)emanding party.

Counter Offer
Approved

Indicates that the demanding party reviewed the counter offer
and agrees to the terms of the counter offer.

Revised Demand
Issued

Indicates théﬁ the demanding party reviewed the counter offer
and that the demand has been revised for consideration by
the (R)esponding party.

36

WO 2004/044696

PCT/US2003/035631

Discrete State Description R .

Disputed In the event that demanding party and responding party
cannot agree on the demand, and if arbitration is not an
option, then this status indicates that the demand is in
dispute. At this point, the demanding party is typically
evaluating whether or not to pursue litigation.

Denied Indicates that the responding party has denied the demand.

Pending Arbitration Indicates that the demanding party intends to submit this

Filing demand to arbitration and is now in the process of preparing

their contentions.

Arbitration Filed

Indicates that the demand is formally in arbitration. The
demanding party has submitted this demand for arbitration
and the (R)esponding party is now required to submit their
response to the arbitration filing.

Arbitration Answer
Filed

Indicates that the demand is formally in arbitration. The
responding party has submitted their response to the
arbitration filing. The file has been assigned to an (A)rbitrator
and is awaiting the award of a settlement.

Settlement Awarded

Indicates that the arbitration process is now complete and
that a settlement has been awarded. The responding party
must now “Accept’ the settlement.

Accepted

Indicates that the responding party has “Accepted” the
demand as it currently stands, and will now proceed with the
payment of the agreed amount to the demanding party. This
status represents a formal “promise to pay” by the responding

party.

Closed

Indicates that the file has been closed. In the typical case,
this will represent that the demanding party has received all
outstanding payments as agreed from the responding party.
If not, the file disposition codes will indicate the reason for file
closure.

37

WO 2004/044696 PCT/US2003/035631

Aggregate States

In addition to the discrete states listed above, the workflow subsystem may
include the following “aggregate states.” An aggregate state is a set of two or more
discrete states. Standard views are provided within the system to display files in a given

aggregate state.

‘Aggregate State Description ~ " T B L e T

Open Any file that is nof “Closed”. |

Pending Acceptance | Any file that is “Open” and not “Accepted”.

In-Negotiation Any file that is “Counter Offer Issued”, “Counter Offer
Approved”, or “Revised Demand Issued”.

in-Arbitration Any file that is either “Arbitration Filed” or “Arbitration Answer
Filed”.

38

5

WO 2004/044696

Demander Functions

PCT/US2003/035631

TABLE 2

The following section lists the business functions that are typically specific to a

Demander.

-+ Function

7 Desenplion -

Create Demand

Manually create and issue a new demand.

Repair

Manually correct an incomplete or invalid
demand that was created from a demand
file upload or an electronic message.

Delete

Manually delete an incomplete or invalid
demand that was created from a demand
file upload or an electronic message. Once
a demand file has been issued, it cannot
be deleted.

Revise

Revise a demand. This function is typically
used in response to a counter offer that
was received from a responding party.

Approve

Approve a counter offer. This approval
indicates the acceptance, by the
demanding party, of the proposed counter
offer and allows the responding party to
now “Accept’ the demand as currently
proposed in the counter offer.

Arbitrate

Prepare to submit a demand for arbitration.
This function indicates to the responding
party that the demand is being prepared for
arbitration. This action places the file in a
state (Pending Arbitration Filing) that allows
the demanding party to prepare and attach
their arbitration contentions.

File Arbitration

Formally submit the demand for arbitration.
This action implicitly grants “Arbitrator’
access rights for this specific file to the
arbitration service, thereby allowing them
to process the arbitration filing.

Supplement

Amend a specific demand to include a
“supplement”.

39

WO 2004/044696

PCT/US2003/035631

" Function

. Description, .

Dispute

Indicate that no agreement can be reached
with the responding party. This function is
typically used to indicate that the
demanding party cannot reach agreement
with the responding party and that
arbitration is not an option. At this point,
the demanding party will decide whether or
not to litigate the file or close it. It places
the file in a state (Disputed), which allows
the demanding party to easily identify all
files in this condition.

Apply Payment

Record a payment received for a file. This
function will apply the payment to the
specific file. If the payment relieves the
outstanding balance on the file, then the file
will be automatically closed.

Close

Close afile. This function will typically be
performed automatically when the final
payment is applied to the file. When used
manually, the user will be required to
specify a file disposition representing the
reason for closure.

Reissue

Reissue a demand to another party. Ifa
demand was issued to the wrong
responding party, this function allows the
demanding party to reissue the demand to
the correct responding party.

Reopen

Reopen a file that has been closed. This
function allows a demanding party to
re-open a file that has been closed for the
purpose of presenting additional payment
amounts for recovery, or for providing new
information to the responding party for
reconsideration.

Upload Demands

Upload a file of demands. This function is
used to manually upload a file of demands
to the ESN. In processing this command,
the ESN will ensure that the complete
contents of the file are successfully stored
on the ESN. It will then respond back to
the user. In the background, the ESN will
process each demand in the file by

40

WO 2004/044696

PCT/US2003/035631

Function

° " Description ..~

creating a demand and issuing the
demand to the correct party. A view will be
provided that enables the user to review
the status of the subsequent processing of
the demand upload.

Upload Payments

Upload a file of payments. This function is
used to manually upload a file of payments
to the ESN. In processing this command,
the ESN will ensure that the complete
contents of the file are successfully stored
on the system. It will then respond back to
the user. In the background, the ESN will
process each payment in the file by
applying the payment to a specific demand
file. If the payment relieves the outstanding
balance in the file, it will automatically close
the file. A view will be provided that
enables the user to review the status of the
subsequent processing of the payment
upload.

Responder Functions

The following section lists the business
functions that are typically specific to a
Responder. In general, the main
responding party functions are available to
both on-network and off-network
responding parties. Where a function is
only available to an on-network responding
party, it is so indicated.

Accept

Accept a demand. This function is used to
accept the terms of the demand as it
currently stands. In doing so, this
represents the formal “promise to pay”
commitment on the part of the responding

party.

Counter

Make a counter offer. This function is used
by a responding party to make a counter
offer to a demand. When making the
counter offer, the responding party can
alter the liability percentage or the payment
amounts.

Investigating

Indicate that the demand is being
investigated. This function will change the

41

WO 2004/044696

PCT/US2003/035631

Fuhction

~ Description =~

status of the file to “Pending Investigation”.

File Arbitration Answer

File a response to an arbitration filing. If
the demanding party has submitted the file
for arbitration, the status of the file will be
changed to “In-Arbitration (R)". At this
point, the responding party may prepare
and attach its response to the arbitration
filing. After the response has been
attached, then this function is used to
indicate that the response has been filed.
This function will change the status of the
file to “In-Arbitration (A)” indicating that it is
now ready to be reviewed by the arbitrator
for a final judgment.

Deny

Deny the demand. This function is used to
indicate that the demand is being denied.
When denying a demand, the responding
party must select a denial code from the
ESN'’s list of standard denial codes.

Create Counter Claim

Create and issue a counter claim. After a
demand has been accepted, the ESN will
determine whether or not the responding
party can issue a subrogation counter
claim. If so, then this function is used o
create and issue the counter claim.

Route Demand

Route an incoming demand within the
responding party’s organization. For
responding parties using semi-automated
demand routing, this function is used to
manually route/assign the demand to the
appropriate team or individual.

FNOL

Indicates that the demand represents the
“First Notice of Loss” o the responding
party. This function changes the status of
the file to “Pending FNOL” and allows the
responding party to first establish a claim
file within their claim system.

42

WO 2004/044696 PCT/US2003/035631

Arbitrator Functions
The following table lists the business functions that are typically specific to an Arbitrator.

'Function L Al 'Description

Award Settlement Award a settlement to the demanding party
that filed the arbitration. This function is
used by an arbitrator to award a settlement
to the demanding party that filed the
arbitration.

Common Functions
The following table lists business functions that are not specific to a given relationship
and may be shared by all relationships (unless specifically noted). Where a function is

only available to an on-network party, it is so indicated.

Attach a related document to the file.
When using this function to attach the
related document, the document must exist
as a file on the local system or network
accessible by the local system. The user
will be required to enter the file name, or
use the “file browser” to locate the file to be
attached. When attaching a document, the
attachment can be marked as “Private”.
Private attachments can ONLY be viewed
by the users of the party who created the
private attachment.

Fax Attachment Prepare the fax cover sheet for related
documents that are being attached to a file
by fax. When a related document exists as
a paper document, this document can be
attached to the file by faxing the document
to the ESN. To do so, a special fax cover
sheet needs to be attached as the first
page of the fax. This function is used to
create the special fax cover sheet. The fax
cover sheet will be displayed in a separate
browser window where it can then be
printed.

43

WO 2004/044696

PCT/US2003/035631

Function

" Description _

Note

Make a free-form text note in the file.
When making a note, the note can be
marked as “Private”. Private notes can
only be viewed by the users of the party
who created the private note or other
designees.

Inquiry

Make a free-form text note requesting a
clarification or more information from
another party. This function differs from
the Note function above only in that a
“reply” is expected from the party to whom
the request is being issued.

Update

Update any other data fields within the file
that do not affect the business terms of the
demand (e.g., loss date, loss location,
responding party’s claim number, etc.).
This function is used to update certain
details of the file that do not affect the
current terms of the subrogation demand
(i.e., this function does not allow the
payment amounts or the liability
percentage to be modified). A separate
version of this function is available for each
party to maintain shared data elements or
party specific data elements (that are
private to that party).

Assign

Transfers file ownership to another team or
individual within an organization. This
function is used accommodate intra-
company workflow and file assignment by
allowing the ownership to be changed
within an organization.

44

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

BACKGROUND - JView

During the mid to late 90’s, the commercial use of the Internet emerged and
flourished due in large part to the emergence of user-friendly browser technology (e.g.,
Mosaic, Netscape, Internet Explorer, etc.). This movement fueled the wide scale
implementation of.web-based systems (web servers) to support the growing number of
browser-based users. One key to this movement was the definition of message format
standards (i.e., HTML) that were supported by all browsers.

The initial web servers were used to provide static content by merely transmitting
static web pages (containing HTML) to a browser. Using this approach, web sites were
created by developing sets of interrelated web pages that were linked together.

As the use of the Internet expanded, it became necessary for these servers to
deliver dynamic content (e.g., a page with the current status of an order, a page with the
current arrival time of a flight, etc.). Dynamic content requires that the server
dynamically construct the information for each browser request. In doing so, the server
uses logic to analyze what information is requested, retrieves the information from the
necessary data source, and dynamically constructs the web page containing HTML (i.e.,
HTML Generation) for transmission back to the browser. Using this approach, the
browser cannot distinguish a static page from a dynamic page.

Browser technology also evolved in parallel with web server technology. Most
notably, was the development of a standard browser scripting capability that allowed a
user to interact with a web page without creating a new request back to the web server.
This greatly enhanced the user interaction and responsiveness capabilities of the
browser making it possible to construct a rich user interface (similar to that of a standard
fat-client interface). This scripting capability was initially referred to as JavaScript, but is
now formally referred to as ECMAScript.

Requirements and Challenges

45

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Currently, most web-based systems expend processing cycles to format the
dynamic content into HTML format. This processing load can account for 30-50% of the
processing load for a typical server. Relative to the size of the information being
transmitted, the size of the HTML stream containing this information is substantially

larger (by 3-5x). This requires additional communication bandwidth for transmission.

Being dependent on the server for web page generation requires each user interaction to
be processed by the web server, which results in increased response time for various
operations (e.g. sorting a result page of items, performing data validation, performing
calculations, etc.).

The JView subsystem, described below, overcomes these limitations by 1) off-
loading the HTML generation to the client system, thereby substantially reducing the
processing performed on the server, 2) reduces the size of the messages transmitted
between the browser and the web server, thereby substantially reducing the
communication bandwidth required, 3) provides a rich set of local functions (performed
on the client system) that eliminate requests to the server; this further reduces the
processing load on the server and greatly enhances the overall responsiveness of the
system, and 4) fully utilizes existing web browser standards thereby maintaining
compatibility with existing client browsers (i.e., it supports a true thin-client
implementation and does not utilize any special browser extensions — e.g., browser plug-
ins, java applets, or ActiveX controls).

These capabilities are achieved with a JavaScript subsystem that runs within the
browser and an HTML compatible message structure (a “Siteras Transaction Message”
—STM) that is transmitted between the browser and the server.

Within the client browser, the JView™ subsystem consists of a series of
JavaScript files. In response to an initial request to the web server, a small set of
JavaScript files (i.e., the JView™ subsystem core) are downloaded to the client browser.
Once downloaded, these files are cached by the browser (just like other images or static

pages). Additional JavaScript files are downloaded on a modular basis as they are

46

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

needed by the various application interactions with the server (once downloaded, these
additional files are also cached by the browser). These JavaScript files provide the
browser with the ability to perform the following functions locally (without any further
interaction with the server): HTML Generation (all HTML generation is performed by the
JView™ subsystem on the client); sorting (including multi-column sorting); data
formatting (dates, numbers, percents, etc.); dynamic HTML (e.g., expanding/collapsing
panes/tabs); print formatting and preview; hierarchical menuing; syntactical editing and
validation; basic application validation; static and dynamic domain management (i.e.,
checking a value against a list of values); required field checking; application

calculations; and response time measurement

Within the JView™ subsystem, a unique set of JavaScript coding techniques are
employed to keep the response time overhead for the JView™ subsystem processing

itself to a minimum.

Each interaction with the server consists of a standard HTTP request/response
(the format of which is HTML 3.2 based and contains a “Siteras Transaction Message”
(STM)). The STM is a hierarchical structure of key-value pairs (similar to an XML based
message in structure and content). Unlike a typical server generated HTML message,
the STM contains mostly business data. As such, the size of this message is greatly
reduced. Essentially, this message structure is used to deliver a “data island” to the
client browser where the JView™ subsystem can operate on it generically. NOTE:
There are two reasons why the JView™ subsystem uses the STM vs. XML format — 1)
The STM maintains compatibility with a broad set of browsers (many browsers do not
support XML), and 2) XML is also very verbose and is 1-2x the size of the STM.

JView™ Benefits

The following is a summary of the key features and benefits of the JView™
subsystem architecture. Taken together, these features allow the JView™ subsystem to
approach the performance and functionality of a fat-client system, with ease of use and
manageability of a thin-client system.

47

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Broad Browser Compatibility ‘

The system can work with any browser that supports JavaScript v1.2, HTML 3.2,
and CSS Level 1.0. This provides support for a broad number of browsers, including
older versions of mainstream browsers (e.g., 4.x series browsers from both Microsoft
and Netscape). It does not utilize any of the features that are specific to a given browser

type or version.

Totally Thin Client
The system supports true “thin-client” architecture in that it does not require or

~

utilize any java applets, java applications, browser plug-ins, or active-X controls.
Additionally, it does not utilize persistent “cookies”.

Exploits Client System Processing Power

Many of the JView™ subsystem features are aimed at utilizing the local
processing power of the client machine. This greatly improves the responsiveness of the
system, reduces the number of interactions with the server, and offloads the server from
having to perform this processing. The performance of the JView™ subsystem has
been optimized to have as minimal an impact as possible on the response time to/from
the server. In general, the JView™ subsystem processing adds less than 1 second of
response time to any server interaction. Additionally, as the processing power of client
systems continues to improve the response time overhead due to the JView™

subsystem processing should continue to reduce.

Reduces Transmission Size
On a transaction-by-transaction basis, the size of the STM stream to/from the
server is 4 to 5 times smaller than the comparable server generated HTML page. This
characteristic makes it ideal for applications where dial-up access or other low-bandwidth
channels (e.g., wireless) are still dominant.

" Reduces Server Processing Load

48

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Due to the offloading of HTML generation to the client system, and the reduced
number of interactions with the server (because of the JView™ subsystem local
processing capabilities), the processing load for the typical server is reduced by 30-50%.

Improves End User Response Time
Due to reduced transmission size, the use of dynamic HTML, and the other
functions and services that are performed locally, the JView™ based subsystem
outperforms a typical server based HTML implementation by a factor of 8-10 times.

Rich User Interface
Due to the local processing capabilities (described above), the user interface
capabilities of the JView™ subsystem are comparable with those of many fat-client
s\ystems.

Improves User Interface Development Productivity
The typical development cycle for thin-client user interfaces involving dynamic
content starts with the graphic designer creating static pages as prototypes. Once these
are approved, they are given to an engineer to be coded (so that the pages can be
dynamically generated within the server). Multiple iterations of review and correction
often follow. In general, this is a serial development process.

With the JView™ subsystem architecture, the development of the user interface
can proceed in parallel with the development of the server side transaction processing
code. Allthatis needed at the outset is the definition of the STM (i.e., the data packet)
for each type of interaction. Once the STM is defined, both the Ul and the server side
code can be developed in parallel. In addition, there is no effort wasted on a Ul
prototype. Various iterations of the Ul can be developed and refined, and once done;
the Ul is ready for production. Only a final integration test with the server side code is

needed to ensure operability.

Provides a Foundation for User Interface Customization

49

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Since the Ul is maintained externally from the server code, and since the
transaction request is message based, the JView™ subsystem architecture supports a
high degree of Ul customization (without the need to modify the code on the server).

Commercial Example

The Electronic Subrogation Network is a commercial example of a fully
operational system that embodies the concepts described herein specifically for the
vertical market of Insurance Subrogation Claims Processing.

Terminology
This section contains terminology definitions that are useful in understanding the
concepts described in the description that follows.

Browser-based Client
A client system should have a browser that supports HTML 3.2 (or higher) and
ECMA script 1.0 (or higher). (ECMA script is commonly referred to as JavaScript).
Examples include, but not limited to, Microsoft Internet Explorer v4.0 or higher and
Netscape Navigator 4.7 or higher.

Server-based HTML Generation Approach
Any approach wherein the server produces an HTML stream and where such
stream contains the user-interface tags such that the browser merely needs to “render”
this HTML stream for display.

End-User Session
A finite period of time, usually denoted by explicit logon and logoff events, that

allows a given user to conduct one or more application specific processing requests.

Basic Thin Client Architecture
An architecture that provides application functionality to an end-user via a

browser-based client that accesses a server, wherein the browser-based client does not

50

10

15 -

20

25

30

WO 2004/044696 PCT/US2003/035631

rely on any special extensions including, but not limited to, non-standard plug-ins,

download-able java applets, and/or ActiveX controls.

“Siteras Transaction Message” (STM)
A message between a browser and a server conforms to standard HTML format.
This message is used to transmit transaction data between a server and the browser.
Unlike a typical HTML message, it uses JavaScript syntax to encapsulate transaction

data.

DETAILED DESCRIPTION - JView

The JView™ subsystem is an object-oriented system that consists of a modular
set of JavaScript, CSS and graphic files. The JView™ subsystem runs within browsers
that support ECMAScript 1.0 (i.e., JavaScript).

This section contains detailed process and component descriptions related to the
JView™ subsystem, and discusses concepts and technologies known in the computer
field such as:

Object-oriented design and programming

Basic Internet Fundamentals (browser/server interaction, HTTP
requests/responses, TCP/IP basics, etc.)

HTML

CSS

JavaScript

W3C Document Model (DOM)

JView™ Subsystem Files
The files that make up the JView™ subsystem can be divided into the following
categories — Core, Business Classes, Images, Core Display Components, Display
Components, Domain Components, Views/Forms, Logos, and Application Query
Components.

51

10

WO 2004/044696

Core Files

PCT/US2003/035631

These files perform the generic services of the JView™ subsystem used by all

application interactions. These files are a small subset of the overall application system.

Since these files are reloaded by the by the browser with each interaction, it is important

to minimize the total size and number of the files in this set. The following table

describes the files included in this category.

- | Description/Functions .~ =it

jv_main_000js

JView™ Main.

Contains the class definitions needed for initialization.

Controls the load sequence for the remaining files in the Core.
Contains common JavaScript functions (service functions) that
are used by the entire JView™ system.

jv_jvmgr_000.js

JView™ Manager.
Contains the JVMGR class definition.

jv_jvbase_000.js

Base Classes.

Contains the abstract class hierarchy used to represent the data
(objects) received from the server in the STM. These classes
are subclassed by the business classes (described later).

jv_jvdisp_000.js

Display Classes.

Contains the abstract class hierarchy used for any Ul elements
that are displayed in the browser. These classes are
subclassed by the display components (described later).

jv_JView_000.js

JView™ Display Class.
Contains the JVIEW™ class definition.

jv_stm_000.js

STM Classes.
Contains the class definitions that are used to represent the
major components of the STM received from the server.

jv_dommgr_000.js

Domain Manager.
Contains the JYDOMAINMGR class definition.

jv_global_000.js

JView™ Globals.
Contains global constants used throughout the entire JView™
subsystem.

style.css Cascading Style Sheet (CSS) Definitions.
Contains all the CSS definitions used throughout the JView™
subsystem. This file ensures that the “look and feel” of all Ul
elements are consistent.
Business Classes

52

10

15

20

25

WO 2004/044696 PCT/US2003/035631

For each vertical application, the business classes represent the business objects
used within that vertical application. One file is defined per business object. These
definitions relate directly to the business object definitions (classes) that are implemented

on the server (as defined in the application repository or data model).

Views/Forms
With each interaction from the server, the JView™ subsystem will display either a
“view” or a “form” in the data area portion of the overall JView™ subsystem Ul
framework. A view is used to display a collection or list of multiple business items
(usually in a summary format). A form is used to display a single business item (usually
in a detail format). For example, a “view” could be used to display a list of “orders”; a
“form” would be used to display the details for a specific order from that list.

For each vertical application, one or more views and forms are defined. The
entire collection of views and forms for any given application represents the complete set
of Ul interactions for that application. A complex application system typically consists of

hundreds of views and forms.

Core Display Cdmponents
These files are used to define abstract display classes from which other
application specific display components can be subclassed. In doing so, all the
application components inherit their common capabilities from the core display classes.
This allows the JView™ subsystem to maintain Ul consistency within a given application.
The following table describes the files included in this category.

File =~ oo Description/Functions .

jvd_Table_000.js Table Component

Contains the JVDTable abstract class definition. This class
is subclassed by other application specific display
components to define an application specific table within a
view or a form.

53

10

WO 2004/044696

PCT/US2003/035631

File

Description/Functions

jvd_Pane_000.js

Pane Component

Contains the JVDPane abstract class definition. This class
is subclassed by other application specific display
components to define an application specific pane within a
form.

jvd_GroupBox_000.js

GroupBox Component

Contains the JVDGroupBox abstract class definition. This
class is subclassed by other application specific display
components to define an application specific group box
within a form.

jv_jvField_000.js

JView™ Field Component.
Contains the JVField class definition. This class is used to
display a single business data element within a form.

jv_jvComplexField_000.js

JView™ Complex Field Component

Contains the JVComplexField class definition. This class is
used to display a complex arrangement of multiple
business data elements within a form.

jvd_Domain_000.js

Domain Selection Component.

Contains the JVDomainComponent class definition. This
class is used when displaying multiple values from a
domain to the user on a form.

jv_jvquery_000.js

JVQuery Component

Contains the JVQUERY abstract class definition. This
class is subclassed by the query components (described
later). '

Display Components

For each vertical application, one or more display components are defined that

contain the application specific data elements that are to be displayed to the useron a

view or a form. In order to maintain a high degree of Ul consistency within the overall

application, each display component is subclassed from one of the core display

components.

Query Components

A “View” is typically defined to display a list of homogeneous items in a summary

format (e.g., a table). In many cases, the items in the list all share one or more common

54

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

characteristics — for example, a list of orders awaiting shipment, a list of customers that
are “active”, and a list of open accounts, etc. In many cases, users will want fo filter the

list from a larger list to a smaller list.

For each vertical application, one or more query components are defined that
allow the user to filter the items that are displayed in a given view. As such, for each
view that is defined, one or more query components will be defined. The query
component is used to limit the filter/query operations that can be performed against a

specific view.

Domain Components
When entering data for a specific business data element, it is often required that
the value being entered belong to a predefined list of values (i.e., exist within a domain).

For example, a domain for “gender” could contain the values “M” and “F".
For each vertical application, one or more domain components can be defined. Each
component defines the list of values that make up that specific application domain.
Once defined, the JView™ subsystem can then use these lists to facilitate data entry (by

display lists of values that can be selected from) and for validation.

Images
The files in this category represent any generic graphics files that are used
throughout the JView™ subsystem and not specific to any given vertical application or

client.
Logos
The files in this category represent any application or customer specific graphics

files that are used within a given vertical application.

JView™ Subsystem Classes

55

10

WO 2004/044696 PCT/US2003/035631

The classes that make up the JView™ subsystem can be divided into the
following categories — Core, STM, Base, and Display.

Core Classes
The Core classes represent those classes that perform generic functions and
services used by the entire JView™ subsystem. The following table describes the

classes included in this category.

Class 7.5 | Description/Functions = 1= iin it £ ol

JVMgr JView™ Manager

Main class, anchor point, used to control main flow within the JView™
subsystem for each interaction.

Control point for all requests submitted to the server.

JVTraceMgr Trace Manager.
Controls and manages the internal trace table used for debugging.

JVLoadMgr Loaded File Manager.

Controls and manages the JavaScript “include” files that are to be
dynamically loaded after each interaction with the server.

Ensures that the same JavaScript file is not being loaded multiple
times.

JVDomainMgr | Domain Manager
Controls and manages any static and dynamic application domains
that are being used for the current interaction.

STM Classes
The STM classes are used to represent the major components of the STM
received from the server. The following table describes the classes included in this

category.

Class '~ | Description/Functions

STM STM Message - Overall
This class is a container class that references all the other objects that
make up the overall STM.

STMHdr STM Header
Contains the STM Header attributes (described later).

STMNB STM NavBar
Contains the STM NavBar data structures (described later).

STMMsg STM Application Messages

56

5

WO 2004/044696 PCT/US2003/035631

Class

Description/Functions

Contains the any application message data structures from(the server
(described later).

STMFnList

STM Function List

Contains the list of valid application functions that can be performed by
this user for this interaction (described later). This is an array of
STMFunction objects.

STMFunction

STM Function
Contains the attributes for an application function contained within the
STMFnList.

Base Classes

The Base classes represent the abstract class hierarchy that is used to represent

the data and structure of the business information received from the server in the STM.

The following table describes the classes included in this category.

‘Class*

;| Description/Functions " "

JVBaéI—:«

Base Object Class

This abstract class contains the attributes that are common to all
other JView™ base objects. All other JView™ Base classes are
subclassed from this class.

JVList

List Class
This abstract class is used to represent an array of other base objects:
(i.e., either an array of JVBObjects or JVGALir objects).

JVBObject

Business Object Class

This abstract class is used to represent a single instance of a
business object. All business class files are subclassed from this
class.

JVBoolean

Boolean Attribute Class
This class is used to represent a single Boolean data element
(attribute) within a business object (JVBObject).

JVString

String Attribute Class
This class is used to represent a single string/character data element
(attribute) within a business object (JVBObject).

JVDateTime

DateTime Attribute Class
This class is used to represent a single date time data element
(attribute) within a business object (JVBObject).

JVinteger -

Integer Attribute Class
This class is used to represent a single integer numeric data element
(attribute) within a business object (JVBObject).

JVFloat

Float Attribute Class
This class is used to represent a single floating point numeric data

57

WO 2004/044696 PCT/US2003/035631

Class Description/Functions e e
‘ element (attribute) within a business object (JVBObject).
JVMemo Memo Attribute Class

This class is used to represent a single memo data element (attribute)
within a business object (JVBObject). A memo data element is like a
string data element, but the memo data element allows for special
characters.

JVGAIir Generic Attribute Class

This class is used to represent a generic data element (attribute)
within a business object (JVBObject). In this case, the interpretation
of the data contained within this attribute is dependent on the
containing component class.

Display Classes
The Display classes represent the abstract class hierarchy that is used by the
display components to define and control the Ul. The following table describes the

classes included in this category.

Desc‘riptidanuh_(éﬂbﬁ '

JVDisplay Display Object Class
This abstract class contains the attributes that are common
to all other JView™ display objects. All other JView™
Display classes are subclassed from this class.

JView™ JView™ Class

This class is used to represent the current view or form
object for the current interaction. It serves as the anchor
point for the display object component hierarchy.

JVQuery Query Component Class

This class is used to represent the current query component
(if defined) for the current interaction. The application
specific query component definition will create an instance of
this class to contain the specific data elements and values
used to control querying/filtering operations.

JVDTable Table Component Class

This abstract class is used to define a table component
within the Ul. It provides generic services common to all
tables. Any application specific table components will be
subclassed from this class.

58

10

WO 2004/044696

PCT/US2003/035631

Class

Description/Functions ="

JVDPane

Pane Component Class,

This abstract class is used to define a pane component
within the Ul. It provides generic services common to all
panes. Any application specific pane components will be
subclassed from this class.

JVDGroupBox

GroupBox Component Class

This abstract class is used to define a groupbox component
within the Ul. It provides generic services common to all
groupboxes. Any application specific groupbox components
will be subclassed from this class.

JVDDomainComponent

Domain Component Class

This class is used to represent an application domain (if
defined) for the current interaction. For each interaction,
multiple domain definitions can be used and in this case, one
instance of this class will be created for each domain. The
application specific domain component definition will create
an instance of this class to contain the specific data elements
and values used to control domain search, retrieval, and
validation operations.

JVField

Field Component Class
This class is used to define a field component within the UL.
It provides generic services common to all fields.

JVComplexField

Complex Field Component Class

This class is used to define a complex field component within
the Ul. It provides generic services common to all complex
fields.

STM Format and Structure

The “Siteras Transaction Message” (STM) is a hierarchical structure of key value pairs

that are specifically designed to hold business data, in raw format, being transmitted

between a server and a browser. It is similar in structure, capability, and purpose to

other data encoding mechanisms (e.g., XML, PList, etc.). This format allows the

JView™ subsystem to achieve high performance and broad browser compatibility. The

STM contains the following logical subsets of data — Header, Nav Bar, Business Objects,

Function List, Messages, and Domains.

Header

59

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

This section contains data elements that are used to maintain the state of the
JView™ subsystem environment and coordinate the execution of a transaction between

the server and the JView™ subsystem executing in the browser.

Nav Bar

This section contains the data structures that are used by the JView™ subsystem
to construct the NavBar within the Ul. The NavBar provides the user with a hierarchical
menuing system for accessing the functions within the application system.

Business Objects

This section contains the business objects (business data) related to the
application function being executed. Within the STM, these business objects exist in
their primitive object format. Using these business objects, the JView™ subsystem
provides a user friendly presentation (i.e., generates the HTML displayed in the browser)
based on the definition of the application specific view or form (JView™ subsystem
object) contained in each interaction.

Function List
This section contains an array of the application functions that the user is allowed
to perform. This list allows the system to enforce a first layer of security.

Messages
This section contains an array of any application messages that were generated
as a result of executing the last application function. These messages may be

informational, warnings, or errors.

Domains

This section contains an array of dynamic domain definitions that have been sent
from the server (where the content of the values within the domain are dynamically
determined by application conditions with each function). Static domain definitions,
where the values within the domain do not change, are provided via Domain

60

10

WO 2004/044696

PCT/US2003/035631

Components (i.e., JavaScript files). However, these static domain definitions are not
transmitted within the STM.

