

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2011209626 B2

(54) Title
Influenza nucleic acid molecules and vaccines made therefrom

(51) International Patent Classification(s)
A61K 48/00 (2006.01) **C07H 21/02** (2006.01)

(21) Application No: **2011209626** (22) Date of Filing: **2011.01.26**

(87) WIPO No: **WO11/094358**

(30) Priority Data

(31) Number
12/694,238 (32) Date
2010.01.26 (33) Country
US

(43) Publication Date: **2011.08.04**
(44) Accepted Journal Date: **2013.05.23**

(71) Applicant(s)
The Trustees of the University of Pennsylvania

(72) Inventor(s)
Weiner, David B.;Yan, Jian;Morrow, Matthew P.

(74) Agent / Attorney
FB Rice, Level 23 44 Market Street, SYDNEY, NSW, 2000

(56) Related Art
US 2008/0299151

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

REVISED VERSION

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 August 2011 (04.08.2011)

(10) International Publication Number
WO 2011/094358 A9

(51) International Patent Classification:
A61K 48/00 (2006.01) *C07H 21/02* (2006.01)

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2011/022642

(22) International Filing Date:
26 January 2011 (26.01.2011)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
12/694,238 26 January 2010 (26.01.2010) US

(71) Applicant (for all designated States except US): THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA [US/US]; 3160 Chestnut Street, Suite 200, Philadelphia, PA 19104-6283 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WEINER, David, B. [US/US]; 717 Beacom Lane, Merion, PA 19066 (US). YAN, Jian [CN/US]; 213 Clamar Avenue, Havertown, PA 19083 (US). MORROW, Matthew, P. [US/US]; 1700 Walnut Street, Apartment 8B, Philadelphia, PA 19103 (US).

(74) Agent: DELUCA, Mark; Pepper Hamilton LLP, 899 Cassatt Road, Berwyn, PA 19312 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).


Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

(88) Date of publication of the revised international search report:

5 January 2012

(15) Information about Correction:
see Notice of 5 January 2012

WO 2011/094358 A9

(54) Title: INFLUENZA NUCLEIC ACID MOLECULES AND VACCINES MADE THEREFROM

(57) Abstract: Provided herein are nucleic acid sequences that encode novel consensus amino acid sequences of HA hemagglutinin, as well as genetic constructs/vectors and vaccines expressing the sequences. Also provided herein are methods for generating an immune response against one or more Influenza A serotypes using the vaccines that are provided.

INFLUENZA NUCLEIC ACID MOLECULES AND VACCINES MADE THEREFROM**FIELD OF THE INVENTION**

The present invention relates to improved influenza viral vaccines, improved methods for inducing immune responses against influenza, improved methods for diagnosing vaccinated vs. infected influenza mammalian hosts and for prophylactically and/or therapeutically immunizing individuals against influenza.

BACKGROUND OF THE INVENTION

Influenza, commonly referred to as the flu, is an infectious disease caused by RNA viruses of the family *Orthomyxoviridae*. Influenza or flu viruses infect birds and mammals. Three of the five genera of *Orthomyxoviridae* are influenza viruses: Influenza A, Influenza B and Influenza C. Of these, Influenza A is the most common.

Influenza is typically transmitted through the air in aerosols produced by coughs or sneezes and by direct contact with body fluids containing the virus or contaminated surfaces. Seasonal epidemics of influenza occur worldwide and result in hundreds of thousands of deaths annually. In some years, pandemics occur and cause millions of deaths. In addition, livestock, particularly poultry and swine, are also susceptible to annual epidemics and occasional pandemics which cause large numbers of animal deaths and monetary losses.

Structurally, influenza viruses are similar, having generally spherical or filamentous virus particles of about 80–120 nm made up of similar molecular component. A central core comprising viral proteins and viral RNA is covered by a viral envelope made up of two different glycoproteins and a lipid coat derived from the cell that the viral particle is produced in. Two additional different glycoproteins are anchored within the viral envelope and include portions which project outward on the surface.

The influenza virus RNA genome is typically provided as eight different single stranded, negative sense RNA segments that together make up the genome's eleven viral genes which encode the eleven proteins (HA, NA, NP, M1, M2, NS1, NEP, PA, PB1, PB1-F2, PB2). The eight RNA segments are: 1) HA, which encodes hemagglutinin (about 500 molecules of hemagglutinin are needed to make one virion); 2) NA, which encodes neuraminidase (about 100

molecules of neuraminidase are needed to make one virion); 3) NP, which encodes nucleoprotein; 4) M, which encodes two matrix proteins (the M1 and the M2) by using different reading frames from the same RNA segment (about 3000 matrix protein molecules are needed to make one virion); 5) NS, which encodes two distinct non-structural proteins (NS1 and NEP) by using different reading frames from the same RNA segment; 6) PA, which encodes an RNA polymerase; 7) PB1, which encodes an RNA polymerase and PB1-F2 protein (induces apoptosis) by using different reading frames from the same RNA segment; and 8) PB2, which encodes an RNA polymerase.

Of these eleven proteins, hemagglutinin (HA) and neuraminidase (NA) are two large glycoproteins anchored in the viral envelope and present on the outer surface of the viral particles. These proteins serve as immunogens for immune responses against influenza. HA, which is a lectin that mediates binding of the virus to target cells and entry of the viral genome into the target cell, is expressed as a single gene product, HA0, and later processed by host proteases to produce two subunits, HA1 and HA2, which together form a complex on the surface of influenza viral particles. NA is involved in the release of newly produced mature viral particles produced in infected cells.

There are sixteen known HA serotypes and nine known NA serotypes for Influenza A viruses. The identity of the different serotypes present in a viral particle typically is used to describe a virus. For example, H1N1 is an influenza virus with HA serotype H1 and NA serotype N1; H5N1 is an influenza virus with HA serotype H5 and NA serotype N1. Only H1, H2 and H3 serotypes, and N1 and N2 serotypes usually infect humans.

Influenza strains are generally species or genus specific; i.e. an influenza strain which can infect pigs (a swine influenza virus) typically does not infect humans or birds; an influenza strain which can infect birds (an avian influenza virus) does not infect humans or pigs; and an influenza strain which can infect humans (a human influenza virus) does not infect birds or pigs. Influenza strains, however, can mutate and become infective from one species to another. For example, a strain which only infects pigs, a swine influenza, can mutate or recombine to become a strain that can infect humans only or both pigs and humans. A flu virus commonly referred to as “swine flu” is an influenza virus strain, such as an H1N1 strain, which can infect humans and which was derived from a strain that was previously specific for pigs (i.e. a swine flu virus is a swine origin

human influenza or swine derived human influenza). A flu virus commonly referred to as “bird flu” is an influenza virus strain, such as an H5N1 strain, which can infect humans and which was derived from a strain that was previously specific for birds (i.e. a bird flu virus avian origin human influenza or avian derived human influenza).

Vaccinations against influenza are provided seasonally to many humans in developed countries and sometime to livestock. The vaccines used are limited in their protective results because the immune responses induced by the vaccines are specific for certain subtypes of virus. Different influenza vaccines are developed and administered annually based upon international surveillance and scientists' estimations of which types and strains of viruses will circulate in a given year. The virus changes significantly by mutation, recombination and reassortment of the segments. Thus, vaccines given in one year are not considered protective against the seasonal strains that are widely transmitted the following year.

The “flu shot” commonly promoted U.S. Centers for Disease Control and Prevention usually contains three killed/inactivated influenza viruses: one A (H3N2) virus, one A (H1N1) virus, and one B virus. Thus, it is apparent that vaccinations are limited to predictions of subtypes, and the availability of a specific vaccine to that subtype.

The direct administration of nucleic acid sequences to vaccinate against animal and human diseases has been studied and much effort has focused on effective and efficient means of nucleic acid delivery in order to yield necessary expression of the desired antigens, resulting immunogenic response and ultimately the success of this technique.

DNA vaccines have many conceptual advantages over more traditional vaccination methods, such as live attenuated viruses and recombinant protein-based vaccines. DNA vaccines are safe, stable, easily produced, and well tolerated in humans with preclinical trials indicating little evidence of plasmid integration [Martin, T., et al., Plasmid DNA malaria vaccine: the potential for genomic integration after intramuscular injection. *Hum Gene Ther*, 1999. 10(5): p. 759-68; Nichols, W.W., et al., Potential DNA vaccine integration into host cell genome. *Ann N Y Acad Sci*, 1995. 772: p. 30-9]. In addition, DNA vaccines are well suited for repeated administration due to the fact that efficacy of the vaccine is not influenced by pre-existing antibody titers to the vector [Chattergoon, M., J. Boyer, and D.B. Weiner, Genetic immunization: a new era in vaccines and immune therapeutics. *FASEB J*, 1997. 11(10): p. 753-63]. However,

one major obstacle for the clinical adoption of DNA vaccines has been a decrease in the platform's immunogenicity when moving to larger animals [Liu, M.A. and J.B. Ulmer, Human clinical trials of plasmid DNA vaccines. *Adv Genet*, 2005. 55: p. 25-40]. Recent technological advances in the engineering of DNA vaccine immunogen, such as codon optimization, RNA optimization and the addition of immunoglobulin leader sequences have improved expression and immunogenicity of DNA vaccines [Andre, S., et al., Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage. *J Virol*, 1998. 72(2): p. 1497-503; Deml, L., et al., Multiple effects of codon usage optimization on expression and immunogenicity of DNA candidate vaccines encoding the human immunodeficiency virus type 1 Gag protein. *J Virol*, 2001. 75(22): p. 10991-1001; Laddy, D.J., et al., Immunogenicity of novel consensus-based DNA vaccines against avian influenza. *Vaccine*, 2007. 25(16): p. 2984-9; Frelin, L., et al., Codon optimization and mRNA amplification effectively enhances the immunogenicity of the hepatitis C virus nonstructural 3/4A gene. *Gene Ther*, 2004. 11(6): p. 522-33], as well as, recently developed technology in plasmid delivery systems such as electroporation [Hirao, L.A., et al., Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. *Vaccine*, 2008. 26(3): p. 440-8; Luckay, A., et al., Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. *J Virol*, 2007. 81(10): p. 5257-69; Ahlen, G., et al., In vivo electroporation enhances the immunogenicity of hepatitis C virus nonstructural 3/4A DNA by increased local DNA uptake, protein expression, inflammation, and infiltration of CD3+ T cells. *J Immunol*, 2007. 179(7): p. 4741-53]. In addition, studies have suggested that the use of consensus immunogens can be able to increase the breadth of the cellular immune response as compared to native antigens alone [Yan, J., et al., Enhanced cellular immune responses elicited by an engineered HIV-1 subtype B consensus-based envelope DNA vaccine. *Mol Ther*, 2007. 15(2): p. 411-21; Rolland, M., et al., Reconstruction and function of ancestral center-of-tree human immunodeficiency virus type 1 proteins. *J Virol*, 2007. 81(16): p. 8507-14].

One method for delivering nucleic acid sequences such as plasmid DNA is the electroporation (EP) technique. The technique has been used in human clinical trials to deliver

anti-cancer drugs, such as bleomycin, and in many preclinical studies on a large number of animal species.

There remains a need for an immunogenic influenza consensus hemagglutinin protein, for nucleic acid constructs that encode such a protein and for compositions useful to induce immune responses against multiple strains of influenza. There remains a need for effective vaccines against influenza that are economical and effective across numerous influenza subtypes for treating individuals.

SUMMARY OF THE INVENTION

Provided herein are isolated nucleic acid molecules comprising a nucleic acid sequence selected from the group consisting of: SEQ ID NO:1, a nucleic acid sequence that is 95% homologous to SEQ ID NO:1; a fragment of SEQ ID NO:1; a nucleic acid sequence that is 95% homologous to a fragment of SEQ ID NO:1; SEQ ID NO:3; a nucleic acid sequence that is 95% homologous to SEQ ID NO:3; a fragment of SEQ ID NO:3; a nucleic acid sequence that is 95% homologous to a fragment of SEQ ID NO:3; SEQ ID NO:6; a nucleic acid sequence that is 95% homologous to SEQ ID NO:6; a fragment of SEQ ID NO:6; a nucleic acid sequence that is 95% homologous to a fragment of SEQ ID NO:6; SEQ ID NO:9; a nucleic acid sequence that is 95% homologous to SEQ ID NO:9; a fragment of SEQ ID NO:9; a nucleic acid sequence that is 95% homologous to a fragment of SEQ ID NO:9; SEQ ID NO:11; a nucleic acid sequence that is 95% homologous to SEQ ID NO:11; a fragment of SEQ ID NO:11; a nucleic acid sequence that is 95% homologous to a fragment of SEQ ID NO:11; SEQ ID NO:13; a nucleic acid sequence that is 95% homologous to SEQ ID NO:13; a fragment of SEQ ID NO:13; a nucleic acid sequence that is 95% homologous to a fragment of SEQ ID NO:13; and SEQ ID NO:15; a nucleic acid sequence that is 95% homologous to SEQ ID NO:15; a fragment of SEQ ID NO:15; a nucleic acid sequence that is 95% homologous to a fragment of SEQ ID NO:15.

Also provided are compositions comprising: a) a first nucleic acid sequence selected from the group consisting of one or more of: SEQ ID NO:1, a nucleic acid sequence that is 95% homologous to SEQ ID NO:1; a fragment of SEQ ID NO:1; a nucleic acid sequence that is 95% homologous to a fragment of SEQ ID NO:1; SEQ ID NO:3; a nucleic acid sequence that is 95% homologous to SEQ ID NO:3; a fragment of SEQ ID NO:3; a nucleic acid sequence that is 95%

homologous to a fragment of SEQ ID NO:3; SEQ ID NO:6; a nucleic acid sequence that is 95% homologous to SEQ ID NO:6; a fragment of SEQ ID NO:6; a nucleic acid sequence that is 95% homologous to a fragment of SEQ ID NO:6; SEQ ID NO:9; a nucleic acid sequence that is 95% homologous to SEQ ID NO:9; a fragment of SEQ ID NO:9; a nucleic acid sequence that is 95% homologous to a fragment of SEQ ID NO:9; SEQ ID NO:11; a nucleic acid sequence that is 95% homologous to SEQ ID NO:11; a fragment of SEQ ID NO:11; and a nucleic acid sequence that is 95% homologous to a fragment of SEQ ID NO:11SEQ ID NO:13; a nucleic acid sequence that is 95% homologous to SEQ ID NO:13; a fragment of SEQ ID NO:13; a nucleic acid sequence that is 95% homologous to a fragment of SEQ ID NO:13; SEQ ID NO:15; a nucleic acid sequence that is 95% homologous to SEQ ID NO:15; a fragment of SEQ ID NO:15; and b) a second nucleic acid sequence that encodes a protein selected from the group consisting of one or more of: influenza A H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, N1, N2, N3, N4, N5, N6, N7, N8, N9, influenza B hemagglutinin, neuraminidase and fragments thereof.

Some aspects of the invention provide methods of inducing an immune response comprising the step of: administering to an individual such nucleic acid molecules and/or compositions.

Additional aspects of the invention provide methods of protecting an individual against infection. The methods comprise the step of: administering to said individual a prophylactically effective amount of a nucleic acid molecule comprising such nucleic acid sequence or compositions; wherein the nucleic acid sequence is expressed in cells of said individual and a protective immune response is induced against a protein encoded by said nucleic acid sequence. In some embodiment, the immune response is a protective immune response against swine origin human influenza.

In some aspects of the invention, methods are provided for treating an individual who has been infected by Influenza. The methods comprise the step of: administering to said individual a therapeutically effective amount of such nucleic acid molecules and/or composition. In some embodiment, the immune response is a therapeutic immune response against swine origin human influenza.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a map of the 2999 basepair backbone vector plasmid pVAX1 (Invitrogen, Carlsbad CA). The CMV promoter is located at bases 137-724. The T7 promoter/priming site is at bases 664-683. Multiple cloning sites are at bases 696-811. Bovine GH polyadenylation signal is at bases 829-1053. The Kanamycin resistance gene is at bases 1226-2020. The pUC origin is at bases 2320-2993.