STM HTML Message Format
Upon receiving the HTTP response from the server, the browser will perform its

normal functions related to processing an HTML message. When initially received by

the browser, the STM is encoded within a standard HTML stream. A sample message is

contained in Diagram 1. The following table summarizes the major parts of this

message (the line number references relate to the sample message in Diagram 1).

Line(s)

Description

14

Standard HTML tags. These tags declare the stream as an HTML stream.
The overall HTML stream is declared in lines 1-219.

The HTML HEAD portion (containing the STM) is declared in lines 3-207.
The HTML BODY portion is declared in lines 209-218.

Cascading Style Sheet inclusion.

MO

Include the main JView™ JavaScript file. This statement causes the entire
JView™ Core to be loaded.

Include JView™ view or form definition. This statement provides the
definition for the application specific form or view that will be displayed within
the JView™ Ul framework. This statement will also cause all the related
application class definitions to be loaded.

If a “view” is being displayed, this line provides the definition for the
application specific query component to be used with the view. ‘

10-206

ST™M
The full STM encapsulated in JavaScript functions.

13-48

Header
The Header portion of the STM.

50-59

NavBar
The NavBar portion of the STM. In this example, the Nav Bar contains 6
distinct navigation items on lines 52, 53, 54, 55, 56, and 57.

61-143

Business Objects

The Business Object portion of the STM. In this example, there are two
instances of business objects contained in this section. Both business
objects are SAFolder_Subro objects. The first instance is defined by lines
62-101, the second instance is defined by lines 102-142.

145-162

Function List
The Function List portion of the STM. In this example, the function list
contains two distinct Function entries on lines 147-153 and 154-160.

164-169

Messages

61

10

15

20

WO 2004/044696 PCT/US2003/035631

Line(s) | Description

The Message portion of the STM. In this examplle,‘ two distinct appiiéatioh
messages are defined on lines 166 and 167.

171-200 | Domains

The Domains portion of the STM. In this example, a single' application
domain named “RespondingCompanies” is defined containing 4 domain
items.

209-218 | HTML BODY

These lines represent the HTML BODY declaration.

In most standard HTML streams, this section will contain a large number of
definitions that define the Ul formatting to be performed by the browser. With
the JView™ subsystem this section is virtually empty. On line 209, the
“ONLOAD=" parameter causes the browser to invoke the JView™ Manager -
to complete the JView™ initialization and generate the HTML to be displayed

in the browser for this interaction.

JavaScript STM Functions
Within the HTML stream described above, JavaScript functions are used to
encapsulate the business data. Using these functions, any business data structure,
simple or complex, can be defined. For the STM portion of the message, the following

JavaScript functions are used:

Single Objects

NS (<classId>, <objectId>, <instanceName>)
NE()

These functions are used to define a single object node. The NS() function is
used to start the declaration of the object and the NE() function is used to end the
declaration. A single object node can contain other single objects, array nodes, or
attribute nodes. When defining the object node, the <class> specifies the type of object
to be instantiated, the <objectld> is its unique object identifier, and the <instanceName>

is the name by which the parent object (if any) refers to this object.

Object Arrays

RS (<instanceName>)
RE()

62

10

15

20

25

30

35

WO 2004/044696 PCT/US2003/035631

These functions are used to define an array node. Essentially, this type of node
is used to define a collection of objects of the same type/class. The RS() function is
used to start the declaration of the array and the RE() function is used to end the
declaration. An array node can contain any number of single object (NS) or generic
attribute (GA) nodes. When defining the array node, the <instanceName> is the name
by which the parent object (if any) refers to this array.

Attributes

AB(<attributeId>, <value>)
AD(<attributeId>, <value>)
AF (<attributeId>, <value>)
AI (<attributeId>, <value>)
AM(<attributeId>, <value>)
AS (<attributeId>, <value>)

These functions are used to define a single attribute node (data element) within
an object (NS). The different function names related to the primitive type of the data
represented by the attribute — Boolean (AB), DateTime (AD), Numeric-Floating Point
(AF), Numeric-Integer (Al), Memo (AM), and String (AS). When defining an attribute
node, the <attributeld> is the name by which the parent object refers to this attributed,

and the <value> is the data value of the attribute.

Generic Attributes

GA(<attributeType>, <valuel>, <value2>, ..., <valuen>)

These functions are used to define a single generic attribute node (complex data
element) within an array (RS). This attribute can only be used within an array node. itis
a special type of complex attribute and the interpretation of the attribute type and values

is left to the parent object.

Full Mode vs. Raw Mode Format
In the message example above, the “full mode” format is used. In this format, the
classlds and attributelds are expressed as full character strings. A “raw mode” format is
also used that further reduces the overall message size by replacing the character string
representations of the classlds and attributelds with numeric codes. Additionally, raw

63

10

15

20

25

30

35

40

WO 2004/044696 PCT/US2003/035631

mode can use either the JavaScript function method of data encapsulation or the
JavaScript array syntax. The JavaScript array method is preferred for production as this
eliminates any overhead associated with the execution of the data encapsulation
functions themselves. Using this method, all data encoding rules conform to those

defined by JavaScript syntax.

The following summarizes various STM formats:
STM Full Mode

NS ("STMHAr",null, "oHdr") ;

AB("readOnly",0);

AD("dateCreated™, "20000531105702");

AF ("amtTotal",17.43);

AI("count®, 4} ;

AM("comments", "This is line 1\nThis is line2\n");

AS("companyName", "Insurance Property & Casualty");
NE() ;

STM Raw Mode (Using JavaScript Function Encapsulation)

NS(1l,null,l);

AB(1,0);

AD(3,"20000531105702") ;

AF(4,17.43);

AIL(8,4);

AM(2,"This is line 1\nThis is line2\n");

AS(7, "Insurance Property & Casualty");
NE() ;

STM Raw Mode (Using JavaScript Array Encapsulation)

STMHAr =
[{1,null,1],
[1,1,01,
[2,3,"20000531105702"],
[3,4,17.43],
[41 81 4] ’
(5,2,"This is line 1\nThis is line2\n");],
[6,7, "Insurance Property & Casualty");]

1;

STM Object Format
The processing of the STM message results in the creation of the STM object
within the browser environment. The structure of this object is depicted in FIG. 21.

JView™ Subsystem Object Hierarchies

64

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

During the initialization of the JView™ subsystem environment, two main object
hierarchies are constructed — the Base Object Hierarchy and the Display Object

Hierarchy.

Base Object Component Hierarchy
The base object hierarchy consists of the base objects (derived from JVBase)
that were created as a result of processing the STM (as depicted within Diagram 1).
This hierarchy is anchored within a global variable “goSTM” that can be accessed at any
time by any part of the system. All business objects related to the application function
are contained in the subtree goSTM.oData. This subtree is an array (RS) that can
contain 0-n business object subtrees. For a View, it will contain 0-n business object

subtrees. For a form, it will only contain a single business object subtree.

Display Object Component Hierarchy

The display object hierarchy consists of display objects (derived from JVDisplay)
that were created as a result of processing the JView™ Subsystem View/Form
component associated with this interaction (as defined in line 7 of the sample message
in Diagram 1). This hierarchy is anchored within an instance variable of the JView™
Subsystem Manager “oJView” (the JView™ Subsystem Manager Object instance is in
turn anchored with a global variable “goJM”\). The display objects are used to hold
instance and state data related to the Ul and to some extent mirror the DOM objects that
are created from the generated HTML. This hierarchy is necessary because certain
local operations (e.g., resorting a table) are used to completely refresh portions of the
DOM — in this case, the display object contains the data needed to regenerate the DOM

objects.

JView™ Subsystem Processing
The three distinct phases to the JView™ subsystem operation are described in
detail in the following sections.
Initialization

Interaction

65

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Request Submission

JView™ Subsystem Initialization

With each HTTP response received from the server, the JView™ subsystem
environment within the browser is completely rebuilt. Because of this, the system was
designed modularly in order to minimize any delays associated with this initialization.
Some browser platforms allow for data to persist across interactions (e.g., cookies, |E
behaviors, etc.) — other than the normal browser caching mechanisms (i.e., used for
HTML pages, graphics, CSS, and JavaScript files), the JView™ subsystem does not rely
on any browser specific mechanisms for caching data across server interactions.

Browser Initialization
Upon receipt of a new HTTP response from the server, the browser will perform

any internal initialization and process the newly received HTML stream.

Core Loading and Initialization

After the browser has loaded the CSS file, the JVMain JavaScript file will be
loaded and processed by the browser as follows. A series of global constants (needed
for initialization) are processed first. The class definition for the Trace Manager is
processed. The Trace Manager is instantiated and initializes itself. The early creation
and initialization of the Trace Manager allows all other parts of the JView™ subsystem to
record trace entries for debugging purposes. The Trace Manager is anchored in the
giobal variable goJVTraceMgr so that it can be accessed by any part of the system. The
class definition for the Load Manager is processed. The Load Manager is instantiated
and initializes itself. The Load Manager is used to keep track of all JavaScript files (e.g.,
views/forms, components, classes, efc.) that have been loaded. The Load Manager is
anchored in the global variable goJVLoadMgr so that it can be accessed by any part of
the system.

' A series of JV_Include functions are processed to load the other JavaScript files
that make up the JView Core (refer to JView™ “Include” Capability for more detail). As a

66

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

result the following core files will be loaded in sequence when the browser completes the
processing for JVMain — JView™ Manager Class (jv_jvmgr_000.js), JView™ Base
Classes (jv_jvbase_000.js), JView™ Display Classes (jv_jvdisp_000.js), JView™
View/Form Class (jv_JView_000.js), STM Classes (jv_stm_000.js), Domain Manager
Class (jv_dommgr_000.js), and Global Constants (jv_global_000.js). As each file is

loaded, it is recorded in the Load Manager.

A series of global function definitions will then be processed. These functions
provide general services that can be used by any part of the JView™ subsystem. After
the processing for JVMain is complete, the browser will load and process each of the

core files included above.

JView™ Subsystem Manager Creation

During the processing of the Global file (jv_globals_000.js), the JView™
Subsystem Manager is instantiated. This object is anchored in the global variable goJM
so that it can be access by any part of the system. The initialization of this object is
deferred until later (see “JView™ Subsystem Manager Initialization” below).

View/Form and Application Class Loading

Once the loading of the JView™ Subsystem Core files is complete, the browser
will continue processing the statements in the HTML stream from the current HTTP
response. The next statement in this stream will be a <SCRIPT> tag that references the
JavaScript file for the application specific View or Form. This statement causes the
browser to load and process this file as follows. Additional method and attribuie
definitions for the JVIEW class (specific to this form) are processed. These definitions
give the JVIEW class its application specific behavior for the current interaction.

A series of JV_Include functions are processed to load the other JavaScript files
that are used by this form/view. There are two main groups of files that are included —
Display Components and Business Classes. A JView™ subsystem form or view is built
by assembling one or more display components (described below in “JView™

67

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Subsystem Ul Architecture”). The Display Component “includes” result in the loading of
all display component definitions that are needed for this view/form. Within the Business
Object portion of the STM, each business object requires that its application class
definition exist within the JavaScript environment within the browser. The Business
Class “includes” result in the loading of all business class definitions that are needed by
the current STM.

After the processing for the application specific view/form is complete, the
browser will load and process each of the display component and business class files

included above.

Query Component Loading

Once the loading of the application view/form, display component, and business
class files is complete, the browser will continue processing the statements in the HTML
stream from the current HTTP response. If a view is being processed for this interaction,
the next statement in this stream will be a <SCRIPT> tag that references the JavaScript
file for the application specific query component. This statement causes the browser to
load and proceés this file.

STM Processing — Base Object Hierarchy Creation and Initialization

After all the JView™ subsystem core and application specific files have been
loaded, the browser will continue processing the statements in the HTML stream from
the current HTTP response. The next statements in the stream are in-line JavaScript
statements that represent the STM. The browser will process these statements as
follows. The browser will execute each JavaScript STM function in the order it occurs
within the HTML stream (e.g., NS(), RS(), efc).

As each function is processed, a new node (object) in the JView™ Subsystem
Base Object hierarchy will be created. For NS() functions, an application specific object
will be created (based on the classld specified in the NS() function). For all other STM
functions the type of object created depends on the specific STM function as follows:

68

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

RS() - JVList

AB() - JVBoolean
AD() - JVDateTime
AF() - JVFloat
Al() -JVinteger
M()- JVMemo
AS() - JVString
GA() - JVGALir

>

As each node is created, JVBase initialization will be executed. This initialization
sets JVBase attributes used to represent the linkage of this node within the Base Object
hierarchy (i.e., parent, child, sibling, etc.). Based on the sequence of the statements in
the STM, the Base Object hierarchy is created from top to bottom and left to right. As
each application specific subtree is created, any application specific initialization will be
executed. This initialization, if any, exists within each application business class as an
Init() method. The application specific initialization performs any application specific data
manipulations that are needed by the current interaction. After all STM JavaScript
functions have been executed, the JView™ Subsystem Base Object Hierarchy is
created. This object hierarchy contains all the business data, as business objects, sent

from the server in response to the previous request.

JView™ Subsystem Manager Initialization

After the STM functions have been processed, the Init() method of the JView™
Subsystem Manager (JVMgr) will be executed. This method is triggered by the
“ONLOAD=" parameter of the <BODY> tag in the current HTML stream. The following

summarizes the processing performed in this method.

Initialize the Domain Manager. This initialization results in the processing and

setup of any domains that were contain in the STM (in the Domains section).

69

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Create an instance of a JVIEW object. Up to this point, only various JVIEW class
definitions have been processed (both generic and application specific). At this point, the
actual JVIEW object (view or form) is created. This object anchors the display hierarchy

that controls the Ul associated with the current interaction.

At this point, the display object hierarchy will be created and initialized. This
complex process is described next. At the completion of this process, control will be
returned to the JView™ Subsystem Manager and its initialization will be completed.

Display Object Hierarchy Creation and Initialization

This process resullts in the creation of the display objects used to generate and
control the Ul for the current interaction. It is trigged by invoking the Init() method of the
JVIEW object. Within this method, the following processing is performed (for brevity, any

references to “view” below imply a view or a form).

Any application specific view initialization is performed by invoking the InitView()
method for the JVIEW object. This method allows the view to perform any application
specific processing prior to generating and displaying the HTML. Such initialization
includes initializing the component variables that contain references to any display
components created later, initializing other variables based on data conditions within the

base hierarchy, sorting business data within the base hierarchy, etc.

Once the view is initialized, the display components are created and the HTML is
generated in a single process. This process is triggered by invoking the CreateHTML()
method of the JVIEW object. Prior to invoking this method, an array is created and
passed to this method as a parameter (i.e., the HTML array). This array is used to
contain all the HTML statements that are generated by all display methods and
components invoked during the processing of the CreateHTML method. This method
will perform the following: invoke the CreateHeader() method to generate the HTML for
the Header portion of the Ul; invoke the CreatelnfoBar() method to generate the HTML
for the Info Bar portion of the Ul; invoke the CreateNavBar() method to generate the

70

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

HTML for the NavBar portion of the Ul; if any application messages exist, invoke the
CreateMsgArea() method to generate the Message Area portion of the Ul; for a form,
invoke the CreateActionBar() method to generate the HTML for the Workflow Bar portion
of the UI; and invoke the CreateDataArea() method to create/initialize any display
components and generate the HTML for the Data Area portion of the Ul (the portion that
contains application specific information). This method is defined in the application
specific JView™ subsystem file for the current interaction. It will either 1) generate
HTML directly, 2) create any child display components that make up the Ul for this view,

or 3) use a combination of both techniques.

For each display component created, the following processing will occur. The
display object for this component will be instantiated and linked into the display
hierarchy. Any initialization of the component will occur within the constructor of the
class for this display object. The CreatePreHTML() method will be invoked for the newly
created display object. This method provides for container-oriented HTML generation by
any of the super classes for this object. The CreateHTML() method will be invoked for
the newly created display object. Similar to the above, this method will result in the
generation of any application specific HTML for this component. To do so, it will either 1)
generate HTML directly, 2) create any child display components that make up the Ul for
this view, or 3) use a combination of both techniques. This process allows for orderly
nesting and creation of display components anchored off of the initial JVIEW object.

This process supports the construction of a simple or complex Ul. The CreatePostHTML
method will be invoked for the newly created display object. This method provides for
container-oriented HTML generation by any of the super classes for this object.

Atfter the CreateDataArea() method completes, some final special HTML tags are
generated. An HTML FORM is created — JVFORM_STM. For JView™ subsystem
forms that support the uploading of files from the local environment, a standard browser
file widget (STMFILE) is created within this HTML FORM (<INPUT TYPE="file” ... >).
Finally, a special hidden field (STMDATA) is also defined within this HTML FORM

71

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

(<INPUT TYPE="hidden” ... >) — this field is used to contain the outbound STM stream

for any subsequent request to the server.

Upon completion of the main CreateHTML() method for the JVIEW object, the
HTML stream will be prepared and the DOM object within the browser for the BODY
portion of the current Document will be updated with the new HTML (this process is
described further in “HTML Generation” below). At this point, the Ul “focus” will be set
(based on the definition within the JView™ subsystem of the first field that is to receive
the input focus), and control will be returned back to the JView™ Subsystem Manager.

JView™ Subsystem Manager Initialization (continued)
After the Ul has been created, the JView™ Subsystem Manager will complete its
initialization by performing its response time calculations. At this point, control will be
returned to the browser and Ui control is returned to the user.

JView™ Subsystem Interaction
Once control has been returned to the user, the JView™ subsystem environment
allows the user to operate locally (without interaction from the server). To do so, the
JView™ subsystem relies on the Dynamic HTML mechanism within the browser to
perform interaction related services. These services include the following:
Dynamic Sorting
Data Formatting and Display
Expanding/Collapsing Portions of the Ul (e.g., Panes).
Print Formatting and Preview
Hierarchical Menuing
Syntactical Editing and Validation
Complex Application Validation
Application Calculations

72

10 .

15

20

25

WO 2004/044696 PCT/US2003/035631

The HTML that was initially generated contains the definitions that allow for the
triggering of specific methods within the JView™ subsystem display objects in response
to any Dynamic HTML events generated by the browser in response to various user

interactions.

One key aspect of this local interaction relates to data entry. For any data
entered by the user, the JView™ subsystem environment will perform syntactical
validation (e.g., ensure valid numbers, dates, etc.) and invoke any application specific
validation defined within the business classes. Once these validations have been
performed successfully, the specific base object affected by this data (within the base
object hierarchy) will be modified with the new data. As such, as the user interacts with
the UI, the base object hierarchy is dynamically updated to reflect the current state of the
data. The importance of this will be clear later when describing request submission to
the server.

For more information on these services, refer to the “JView™ Subsystem

Services”.

JView™ Subsystem Request Submission
The user will continue to operate locally within the browser environment until they
select a Ul element that triggers a new request to the server. Within the JView™
subsystem environment, all such requests are processed and generated from a central
point within the JView™ subsystem environment — namely the JView™ Subsystem
Manager. The following summarizes the request submission process.

For any Ul elements that will trigger a request to the server, the generate HTML

will ensure that the element results in a call to the InvokeFunction() method within the
JView™ Subsystem Manager (JVMgr).

73

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

The InvokeFunction() method will perform parameter validation and then invoke
the JVMgr.SubmitHostRequest() method.

The SubmitHostRequest() method will perform the following: save the current
NavBar state (i.e., which menu levels are open/closed) within an instance variable in the
STM Header; update other STM Header variables with data values specific to the new
request (e.g., functionName, chainType, objectid, transactionParms, OLS command,
qualifier, and other JView™ subsystem environment context variables); and construct
the outgoing STM stream for the request by traversing the base object hierarchy for the
Header and Business Object subtrees and creating a single text stream (whose format is

identical to the inbound STM format depicted in Diagram 1).

In fact, the specific format used depends on the server and can be any serial
syntax that can represent hierarchical structure of key:value pairs (e.g., STM, XML,
PList, etc.). The resulting stream is then stored in the special form variable (STMDATA),
that was created when the HTML was initially generated (refer to 29 in the “Display
Object Hierarchy Creation and Initialization” section above).

Based on the type of request (non-editing or editing), the request is submitted to
the host in one of two ways. For non-editing requests (i.e., requests that do not result in
data modification on the server), the HTML FORM JVFORM_STM is “submitted” with
METHOD=GET. For editing requests (i.e., requests that result in data modification on
the server), the HTML FORM JVFORM_STM is “submitted” with METHOD=POST.

After submitting the request to the server, control is returned to the browser to

await the response to the newly issued request.
JView™ Subsystem Services

Within the overall JView™ subsystem processing described above, specific
services are performed. This section details the operation of these specific services.

74

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

JView™ Subsystem “Include” Capability
The JView™ subsystem “include” capability was intended to insulate the server
from the specific manner in which the JView™ Subsystem Core was modularized. This
allows the server to merely specify a single JView™ subsystem file (i.e., jv_main_000.js)
in its HTTP response stream. Within that file, other files are subsequently “included” so
as to complete the loading of the JView™ Subsystem Core. This approach allows the
JView™ Subsystem Core to be divided in any manner or extended without requiring any

change on the server.

The standard browser environment does not provide for a generic mechanism to

“include” JavaScript files. As such, the following process is used.

Within the <HEAD> section of the HTML stream for a given HTTP response
stream, a reference to an initial main JavaScript file using an HTML <SCRIPT SRC= ...
> tag is defined. The browser will load the JavaScript file referenced by this tag from its
local cache, or from the server. Once loaded, the browser will start processing the
statements defined in this file. These statements can either be JavaScript definitions or

executable statements.

To “include” another JavaScript file, a series of executable JavaScript statements
are contained within the main JavaScript file that perform the following: construct a
string variable that contains a new HTML <SCRIPT> tag for the JavaScript file to be
included; and perform a document.write function specifying this new string variable. This
function will result in the new HTML statement being written to the current HTML stream

being processed (ahead of any HTML statements that are being sent from the server).

Once the browser completes the processing of the main JavaScript file, it will then
process any newly inserted HTML statements that were dynamically created by
executing the JavaScript code in the main file — thereby resulting in the loading of the
additional JavaScript files.

75

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Essentially, the processing is the same as if the server had included the additional
JavaScript files in its original HTML stream

Trace Management

Within the JView™ subsystem environment, the Trace Manager maintains trace
information that is useful for debugging purposes. The following process is used to
manage trace information. Upon initialization, the Trace Manager will allocate an array
(with a fixed number of entries) for trace data. The Trace Manager is anchored in a
global variable godVTraceMgr. Whenever the Trace Manager method AddTraceEntry()
is called, the Trace Manager will add the new trace entry to its internal trace table. When
the trace table becomes full, the trace manager will wrap around to the start and replace
the oldest trace entry with the newest trace entry. Other Trace Manager methods are
available for displaying the trace table.

JView™ Subsystem Initialization Optiﬁization
Due to the fact that the JView™ subsystem environment must be completely
reconstructed by the browser, it is essential to keep the processing overhead related to
initialization to a minimum.

One mechanism used to reduce initialization time was to modularize the JView™
subsystem into a number of distinct files. This approach had a number of distinct
advantages: Relative to the combined file sizes of the entire application system, the
JView™ Subsystem Core files represent a small subset (15% or less). Once a JView™
subsystem file is downloaded from the server, it will be placed in the browsers local
cache — unless that file changes, any subsequent references to it will be satisfied from
the browsers local cache (rather than retrieving it from the server). The overall
modularization of the system minimizes the number of files that are needed for each
application interaction. Even though the overall application system may comprise
thousands of views, forms, reports, and related components, a user will only need to
download those files that are needed for the current interaction. As such, the

JView™subsystem avoids long “initialization” delays associated with the loading of a

76

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

monolithic system (e.g., Java application, Java applets, etc.). Because of the extensive
modularization, if a JView™ subsystem file does change, only the new JView™
subsystem file needs to be downloaded, not the entire system.
i
State and Context Management

Upon each interaction with the server, the JView™ subsystem environment
running within the browser is completely refreshed (reinitialized). Since the system does
not rely on, or use, any browser provided persistence mechanisms for recording state
(e.g., cookies, IE behaviors, etc.), the Header section of the STM is used to store any
context information from the JView subsystem environment. When a new request is
submitted to the server, the JView™ subsystem environment will store information
related to its current “context” within the STM header. This information will be passed to
the server. In response to the request, the server will return this context information,
unaltered, back to the JView™ subsystem environment within the same STM header
variable. The JView™ subsystem environment will then use this context information to
re-establish the context it had when it submitted the original request.

Function Security
In order to eliminate the proliferation of user specific forms, views, and reports
(views), the JView™ subsystem allows these views to be created in a way that is not
user specific. However, because these views can be used by multiple users, they often
need to contain embedded links to other application functions. In this case, not all users

will be authorized to perform all functions.

The function security architecture within the JView™ subsystem provides a
mechanism to ensure that a given user can only access the functions for which they are
authorized. The following summarizes the operation of this mechanism. The
FunctionList portion of the STM defines a complete set of functions for which the current
operator is authorized. During the creation and initialization of a JView™ subsystem
form/view, any embedded links to application functions on the server are all defined
using the JVIEW.CreateEmbeddedLink() method. As the form is being created this

77

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

method will be invoked for each link defined on the form/view. Using the FunctionList,
the CreateEmbeddedLink() method will validate that the current user is authorized to
access the application function associated with this link. If not, the link will be disabled or
hidden (based on the parameters passed to this method).

JView™ Subsystem Ul Architecture
The JView Subsystem Ul architecture is based on a component model. These
components are organized around the JView™ Subsystem Ul framework. The JView™
subsystem framework provides a consistent application workspace for the user. Since
all the parts of the framework are themselves components, this framework can be easily
modified and extended to be compatible with a large number of application systems.
The JView™ subsystem framework consists of the following major components.

Header Area — general area for providing “branding” information for the company

using the system and the vendor.

Info Bar — general information area displaying information about the current task

and user.

Nav Bar — this area provides access to the specific functions within the application
in the form of a hierarchical menuing system.

Message Area — an area for displaying application specific messages.

Workflow Bar — For forms, this area is used to display one or more action buttons
that are used to perform common application functions that affect the workflow of the
specific business document being displayed.

Command Area — For views and forms, this area is used to display one or more

links that are used to perform secondary application functions related to the specific
business document being displayed.

78

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Data Area — For views, this area is used to display application specific
information, usually in tabular form related to multiple business transactions or
documents. For forms, this area is used to display application specific information

. . . J
related to a single business transaction or document.

Within the Data Area of a view or form, one or more additional display
components can be defined (e.g., tables, panes, groupboxes, etc.).

FIG. 23 contains an example of a JView™ subsystem “view”. FIG. 24 contains
an example of a JView™ subsystem “form”.

The component based nature of the JView™ Subsystem Ul architecture allows a
given application component to be defined once and then be reused across muitiple
views or forms.

HTML Generation

Due to the extensive amount of HTML generation performed within the JView™
subsystem environment, the performance of this aspect of the system has a major
impact on the responsiveness of the system. When the JView™ subsystem was
developed, the HTML generation techniques that were documented within the industry
did not perform adequately enough for use in a production class system. For large
HTML streams (150KB or more), these techniques often took 30 seconds or more (on a
Pentium lll class processor). As such, the JView™ subsystem uses a special algorithm,
disclosed herein, that has demonstrated the capability of generating a large HTML

stream (150KB) in less than 500 milliseconds on a Pentium lll class processor.
Diagram 2 contains a code section that illustrates the HTML generation technique

used within the JView™ subsystem. The following table summarizes this technique (the
line number references relate to the code section in Diagram 2).

79

10

15

WO 2004/044696 PCT/US2003/035631

o 1) Description

Declaration fovr‘ a standard J'avéScryibféfray. 'Eéb‘ﬁwéléhent in
this array will be used to hold an HTML code generation
fragment.

2 Declaration for a standard JavaScript variable. This variable will
later be used to hold the entire HTML stream that is being
generated.

4-7 HTML code generation statements. Each HTML fragment being
generated is assigned to a new element within the HTML array.

9 Using the standard JavaScript “join” method (for Array objects),
the complete HTML stream is generated by concatenating all the
individual array elements together in one atomic operation.

10 Once the full HTML stream is generated, the DOM within the
browser is updated with a single atomic operation that
completely replaces the HTML for the document BODY (using

the outerHTML property).

Sorting
Due to the high “data” bandwidth capability inherent in the JView™ subsystem
architecture, a JView™ subsystem “view” is able to efficiently display a large number of
result rows for any given business query — 500 to 1000 (compared to the 20-25
displayed by most search engines). Once this result set is returned to the JView™
subsystem environment, users will typically want to resort the result rows based on

various columns.

Within JavaScript, a primitive sort method is provided for Array objects. This sort
method relies on the existence of a “compare” function that can compare any two
elements within an array and pass a return code indicating whether one element was
greater than, less than, or equal to the other element.

Within the Business Object portion of the base hierarchy, an Array is used to
store the full set of Business Objects for the current interaction. However, since these
objects are arbitrarily complex, it is not practical to statically code a “compare” function.
Additionally, even though JavaScript provides an “eval()” function that can be used within
a generic compare function to evaluate arbitrary business objects, this function is

80

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

performance intensive. As such, the use of this function for sorting large results sets was
not practical.

To overcome this limitation and provide a robust sorting capability for both single
and multi-column sorting, the following technique is used within the JView™ subsystem:
when a view is initialized, a compare function is dynamically code generated for each

column within the view;, for each compare function generated, the “eval()” function is

invoked once to essentially compile this function into internal JavaScript format; and
when the view needs to be sorted, the system determines the column(s) being sorted
and then passes the compiled compare function to the sort method for the array being
sorted.

Using this technique, JView™ subsystem sort times are typically less than 1
second (on a Pentium lll processor) for result sets containing as many as 1000 rows.

Application Validation and Processing
Due to the rich object oriented environment established within the JView™
subsystem environment, application validation and processing is simplified. Whenever a
data element within the Base Object Hierarchy is modified, the “OnUpdate()” method is
invoked for each immediate parent object in the base hierarchy (all the way to the root
object —the STM). This method allows each containing object to trigger validation or
processing logic based on the specific portion of their tree that was updated.

During this process, any data modifications made to the base hierarchy are
automatically displayed in the Ul. This occurs because of the linkages that are
established between the base and display hierarchies. Namely, when a base object is
updated, the JView™ system maintains a linkage to any display objects that are
dependent on this base object. From these display objects, the correct DOM object
(within the browser environment) can be refreshed.

Response Time Measurement

81

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

The JView™ subsystem, running in the client browser, also measures and tracks
response time. The following summarizes the mechanism used for response time
measurement and tracking. Whenever a request is made, the JView™ subsystem
records a local timestamp (TS1) within the client browser and passes this to the server
(along with the request). After processing the request, the response from the server will -
contain the original timestamp (TS1). Additionally, the server will provide its own host
response time (HostTime) that measures the duration from when the server received the
request to when the server generated the response. Upon receiving the request, the
JView™ subsystem records another local timestamp (TS2). This timestamp is taken
very early in the JView™ subsystem initialization process so as to accurately record the
closest time to the receipt of the response.

After taking timestamp TS2, the JView™ subsystem will proceed with its
initialization. After the initialization is nearly complete (just before returning browser
control to the user), a final timestamp will be take TS3 and response time statistics will
be calculated as follows:

Total End User Response Time = TS3 -~ TS1.

JView™ Overhead Time = TS3 - TS2

Host Response Time = HostTime (provided by the server)
Network Time = (TS3 - TS1) — HostTime

These statistics are stored within the current JView™ subsystem environment
(within the JView™ Subsystem Manager), and are transmitted back to the server with
the next processing request. The server can then store this information within the
application database. In this way, each new request to the server contains the response
time statistics for the previous processing request.

This mechanism is unique in its ability to measure the actual response time

experience by the end-user at their browser.

Performance Optimization

82

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

The wide array of local services available eliminate the need for the client to
communicate with the server — thereby further reducing bandwidth, end-user response
time, and server processing cycles.

By off-loading the above services to the client (especially the HTML generation),
a substantial reduction in server processing cycles is achieved.

The JavaScript core application components used in the JView™ subsystem are
extremely modular. This modularity helps to eliminate the response time delays upon
initial interaction with the server that are associated with non-modular systems.

Multi-Channel Communication
Muitiple browser windows are used when creating a separate communication
channel with the server. This allows an end-user to issue multiple independent and
parallel application processing requests with the server. The OLS maintains the state of
each of these parallel communication channels so as to preserve the integrity of each
request.

Within each communication channel, either structured (STM), unstructured (files),
or both types of information can be communicated in either direction.

Maintaining Browser Compatibility
To maintain compatibility with the broadest set of browser-based clients, the
lowest possible levels of JavaScript and HTML are used. Additionally, only the basic set
of thin client services provided by the client browser is provided. The system does not
use special plug-ins, Java applets, or ActiveX controls as the use of such services

reduce the general applicability of the system to-a wide range of environments.

Diagrams - JView
The following diagrams illustrate a number of features of the JView™ subsystem
described above.

83

WO 2004/044696 PCT/US2003/035631

Diagram 1 shows a STM Sample Message (Full Mode) code.
Diagram 2 shows a JView™ Subsystem HTML Generation code.

84

PCT/US2003/035631

WO 2004/044696

! (wENO, TTNU wENWLS ») SN ‘0§

“6¥

f()yan “8¥

{0’ TRTZOINLARTAS TP,) 6V ‘LY

(0’ wasxTIARTdS TP,) 87 ‘9%

{1’ oueNoDARTdS TP,) §Y ‘S¥

(T ,y3de@yoeas,) IV 27

-\AHI~=H03=VH¢ .Mv

{(,3x0ddns TN,) SY k474

¢ (wSWOHTAN,) SY “TY

(a2 aPINDORIAS,.)SY)7

1 (,dog, ‘ w2dAzuTeyD) SY “6€

£ (,PUDSTIOW) SY *8€

! (,uoumIo) ™ /TRTIOANL/ * ° ' wYIRATRTI0ANT,) SY “LE

{ (yuoumo) ™ /dTeH/ " * . f wU3IRddTSY.) SY "9¢

£(a{,TI0U, :IINASAL) « * wARIASISUOASDI,) ST *GE

W LLPZLSIVETIOTw * w2XO3UODAL,) SY 43

(W T2 ENADT:0 ENAL’ T:SENAL ' T7 € ENALS * w9308) SY “gg
{40dIu’wAIOD:)SY "Z€

{ (WIOTITTENOPSUTRYD,.) SY “1€

! (ysurexRdATanb,) SY ‘o€

f{u [[u\¥a\ ' \PoATODSYPURWISASIRD * PURWSAO] * PReaddyod \ 1] . ‘ W SWRIRdII0S) SY -62
{(yaa1g3TTenby) SY 14

WO fwodAnAaxed,) sY ‘Lz

! (,FOHUOTIIDSUT) SY "9z

! (,23092Lq0FDx.) SY 14

f{«3090q0.)8Y ‘ve

N sMegAURHpeSYd 4 L WPIOTSUTIZUT,)s¥ X4

! (W TTVU2d0 @SISPTOJOIANS , ' « BWRNUOTIDUNT 4) S¥ A4

f(,uado TIY - SOTTd PUBWR . «3TATA«)SY n4

£ {4Tu wQIIXDIUOTOM,) SY 4

! (4 TRULION, * »®PORST0,) SY 6T

{{,2PHOH AIUSH, ‘' dITOIRISdO,) SV "8T

f(,316°0dy, ' ,0B0700,})8Y LT

! (WKaTense) % Ajxedoad SOURINSUL, ' ,dWENOD.)SY 9T

! {04601 TINLXHALZIOTAOYAH . / « PTSOM,) SY *GT
mA=0Hnﬁw\me.muuwmnoﬂmzxmuQﬂHuw\=~=Hnﬁ=ym4 5T

£ (WIPHO, ‘TIOU’ WHAHHLS o) SN “€T

! (WIS W) SN A

3Ie3s WIS —i> “TT

<adtangeaep=abenbuel IdT¥IS> ‘0T

‘6

<ILATEDS/><,.SL° 000 DTsSeg gsaspiodoxqns bal/satasnb/maTAL/ " * (=DUS «adTIOSRARL, =HOVAONYT LdI¥YI5> ‘8
<IdIHIS/><uSL° 000 TTNd Areummg~gsIspTodoxqns AL /sSmeTal/meTAl/ " - w=D¥S ,3ATIOSRARL . =HOVNONYT LJI¥IS> L
<IdTHDS/><4S[000 UTRU AL /UOUIOD /MOTAL/ * * ,=D¥S ,IATIDSRARL, =FDOYNDNYT LITHIS> ‘9
< 4§50 °8TAQS /UOWMIOD /MOTAL/ " * y=JTHH »SSD/3X2],=HdAL »I99USSTAIS,=THY ANIT>]
< IWD 00:00:80 0007 BUY 7O ‘POM,=INAINQD «SOITAXS,=AINOI-dIIH VIIW> 4
<AYIH> ‘€

<THRLH> A

<uNE//Z°€ TWRIH QGLA//OE€M//~w OITNd TRIH IAJALDO0Uj> T

(epoyy 1in4) ebessepy edwes 1S — | welbeig
¥000°££6802 "ON 1as00q Aswony
SNP9L6S6YEYTI TON |ogeT] el ssaidx3

0S

1°14

ov

ge

oe

S¢

Oc

Gl

01

85

PCT/US2003/035631

WO 2004/044696

! (u@A3TRg03, ‘€’ 4 A3TRAYS .) SN "S0T

! («e3eqddyol, 'z’ ,0aqns e3egIspPTOAYSy) SN “P0T

! (.ponssi, ' ,86e3s,)sY “€0T

H(TTnU’ T’ ,0IqNs” I8P TOAVS .) SN A

f()anN “T0T

()an “00T

() AN "66

¢! (WuoTARBTATINSBLOY, ‘TTNU’ ,0IqNS YSBIVS 4) SN 86

{()EN “L6

£ (W UOTIRIAITAAYHSLLOT, ' TTNU’ ,OIqNS™ HSRIVS W) SN 96

1()EN ‘S6

! (uPoNSST, /W AQTATIOYISRT.) SY "76

! (JPUBLB@{SBILO, ‘9’ « OGNS }SBLYS .) SN ‘€6

t{)EN "26

()N ‘16

f()an "06

(wdTesodoxdiusiIndol, ‘6 ’,TreleqboNpUewsa VS,)SN 68
{()EN 88

{{19° €022’ « TRIOIPURWSCIWE ,) AY L8

{(19° €022 » TRIOLIUBWARI MR,) 4V ‘98

(waresodoxgiuezindod, ‘6 ‘,ITelrogboNpURWS YS.)SN ‘S8
f(«BeNjuszanDol, ‘g ’.SoNpurwWSd VS.)SN 2

f()an g x:

{{wPZ200-GLT 4 ' 4 IQUNWTRTD ,) SY 4:

f{ WUTTR3O@UTeTDOR, ‘L /WITRISQWTRTDPURWSd ¥S.)SN "18

f()an "08

{{aP22000~%Ey ! W IDQUMNWTRTO,) SY “6L

‘(2aTTe3aquTeTdOd, ‘9 ‘.TTRi2qQUTRIOPURWSd ¥S.)SN i :7A

! (WAzon0D0ya0d,) A¥ “LL

‘(w000000L0S0E00TZ: ' WPRUSSIPURBWRSIDIRD) AY “9L

! (,pueuegol, s’ ,puewSd ¥S.) SN “SL

() EN TvL

{()EN “EL

f(«®3e3sSTIV¥. ‘«PIAueduwod,)svy “zL

{{ yAuedwo) sOURINSUI 93RISTIV. ‘.ouweNAuedwood,)Svy *TL
{ (wAueduopos, 'y’ ,AueduoDys .) SN “oL

1 (,9A3xRdo3, ‘€’ W A3TRedVYS) SN ‘69

S()aN “89

(g’ «3unop3aate,) IV ‘L9

{ (1T’ «BeTauotioe, gy "99

! (w@h3xedol, ‘¢ s A3TRedV¥S .) SN *S9

! (se3eqddyol, ‘7’ ,0IqNST eARAISPTOAVS .) SN "9

f(,pensSsSI, ‘,86e1s,)8Y “€9

S(TTu’ T’ ,0IqNS ABPTOIYS «) SN *Z9

! {,e3eq0.) sy "19

*09

f{yan "6S

)3y 8§

! (w3n0bo7, ’ ,an0BoT’ 0g/We3SAS 06/ v | WNOTILOVEN.) ¥D LS

{(TTnu’ y3x0ddng ‘ Z /WR3SAS 106/« ' W NOTIIOVEN.) ¥D “9s

{(TTnU’ ,WOH /0T /WeISAS ' 05/ ' wNOLIOVEN) ¥D *g§

¢ (yoTsedydIeesuUadp (SISPTOIOIANS, ‘4 * *YdIeds 970 /SoTTd Usd0’900/S9TTd puewsd’ T00/ « / «NOILOVEN.) ¥D 4
{ { ;osu0dsaybuUTPUSd JSISPTOI0IANS, ' 4@suodsay Butpusd ‘QT0/s9TTd USd0’'900/SS9TTd PuRwWRd’ 100/« ' WNOILOVEN.) ¥D €S
! (,TT¥®oURadenovbuTpuad dsSI9pPTod0Iqns ; ‘ weoueideooy Burtpuad ‘800/59TTd u2d0’900/S8TTd pUewWSd’ T00/ « ' «NOILOVEN.) VD “Zs
! (,SUOTIOVO,) Sy “TS

$000°2£5802 :"ON 1900 Asuiony
SNY9/6567EYTa ON |ode] [Ie ssaldx3

21°]

0s

Sy

oy

Ge

oe

4

0¢

Gl

ol

86

PCT/US2003/035631

WO 2004/044696

(

(

f{)EN “091

! (4 SSBTDI00YICGMOTINIOM,) SY “6ST

(0" wMOTINIOM] 4) IY "8ST

! {«pURWRQ ¥S ., ‘ wodAL3oaLqoioox,) SY “LST

f(uwaxe3,)8VY ‘98T

{{,Az03STH gpuswed, ' ,duelu,)SY *GGT

fua ' TTRUY ,UOTIDUNINLS v) SN “PST

f()an TEST

{ {4 SSeTDI00WTRGMNOTIHION,) SY “¢st

£{0 " wMOT AN TOMT W) IY “IST

! {(spueweq ¥s, ‘' »2dAr3oelqoloox,) SY “0ST

£{,3%93,)8SY T6VT

{ (2 TTE3S8Q gpuewsq, ‘' ,due,) S¥ “8¥%1

f(wa/TTOU’ ,UOTIDUNINLS v) SN “LYT

!(,SU0T30UNIO,) SY “9%T

! (yasTIUIo, ' TINU’ LSTINIWLS « } SN TSPT

VYT

)3y TEPT

f{)an AN

f()an TIPT

! ()an A

{(uoT3ebTaTINSeL0, ' TTNU’ ,OXIqNS YSBIVS .) SN “6ET

. {)EN “8¢1

{{,U0TIRINTAYYSRL0], 'TINU’ ,0IqNS YSBLYS « } SN SLET

. () EN T9¢€T

! (WUOTIRTAOBSN, / wA3TATIOVIAS®T.) SY "GET

! (WpURUDMSRLO, /9 ,OIqNS” HSBLYS .) SN TPET

! ()yaN TEET

1()aN TCET

1()EN “1€T

1{00°000¥% '« TRIOIPURWBQIWR ,) Y T0eT
JAITesodoxdiusIandol, ‘g !, TTeisaboNpuewsd VS«) SN “62t
1()aEN "8¢C1T

£{00° 000G’ 4 TRIOIPURBWRQIUR ,) Y LTt
(0070006« TRIOTIUBWARGWR ,) AV “9¢T
«aresodoxgiusiandol, ‘e ‘,TTea9gboNpuewsg VS .)SN 1A
f{ BeNjuszandol, ‘g ‘. SeNpuewsd ¥S.)SN ‘vet

2()aN YA

! A:HM.MOO\WMHIHU: ~._|HOD'.=H52=H..HMHU_.VMAN RAAN

£(WMTTedSQETRTDOR, ‘L ‘.TTelsquredpuewad ¥S.) SN “1et
{()EN c0ct

{(u80T000-FEw / w ISQUMNWITRTD,) SY T6TT

£ WQTTeds@uTeTdod ‘9 ‘.ITelsquTeidpuewed ¥S.)SN “8T1
1{08" ', Axan008y¥3nd,) av TLTIT

{{4000000L0¥0€00Z 4 ‘ sPONSSIPURWSISILP . } AY Tl

B ! (o pURWRQOl, ‘G’ JPURWRd ¥Su)SN *GTT
£{)aN PIT

t)an et

I ,uopxon, ‘. PIAuedwon,)SY AR

I (,Auedwo) 80oURINSUI UOPIOH, ' sSweNAuweduood,)svy TTITT
1 { ,Aueduonol , ' § ¢ Aueduodys ., } SN “0TT

! (WuA3TR403, ' € A3 TRAYS W) SN "601

L()aN "80T

(g’ »3unon3IaTRe,) IV ‘Lot

(1’ .Berduotioe,)dv “90T

¥000°/£5802 +"ON 1o%00(Asulony
SNY9L6SEYEYTA ON [8ge el sseidx3

gg

0S

1214

)4

GE

0e

Se

14

GI

]

87

PCT/US2003/035631

WO 2004/044696

Jaoddns

<Y/>WO0D " SRIDITS " MMM< W00 * SBIDITS “mmm/ / : d33Y, =FJOIY ¥> "STZ

3® 310ddng I2wo3sny SeId31s 210raucy 8sesTd ‘westqoxd STYA SATOSSI Ol i ARA
<Iq><Iq> ‘€12

TA9SMOIE INOK UTYITM PITYesTd ATAusaian) Io peijxoddns 0N ajdraoseaer ~ TOQ0 IO0xxd 931S ~212
<LAIYISON> a4

<, X009 AL=AI AIG> ‘01

< o {(}3TUI " Weob, =ayoING 20w =HIAIMNIDUVR 0. =IHDIFHNIOWYH +0.=NIDUVWNIAET «»0.=NIDIYHAOL AQOg> "60C
"80Z

<AQ¥dH/> “L0Z

<ILdTADS/> “90¢

<-=// "S0¢

pud WIS // A4

“€02

£()aN A4

“102

f()ay “00z

() AN T66T

f()ay "86T

f{)EN “L6T

£(0 ' w3{TOMIBNUO ,) Y "96T

CHWAONL G PIAURdWOD ,) SY “S61

! (uSTBINAORINURKH ADSIDP MBN, ' SWeu,)SY V6T
1(08LLL ! wAURAUODYS ,) SN “E€6T

f{yan "C6T

{(0’ «3{TOMIBNUO,) €Y “161

{{«DdIw ' wpIAuedwon,)sy “06T

! («&3TEDNSED % Ajaodoxq 9OURINSUI, ’ ,0WRU,)SY "681
1(9LLLL " yAURAUODYS .) SN "881T

()yaN "L8T

(0’ w3IOMIONUO , } Y “9871

! (yuopzon, ’,pIAuedwod,)sy “68T

! (Auediio) SOURINSUT UOPIOD, ’ ,OWEH,) ST “v81
S(PLLLL " wAuedUODYS .,) SN T€8T

1()AN "Z8T1

{0’ W3{TOMIBNUO ,) EY “I8T

{(w9Tad, ' JPpIAuRAWOD,)SV "08T

{(490URINSUL STIH. ', OWRU,)SY “6LT

C(TLLLL’ wAueduodYS .) SN "8LT

¢ { ,SUIR3TUTBWOFO] ,) SY LLT

! { JAuRduoDyYs . 4 SSRTOUTRWOP,) SY ‘9LT

HINGINLIY ‘XITIN0D // { (WXTTAROD w / w2FATWSATUTRWOD ,) SY -TAN
dMIO0T ‘DILYLIS ‘JIWYNAQ // { (W DIWNYNAC, * w2dAZUTRWOP,) SY S 7A
! {ysoTuedwopbutpuodsay, ! ,SWRNUTRWOD,) SV “ELT

(706’ W UTRWOQVYS 4) SN ‘ZLT

utewoq MeN // ! (,SuTeWwoqo,) sy TTLT
0L

() an “69T

f()ay "89T

t{,-obesssw 10118 uwoT3e2TTAdY, /2 HOUET OSH.) ¥D TL9T

{(,-obessaw TeUOTIRULIOFUT UOTIedTTddy, ', OINI OSH.) VD ‘99T

! (,SebesseRo,) Sy *691T

1 {oBSHO. TTNU’ WOSHWLS « } SN "P9T

TE9T

f()an "zo1

f()Ey “T91

¥000°£EG802 "ON 18%j00Q Asuwiony
SNY9.656VEYTd ON [9geT BN ssaidx]

as

0S

Sy

oy

Se

og

gc

0c

=1

ot

88

PCT/US2003/035631

WO 2004/044696

<TWIH/> "6TZ

<xaod/> “8TZ

<AIQ/> “LTZ

<LdTYDSON/> ‘912

¥000°2E£580¢ :'ON 18%00Q Asuiony
SNY9.656YEY1a ON |egeT ey sseidx3

89

10

15

WO 2004/044696 PCT/US2003/035631

Diagram 2 — JView™ HTML Generation

1. var aHTML = new Array():; // HTML Array

2. var sHTML; // HTML Stream

3.

4. aHTML [aHTML . length] = "<BODY>";

5. aHTML [aHTML. length] = "<TABLE>";

6. aHTML [aHTML.length] = "<TR><TD>This is some text.</TD></TR>"
7. additional HTML generation statements or method calls
8.

9. SHTML = aHTML.join(""); // Create the HTML Stream
10. JV_BODY.outerHTML = sHTML;

90

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

BACKGROUND - Inter-Organizational Workflow Management

Automated systems that process business transactions often need to manage
and track the flow of these transactions within the related business process (i.e.,
workflow). Typically, this workflow capability is explicitly coded within the software used
to control the system. These systems cover a wide array of business applications, of
varying complexity, including production forecasting/scheduling, order processing,
human resources management, financial accounting, sales management, etc.
Commercial examples of such systems include offerings from SAP, Oracle, and

PeopleSoft.

During the 80’s and 90’s, these systems were focused on integration of business
processes and data that existed within an organization (i.e., intra-organization).
Organizations that successfully implement such systems achieve reduced costs, higher
efficiency, and compete more effectively in the global economy. With the intra-
organization systems in place, these organizations are now looking to integrate the
business processes and data that exist between trading partner organizations (i.e., inter-

organizational).

Requirements and Challenges

At a minimum, intra-organization workflow management must be capable of the
following: 1) maintaining status information related to the current state of the business
transaction (Status). In general, the status information is defined in such a way that it is
easy to understand the flow of the transaction as is proceeds from inception to
conclusion, 2) maintaining ownership information related to the current owner of the
business transaction - i.e., the person/group/organization that is responsible for taking
the next action on the transaction (Ownership), 3) determining the allowed
operations/functions that can be performed on the business transaction at any given
point within the workflow (Navigation), and 4) determining the new state for a business
transaction when an operation/function is performed that affects that transaction (State
Management).

91

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

When workflow management for a complex business process is explicitly coded
within an application system, the following limitations arise: 1) itis very difficult to
determine whether or not all business process conditions can be handled; as a result,
comprehensive testing of such workflow is difficult, time consuming, and expensive, and
2) when the underlying business process changes, software modifications are required

to support any changes or additions to the related workfiow.

Beyond the requirements of intra-organization workflow, inter-organizational
workflow requires the following additional capabilities. 1) a common framework, specific
to the business process, that enables all the individual organizations to be able to
communicate about the status of a business transaction in a consistent manner; this is
referred to as community workflow status or inter-organizational workflow status, 2) the
ability to maintain the transaction status with respect to each individual organization
involved in the transaction (i.e., related to it's own internal systems or business
processes); this is referred to as organization-specific workflow status or intra-
organization workflow status, 3) the ability to distinguish between and amongst multiple
organizations involved in a transaction (i.e., the parties involved in the transaction), 4) the
ability to distinguish the role or relationship that any given organization has with respect
to a specific transaction, 5) the ability to manage the functions/operations that each
organization can perform based on their relationship in the business transaction and the
current state of the transaction, and 6) the ability to provide security and privacy for each
organization with respect to data and functions.

Inter-Organization Workflow Management Subsystem

The Inter-Organization Workflow Management Subsystem (or just Workflow
Subsystem) is designed to meet the requirements of both intra and inter organization
workflow. This subsystem is not dependent on a specific vertical business process or
application. This subsystem is unique in its ability to deal with multi-party workflow
management that spans distinct organizations. The following sections describe the key
characteristics and benefits of the Workflow Subsystem.

92

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

General
The workflow subsystem does not manage workflow based on explicitly coded
software instructions. Rather, it uses a series of workflow tables (data structures) and a

unique workflow algorithm to perform all workflow management operations.

The workflow tables are essentially a set of finite state machines (FSM's), that
define a closed loop system for the workflow related to a given business process. Using
this approach, the workflow defined for each business process is complete (i.e., no holes

or gaps can exist in the workflow table).

Status (Community Status — Inter-Organization Workflow)

With inter-organizational workflow, the workflow subsystem includes a framework
that allows all the participants to communicate about the status of their transactions
using a consistent language. For each business process, a specific community
framework (i.e., terminology, status codes, etc.) will be defined. The workflow
subsystem can support any number of independent community frameworks.

Within the folder, the stage is used to represent the main community workflow
status for the transaction. This is used to track the overall progression of the transaction
through its workflow towards conclusion.

For each task within the folder, the parties that are allowed to operate on that task
are defined. For each such party, a community task party state is maintained. This
allows the workflow subsystem to manage and track the community status of each party
on each task.

Status (Organization Status — Intra-Organization Workflow)
In order to support intra-organization workflow, a parallel framework (similar to the
community framework) is established within the workflow subsystem. The only

difference is that this framework is specific to a given organization. This framework is

93

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

used to manage and track any organization specific activities that occur within a
business process. For each business process, a specific organization specific
framework (i.e., terminology, status codes, etc.) can be defined (by party type). The
workflow subsystem can support any number of independent organization specific

frameworks.

For each party on the folder, the organization stage is used to represent the main
organization workflow status for the transaction. This is used to track the overall
progression of the transaction through its organization specific workflow towards

conclusion.

For each task within the folder, the parties that are allowed to operate on that task
are defined. For each such party, an organization task party state is maintained. This
allows the workflow subsystem to manage and track the organization specific status of

each party on each task.

Ownership
By maintaining the action party on each task within the folder, the workflow
subsystem is able to determine which organization is responsible for taking action on the
business transaction at both the folder level, and the specific task level.

Navigation
Based on the current state information maintained within the folder and tasks, the
workflow subsystem can determine the functions that can be performed at any time by
any party. This capability is referred to as workflow navigation or just navigation.

Using this navigation capability, the enclosing system that uses the workflow
subsystem can present to any user the list of valid business operations that can be
performed at any time (subject to that user's security profile). This eliminates the need

for the operator to remember the different workflow conditions and greatly aids in the

94

10

15

20

25

WO 2004/044696 PCT/US2003/035631

training of new operators. At the same time, this mechanism ensures the integrity of the

business process by preventing any “out of process” operations from being performed.

State Management
Based on the current state information maintained within the folder and tasks,
when a new function is performed on the folder, the workflow subsystem will
automatically update the state information within the folder (i.e., on the folder and any
tasks).

This capability is at the heart of the workflow subsystem and allows for an orderly
transition from one business state to another. Upon completion of any given workflow

transition, the folder will now reside in a new state (or just the same state).

Within the workflow table, it is possible to define conditional workflow. This
workflow allows the resulting workflow state to be set based on the value of any number
of additional business data elements contained within the folder (i.e., as affected by the
function that is just performed). The definition of these criteria can be arbitrarily complex

and any number of conditional workflow rules can be defined.

Commercial Example
The Electronic Subrogation Network is a commercial example of a fully
operational system that embodies the concepts described herein specifically for the

vertical market of Insurance Subrogation Claims Processing.
Terminology
This section contains terminology definitions that are useful in understanding the

concepts described in this section.

Folder

95

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Each distinct business transaction is represented by a folder. The folder is used
to logically contain all information related to this transaction (e.g., parties, tasks,

documents, contacts, alerts, attachments, events, etc.).

Party

A business transaction involves the interaction between two or more parties
where, for the purpose of that transaction, each party takes on a specific relationship
(described further below). With intra-organization workflow, parties are typically different
business units (e.g., division, department, etc.) within the same organization. With inter-

organizational workflow, parties are typically different organizations or individuals.

Relationship (Party Type)

For each specific type of business transaction (folder), one or more relationships
are defined. Each relationship defines the role that a given party will play with respect to
that transaction. For example, in a simple order management transaction (Order
Folder), one party represents the “Buyer” and one party represents the “Supplier”. As
such, for each party defined on the folder, that party’s relationship to the transaction is
referred to as their party type. FIG. 22 illustrates the relationships of multiple parties with
respect to an Insurance Subrogation Demand transaction.

Tasks
A task is used to represent an independent business activity (related to the
transaction for this folder). Each folder must have at least one task (its primary task).
With complex business processes, multiple tasks are used within the folder to manage
and track multiple parallel activities related to a given business transaction. For
example, for an order management transaction (Order Folder), one task is defined for

the order itself, and additional tasks are defined for each distinct shipment/invoice.
Action Party
For each task on the folder, the party responsible for taking the next action related

to that business activity is referred to as the action party. When the business transaction

96

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

is concluded, no further business activity will occur. At this point, no action party will exist

on any tasks within the folder.

Function
Each operation that can be performed on the folder, that affects the information or
status of the folder, is referred to as a function. Based on the folder, certain functions
can only be performed by a specific party type, while others can be performed by some
or all party types. In a simple order management transaction some examples of
functions include: issuing a purchase order (buyer), accepting an initial order (supplier),

creating a shipment/invoice (supplier), etc.

Business Transaction
An interaction between two or more parties that results in the formal exchange or
transfer of goods, services, capital, information, or other resources. Examples include

an insurance claim, a purchase order, booking an airline flight, ordering a book, etc.

Organization
Two distinct legal entities (e.g., companies or individuals) as opposed to different
business units (of arbitrary size) within a single legal entity.

Workflow
A defined set of business operations and/or processes, triggered by an initial
business event (business transaction), that proceed in a specific sequence or order, and
culminate in a conclusion or completion of the transaction. A simple workflow will follow
a prescribed set of operations in sequence to conclusion (single path). A complex
workflow will contain multiple conditional paths, only one of which will be taken based on

the business conditions present in the transaction.

Inter-Organization Workflow
A workflow that exists between two organizations for the purpose of
conducting/completing a business process/transaction specific to those organizations.

97

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Workflow State
A specific point within a given business workflow. For any given transaction, its
complete workflow will typically encompass many distinct states.

Workflow Progression (Stage)

Within the context of a business transaction, most transactions progress from
inception towards some form of closure. There can be many different paths that any
given transaction takes through the various workflow states towards closure. And, the
number of possible paths is directly related to the number of distinct workflow states and
possible transitions allowed in any given workflow (essentially most business workflows
are defined as “closed loop” processes in that any transactions entering the system will
eventually exit the system). Within the Inter-Organization Workflow Management
system, the current progression of a given transaction is referred to as its stage. The

stage is maintained in the folder for each business transaction.

Finite State Machine (FSM)

A model of computation consisting of a set of states, a start state, an input
alphabet, and a transition function that maps input symbols and current states to a next
state. Computation begins in the start state with an input string. It changes to new states
depending on the transition function.

(Above definition from NIST - http://www.nist.gov/dads/HTMIinniteStateMachine.html)

DETAILED DESCRIPTION - Inter-Organizational Workflow Management

The Inter-Organization Workflow Management Subsystem (or just Workflow
Subsystem) provides for both intra and inter organization workflow management. This
subsystem is not dependent on a specific vertical business process or application and is
unique in its ability to deal with multi-party workflow management that spans distinct
organizations.

98

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

This section contains detailed process and component descriptions related to the
workflow subsystem. This discussion assumes some familiarity with the following
concepts and technologies:

finite state machine concepts and terminology

general business-oriented transaction processing concepts

object-oriented design and programming

The workflow subsystem described in this section has been implemented within
the following business transaction contexts:
Insurance — Subrogation Claims (Demands, Responses, Arbitration
Filings, etc.)
Manufacturing — Order Processing (Purchase Orders, Shipping, Invoicing,
Returns, etc.) ‘ '
Retail - Store Management (Labor Scheduling, Employee Maintenance,
Timecard Tracking, etc.)
General — Call Logging and Problem Management

Overview

The following sections summarize the key concepts used within the system.

General

The following general insights have driven the development of the workflow
subsystem. A folder (defined below) is a container for a related set of data elements for
a given business transaction. In its purest sense, the true workflow state of any given
folder is represented by the distinct values that exist in all its data elements at any given
point in time. Unfortunately, this approach would not be practical for human
comprehension (i.e., information overload). From a practical standpoint, the workflow of
a given folder can be adequately represented by a finite set of value permutations that
occur across a subset of its data elements. Each such permutation is represented by a
given workflow state. This is a form of shorthand that allows humans to understand,

organize, and relate to the processing of any business transaction.

99

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Folder

Within the system, each distinct business transaction is represented by a
transactional folder. Each folder has the following key characteristics. ltis a logical
container for all information related to the transaction (e.g., parties, tasks, documents,
contacts, alerts, attachments, events, etc.). Within the folder, a major workflow variable
(stage) is maintained. This variable represents the workflow progression for this folder.
Within the folder, one or more parties (party) are defined. This collection of parties
represents the distinct set of organizations that are allowed to interact with this
transaction. Each such party so defined is governed by their relationship to the
transaction (referred to as their party type). This party relationship is used to constrain
the information that can be viewed and the functions that can be performed (by this
party, with respect to this transaction). Within the folder, one or more workflow tasks
(task) are defined. A task is used to represent an independent business activity (related
to the transaction for this folder). Each folder must have at least one task (its primary
task).

Stage

For any transactional folder, the stage represents the major progression (i.e., its
workflow progression) of that transaction towards its eventual completion or closure. In
general, once a transaction has moved to a given stage, it does not move back to a prior

stage.

Tasks and Task Parties

Within a folder, tasks are used to represent one or more business activities that
are occurring related to the completion of the transaction. The following are the
characteristics of a task:

The granularity of the task definition (i.e., the specific business activity to which it
relates) depends on the needs of the specific business application. By default, a primary

100

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

task is created when the transactional folder is created. When the task is created, a
certain number of parties must be assigned to the task (at least 1). This assignment is
used to constrain the information that can be viewed and the functions that can be
performed (by this party, with respect to this task). Additional parties can be granted
access to the task during its life. Once assigned, a party is never removed from a task.
For each party assigned to a task, a task party is created. Multiple tasks can exist within
a folder at the same time. This enables the system to support parallel business activity
within a given business transaction. Within each task party, a party specific variable
(party state) exists for each party defined on the task. This variable is used to track the
current workflow state of that party with respect to the task.