Based upon the sequence of pVAX1 available from Invitrogen, the following mutations were found in the sequence of pVAX1 that was used as the backbone for pGX2009:

C>G 241 in CMV promoter
C>T 1942 backbone, downstream of the bovine growth hormone polyadenylation signal (bGHpolyA)
A>- 2876 backbone, downstream of the Kanamycin gene
C>T 3277 in pUC origin of replication (Ori) high copy number mutation (see Nucleic Acid Research 1985)
G>C 3753 in very end of pUC Ori upstream of RNaseH site
Base pairs 2, 3 and 4 are changed from ACT to CTG in backbone, upstream of CMV promoter.

Figure 2 shows two maps of the plasmid pGX2009, which is also referred to as pH1HA09. The nucleic acid sequence of the plasmid pGX2009 (SEQ ID NO:5) includes the coding sequence for the consensus H1 protein construct (amino acid SEQ ID NO:4 encoded by SEQ ID NO:3) which includes the IgE leader(amino acid SEQ ID NO:17) linked to the N terminal of the consensus H1 amino acid sequence(amino acid SEQ ID NO:2 encoded by SEQ ID NO:1) which is linked at its C terminal to the HA Tag (SEQ ID NO:18). The consensus H1 protein (amino acid SEQ ID NO:4 encoded by SEQ ID NO:3) is labeled SwiHum Con HA and H1HA09.

Figure 3 shows a maps of the plasmid pGX2006. The nucleic acid sequence of the plasmid pGX2006 (SEQ ID NO:8) includes the coding sequence for consensus H2 protein (amino acid SEQ ID NO:7 encoded by SEQ ID NO:6) which is labeled H2HA.

Figure 4 shows data from hemagglutination inhibition assays performed with sera from immunized ferrets.

Figure 5 shows results of a challenge of immunized and unimmunized ferrets with a novel H1N1 strain.

DETAILED DESCRIPTION

Consensus amino acid sequences of each of influenza A H1 and H2 (referred to herein as “consensus H1” (SEQ ID NO:2) and “consensus H2” (SEQ ID NO:7), respectively), as well as a novel synthetic hybrid consensus H1 influenza A hemagglutinin amino acid sequence (referred to herein as “consensus U2” (SEQ ID NO:10)) and a consensus amino acid sequence of influenza B hemagglutinin (referred to herein as “consensus BHA” (SEQ ID NO:13)) are provided, which can provide protection of mammals against influenza. In addition, proteins are provided which comprise the consensus H1 amino acid sequence, the consensus H2 amino acid sequence, the consensus U2 amino acid sequence and/or the consensus BHA amino acid sequence. In some aspects, nucleic acid sequences are provided which encode proteins comprising the consensus H1 amino acid sequence (for example (SEQ ID NO:1) or (SEQ ID NO:3)), the consensus H2 amino acid sequence (for example (SEQ ID NO:6)), the consensus U2 amino acid sequence (for example (SEQ ID NO:9) or (SEQ ID NO:11)), and/or the consensus BHA amino acid sequence (for example (SEQ ID NO:13) or (SEQ ID NO:15)).

While not being bound by scientific theory, a vaccine that can be used to elicit an immune response (humoral, cellular, or both) broadly against multiple influenza subtypes may comprise one or more of the following: 1) a nucleic acid sequence that encodes a protein comprising the consensus H1 amino acid sequence; 2) a protein comprising the consensus H1 amino acid sequence; 3) a nucleic acid sequence that encodes a protein comprising the consensus H2 amino acid sequence; 4) a protein comprising the consensus H2 amino acid sequence; 5) a nucleic acid sequence that encodes a protein comprising the consensus U2 amino acid sequence; 6) a protein comprising the consensus U2 amino acid sequence; 7) a nucleic acid sequence that encodes a protein comprising the consensus BHA amino acid sequence; and 8) a protein comprising the consensus BHA amino acid sequence.

Immunization methods can be performed and vaccines can be prepared which use and/or combine two or more of the following components: 1) a nucleic acid sequence that encodes a protein comprising the consensus H1 amino acid sequence; 2) a protein comprising the consensus H1 amino acid sequence; 3) a nucleic acid sequence that encodes a protein comprising the consensus H2 amino acid sequence, 4) a protein comprising the consensus H2 amino acid sequence; 5) a nucleic acid sequence that encodes a protein comprising the consensus U2 amino acid sequence, 6) a protein comprising the consensus U2 amino acid sequence, 7) a nucleic acid sequence that encodes a protein comprising the consensus BHA amino acid sequence, and 8) a protein comprising the consensus BHA amino acid sequence. For more broad based treatments against influenza, immunization methods can be performed and vaccines can be prepared which use and/or combine one or more other influenza proteins such as influenza A H1-H16, influenza A N1-N9, influenza B hemagglutinin, influenza B neuraminidase and/or genes encoding these proteins together with one or more of the following components: 1) a nucleic acid sequence that encodes a protein comprising the consensus H1 amino acid sequence; 2) a protein comprising the consensus H1 amino acid sequence; 3) a nucleic acid sequence that encodes a protein comprising the consensus H2 amino acid sequence, 4) a protein comprising the consensus H2 amino acid sequence; 5) a nucleic acid sequence that encodes a protein comprising the consensus U2 amino acid sequence, 6) a protein comprising the consensus U2 amino acid sequence, 7) a nucleic acid sequence that encodes a protein comprising the consensus BHA amino acid sequence, and 8) a protein comprising the consensus BHA amino acid sequence.

1. Definitions.

The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise.

For recitation of numeric ranges herein, each intervening number there between with the same degree of precision is explicitly contemplated. For example, for the range of 6-9, the numbers 7 and 8 are contemplated in addition to 6 and 9, and for the range 6.0-7.0, the numbers 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, and 7.0 are explicitly contemplated.

a. Adjuvant

“Adjuvant” as used herein means any molecule added to the DNA plasmid vaccines described herein to enhance the immunogenicity of the antigens encoded by the DNA plasmids and the encoding nucleic acid sequences described hereinafter.

b. Antibody

“Antibody” as used herein means an antibody of classes IgG, IgM, IgA, IgD or IgE, or fragments, fragments or derivatives thereof, including Fab, F(ab')2, Fd, and single chain antibodies, diabodies, bispecific antibodies, bifunctional antibodies and derivatives thereof. The antibody can be an antibody isolated from the serum sample of mammal, a polyclonal antibody, affinity purified antibody, or mixtures thereof which exhibits sufficient binding specificity to a desired epitope or a sequence derived therefrom.

c. Coding Sequence

“Coding sequence” or “encoding nucleic acid” as used herein means the nucleic acids (RNA or DNA molecule) that comprise a nucleotide sequence which encodes a protein. The coding sequence can further include initiation and termination signals operably linked to regulatory elements including a promoter and polyadenylation signal capable of directing expression in the cells of an individual or mammal to whom the nucleic acid is administered.

d. Complement

“Complement” or “complementary” as used herein means a nucleic acid can mean Watson-Crick (*e.g.*, A-T/U and C-G) or Hoogsteen base pairing between nucleotides or nucleotide analogs of nucleic acid molecules.

e. Consensus or Consensus Sequence

“Consensus” or “consensus sequence” as used herein means a polypeptide sequence based on analysis of an alignment of multiple subtypes of a particular influenza antigen. Nucleic acid sequences that encode a consensus polypeptide sequence may be prepared. Vaccines comprising proteins that comprise consensus sequences and/or nucleic acid molecules that encode such proteins can be used to induce broad immunity against multiple subtypes or serotypes of a particular influenza antigen. Consensus influenza antigens can include influenza A consensus hemagglutinin amino acid sequences, including for example consensus H1, consensus H2, or influenza B consensus hemagglutinin amino acid sequences.

f. Constant Current

“Constant current” as used herein means a current that is received or experienced by a tissue, or cells defining said tissue, over the duration of an electrical pulse delivered to same tissue. The electrical pulse is delivered from the electroporation devices described herein. This current remains at a constant amperage in said tissue over the life of an electrical pulse because the electroporation device provided herein has a feedback element, preferably having instantaneous feedback. The feedback element can measure the resistance of the tissue (or cells) throughout the duration of the pulse and cause the electroporation device to alter its electrical energy output (e.g., increase voltage) so current in same tissue remains constant throughout the electrical pulse (on the order of microseconds), and from pulse to pulse. In some embodiments, the feedback element comprises a controller.

g. Current Feedback or Feedback

“Current feedback” or “feedback” can be used interchangeably and means the active response of the provided electroporation devices, which comprises measuring the current in tissue between electrodes and altering the energy output delivered by the EP device accordingly in order to maintain the current at a constant level. This constant level is preset by a user prior to initiation of a pulse sequence or electrical treatment. The feedback can be accomplished by the electroporation component, e.g., controller, of the electroporation device, as the electrical circuit therein is able to continuously monitor the current in tissue between electrodes and compare that monitored current (or current within tissue) to a preset current and continuously make energy-output adjustments to maintain the monitored current at preset levels. The feedback loop can be instantaneous as it is an analog closed-loop feedback.

h. Decentralized Current

“Decentralized current” as used herein means the pattern of electrical currents delivered from the various needle electrode arrays of the electroporation devices described herein, wherein the patterns minimize, or preferably eliminate, the occurrence of electroporation related heat stress on any area of tissue being electroporated.

i. Electroporation

“Electroporation,” “electro-permeabilization,” or “electro-kinetic enhancement” (“EP”) as used interchangeably herein means the use of a transmembrane electric field pulse to induce

microscopic pathways (pores) in a bio-membrane; their presence allows biomolecules such as plasmids, oligonucleotides, siRNA, drugs, ions, and water to pass from one side of the cellular membrane to the other.

j. Feedback Mechanism

“Feedback mechanism” as used herein means a process performed by either software or hardware (or firmware), which process receives and compares the impedance of the desired tissue (before, during, and/or after the delivery of pulse of energy) with a present value, preferably current, and adjusts the pulse of energy delivered to achieve the preset value. A feedback mechanism can be performed by an analog closed loop circuit.

k. Fragment

“Fragment” as used herein with respect to nucleic acid sequences means a nucleic acid sequence or a portion thereof, that encodes a polypeptide capable of eliciting an immune response in a mammal that cross reacts with a full length wild type strain influenza antigen, including, e.g., an influenza A H1 hemagglutinin, an influenza A H2 hemagglutinin or an influenza B hemagglutinin. The fragments can be DNA fragments selected from at least one of the various nucleotide sequences that encode the consensus amino acid sequences and constructs comprising such sequences, including SEQ ID NOS: 1, 3, 6, 9, 11 13 and 15. DNA fragments can comprise coding sequences for the immunoglobulin leader such as IgE or IgG sequences. The DNA fragments can be 30 or more nucleotides in length, 45 or more, 60 or more, 75 or more, 90 or more, 120 or more, 150 or more, 180 or more, 210 or more, 240 or more, 270 or more, 300 or more, 360 or more, 420 or more, 480 or more, 540 or more, 600 or more, 660 or more, 720 or more, 780 or more, 840 or more, 900 or more, 960 or more, 1020 or more, 1080 or more, 1140 or more, 1200 or more, 1260 or more, 1320 or more, 1380 or more, 1440 or more, 1500 or more, 1560 or more, 1620 or more, 1680 or more, 1740 or more, 1800 or more, 1860 or more, 1820 or more, 1880 or more, 1940 or more, 2000 or more, 2600 or more, 2700 or more, 2800 or more, 2900 or more, 2910 or more, 2920 or more, 2930 or more, 2931 or more, 2932 or more, 2933 or more, 2934 or more, 2935 or more, 2936 or more, 2937 or more, or 2938 or more in length. DNA fragments can be fewer than 10 nucleotides, fewer than 20, fewer than 30, fewer than 40, fewer than 50, fewer than 60, fewer than 75, fewer than 90, fewer than 120, fewer than 150, fewer than 180, fewer than 210, fewer than 240, fewer than 270, fewer than 300, fewer than

360, fewer than 420, fewer than 480, fewer than 540, fewer than 600, fewer than 660, fewer than 720, fewer than 780, fewer than 840, fewer than 900, fewer than 960, fewer than 1020, fewer than 1080, fewer than 1140, fewer than 1200, fewer than 1260, fewer than 1320, fewer than 1380, fewer than 1440, fewer than 1500, fewer than 1560, fewer than 1620, fewer than 1680, or fewer than 1740 nucleotides, fewer than 1800, fewer than 1860, fewer than 1820, fewer than 1880, fewer than 1940, fewer than 2000, fewer than 2600, fewer than 2700, fewer than 2800, fewer than 2900, fewer than 2910, fewer than 2920, fewer than 2930, fewer than 2931, fewer than 2932, fewer than 2933, fewer than 2934, fewer than 2935, fewer than 2936, fewer than 2937, or fewer than 2938.

“Fragment” with respect to polypeptide sequences means a polypeptide capable of eliciting an immune response in a mammal that cross reacts with a full length wild type strain influenza antigen, including, e.g., an influenza A H1 hemagglutinin, an influenza A H2 hemagglutinin or an influenza B hemagglutinin. The fragment can be polypeptide fragment selected from at least one of the various polypeptide sequences of the present invention, including SEQ ID NOS: 2, 4, 7, 10, 12, 14 and 16. Polypeptide fragments can be analyzed to contact at least one antigenic epitope as provided by a publicly available database such as the Los Alamos National Laboratory’s HA Sequence Database. Polypeptides HA fragments can further comprise amino acid sequences for the immunoglobulin leader such as IgE or IgG. The polypeptide fragments can be 30 or more amino acids in length, 45 or more, 60 or more, 75 or more, 90 or more, 120 or more, 150 or more, 180 or more, 210 or more, 240 or more, 270 or more, 300 or more, 360 or more, 420 or more, 480 or more, 540 or more, 600 or more, 660 or more, or 710 amino acids or more in length. Polypeptide fragments can be fewer than 10 amino acids, fewer than 20, fewer than 30, fewer than 40, fewer than 50, fewer than 60, fewer than 75, fewer than 90, fewer than 120, fewer than 150, fewer than 180, fewer than 210, fewer than 240, fewer than 270, fewer than 300, fewer than 360, fewer than 420, fewer than 480, fewer than 540, fewer than 600, fewer than 660, fewer than 700, fewer than 701, fewer than 702, fewer than 703, fewer than 704, fewer than 705, fewer than 706, fewer than 707, fewer than 708, fewer than 709, or fewer than 710 amino acids in length.

l. Genetic construct

As used herein, the term "genetic construct" refers to the DNA or RNA molecules that comprise a nucleotide sequence which encodes a protein. The coding sequence includes initiation and termination signals operably linked to regulatory elements including a promoter and polyadenylation signal capable of directing expression in the cells of the individual to whom the nucleic acid molecule is administered. As used herein, the term "expressible form" refers to gene constructs that contain the necessary regulatory elements operable linked to a coding sequence that encodes a protein such that when present in the cell of the individual, the coding sequence will be expressed.

m. Identical

"Identical" or "identity" as used herein in the context of two or more nucleic acids or polypeptide sequences, means that the sequences have a specified percentage of residues that are the same over a specified region. The percentage can be calculated by optimally aligning the two sequences, comparing the two sequences over the specified region, determining the number of positions at which the identical residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the specified region, and multiplying the result by 100 to yield the percentage of sequence identity. In cases where the two sequences are of different lengths or the alignment produces one or more staggered ends and the specified region of comparison includes only a single sequence, the residues of single sequence are included in the denominator but not the numerator of the calculation. When comparing DNA and RNA, thymine (T) and uracil (U) can be considered equivalent. Identity can be performed manually or by using a computer sequence algorithm such as BLAST or BLAST 2.0.

n. Impedance

"Impedance" can be used when discussing the feedback mechanism and can be converted to a current value according to Ohm's law, thus enabling comparisons with the preset current.

o. Immune Response

"Immune response" as used herein means the activation of a host's immune system, e.g., that of a mammal, in response to the introduction of antigen such as an influenza hemagglutinin

consensus antigen. The immune response can be in the form of a cellular or humoral response, or both.

p. Nucleic Acid

“Nucleic acid” or “oligonucleotide” or “polynucleotide” as used herein means at least two nucleotides covalently linked together. The depiction of a single strand also defines the sequence of the complementary strand. Thus, a nucleic acid also encompasses the complementary strand of a depicted single strand. Many variants of a nucleic acid can be used for the same purpose as a given nucleic acid. Thus, a nucleic acid also encompasses substantially identical nucleic acids and complements thereof. A single strand provides a probe that can hybridize to a target sequence under stringent hybridization conditions. Thus, a nucleic acid also encompasses a probe that hybridizes under stringent hybridization conditions.