A single action variable (action party) exists for each task that identifies the party
that needs to take the next action for this task. Since multiple tasks can exist in a folder,
multiple action variables can exist (i.e., parallel workflow can be managed). Within each
task, a last activity variable contains a description of the last activity that was performed
on the task that changed the action party. Any party can view all the workflow states of
any task that it has access to. Any function can change the state of one or more party
specific state variables on one or more tasks (as defined within the workfiow table).
When all the party states on a task are “closed”, the task is “closed”. In this case, the
action flag is set to null (i.e., a task that is closed cannot require action). When the state
of the primary task is “closed”, the stage of the folder is “closed”. However, in this case,
other tasks within the folder may not be closed. This allows for “post-close” workflow to
occur in an orderly fashion. At the point all the tasks within the folder are “closed”, the
folder is “closed”. The true workflow state of a folder is really the aggregation of all states
on all tasks.

Community Workflow '
With inter-organizational workflow, a common language or framework must be
established for all organizations involved in the transactions. This allows for consistent

and effective communication related to the workflow state of any given transaction.

101

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Within the workflow subsystem, the following data elements represent this common
framework:

Folder — stage

Party — partyType

Task — actionParty, lastActivity

Task Party — partyState

These data elements represent the community workflow information that is

available to all parties defined for the specific folder.

Intra-Organization Workflow
Since any inter-organizational workflow must also exist within the context of intra-
organization workflow (i.e., workflow that is specific to a given organization), the workflow
subsystem supports the maintenance of the organization specific workflow states. The
following data elements are used to maintain organization specific workflow state:
Party —orgStage
Task Party — orgState

These data elements represent the organization specific workflow information.
This information is private to each party within the folder.

Workflow Data Model

FIG. 25 illustrates those main data entities and their relationships used by the
workflow subsystem. The Folder (SAFolder), Party (SAParty), Task (SATask) and
TaskParty (SATaskParty) entities contain the actual workflow state information for a
given business transaction. The Workflow Table contains the workflow definitions that

are used by the workflow processes.

Workflow Table
The Workflow table is at the heart of the workflow subsystem. Essentially, this
table is used to define and organize multiple Finite State Machines (FSM’s). These

102

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

FSM's work in combination to define and control the workflow for the entire application
system. This table and the related workflow processes are described in detail below.

For any given application system, a single workflow table is defined that contains
the community workflow definitions for all business transactions processed by this
application. Another table is also defined that contains the organization specific workflow
definitions. This organization specific workflow table is similar in structure to the

community workflow table.

Workflow State Transitions

The main purposes of the workflow table is to allow the system to determine the
next workflow state for a transactional folder based on its current state and the
completion of a given application function that alters that folder — i.e., the workflow state
transition. Within the workflow subsystem, the workflow state transition mechanism is

used to modify any or all of the following: stage, party state, actionParty, or taskParties.

Workflow Navigation

In addition to defining workflow state transitions, the workflow table implicitly
defines workflow navigation as well. For any given transactional folder in a given state,
the workflow table will define the application functions that are allowed to be performed in
this state. Based on these definitions, the workflow subsystem can return this list of valid

application functions for any folder at any time.

With an online system, this is useful as it allows the system to guide or navigate a
user through the system by displaying the allowed functions that are valid. This reduces
the workflow knowledge required by the users, speeds training, and allows lesser skilled

users to operate the system.
Action Party Management
One problem that exists with inter-organizational workflow is determining, at any

given time, which organization is responsible for taking the next action on the

103

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

transaction. With each task, the actionParty field contains the party type of the party that
is responsible for taking the next action on this task. In fact, since multiple tasks can
exist within a folder, the workflow subsystem is capable of keeping track of the action
party for multiple tasks.

Workflow Table Structure
The workflow table contains records that define the workflow for all business
transactions within a given application system. The detailed attributes within this table

contained in Diagram 3 below.

The records in the workflow table are organized into groups along the following

dimensions: folder type; task type; stage; task party type; and party State.

These groupings essentially divide the table into multiple sets of workflow records

along a given dimension.

Within these dimensions, each workflow record defines the workflow state
transition that is to occur after the processing of a specific application function has been
completed. Additionally, each workflow record implicitly defines the application functions
that are “valid” (from a workflow standpoint) within any given workflow state (thereby

allowing the system to support workflow navigation).

Workflow Operation Code
A given workflow record can be defined to control either workflow navigation,
workflow state transitions, or both. The operationCode field is used to specify which of

these workflow operations are to be performed.

Conditional Workflow
In most cases, workflow state transitions are simple and deterministic — the next

workflow state is determined simply by the current workflow state and the application

104

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

function that was completed. However, in some cases, the transition can only be
determined by inspecting other data elements within the transactional folder. In this

case, the workflow is conditional.

To support conditional workflow, the workflow table allows multiple workflow
records to be defined for the same workflow state and same application function. These
records are then further differentiated by the postConditionQualifier. Similar to a
“WHERE” clause within an SQL statement, this field defines the data condition under
which the state transition is to be performed. If this condition evaluates to “TRUE” the
workflow engine will perform the state transition as defined on this record. If not, it will
continue to evaluate the conditional qualifiers on the other workflow records (if all
conditions return “FALSE”, the workflow engine will return a workflow error to the calling

subsystem).

This conditional workflow capability also applies to workflow navigation. In some
cases, a given application may or may not be allowed within a given workflow state
based on the values of other data elements within the transactional folder. To support
this capability, a preConditionQualifier can be defined for each workflow record. When
performing workflow navigation, the system will only return application functions for a
given workflow state where this field is either null or where the qualifier evaluates to
“TRUE".

Assigning Additional Task Parties to a Task

As part of the workflow state transition mechanism, additional task parties can be
added to a specific task in response to an application function. This is controlled by the
taskPartyArray field. Once a given workflow record is selected for workflow state
transition, if the task party array contains a party type for a party that does not exist on
that Task, then the new partyType is added to the currentPartyArray field for that task.

Action Party Management

105

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

As part of the workflow state transition mechanism, the actionParty for a given
task can be modified in response to an application function. This is controlied by the
nextActionParty field. Once a given workflow record is selected for workflow state
transition and if the nextActionParty field contains a partyType, then the actionParty for
this task will be updated. Additionally, if the nextActionParty field contains a “?”, then this
indicates that the nextActionParty type is application dependent, and in this case, the
nextActionPartyType will have been provided from subsystem that invokes the workflow

manager.

Workflow Processing
There are two distinct types of workflow processing that are performed by the
workflow subsystem — workflow navigation and workflow state transitions. The following

sections describe this processing in detail.

Workflow Navigation
The following describes the operation of the workflow navigation mechanism.

The calling subsystem will invoke the GetWorkflowFunctions() class method of

- the WorkflowManager Class. In doing so, the following parameters will be passed:

oFolder ~ reference to the folder being accessed:;
sPartyType — the party type of the organization accessing the folder;
aFunctions — an empty array (that is to contain the valid workflow functions).

Within the GetWorkflowFunctions() method, the following will be performed:
Based on the folder reference, the current workflow state will be determined (e.g.,
stage, tasks, task party states, etc.).
Retrieve the Task records for this folder.
FOR EACH task within the folder (oTask),
Retrieve the task party records for this task.
FOR EACH task party record (oTaskParty),

106

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Query the workflow table will be queried using the following:
SELECT * FROM SAWORKFLOW WHERE
((folderType = oFolder.folderType) AND
(taskType = oTask.taskType) AND
(stage = oFolder.stage) AND
(taskPartyType = oTaskParty.partyType) AND
(partyState = oTaskParty.partyState) AND
(actionParty = sPartyType) AND
((operationCode = ‘N') or (operationCode = ‘B’))
);
FOR EACH workflow record returned,
IF the preConditionQualifier is null THEN
Add the application function specified in this record to aFunctions.
ELSE f
IF the pfeConditionQualifier evaluates to TRUE THEN
Add the application function specified in this record to aFunctions.
END IF
END IF
END FOR (no more workflow records)
END FOR (no more task party records)
END FOR (no more task records)

At this point, the aFunctions array contains the list of application functions that are
allowed for the current folder in its current state. The GetWorkflowFunctions() method

will return to the caller.

Workflow State Transitions
The following describes the operation of the workflow state transition mechanism.

The calling subsystem will invoke the EvaluateWorkflow() class method of the

WorkflowManager Class. In doing so, the following parameters will be passed:

107

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

oFolder — reference to the folder being processed;

oFunction — reference to the application function (whose processing has just
been completed);

sPartyType — the party type of the organization accessing the folder; and

sNextActionPartyType — if the nextActionParty for this application function is
application dependent, then this field will contain the nextActionPartyType, otherwise it

will be null.

Within the EvaluateWorkflow() method, the following will be performed. Based on
the folder reference, the current workflow state will be determined (e.g., stage, tasks,
task party states, etc.). The current stage is saved in sCurrentStage.

IF the application function (oFunction) indicates that a new task should be
created, THEN
Create the new task for this folder
END IF
Retrieve the Task records for this folder.
FOR EACH task within the folder (oTask),
Retrieve the task party records for this task.
FOR EACH task party record (oTaskParty),
Query the workflow table will be queried using the
following:
SELECT * FROM SAWORKFLOW WHERE
((folderType = oFolder.folderType) AND
(taskType = oTask.taskType) AND
(stage = sCurrentStage) AND
(taskParty Type = oTaskParty.partyType)
AND
(partyState = oTaskParty.partyState) AND
(actionParty = sPartyType) AND
((operationCode = ‘S’) or (operationCode =

B))

108

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

)
FOR EACH workflow record returned,
IF the postConditionQualifier is null THEN
Perform the state transition indicated
by this workflow record (see below).
ELSE
IF the postConditionQualifier evaluates
to TRUE THEN
Perform the state transition
indicated by this workflow record (see
below).
END IF
END IF
END FOR (no more workflow records)
END FOR (no more task party records)
END FOR (no more task records)

When a state transition is to be performed, the following operations will occur
using the values from the selected workflow record.
IF the nextStage is not null THEN
Set the oFolder.stage = nextStage
END IF
IF the nextPartyState is not null THEN
Set the oTaskParty.partyState = nextPartyState
END IF
IF the nextActionParty is not null THEN
IF the nextActionParty = “?” THEN
Set the oTask.actionParty = sNextActionParty Type
ELSE
Set the oTask.actionParty = nextActionParty
END IF

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

END IF
IF the taskPartyArray is not null THEN
Add any new parties to oTask.currentPartyArray.
FOR EACH new party added
Create a new TaskParty record for this Task
Add this new TaskParty record to the array of task
parties currently being processed (so that the party state for
this new task party record will be correctly initialized).
END FOR
END IF

At this point, the workflow state transition has been completed and the

EvaluateWorkflow() method will return to the caller.

NOTE: Within this processing, the evaluation of the workflow occurs after the
processing for the application function that modified the folder. This is necessary in
order to allow the application to modify the application data elements within the folder.
Once this is complete, any postConditionQualifiers (and resulting workflow) will be

evaluated against the new application data.

Workflow Subsystem Processing Example
This section illustrates one example of the workflow subsystem within the context

of the Insurance Subrogation application.

Subrogation Workflow Overview
A subrogation claim is a business iransaction between two insurance companies
— a demanding company and a responding company. This claim arises when an
accident occurs between two insured vehicles — one insured by the demanding party
and one insured by the responding party (where the responding party’s driver was liable
for the accident). In this case, the demanding company is entitled to seek

reimbursement from responding company for the costs incurred to repair their insured’s

110

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

vehicle. The demanding company initiates the transaction by sending a subrogation

demand to the responding company.

The applicant provides an ASP based application (electronic network), that
allows insurance carriers to process and settle their subrogation claims using an
automated system. This system can interface with an insurance carrier either

electronically or manually (via a web based interface).

The workflow related to processing a subrogation claim is complex in that the
transaction can follow many different paths during its life. As such, additional parties
(beyond the Demander and Responder) can be involved in the transaction. FIG. 22
depicts the full set of parties that can participate in a given subrogation transaction.

Folders
The Subrogation application deals with the following transactional folders:
Demand Folder (SAFolder_Subro)
Demand File Upload Folder (SAFolder_DemandUpload)
Company Folder (SAFolder_Company)
Location Folder (SAFolder_Location)
Group Folder (SAFolder_Group)
Operator Folder (SAFolder_Operator)
System Folder (SAFolder_System)
System Alert Folder (SAFolder_SystemAlert)

Each of the above folders has its own workflow defined within the workflow table.

For this example, we will only describe the workflow related to the Demand foider.

Parties
The Demand folder can have the following parties:
Demander (D) — the primary party (i.e., insurance carrier) who initiates the

transaction.

i1

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Responder (R) — the counter-party (i.e., insurance carrier or uninsured
motorist) responsible for the claim.

Arbitrator (A) — For demands being arbitrated, the arbitration organization.

Collection Agency (C) — If the responding party is an uninsured motorist,
the collection agency handling the recovery.

Demander’s Attorney (X) — For demands being litigated, the demanding
party’s attorney.

Responder’s Attorney (Y) - For demands being litigated, the responding
party’s attorney.

Demander’s Insured (E) — The demanding party’s policyholder.

Responder’s Insured (S) — The responding party’s policyholder.

Demand Folder Tasks

The Demand folder can have the following tasks:
Demand — the primary task representing the subrogation claim.
Arbitration — a secondary task used to track arbitration activity.
Litigation — a secondary task used to track litigation activity.

Demand Folder Stages
The following stages are defined for the Demand Folder:
Init — Initial stage used when the Demand folder is initially created.
Preparation — Demand has been created, but not issued to a responding
company.
Issued — Demand has been issued to a responding company.
Negotiation — Demand is being negotiated between the demanding party
and responding party.
Arbitration — Demander has decided to pursue binding arbitration.
ArbFinal — Arbitration is complete and an award has been made.
Litigation — Demander has decided to pursue litigation.
LitFinal — Litigation is complete and a judgment has been made.
Closed — the Demand transaction has been settled.

112

10

15

20

25

WO 2004/044696 PCT/US2003/035631

Party States
For each of the tasks above, and for each party, specific party states are defined.
Within the subrogation workflow, there are currently 60 valid combinations of party states

and stages.

Application Functions
Within the subrogation application, there are currently 60 different editing

functions that can be performed on a Demand folder.

Workflow Table Example
Within Diagram 4 (below) are some representative rows from the workflow table
used within the Insurance Subrogation application. These sample rows all relate to the
Demand folder and illustrate workflow for a Demander (partyType D) or Responder

(partyType R).

Based on the number of workflow states (60) and application functions (60), the
Demand folder has 3600 possible workflow conditions. However, since the workflow
table only contains “valid” workflow conditions, the final table only contains 1000 rows
(i.e., 2600 combinations are invalid). The following describes how these workflow rows

are used to control the subrogation related workflow.

Creating a New Subrogation Demand Folder (Row 344)
This workflow row is used to control the workflow when a new subrogation
transaction folder is initially created (from the application function

DemandD_CreateElectronic).

Line(s) Description

1,2 This row applies to the Demand folder (SAFolder_Subro) and Demand task.
35 When a folder does not exist, its stage and all party state variables are defined
as “Init".

113

WO 2004/044696 PCT/US2003/035631

Line(s)

4
8

6,7

10

11
12

13

14

Description

Within the Demand task, this row applies to the Demander (D) task party.
This workflow row is used for BOTH workflow navigation and state transition
processing.

Within the workflow state specified in this row, any state transition processing
will be triggered when the Demander (party Type D) executes the application
function DemandD_CreateElectronic.

No preConditionQualifier is specified. For workflow navigation, this function
will be unconditionally included in the list of allowed functions for this workflow
state.

A postConditionQualifer is specified for this workflow row. If this condition is
true, then the workflow state transition will be performed using the other values
for this row. If this condition is false, then the workflow transition will be
performed using another workflow row in the table (not shown).

If the state transition is performed for this row, the stage of the new folder will
be set to “Preparation” -

If the state transition is performed for this row, the party state for the
Demander’s task party record will be set to “Pending Issuance”.

If the state transition is performed for this row, the actionParty for this task will
be set to the Demander (D) (i.e., the demanding party will be responsible for
taking the next action on this task within this transactional folder).

Since this folder is being newly created, no parties have been assigned to the
Demand task. If the state transition is performed for this row, the
Demander(D) will be assigned to this task.

Workflow Navigation Control for Arbitration Function (Row 805)

This workflow row is only used to control workflow navigation for the Demander.

By using a “preConditionQualifier”, this row will allow the Demander to perform the

5 application function DemandD_Arbitrate only if the responding party belongs is a

member of the arbitration organization.

Line(s)

1,2
3
4
5

8
9

6,7

Description

This row applies to the Demand folder (SAFolder_Subro) and Demand task.
This row applies to the Negotiation stage.

Within the Demand task, this row applies to the Demander (D) task party.
Within the Demand task, within the Demander’s task party record, this row
applies to the party state “Counter Offer Approved”.

This workflow row will ONLY be used for workflow navigation.

A preConditionQualifier is specified for this workflow row. If this condition is
true, then the application function will be included in the list of allowed
functions for this workflow state.

The actionParty and application function for this workflow row.

114

WO 2004/044696 PCT/US2003/035631

Line(s) Description

11
12
13
14

Not applicable (since the operation code is N).
Not applicable (since the operation code is N).
Not applicable (since the operation code is N).
Not applicable (since the operation code is N).

Setting The Action Party With Assistance From The Application Function (Row

808)

This workflow row is used to control the workflow for an Inquiry function executed

by the Demander within the stage “Negotiation” and the Demander’s party state

“Counter Offer Approved”. Since an inquiry can be sent to one of many parties, this row

illustrates the use of the “?” for setting the next action party for this task on the folder.

Line(s)
1,2

3

4

5

8

6,7

10
11
12

13

14

Description

This row applies to the Demand folder (SAFolder_Subro) and Demand task.
This row applies to the Negotiation stage.

Within the Demand task, this row applies to the Demander (D) task party.
Within the Demand task, within the Demander’s task party record, this row
applies to the party state “Counter Offer Approved”.

This workflow row is used for BOTH workflow navigation and state transition
processing.

Within the workflow state specified in this row, any state transition processing
will be triggered when the Demander (partyType D) executes the application
function DemandD_Inquiry.

No preConditionQualifier is specified. For workflow navigation, this function
will be unconditionally included in the list of allowed functions for this workflow
state.

No postConditionQualifer is specified for this workflow row. If triggered, the
state transition specified in this row will be unconditionally applied to the folder.
If the state transition is performed for this row, the stage of the folder will NOT
be changed (since this field is null).

If the state transition is performed for this row, the party state for the
Demander’s task party record will NOT be changed (since this field is null).

If the state transition is performed for this row, the actionParty for this task will
be changed. Since the value specified in this row is “?”, the application
function will have passed the actionPartyType to the calling subsystem. This
value will have been passed on the EvaluateWorkflow() method. This value
will be used to set the actionParty for this task. If no value is provided by the
calling subsystem, a workflow error will be returned.

No new parties will be added to this task.

115

WO 2004/044696 PCT/US2003/035631

Workflow State Transition Processing Only For Counter Offer Approval (Row
856)
This workflow row is only used to control the workflow state transition when a
counter offer is approved by the demanding party. Since the ability to perform this
5 function is based on the party state of the responding party, the workflow navigation for
this function is defined within the responding party’'s task party section (described later in
row 936).

Line(s) Description
1,2 This row applies to the Demand folder (SAFolder_Subro) and Demand task.

3 This row applies to the Negotiation stage.

4 Within the Demand task, this row applies to the Demander (D) task party.

5 Within the Demand task, within the Demander’s task party record, this row
applies to the party state “Demand Issued”.

8 This workflow row is ONLY used for workflow state transition processing.

6,7 Within the workflow state specified in this row, any state transition processing

will be triggered when the Demander (partyType D) executes the application
function DemandD_Approve.

9 Not applicable (since the operation code is S).

10 No postConditionQualifer is specified for this workflow row. If triggered, the
state transition specified in this row will be unconditionally applied to the folder.

11 If the state transition is performed for this row, the stage of the folder will NOT
be changed (since this field is null).

12 If the state transition is performed for this row, the party state for the
Demander’s task party record will be changed to “Counter Offer Approved”.

13 If the state transition is performed for this row, the actionParty for this task will

be set to the Responder (R) (i.e., the responding party will be responsible for
taking the next action on this task within this transactional folder).
14 No new parties will be added to this task.

10
Workflow Navigation Based On The Party State Of Another Party (Row 936)
This workflow row is used to control the workflow navigation to ensure that a
Demander can only approve a counter offer based on the party state of the responding
party. Additionally, when if the demanding party performs this function, this row is also
15 used to update the party state for the responding party.

116

WO 2004/044696 PCT/US2003/035631

Line(s) Description

1,2
3
4
5
8

6,7

10
11
12

13

14

This row applies to the Demand folder (SAFolder_Subro) and Demand task.
This row applies to the Negotiation stage.

Within the Demand task, this row applies to the Responder (R) task party.
Within the Demand task, within the Responder’s task party record, this row
applies to the party state “Counter Offer Issued”.

This workflow row is used for BOTH workflow navigation and state transition
processing.

Within the workflow state specified in this row, any state transition processing
will be triggered when the Demander (partyType D) executes the application
function DemandD_Approve.

No preConditionQualifier is specified. For workflow navigation, this function
will be unconditionally included in the list of allowed functions for this workflow
state.

No postConditionQualifer is specified for this workflow row. [f triggered, the
state transition specified in this row will be unconditionally applied to the folder.
If the state transition is performed for this row, the stage of the folder will NOT
be changed (since this field is null).

If the state transition is performed for this row, the party state for the
Responder’s task party record will be changed to “Pending Response”.

If the state transition is performed for this row, the actionParty for this task will
be set to the Responder (R) (i.e., the responding party will be responsible for
taking the next action on this task within this transactional folder).

No new parties will be added to this task.

Adding Parties To A New Task (Row 51)
When the demanding party performs the function DemandD_Arbitrate (indicating

that they are pursuing arbitration for this demand), the workflow subsystem will create a

new task for this folder — the Arbitration task (as indicated on the Function record for this

application function). The workflow table contains distinct rows to manage the workflow

state defined by each task within a folder. This workflow row is only used to control the

workflow state transition for the newly created Arbitration task.

Line(s) Description

1,2

This row applies to the Demand folder (SAFolder_Subro) and Arbitration task.
This row applies to the Issued stage.

Within the Demand task, this row applies to the Demander’s (D) task party.
Within the Demand task, within the Responder’s task party record, this row
applies to the party state “Init’.

This workflow row is ONLY used for workflow state transition processing.
Within the workflow state specified in this row, any state transition processing

117

WO 2004/044696 PCT/US2003/035631

Line(s) Description

11

12

13

14

will be triggered when the Demander (partyType D) executes the application
function DemandD_Arbitrate. '

Not applicable (since the operation code is S).

No postConditionQualifer is specified for this workflow row. If triggered, the
state transition specified in this row will be unconditionally applied to the folder.
If the state transition is performed for this row, the stage of the folder will be
changed to “Arbitration”.

If the state transition is performed for this row, the party state for the
Demander's task party record (within the Arbitration task) will be changed to
“Preparing For Arbitration”.

If the state transition is performed for this row, the actionParty for this task will
be set to the Demander (D) (i.e., the demanding party will be responsible for
taking the next action on this task within this transactional folder).

Since this task is being newly created, no parties have been assigned. If the
state transition is performed for this row, the Demander(D) and the Responder
(R) will be assigned to this task.

Diagrams — Inter-Organizational Workflow Management

The following diagrams illustrate a number of features of the Inter-Organizational

Workflow Management subsystem described above.

Diagram 3 - Workflow Data Model Schema — Workflow Table (SAWorkflow)
Diagram 4 - Workflow Table Example — Insurance Subrogation

118

PCT/US2003/035631

WO 2004/044696

("o19 “1epjo4peojdnpuewieQys ‘1epjo40iqnSyS
“6-9) saydde p109a1 MOJPHIOM SIU} YOIYM 0} Jap|o}

U} Jo sweu Ayjus sy} surejuod piey syl “1epjo} jo adAy ey d N ¥9 | Buuls adA 11epio}

"uonouny ey bulwopad Aued ey 1o adAy Aued ey o N } | bums adA | Aueduonoe

: = T D sib@ | | edAL : T
uonduosag | bay:| sinN | 29g |- us| eleqa swieN
seinquuy
areisAued
odA | Auedisel
abels
adAsel
adA 11ep|o}

:sdnoib/Ayoiessiy Buimoijo} ayy ojul paziuebio aie 8jge} Sy} UIYIM SPI00ai MOJPIOM ay L

*19p|0} 8L} JO B1els

MOJPHOM JUBLIND By} UO paseq ‘uoiouny usAf e Bulwioped Jsye 1ap|o} 8yl JO 81els MO|PIOM 1xaU au} suluuelep 01 (2

‘(010 ‘eyelsqans

‘a1els ‘odA | Aued ‘obels) uoipuOD MOJPHIOM UBAIB B UO peseq ‘pamole aie 1ey) sdejs MojpHom xau ey auluusiep ol (|

:sesodind mojyiom oM} 10} pasn si d|gel SIY L

*19p|0} Teyl UIyIM sennue Auedyse] S pue 3seysS uiyum splel Aueduonoe pue ‘eres ‘ebels ay [04uod

0} 8|qe} SIY} 9Sh SPoyleW JUsWabeuBW MOBHOM 8U} ‘Jep|o} & Uo pauioyad si uonouny Suips, Ue JoAsusypn “uoledidde

uonib Aue 10} pauliep Si eyl MOJBHOM AJIUNWILLOD 8Y) [043U00 0} pasn Ajjus sy} sjussaidal Bwiayos [epouwl efep siul

(MOIPHOAYS) SI0BL MOIUOA — BWSYOS [8POIA BTeQ MO|PHIOM — € Weibelg

¥000°2£5802 "ON o300 Astuony
SNY9.656vEHTa +ON [egeT el ssaidx3

Oc

Si

ot

119

"pa1oayfe Jou si ebes Jualnd ey} ‘Inu S| pjell sIyt |

"Aus mojpjiom
sy} Jo} (Apus Jepjo4 8y} uiyim) 1es aq o} abess 1xeu sy

¥9

Bus

abeigixau

PCT/US2003/035631

"pajosye jou si (Aued
Siup Joj) erels ofyioads Aued yuanno sy ‘inu si pial sy Ji

"Anus mojpyiom siuy Joj (Aus Auegyse] ys
oiioads sy} uiyim) arels oyoads Aued 1xeu ey

9

Bus

ejeisAuedixeu

SE} Yyoes 1o} uonouny uoneolidde auyy Aq 18s altem ey Aued
uonoe 8y} Joj senjeA sy} ssed pinoys §i 4Bp|o} B 10} MOJPHOM
U} srenjeAs o} Jebeue|\ MOIPHOAN BU S|[eD Td L. 8yl UsYM

(., © SelIoads Yse) yoes J)

Ysey yoea Joy Aued uonoe sy Aoeds o} eney Aew uonouny
uoneolidde sy ‘isixe Aew syse} sjdnnw souig *(jeo
alepliep auyi Buunp) yse; usnlb e Joj Aureduonoyixsu, sy
}es 0} uoyouny uoeoljdde sy) smojje jeys [[eo |dy ue epiroid
1SnWwi 4L &y} ‘os Buiop uj "uonndexs ye uonoun; uonesijdde
Aq AjreoiwreuAp paujwielep eq jiim Aueduoioyixau

au} ey Jebeue|y MojpLIOAA BY} O} Sajedipul jey)

an[eA [eloeds e sl enfeA i, 84l ., B0 ‘(Y 1o ‘Y ‘q “69)
9poo adA} Aured pifea e ureluoo ued plaly siy; ‘peyioads Jf

")sel Siy} Joj uolor JXau
a8 bunyey Joj sjqisuodsai si feyy odA Aped sy seuoeds

bums

Aueduonoyxeu

"‘pawioped
Buieq uonouny syl M pareroosse (UoROUNDISULIUY'S

Buus

ut payioads se) uoioUN4OISULUL 8U} JO Pl U |

IR Coe e . ,co_ﬁ_iwunw

gse

us

adAl
eleqg

pjuoiouN4oISuULUl

awieN

WO 2004/044696

¥000°£ES802 :"ON 104000 Asuiony
SNY9.656¥EYTA "ON [oge [le|y ssaidx3

120

PCT/US2003/035631

WO 2004/044696

(oyoads adAy Aued) e1eis Moo

9

bus

areiSAued

‘suoneledo uoiebineN pue ebueyd
81e)S Yiog 10} pasn s| MOl SiU} Jeyl Ssredipul — yjog — g

*19pj0} BU} JO B1E]S JUSLIND BUj} U paseq
pamolfe aie Jey) suonouny Buips Jo 19s pijeA syl sulLLISIEp
0} pasn Ajuo si moi siy} Jeyl sejeaipul — uogeBineN — N

‘pawoyiad useq sey
uogouny Bunips ue Jeye Jep|o} L1 JO S1elS IX8U 8y} 8lenjens
01 pesn_Ajuo si moi sy sejedipul — abuey) alals - g

'SMOJ|0} SB MO SI) 10} uoheIado MO[PHOM By L

Bums

apopuonelado

"JUSAS Jey} 1o} p| ejejdwe) Juens sy Aioaeds
0} pasn si pjal} siy} ‘pejessusd aq 0} S| JusAS BYE)S IXBU, B Jj

S¢S

Bums

plele
jdwia jjusngerelSixau

(linu st pay
Siy} usy} ‘1epjoy) ey} “o'1) Aijue mopupom sl 1oy 198lqo 1001
8} Sk aules sy} si Juane 8y} Joj 10alqo 1001 8yt)| :J1ON

"passoooid Bulaq AjusLino si ajels

MOIPHOM BSOUM 12pjo} 8yl oq Jiim yied Asy sy 1o} 109lqgo
1001 8Y] "Ju8As SIY} o} 108]qo 1001 ay} 0} yied Asy suyy
Aj1oads 0} pesn si pjal siy) usy} ‘(pjerejduwia | JusagereISIXEU

gGe

buns

1004

e Aq pereoipul se) payelsush aq 0} S| JUSAS BJElS 1XBU, B J|

- “uopduoseq.