Nucleic acids can be single stranded or double stranded, or can contain portions of both double stranded and single stranded sequence. The nucleic acid can be DNA, both genomic and cDNA, RNA, or a hybrid, where the nucleic acid can contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine and isoguanine. Nucleic acids can be obtained by chemical synthesis methods or by recombinant methods.

q. Operably Linked

“Operably linked” as used herein means that expression of a gene is under the control of a promoter with which it is spatially connected. A promoter can be positioned 5' (upstream) or 3' (downstream) of a gene under its control. The distance between the promoter and a gene can be approximately the same as the distance between that promoter and the gene it controls in the gene from which the promoter is derived. As is known in the art, variation in this distance can be accommodated without loss of promoter function.

r. Promoter

“Promoter” as used herein means a synthetic or naturally-derived molecule which is capable of conferring, activating or enhancing expression of a nucleic acid in a cell. A promoter can comprise one or more specific transcriptional regulatory sequences to further enhance expression and/or to alter the spatial expression and/or temporal expression of same. A promoter can also comprise distal enhancer or repressor elements, which can be located as much as several

thousand base pairs from the start site of transcription. A promoter can be derived from sources including viral, bacterial, fungal, plants, insects, and animals. A promoter can regulate the expression of a gene component constitutively, or differentially with respect to cell, the tissue or organ in which expression occurs or, with respect to the developmental stage at which expression occurs, or in response to external stimuli such as physiological stresses, pathogens, metal ions, or inducing agents. Representative examples of promoters include the bacteriophage T7 promoter, bacteriophage T3 promoter, SP6 promoter, lac operator-promoter, tac promoter, SV40 late promoter, SV40 early promoter, RSV-LTR promoter, CMV IE promoter, SV40 early promoter or SV40 late promoter and the CMV IE promoter.

s. Stringent Hybridization Conditions

“Stringent hybridization conditions” as used herein means conditions under which a first nucleic acid sequence (e.g., probe) will hybridize to a second nucleic acid sequence (e.g., target), such as in a complex mixture of nucleic acids. Stringent conditions are sequence-dependent and will be different in different circumstances. Stringent conditions can be selected to be about 5-10°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m can be the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m , 50% of the probes are occupied at equilibrium). Stringent conditions can be those in which the salt concentration is less than about 1.0 M sodium ion, such as about 0.01-1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., about 10-50 nucleotides) and at least about 60°C for long probes (e.g., greater than about 50 nucleotides). Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal can be at least 2 to 10 times background hybridization. Exemplary stringent hybridization conditions include the following: 50% formamide, 5x SSC, and 1% SDS, incubating at 42°C, or, 5x SSC, 1% SDS, incubating at 65°C, with wash in 0.2x SSC, and 0.1% SDS at 65°C.

t. Substantially Complementary

“Substantially complementary” as used herein means that a first sequence is at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical to the complement of a

second sequence over a region of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 180, 270, 360, 450, 540, 630, 720, 810, 900, 990, 1080, 1170, 1260, 1350, 1440, 1530, 1620, 1710, 1800, 1890, 1980, 2070 or more nucleotides or amino acids, or that the two sequences hybridize under stringent hybridization conditions.

u. Substantially Identical

“Substantially identical” as used herein means that a first and second sequence are at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical over a region of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 180, 270, 360, 450, 540, 630, 720, 810, 900, 990, 1080, 1170, 1260, 1350, 1440, 1530, 1620, 1710, 1800, 1890, 1980, 2070 or more nucleotides or amino acids, or with respect to nucleic acids, if the first sequence is substantially complementary to the complement of the second sequence.

v. Subtype or Serotype

“Subtype” or “serotype”: as used herein, interchangeably, and in reference to influenza virus, means genetic variants of an influenza virus such that one subtype is recognized by an immune system apart from a different subtype.

w. Variant

“Variant” used herein with respect to a nucleic acid means (i) a portion or fragment of a referenced nucleotide sequence; (ii) the complement of a referenced nucleotide sequence or portion thereof; (iii) a nucleic acid that is substantially identical to a referenced nucleic acid or the complement thereof; or (iv) a nucleic acid that hybridizes under stringent conditions to the referenced nucleic acid, complement thereof, or a sequences substantially identical thereto.

“Variant” with respect to a peptide or polypeptide that differs in amino acid sequence by the insertion, deletion, or conservative substitution of amino acids, but retain at least one biological activity. Variant can also mean a protein with an amino acid sequence that is substantially identical to a referenced protein with an amino acid sequence that retains at least one biological activity. A conservative substitution of an amino acid, i.e., replacing an amino acid with a different amino acid of similar properties (e.g., hydrophilicity, degree and distribution of charged regions) is recognized in the art as typically involving a minor change.

These minor changes can be identified, in part, by considering the hydropathic index of amino acids, as understood in the art. Kyte et al., *J. Mol. Biol.* 157:105-132 (1982). The hydropathic index of an amino acid is based on a consideration of its hydrophobicity and charge. It is known in the art that amino acids of similar hydropathic indexes can be substituted and still retain protein function. In one aspect, amino acids having hydropathic indexes of ± 2 are substituted. The hydrophilicity of amino acids can also be used to reveal substitutions that would result in proteins retaining biological function. A consideration of the hydrophilicity of amino acids in the context of a peptide permits calculation of the greatest local average hydrophilicity of that peptide, a useful measure that has been reported to correlate well with antigenicity and immunogenicity. U.S. Patent No. 4,554,101, incorporated fully herein by reference.

Substitution of amino acids having similar hydrophilicity values can result in peptides retaining biological activity, for example immunogenicity, as is understood in the art. Substitutions can be performed with amino acids having hydrophilicity values within ± 2 of each other. Both the hydrophobicity index and the hydrophilicity value of amino acids are influenced by the particular side chain of that amino acid. Consistent with that observation, amino acid substitutions that are compatible with biological function are understood to depend on the relative similarity of the amino acids, and particularly the side chains of those amino acids, as revealed by the hydrophobicity, hydrophilicity, charge, size, and other properties.

x. Vector

"Vector" as used herein means a nucleic acid sequence containing an origin of replication. A vector can be a vector, bacteriophage, bacterial artificial chromosome or yeast artificial chromosome. A vector can be a DNA or RNA vector. A vector can be a self-replicating extrachromosomal vector, and preferably, is a DNA plasmid.

2. Influenza antigen

Provided herein are antigens capable of eliciting an immune response in a mammal against one or more influenza serotypes. The antigen can be capable of eliciting an immune response in a mammal against one or more influenza serotypes, including against one or more pandemic strains, such as 2009 H1N1 swine originated influenza. The antigen can be capable of eliciting an immune response in a mammal against one or more influenza serotype, including against one or more strains of swine derived human influenza. The antigen can comprise

epitopes that make them particularly effective as immunogens against which anti-influenza immune responses can be induced.

The antigen can comprise the full length translation product HA0, subunit HA1, subunit HA2, a variant thereof, a fragment thereof or a combination thereof. The influenza hemagglutinin antigen can be a consensus sequence derived from multiple strains of influenza A serotype H1, a consensus sequence derived from multiple strains of influenza A serotype H2, a hybrid sequence containing portions of two different consensus sequences derived from different sets of multiple strains of influenza A serotype H1 or a consensus sequence derived from multiple strains of influenza B. The influenza hemagglutinin antigen can be from influenza B. The antigen can contain at least one antigenic epitope that can be effective against particular influenza immunogens against which an immune response can be induced. The antigen may provide an entire repertoire of immunogenic sites and epitopes present in an intact influenza virus. The antigen may be a consensus hemagglutinin antigen sequence that can be derived from hemagglutinin antigen sequences from a plurality of influenza A virus strains of one serotype such as a plurality of influenza A virus strains of serotype H1 or of serotype H2. The antigen may be a hybrid consensus hemagglutinin antigen sequence that can be derived from combining two different consensus hemagglutinin antigen sequences or portions thereof. Each of two different consensus hemagglutinin antigen sequences may be derived from a different set of a plurality of influenza A virus strains of one serotype such as a plurality of influenza A virus strains of serotype H1. The antigen may be a consensus hemagglutinin antigen sequence that can be derived from hemagglutinin antigen sequences from a plurality of influenza B virus strains.

The consensus hemagglutinin antigen may be a protein comprising SEQ ID NO: 2 (the consensus H1 amino acid sequence) wherein amino acids 1-343 correspond to the HA1 subunit of the precursor HA0 consensus H1 amino acid sequence and amino acids 344-566 correspond to the HA2 subunit of the HA0 consensus H1 amino acid sequence. The consensus hemagglutinin antigen may be a protein comprising SEQ ID NO: 7 (the consensus H2 amino acid sequence).

The consensus hemagglutinin antigen may be a synthetic hybrid consensus H1 sequences comprising portions of two different consensus H1 sequences which are each derived from a different set of sequences from the other. An example of a consensus HA antigen that is a synthetic hybrid consensus H1 protein is a protein comprising SEQ ID NO: 10 (the U2 amino

acid sequence). The consensus hemagglutinin antigen may be a consensus hemagglutinin protein derived from hemagglutinin sequences from influenza B strains, such as a protein comprising SEQ ID NO: 14 (the consensus BHA amino acid sequence).

The consensus hemagglutinin antigen may further comprise one or more additional amino acid sequence elements. The consensus hemagglutinin antigen may further comprise on its N-terminal an IgE or IgG leader amino acid sequence. The IgE leader amino acid sequence may be SEQ ID NO: 17. The consensus hemagglutinin antigen may further comprise an immunogenic tag which is a unique immunogenic epitope that can be detected by readily available antibodies. An example of such an immunogenic tag is the 9 amino acid influenza HA Tag which may be linked on the consensus hemagglutinin C terminus. The HA Tag amino acid sequence may be SEQ ID NO:18. In some embodiments, consensus hemagglutinin antigen may further comprise on its N-terminal an IgE or IgG leader amino acid sequence and on its C terminal an HA tag.

The consensus hemagglutinin antigen may be a consensus hemagglutinin protein that consists of consensus influenza amino acid sequences or fragments and variants thereof. The consensus hemagglutinin antigen may be a consensus hemagglutinin protein that comprises non-influenza protein sequences and influenza protein sequences or fragments and variants thereof.

Examples of a consensus H1 protein include those that may consist of the consensus H1 amino acid sequence (SEQ ID NO:2) or those that further comprise additional elements such as an IgE leader sequence, or an HA Tag or both an IgE leader sequence and an HA Tag. An example of the consensus H1 protein that includes both an IgE leader sequence and an HA Tag is SEQ ID NO: 4, which comprises the consensus H1 amino acid coding sequence (SEQ ID NO:2) linked to the IgE leader amino acid sequence (SEQ ID NO: 17) at its N terminal and linked to the HA Tag (SEQ ID NO:18) at its C terminal.

Examples of consensus H2 proteins include those that may consist of the consensus H2 amino acid sequence (SEQ ID NO:7) or those that further comprise an IgE leader sequence, or an HA Tag, or both an IgE leader sequence and an HA Tag.

Examples of hybrid consensus H1 proteins include those that may consist of the consensus U2 amino acid sequence (SEQ ID NO:10) or those that further comprise an IgE leader sequence, or an HA Tag, or both an IgE leader sequence and an HA Tag. An example of the

consensus U2 protein is SEQ ID NO:12, which comprises the consensus U2 amino acid sequence (SEQ ID NO:10) linked to the IgE leader amino acid sequence (SEQ ID NO: 17) at its N terminal and linked to the HA Tag (SEQ ID NO:18) at its C terminal.

Examples of hybrid consensus influenza B hemagglutinin proteins include those that may consist of the consensus BHA amino acid sequence (SEQ ID NO:14) or it may comprise an IgE leader sequence, or a an HA Tag, or both an IgE leader sequence and an HA Tag. An example of the consensus BHA protein is SEQ ID NO:16 which comprises the consensus BHA amino acid sequence (SEQ ID NO:14) linked to the IgE leader amino acid sequence (SEQ ID NO: 17) at its N terminal and linked to the HA Tag (SEQ ID NO:18) at its C terminal.

The consensus hemagglutinin protein can be encoded by a consensus hemagglutinin nucleic acid, a variant thereof or a fragment thereof. Unlike the consensus hemagglutinin protein which may be a consensus sequence derived from a plurality of different hemagglutinin sequences from different strains and variants, the consensus hemagglutinin nucleic acid refers to a nucleic acid sequence that encodes a consensus protein sequence and the coding sequences used may differ from those used to encode the particular amino acid sequences in the plurality of different hemagglutinin sequences from which the consensus hemagglutinin protein sequence is derived. The consensus nucleic acid sequence may be codon optimized and/or RNA optimized. The consensus hemagglutinin nucleic acid sequence may comprise a Kozak's sequence in the 5' untranslated region. The consensus hemagglutinin nucleic acid sequence may comprise nucleic acid sequences that encode a leader sequence. The coding sequence of an N terminal leader sequence is 5' of the hemagglutinin coding sequence. The N-terminal leader can be facilitate secretion. The N-terminal leader can be an IgE leader or an IgG leader. The consensus hemagglutinin nucleic acid sequence can comprise nucleic acid sequences that encode an immunogenic tag. The immunogenic tag can be on the C terminus of the protein and the sequence encoding it is 3' of the HA coding sequence. The immunogenic tag provides a unique epitope for which there are readily available antibodies so that such antibodies can be used in assays to detect and confirm expression of the protein. The immunogenic tag can be an H Tag at the C-terminus of the protein.

Consensus hemagglutinin nucleic acid may have a polynucleotide sequence that encodes a protein that comprises the amino acid sequence of SEQ ID NO: 2, SEQ ID NO:7, SEQ ID

NO:10 or SEQ ID NO:14. A consensus hemagglutinin nucleic acid that encodes SEQ ID NO: 2, SEQ ID NO:7, SEQ ID NO:10 or SEQ ID NO:14 may be SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:9 or SEQ ID NO:13, respectively. The consensus hemagglutinin nucleic acid can further comprise a polynucleotide sequence encoding the IgE leader amino acid sequence, or a polynucleotide sequence encoding an HA Tag amino acid sequence, or both. SEQ ID NO: 17 is an IgE leader polypeptide sequence. SEQ ID NO: 18 is an HA Tag polypeptide sequence. Examples of hemagglutinin consensus nucleic acids that further comprise polynucleotide sequences encoding an IgE leader sequence and an HA Tag include nucleic acid molecules that encode proteins that comprise the amino acid sequence of SEQ ID NO:4, SEQ ID NO:12 or SEQ ID NO:16. A consensus hemagglutinin nucleic acid that encodes SEQ ID NO:4, SEQ ID NO:12 or SEQ ID NO:16 may be SEQ ID NO:3, SEQ ID NO:11 or SEQ ID NO:15, respectively.

3. Genetic Constructs and Plasmids

Provided herein are genetic constructs that can comprise a nucleic acid sequence that encodes the hemagglutinin antigen. The genetic construct can be present in the cell as a functioning extrachromosomal molecule comprising the nucleic acid encoding the hemagglutinin antigen. The genetic construct comprising the nucleic acid encoding the hemagglutinin antigen can be linear minichromosome including centromere, telomeres or plasmids or cosmids.

The genetic construct can also be part of a genome of a recombinant viral vector, including recombinant adenovirus, recombinant adenovirus associated virus and recombinant vaccinia. The genetic construct can be part of the genetic material in attenuated live microorganisms or recombinant microbial vectors which live in cells.