“|-s16@

seQq

ue1

adAL
“ejeq

0 | Ylediuangarelsixeu

© oweN’

$000° 285802 "ON 19%00(Q Asuiony
SNY9.6S6¥EY1T ON 18geT Jilely ssesdx]

121

PCT/US2003/035631

WO 2004/044696

"abejs Moo

$9 | Bumg

abeis

"POMOI[ESIP

SI Jl ©SIMISUIO ‘PaMOl[e S AIUS MOJPLIOM Si} 40§ palioads
uopouN} 8y} Uay} NI, 0} seleniead Jayrenb ayy Jj “euenb
aU} Senfens [[im WaIsAS ay) usu} ‘Jinu Jou St piets Siuy Ji

‘pawioyed
Ajyeuonipuooun eq ued Anus mojpuom siy) Joj psioads
uonduny 8yj 1eyy pawnsse st it usy} ‘inu st piey sty i

‘pauwlopad
8 ued Aljuse MOJPYIOM SIL} 10} paioads uonouny ey
Jou IO Jaisym suiwisiap Ajjeuopuod o} pasn Jaiyienb v

000t | bulig

Jayienpuonipuodad

‘pauloyad
Ajjeuoiypuooun aq ued Aljus MojPHOM SIUL 104 paloads ejels
MOJMIOM IX8U 8} JeU) POLLNSSE S I USY} ‘finU SI piai SIU} J|

"awll} uanib Aue

Je anuy 0} ajenjeAs pinoys Jaifenb auo Ajuo pue suo Ajuo
Teyt Ut JAISNTOXA ATIVNLNIA 84 1SN MmO J0 195 Ui
© 10} payoads sialifenb sy} ‘pasn st piolf siyl USYM JLON

" oniy, 0}
seen(eAs ey} 1oylienb asoym Mol 8U} UO paskeq 81els Moy}
MIOM IX8U 8U] 18S pue Mol yoea 10} Jallienb ayy arenjeas
fiim wieisAs ay| isyiend syl Aloads [[iMm 1elS MOjBoM
WaLINd 8} 10} 8)ge} S} UIUNM SMOI SI0W 10 OM] ‘OSED SIY}

U] "MOIPUOM JBUOIPUOD, Loddns 0} pasn siJaiijenb siyy

- uopdiioseq

000¥ | Bums
© 1 sdAL

1 uet| ‘ereq

Jayfrenpuonipuosod

aweN

000" 265802 :*ON 1ox00Q Aoulony
SNYOLESEYEYTA TON loqeT IRy sseldxy

122

PCT/US2003/035631

"(mojeq sdiysuopejey ses) pjey diysuonejey

oje|dwa
LuengeieiSixoNAexis

"« ' B UM paoejdal

aq |IIm g, U} pUe snje}s Jualind a8y} 0] pepuadde aq

[l!m plel} SIU} JO 8nfeA eyl — 1, SI J810eIeyo JSil pUe ||NU-UON
"Sniels 8y} se pasn a4 [IM pial} SIUL JO 8njeA 8y} — |[Nu-UoN
"snjejs 8y} se pasn e ||Im ejels s Aued uonoe ayy — [INN

“SMOJ|0} SE plal} Sy} Ul enfeA ay} uo paseq Aued ejeudoidde
8y} 1o} snjels sy} 18s |[Im Jebeuely MOIMIOAN YL

"(Auediselys) Aued

g5z

Bumg

oHi0ads sy} 10} Xse) 8yl JO SNjels ay} 10s 0} Pasn si plel Siy L

i

- ue

adAL

ereg

snjels

aweN

WO 2004/044696

¥000°2€5802 :"ON 1e3o0Q Aswiony
SNY9.656YEYTA TON [9GeT IIBIN Sseidx3

123

PCT/US2003/035631

WO 2004/044696

"parosyfe buteq st (Aedise] vs ul
pauleluoo) sjgeueA ayels asoym Aued ayy jo edA Aued ey

i | Bums adA | Auegise]

'Y pue 'd ‘g
: paulep are sepoo adAy Aued Bumojjo} ey) ‘uoneboigns 104

"yse} ayy 0} Aued ayy yuyj 0} Auedyse] ys ue a1ealo
M WwiojsAs oy Yse} siyl 01 sseooe uanib oq 0y st Aued e §j

"UME) SI UOIIOE OU UBY} ‘19p|0) eyl
Uo 1SIX8 Jou Sa0p play sy Ut paipoads adAy ayy jo Aued e

“UBME} SI UOKOR [RUOIIPPE OU USY} *YSE} SIU) O} SS8008 UBAIB

ueaq Apease sey pioy siyy uiyim peuoads Aued usaib e J

"{se} € 0} peppe 8q
ueo Jey) seed seiioads Ajuo i jey ut sAlIppe st piay syl

:pajou ag pinoys Buimoljo} ey g

"(epog adAy Aued ayy o)

loyoeieyo o|buls e Aq pejusasaidal st adAy Aued jounsip yoes
a1euym sepod adA; Aued asow 10 auo jo Buibus e st pjsy
Siy Jo xejuhs ey Agus molpiom siyi Aq pejuesaidai ysey

9t | Bums RenyAuedyse)

a1 01 sseooe uanib aq pinoys 1eyl sadAy Aued ey; seloadg

" uopduosag |

“adAL

‘. ,.cm._ eleg| . mez

$000°LE5802 "ON 1ex00Q Asulony
SN¥92656vEY 1A TON 19geT ey ssaidx3

124

PCT/US2003/035631

WO 2004/044696

-Kijus mopppom siyy ul payioads SSejo eyl seyoewl Ssejd
108lgo 1001 asoym wiioy Aue 10} (Jeq uonde) Jeq MojPHIoM
o} Ul pakejdsip 8q pinoys (uonouny siy 10}) Uolng e eyl
sejeslpul pjey siy) pawoads Ji ‘josuoo uogebiaeu o) pesn 0} A $9 | BuS | SSE[DI00HIBEMO[BIOM
uorebn A
uonenqry
puewsaq
:ae uoeboigns 1o} sadA} ysel pijea sy |
")se} Jo 8dA} 8y | N ce | bumsg adA Dise}
RS e R (e T adA) o
- - uonduoseq | bay | SIINN | .08g | us1| eled auIeN

£000°2£5802 'ON 19400Q ABuiony
SN¥9.L6S6¥EF1A ON j8ge IfelN ssaidx3

125

PCT/US2003/035631

WO 2004/044696

“(suonouny punoibxoeq

Bunebbuy Jof Jou) swejgosd mopppiom Buibbngep

10} pasn 8q uBd pue JUsAe Jlejep,, B SI JUana siy |
‘pajen[eAs st Mojpriom syl ‘Jeye pue ‘o] Joud yloq Joap|o}
8y} JO SlelS MOPPHOM BU] SPI0JaI 1.y} JUaAS oueuab,

© a1ealo shemje jjim Jebeuely MOIPHOAM BUL ‘JLON

‘peytoads aq pinoys diysuoiiejal sy} ‘(Ajjeuopuod
pa1abbuy aq 0} spasu uonouny punoibyoeq

€ 8J8UM) MOJPHOM [ELUOIIIPUOD IO * UOIOUNLOISUMIUIYS
8y} Uo pauyap st jey Jusne uone|dwoo, ey

Buisn pawuopad eq AjjeoidAr ueo siyi ‘seujus MO|PIOM
feuoiipuooun 104 “uoroun; punoibxoeq e Jebbuy

JIM Jey) Jusne ue 8jeald o} pasn AjjeoidA; si pial) siy |

-aoe|d Bunyel st 1ey; ebueyo ayels
sy} Bunueseidel Juene, oyoeds uonesidde ue sjesio

0} pasn eq 0} S} yew} oyeldwio) JuaA3yS 8y ‘paijioads Jj 9] oreldwa uangyS -1 | erejdwe] JusnJe)elISIXeNO}
P e e[(uoneunsapadinos) | adAL -

uonduosaq [*bad | - 'spieid diysuonejey | |ed awieN

sdiysuoneley

¥000°2E£G802 :'ON 18%00@ Asulony

SN¥9.656vEYTa TON [9qET [IBIN SSeudx3

126

10

15

20

25

30

35

40

45

50

55

60

65

WO 2004/044696

PCT/US2003/035631

Diagram 4 - Workflow Table Example — Insurance Subrogation

The following is a small subset of rows from a Workflow Table used within the Siteras

Insurance Subrogation application.

RowNumber - 344
FolderType:
TaskType:

Stage:

TaskPartyType:
PartyState:
ActionParty:

Function:
OperationCode:
PreConditionQualifier:

VIO U > WN

10. PostConditionQualifier:

11. NextStage:

12. NextPartyState:
13. NextActionParty:
14. TaskPartyArray:

RowNumber - 805

FolderType:

TaskType:

Stage:

TaskPartyType:
PartyState:
ActionParty:

Function:
OperationCode:

. PreConditionQualifier:

WO U D WN

10. PostConditionQualifier:

11. NextStage:

12. NextPartyState:
13. NextActionParty:
14. TaskPartyArray:

RowNumber - 808

1. FolderType:

2. TaskType:

3. Stage:

4, TaskPartyType:

5. PartyState:

6. ActionParty:

7. Function:

8. OperationCode:

9. PreConditionQualifier:
10. PostConditionQualifier:
11. NextStage:

12. NextPartyState:

13. NextActionParty:

14. TaskPartyArray:

RowNumber - 856

1. FolderType:

2. TaskType:

3. Stage:

4. TaskPartyType:

5. PartyState:

6. ActionParty:

7. Function:

8. OperationCode:

9. PreConditionQualifier:
10. PostConditionQualifier:
11. NextStage:

12. NextPartyState:

13. NextActionParty:

SAFolder_Subro
Demand

Init

Demander (D)

Init

D
DemandD_CreateElectronic
B

DataComplete
Preparation
Pending Issuance

SAFolder_Subro

Demand

Negotiation

Demander (D)

Counter Offer Approved

D

DemandD_Arbitrate

N
ResponderIsArbitrationMember

SAFolder_Subro

Demand

Negotiation
Demander (D)

Counter Offer Approved
D

DemandD_Inquiry

B

SAFolder_Subro
Demand
Negotiation
Demander (D)
Demand Issued
D
DemandD_Approve
S

Counter Offer Approved
R

127

10

15

20

25

30

35

WO 2004/044696

14. TaskPartyArray:
RowNumber - 936

1. FolderType:

2. TaskType:

3. Stage:

4. TaskPartyType:

5. PartyState:

6. ActionParty:

7. Function:

8. OperationCode:

9. PreConditionQualifier:
10. PostConditionQualifier:
11. NextStage:

12. NextPartyState:

13. NextActionParty:

14. TaskPartyArray:
RowNumber - 51

1. FolderType:

2. TaskType:

3. Stage:

4. TaskPartyType:

5. PartyState:

6. ActionParty:

7. Function:

8. OperationCode:

9. PreConditionQualifier:
10. PostConditionQualifier:
11. NextStage:

12. NextPartyState:

13. NextActionParty:

14. TaskPartyArray:

SAFolder_Subro
Demand

Negotiation
Responder (R)

Counter Offer Issued
D

DemandD_Approve

B

Pending Response

SAFolder_Subro

Arbitration
Issued
Demander (D)

Init

D
DemandD_Arbitrate
S

Arbitration

Preparing For Arbitration
b
DR

128

PCT/US2003/035631

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

BACKGROUND - Inter-Organizational Transaction Processing

During the 80's and 90’s, many business transaction processing systems were
focused on integrating business processes and data that existed within an organization (i.e.,
intra-organization). These systems cover a wide array of business applications, of varying
complexity, including production forecasting/scheduling, order processing, human resources
management, financial accounting, sales management, etc. Commercial examples of such
systems include offerings from SAP, Oracle, and PeopleSoft. Organizations that
successfully implemented such systems achieved reduced costs, higher efficiency, and
were more competitive. With the intra-organization systems in place, these organizations
are now looking to integrate the business processes and data that exist between trading
partner organizations (i.e., inter-organizational).

In 1999 and 2000, a number of web-based “B2B Exchanges” emerged. These
virtual marketplaces demonstrated the tremendous value of integrating business processes
and data across different organizations. Unfortunately, this technology movement failed due
to a fundamental flaw in the concept of the exchange — namely, that while these exchanges
were good for buyers (due to reduced prices for goods), the same exchanges were not good
for suppliers because of the downward price pressure due to increased competition. The
resulting marketplace had many buyers, but no suppliers — hence, the marketplace
collapsed.

Even though this initial B2B movement failed, it clearly demonstrated that substantial
cost reductions and greater efficiency could be achieved with systems that automate
transaction processing between trading partners (i.e., Inter-Organization Transaction
Processing).

Requirements and Challenges

This section provides an overview of the requirements of an inter-organizational

transaction processing system.

129

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Central Processing Network

Unlike intra-organization transaction processing (where the transaction processing
system can be implemented directly within a given organization), inter-organizational
transaction processing requires that information flow through a centralized hub or network
(either explicitly or logically). For any given vertical market, this central network is best
implemented by a single neutral third-party organization (e.g., a clearinghouse). This
facilitates broad participation within a given vertical network by eliminating any data
privacy/ownership concerns that would arise if the network were run by one of the dominant
organizations within that vertical market.

In addition, by connecting to the trading community through a centralized network,
the numbers of connections that need to be maintained are dramatically reduced when
compared to a point-to-point network. With a centralized network, each member maintains
only a single connection to the network (rather than maintaining one connection per trading
partner).

Insulation of Member Organizations
The value of the central network lies in its ability to insulate the member organizations from
the implementation details necessary to connect to the network. Rather than creating a
single common set of standards that all member organizations must adhere to, the central
network facilitates membership by allowing each member organization to communicate and
integrate with the network in a manner that best suits the needs and capabilities of that
organization. To do so, the network must insulate all member organizations along the
following dimensions. ‘

Connectivity Insulation
The network must support a wide array of interface capabilities. This allows member
organizations with varying technical capabilities to interact with the network. Some
organizations will want to interface with the network using fully automated interfaces
(communicating message based transaction information), while other less sophisticated

130

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

organizations will want to interact manually (using a web-based interface). This facilitates
broad participation in the network and provides technical interface insulation.

Data Format and Content Insulation

Building on the connectivity insulatibn described above, the network must support a
wide array of data formats while maintaining the meaning and content of the application data
within the specific vertical market. This allows members to send/receive data elements
associated with each business transaction in a format that is native to their local system. To
support this requirement, the network will need to perform both format and semantic
translations. This reduces the integration requirements further increasing member
participation.

At the heart of this capability is the definition of a “unified data model” which is
specific to the vertical market. This data model provides a single target database against
which all translations are performed. Simply put, incoming data is transformed from its
member specific inbound format to the format prescribed by the unified data model — the
same process is performed in reverse for outbound information.

Business Process Insulation

The previous requirements allow the members to 1) connect, and 2) exchange data
in a consistent manner. With this capability in place, the network must provide a common
framework for conducting inter-organizational transactions (inter-organizational workflow)
while also insulating each member from the specific business processes and workflows that
are unique to their organizations (intra-organization workflow). The common transaction
framework will be specific to a given vertical market and defines a common business
process that allows all members to communicate consistently about the transactions being
processed by the network. For more information on this capability, refer to the related
section on “Inter-Organization Workflow Management”.

In addition, this insulation also ensures for the consistent processing of each

transaction. Rather than just passing information from one member to another, the network

131

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

must provide the application specific processing that is required by a given vertical market.
At a minimum, this processing must maintain all data related to the inter-organizational
transaction as defined within the unified data model for that market.

Structured and Unstructured Information

Most automated business systems deal with structured information where the
structure of the information is decomposed into related sets of data elements (attributes) that
are grouped into data entities. In turn, the data entities are stored within a database
management system.

While structured information is necessary, many inter-organizational transactions
involved related information (supporting documents) that exists in unstructured format (e.g.,
pictures, images, audio, video, etc.). Since most inter-organizational transactions currently
occur manually via mail and fax, this related information is usually passed along with any
structured information.

The network must be able to provide storage and retrieval for both structured and
unstructured information. And, with respect to unstructured information, it must provide a
means of allowing all member organizations to access the unstructured information without
substantially increasing technology required to perform such access (i.e., without requiring
proprietary access mechanisms for specific types of unstructured information).

Multi-Party Transactions and Workflow

While most B2B transactions involve a primary and a counter-party (e.g.,
Buyer/Supplier, Manufacturer/Customer, Claimer/Claimant, etc.), real-life workflow consists
of complex conditional workflow involving multiple parties. Unlike an intra-organization
transaction processing system, this multi-party access requirement permeates all aspects of
the network’s transaction processing capabilities and must be supported.

" Each of the following transaction processing subsystems must account for multi-party

access to some extent: Business Rule Evaluation and Processing; Security

132

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Organization Structure (Locations); Workflow Management; Transaction Routing
Non-Member Access; Pooled Operator Access; Transaction Audit Trail

Locking and Reservation (within and between members); Reporting; Document
Management; and External Notification.

Data Privacy and Security

Finally, since the network will be storing information about each member's
transactions, it must provide comprehensive security to ensure that a given organization can
only access the transactions and related data elements that it is allowed to access.

Inter-Organization Transaction Processing System

The Inter-Organization Transaction Processing System consists of an application
framework designed to meet the requirements of inter-organizational transaction processing
(outlined above). This framework is not dependent on a specific vertical business process
or application and is unique in its ability to deal with multi-party transactions that span distinct
organizations.

This framework operates within an overall system architecture consisting of a number
of servers working in an integrated manner. This is depicted in FIG. 26, System
Architecture.

The software system that represents this application framework resides within the
application server. This system consists of four major areas — Interface Subsystems,
Transaction Processing Layer (TPL), System Services, and Application Logic. This
structure is depicted in FIG. 27, Application Framework Architecture. Each of these areas is
described in more detail below.

Interface Subsystems
Transaction requests can originate from many different sources — e.g., manually via a
web-based interface, electronically via a message-based interface, internally as a result of

native processing, etc. The purpose of the interface subsystem is to support the unique

133

WO 2004/044696 PCT/US2003/035631

interface requirements of any given source of transaction origination. As new/unique forms
of transaction origination evolve (e.g., wireless networks), the system can quickly support
new transactions through the creation of new interface subsystems.

The end result of each subsystem is the same, namely convert the transaction
request into an internal object format (an Object Graph) and invoke the services of the TPL
to process the transaction request. This centralized transaction processing structure
provides the following major benefits. All transaction requests flow through a single
common point within the system. Security validation is performed for all transaction
requests at a single point (i.e., there is no way to execute a transaction within the system
that bypasses security validation). All transaction processing is performed in a consistent
manner. A set of common transaction processing services are performed by the TPL
(thereby eliminating the need for these to be coded explicitly within the application logic for
each transaction).

The following sections describe the interface subsystems that are provided to support
the common methods of transaction origination.

Online Subsystem (OLS)
The Online Subsystem is used to support transactions that originate manually via aA
web-based, HTML-oriented interface. This subsystem can provide supports both a standard
server-based web interface or the JView™ subsystem web interface.

Event Subsystem
The Event Subsystem is used to support transactions that originate as a result of
internal processing by application transaction logic. These transaction requests are
processed in the background. For more information, refer to the “Event Management’

section.

Mail Subsystem

134

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

The Mail Subsystem is used to support transactions that originate as a result of the
receipt of an incoming e-mail message. This subsystem validates that the incoming e-mail
message contains a valid security descriptor, and will then create an event that triggers the
transaction request to process the data associated with the incoming e-mail message.

Batch Subsystem
The Batch Subsystem is used to support transactions that originate as a resuit of a
pre-defined schedule. This batch schedule is used to define “point in time” transaction
requests. For example, this subsystem would be used to trigger a processing request that is
to prepare a specific report each night.

Message Translation Subsystem
The Message Translation subsystem is designed to communicate with other external
system using automated electronic interfaces. This subsystem can handle both incoming
and outgoing electronic messages. Incoming messages result in transaction requests that
are processed by the TPL. Outgoing messages are generated in response to a specific
event processed by the Event Manager. In general, this éubsystem supports asynchronous
messages (rather than synchronous messages).

Transaction Processing Layer

The Transaction Processing Layer is responsible for processing all transaction
requests. For each transaction request, this layer will utilize the system services to perform
the following: perform transaction security validation; lock the folder (if necessary); perform
input data validation (editing functions only); retrieve objects from database; invoke
application data model related validation (editing functions only); invoke application
transaction related validation (editing functions only); create audit trail events (editing
functions only); invoke alert manager to evaluate application business rules and generate
alerts (editing functions only); invoke workflow manager to evaluate and set workflow state
(editing functions only); save any new or modified data to the database; and unlock the
folder (if necessary). These services are described in more detail below in the section
“System Services”.

135

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Application Logic

For any given vertical market the generic transaction processing capabilities of the
system will be extended with the application logic and configuration that is specific to a given
vertical market. These application extensions are what give the system its specific vertical
market focus. As a result, the generic transaction processing system can service any
number of vertical markets. The application logic consists of the following four main parts.

Unified Data Model
Mentioned previously, this is the data model that defines the entities and attributes
that are specific to a given vertical market.

Application Logic — Model Related
For each application specific data entity, application logic can be defined related to
validation and processing that is specific to this entity.

Application Logic — Transaction Related
For each application specific transaction, application logic can be defined related to
validation and processing that is specific to this transaction.

Configuration
Many of the generic transaction processing services rely on the definition of external
configuration information. This configuration is defined for any given vertical market (and
allows the services of the generic transaction processing system to be customized to the

specific needs of the vertical market).

System Services

The various subsystems and layers described above rely on a rich set of System
Services. Some of the major services include: Locking and Reservation; Object Graph
Services; Business Rule and Alert Management; Workflow Management; Security

Management; Individual and Team Ownership; External Notifications; Snapshot Services;

136

WO 2004/044696 PCT/US2003/035631

Reporting; and Document Management. These services are described in detail within the
System Services Processing section below.

Prior Art - Acknowledged
This Application Framework relies on the services of the following technologies and

acknowledges any prior art in these domains.

Technology ' "+ = ' | Commercial Examples . "
Web Servers IIS (Microsoft)
Apache (Open Software Foundation)
Application Servers .Net (Microsoft)
WebLogic (BEA)
WebSphere (IBM)
Tomcat (Open Software Foundation)
WebObjects (Apple)
|| B2B Integration Servers WebMethods (WebMethods)
BizTalk (Microsoft)
Database Servers Oracle (Oracle)
SQL/Sever (Microsoft)
Mail Servers Exchange (Microsoft)

This Application Framework builds on the capabilities established by these
technologies and provides additional services and capabilities specifically target at inter-
organizational transaction processing that are not addressed. This structure of a general
web-based transaction processing system, and the role of the Application Framework within
this structure, is illustrated in FIG. 28.

This framework is related closely to the above description of the JView™ Subsystem

and Inter-Organization Workflow Management.

Commercial Example
The Electronic Subrogation Network is a commercial example of a fully operational
system that embodies the concepts described herein specifically for the vertical market of

Insurance Subrogation Claims Processing.

137

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Terminology
This section contains terminology definitions that are useful in understanding the
concepts described in this section.

Folder

Each distinct business transaction is represented by a folder. The folder is used to
logically contain all information related to this transaction (e.g., parties, tasks, documents,
contacts, alerts, attachments, events, etc.).

Party

A business transaction involves the interaction between two or more parties where,
for the purpose of that transaction, each party takes on a specific relationship (described
further below). With intra-organization workflow, parties are typically different business units
(e.g., division, department, etc.) within the same organization. With inter-organizational
workflow, parties are typically different organizations or individuals.

Relationship (Party Type)

For each specific type of business transaction (folder), one or more relationships are
defined. Each relationship defines the role that a given party will play with respect to that
transaction. For example, in a simple order management transaction (Order Folder), one
party represents the “Buyer” and one party represents the “Supplier”. As such, for each
party defined on the folder, that party’s relationship to the transaction is referred to as their

party type.

Tasks

A task is used to represent an independent business activity (related to the
transaction for this folder). Each folder must have at least one task (its primary task). With
complex business processes, multiple tasks are used within the folder to manage and track
multiple parallel activities related to a given business transaction. For example, for an order
management transaction (Order Folder), one task is defined for the order itself, and
additional tasks are defined for each distinct shipment/invoice.

138

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Action Party

For each task on the folder, the party responsible for taking the next action related to
that business activity is referred to as the action party. When the business transaction is
concluded, no further business activity will occur. At this point, no action party will exist on

any tasks within the folder.

Function

Each operation that can be performed on the folder, that affects the information or
status of the folder, is referred to as a function. Based on the folder, certain functions can
only be performed by a specific party type, while others can be performed by some or all
party types. In a simple order management transaction some examples of functions include:
issuing a purchase order (buyer), accepting an initial order (supplier), creating a
shipment/invoice (supplier), efc.

Two main types of functions exist — editing functions and non-editing functions.
Editing functions result in the modification of business data within the database; non-editing
functions do not (i.e., essentially non-editing functions are only used to retrieve data).

Function definitions are contained within the system configuration tables. Each
Function definition contains settings that control the processing of the transaction requests
(e.g., editing type, party type, object graph specification, etc.). The collection of Function
definitions within the system are specific to a given vertical market and essentially define the

business processing capabilities of the system.
Organization
Two distinct legal entities (e.g., companies) as opposed to different business units (of

arbitrary size) within a single legal entity.

Workflow

139

10

15

20

25

WO 2004/044696 PCT/US2003/035631

A defined set of business operations and/or processes, triggered by an initial
business event (business transaction), that proceed in a specific sequence or order, and
culminating in a conclusion or completion of the transaction. A simple workflow will follow a
prescribed set of operations in sequence to conclusion (single path). A complex workflow
will contain multiple conditional paths, only one of which will be taken based on the business
conditions present in the transaction.

Inter-Organization Workflow
A workflow that exists between two organizations for the purpose of
conducting/completing a business process/transaction specific to those organizations.

Object Graph Specification (OGS)

A set of configuration data that defines the set of data entities and attributes, and
their object structure, used for a given transaction request (i.e., function). The TPL uses the
OGS to ensure that a given party only can send or receive data elements allowed for their
party type. Additionally, this mechanism can also be used to further constrain data access
based on a specific user role (within a party type).

Role

A set of configuration data that defines a group of functions. The resulting set of
functions can then be associated with an operator or automated system. The Security
Management services will use the role definition to limit the functions that can be performed
by a given operator or system.

140

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

DETAILED DESCRIPTION - Inter-Organizational Transaction Processing

The Inter-Organization Transaction Processing System (henceforth referred to as
the Application Framework or just A/F) consists of an application framework designed to
meet the requirements of inter-organizational transaction processing (outlined above). This
framework is not dependent on a specific vertical business process or application and is

unique in its ability to deal with multi-party transactions that span distinct organizations.

This section contains detailed process and component descriptions related to the
A/F. This discussion presumes familiarity with the following concepts and technologies:

general business-oriented transaction processing concepts

object-oriented design and programming

basic internet fundamentals

The A/F described in this section has been validated against the following vertical
business application contexts:

Insurance — Subrogation Claims (Demands, Responses, Arbitration Filings, etc.);

Manufacturing — Order Processing (Purchase Orders, Shipping, Invoicing, Returns,
etc.);

Retail — Store Management (Labor Scheduling, Employee Maintenance, Timecard
Tracking, etc.); and

General — Call Logging and Problem Management.

Overview

Core Object Model and Structures

The A/F includes a core object model that provides a set of foundational classes and
data entities used for constructing applications. The core objects within this model are
typically used in most applications. Additional objects, specific to the A/F, allow the system
to perform its control operations within the context of inter-organizational transaction

141

10

WO 2004/044696

PCT/US2003/035631

processing. When constructing an application, these objects can be used as is, or

subclassed to support application specific extensions.

The objects within the core object model can be grouped into three major categories

- transactional objects, configuration objects, and system objects. The transactional objects

represent the application or fransaction control structures within the business transactions

being processed by the system. The configuration objects represent the configuration

structures, used by the A/F at runtime, that define the specific processing characteristics of

each vertical application. The system objects represent internal system structures that are

used to control the internal operation of the system.

Transactional Objects

Entity Na

SAFolder

Abstract. The generic container for all data related 1o a given

transaction.

SAFolderData Abstract. This class is used to support application specific
extensions to a folder.

SAParty The organization or individual involved in a given transaction.

SADocument Abstract. A set of structured data elements related to a transaction.

SAAttachment Abstract. A set of structured meta-data related about a set of
unstructured data (see SAAttachmentData).

SAAttachmentData | A set of unstructured data related to a transaction (e.g., graphics,
photos, efc.).

SAComment A free-form comment related to a document within a transaction.

SAContact A set of name and/or address information related to a contact within
a transaction.

SADocContact A relational object that connects a document with a contact.

SAAlert A business condition that exists within a given transaction.

SAEvent Audit information that provides a record of every modification to the
folder contents.

SASnapshot A blob of information that contains a complete set of folder
information at a given point in time (i.e., a snapshot). This object is
used to maintain a historical record of all data modifications to the
folder.

SATask A business activity that is occurring within the folder.

142

WO 2004/044696

PCT/US2003/035631

Configuration Objects
‘;iClassIEntlty Name et };Summary , |
SAFunction 'An apphcatlon functlon (transac’uon) that is supported by the

system (external).

SAlntrinsicFunction An application function (transaction) that is supported by the
system (internal).

SAlntrinsic A primitive (intrinsic) transaction processing function
supported within the application software classes.

SACompany An organization or individual that can participate in
transactions within the vertical application.

SAGroup Within a Company, a group or team of individuals at a
Location.

SALocation Within a Company, a physical office or location.

SAOperator Within a Company, a person (or account) that can access
the system.

SARole Within a Company, a group of related application functions
that are needed to perform a specific job or role within a
Company.

SARoleFunction Relates a specific Function to a specific Role.

SAAlertRuleTemplate . A template that defines a generic type of business rule that
can be evaluated by the system

SAAlertRule A business rule used to evaluate a specific business
condition for a specific company.

SADocContactTemplate A template that defines a generic type of document contact.

SADomain A set of application specific values that define an application
domain.

SAEventTemplate A template that defines the processing characteristics for an
Event.

SAMessageTemplate A template that defines the processing characteristics for a
Message.

SANotificationRule A system rule that defines the processing characteristics
used for generating an external notification based on the
occurrence of an event.

SAObjectGraphSpec In a transaction template the constrains, the data entities,
and attributes that can be exchanged/processed within a
given transaction.

SAWorkflow A template used by the Workflow Manager to control the
workflow of a transactional folder.

SAWorkflowRule A company specific workflow rule used by the Workflow
Manager to perform intra-company workiflow.

SAWorkflowRuleTemplate | A template that defines a generic company specific workflow

function that can be performed by the Workflow Manager.

143

WO 2004/044696

PCT/US2003/035631

System Objects
‘Class/Entity Name " | Summary ..
| SAKéy 7 A control record used to assign unique object identifiers to
new objects.

SALock A control record used to control locking/reservation and
lock expiration for a specific folder.

SAServerConfiguration A control record used to track any background process
instances that are running.

SASystemAlert A set of related System Events. A system event records
the occurrence of a software warning, error, or failure within
the system.

SASystemStatistics A record of response time or system availability data.

SAText A generic object used 1o hold large amounts of textual data.

Folders and Documents

Within the A/F, the folder is a key concept. An instance of a folder object exists for

5 each distinct application transaction within the system. Different types of transactions are

supported by different types of folders. A generic folder class (SAFolder) is provided by the

application framework. This abstract class contains all the data elements and methods used

by the framework to generically manage the transaction. Specific application folders are

created by subclassing from this root class. In this way, any number of application specific

10 folders can be created (one for each type of application transaction).

The folder is a logical container for the following collections of data related to the

transaction:

Parties - where a party is an organization or individual involved in the transaction;

15 Documents - where a document is a set of structured data;

Attachments - where an attachment is a set of unstructured daia;

Events - where an event is an audit record of any data modification to the transaction;

Alerts - where an alert is a business condition that exists within the transaction;

Contacts - where a contact is name and/or address information related to an

20 individual or organization related to this document; and

Tasks - where a task is a business activity that is occurring within the transaction;

144

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

For each folder, the A/F can provide a number of common services. The services
that are supported by each folder are declared in the application specific subclass that
defines the specific folder. The following folder services are generically supported by the
A/F: Multi-Party Support, Workflow Support, Locking and Reservation, Alert Management,
Event Management, External Notifications, Document Management (for both structured and
unstructured documents), and Contact Management.