The genetic constructs can comprise regulatory elements for gene expression of the hemagglutinin nucleic acid. The regulatory elements can be a promoter, an enhancer an initiation codon, a stop codon, or a polyadenylation signal.

Compositions may comprise a first nucleic acid sequence which encodes the hemagglutinin consensus antigen selected from the group consisting of one or more of: influenza A consensus hemagglutinin H1 antigen, influenza A consensus hemagglutinin H2 antigen, influenza A consensus hemagglutinin U2 antigen, and influenza B consensus hemagglutinin protein BHA, and may further comprise one or more additional nucleic acid sequence(s) that encodes one or more protein(s) selected from the group consisting of: influenza A hemagglutinin

proteins H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, influenza A neuraminidase N1, N2, N3, N4, N5, N6, N7, N8, N9, influenza B hemagglutinin (BHA) and influenza B neuraminidase (BNA). The first and additional nucleic acid sequences may be present on the same nucleic acid molecule or different nucleic acid molecules. The first and additional nucleic acid sequences can be under the control of regulatory elements that function in a human cell. The additional coding sequence may encode one or more H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, N1, N2, N3, N4, N5, N6, N7, N8, N9, BHA and BNA from one or more strains of influenza, or be a consensus derived from a plurality of strains having the serotype, or be a hybrid which includes sequences from two or more consensus sequences.

The nucleic acid sequences may make up a genetic construct that can be a vector. The vector can be capable of expressing a consensus hemagglutinin antigen in the cell of a mammal in a quantity effective to elicit an immune response in the mammal. The vector can be recombinant. The vector can comprise heterologous nucleic acid encoding the consensus hemagglutinin antigen. The vector can be a plasmid. The vector can be useful for transfecting cells with nucleic acid encoding a consensus hemagglutinin antigen, which the transformed host cell is cultured and maintained under conditions wherein expression of the consensus hemagglutinin antigen takes place.

The vector can comprise heterologous nucleic acid encoding a consensus hemagglutinin antigen and can further comprise an initiation codon, which can be upstream of the consensus hemagglutinin coding sequence, and a stop codon, which can be downstream of the consensus hemagglutinin coding sequence. The initiation and termination codon can be in frame with the consensus hemagglutinin coding sequence. The vector can also comprise a promoter that is operably linked to the consensus hemagglutinin coding sequence. The promoter operably linked to the consensus hemagglutinin coding sequence can be a promoter from simian virus 40 (SV40), a mouse mammary tumor virus (MMTV) promoter, a human immunodeficiency virus (HIV) promoter such as the bovine immunodeficiency virus (BIV) long terminal repeat (LTR) promoter, a Moloney virus promoter, an avian leukosis virus (ALV) promoter, a cytomegalovirus (CMV) promoter such as the CMV immediate early promoter, Epstein Barr virus (EBV) promoter, or a Rous sarcoma virus (RSV) promoter. The promoter can also be a

promoter from a human gene such as human actin, human myosin, human hemoglobin, human muscle creatine, or human metallothionein. The promoter can also be a tissue specific promoter, such as a muscle or skin specific promoter, natural or synthetic. Examples of such promoters are described in US patent application publication no.US20040175727, the contents of which are incorporated herein in its entirety.

The vector can also comprise a polyadenylation signal, which can be downstream of the HA coding sequence. The polyadenylation signal can be a SV40 polyadenylation signal, LTR polyadenylation signal, bovine growth hormone (bGH) polyadenylation signal, human growth hormone (hGH) polyadenylation signal, or human β -globin polyadenylation signal. The SV40 polyadenylation signal can be a polyadenylation signal from a pCEP4 vector (Invitrogen, San Diego, CA).

The vector can also comprise an enhancer upstream of the consensus hemagglutinin coding. The enhancer can be necessary for DNA expression. The enhancer can be human actin, human myosin, human hemoglobin, human muscle creatine or a viral enhancer such as one from CMV, HA, RSV or EBV. Polynucleotide function enhances are described in U.S. Patent Nos. 5,593,972, 5,962,428, and WO94/016737, the contents of each are fully incorporated by reference.

The vector can also comprise a mammalian origin of replication in order to maintain the vector extrachromosomally and produce multiple copies of the vector in a cell. The vector can be pVAX1 (Figure 1), pCEP4 or pREP4 from Invitrogen (San Diego, CA), which can comprise the Epstein Barr virus origin of replication and nuclear antigen EBNA-1 coding region, which can produce high copy episomal replication without integration. The vector can be pVAX1 with changes such as those described in the paragraph referring to Figure 1 in the Brief Description of the Figures section above. The backbone of the vector can be pAV0242. The vector can be a replication defective adenovirus type 5 (Ad5) vector.

The vector can also comprise a regulatory sequence, which can be well suited for gene expression in a mammalian or human cell into which the vector is administered. The consensus hemagglutinin coding sequence can comprise a codon, which can allow more efficient transcription of the coding sequence in the host cell.

The vector can be pSE420 (Invitrogen, San Diego, Calif.), which can be used for protein production in *Escherichia coli* (E.coli). The vector can also be pYES2 (Invitrogen, San Diego, Calif.), which can be used for protein production in *Saccharomyces cerevisiae* strains of yeast. The vector can also be of the MAXBAC™ complete baculovirus expression system (Invitrogen, San Diego, Calif.), which can be used for protein production in insect cells. The vector can also be pcDNA I or pcDNA3 (Invitrogen, San Diego, Calif.), which maybe used for protein production in mammalian cells such as Chinese hamster ovary (CHO) cells. The vector can be expression vectors or systems to produce protein by routine techniques and readily available starting materials including Sambrook et al., Molecular Cloning an Laboratory Manual, Second Ed. , Cold Spring Harbor (1989) ,which is incorporated fully by reference.

The vector can be pGX2009 or pGX2006, which can be used for expressing the consensus hemagglutinin antigen. The vector pGX2009 (4739 bp, Figure 2; SEQ ID NO: 5) is a modified pVAX1 plasmid with a nucleic acid sequence that encodes a consensus H1 protein (amino acid SEQ ID NO:4 encoded by SEQ ID NO:3) that comprises an IgE leader sequence (amino acid SEQ ID NO:12 encoded by SEQ ID NO:11) linked to a consensus H1 amino acid sequence (amino acid SEQ ID NO:2 encoded by SEQ ID NO:1). The vector pGX2006 (4628 bp; Figure 3, SEQ ID NO:8) is a pVAX1 plasmid with a nucleic acid sequence that encodes a consensus H2 protein (amino acid SEQ ID NO:7 encoded by SEQ ID NO:6).

The genetic constructs and components disclosed herein which include consensus hemagglutinin coding sequences may be used to express other influenza proteins such as influenza A H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, N1, N2, N3, N4, N5, N6, N7, N8, N9, influenza B hemagglutinin or neuraminidase protein whereby coding sequences for influenza A proteins H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, N1, N2, N3, N4, N5, N6, N7, N8, N9, influenza B hemagglutinin or neuraminidase protein are included in place of consensus hemagglutinin coding sequences.

4. Pharmaceutical compositions

Provided herein are pharmaceutical compositions according to the present invention which comprise about 1 nanogram to about 10 mg of DNA. In some embodiments, pharmaceutical compositions according to the present invention comprise from between: 1) at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 nanograms, or at

least 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395, 400, 405, 410, 415, 420, 425, 430, 435, 440, 445, 450, 455, 460, 465, 470, 475, 480, 485, 490, 495, 500, 605, 610, 615, 620, 625, 630, 635, 640, 645, 650, 655, 660, 665, 670, 675, 680, 685, 690, 695, 700, 705, 710, 715, 720, 725, 730, 735, 740, 745, 750, 755, 760, 765, 770, 775, 780, 785, 790, 795, 800, 805, 810, 815, 820, 825, 830, 835, 840, 845, 850, 855, 860, 865, 870, 875, 880, 885, 890, 895, 900, 905, 910, 915, 920, 925, 930, 935, 940, 945, 950, 955, 960, 965, 970, 975, 980, 985, 990, 995 or 1000 micrograms, or at least 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 or 10 mg or more; and 2) up to and including 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 nanograms, or up to and including 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395, 400, 405, 410, 415, 420, 425, 430, 435, 440, 445, 450, 455, 460, 465, 470, 475, 480, 485, 490, 495, 500, 605, 610, 615, 620, 625, 630, 635, 640, 645, 650, 655, 660, 665, 670, 675, 680, 685, 690, 695, 700, 705, 710, 715, 720, 725, 730, 735, 740, 745, 750, 755, 760, 765, 770, 775, 780, 785, 790, 795, 800, 805, 810, 815, 820, 825, 830, 835, 840, 845, 850, 855, 860, 865, 870, 875, 880, 885, 890, 895, 900, 905, 910, 915, 920, 925, 930, 935, 940, 945, 950, 955, 960, 965, 970, 975, 980, 985, 990, 995, or 1000 micrograms, or up to and including 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 or 10 mg. In some embodiments, pharmaceutical compositions according to the present invention comprise about 5 nanogram to about 10 mg of DNA. In some embodiments, pharmaceutical compositions according to the present invention comprise about 25 nanogram to about 5 mg of DNA. In some embodiments, the pharmaceutical compositions contain about 50 nanograms to about 1 mg of DNA. In some embodiments, the pharmaceutical compositions contain about 0.1 to about 500 micrograms of DNA. In some embodiments, the pharmaceutical compositions contain about 1 to about 350 micrograms of DNA. In some embodiments, the pharmaceutical compositions contain about 5 to about 250 micrograms of DNA. In some embodiments, the

pharmaceutical compositions contain about 10 to about 200 micrograms of DNA. In some embodiments, the pharmaceutical compositions contain about 15 to about 150 micrograms of DNA. In some embodiments, the pharmaceutical compositions contain about 20 to about 100 micrograms of DNA. In some embodiments, the pharmaceutical compositions contain about 25 to about 75 micrograms of DNA. In some embodiments, the pharmaceutical compositions contain about 30 to about 50 micrograms of DNA. In some embodiments, the pharmaceutical compositions contain about 35 to about 40 micrograms of DNA. In some embodiments, the pharmaceutical compositions contain about 100 to about 200 microgram DNA. In some embodiments, the pharmaceutical compositions comprise about 10 microgram to about 100 micrograms of DNA. In some embodiments, the pharmaceutical compositions comprise about 20 micrograms to about 80 micrograms of DNA. In some embodiments, the pharmaceutical compositions comprise about 25 micrograms to about 60 micrograms of DNA. In some embodiments, the pharmaceutical compositions comprise about 30 nanograms to about 50 micrograms of DNA. In some embodiments, the pharmaceutical compositions comprise about 35 nanograms to about 45 micrograms of DNA. In some preferred embodiments, the pharmaceutical compositions contain about 0.1 to about 500 micrograms of DNA. In some preferred embodiments, the pharmaceutical compositions contain about 1 to about 350 micrograms of DNA. In some preferred embodiments, the pharmaceutical compositions contain about 25 to about 250 micrograms of DNA. In some preferred embodiments, the pharmaceutical compositions contain about 100 to about 200 microgram DNA.

The pharmaceutical compositions according to the present invention are formulated according to the mode of administration to be used. In cases where pharmaceutical compositions are injectable pharmaceutical compositions, they are sterile, pyrogen free and particulate free. An isotonic formulation is preferably used. Generally, additives for isotonicity can include sodium chloride, dextrose, mannitol, sorbitol and lactose. In some cases, isotonic solutions such as phosphate buffered saline are preferred. Stabilizers include gelatin and albumin. In some embodiments, a vasoconstriction agent is added to the formulation.

Preferably the pharmaceutical composition is a vaccine, and more preferably a DNA vaccine.

Provided herein is a vaccine capable of generating in a mammal an immune response against one or more influenza serotypes. The vaccine can comprise the genetic construct as discussed above. The vaccine can comprise a plurality of the vectors each directed to one or more Influenza A serotypes such as H1-H16 Influenza B hemagglutinin or combinations thereof. The vaccine may comprise one or more nucleic acid sequences that encode one or more consensus hemagglutinin antigens. When the vaccine comprises more than one consensus hemagglutinin nucleic acid sequences, all such sequences may be present on a single nucleic acid molecule or each such sequences may be present on a different nucleic acid molecule. Alternatively, vaccines that comprise more than one consensus hemagglutinin nucleic acid sequences may comprise nucleic acid molecules with a single consensus hemagglutinin nucleic acid sequences and nucleic acid molecules with more than one consensus hemagglutinin nucleic acid sequences. In addition, vaccines comprising one or more consensus hemagglutinin nucleic acid sequences may further comprise coding sequences for one or more proteins selected from the group consisting of H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, N1, N2, N3, N4, N5, N6, N7, N8, N9 and influenza B neuraminidase.

In some embodiments, vaccines may comprise proteins. Some vaccines may comprise one or more consensus hemagglutinin antigens such as H1, H2, U2 and BHA. The vaccines may comprise one or more other proteins selected from the group consisting of H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, N1, N2, N3, N4, N5, N6, N7, N8, N9 and influenza B neuraminidase. The vaccines may comprise one or more consensus hemagglutinin antigens in combination with one or more other proteins selected from the group consisting of H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, N1, N2, N3, N4, N5, N6, N7, N8, N9, influenza B hemagglutinin and neuraminidase.

The vaccine may be a DNA vaccine. The DNA vaccine may comprise a plurality of the same or different plasmids comprising one or more of consensus hemagglutinin nucleic acid sequences. The DNA vaccine may comprise one or more nucleic acid sequences that encode one or more consensus hemagglutinin antigens. When the DNA vaccine comprises more than one consensus hemagglutinin nucleic acid sequences, all such sequences may be present on a single plasmid, or each such sequences may be present on a different plasmids, or some plasmids may comprise a single consensus hemagglutinin nucleic acid sequences while other plasmids have

more than one consensus hemagglutinin nucleic acid sequences. In addition, DNA vaccines may further comprise one or more consensus coding sequences for one or more proteins selected from the group consisting of influenza A H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, N1, N2, N3, N4, N5, N6, N7, N8, N9, influenza B hemagglutinin and neuramidase. Such additional coding sequences may be on the same or different plasmids from each other and from the plasmids comprising one or more of consensus hemagglutinin nucleic acid sequences.

In some embodiments, vaccines may comprise nucleic acid sequences that encode influenza antigens in combination with influenza antigens. In some embodiments, the nucleic acid sequences encode one or more consensus hemagglutinin antigens such as H1, H2, U2 and BHA. In some embodiments, the nucleic acid sequences encode one or more one or more other proteins selected from the group consisting of , influenza A H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, N1, N2, N3, N4, N5, N6, N7, N8, N9, influenza B hemagglutinin and neuramidase. In some embodiments, the vaccines comprise one or more consensus hemagglutinin antigens such as H1, H2, U2 and BHA. In some embodiments, the vaccines comprise one or more one or more other proteins selected from the group consisting of influenza A H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, N1, N2, N3, N4, N5, N6, N7, N8, N9, influenza B hemagglutinin and neuramidase.

In some embodiments, vaccines comprise a combination of three or more consensus hemagglutinin nucleic acid sequences including those encoding one or more of H1, H2, U2 and BHA. In some embodiments, vaccines comprise a combination of three or more hemagglutinin nucleic acid sequences including those encoding consensus U2, consensus BHA and an H3 hemagglutinin. In some embodiments, vaccines comprise a combination of three or more hemagglutinin nucleic acid sequences including those encoding consensus BHA, an H1 hemagglutinin and an H3 hemagglutinin. In some embodiments, vaccines comprise one or more nucleic acid sequences that encode one or more influenza antigens disclosed in U.S. Serial No. 12/375,518, which is incorporated herein by reference and/or U.S. Serial No. 12/269,824, which is incorporated herein by reference. In some embodiments, vaccines comprise a nucleic acid sequence SEQ ID NO:19 which encodes SEQ ID NO:20 (which is an H1 hemagglutinin disclosed in U.S. Serial No. 12/375,518 as SEQ ID NO:36 and SEQ ID NO:37 respectively

therein) and/or nucleic acid sequence SEQ ID NO:21 which encodes SEQ ID NO:22 (which is an H1 hemagglutinin disclosed in U.S. Serial No. 12/269,824 as SEQ ID NO:9 and SEQ ID NO:10 respectively therein). In some embodiments, vaccines comprise a nucleic acid sequence SEQ ID NO:23 which encodes SEQ ID NO:24 (which is an H3 hemagglutinin disclosed in U.S. Serial No. 12/269,824 as SEQ ID NO:11 and SEQ ID NO:12 respectively therein).

In some embodiments, vaccines comprise a combination of three or more consensus hemagglutinin proteins including one or more of H1, H2, U2 and BHA. In some embodiments, vaccines comprise a combination of three or more hemagglutinin proteins including consensus U2, consensus BHA and an H3 hemagglutinin. In some embodiments, vaccines comprise a combination of three or more hemagglutinin proteins including consensus BHA, an H1 hemagglutinin and an H3 hemagglutinin. In some embodiments, vaccines comprise one or more antigens from U.S. Serial No. 12/375,518 and/or U.S. Serial No. 12/269,824. In some embodiments, vaccines comprise SEQ ID NO:20 and/or SEQ ID NO:22 and/or SEQ ID NO:24.

In some embodiments, vaccines comprise a combination of 1) the consensus hemagglutinin U2 protein and/or a nucleic acid sequences encoding the consensus hemagglutinin U2 protein, 2) the consensus hemagglutinin BHA protein and/or a nucleic acid sequences encoding the consensus hemagglutinin BHA protein, and 3) a hemagglutinin H3 protein disclosed in SEQ ID NO:24.

In some embodiments, vaccines comprise a combination of 1) the consensus hemagglutinin BHA protein and/or a nucleic acid sequences encoding the consensus hemagglutinin BHA protein, 2) a hemagglutinin H1 protein having SEQ ID NO:20 and/or SEQ ID NO:22 and/or a hemagglutinin H1 protein encoding nucleic acid sequences SEQ ID NO:19 and/or SEQ ID NO:21, and 3) a hemagglutinin H3 protein having SEQ ID NO:24 and/or a hemagglutinin H3 protein encoding nucleic acid sequence SEQ ID NO:23 therein).

DNA vaccines are disclosed in US Patent Nos. 5,593,972, 5,739,118, 5,817,637, 5,830,876, 5,962,428, 5,981,505, 5,580,859, 5,703,055, and 5,676,594, which are incorporated herein fully by reference. The DNA vaccine can further comprise elements or reagents that inhibit it from integrating into the chromosome. The vaccine can be an RNA of the hemagglutinin antigen. The RNA vaccine can be introduced into the cell.

The vaccine can be a recombinant vaccine comprising the genetic construct or antigen described above. The vaccine can also comprise one or more consensus hemagglutinin antigen in the form of one or more protein subunits, one or more killed influenza particles comprising one or more consensus hemagglutinin antigens, or one or more attenuated influenza particles comprising one or more consensus hemagglutinin antigens. The attenuated vaccine can be attenuated live vaccines, killed vaccines and vaccines that use recombinant vectors to deliver foreign genes that encode one or more consensus hemagglutinin antigens, and well as subunit and glycoprotein vaccines. Examples of attenuated live vaccines, those using recombinant vectors to deliver foreign antigens, subunit vaccines and glycoprotein vaccines are described in U.S. Patent Nos.: 4,510,245; 4,797,368; 4,722,848; 4,790,987; 4,920,209; 5,017,487; 5,077,044; 5,110,587; 5,112,749; 5,174,993; 5,223,424; 5,225,336; 5,240,703; 5,242,829; 5,294,441; 5,294,548; 5,310,668; 5,387,744; 5,389,368; 5,424,065; 5,451,499; 5,453,364; 5,462,734; 5,470,734; 5,474,935; 5,482,713; 5,591,439; 5,643,579; 5,650,309; 5,698,202; 5,955,088; 6,034,298; 6,042,836; 6,156,319 and 6,589,529, which are each incorporated herein by reference.

The vaccine can comprise vectors and/or proteins directed to Influenza A serotypes from particular regions in the world, for example, Asia. The vaccine can also be directed against Influenza A serotypes of swine origin that now infect humans. The vaccine can comprise vectors and/or proteins directed to Influenza B from particular regions in the world. The vaccine can also be directed against Influenza B that infect humans. The vaccine can comprise one or more vectors and/or one or more proteins directed to one or more strains of Influenza A and/or B.

The vaccine provided may be used to induce immune responses including therapeutic or prophylactic immune responses. Antibodies and/or killer T cells may be generated which are directed to the consensus hemagglutinin antigen, and also broadly across multiple subtypes of influenza viruses. Such antibodies and cells may be isolated.

The vaccine can further comprise a pharmaceutically acceptable excipient. The pharmaceutically acceptable excipient can be functional molecules as vehicles, adjuvants, carriers, or diluents. The pharmaceutically acceptable excipient can be a transfection facilitating agent, which can include surface active agents, such as immune-stimulating complexes (ISCOMS), Freunds incomplete adjuvant, LPS analog including monophosphoryl lipid A,

muramyl peptides, quinone analogs, vesicles such as squalene and squalene, hyaluronic acid, lipids, liposomes, calcium ions, viral proteins, polyanions, polycations, or nanoparticles, or other known transfection facilitating agents.

The transfection facilitating agent is a polyanion, polycation, including poly-L-glutamate (LGS), or lipid. The transfection facilitating agent is poly-L-glutamate, and more preferably, the poly-L-glutamate is present in the vaccine at a concentration less than 6 mg/ml. The transfection facilitating agent can also include surface active agents such as immune-stimulating complexes (ISCOMS), Freunds incomplete adjuvant, LPS analog including monophosphoryl lipid A, muramyl peptides, quinone analogs and vesicles such as squalene and squalene, and hyaluronic acid can also be used administered in conjunction with the genetic construct. In some embodiments, the DNA vector vaccines can also include a transfection facilitating agent such as lipids, liposomes, including lecithin liposomes or other liposomes known in the art, as a DNA-liposome mixture (see for example W09324640), calcium ions, viral proteins, polyanions, polycations, or nanoparticles, or other known transfection facilitating agents. Preferably, the transfection facilitating agent is a polyanion, polycation, including poly-L-glutamate (LGS), or lipid. Concentration of the transfection agent in the vaccine is less than 4 mg/ml, less than 2 mg/ml, less than 1 mg/ml, less than 0.750 mg/ml, less than 0.500 mg/ml, less than 0.250 mg/ml, less than 0.100 mg/ml, less than 0.050 mg/ml, or less than 0.010 mg/ml.

The pharmaceutically acceptable excipient may be an adjuvant. The adjuvant may be other genes that are expressed in alternative plasmid or are delivered as proteins in combination with the plasmid above in the vaccine. The adjuvant may be selected from the group consisting of: α -interferon(IFN- α), β -interferon (IFN- β), γ -interferon, platelet derived growth factor (PDGF), TNF α , TNF β , GM-CSF, epidermal growth factor (EGF), cutaneous T cell-attracting chemokine (CTACK), epithelial thymus-expressed chemokine (TECK), mucosae-associated epithelial chemokine (MEC), IL-12, IL-15, MHC, CD80,CD86 including IL-15 having the signal sequence deleted and optionally including the signal peptide from IgE. The adjuvant may be IL-12, IL-15, IL-28, CTACK, TECK, platelet derived growth factor (PDGF), TNF α , TNF β , GM-CSF, epidermal growth factor (EGF), IL-1, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-18, or a combination thereof.

Other genes which may be useful adjuvants include those encoding: MCP-1, MIP-1 α , MIP-1 β , IL-8, RANTES, L-selectin, P-selectin, E-selectin, CD34, GlyCAM-1, MadCAM-1, LFA-1, VLA-1, Mac-1, p150.95, PECAM, ICAM-1, ICAM-2, ICAM-3, CD2, LFA-3, M-CSF, G-CSF, IL-4, mutant forms of IL-18, CD40, CD40L, vascular growth factor, fibroblast growth factor, IL-7, nerve growth factor, vascular endothelial growth factor, Fas, TNF receptor, Flt, Apo-1, p55, WSL-1, DR3, TRAMP, Apo-3, AIR, LARD, NGF, DR4, DR5, KILLER, TRAIL-R2, TRICK2, DR6, Caspase ICE, Fos, c-jun, Sp-1, Ap-1, Ap-2, p38, p65Rel, MyD88, IRAK, TRAF6, I κ B, Inactive NIK, SAP K, SAP-1, JNK, interferon response genes, NF κ B, Bax, TRAIL, TRAILrec, TRAILrecDRC5, TRAIL-R3, TRAIL-R4, RANK, RANK LIGAND, Ox40, Ox40 LIGAND, NKG2D, MICA, MICB, NKG2A, NKG2B, NKG2C, NKG2E, NKG2F, TAP1, TAP2 and functional fragments thereof.

The vaccine can further comprise a genetic vaccine facilitator agent as described in U.S. Serial No. 021,579 filed April 1, 1994, which is fully incorporated by reference.

5. Methods of Delivery

Provided herein is a method for delivering the pharmaceutical formulations, preferably vaccines, for providing genetic constructs and proteins of the hemagglutinin antigen which comprise epitopes that make them particular effective immunogens against which an immune response to influenza viral infections can be induced. The method of delivering the vaccine, or vaccination, can be provided to induce a therapeutic and/or prophylactic immune response. The vaccination process can generate in the mammal an immune response against a plurality of influenza subtypes, including a H1N1 serotype, such as the 2009 swine originated H1N1, or other seasonal and/or pandemic varieties. The vaccine can be delivered to an individual to modulate the activity of the mammal's immune system and enhance the immune response. The delivery of the vaccine can be the transfection of the HA antigen as a nucleic acid molecule that is expressed in the cell and delivered to the surface of the cell upon which the immune system recognized and induces a cellular, humoral, or cellular and humoral response. The delivery of the vaccine can be used to induce or elicit an immune response in mammals against a plurality of influenza viruses by administering to the mammals the vaccine as discussed herein.

Upon delivery of the vaccine to the mammal, and thereupon the vector into the cells of the mammal, the transfected cells will express and secrete the corresponding influenza protein,

including at least one of the consensus antigens, and preferably H1, H2, U2, and BHA. These secreted proteins, or synthetic antigens, will be recognized as foreign by the immune system, which will mount an immune response that can include: antibodies made against the antigens, and T-cell response specifically against the antigen. In some examples, a mammal vaccinated with the vaccines discussed herein will have a primed immune system and when challenged with an influenza viral strain, the primed immune system will allow for rapid clearing of subsequent influenza viruses, whether through the humoral, cellular, or both.. The vaccine can be delivered to an individual to modulate the activity of the individual's immune system thereby enhancing the immune response.

The vaccine can be delivered in the form of a DNA vaccine and methods of delivering a DNA vaccines are described in U.S. Patent Nos. 4,945,050 and 5,036,006, which are both incorporated fully by reference.

The vaccine can be administered to a mammal to elicit an immune response in a mammal. The mammal can be human, non-human primate, cow, pig, sheep, goat, antelope, bison, water buffalo, bovids, deer, hedgehogs, elephants, llama, alpaca, mice, rats, or chicken, and preferably human, cow, pig, or chicken.

a. Combination Treatments

The pharmaceutical compositions, preferably vaccines, can be administered in combination with one or more other influenza proteins or genes encoding influenza A H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, N1, N2, N3, N4, N5, N6, N7, N8, N9, influenza B hemagglutinin and neuramidase. The vaccine can be administered in combination with proteins or genes encoding adjuvants, which can include: α -interferon(IFN- α), β -interferon (IFN- β), γ -interferon, IL-12, IL-15, IL-28, CTACK, TECK, platelet derived growth factor (PDGF), TNF α , TNF β , GM-CSF, epidermal growth factor (EGF), IL-1, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-18, MCP-1, MIP-1 α , MIP-1 β , IL-8, RANTES, L-selectin, P-selectin, E-selectin, CD34, GlyCAM-1, MadCAM-1, LFA-1, VLA-1, Mac-1, p150.95, PECAM, ICAM-1, ICAM-2, ICAM-3, CD2, LFA-3, M-CSF, G-CSF, IL-4, mutant forms of IL-18, CD40, CD40L, vascular growth factor, fibroblast growth factor, IL-7, nerve growth factor, vascular endothelial growth factor, Fas, TNF receptor, Flt, Apo-1, p55, WSL-1, DR3, TRAMP, Apo-3, AIR, LARD, NGRF, DR4, DR5, KILLER, TRAIL-R2, TRICK2, DR6, Caspase ICE, Fos, c-jun, Sp-1, Ap-1,

Ap-2, p38, p65Rel, MyD88, IRAK, TRAF6, IκB, Inactive NIK, SAP K, SAP-1, JNK, interferon response genes, NFκB, Bax, TRAIL, TRAILrec, TRAILrecDRC5, TRAIL-R3, TRAIL-R4, RANK, RANK LIGAND, Ox40, Ox40 LIGAND, NKG2D, MICA, MICB, NKG2A, NKG2B, NKG2C, NKG2E, NKG2F, TAP1, or TAP2, or functional fragments thereof.

b. Routes of Administration

The vaccine can be administered by different routes including orally, parenterally, sublingually, transdermally, rectally, transmucosally, topically, via inhalation, via buccal administration, intrapleurally, intravenous, intraarterial, intraperitoneal, subcutaneous, intramuscular, intranasal intrathecal, and intraarticular or combinations thereof. For veterinary use, the composition can be administered as a suitably acceptable formulation in accordance with normal veterinary practice. The veterinarian can readily determine the dosing regimen and route of administration that is most appropriate for a particular animal.. The vaccine can be administered by traditional syringes, needless injection devices, "microprojectile bombardment gone guns", or other physical methods such as electroporation ("EP"), "hydrodynamic method", or ultrasound.

The vector of the vaccine can be delivered to the mammal by several well known technologies including DNA injection (also referred to as DNA vaccination) with and without in vivo electroporation, liposome mediated, nanoparticle facilitated, recombinant vectors such as recombinant adenovirus, recombinant adenovirus associated virus and recombinant vaccinia. The HA antigen can be delivered via DNA injection and along with in vivo electroporation.

c. Electroporation

Administration of the vaccine via electroporation of the plasmids of the vaccine may be accomplished using electroporation devices that can be configured to deliver to a desired tissue of a mammal a pulse of energy effective to cause reversible pores to form in cell membranes, and preferable the pulse of energy is a constant current similar to a preset current input by a user. The electroporation device may comprise an electroporation component and an electrode assembly or handle assembly. The electroporation component may include and incorporate one or more of the various elements of the electroporation devices, including: controller, current waveform generator, impedance tester, waveform logger, input element, status reporting element, communication port, memory component, power source, and power switch. The

electroporation may be accomplished using an in vivo electroporation device, for example CELLECTRA® EP system (VGX Pharmaceuticals, Blue Bell, PA) or Elgen electroporator (Genetronics, San Diego, CA) to facilitate transfection of cells by the plasmid.

The electroporation component may function as one element of the electroporation devices, and the other elements are separate elements (or components) in communication with the electroporation component. The electroporation component may function as more than one element of the electroporation devices, which may be in communication with still other elements of the electroporation devices separate from the electroporation component. The elements of the electroporation devices existing as parts of one electromechanical or mechanical device may not be limited as the elements can function as one device or as separate elements in communication with one another. The electroporation component may be capable of delivering the pulse of energy that produces the constant current in the desired tissue, and includes a feedback mechanism. The electrode assembly may include an electrode array having a plurality of electrodes in a spatial arrangement, wherein the electrode assembly receives the pulse of energy from the electroporation component and delivers same to the desired tissue through the electrodes. At least one of the plurality of electrodes is neutral during delivery of the pulse of energy and measures impedance in the desired tissue and communicates the impedance to the electroporation component. The feedback mechanism may receive the measured impedance and can adjust the pulse of energy delivered by the electroporation component to maintain the constant current.