In addition to the folder, a document is another key concept within the A/F. Within a
folder, a related set of business information is represented by a document (e.g., within a
manufacturing context, an Order folder will contain the following documents — a Purchase
Order, Shipping Notices, Invoices, and Credit Notices). A generic document class
(SADocument) is provided by the application framework. This abstract class contains all the
data elements and methods used by the framework to generically manage a given
document within a transaction. Specific application documents are created by subclassing
from this root class. In this way, any number of application specific documents can be
created.

The document is also a logical container for the following collections of data related
to the document: DocContacts- where a doccontact connects this document with a specific
contact within the folder, and Comments - where a comment is a free-form note related to
this document.

Application Framework Architecture

The application framework is consists of a layered architecture (as depicted in FIG.
27). This architecture consists of the following layers: Interface Subsystem Layer,
Transaction Processing Layer (TPL), Application Logic Layer, and System Services. The
processing with each of these layers is distinct as describe below.

Interface Subsystem Processing

Within the A/F the Interface System layer is responsible for exchanging transaction
requests and responses with the external environment (e.g., interactive users, other

145

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

automated systems, electronic messaging networks, etc.). In doing so, it essentially
performs a session control function within the architecture (i.e., managing a transaction
processing session with each distinct external environment).

This layer consists of the following discrete subsystems: Online Subsystem (OLS),
Event Subsystem, Mail Subsystem, and Message Translation Subsystem.

Online Subsystem

The Online Subsystem processes all requests/response from web-based interactive
users. The OLS is designed to work with the JView™ subsystem (within the browser) but
can also support standard server-based HTML generation via the HTTP subsystem. In
either case, the Transaction Message (STM) is used as the request/response format for the
OLS.

The OLS consists of one or more process instances (running on one or more
Application Servers). Each process instance is capable of handling HTTP requests. When
a given process instance creates a session for a given user, all requests for that session will
be processed by that process instance. The following describes the major processing
performed within this subsystem.

Establishing An OLS Session (Logon Processing)

Before any transactions can be processed, a user must first establish a session with
the OLS. An initial logon request is sent to the system. The OLS will respond with a Logon
form (HTML). The user will enter their companyld, userld, and password and submit this
logon request to the system. If IP Subnet security is indicated, based on the companyld and
the IP address of the incoming request, the system will validate the IP subnet for this
request. If the IP subnet is valid, the system will validate the userld and password for this
specific user within the specific Company. If the user is valid, an OLS session will be
created. This session is used to maintain context about the current state of the user's
interactions with the system. By default, a subsession is always created when a new

session is created. The subsession represents a communication channel for performing a

146

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

single transaction request at a time (multiple transaction requests can be performed in
parallel using multiple subsessions).

After creating the session, the OLS will create an instance of the Transaction
Manager (SCTranMgr). This object is used to globally control all transaction processing that
occurs within the session. It is one of two major objects that represent the TPL. Within the
subsession, a stack is created. The stack is used to keep track of related transaction
requests that have occurred in a nested fashion. The operation of the stack is described
later. Based on the user's profile, an initial (default) transaction is performed by creating a
stack entry and invoking the Transaction Processing Layer (TPL). This process is described
in more detail later. The results of this initial transaction are then sent back to the user in
response to their logon request.

Processing A Transaction Request

Once an OLS session is established, transaction requests/responses can be
processed. A transaction request is received by the OLS as a standard HTTP request (GET
or POST). Within this HTTP request, a FORM or QUERY variable will contain the
transaction request message in the form of a Transaction Message (STM). Like XML, the
STM represents a flattened object stream (i.e., serial stream) that consists of a hierarchical
structure of key:value pairs (where each node in the hierarchy represents an object). The
STM consists of two major sections — the STM Header and Business Objects. The OLS
converts the STM into object format using a generic object class (SCObjectGraph — referred
to as the OG). If IP Subnet security is indicated, based on the companyld and the IP
address of the incoming request, the system will validate the IP subnet for this request.

Once in object format, the OLS inspects the transaction request attributes contained
in the Header. Transaction requests can either be OLS commands or application function
requests. OLS commands are used to perform session and stack control operations for the
current session. Application function requests are used to execute application functions. _
Within the request header, the chainType is used to control the stack within the session. For

function requests, this chain type is either CHAIN_TOP (i.e., remove all stack entries and

147

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

create a new initial stack entry) or CHAIN_NEXT (i.e., create a new stack entry on the
stack). Based on the chainType, a new stack entry will be created. This data structure is
used to anchor other objects related to this transaction request.

Based on the function (transaction request code) contained in the header, a
transaction object (SCTran) is created by invoking the CreateTransaction() method of the
TranMgr (created in the session). The function name is passed as a parameter to this
request and is validated by the TranMgr (this validation process is described later). The
instance of this object is anchored in the stack entry for this request. In creating the
transaction object, an instance of an application specific transaction will be created. Each
application transaction class is subclassed from SCTran. Each function is related to a
specific application transaction class. As such, when a CreateTransaction() method is
invoked, it will create the instance of the application specific transaction class based on the
function passed in the method.

After creating the SCTran object, the OLS will set various attributes within this object
that control the processing of this request (e.g., OG, query parms, transactionParms, etc.).
The TPL processes two major types of functions (transactions) — editing and non-editing.
Non-editing functions are read-only (i.e., inquiry) functions that merely réturn information.
Editing functions result in the modification of data within the database. The execution of a
given request is determined by the following subfunctions (passed to the TPL by the OLS) —
prepare, validate, and commit. Non-editing functions only support the “prepare” subfunction.
Editing functions support all three subfunctions. Within the stack, the OLS maintains the
execution status of any given function (mostly for editing functions). A Finite State Machine
is used to control the valid transitions of which subfunctions can be requested at any given
time within the execution of a request.

For non-editing functions, the following will occur. The function will be executed by
invoking the Execute() method of the transaction object specifying the “prepare” subfunction.
Based on the prepare subfunction, the TPL will invoke the prepare() method of the
application transaction object to process this request (i.e., retrieve the objects for this

148

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

request). The TPL will return an output OG that contains the objects that have been
retrieved for this request. The OLS will convert this OG into an STM. Using this STM, the
OLS will generate an HTTP response to the initial HTTP request.

For editing functions, the following will occur (the complete processing of an editing
function typically involves multiple interactions with a user). The function will be initially
executed by invoking the Execute() method of the transaction object specifying the “prepare”
subfunction. Based on the prepare subfunction, the TPL will invoke the prepare() method of
the application transaction 6bject to process this request. If this function requires user input,
this method will initialize any business objects required for this transaction and the TPL will
return an output OG that contains these initial objects for this request. If this function does
not require user input, the processing will continue with step 8.9. The OLS will convert this
OG into an STM. Using this STM, the OLS will generate an HTTP response to the initial
HTTP request. Based on the response from the system, the user can make any
modifications to the data (as allowed by the form), and submit this modified data to the

server.

The OLS will receive this new request. Based on the chainType
(CHAIN_CONTINUE) and the state information within the existing stack entry, it will continue
the processing of this editing function. The processing of this function now continues by
invoking the Execute() method of the transaction object specifying the “validate” subfunction.
Based on the validate subfunction, the TPL will now invoke the validate() method of the
application transaction object to process this request. This method will perform application
specific data validation and processing related to the request. Upon completion of this
processing, all the business objects will update in memory (and not yet written to the
database). The TPL will return an output OG that contains the updated business objects.

If the validation is unsuccessful (i.e., errors were detected), the OLS will discard the
new OG and return the previously received input OG (received in step 8.e) back to the user
with the associated errors. At this point, the user will be allowed to make any data
modifications/corrections (as allowed by the form). At this point, the processing will revert

149

10

16

20

25

WO 2004/044696 PCT/US2003/035631

back to step 8.d. If the validation is successful (i.e., no errors), the OLS will convert this OG
into an STM. Using this STM, the OLS will generate an HTTP response to the initial HTTP
request. This response will allow the user to view, but not modify, any data and allow for the
confirmation of this transaction. Based on the response from the system, the user can view
the proposed transaction and submit their confirmation.

The OLS will receive this new request. Based on the chainType
(CHAIN_CONTINUE) and the state information within the existing stack entry, it will continue
the processing of this editing function. The processing of this function now continues by
invoking the Execute() method of the transaction object specifying the “commit” subfunction.
Based on the commit subfunction, the TPL will now commit any updated business objects to
the database. In doing so a completion message will be generated. The TPL will return an
output OG that contains the updated business objects. [f the commit is successful, the OLS
will save the completion message for the transaction. It will then discard the current stack
entry (for the editing function that was just processed) and re-execute the function
associated with the prior stack entry. The TPL will process this function and return an output
OG that contains the business objects for this function. The OLS will convert this OG, along
with the completion message from the prior editing function, into an STM. Using this STM,
the OLS will generate an HTTP response to the initial HTTP request.

NOTE: For each application function request processed, and prior to generating any
HTTP response, the OLS will invoke the TransactionStatistics() method of the TranManager.
In calling this rhethod, the OLS will pass the transaction statistics data for the previous
application function (whose response time data was returned in the request header for the
current request). This method causes the TranManager to update an in-memory statistics
object (for the current session) with the new transaction data. This information will be
updated within the database when the session is terminated.

Establishing a New Subsession within a Session

150

10

15

20

25

WO 2004/044696 PCT/US2003/035631

Once an initial session is established (along with the default subsession), another
subsession can be created for the purpose of executing another application function without
disrupting the stack or application functions that exist within any other existing subsessions.

A transaction request (STM) is received by the OLS and is converted into object
format. Within the header, the transaction request will be for an OLS command
(OLS_NewSubsession). The OLS will verify the current session Id and a security code
within the request header. If valid, a new subsession object will be created and added to the
list of subsessions for the current session. Within the new subsession, a stack is created.
Based on the user's profile, an initial (default) transaction is performed by creating a stack
entry and invoking the Transaction Processing Layer (TPL) (as described ébove). The
results of this initial transaction are then sent back to the user in response to their logon

request.

NOTE: Within the browser, each new subsession is represented by a new browser
window.

Terminating an OLS Session (Logoff Processing)
Within the OLS, a session is terminated the last subsession is terminated.
Subsessions can be terminated explicitly with a “logoff’ request, or implicitly after a “timeout”.

For Logoff requests, the following sequence will occur. A transaction request (STM)
is received by the OLS and is converted into object format. Within the header, the
transaction request will be for an OLS command (OLS_Logoff). Based on the subsession
for this request, the OLS will: delete the stack for the subsession being terminated
(individually deleting each stack entry within the stack); and delete the subsession object
and remove it from the list of active subsessions for this session.

If no more active subsessions exist for this session, the OLS will:

151

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Invoke the Logoff() method of the TranManager object associated within this session
(created at session initiation). This method causes the TranManager to record any
response time and session statistics, collected during this session, within the database.
Delete the session object (thereby invalidating any further requests for this session). A

“Logoff Successful’ message will be sent back to the user in response to their logoff request.

For Timeouts, the following sequence will occur. When the timeout period for a given
subsession expires, the Timeout() method of the session object will be invoked (specifying
the Id of the relevant subsession). Based on the subsession, the OLS will: delete the stack
for the subsession being terminated (individually deleting each stack entry within the stack);
and delete the subsession object and remove it from the list of active subsessions for this
session. If no more active subsessions exist for this session, the OLS will: invoke the
Logoff() method of the TranManager object associated within this session (created at
session initiation). This method causes the TranManager to record any response time and
session statistics, collected du ring this session, within the database; and delete the session
object (thereby invalidating any further requests for this session).

Event Subsystem

As each transaction request is processed by the system, events are written to the
Event table within the database. The collection of events for a given folder forms the history
of business activity for that folder. The Event Subsystem inspects every event that occurs
within the system and allows for system or application specific post-processing occurring for

each event.

Every event recorded in the system is subsequently processed by the Event
Manager. For each event, this subsystem will perform the following. Determine whether
any post processing is defined for this event, and if so, trigger the specific function to
perform this processing. (NOTE: This processing occurs in the background.) Determine
whether any external notifications are defined for this event, and if so, invoke the External
Notification Manager to process the external notifications. For more information, refer to the

section on “External Notifications”. Determine whether any outgoing electronic messages

152

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

are defined for this event, and if so, invoke the Outbound Message Translation Manager to
generate the electronic messages. For more information, refer to the section on “Message

Translation”.

For each event, an Event Template definition is contained in the system
configuration. This definition contains settings that control the processing of this event by
the Event Manager. From a multi-party perspective, each event contains information that
defines the party types that are allowed to access this event. This allows the system to
expose and hide various events to specific parties within the folder based on the type of

event.

Essentially, the Event Management services provide for a system maintained audit
trail of all data modifications that occur within the system. By centralizing this service, every
data modification that occurs within the system can be inspected, and if necessary,
additional processing can be invoked. A unique aspect of this service is its multi-party
handling capabilities.

The Event Subsystem consists of two major components — the SAEvent object (and
related methods) and the Event Manager. An application transaction creates an event using
the CreateEvent() class method of the SAEvent class. The Event Manager consists of one
or more background processes (running on one or more Application Servers) that retrieve
any unprocessed events from the Event table and process each event accordingly. When
an event is created, the CreateEvent() method will use the event template (for this event) to
determine whether or not any post-processing should occur for this event. If not, the
“processed” attribute is set to true. This optimization prevents the Event Manager process
from retrieving this event from the database (i.e., — only to find that it doesn’t need any

processing). The following describes the major processing performed within this subsystem.
Event Manager — Initialization

Each Event Manager process performs the following initialization sequence. Read all

configuration settings (e.g., number of seconds to sleep when no work to perform, etc.).

153

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Create an instance of the Transaction Manager object (SCTranManager). This object is
used to coordinate the processing of any application functions that are triggered by the
occurrence of specific events. Create a java thread that continually “polls” the database
looking for unprocessed events. Complete any initialization necessary for handiing HTTP
requests. This process supports the ability to received special management requests for
controlling the process (e.g., shutdown). It does not support the ability to process
application function requests (similar to the OLS above). Update the system log with an
“Event Manager Initialization” log message.

Event Manager — Request Processing Loop

The request processing loop occurs continuously within the Event Manager (until
terminated). During this processing loop, the following operations are performed. Check to
see if the Event Manager is to be terminated — i.e., bTerminateEvMgr = true (as set by a
management HTTP request). An SQL query is used to obtain a single folder from the
database with the following conditions: the folder is not locked, and
background processing is not halted for this folder, and the folder contains one or more
unprocessed events. If no rows are returned, then the process will “sleep” for n seconds (as
determined by the configuration. Upon wakeup, repeat step 1. If a folder row is returned,
then continue below.

Lock the folder. If the lock operation is unsuccessful, then repeat step 1. Otherwise
continue below. Query the database for all unprocessed events for this folder (sorted in
ascending order by date/time of occurrence). Select the first row from the result set for
further processing. If no rows are returned, continue below with step 10. Obtain the event
template associated with this event. This template will indicate whether any or all of the
following operations are to be performed — External Notification Processing, External

Message Processing, Application Post-Processing.
If External Notifications processing is indicated, perform the following. Invoke the

GenerateNotifications() method of the External Notification Manager (ExtNotifMgr) passing a
reference to this event. The ExtNotifMgr will query the database to obtain all external

154

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

notification rules for this type of event (based on the parties involved). If party specific rules
exist, those rules will supercede all other rules; otherwise, generic rules will be used. If no
rules exist for this type of event, then no external notifications will be performed. The
ExtNotifMgr will process each external notification rule as necessary. Each such rule will
reference a contact within the folder (based on generic contact type). If the specified contact
does not exist within the folder, then no notification will be issued. If the contact exists within
the folder, then the ExtNotifMgr will retrieve the contact information from this contact specific
to the notification method specified on the notification rule (e.g., emalil, fax, pager, etc.). If
such information does not exist, then no notification will be issued. If the information

required to generate the notification exists, then the notification will be issued.

If External Message Processing is indicated, perform the following. Invoke the
GenerateMessages() method of the Message Translation Manager (MTMgr) passing a
reference to this event. The MTMgr will query the database to obtain all external message
rules for this type of event (based on the parties involved). If party specific rules exist, those
rules will superce)de all other rules; otherwise, generic rules will be used. If no rules exist for
this type of event, then no external messages will be generated.

For each external message rule, the following will be performed. The external
message rule will invoke the outgoing message formatter to construct an XML structure that
is to contain the outgoing message data. The XML message structure is written to the
OutgoingMessage table within a separate database for the Integration Server. The
Integration Server will retrieve the XML message structure from the OutgoingMessage table
and convert it into the native format as indicated by the message header. This subsystem
will then utilize the correct protocol (e.g., TCP/IP, FTP, HTTP, SMTP, etc.) to cdmmunicate
this message to the external system that is to receive the message.

If Application Post-Processing is indicated, perform the following. Obtain the function
to be executed from the event template for this event. Invoke the BGLogon() method of the
TranMgr object to initialize the transaction processing context for the company that created

the event. Based on the function (transaction request code), a transaction object (SCTran)

185

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

is created by invoking the CreateTransaction() method of the TranMgr (created during Event
Manager initialization). After creating the SCTran object, the EventMgr will set various
attributes within this object that control the processing of this request. The application
function will be executed by invoking the Execute() method of the transaction object

specifying the “commit” subfunction.

Based on the commit subfunction, the TPL will perform the following. Invoke the
prepare() method of the application transaction object. Invoke the validate() method of the
application transaction object. Invoke a callback to the EventMgr to allow for the inclusion of
any Event Manager specific data modifications (e.g., updating the proc;essedFlag within the
current event being processed). If no errors exist, invoke the commit() method of the
application transaction object. This will cause all data processed during the function to be
written to the database. If no errors occur during any of the above method calls, the TPL will
return with a status of “SUCCESS”. Otherwise an “ERROR” status will be returned (for any
method where an error is detected).

If an error status is returned, the Event Manager will halt the background processing
for this folder by setting the appropriate flag on the folder and committing this change to the
database. If a success status is returned, the Event Manager will go back to step 5 and
continue processing any remaining unprocessed events for this folder. When no more
unprocessed events for this folder exist, uniock the folder. Continue the processing loop by

going back to step 1.

NOTE: A unique characteristic of both the External Notification and External
Message processing is the ability to send one or more messages to each party defined on
the folder. This capability is based upon the inter-organizational architecture inherent within

the system.
Event Manager - Termination

The Event Manager will continue in its request processing loop until terminated. The
Event Manager can be terminated by terminating the process externally or by HTTP

156

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

request. If an HTTP request is received to terminate the Event Manager, this request will
set the variable bTerminateEvMgr to true. Upon return to the start of its normal processing
loop, then Event Manager will check this variable and gracefully terminate itself (thereby
allowing the completion of any processing for a given folder).
J

The Event Manager will perform the following operations during termination: delete
the TranManager instance; update the system log with an “Event Manager Termination” log
message; then perform the termination of the Event Manager process.

Mail Subsystem (Incoming Mail Processing)

The Mail subsystem is designed to process incoming mail messages. Each
incoming mail message contains a special subject line and message body (in addition to
one or more file attachments) to allow the system to determine the type of processing that is
required.

The Mail Manager is the main component of the Mail subsystem. Typically, there are
two Mail Manager process instances (running on different Application Servers within the
network) — one process is active, and the other is dormant. The following describes the
major processing performed within this subsystem.

Mail Manager — Initialization

Each Mail Manager process performs the following initialization sequence. Read all
configuration settings (e.g., number of seconds to sleep when no work to perform, etc.).
Create a java thread that continually “polls” the POP3 mail server(s) looking for incoming
mail messages. Complete any initialization necessary for handling HTTP requests. This
process supports the ability to received special management requests for controlling the
process (e.g., shutdown). It does not support the ability to process application function
requests (similar to the OLS above). Update the system log with an “Mail Manager
Initialization” log message.

Mail Manager — Incoming Mail Processing Loop

157

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

The incoming mail processing loop occurs continuously within the Mail Manager (until
terminated). During this processing loop, the following operations are performed. Check to
see if the Mail Manager is to be terminated — i.e., bTerminateMailMgr = true (as set by a
management HTTP request). Lock the “MailManager” resource (using the Lock Manager).
If the lock operation is successful, then continue below with step 3. Otherwise, the process
will “sleep” for n seconds (as determined by the configuration). Upon wakeup, restart again
at step 1.

This serialization only allows one MailMgr process to be active (i.e., polling the mail
server) at any given time and prevents a halt in mail message processing due to the active
MailMgr being stalled or frozen for some reason. The other process will continue polling
trying to acquire the lock (essentially remaining dormant until it acquires the lock). This
process acts as a failover process that will become active whenever the active MailMgr
process fails or stalls. NOTE: When this operation is performed by the active MailMgr
process, it serves to “refresh” the lock.

Using the configuration settings obtained during initialization, logon to the first mail
account for the specified POP3 mail server. GET the next mail message, if any, from the
account. If no messages exist within this account, then continue below at step 7.

Each mail message will be processed as follows. Parse the mail message into its
main sections (e.g., Subject, Body, Attachments). Scan the message body looking for the
specially encoded section. This section will contain 1) the folder that is to contain this mail
message, 2) a unique sequence number for this message, and 3) a reference to the event
template to be used for this message. Any invalid messages will be temporarily stored for
review, then later discarded.

For valid messages, the folder reference and the sequence number are used to
query the database to see if this message (SAMailMessage) already exists within the
system. If so, it has already been processed, continue with step 5] below. Lock the folder

indicated by this mail message. If the lock operation is successful, then continue below with

158

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

step 5e. Otherwise, skip this mail message by continuing back with step 4. (This message
will be implicitly retried upon the next cycle). Create an instance of an SAMailMessage
object containing all the data from the new mail message. Create an event (based on the
event template decoded within the message) for this folder that references the newly
created Mail Message object. Commit these objects to the database. Unlock the folder
indicated by this mail message. Delete this mail message from the mail account on the
POP3 mail server.

" Return to step 4 to process any remaining mail messages in this account. Based on
the configuration, obtain the next mail account from the configuration. Return to step 3 to
process all messages from the new mail account. When no more mail accounts remain,
then continue below. At this point, all mail messages in all accounts have been processed.
The process will “sleep” for n seconds (as determined by the configuration). Upon wakeup,
it will continue the processing loop by going back to step 1.

Mail Manager - Termination
The Mail Manager will continue in its request processing loop until terminated. The
Mail Manager can be terminated by terminating the process externally or by HTTP request.
If an HTTP request is received to terminate the Mail Manager, this request will set the
variable bTerminateMailMgr to true. Upon return to the start of its normal processing loop,
the Mail Manager will check this variable and gracefully terminate itself (thereby allowing the
completion of any mail message processing currently in progress).

The Mail Manager will perform the following operations during termination: update
the system log with an “Mail Manager Termination” log message, and perform the
termination of the Mail Manager process.

Message Translation Subsystem
The Message Translation subsystem is designed to communicate with other external
system using automated electronic interfaces. This subsystem can handle both incoming

and outgoing electronic messages. Incoming messages result in transaction requests that

159

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

are processed by the TPL. Outgoing messages are generated in response to a specific
event processed by the Event Manager. In general, this subsystem supports asynchronous

messages (rather than synchronous messages).

Essentially, the Message Translation system is used to process inbound and
outbound electronic messages. This service allows a technologically sophisticated
organization to process business transactions in a fully automated manner, even though
their counterparty organizations are interacting on a manual basis (using web-based
interfaces).

The Message Translation subsystem consists of the following major components —
Integration Servers, Inbound Message Translation Processes, and Outbound Message
Translation Services.

The Integration Server provides the direct interface with each external system
handling the variety of communication protocols and data formats required by these
systems. In doing so, it insulates the entire system from the interface details and provides a
single common interface mechanism for all electronic messages. In order to maintain high
availability, the Integration Server interfaces with the system by storing/retrieving all
messages from the database server in XML format. In this way, other parts of the system
can be halted without affecting the ability of the system to receive messages from other
systems. Within the system, the Integration Server is a standard component that is
commercially available (e.g., WebMethods, BizTalk).

The Inbound Message Translation (IMT) component handles all incoming electronic
messages from the Integration Server (via the database). This component consists of one
or more process instances (running on one or more Application Servers). Similar in
structure to the Event Manager, these process instances continually poll the database

looking for new incoming messages to process.

160

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

The Outbound Message Translation (OMT) component handles all outgoing
electronic messages. Such messages are generated in response to an event (based on the
specifications within the event template for that event). This component is a service that is
invoked within the context of the event processing performed by an Event Manager process.
The following describes the major processing performed within this subsystem.

Inbound Message Processing - Overview

The following operations are performed during inbound message processing. An
external system establishes a connection with the Integration Server. This connection
varies based on the protocol and the nature of the specific interface. In general, this
connection can be used to transmit a file of transactions, a set of individual transactions, or
just a single transaction. The Integration Server receives an electronic message from an
external system over its established connection. Based on the message mapping rules
contained within the Integration Server, this server will convert the incoming electronic
message into an STM (Siteras Transaction Message) format in XML syntax. This message
is stored as an object (SAlnboundMessage) within the InboundMessage table within the
database server (IntegrationServer Database). The IMT process will process any inbound
messages that have been queued in the database. The detailed operation of the IMT
process is described in the following sections.

IMT Process - Initialization

Each Inbound Message Translation process performs the following initialization
sequence. Read all configuration settings (e.g., number of seconds to sleep when no work
to perform, etc.). Create an instance of the Transaction Manager object (SCTranManager).
This object is used to coordinate the processing of any application functions that are
triggered by the occurrence of an incoming message. Create a java thread that continually
“nolls” the database (InboundMessage table within IntegrationServer Database) looking for
incoming messages. Complete any initialization necessary for handling HTTP requests.
This process supports the ability to received special management requests for controlling
the process (e.g., shutdown). It does not support the ability to process application function

161

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

requests (similar to the OLS above). Update the system log with an “Inbound Message
Translation Initialization” log message.

IMT Process - Message Processing Loop

The message processing loop occurs continuously within the IMT (until terminated).
During this processing loop, the following operations are performed. Check to see if the IMT
is to be terminated — i.e., bTerminateIMT = true (as set by a management HTTP request).
Poll the database and retrieve an available inbound message. If no messages are
available, this process will “sleep” for n seconds (as determined by its configuration). Upon
waking up, the process will restart at step 1 above. If a message is retrieved, processing will
continue below. Based on the message Id generated from the Integration Server, this
process will attempt to lock this message using the resource Id “IBMsg_<msgld>". This lock
guarantees that only one IMT process instance will work on a given message at a time.

If the lock is unsuccessful (meaning that another IMT process is already processing
this message), the process will restart at step 1 above. Otherwise, the lock was successful
and the processing will continue as below. The IMT extracts this STM (XML message) from
the SAInboundMessage object and converts it into object format using a generic object
class (SCObjectGraph — referred to as the OG). Once in object format, the IMT extracts the
function from the request attributes contained in the Header. Based on the function
(transaction request code), a transaction object (SCTran) is created by invoking the
CreateTransaction() method of the TranMgr (created during IMT initialization). After creating
the SCTran object, the IMT will set various atiributes within this object that control the
processing of this request. The application function will be executed by invoking the
Execute() method of the transaction object specifying the “commit” subfunction (for editing
functions).

Based on the commit subfunction, the TPL will perform the following. Invoke the
prepare() method of the application transaction object. Invoke the validate() method of the
application transaction object. Invoke a callback to the IMT to allow for the inclusion of any
IMT specific data modifications (e.g., updating the processedFlag within the current

162

10

16

20

25

30

WO 2004/044696 PCT/US2003/035631

message being processed). If no errors exist, invoke the commit() method of the application
transaction object. This will cause all data processed during the function to be written to the
database. The TPL will return a return status (either “SUCCESS” or “ERROR”). If a
response message is to be generated as a result of this transaction, then the outbound
message can be triggered from the event that is record as a result of processing this
transaction request (as described below in Outbound Message Processing).

If an error status is returned, the IMT will halt the processing for this message by
setting the appropriate flag and committing this change to the database. If a success status
is returned, the IMT will unlock the message and continue the processing loop by going
back to step 1.

Outbound Message Processing

Outbound message processing occurs as a result of event processing by the event
manager when the event template for this event specifies “external message processing”.
In this case, the following operations will occur. If “external message processing” is
indicated by the event template for the current event, the Event Manager will invoke the
Outbound Message Translation (OMT) service (passing a reference to the event). Using the
Event Template Id from the event, the OMT will obtain the Outbound Message Processing
rules for this event. Using these rules, the OMT will construct an output OG based on the
content of the current Event object. The OMT will then invoke the ConveriToXML() method
of the OG object to produce an XML stream. The OMT will create a new outbound
message object (SAOutboundMessage) that contains the outbound STM (in XML format).
The Integration Server continually polls the database for outgoing messages.

When an outgoing message is retrieved from the database, it will be converted into a
native format (specific to the destination system) based on the message mapping rules
contained within the Integration Server. If a connection with the external system does not
already exist, the Integration Server will establish a connection with the external system.
This connection varies based on the protocol and the nature of the specific interface. In

general, this connection can be used to transmit a file of transactions, a set of individual

163

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

transactions, or just a single transaction. The Integration Server will then transmit the native
message to the external system. Once transmitted, the Integration Server will continue its
outgoing message processing loop by continuing with step 6. ;

Transaction Processing Layer (TPL) Processing

The Transaction Processing Layer is the heart of the A/F and coordinates the
processing of application transactions within the system. A key part of this processing is the
inter-organizational validation that occurs for each transaction. In addition to the basic
company and operator security validations performed by most systems, this complex
validation ensures that the organization is authorized to perform this transaction along a
number of dimensions (e.g., relationship, workflow state, etc.).

This layer consists of two main components — the Transaction Manager objects
(SCTranMgr) and Transaction object (SCTran).

TPL Concepts
. Specific concepts-and objects are critical to the operation of the TPL. This section
provides an overview of these concepts and objects.

Intrinsic
Each application function is defined by a related set of three objects. The Intrinsic
object is defined first. This object represents a specific application function that is hard
coded within a specific application transaction class (i.e., an intrinsic function). An
application transaction class can support one, or multiple, intrinsics.

IntrinsicFunction
Once a set of Intrinsic objects are defined, a base set of application functions are
defined using IntrinsicFunction objects. Each IntrinsicFunction object defines a distinct
application function and references a specific Intrinsic object. This object establishes
various parameters and settings that control the processing of the transaction. Some of

these parameters can be overridden and/or further constrained by customer specific

164

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

functions. Since the IntrinsicFunctions are inherent to the application, the community
workflow engines references these objects when evaluating inter-organizational workflow

state changes.

Function

Once the set of IntrinsicFunction objects are defined, a customized set of application
functions are defined using Function objects. Each Function object references an
IntrinsicFunction object. At a minimum, one Function object is defined, by default, for each
IntrinsicFunction. Additionally, the Function object allows for the addition of organization
specific functions, these functions can either override or extend the default set of functions.
This allows organizations to further customize the operation of a given function to meet their
organization specific needs (within the constraints established by the related
IntrinsicFunction). For example, an organization specific function can be used to display a
different form/view to a user (one in which data elements have been removed or defaulted —
i.e., further constrained). Additionally, organization specific functions are often defined to
control organization specific workflow (i.e., intra-organization workflow).