A plurality of electrodes may deliver the pulse of energy in a decentralized pattern. The plurality of electrodes may deliver the pulse of energy in the decentralized pattern through the control of the electrodes under a programmed sequence, and the programmed sequence is input by a user to the electroporation component. The programmed sequence may comprise a plurality of pulses delivered in sequence, wherein each pulse of the plurality of pulses is delivered by at least two active electrodes with one neutral electrode that measures impedance, and wherein a subsequent pulse of the plurality of pulses is delivered by a different one of at least two active electrodes with one neutral electrode that measures impedance.

The feedback mechanism may be performed by either hardware or software. The feedback mechanism may be performed by an analog closed-loop circuit. The feedback occurs

every 50 μ s, 20 μ s, 10 μ s or 1 μ s, but is preferably a real-time feedback or instantaneous (i.e., substantially instantaneous as determined by available techniques for determining response time). The neutral electrode may measure the impedance in the desired tissue and communicates the impedance to the feedback mechanism, and the feedback mechanism responds to the impedance and adjusts the pulse of energy to maintain the constant current at a value similar to the preset current. The feedback mechanism may maintain the constant current continuously and instantaneously during the delivery of the pulse of energy.

Examples of electroporation devices and electroporation methods that may facilitate delivery of the DNA vaccines of the present invention, include those described in U.S. Patent No. 7,245,963 by Draghia-Akli, et al., U.S. Patent Pub. 2005/0052630 submitted by Smith, et al., the contents of which are hereby incorporated by reference in their entirety. Other electroporation devices and electroporation methods that may be used for facilitating delivery of the DNA vaccines include those provided in co-pending and co-owned U.S. Patent Application, Serial No. 11/874072, filed October 17, 2007, which claims the benefit under 35 USC 119(e) to U.S. Provisional Applications Ser. Nos. 60/852,149, filed October 17, 2006, and 60/978,982, filed October 10, 2007, all of which are hereby incorporated in their entirety.

U.S. Patent No. 7,245,963 by Draghia-Akli, et al. describes modular electrode systems and their use for facilitating the introduction of a biomolecule into cells of a selected tissue in a body or plant. The modular electrode systems may comprise a plurality of needle electrodes; a hypodermic needle; an electrical connector that provides a conductive link from a programmable constant-current pulse controller to the plurality of needle electrodes; and a power source. An operator can grasp the plurality of needle electrodes that are mounted on a support structure and firmly insert them into the selected tissue in a body or plant. The biomolecules are then delivered via the hypodermic needle into the selected tissue. The programmable constant-current pulse controller is activated and constant-current electrical pulse is applied to the plurality of needle electrodes. The applied constant-current electrical pulse facilitates the introduction of the biomolecule into the cell between the plurality of electrodes. The entire content of U.S. Patent No. 7,245,963 is hereby incorporated by reference.

U.S. Patent Pub. 2005/0052630 submitted by Smith, et al. describes an electroporation device which may be used to effectively facilitate the introduction of a biomolecule into cells of

a selected tissue in a body or plant. The electroporation device comprises an electro-kinetic device ("EKD device") whose operation is specified by software or firmware. The EKD device produces a series of programmable constant-current pulse patterns between electrodes in an array based on user control and input of the pulse parameters, and allows the storage and acquisition of current waveform data. The electroporation device also comprises a replaceable electrode disk having an array of needle electrodes, a central injection channel for an injection needle, and a removable guide disk. The entire content of U.S. Patent Pub. 2005/0052630 is hereby incorporated by reference.

The electrode arrays and methods described in U.S. Patent No. 7,245,963 and U.S. Patent Pub. 2005/0052630 may be adapted for deep penetration into not only tissues such as muscle, but also other tissues or organs. Because of the configuration of the electrode array, the injection needle (to deliver the biomolecule of choice) is also inserted completely into the target organ, and the injection is administered perpendicular to the target issue, in the area that is pre-delineated by the electrodes. The electrodes described in U.S. Patent No. 7,245,963 and U.S. Patent Pub. 2005/005263 are preferably 20 mm long and 21 gauge.

Additionally, contemplated in some embodiments that incorporate electroporation devices and uses thereof, there are electroporation devices that are those described in the following patents: US Patent 5,273,525 issued December 28, 1993, US Patents 6,110,161 issued August 29, 2000, 6,261,281 issued July 17, 2001, and 6,958,060 issued October 25, 2005, and US patent 6,939,862 issued September 6, 2005. Furthermore, patents covering subject matter provided in US patent 6,697,669 issued February 24, 2004, which concerns delivery of DNA using any of a variety of devices, and US patent 7,328,064 issued February 5, 2008, drawn to method of injecting DNA are contemplated herein. The above-patents are incorporated by reference in their entirety.

d. Method of Preparing Vaccine

Provided herein are methods for preparing the DNA plasmids that comprise the DNA vaccines discussed herein. The DNA plasmids, after the final subcloning step into the mammalian expression plasmid, can be used to inoculate a cell culture in a large scale fermentation tank, using known methods in the art.

The DNA plasmids for use with the EP devices of the present invention can be formulated or manufactured using a combination of known devices and techniques, but preferably they are manufactured using an optimized plasmid manufacturing technique that is described in a licensed, co-pending U.S. provisional application U.S. Serial No. 60/939,792, which was filed on May 23, 2007. In some examples, the DNA plasmids used in these studies can be formulated at concentrations greater than or equal to 10 mg/mL. The manufacturing techniques also include or incorporate various devices and protocols that are commonly known to those of ordinary skill in the art, in addition to those described in U.S. Serial No. 60/939792, including those described in a licensed patent, US Patent No. 7,238,522, which issued on July 3, 2007. The above-referenced application and patent, US Serial No. 60/939,792 and US Patent No. 7,238,522, respectively, are hereby incorporated in their entirety.

EXAMPLES

The present invention is further illustrated in the following Examples. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Thus, various modifications of the invention in addition to those shown and described herein will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.

Example 1

pGX2009 (pH1HA09) – Plasmid Encoding 2009 H1N1 Influenza (Swine Flu) Hemagglutinin Antigen

The backbone of pGX2009 (H1HA09) is the modified expression vector pVAX1 (Invitrogen, Carlsbad, CA) under the control of the cytomegalovirus immediate-early (CMV) promoter. The original pVAX1 was purchased from Invitrogen (Catalog number V260-20) and maintained at -20°C. As noted above, sequence analysis revealed differences between the sequence of pVAX1 used as the backbone of pGX2009 and the pVAX1 sequence available from Invitrogen. The differences are set forth above.

Plasmid pGX2009, also referred to as pH1HA09, comprises a nucleic acid sequence that encodes a consensus 2009 H1N1 influenza (swine flu) hemagglutinin molecule. The 79 primary sequences used to generate the consensus sequence were selected from The Influenza Sequence Database.

The accession numbers for nucleotide sequences encoding the amino acid sequence for the various influenza A hemagglutinin H1 proteins as well as the amino acid sequences encoded by the nucleotide sequences are in the GenBank database corresponding to the following accession numbers. The accession numbers not in parentheses disclose nucleotide sequences and additional list amino acid sequences encoded by them. The accession numbers in parentheses are for entries of the corresponding amino acid sequence in GenBank's protein database.

The accession numbers are as follows: GQ323579.1 (ACS72657.1), GQ323564.1 (ACS72654.1), GQ323551.1 (ACS72652.1), GQ323530.1 (ACS72651.1), GQ323520.1 (ACS72650.1), GQ323495.1 (ACS72648.1), GQ323489.1 (ACS72647.1), GQ323486.1 (ACS72646.1), GQ323483.1 (ACS72645.1), GQ323455.1 (ACS72641.1), GQ323451.1 (ACS72640.1), GQ323443.1 (ACS72638.1), GQ293077.1 (ACS68822.1), GQ288372.1 (ACS54301.1), GQ287625.1 (ACS54262.1), GQ287627.1 (ACS54263.1), GQ287623.1 (ACS54261.1), GQ287621.1 (ACS54260.1), GQ286175.1 (ACS54258.1), GQ283488.1 (ACS50088.1), GQ280797.1 (ACS45035.1), GQ280624.1 (ACS45017.1), GQ280121.1 (ACS45189.1), GQ261277.1 (ACS34968.1), GQ253498.1 (ACS27787.1), GQ323470.1 (ACS72643.1), GQ253492.1 (ACS27780.1), FJ981613.1 (ACQ55359.1), FJ971076.1 (ACP52565.1), FJ969540.1 (ACP44189.1), FJ969511.1 (ACP44150.1), FJ969509.1 (ACP44147.1), GQ255900.1 (ACS27774.1), GQ255901.1 (ACS27775.1), FJ966974.1 (ACP41953.1), GQ261275.1 (ACS34967.1), FJ966960.1 (ACP41935.1), FJ966952.1 (ACP41926.1), FJ966082.1 (ACP41105.1), GQ255897.1 (ACS27770.1), CY041645.1 (ACS27249.1), CY041637.1 (ACS27239.1), CY041629 (ACS27229.1), GQ323446.1 (ACS72639.1), CY041597.1 (ACS27189.1), CY041581.1 (ACS14726.1), CY040653.1 (ACS14666.1), CY041573.1 (ACS14716.1), CY041565.1 (ACS14706.1), CY041541.1 (ACS14676.1), GQ258462.1 (ACS34667.1), CY041557.1 (ACS14696.1), CY041549.1 (ACS14686.1), GQ283484.1 (ACS50084.1), GQ283493.1 (ACS50095.1), GQ303340.1 (ACS71656.1), GQ287619.1 (ACS54259.1), GQ267839.1 (ACS36632.1), GQ268003.1

(ACS36645.1), CY041621.1 (ACS27219.1), CY041613.1 (ACS27209.1), CY041605.1 (ACS27199.1), FJ966959.1 (ACP41934.1), FJ966982.1 (ACP41963.1), CY039527.2 (ACQ45338.1), FJ981612.1 (ACQ55358.1), FJ981615.1 (ACQ55361.1), FJ982430.1 (ACQ59195.1), FJ998208.1 (ACQ73386.1), GQ259909.1 (ACS34705.1), GQ261272.1 (ACS34966.1), GQ287621.1 (ACS54260.1), GQ290059.1 (ACS66821.1), GQ323464.1 (ACS72642.1), GQ323473.1 (ACS72644.1), GQ323509.1 (ACS72649.1), GQ323560.1 (ACS72653.1), GQ323574.1 (ACS72655.1), and GQ323576.1 (ACS72656.1). The amino acid sequences were downloaded from the NCBI Sequence Database, and an alignment and consensus sequence generated using Clustal X. A highly efficient leader sequence, the IgE leader, was fused in frame upstream of the start codon to facilitate the expression. In order to have a higher level of expression, the codon usage of this fusion gene was adapted to the codon bias of Homo Sapiens genes. In addition, RNA optimization was also performed: regions of very high (>80%) or very low (<30%) GC content and the cis-acting sequence motifs such as internal TATA boxes, chi-sites and ribosomal entry sites were avoided. The entire sequence was synthetically produced at Geneart (Regensburg, Germany). The synthetic engineered H1HA09 gene was 1818 bp in length (SEQ ID NO:1) and was cloned into pVAX1 at BamHI and XhoI sites by Geneart (Figure 2).

Example 2

Challenge of Influenza pGX2009 immunized Ferrets with A/Mexico/InDRE4487/2009

Challenge experiments were carried out using ferrets, a preferred model for influenza. The ferrets were immunized using plasmid pGX2009.

Animals: 4 groups x 5 animals/group, plus one control group with 4 animals = 24 ferrets total (male)

Duration: 18 weeks (including challenge)

Dose: .2mg plasmid

Protocol Summary: Ferrets were allocated randomly into DNA vaccine groups. Animals were immunized at Study Day 0, Day 28, and Day 56. Animals were anesthetized with ketamine/midazolam cocktail, isoflurane or equivalent according to approved anesthesia protocols and vaccinated IM with influenza DNA vaccine combinations. Groups 1 and 2 were immediately electroporated using CELLECTRA® adaptive constant current electroporation (EP)

device at 0.5 Amp, 52 millisecond pulses, 0.2 sec between pulses, 4 sec firing delay, 3 total pulses. Control animals were naïve controls (no plasmid, no EP). Ferrets were allowed to recover from anesthesia in their cages and were closely monitored for 24 hours to ensure full recovery.

Food and water was available ad libitum for the length of the study. On Day 84, animals were challenged by intranasal infection with 1 ml of MX10 (A/Mexico/InDRE4487/2009; 5 x 10⁵ PFU/ml). Animals were monitored daily for clinical signs (weight, temperature, etc.), using an established and approved scoring sheet. On 1, 3, 6, 9 and 15 dpi nasal washes and rectal swabs were collected. Lungs were collected at day 15. Samples were stored in RNAlater for virus load by real-time PCR, medium for infectious virus (TCDI50) and formalin for histology when appropriated.

Figure 4 shows a Hemagglutination Inhibition assay performed with sera from immunized ferrets (3 immunizations). A titer of >1:40 is considered "protective". A dotted line indicates the 1:40 mark. All animals were above the 1:40 mark after 3 immunizations. Figure 5 shows results of a challenge of immunized and unimmunized ferrets with a novel H1N1 strain MX10 (A/Mexico/InDRE4487/2009).. All immunized ferrets survived, while 75% of the naive ferrets died within the 15 day period.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An isolated nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence that is at least 99% homologous to SEQ ID NO: 14, and has at least 360 continuous amino acids of SEQ ID NO:14.
2. The isolated nucleic acid molecule of claim 1 comprising the nucleic acid sequence of SEQ ID NO:13.
3. The isolated nucleic acid molecule of claim 1 further comprising a nucleic acid sequence that encodes an IgE leader sequence.
4. The isolated nucleic acid molecule of claim 3 comprising SEQ ID NO: 15.
5. An expression vector comprising the nucleic acid sequence of claim 1 operably linked to regulatory elements capable of directing the expression of the nucleic acid sequence in a cell.
6. The expression vector of claim 5, wherein the regulatory elements are functional in a human cell.
7. The expression vector of claim 6, wherein said expression vector is a plasmid.
8. The expression vector of claim 7, wherein said plasmid is pGX2009.
9. A composition comprising the isolated nucleic acid molecule or the expression vector of any one of claims 1, 2, 3, 5, 6, 7 or 4, further comprising one or more additional nucleic acid sequences that encode one or more proteins selected from the group consisting of an influenza A hemaggultinin H1, an influenza A hemaggultinin H2, an influenza A hemaggultinin H3, an influenza A H4 an influenza A hemaggultinin H5, an influenza A hemaggultinin H3, an influenza A hemaggultinin H5, an influenza A N1, an

influenza A hemaggultinin H6, an influenza A hemaggultinin H7, an influenza A hemaggultinin H5, an influenza A hemaggultinin H6, an influenza A hemaggultinin H7, an influenza A hemaggultinin H8, an influenza A hemaggultinin H9, an influenza A hemaggultinin H10, an influenza A hemaggultinin H11, an influenza A hemaggultinin H12, an influenza A hemaggultinin H13 ,an influenza A hemaggultinin H14, an influenza A hemaggultinin H15, an influenza A hemaggultinin H16, an influenza A neuraminidase N1, an influenza A neuraminidase N2, an influenza A neuraminidase N3, an influenza A neuraminidase N4, an influenza A neuraminidase N5, an influenza A neuraminidase N6, an influenza A neuraminidase N7, an influenza A neuraminidase N8, an influenza A neuraminidase N9, an influenza B hemaggultinin and an influenza B neuraminidase.

10. A method of inducing an immune response in an individual comprising the step of administering to an individual of the isolated nucleic acid molecule or the expression vector of any one of claims 1, 2, 3, 5, 6, 7 or 4.

11. A method of inducing an immune response comprising the step of administering to an individual the composition of claim 9.

12. A method of protecting an individual against infection by an influenza A strain comprising the step of: administering to said individual a prophylactically effective amount of the composition of claim 9.