Each transaction processed by the TPL specifies a functionld. This Id uniquely
identifies the Function object that contains the processing specifications for this transaction.
Since each Function is related to an IntrinsicFunction, and each IntrinsicFunction is related
to an Intrinsic, the attributes from all of these objects provide the complete vector of
processing specifications for this transaction. Rather than referring to each of these objects
individually, this set of information is simply referred to as the function vector, function, or
application function.

Object Graph Specifications (OGS) and the Transaction Object Hierarchy
Business objects stored within the database are related with a network structure.
However, within the context of a given application transaction a distinct transaction object
hierarchy exists that establishes a hierarchical relationship among the business objects
involved in the transaction. The business object at the top of this hierarchy is referred to as
the root object.

165

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Within the A/F, the Object Graph Specification (OGS) provides the definition of the
object hierarchy for a given transaction. An OGS object is defined for each function within
the system. Each function can have its own distinct OGS object or multiple functions can
share the same OGS.

The OGS provides the structure and processing attributes for the transaction. A
base OGS object is defined for each IntrinsicFunction. This OGS serves to constrain the
Function object. Additionally, another OGS can be defined on the Function object, however,
in doing so, this OGS can only constrain the OGS inherited from the related IntrinsicFunction
object. '

Transaction Manager Object (SCTranManager)

The Transaction Manager (TranMgr) represents a transaction processing context (or
session) wherein one or more transactions can be executed. The Logon() method of this
object is used to provide additional context information specific to a given company and

operator. The following describes the major processing performed within this object.

Logon Processing
Logon processing occurs after instantiating a TranMgf object. The object
instantiation performs very little initialization itself. The major initialization of the TranMgr
occurs in response to the invocation of the Logon() method as follows.

A calling subsystem will instantiate a TranMgr object (SCTranMgr class).

The Logon() method of the TranMgr object will be invoked. There are various flavors
of this method (i.e., an Online Logon, a Background Logon, etc.), but they all pass the
following key parameters to this method — companyld, operatorld, IP Address, and
password. This method will perform the following. Using the companyld, retrieve the
Company object (SACompany) from the database. If not found, return an error.

Using the Company object and the operatorld, retrieve the Operator object (SAOperator)

from the database. If not found, return an error. Using the Operator object and the

166

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

password, validate the password using the MD5 algorithm (one-way encryption). If invalid,
return an error. For Background Logons, a password is not provided since this is an
internal logon process used by the Event Manager. Additionally, when any logon errors are
detected additional processing is performed to track the type of error, its frequency, etc.
Based on this information, the system may temporarily or permanently disable logon
processing for specific Operator.

Using the Operator object, the operator’s role is obtained. The role defines the application
functions that this operator can perform (as defined by this company). Using the role, the
set of RoleFunction objects (SARoleFunction) will be retrieved from the database and
cached within the TranMgr. Based on the objects returned from the database (e.g.,
Company, Operator, etc.), various attributes are set within the TranMgr representing a
“logged on” state. Create a new Statistics object (SAStatistics) and anchor it within this
TranMgr object. This object is used to collect session and transaction statistics that for any
transactions associated with this TranMgr. Based on a successful logon, the calling
subsystem will proceed with any post-logon processing necessary for the subsystem (as
described in the Interface Subsystem section).

NOTE: The TranMgr object only represents a given Company/Operator at any given
time. However, this object instance is reusable in the sense that the Logoff() method will
reset this object in preparation for another logon.

Logoff Processing
Logoff processing resets a TranMgr object (tha;c has been logged on). This
processing is triggered by invoking the Logoff() method of the TranMgr object. In doing so,
the following operations occur. Create a Session Statistics record (based on the current
statistics object for this TranMgr). Create a Transaction Statistics record (based on the
current statistics object for this TranMgr). Commit these records to the database.
Reset any TranMgr attributes the represent the “logged on” state.

Creating a Transaction Object

167

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Every application function executed within the system requires a Transaction object
(SCTran). Rather than instantiating this object directly, this object is created by the TranMgr
as a result of invoking the CreateTransaction() method. When invoking this method, the
calling subsystem will pass the functionld of the application function (transaction) that is to
be executed. Within this method, the following operations occur.

The functionld is validated against the cached list of RoleFunction objects (i.e., is this
operator allowed to perform this function). If not valid, an error is returned. Based on the
functionld, the Function object (SAFunction) and related objects (SAlntrinsicFunction and
SAlntrinsic) are retrieved from the database. [f the partyType defined in the Function object
does not match the one of the types in the partyTypesAllowed array within the Company
object, then an error is returned. Each function defined within the system is intended to be
performed under a given “relationship” (i.e., partyType). This validation ensures that the
organization performing the transaction is allowed to assume this relationship. Using the
transactionClass defined in the Function object, the TranMgr will create an instance of the
application specific transaction object. A reference to this object will be returned to the
caller.

Transaction Object (SCTran)

Every application function executed within the system requires a Transaction object
(SCTran). The SCTran class is an abstract class and is subclassed by each specific
application transaction class. As such, in creating the transaction object, an instance of an
application specific transaction will be created. A transaction object is created by invoking
the CreateTransaction() method of the TranMgr object. The functionld is passed as a
parameter to this request and is validated by the TranMgr (described above). Within each
function object, the application specific transaction class is defined. As such, when a the
CreateTransaction() method is invoked, it will create the an instance of the application
specific transaction class based on the functionld.

Transaction Execution Overview

The overall execution of a transaction is a complex process that involves an orderly

series of validations and subprocesses. Additionally, based on the nature of the transaction,

168

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

this processing can occur across one or more interactions with an external system or
interactive user. This section provides an overview of the processing that occurs during
transaction execution. This overview is followed by additional sections that detail the
operation of various subprocesses.

In general, the TPL processes two major types of functions (transactions) — editing
and non-editing. Non-editing functions are read-only (i.e., inquiry) functions that merely
return information. Non-editing functions can be further classified as view or form functions.
View functions return an array of many complex business objects. Form functions only
return a single complex business object. Editing functions result in the modification of data
within the database. By definition, editing functions only operate on a single business
object. Editing functions are further classified as one or the following — insert, update, or
delete functions (based on the operation being performed on the root object for the
transaction). For each transaction, the TPL defines the following major processing phases.

Preparation (Prepare)

During Preparation, any existing objects necessary to process this transaction are
retrieved from the database, new objects are created and initialized, and any other
application specific initialization or processing is performed. This phase results in an editing
context that contains initialized application objects. These objects may be merely used to
display information back to the requestor, or they may represent a set of information that is
presented for further modification.

Validation (Validate)

During Validation, any input data is validated and applied to the objects within the
editing context (returned at the completion of the Preparation phase). After the input data is
applied, an ordered validation and processing sequence occurs using the object hierarchy
for this transaction as defined within the OGS. This processing sequence performs any
application specific validation or processing for the transaction. Upon completion of this
sequence, the TPL will perform its final core services — Alert Generation, Workflow State

Evaluation, Event Generation, and Completion Message Generation. If any errors are

169

10

15

20

25

WO 2004/044696 PCT/US2003/035631

detected, the editing context containing the objects is returned to the state that existed at the
end of the Preparation phase. Otherwise, this phase results in an editing context that
contains application and system objects that reflect the results of the processing specific to
this transaction (ready to be committed to the database).

Commit (Commit)
During Commit, the application and system objects within the editing context (that
have been modified) are written to the database. For non-editing functions, only the Prepare
phase is allowed. For editing functions, all phases are required.

A transaction is executed by invoking.the Execute() method of the Tran object for this
transaction. Prior to invoking this method, the following input attributes of the Tran object
are set.

Root Object
A reference to an existing business object. If the function is an insert function, then
this parameter will be null.

Root Object Class
The application class of the root objects.

Transaction Parameters (TranParms)
A set of application specific parameters used to further control the processing of the

application function.

Input OG
A reference to an OG object that contains any input data for this transaction.

Query Parms

170

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

For non-editing functions, a reference to a Query Parm object. This object contains
query parameters that are used to control the selection of business objects from the
database (i.e., similar to the WHERE clause of an SQL query).

Subfunction
The execution phase to be performed — Prepare, Validate, Commit. Upon return
from the Execute() method, the following output attributes of the Tran object are returned.

Output OG
A reference to an OG that contains the resulting business objects from this request
(as controlled by the OGS for this transaction). For non-editing view functions, this OG will
consist of an array of zero to many complex business objects. For all other functions, this
OG will consist of a single complex business object.
'Datastream '
Rather than generating an output OG, some application transactions produce a
binary datastream (the format and structure of which is defined within the function object).

TPL Return Code

A return code indicating the status of the transaction processing — SUCCESS,
ERROR, RETRY, or FAILURE. The meaning of these codes is as follows. SUCCESS -
indicates that the subfunction was performed successfully by the TPL and no application
errors were detected. In this case, the Message Array may contain one or more
informational or warning messages. ERROR - indicates that the subfunction was performed
successfully by the TPL, but application errors were detected. In this case, the Message
Array will contain one or more error messages in addition to any informational or warning
messages. RETRY — only valid for Background Processing, indicates that the subfunction
was not completed and that a retryable condition exists. The subsystem should retry this
request at a later time. The retry mechanism is subsystem dependent. FAILURE —
indicates the TPL encountered a configuration error or an unhandled exception during the

17

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

processing of this request (that it recovered from) and recorded a System Event. This
request cannot be processed.

Message Array
An array of message objects that contain one or more application messages. Each
message contains a severity — informational, warning, or error.

Using this method and parameters, the following summarizes the operations that

occur.

The subfunction is validated based on the current state of the transaction and the
type of function. For non-editing functions, only “prepare” can be specified. For editing
functions, all subfunctions can be specified. However, depending on the state of the
transaction, certain subfunctions are invalid. For example, if the transaction completed its
“validation” state, then it is invalid to specify the “prepare” subfunction. A finite state machine
(FSM) is used to ensure that the specified subfunction is valid for the given transaction state.
If the subfunction is invalid, an error is returned.

Based on the subfunction passed, one of the following internal SCTran methods is
invoked - _prepare(), _validate(), or _commit(). Since the calling subsystem may initially
execute a transaction with either “validate” or “commit”, each of these internal functions will
check the state of the transaction and invoke the method for a prior phase if necessary. As
a result, the transaction phases will be executed in order — Prepare, Validate, Commit
(except for non-editing functions in which only Prepare is valid). The phases performed will
never exceed the phase indicated by the subfunction.

Once the phase or phases indicated by the subfunction is/are performed, the
resulting editing context (managed by the Tran object) will contain one or more business
objects. Using this editing context and the OGS for the transaction, an output OG will be
created. The UpdateStatistics() method within the TranMgr object will be invoked to update

172

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

transaction statistics for this request. The method will then return to the calling subsystem
with the output parameters described above.

Prepare Processing
The processing performed during “prepare” varies based on the type of function
being performed.

For view functions, the following operations are performed. If the state of the Tran is
“Prepare” (i.e., a “prepare” was already performed), reset the Tran to “Init” state.
The selection criteria used to select the business objects for the view is assembled as
follows: the selection criteria are initialized to null; any query parms from the Intrinsic are

 AND’ed to the current selection criteria; any query parms from the IntrinsicFunction are

AND’ed to the current selection criteria; any query parms from the Function are AND’ed to
the current selection criteria; and any query parms passed in the current Tran object are
AND’ed to the current selection criteria.

The following hard coded query parm is AND’ed to the current selection. This
qualifier ensures that SQL query only returns business objects for which the current
organization is authorized. This query parm is critical to providing inter-organizational data
security. As such, it MUST be hard coded within the software and not modifiable via
configuration. The following summarizes the key conditions of this qualifier. The
organization performing this function must be a party to the folder containing this business
object. The organization performing this function must have access to one or more tasks
within the folder (i.e., its partyType must be included in the currentPartyArray for one or
more tasks within the folder). The relationship of this organization for this transaction (i.e., its
party type within the folder) must match the party type of the function being performed).

Using the selection criteria created above, the business objects are retrieved from the

database (according to this selection criteria) into the editing context associated with this
Tran object. An output OG is created using the OGS for the function and the business

173

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

objects within the editing context. Set the state of the Tran to “Prepare”, set the return code
and any other output parameters, and return to the calling subsystem.

For form, update, and delete functions, the following operations are performed. If the
state of the Tran is “Prepare” (i.e., a “prepare” was already performed), reset the Tran to
“Init’” state. If the function is an editing function OR if the function is a form function (with
Lock=TRUE specified on the function), lock the folder containing this business object. If the
lock is unsuccessful, return an ERROR.

If a root object parameter was passed, the following will be performed. The root
object and any other related objects (as specified in the OGS) will be retrieved from the
database. If the class of the returned root object does not match the Root Object Class
parameter, then a FAILURE is returned. The folder associated with the root object, and the
related parties for this folder, will be retrieved from the database. The partyType of the
organization berforming this function will be determined as follows. Obtain the companyld
from the TranMgr associated with this Tran. Scan the Party objects from the folder and
locate the Party object with the same companyld. If this company does not exist as a Party
on this folder, then a FAILURE is returned. Obtain the partyType from this Party object. If
the partyType for this function does not match this organization’s party type for this business
transaction (i.e., folder), then a FAILURE is returned. This check ensures that the
organization performing this function is operating within their relationship defined for this
specific business transaction.

For editing functions, the CheckWorkflow() method of the Workflow Manager is
invoked to determine whether or not this function is valid based on the current workflow
state of the folder. If the function is invalid, an error is returned. After completing the
validations above, the prepare() method of the Tran object is invoked. A dummy
implementation of this method is provided in the SCTran class (which merely returns). The
purpose of this method is to pass control to the application specific version of this method in
the application transaction class. If this method is implemented, it will perform any

application specific initialization as required. Upon return from the prepare() method, an

174

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

output OG is created using the OGS and the business objects within the editing context. Set
the state of the Tran to “Prepare”, set the return code and any other output parameters, and

return to the calling subsystem.

For insert functions, the following operations are performed. If the state of the Tran is
“Prepare” (i.e., a “prepare” was already performed), reset the Tran to “Init’ state. Based on
the root object class, a new business object of this class will be created. The
CheckWorkflow() method of the Workflow Manager is invoked to determine whether or not
this function is valid based on the current workflow state of the folder. If the function is
invalid, an error is returned. The prepare() method of the Tran object is invoked. A dummy
implementation of this method is provided in the SCTran class (which merely returns). The
purpose of this method is to pass control to the application specific version of this method in
the application transaction class. If this method is implemented, it will perform any
application specific initialization as required. Upon return from the prepare() method, an
output OG is created using the OGS and the business objects within the editing context. Set
the state of the Tran to “Prepare”, set the return code and any other output parameters, and
return to the calling subsystem.

Validate Processing

During “validate” processing, the following operations will be performed. If the Tran is
in “Init” state (i.e., “prepare” has not been performed), invoke the _prepare() method (see
Prepare Processing above). If the Tran is in “Validate” state (i.e., “validate” has already
been performed), reset the business objects within the editing context back to the state that
existed immediately after “prepare” processing. If an input OG is provided, the data
elements flagged as “input’ elements (within the OGS) will be validated (syntactical
validation). Using the object hierarchy defined within the OGS, the Validate() method of
each business object will be invoked starting at the bottom of the hierarchy and working
back to the top. This validation sequence provides for the orderly validation of all business

objects within the transaction.

175

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

After completing the validations above, the Validate() method of the Tran object is
invoked. A dummy implementation of this method is provided in the SCTran class (which
merely returns). The purpose of this method is to pass control to the application specific
version of this method in the application transaction class. If this method is implemented, it
will perform any application specific validations and processing as required. NOTE: That
this method is only invoked after all business objects within the transaction have been
validated. If any application errors have been detected, reset the business objects within the
editing context back to the state that existed immediately after “prepare” processing and
return an ERROR. Upon return from the Validate() method, the GenerateAlerts() method of
the Alert Manager will be invoked. This method evaluates any business rules for ALL
parties involved in this transaction and generates the appropriate Alert objects (SAAlert)
within the editing context.

After processing the alerts, the EvaluateWorkflow() method of the Workflow Manager
will be invoked. Based on the application function being processed, this method will set the
next workflow state for the folder. After evaluating the workflow, the
GenerateHistoryEvents() method of the Tran object will be invoked. This method traverses
the business object hierarchy for this transaction and generates any Event objects
(SAEvent) based on any changes to business objects (derived from SADocument). After
generating history events, the GenerateCompletionMessage() method of the Tran objects
will be invoked. Using the completion message template defined on the function, this
method will generate a completion message for this function and add it to the message
array (for this transaction). An output OG is created using the OGS for the function and the
business objects within the editing context. Set the state of the Tran to “Validate”, set the
return code and any other output parameters, and return to the calling subsystem.

Commit Processing
During “commit” processing, the following operations will be performed. If the Tran is
in “Init” state (i.e., “prepare” has not been performed), invoke the _prepare() method (see
Prepare Processing above). If the Tran is in “Prepare” state (i.e., “validate” has not been

performed), invoke the _validate() method (see Validate Processing above). Invoke the

176

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

CheckLock() method of the Lock Manager for this folder. If unsuccessful, return ERROR.
Otherwise, this method will refresh the lock (thereby ensuring that no one else is attempting
to modify the folder). Within the editing context for this Tran object, commit all business
objects (that have been modified) to the database. Unlock the folder.

Application Logic Processing

Based on the structure discussed above, the application logic required for any
applications constructed with the A/F is greatly simplified. The application logic is coded
within two major sets of objects — Application Transaction Classes and Business Object
Classes.

Application Transaction Classes

The application transaction class supports one or more intrinsics within the
application. Within each class, the following methods are coded. Prepare Method: this
method is used to perform any application specific initialization for the transaction. Validate
Method: this method is used to perform any application specific validation and processing
for the transaction.

Business Object Classes

Each transaction consists of one or more business objects. Business objects
represent the data entities for the application system. Within each class, the following
method is coded. Validate Method: this method is used to perform any application specific
validation and processing for the business object. Due to the ordered sequence in which
this method is invoked, all dependent (i.e., child) objects that are related to this object will
have been validated prior to this method being invoked for this object. As such, this
validation and processing can include any complex validations, cross-edits or manipulations
of any dependent objects‘that are subordinate to this object.

System Service Processing

The various subsystems and objects described above rely on a rich set of System

Services. These services are described further in this section.

177

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Locking and Reservation

By centralizing the data associated the inter-organizational transactions in a common
network/database, the system facilitates the ability of each organization to collaborate with
each other. As such, when a given organization is performing a function with respect to a
given business transaction, the system automatically provides for locking and reservation of
the folder as follows. In general, anyone can access the information for a specific business
transaction (read-only) at any time (even though the folder may be locked). Whenever an
editing function is being performed, the folder will be locked until the editing function is
completed. For team ownership, whenever a folder is returned to an operator from the pool,
it will be locked until that operator retrieves another folder or logs off. This allows an
operator within the team to perform multiple functions on the folder without being locked out
by someone else accessing the folder.

When the folder is locked by one organization, if another organization attempts to
lock it (e.g., by performing an editing function), the system will notify that operator that the
folder is locked by the other organization.

In order to prevent a folder from being locked for an excessive amount of time, a
timeout mechanism is provided. This mechanism will “unlock” the folder after the timeout

period expires.

Object Graph Services

With multi-party transaction processing, each transaction request needs to be filtered
to limit the input and output data elements for that specific party. This multi-party data
filtering is performed by the TPL using an Object Graph Specification (OGS).

Each transaction request is associated with a Function (whose definition is contained
within the system configuration). An OGS is associated with each function. The OGS
defines the set of data entities and atiributes, and their object structure, for a given

transaction request (i.e., function).

178

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Each interface subsystem will convert any incoming transaction request into an
Object Graph (i.e., an object-oriented hierarchical structure of key:value pairs). The
interface subsystem will then invoke the TPL to process the transaction.

Using the OGS associated with the Function for this transaction request, the TPL will
validate any input data provided with the transaction request. In doing so, it will only receive
and process input data elements that are specified in the OGS (thereby preventing the
creation or modification of data elements that are not allowed for this party). After
processing any input data, the TPL will then invoke the application logic to process the
transaction. Once the application logic has completed its processing, the TPL will again use
the OGS to prepare a new Object Graph that contains the results of the application
processing. In so doing, the resulting OG'will only contain those data elements that are
definéd within the OGS (hence only sending data elements that are allowed for this party).

Atfter the TPL completes its processing, the interface subsystem will convert the new
Obiject Graph (returned by the TPL) into an outgoing transaction response.

Essentially, the Object Graph Services ensure that a given party ‘only can send or
receive data elements allowed for their party type. Another unique aspect of this service is
its ability to insulate the application logic from the details of the party type filtering. This
greatly simplifies the resulting application code while also supporting a large number of
related transactions that differ with respect to their data content.

Business Rule and Alert Management

In order to handle the unique processing requirements of each member organization,
the system supports the definition of business rules that are specific to each organization.
These business rule definitions are defined within the system configuration (and vary with
each vertical application).

179

10

. 15

20

25

30

WO 2004/044696 PCT/US2003/035631

Each time the TPL processes an editing function, it will invoke the Alert Manager to
perform business rule evaluation and alert generation. For each party defined on the folder
(associated with this transaction), the Alert Manager will retrieve and evaluate all business
rules that are applicable. In evaluating each business rule, if the business rule fails, an alert
will be generated. These business rules are re-evaluated any time a new editing function is
performed on the folder (by any party).

Within each folder, a collection of alerts is maintained. This collection represents the
current set of exceptional business conditions that exist within the folder. When an alert is
generated, an alert rule definition within the system configuration is used to determine which
party types should be allowed to access this alert. In this way, certain alerts may be private
to a specific party while other alerts may be public to multiple parties.

Essentially, the Business Rule and Alert Management services provide for
organization specific business rule processing. This service is unique in its multi-party
processing capabilities.

Workflow Management

Each time the TPL processes an editing function, it will invoke the Workflow Manager
to determine the next workflow state for the folder (i.e., workflow management). For more
information on this capability, refer to the related section on “Inter-Organization Workflow
Management”.

Security Management
The Security Management service addresses the requirements of BOTH intra-
organization and inter-organizational security. The following summarizes these security

management capabilities.
The Security service will always validate the identity of any operator or automated

system that is attempting to connect to the system and perform transactions (i.e., validate
the requestor).

180

10

16

20

25

30

WO 2004/044696 PCT/US2003/035631

Once the identify of the requestor is verified, the following set of inter-organizational
security constraints are verified. Ensure that a requestor can only access folders (business
transactions), and related folder data, for which their organization is a valid party. Ensure
that a requestor can only perform functions for which their organization is authorized (based
on the valid set of party types defined for their organization). For a given folder (business
transaction), ensure that a requestor can only perform functions that are allowed by the
relationship (party type) of their organization to that folder. For a given folder (business
transaction), ensure that a requestor can only perform the functions that are allowed for their
party type based on the current workflow state for that folder. For a given folder (business
transactiqn), ensure that a requestor can only send/receive data elements that are allowed
by the relationship (party type) of their organization to that folder.

Within the constraints established by the inter-organizational security mechanism, the
following intra-organization constraints are verified. Ensure that a requestor can only access
folders (business transactions) that are allowed by their role. Ensure that a requestor can
only perform functions that are defined by their role. Ensure that a requestor can only
send/receive data elements that are aliowed by their role.

Essentially, the Security Management service ensures and maintains the data
privacy within the system. It is unique in its ability to handle intra-organization security

constraints within the context of inter-organizational security constraints.

Individual vs. Team Ownership

For every folder in the system, an owner must be specified for each organization
(party) that is defined on that folder. This allows the system to identify the specific individual
or group that is responsible for handling the transaction within each organization. The

system can support either individual or team ownership.

With individual ownership, the folder is owned by a specific individual within a given
organization. With this method of ownership, the individual operator will manage their

181

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

folders using a variety of views and filters. The ownership of this folder will remain with that
individual until it is transferred to another individual or the transaction is completed.

With team ownership, the folder is owned by a group of operators (not an individual
operator). This method of ownership is typically used by large organizations with high
transaction volume (e.g., insurance claims, purchase order handling, etc.) and provides
greater file handling efficiency and improved responsiveness. Using this method, a group of
operators are assigned to process a pool of folders that share a common set of

characteristics (e.g., workflow state, geography, amount, business condition, etc.).

The following additional services are provided to fully support team ownership. One
or more “Get Work” functions can be defined that allow any operator in the group to retrieve
a folder from the pool of folders. The selection criteria that define the folders that belong to a
given pool can be simple or extremely complex. Special locking and reservation handling is

provided (for more information, refer to the section on “Locking and Reservation”.

External Notifications

In addition to the electronic message capabilities provided by the Message
Translation service, the system also supports the ability to use external communication
services to for the purpose of issuing notifications. This capability is referred to as the
External Notification service.

This service is useful for sending notifications to people who are infrequent users of
the system. This allows these users to be notified of business activity that occurred within

the system (without having to logon and check the system on a regular basis).
For every event that is processed by the Event Manager, if an external notification is

defined for that event, the Event Manager will invoke the External Notification Manager to

generate the notification.

182

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Examples of external communication networks that will typically be used for external
nofifications include e-mail, fax, pager, cell phone, pda, and other wireless devices.

Snapshot Services

For each folder, the Event Management subsystem maintains a rich business history
of all modifications to the folder. Within each event, a complete collection of the business
object hierarchy for the transaction is preserved. The snapshot mechanism was designed to
avoid the overhead of maintaining history data within each distinct application table in the
database.

Essentially, the snapshot is a data blob (in XML format) that contains the complete
business object hierarchy that existed within a fransaction when the transaction was
committed to the database.

When creating an event within a transaction, the CreateEvent() method will use the
root object for the event and generate a snapshot object (SASnapshot) for this event using
the Snapshot OGS defined on the event template associated with this event. A reference to
this object will then be stored in the Event object being created. These objects will be
written to the database, along with all the other data for the transaction during “commit”

processing.

To view the business objects within a snapshot, the snapshot object is first retrieved
from the database. A special editing context is then created. Finally, the snapshot blob
(XML stream) is parsed and each individual business object is reconstituted within the
special editing context. The TPL will then prepare an output OG using the business objects
contained in this editing context.

Reporting
Within any given application the transactions from various organizations will be
contained within a single database. In order to protect the privacy of each organizations

data, no organization can be given a direct link to the database for reporting purposes. The

183

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

Reporting service was designed to provide a high-performance reporting facility for

generating reports.

Essentially, the reporting service uses the same mechanisms used by view functions
within the system. However, rather than retrieving objects from the database, this service
uses “raw” query mechanisms and aggregations (e.g., raw SQL) to allow the database to
perform data summarization and aggregation operations on the data. This greatly reduces
the amount of data transferred between the database server and the application server.

These raw rows are passed to the JView™ environment within the browser for rendering.

Document Management
While many of the facilities within the system are oriented around the management of
structured documents, a rich set of Document Management services are provided for

managing unstructured documents.

Essentially, an unstructured document is treated as a binary blob and can support
virtually any type of document (e.g., word processing documents, spreadsheets, graphics,

images/photos, animations, audio, video, etc.).

The Document Management service provides a variety of methods for importing
these documents into the system. These mechanisms include HTTP, FTP, E-Mail, and
URL pull.

When a new unstructured document is attached to a folder, an Attachment object
(SAAttachment) is created. This object contains meta-data related to this document. In
addition, the actual document itself is stored within an AttachmentData object
(SAAttachmentData). Within this object, the binary data representing the document is
stored as a blob. In fact, based on the primary type of the attachment, two blobs are actually
stored within the AttachmentData object — a native blob and a generic blob. The native blob
contains the actual binary data for the original document. The generic blob contains a

184

10

15

WO 2004/044696 PCT/US2003/035631

version of the original document converted into a common format (e.g., PDF for documents,
MP3 for audio, MPEG for video, etc.).

When a new revision of a given attachment is received, a new AttachmentData
object is created. The Attachment object maintains a list of all the revisions for a given
document (thereby providing a complete revision history for the document).

Within each Attachment object, the currentPartyArray attribute is used to define the

parties within the folder that can access the attachment.

lllustrative embodiments of the present invention have been disclosed. A person of
ordinary skill in the art would realize, however, that certain modifications would come within
the teachings of this invention.

185

10

15

20

25

WO 2004/044696 PCT/US2003/035631

WHAT IS CLAIMED IS:

1. A method for issuing and negotiating and settling insurance subrogation
claims between at least two parties through an electronic subrogation network, said method
comprising:

providing at least one electronic subrogation file, capable of containing structured
claim information and unstructured supporting documents in a form that can
be accessed by multiple parties;

permitting entry, through electronic communication means, by one or more of said
muliiple parties of one or both of claim information and supporting documents
to said subrogation file based on party-specific rules; and

permitting access, through electronic communication means, by one or more of said
muiltiple parties to one or both of said structured claim information and said
unstructured supporting documents based on party-specific rules.

2. The method of claim 1, wherein said permitting entry includes automatically
entering paper documents received by fax or high-speed scanner into the electronic file.

3. The method of claim 1, wherein said electronic communication means
comprises a network, and further including issuing subrogation demands through electronic
communication means to both on-network and off-network parties.

4, The method of claim 1, and further including establishing audit and business

rule functions that permit said at least one electronic subrogation file to be electronically
audited based on said party-specific rules.

186

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

5. The method of claim 1, wherein said multiple parties include a demanding
party, a responding pa&y, and one or more supporting/facilitating parties, and further
including routing 2 demand to an appropriate responding party based on a responding
party's routing rules.

6. The method of claim of 5, wherein said routing includes using a routing
algorithm that combines a demanding party specific index and a heuristic algorithm to
correctly determine an appropriate responding party and further a specific individual or
group within said responding party that is to initially handle the demand.

7. The method of claim 1, and further including using a state-based model to
manage inter-party subrogation workflow.

8. The method of claim 1, and further including permitting intra-party subrogation

workflow functions, including follow-up action plans and party-specific workflow.

9. The method of claim 1, and further including providing collaboration functions
that allow selected parties to exchange information and negotiate using said electronic

communication means.

10. The method of claim 1, and further including providing a document
management function that allows said multiple parties to update attachments and manage

document versions.

11. The method of claim 1, wherein said electronic communication means
includes a network, and further including automatically generating alerts to on-network

parties for exception conditions or violations of said party-specific rules.
12. The method of claim 1, and further including selectively assigning selected

files and providing online access to third parties including arbitrators, litigators and outside

service providers.

187

10

15

20

25

WO 2004/044696 PCT/US2003/035631

13. The method of claim 1, wherein said electronic communication means
includes a network, and further including generating customizable online management
reporis.

14. The method of claim 1, and further including settling subrogation claims
between parties automatically based on the parties' business rules.

15. The method of claim 1, and further including automatically generating
counterclaim demands based on liability percentage and comparative negligence rules of a

responding party.

16. The method of claim 1, and further including triggering an automatic funds
transfer based on a response of a responding party.

17. The method of claim 1, and further including netiing payments between
parties involved in a subrogation claim, including:

tracking payments owed and payments due over a given period of time for a
member;

netting payments either bilaterally between parties or multilaterally between a party
and an electronic subrogation network representing all other parties
participating in a netting process;

configuring netting periods; and

managing information to allocate netted payments to each claim file.