DATED this SIXTEENTH day of APRIL 2013

The Trustees of the University of Pennsylvania

By patent attorneys for the applicant:

FB Rice

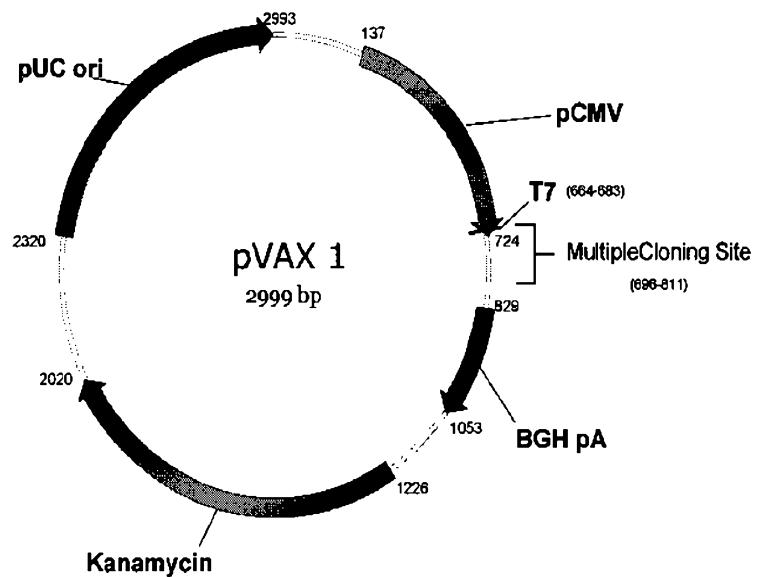
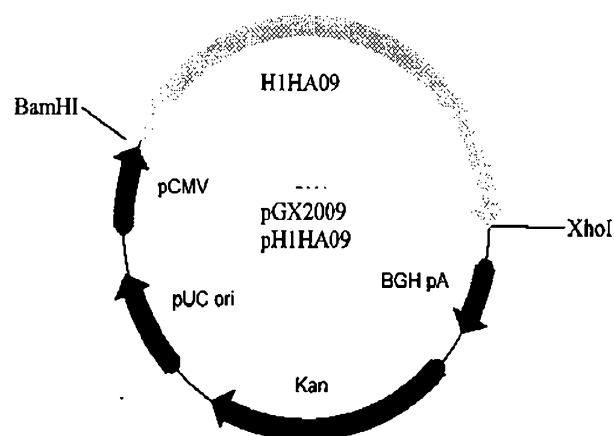
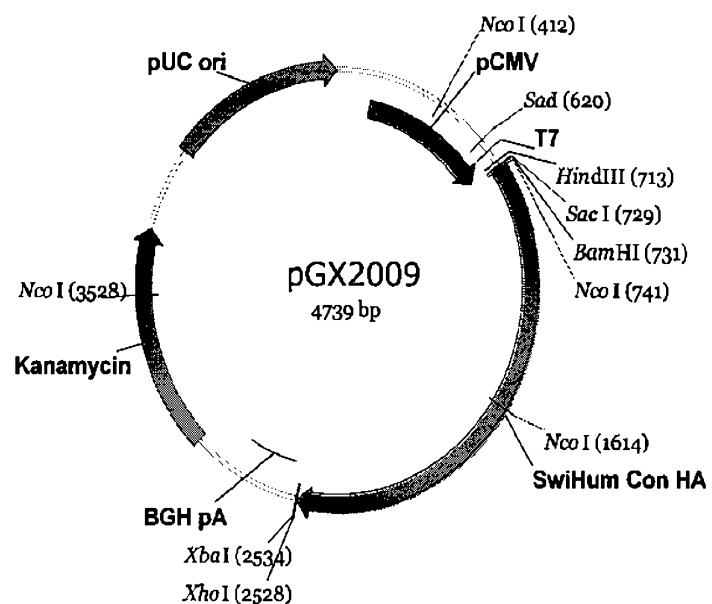
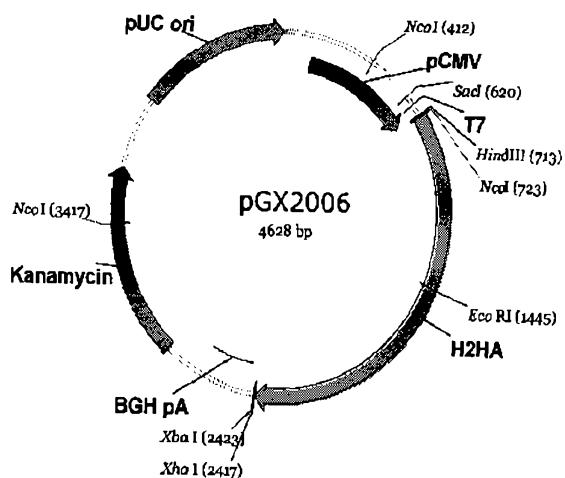
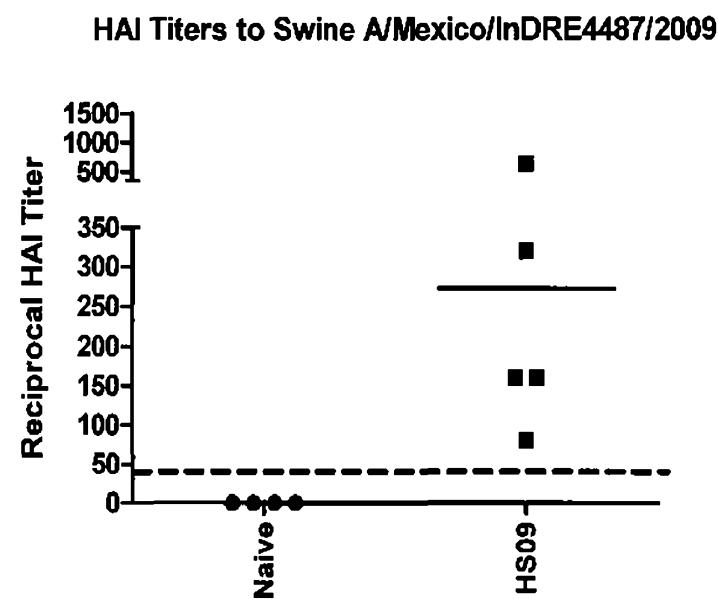
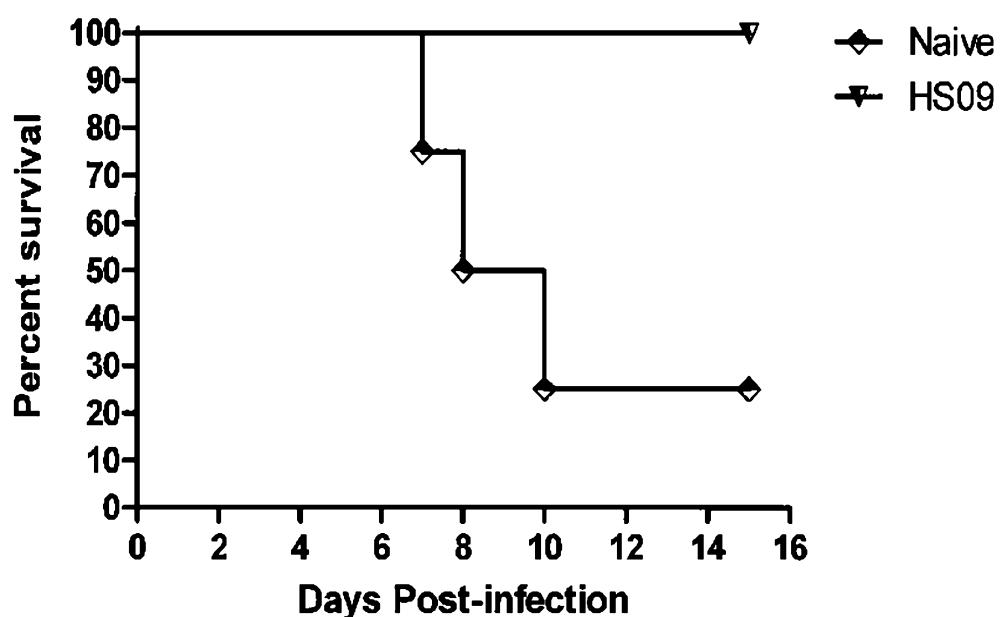






FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

13317203002seqlisting.txt
SEQUENCE LISTING

<110> The Trustees of the University of Pennsylvania
David, Weiner B.
Yan, Jian
Morrow, Matthew P.

<120> INFLUENZA NUCLEIC ACID MOLECULES AND VACCINES MADE THEREFROM

<130> 133172.03002

<150> 12/694,238

<151> 2010-01-26

<160> 24

<170> PatentIn version 3.5

<210> 1
<211> 1695
<212> DNA
<213> Artificial Sequence

<220>
<223> Influenza H1 DNA sequence

<400> 1
atgaaggcta tcctcgtcgt gctgctgtac accttcgcca ccgccaacgc cgataccctg 60
tgcacatcggtt accacgcca caacagcacc gacaccgtgg ataccgtgct ggaaaagaac 120
gtgaccgtga cccacagcgt gaacacctgctg gaagataagc acaacggcaa gctgtgcaag 180
ctgagagggcg tggccctct gcacacctggc aagtgcata tcgcccgtg gattctggc 240
aaccccgagt gcgagagcct gtctaccgct agctcctggt cctacatcgt ggagacaagc 300
agcagcgaca acggcacctg ttaccccgac gacttcatcg actacgagga actgcgggag 360
cagctgagca gcgtgtccag cttcgagcgg ttcgagatct tccccaaagac cagctcctgg 420
cccaaccacg acagcaacaa gggcgtgacc gccgcctgtc ctcacgctgg cgccaaagagc 480
ttctacaaga acctgatctg gctggtaag aagggaaca gctacccaa gctgagcaag 540
agctacatca acgacaaggg caaagaggctc ctcgtcctct ggggcatcca ccaccctagc 600
accagcgccg accagcagag cctgtaccag aacgcccacg cctacgtgtt cgtgggtca 660
tctcggtaca gcaagaagtt caagcccgag atcgccatca gacccaaagt gcgggaccag 720
gaaggccgga tgaactacta ctggaccctg gtggagcccg gcgacaagat caccttcgag 780
gccaccggca atctgggtgtt gcccagatac gccttcgcca tgaaaagaaa cgccggcagc 840
ggcatcatca tcagcgacac cccctgtcac gactgcaaca ccacctgtca gaccccaag 900
ggcgccatca acaccagcct gcccttccag aacatccacc ccatcaccat cgcaagtgc 960
cctaagtacg tgaagtccac taagctcaga ctggccaccg gcctgagaaa cgtgcccagc 1020
atccagagca gaggcctgtt tggcgccatt gccggctta tcgagggcgg ctggaccgg 1080
atgggtggacg ggtggtaacgg ctaccaccac cagaatgagc agggcagcgg ctacggcc 1140
gacctgaagt ccacacagaa cgccatcgac gagatcacca acaaagtgaa cagcgtgatc 1200
gagaagatga acaccagtt caccgcccgtg ggcaaagagt tcaaccaccc ggaaaagcgg 1260

13317203002seqlisting.txt

atcgagaacc	tgaacaagaa	ggtggacgac	ggcttcctgg	acatctggac	ctacaacgcc	1320
gagctgctgg	tgctgctgga	aaacgagcgg	accctggact	accacgactc	caacgtgaag	1380
aatctgtacg	agaaagtgcg	gagccagctg	aagaacaacg	ccaaagagat	cggcaacggc	1440
tgcttcgagt	tctaccacaa	gtgcgacaac	acctgtatgg	aaagcgtgaa	gaacggcacc	1500
tacgactacc	ccaagtacag	cgaggaagcc	aagctgaacc	ggaagagat	cgacggcgtg	1560
aagctggaaa	gcacccggat	ctaccagatc	ctggccatct	actctactgt	ggccagctca	1620
ctggtgctgg	tggtgtccct	ggcgccatc	tcctttgga	tgtgctccaa	cggcagcctg	1680
cagtgccgga	tctgc					1695

<210> 2
<211> 566
<212> PRT
<213> Artificial Sequence

<220>
<223> Influenza Protein H1 Sequence

<400> 2

Met Lys Ala Ile Leu Val Val Leu Leu Tyr Thr Phe Ala Thr Ala Asn
1 5 10 15

Ala Asp Thr Leu Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr
20 25 30

Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn
35 40 45

Leu Leu Glu Asp Lys His Asn Gly Lys Leu Cys Lys Leu Arg Gly Val
50 55 60

Ala Pro Leu His Leu Gly Lys Cys Asn Ile Ala Gly Trp Ile Leu Gly
65 70 75 80

Asn Pro Glu Cys Glu Ser Leu Ser Thr Ala Ser Ser Trp Ser Tyr Ile
85 90 95

Val Glu Thr Ser Ser Asp Asn Gly Thr Cys Tyr Pro Gly Asp Phe
100 105 110

Ile Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe
115 120 125

Glu Arg Phe Glu Ile Phe Pro Lys Thr Ser Ser Trp Pro Asn His Asp
130 135 140

Ser Asn Lys Gly Val Thr Ala Ala Cys Pro His Ala Gly Ala Lys Ser
145 150 155 160

13317203002seqlisting.txt

Phe Tyr Lys Asn Leu Ile Trp Leu Val Lys Lys Gly Asn Ser Tyr Pro
 165 170 175

 Lys Leu Ser Lys Ser Tyr Ile Asn Asp Lys Gly Lys Glu Val Leu Val
 180 185 190

 Leu Trp Gly Ile His His Pro Ser Thr Ser Ala Asp Gln Gln Ser Leu
 195 200 205

 Tyr Gln Asn Ala Asp Ala Tyr Val Phe Val Gly Ser Ser Arg Tyr Ser
 210 215 220

 Lys Lys Phe Lys Pro Glu Ile Ala Ile Arg Pro Lys Val Arg Asp Gln
 225 230 235 240

 Glu Gly Arg Met Asn Tyr Tyr Trp Thr Leu Val Glu Pro Gly Asp Lys
 245 250 255

 Ile Thr Phe Glu Ala Thr Gly Asn Leu Val Val Pro Arg Tyr Ala Phe
 260 265 270

 Ala Met Glu Arg Asn Ala Gly Ser Gly Ile Ile Ile Ser Asp Thr Pro
 275 280 285

 Val His Asp Cys Asn Thr Thr Cys Gln Thr Pro Lys Gly Ala Ile Asn
 290 295 300

 Thr Ser Leu Pro Phe Gln Asn Ile His Pro Ile Thr Ile Gly Lys Cys
 305 310 315 320

 Pro Lys Tyr Val Lys Ser Thr Lys Leu Arg Leu Ala Thr Gly Leu Arg
 325 330 335

 Asn Val Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly
 340 345 350

 Phe Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr
 355 360 365

 His His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Leu Lys Ser
 370 375 380

 Thr Gln Asn Ala Ile Asp Glu Ile Thr Asn Lys Val Asn Ser Val Ile
 385 390 395 400

 Glu Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn His
 405 410 415

 Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe
 420 425 430

Leu Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn
 435 440 445

Glu Arg Thr Leu Asp Tyr His Asp Ser Asn Val Lys Asn Leu Tyr Glu
 450 455 460

Lys Val Arg Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly
 465 470 475 480

Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Thr Cys Met Glu Ser Val
 485 490 495

Lys Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ala Lys Leu
 500 505 510

Asn Arg Glu Glu Ile Asp Gly Val Lys Leu Glu Ser Thr Arg Ile Tyr
 515 520 525

Gln Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Val
 530 535 540

Val Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu
 545 550 555 560

Gln Cys Arg Ile Cys Ile
 565

<210> 3
 <211> 1818
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> IgE-H1-HAT Antigen DNA Sequence