188

10

15

20

25

WO 2004/044696 PCT/US2003/035631

18. The method of claim 1, and further including allowing members to benchmark
parameters of their subrogation and/or claims operation against an aggregate based on

information contained in said electronic subrogation files.

19. The method of claim 1, and further including assessing a best course of action
within a subrogation process, including performing a cost-benefits analysis of pursuing a
particular course of action.

20. The method of claim 1, and further including assessing the validity of a
subrogation demand including performing an electronic audit for selected conditions based
upon configurable parameters of a demanding party, and one or more responding parties,
said configurable parameters including, but not limited to, required data or documents, claim

liability and damages, and vehicle valuation conditions.

21. The method of claim 1, and further including routing subrogation demand to
responding parties using a routing algorithm, which combines a heuristic algorithm to
correctly determine the identity of the responding party and routing rules defined by the.

responding party.

22. A method for organizing and modeling subrogation-specific business

information comprising:
providing entities, attributes and relationships specific to subrogation workflow;
translating incoming data formats to a unified data model format; and

maintaining consistency in said translating.

189

‘10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

23. A method for managing the workflow between two or more organizations
within a subrogation process, said method comprising:

providing a subrogation-specific workflow model that includes inter-organization

workflow states, transitions, conditionality, status and action flags; and

managing organization-specific workflow within the context of community workflow.

24. The method of claim 23, and further including providing real-time status

information to said organizations.

25. The method of claim 23, and further including managing organization-specific

workflow based upon the events and exception conditions within the workflow.

26. A system for issuing and negotiating and settling insurance subrogation
claims between at least two parties through an electronic subrogation network, said system

comprising:

at least one electronic subrogation file, capable of containing structured claim
information and unstructured supporting documents in a form that can be
accessed by multiple parties;

means for permitting entry, through electronic communication means, by one or more
of said multiple parties of one or both of said structured claim information and
unstructured supporting documents to said subrogation file based on party-

specific rules; and
means for permitting access, through electronic communication means, by one or

more of said multiple parties to one or both of said structured claim
information and said supporting documents based on party-specific rules.

190

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

27. The system of claim 26, wherein said means for permitting entry includes
means for automatically entering paper documents received by fax or high speed scanner
into the electronic file.

28. The system of claim 26, wherein said electronic communication means
comprises a network, and further including means for issuing subrogation demands through
electronic communication means to both on-network and off-network parties.

29. The system of claim 26, and further including means for establishing audit and
business rule functions that permit said at least one electronic subrogation file to be
electronically audited based on said party-specific rules.

30. The system of claim 26, wherein said multiple parties include a demanding , a
responding party, and one or more supporting/facilitating parties, and further including
means for routing a demand to an appropriate responding party based on a responding
party's routing rules.

31. The system of claim of 30, wherein said means for routing includes a routing
algorithm that combines a demanding party specific index and a heuristic algorithm to
correctly determine an appropriate responding party and further a specific individual or
group within said responding party that is to initially handle the demand.

32. The system of claim 26, and further including a state-based model for
managing inter-party subrogation workflow.

33. The system of claim 26, and further including means for permitting intra-party
subrogation workflow functions, including follow-up action plans and party-specific workflow.

34. The system of claim 26, and further including means for providing

collaboration functions that allow selected parties to exchange information and negotiate

using said electronic communication means.

191

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

35. The system of claim 26, and further including means for providing a document
management function that allows said multiple parties to update attachments and manage
document versions.

36. The system of claim 26, wherein said electronic communication means
includes a network, and further including means for automatically generating alerts to on-
network parties for exception conditions or violations of said party-specific rules.

37. The system of claim 26, and further including means for selectively assigning
selected files and providing online access to third parties including arbitrators, litigators and
outside service providers. i

38. The system of claim 26, wherein said electronic communication means
includes a network, and further including means for generating customizable online
management reports.

39. The system of claim 26, and further including means for settling subrogation
claims between parties automatically based on the parties' business rules.

40. The system of claim 26, and further including means for automatically
generating counterclaim demands based on liability percentage and comparative negligence

rules of a responding party.

41. The system of claim 26, and further including means for triggering an
automatic funds transfer based on a response of a responding party.

42. The system of claim 26, and further including means for netting payments
between parties involved in a subrogation claim, including:

192

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

means for tracking payments owed and payments due over a given period of time for

a member;

means for netting payments either bilaterally between parties or multilaterally
between a party and the ESN representing all other parties participating in the
netting process;)

means for configuring netting periods; and

means for managing information to allocate netted payments to each claim file.

43. The system of claim 26, and further including means for allowing members to
benchmark parameters of their subrogation and/or claims operation against an aggregate
based on information contained in said electronic subrogation files.

44. The system of claim 26, and further including means for assessing a best
course of action within a subrogation process, including means for performing a cost-

benefits analysis of pursuing a particular course of action.

45. The system of claim 26, and further including means for assessing the validity
of a subrogation demand including means for performing an electronic audit for selected
conditions based upon configurable parameters of a demanding party, and of one or more
responding parties, said configurable parameters including, but not limited to, required data

or documents, claim liability and damages, and vehicle valuation conditions.

48. The system of claim 26, and further including means for routing subrogation
demand to responding parties using a routing algorithm, which combines a heuristic
algorithm to correctly determine the identity of the responding party and routing rules defined

by the responding party.

193

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

47. A system for organizing and modeling subrogation-specific business
information comprising:

means for providing entities, attributes and relationships is specific to subrogation
workflow;

means for translating incoming data formats to a unified data model format; and

means for maintaining consistency in said translating.

48. A system for managing the workflow between two or more companies within a
subrogation process, said system comprising:

means for providing a subrogation-specific workflow model that includes inter-
organization workflow states, transitions, conditionality, status and action
flags; and

means for managing organization-specific workflow within the context of community
workflow.

49. The system of claim 48, and further including means for providing real-time
status information to said organizations.

50. The system of claim 48, and further including means for managing
organization-specific workflow based upon the events and exception conditions within the

workflow.

51. A method for optimizing and enriching an interaction between a client and a

server as compared to a server-based HTML approach, said method comprising:

194

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

reducing the bandwidth requirement for the transmission of data between a client and
a server;

reducing the number of interactions required to between a client and a server by a
factor of two or more;

reducing response time as experienced by an end-user operating the client: and

reducing a number of processing cycles required by the server for communication of
application information between a server and a client.

B2. The method of claim 51, and further including providing for communication of
structured and unstructured information to and from the server.

53. The method of claim 51, and further including, compared to a server-based
HTML approach, effecting a message-based communication channel with a server that
simplifies the construction of processing logic that handies each message.

54. The method of claim 51, and further including providing for multiple
independent and simultaneous communication channels with the server within the same

end-user session.

55. The method of claim 51, and further including supporting a plurality of varying
browser implementations.

56. The method of claim 51, and further including measuring and recording an
actual response time experienced by an end-user operating the client.

57. The method of claim 51, and further including operating within the constraints
of a basic thin client architecture.

195

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

58. Asystem for optimizing and enriching an interaction between a client and a
server as compared to a server-based HTML approach, said system comprising:

means for reducing the bandwidth requirement for the transmission of data between
aclient and a server;

means for reducing the number of interactions required to between a client and a
server by a factor of two or more;

means for reducing response time as experienced by an end-user operating the
client; and

means for reducing a number of processing cycles required by the server for
communication of application information between a server and a client.

59. The system of claim 58, and further including providing for communication of
structured and unstructured information to and from the server.

60. The system of claim 58, and further including means for effecting a
message-based communication channel with a server that simplifies the construction of
processing logic that handles each message, compared to a server-based HTML approach.

61. The system of claim 58, and further including means for providing multiple
independent and simultaneous communication channels with the server within the same

end-user session.

62. The system of claim 58, and further including means for supporting a plurality
of varying browser implementations.

63. The system of claim 58, and further including means for measuring and

recording an actual response time experienced by an end-user operating the client.

196

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

64. The system of claim 58, and further including means for operating within the

constraints of a basic thin client architecture.

65. A method for determining and maintaining workflow states of a business

process/transaction involving multiple independent parties, said method comprising:

defining said workflow states and communicating at least one of said workflow states
upon demand to each of said organizations in a framework that is generic to

a specific business process/transaction;

defining one or more valid workflow completion targets and maintaining state
information related to the progression towards a given workflow target;

tracking the state of one or more activities occurring simultaneously within said

business process/ transaction;

maintaining state data independently for each of the organizations involved within

said business process/transaction;

maintaining data for each activity within said business process/transaction specifying
which of said organizations is responsible for performing the next action
related to said activity; and

maintaining a deterministic framework for all valid workflow conditions, states and

transitions between states related to said business process/transaction.
66. The method of claim 65, and further including determining a set of valid

operations that can be performed to effect workflow state changes or transactions, at any
point during the business process/transaction.

197

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

67. The method of claim 65, and further including differentiating between and

among a plurality of relationships that each said party has with respect to a given business

process/transaction-for the purpose of determining or maintaining valid workflow states.

68. The method of claim 65, and further including using a parameter-based
implementation which does not require procedural programming logic or instructions that are
specific to the business process/transaction.

69. A system for determining and maintaining workflow states of a business

process/transaction involving multiple independent parties, said system comprising:

means for defining said workflow states and communicating at least one said
workflow states upon demand to each of said organizations in a framework

that is generic to a specific business process/transaction;

means for defining one or more valid workflow completion targets and maintaining

state information related to the progression towards a given workflow target;

means for tracking the state of one or more activities occurring simultaneously within
said business process/ transaction;

means for maintaining state data independently for each of the organizations

involved within said business process/transaction;
means for maintaining data for each activity within said business process/transaction
specifying which of said organizations is responsible for performing the next

action related to said activity; and

means for maintaining a deterministic framework for all valid workflow conditions,
states and transitions between states.

198

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

70. The system of claim 69, and further including means for determining a set of
valid operations that can be performed to effect workflow state changes or transactions, at
any point during the business process/transaction.

71. The system of claim 69, and further including means for differentiating
between and among a plurality of relationships that each said organization has with respect
to a given business process/transaction for the purpose of determining or maintaining valid

workflow states.

72. The system of claim 69, and further including a parameter-based
implementation which does not require procedural programming logic or instructions that are
specific to the business process/transaction.

73. A method for carrying out a business process/transaction involving multiple
independent parties through an electronic network, said method comprising:

providing at least one electronic file, capable of containing structured information and
unstructured supporting documents in a form that can be accessed by

multiple parties;

permitting entry, through electronic communication means, by one or more of said
multiple parties of one or both of said structured information and said
supporting documents to said electronic file based on party-specific rules; and

permitting access, through electronic communication means, by one or more of said
multiple parties to one or both of said structured claim information and said

unstructured supporting documents based on party-specific rules.
74. A method for processing an application specific request, and generating an

associated response, based on receipt of a message based-transaction request containing

a collection of interrelated business objects, said method comprising:

199

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

providing a processing framework that does not rely on any specific message format
from the originating system,

validating the identity and authority of an arbitrary requester that will be submitting
transaction requests, and, upon said validating, establishing a “requester
context’ that will be used to validate any transaction requests;

validating whether or not a specific transaction request can be processed based on
the requester context and, upon said validating, establishing a “transaction
context” based on the specific request;

ensuring that any response to the transaction request contains correct business
objects and related attributes based on a requester and transaction context;

ensuring that the input portion of any transaction request that will result in data
modification contains only the business objects and attributes that are allowed
to be modified based on the requester and transaction context;

allowing the application specific processing logic to be defined without regard to input
or output filtering of objects and attributes that are indicated by a specific
requester and transaction context;

ensuring that the transaction request can only access data objects within the
database that are allowed based on the specific requester and transaction
context;

supporting transaction requests from a plurality of originating systems and interfaces

including, online HTML interface, background, automated electronic interface,
and wireless device; and

200

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

enabling authorized requesting systems to automatically determine the types of
requests that can be submitted and their associated request/response
structures.

75. The method of claim 73, wherein said permitting entry includes automatically

entering paper documents received by fax or high speed scanner into the electronic file.

76. The method of claim 73, wherein said electronic communication means
comprises a network, and further including processing business transactions through
electronic communication means to both on-network and off-network parties.

77. The method of claim 73, and further including establishing audit and business
rule functions that permit said at least one electronic file to be electronically audited based
on said party-specific rules.

78. The method of claim 73, wherein said multiple parties include a primary party,
a counter-party, and one or more supporting/facilitating parties, and further including routing
a file to an appropriate counter-party based on the counter-party's routing rules.

79. The method of claim of 78, wherein said routing includes using a routing
algorithm that combines a primary party specific index and a heuristic algorithm to correctly
determine an appropriate counter-party and further the specific individual or group within
said counter-party that is to initially handle the file.

80. The method of claim 73, and further including means for using a state-based
model to manage inter-party workflow.

81. The method of claim 73, and further including permitting intra-party workflow
functions, including follow-up action plans and party-specific workfiow.

201

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

82. The method of claim 73, and further including providing collaboration functions
that allow selected parties to exchange information using said electronic communication

means.

83. The method of claim 73, and further including providing a document
management function that allows said multiple parties to update attachments and manage
document versions.

84. The method of claim 73, wherein said electronic communication means
includes a network, and further including automatically generating alerts to on-network
parties for exception conditions or violations of said party-specific rules.

85. The method of claim 73, and further including selectively assigning selected
files and providing online access to third parties including outside service providers.

86. The method of claim 73, wherein said electronic communication means
includes a network, and further including generating customizable online management
reports.

87. The method of claim 73, and further including assessing the validity of a
business transaction including performing an electronic audit for selected conditions based
upon configurable parameters of the primary party, and one or more counter-parties, said
configurable parameters including, but not limited to, various required/optional data
elements or documents.

88. The method of claim 73, and further including routing a given business
transaction to counter-parties using a routing algorithm, which combines a heuristic
algorithm to correctly determine the identity of the counter-party and routing rules defined by
the counter-party.

202

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

89. A method for organizing and modeling application-specific business
information comprising:

providing entities, atiributes and relationships specific to the given business process;
translating incoming data formats to a unified data model format; and
maintaining consistency in said translating.

90. A method for managing the workflow between two or more organizations
within a business process, said method comprising: '

providing a process-specific workflow model that includes inter-organization workflow
states, transitions, conditionality, status and action flags; and

managing organization-specific workflow within the context of community workflow.

91. The method of claim 90, and further including providing real-time status
information to said organizations.

92. The method of claim 90, and further including managing organization-specific
workflow based upon the events and exception conditions within the workflow.

93. A method for modeling the business practices of each member of a network ,
and for handling workflow exception conditions, said method comprising:

permitting said members to configure company-specific business rules;

auditing files based upon the business rules of all members involved in the
transaction; and

203

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

triggering alerts in response to exception conditions and violations of said business
rules based upon member-specific parameters.

94. The method of claim 93, wherein said triggering includes triggering an alert to
one of said members based upon parameters of another of said members.

95. A system for carrying out a business process/transaction involving multiple
independent parties through an electronic subrogation network, said system comprising:

at least one electronic file, capable of containing structured information and
unstructured supporting documents in a form that can be accessed by
multiple parties;

means for permitting entry, through electronic communication means, by one or more
. of said multiple parties of one or both of said information and unstructured
supporting documents to said electronic file based on party-specific rules; and

means for permitting access, through electronic communication means, by one or
more of said multiple parties to one or both of said structured claim
information and said supporting documents based on party-specific rules.

96. A system for processing an application specific request, and generating an
associated response, based on receipt of a message based-transaction request containing
a collection of interrelated business objects, said system comprising:

means for providing a processing framework that does not rely on any specific

message format from the originating system;
means for validating the identity and authority of an arbitrary requester that will be

submiiting transaction requests, and, upon said validating, establishing a

“requester context” that will be used to validate any transaction requests;

204

10

15

20

25

WO 2004/044696 PCT/US2003/035631

means for validating whether or not a specific transaction request can be processed
based on the requester context and, upon said validating, establishing a
“transaction context” based on the specific request;

means for ensuring that any response to the transaction request contains correct
business objects and related attributes based on a requester and transaction
context;

means for ensuring that the input portion of any transaction request that will result in
data modification contains only the business objects and attributes that are
allowed to be modified based on the requester and transaction context;

means for allowing the application specific processing logic to be defined without
regard to input or output filtering of objects and attributes that are indicated by
a specific requester and transaction context;

means for ensuring that the transaction request can only access data objects within
the database that are allowed based on the specific requester and transaction
context;

means for supporting transaction requests from a plurality of originating systems and
interfaces including, online HTML interface, background, automated electronic
interface, and wireless device; and

means for enabling authorized requesting systems to automatically determine the

types of requests that can be submitted and their associated
request/response structures.

205

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

97. The system of claim 95, wherein said means for permitting entry includes
means for automatically entering paper documents received by fax or high speed scanner
into the electronic file.

98. The system of claim 95, wherein said electronic communication means
comprises a network, and further including processing business transactions through

electronic communication means to both on-network and off-network parties.

99. The system of claim 95, and further including means for establishing audit and
business rule functions that permit said at least one electronic file to be electronically audited
based on said party-specific rules.

100. The system of claim 95, wherein said multiple parties include a primary party,
a counter-party, and one or more supporting/facilitating parties, and further including means
for routing a file to an appropriate counter-party based on the counter-party’s routing rules.

101. The system of claim of 100, wherein said means for routing includes using a
routing algorithm that combines a primary party specific index and a heuristic algorithm to
correctly determine an appropriate counter-party and further the specific individual or group
within said counter-party that is to initially handle the file.

102. The system of claim 95, and further including means for using a state-based
model to manage inter-party workflow.

103. The system of claim 95, and further including means for permitting intra-party
workflow functions, including follow-up action plans and party-specific workflow.

104. The system of claim 95, and further including means for providing

collaboration functions that allow selected parties to exchange information and negotiate
using said electronic communication means.

206

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

105. The system of claim 95, and further including means for providing a document
management function that allows said multiple parties to update attachments and manage

document versions.

106. The system of claim 95, wherein said electronic communication means
includes a network, and further including means for automatically generating alerts to on-
network parties for exception conditions or violations of said party-specific rules.

107. The system of claim 95, and further including means for selectively assigning
selected files and providing online access to third parties including arbitrators, litigators and

outside service providers.

108. The system of claim 95, wherein said electronic communication means
includes a network, and further including means for generating customizable online
management reports.

109. . The system of claim 95, and further including means for assessing the validity
of a business transaction including performing an electronic audit for selected conditions
based upon configurable parameters of the primary party, and one or more counter-parties,
said configurable parameters including, but not limited to, various required/optional data
elements or documents.

110. The system of claim 95, and further including means for routing a given
business transaction to counter-parties using a routing algorithm, which combines a heuristic
algorithm to correctly determine the identity of the counter-party and routing rules defined by

the counter-party.

111. A sysiem for organizing and modeling application-specific business

information comprising:

providing entities, attributes and relationships specific to the given business process;

207

10

15

20

25

30

WO 2004/044696 PCT/US2003/035631

translating incoming data formats to a unified data model format; and

maintaining consistency in said translating.

112. A system for managing the workflow between two or more organizations
within a business process, said system comprising:

providing a process-specific workflow model that includes inter-organization workflow
states, transitions, conditionality, status and action flags; and

managing organization-specific workflow within the context of community workflow.

113. The system of claim 112, and further including means for providing real-time
status information to said organizations.

114. The method of claim 112, and further including means for managing
organization-specific workflow based upon the events and exception conditions within the

workflow.

115. A system for modeling the business practices of each member of a network,
and for handling workflow exception conditions, said system comprising:

means for permitting said members to configure company-specific business rules;

means for auditing files based upon the business rules of all members invoived in the
transaction; and

means for triggering alerts in response to exception conditions and violations of said
business rules based upon member-specific parameters.

208

WO 2004/044696 PCT/US2003/035631

116. The system of claim 115, wherein said means for triggering includes triggering
an alert to one of said members based upon parameters of another of said members.

209

WO 2004/044696 PCT/US2003/035631

/21

|

i,
e

Arbitration
Sarvices

Collection |

Electronic
Subrogation
Network

Insurance [
Carrigr i

insurance %

Insurance [
Cartier

Insurance i
Carrier

Figure 1 .

SUBSTITUTE SHEET (RULE 26)

WO 2004/044696 PCT/US2003/035631

2/21
Electronic Subrogation Network
Components
Damang Document Commnity Claim
Submission Management Workflow + Routing
Business
Follew-Up Vehigla
Actions Riles & Advisor Valuation
. Automeatic Countar Assignment
Collaborntion Salllament Claims 10 3 Panias
Payment Payment Bench- Managemant Unifled Data
Handling Netting marking Reporting Modal

Figure 2

SUBSTITUTE SHEET (RULE 26)

WO 2004/044696 PCT/US2003/035631

3/21

Subrogation Demand Submission

4 Claim
Inforniation
+

S i i

ool Electronic
Subrogation

Network

Elactronic or
Manwal
Update

) T ST g
R T S L A

Figure 3

Electronic Subrogation Folder

Electronic
Subrogation
Network

Responding i.
Parly il

Pemanding

mvmwmmé

Demand Information
Electronic Supporling Documents
Subrogation Negotiation History
Folder Bvent Log
Payment Balances
Figure 4

SUBSTITUTE SHEET (RULE 26)

WO 2004/044696 PCT/US2003/035631

4/21

Supporting Document Handling

—
7 R

Direcl
Atsch ™
Compuar

Flectronic Subrogation
Network

Figurs 5

Claim Routing - On Network

Based o0

Responding
Party™s
El actron ‘ c wouting rules ;
Demanding [broaation Responding
Patly Su og Parly
_ Network
Uger sar U,w Usor
Figure §

SUBSTITUTE SHEET (RULE 26)

WO 2004/044696

PCT/US2003/035631

5/21

Claim Routing - Off Network

EMAILL or fax
Electronic notfication :,
Subrogation Resg:rr:ging i
Network

e e

\n-—-.u—-—-/
Contact Direclory

Figure 7

User sar par »Aser

S .

No Responding Party Response

Reminder
{0 place
phone cal

Demanding
Parly

AL
. Al
Electronic notifcatlon
| Subrogation

Network
mﬁﬂﬂmﬁmwf

Figure 8

SUBSTITUTE SHEET (RULE 26)

WO 2004/044696 PCT/US2003/035631

6/21

Response Options

Electronic
Subrogation

Figure 9

Online Negotiation

Count
Electronic Offer

Subrogation —
Network Liablity %
andlor §
& Damages

A RS

Figure 10

SUBSTITUTE SHEET (RULE 26)

WO 2
004/044696 PCT/US2003/035631

7/21
Online Negotiation
Automatic Approval
Electronic |
Demanding @l __ . | Subrogation
Party Network |
T i

i
rr—— 11

Audit Demanding Party
Recovery Rules

Figure 11

Electronic Denial

Electronic
Subrogation
Network

Demanding

Figure 12

SUBSTITUTE SHEET (RULE 26)

WO 2004/044696

PCT/US2003/035631

8/21
Automatic Settlement
Liability {E? Liatility
e Electronic 3 o

nek

gt

TR

2wy

| Subrogation
Network

Demanging

T

B e
s

N e R 2

Audil Business Rules

Figure 13

’

Responding |
Party g

N R

Automatic Counter Claims

Electronic
Subrogation
Network

Demanding .

Audit % Ligblity and
Comparative
Negliganea Regulations

Figure 14

Counisr
Claim

SUBSTITUTE SHEET (RULE 26)

WO 2004/044696

9/21

Assign to Arbitrator

Demanding
Party

Electronic
Subrogation

|

- Dooket Number

PCT/US2003/035631

Responding
Parly

R S

SUBSTITUTE SHEET (RULE 26)

WO 2004/044696 PCT/US2003/035631

10/21 ’

Assign to Vendors

Electronic
Subrogation
‘Network

Responding

Party

Collection Setvice

Outslde

Attorney Desk Raview

Provider

T

Figure 16

SUBSTITUTE SHEET (RULE 26)

WO 2004/044696 PCT/US2003/035631

11/21
Manual Payment

Elecironlc or
i e Electronic :
Demanding | | Subrogation {#l . __ __| Responding [J
| Network Party 1
&t‘

&
i

LR

% 5 T
T

Figure 17

Electronic Payment

Alert Electronic
Subrogation

Demanding
Party

Responding
Party

Detmanding

Responding
Party Bank

- EFY Party Bank

S R

Figure 18

SUBSTITUTE SHEET (RULE 26)

WO 2004/044696 PCT/US2003/035631

12/21
Payment Netting
Notification of
Electronic " g
— — — 1 Subrogation —— e
Network
SR

R R

ESN tracks payments awed
belween parties over defined
period

Reconciliation

of Payments

Figura 19

SUBSTITUTE SHEET (RULE 26)

WO 2004/044696 PCT/US2003/035631

13/21

Unified Data Model

info §
Providers |2

RER

3

XML E0i
Collection szi \ J Asrbi:&a!ion
Fims ’Eé N ASCH ervices |f
ze%ﬂmm:’i ~ AsON Elactroﬁgtalé?‘zogation
Unified Data Model

Integration & Mapping

EQ

Bl Web
Insurance

Carrier

Insurance |
Carvier

fnsyrance

insurance |
Carviar

Carrler

Figure 20

SUBSTITUTE SHEET (RULE 26)

WO 2004/044696 PCT/US2003/035631

14/21

STM Obiject Hierarchy

oNB

oData

oMsg

oDomains

oFnList

FIG. 21

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/035631

WO 2004/044696

15/21

Relationship Example — Subrogation Demand

O - indicates type of relationship (party type)

FIG. 22

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/035631

WO 2004/044696

16/21

FIG. 23 JView Sample View

Header

Info Bar

Nav Bar —

Demand Files
] Create Demand
Upload Demand File
Action Ttems
Open Files
Panding Acceptance
Panding Response
Demed
Saarch...
Detsiled Search.,,
tlosed Files
All Files
1 Reports
Cycle Time Total
Cyde Time Heg
Racovery Summar
Files Pending
Workflow State
Closed Summary

Pemand Uploads

Help
Tutoral
Haome
Support
Logout

77

i 2TR0E (._5-,\,» .u.m.%n Ioar

Pt

!
I.W.Omzau:n. Files - All Open
i
;
¥

EERE

StateFarm
Allstate
Allstate
Statefarm
StateFarm
PASCO
Gordon
Statsfarm
Gordon
StateFarm
Alistate
PASCO
Allstate
Brookfield
Brookfield

=
Sable

et in

/N SITERAS

s
=
\

Henry HGWgr :

Jagbuensaf
3955002318
2985061523
3985603141
T1y 2
398500313148
388500207%
3085000825
3985602330
3985000200

328500036
3985660959

150183
013ul63
263ul03
143unG3
260103
20Juld3
043un03
023ul03
27ul03
02Aug03
88103
12Au003
203uin3
05Aug03
113ul03
02Jund3

ATy

DAl .‘.,MLuﬂuuﬁu

sFam oy Sy a2 e T e
$3,469.04 CEQN@DQ
$4,267 6§ Ltigation
$5,650.15 Litigation
$6,151.46 Litigation
$7,219.67 Litgation
$1,032.19 $824.95 80.0 Negotiation
$7,962.15 Issued
$1,G52.24 1ssued
$1.4 ﬁ issued
$1,3 Issuad
$14 « Data Area — Issued
$24 Issusd
$2.4 i 1ssued
6, fecund
$7,502.38 1ssued
$7,663.71 fssyed

Fred et
SIS

<« Command Area

R e T T

S e SEatasinil
Demand 1ssued
Damand 1ssued
Demand Issued
Demand 1ssued
Demand Issued
Counter Offer 1ssued
Demand Issued

Demand [ssued
Demand Issued
Demand Issued
Demand Bemg Investigated

Demand I5sued History
Demand Issued Higtary
Demand Bemg Investgated Histery
Demand Issued Histor=
Demand Issued His gy

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/035631

WO 2004/044696

17/21

FIG. 24 JView Sample Form

7

e e rey—

j 2

TR

N
=

S5 ET i vemnsstenas.e dUSubro wos

N

Info Bar — e b

Demand Files
Create Demand
Upload Demand file
Acton Items
Open Files
Pending Issuance
Panding Acceptaace
Pending Response
Acceptad
In Negotlation .
In Arbitration : : oz R
In Litigation s &mﬂm@%ﬁ@a =2
Dened = Ctiaur
Nav Bar —] searh... .
Detaled Searchi..

Workflow Bar —

—
SRR e

o S5

AT

Va%.hﬁd&.hlﬂuﬂ%ﬂ, o3 i et |

SIS RS -~ rgn.?ulln\v\vrm‘ T

eds 025ep03
.i%mm Name: 1PC Claim#: 3965599653
arty: Name: Gordon Claim#: 613985559653

Cyde Tirna Total e SRR S ﬁ“«b i $2,961.00
Mﬁn 4.:..“ Heg S : esponses $2,961.00 1
eLovary Summary ARG S ; =50 o

Filas Panding 2 Creeiet o e mwm.m...m\&v o

Workflov State

Closed Summary
Demand Uploads

Upload Summary - Alf

Ervure mvge ot o dra v

e < Data Area —

Ammmunamm Files
{Preferenc

Pane —

4System

Help } 3 s Ao {

Tutonst 3 A A i 0D = e e Zheman
; M“mﬂo " ¥ 02Sep03 $3,483.8 X $2,961.00 VW

Lagout 925203 . $3,483.53 85.0% $2861.00 P fg

0286003 $2,933.53 $5.0% 4249350 D

i $2,933.53 85.0% $249350 B {2

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/035631
18/21

WO 2004/044696

Workflow Data Model Overview

SAFolder o ShAParty . -SAWorkflow
toAlerts 2 e fnAlertParties » le tolntrinsicFunction
toAttachments P e toAftachmentParties| » | e toNextStateEventTemplate
toDocContacts | & je toCompany > e =
toEvents > e toDocParties 2 e
foLocks > |e toEventParties » e
foMailMessage | 2> | e iloFolder > e
toParties » le A||L|vv 10OwningGroup > e
toTasks » e aos:m:m_.onmﬁ_o: > e

toOwningOperator > |e

toTaskParties » |e e

$ATask SATaskParty

-pwii{oF older > le foParty! > je
toTaskParties | » | e |}« »ditoTask LR

FIG. 25

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/035631

WO 2004/044696

19/21

FIG. 26 - System Architecture

Electronic
Messages

Interactive
Requests

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/035631
20/21

WO 2004/044696

FIG. 27 — Application Framework Architecture

S

R AR

R, e £, & by
i»mxummh Ehe
(e

e
ode=—=

Application Logic 7 ‘ o " R
pp anon g Saal ion Cade -
ayelr 5 o Snteeeey
#Emﬂﬂwuwﬁﬂ
Transaction Control 3 ._. TR A B
Layer -.9:@ ac .._ on
Subsystem
Layer

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/035631

WO 2004/044696

21/21

FIG. 28 — Web-Based Transaction Processing Architecture

Business Application

Application Framework

Application Server Platform

Web Server Platform

a‘.ce,_, ..nw

,d :c_.omm:o:
. ncsw: B.:m&

»ws. ~ }ll.

2‘, .
av\‘mv‘huﬁ.l&!n.*m@ T
2

— I ,.
o R R :ﬂ%&

A s ..F

w>

_uv__nm:o: F BSmEo:A &W 5

et ,.mm_

‘..w.L.n Rrts

u:m:w :.mz@%

- fmmw.wn
= M.ww,n\mr. o

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