<400> 3
 ttaatttaagg atccgccacc atggactgga cctggattct gttcctggtg gctgctgcca 60
 ctagagtgca cagcatgaag gctatcctcg tcgtgctgct gtacacccctc gcccacgcca 120
 acggccatac cctgtgcatac ggctaccacg ccaacaacag caccgacacc gtggataccg 180
 tgctggaaaa gaacgtgacc gtgaccacca gcgtgaacct gctggaagat aagcacaacg 240
 gcaagctgtg caagctgaga ggcgtggccc ctctgcacct gggcaagtgc aatatcgccg 300
 gctggattct gggcaacccc gagtgcgaga gcctgtctac cgctagctcc tggtcctaca 360
 tcgtggagac aagcagcagc gacaacggca cctgttaccc cggcgacttc atcgactacg 420
 aggaactgcg ggagcagctg agcagcgtgt ccagcttcga gcgggtcgag atcttcccc 480
 agaccagctc ctggcccaac cacgacagca acaaggcggt gaccgcccgc tgtcctcacf 540
 ctggcgccaa gagcttctac aagaacctga tctggctggt caagaagggc aacagctacc 600
 ccaagctgag caagagctac atcaacgaca agggcaaaga ggtcctcgtc ctctggggca 660
 tccaccaccc tagcaccagc gcccggcacc agagcctgta ccagaacgc gacgcctacg 720

13317203002seqlisting.txt

tgttcgtggg	ctcatctcg	tacagcaaga	agttcaagcc	cgagatcgcc	atcagaccca	780
aagtgcggga	ccaggaaggc	cggatgaact	actactggac	cctggtggag	cccggcgaca	840
agatcacctt	cgaggccacc	ggcaatctgg	tggtgcccag	atacgccttc	gccatggaaa	900
gaaacgcccgg	cagcggcatc	atcatcagcg	acaccccg	gcacgactgc	aacaccac	960
gtcagacccc	caagggcgcc	atcaacacca	gcctgcctt	ccagaacatc	cacccatca	1020
ccatcgccaa	gtgcctaag	tacgtgaagt	ccactaagct	cagactggcc	accggcctga	1080
gaaacgtgcc	cagcatccag	agcagaggcc	tgtttggcgc	cattgcccgc	tttatcgagg	1140
gcggctggac	cggaatggtg	gacgggtggt	acggctacca	ccaccagaat	gagcagggca	1200
gcggctacgc	cgccgacc	aagtccacac	agaacccat	cgacgagatc	accaacaaag	1260
tgaacagcgt	gatcgagaag	atgaacaccc	agttcaccgc	cgtggcaaa	gagttcaacc	1320
acctggaaaa	gcggatcgag	aacctgaaca	agaaggtgga	cgacggcttc	ctggacatct	1380
ggacctacaa	cgccgagctg	ctggtgctgc	tggaaaacga	gcggaccctg	gactaccacg	1440
actccaacgt	gaagaatctg	tacgagaaag	tgcggagcca	gctgaagaac	aacgccaag	1500
agatcggcaa	cggctgcttc	gagttctacc	acaagtgcga	caacacctgt	atggaaagcg	1560
tgaagaacgg	cacctacgac	taccccaagt	acagcgagga	agccaagctg	aaccggaaag	1620
agatcgacgg	cgtgaagctg	gaaagcaccc	ggatctacca	gatcctggcc	atctactcta	1680
ctgtggccag	ctcactggtg	ctggtggtgt	ccctggcgc	catctccctt	tggatgtgct	1740
ccaacggcag	cctgcagtgc	cggatctgca	tctacccta	cgacgtgccc	gactacgcct	1800
gatgactcga	ggcgcgcc					1818

<210> 4
<211> 593
<212> PRT
<213> Artificial Sequence

<220>
<223> IgE-H1-HATanitgen amino acid sequeunce

<400> 4

Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val
1 5 10 15

His Ser Met Lys Ala Ile Leu Val Val Leu Leu Tyr Thr Phe Ala Thr
20 25 30

Ala Asn Ala Asp Thr Leu Cys Ile Gly Tyr His Ala Asn Asn Ser Thr
35 40 45

Asp Thr Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser
50 55 60

Val Asn Leu Leu Glu Asp Lys His Asn Gly Lys Leu Cys Lys Leu Arg
65 70 75 80

13317203002seqlisting.txt

Gly Val Ala Pro Leu His Leu Gly Lys Cys Asn Ile Ala Gly Trp Ile
85 90 95

Leu Gly Asn Pro Glu Cys Glu Ser Leu Ser Thr Ala Ser Ser Trp Ser
100 105 110

Tyr Ile Val Glu Thr Ser Ser Asp Asn Gly Thr Cys Tyr Pro Gly
115 120 125

Asp Phe Ile Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser
130 135 140

Ser Phe Glu Arg Phe Glu Ile Phe Pro Lys Thr Ser Ser Trp Pro Asn
145 150 155 160

His Asp Ser Asn Lys Gly Val Thr Ala Ala Cys Pro His Ala Gly Ala
165 170 175

Lys Ser Phe Tyr Lys Asn Leu Ile Trp Leu Val Lys Lys Gly Asn Ser
180 185 190

Tyr Pro Lys Leu Ser Lys Ser Tyr Ile Asn Asp Lys Gly Lys Glu Val
195 200 205

Leu Val Leu Trp Gly Ile His His Pro Ser Thr Ser Ala Asp Gln Gln
210 215 220

Ser Leu Tyr Gln Asn Ala Asp Ala Tyr Val Phe Val Gly Ser Ser Arg
225 230 235 240

Tyr Ser Lys Lys Phe Lys Pro Glu Ile Ala Ile Arg Pro Lys Val Arg
245 250 255

Asp Gln Glu Gly Arg Met Asn Tyr Tyr Trp Thr Leu Val Glu Pro Gly
260 265 270

Asp Lys Ile Thr Phe Glu Ala Thr Gly Asn Leu Val Val Pro Arg Tyr
275 280 285

Ala Phe Ala Met Glu Arg Asn Ala Gly Ser Gly Ile Ile Ile Ser Asp
290 295 300

Thr Pro Val His Asp Cys Asn Thr Thr Cys Gln Thr Pro Lys Gly Ala
305 310 315 320

Ile Asn Thr Ser Leu Pro Phe Gln Asn Ile His Pro Ile Thr Ile Gly
325 330 335

Lys Cys Pro Lys Tyr Val Lys Ser Thr Lys Leu Arg Leu Ala Thr Gly
340 345 350

13317203002seqlisting.txt

Leu Arg Asn Val Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile
355 360 365

Ala Gly Phe Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr
370 375 380

Gly Tyr His His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Leu
385 390 395 400

Lys Ser Thr Gln Asn Ala Ile Asp Glu Ile Thr Asn Lys Val Asn Ser
405 410 415

Val Ile Glu Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe
420 425 430

Asn His Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Val Asp Asp
435 440 445

Gly Phe Leu Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu
450 455 460

Glu Asn Glu Arg Thr Leu Asp Tyr His Asp Ser Asn Val Lys Asn Leu
465 470 475 480

Tyr Glu Lys Val Arg Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly
485 490 495

Asn Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Thr Cys Met Glu
500 505 510

Ser Val Lys Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ala
515 520 525

Lys Leu Asn Arg Glu Glu Ile Asp Gly Val Lys Leu Glu Ser Thr Arg
530 535 540

Ile Tyr Gln Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val
545 550 555 560

Leu Val Val Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly
565 570 575

Ser Leu Gln Cys Arg Ile Cys Ile Tyr Pro Tyr Asp Val Pro Asp Tyr
580 585 590

Ala

<210> 5
<211> 4739

13317203002seqlisting.txt

<212> DNA

<213> Artificial Sequence

<220>

<223> pGX2009

<400> 5	
gctgcttcgc gatgtacggg ccagatatac gcgttgacat tgattattga ctagttatta	60
atagtaatca attacggggt cattagttca tagcccatat atggagttcc gcgttacata	120
acttacggta aatggccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat	180
aatgacgtat gttcccatag taacgccaat agggacttc cattgacgtc aatgggtgga	240
gtatttacgg taaaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc	300
ccctattgac gtcaatgacg gtaaatggcc cgccctggcat tatgcccagt acatgacctt	360
atgggacttt cctacttggc agtacatcta cgtattagtc atcgcttatta ccatggtgat	420
gcgggtttgg cagtagatca atgggcgtgg atagcggttt gactcacggg gatttccaag	480
tctccacccc attgacgtca atgggagttt gttttggcac caaaatcaac gggactttcc	540
aaaatgtcgt aacaactccg ccccatgtac gcaaattggc ggttaggcgtg tacggtgga	600
ggtctatata agcagagactc tctggctaac tagagaaccc actgcttact ggcttatcga	660
aattaatacg actcactata gggagaccca agctggctag cgtttaaact taagcttgg	720
accgagctcg gatccgcccc catggactgg acctggattc tggcctggg ggctgctgcc	780
actagagtgc acagcatgaa ggctatcctc gtcgtgctgc tgtacacctt cgccaccgccc	840
aacggccata ccctgtgcat cggttaccac gccaacaaca gcaccgacac cgtggatacc	900
gtgctggaaa agaacgtgac cgtgacccac agcgtgaacc tgctggaaaga taagcacaac	960
ggcaagctgt gcaagctgag aggcgtggcc cctctgcacc tggcaagtg caatatcgcc	1020
ggctggattc tggcaaccc cgagtgcgag agcctgtcta ccgctagctc ctggcctac	1080
atcggtggaga caagcagcag cgacaacggc acctgttacc cccgcgactt catcgactac	1140
gaggaactgc gggagcagct gagcagcgtg tccagcttcg agcggttcga gatctcccc	1200
aagaccagct cctggccaa ccacgacagc aacaaggcg tgaccgcgc ctgtcctcac	1260
gctggcgcca agagcttcta caagaacctg atctggctgg tcaagaaggg caacagctac	1320
cccaagctga gcaagagcta catcaacgac aaggcaaaag aggtcctcgt cctctggggc	1380
atccaccacc ctagcaccag cgccgaccag cagagctgt accagaacgc cgacgcctac	1440
gtgtcgtgg gctcatctcg gtacagcaag aagtcaagc ccgagatcgc catcagaccc	1500
aaagtgcggg accaggaagg ccggatgaac tactactgga ccctgggtgga gcccggcgac	1560
aagatcacct tcgaggccac cggcaatctg gtgggtcccc gatacgcctt cgccatggaa	1620
agaaaacgccc gcagcggcat catcatcagc gacacccccc tgacgcactg caacaccacc	1680
tgtcagaccc ccaagggcgcat catcaacacc agcctccct tccagaacat ccacccatc	1740
accatcggca agtgcctaa gtacgtgaag tccactaagc tcagactggc caccggcctg	1800
agaaaacgtgc ccagcatcca gagcagagggc ctgtttggcg ccattgccgg ctttatcgag	1860

13317203002seqlisting.txt

ggcggctgga ccggaatggt ggacgggtgg tacggctacc accaccagaa tgagcagggc 1920
agcggctacg ccgcccacct gaagtccaca cagaacgcca tcgacgagat caccaacaaa 1980
gtgaacagcg tgatcgagaa gatgaacacc cagttcaccc cggtggcaa agagttcaac 2040
cacctggaaa agcggatcga gaacctgaac aagaagggtgg acgacggctt cctggacatc 2100
tggacctaca acgcccagct gctggtgctg ctggaaaacg agcggaccct ggactaccac 2160
gactccaacg tgaagaatct gtacgagaaa gtgcggagcc agctgaagaa caacgccaaa 2220
gagatcggca acggctgctt cgagttctac cacaagtgcg acaacacctg tatggaaagc 2280
gtgaagaacg gcacctacga ctaccccaag tacagcgagg aagccaagct gaaccggaa 2340
gagatcggacg gcgtgaagct ggaaagcacc cggatctacc agatcctggc catctactct 2400
actgtggcca gctcaactggt gctggtggtg tccctggcg ccatctcctt ttggatgtgc 2460
tccaaacggca gcctgcagtgc ccggatctgc atctaccct acgacgtgcc cgactacgcc 2520
tgatgactcg agtcttaggg gcccgtttaa acccgctgat cagcctcgac tgtgccttct 2580
agttgcgc catctgttgt ttgcccctcc cccgtgcctt cttgaccct ggaagggtgcc 2640
actcccactg tccttccta ataaaatgag gaaattgcat cgcattgtct gagtaggtgt 2700
cattctattc tgggggggtgg ggtggggcag gacagcaagg gggaggattg ggaagacaat 2760
agcaggcatg ctggggatgc ggtggctct atggcttcata ctggcggtt ttatggacag 2820
caagcgaacc ggaattgcca gctggggcgc cctctggtaa gttgggaag ccctgcaaaag 2880
taaactggat ggctttcttgc ccgccaagga tctgatggcg cagggatca agctctgatc 2940
aagagacagg atgaggatcg tttcgcatga ttgaacaaga tggattgcac gcaggttctc 3000
cggccgcttgc ggtggagagg ctattcgct atgactggc acaacagaca atcggctgct 3060
ctgatgccgc cgtgttccgg ctgtcagcgc agggcgccc gttttttt gtcaagaccg 3120
acctgtccgg tggccctgaat gaactgcaag acgaggcagc gcggctatcg tggctggcca 3180
cgacggcgt tccttgcgc gctgtgcgt acgttgcac tgaagcggga agggactggc 3240
tgctattggc cgaagtgcgc gggcaggatc tcctgtcata tcacccctgc cctgcccaga 3300
aagtatccat catggctgat gcaatgcggc ggctgcatac gttgatccg gctacctgccc 3360
cattcgacca ccaagcgaaa catcgcatcg agcgagcacg tactcgatg gaagccggc 3420
ttgtcgatca ggtatgatctg gacgaagagc atcaggggct cgcggccagcc gaactgttcg 3480
ccaggctcaa ggcgagcatg cccgacggcg aggtatctgt cgtgacccat ggcgatgcct 3540
gcttgcgaa tatcatggtg gaaaatggcc gttttctgg attcatcgac tgtggccggc 3600
tgggtgtggc ggaccgctat caggacatag cttggctac ccgtgatatt gctgaagagc 3660
ttggcggcga atgggctgac cgttccctcg tgctttacgg tatcgccgct cccgattcgc 3720
agcgcatcgc cttctatcgc cttcttgacg agttcttctg aattattaac gcttacaatt 3780
tcctgtatgcgt gtatcccctc cttacgcatac tgtgcggat ttcacaccgc atcagggtggc 3840
acttttcggg gaaatgtgcg cggaaaccctt atttgtttat ttttctaaat acattcaaatt 3900

13317203002seqlisting.txt

atgtatccgc tcatgagaca ataaccctga taaatgcttc aataatagca cgtgctaaaa	3960
cttcattttt aatttaaaag gatctagggtg aagatccttt ttgataatct catgaccaaa	4020
atcccttaac gtgagtttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga	4080
tcttctttag atccttttt tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg	4140
ctaccagcgg tggttgttt gccggatcaa gagctaccaa ctcttttcc gaaggttaact	4200
ggcttcagca gagcgcagat accaaatact gttcttctag tgtagccgta gttaggccac	4260
cacttcaaga actctgttagc accgcctaca tacctcgctc tgctaatcct gttaccagt	4320
gctgctgcca gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg	4380
gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca cacagccag cttggagcga	4440
acgacctaca ccgaactgag atacctacag cgtgagctat gagaaagcgc cacgcttccc	4500
gaaggggagaa aggccggacag gtatccggta agcggcaggg tcggaacagg agagcgcacg	4560
agggagcttc cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgcccacctc	4620
tgactttagc gtcgattttt gtatgctcg tcagggggc ggagcctatg gaaaaacgccc	4680
agcaacgcgg ccttttacg gttcctggcc ttttgctggc cttttgctca catgttctt	4739

<210> 6
 <211> 1719
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Influenza H2 antigen DNA sequence

<400> 6	
ggtaccaagc ttgccaccat ggccatcatc tacctgatcc tgctgttcac cgccgtgcgg	60
ggcgaccaga tctgcatcg ctaccacgcc aacaacagca ccgagaaggt ggacaccatc	120
ctggaacgga acgtgaccgt gacccacgcc aaggacatcc tgaaaagac ccacaacggc	180
aagctgtgca agctgaacgg catccccccc ctggaactgg gcgactgcag cattgccggc	240
tggctgctgg gcaaccccg gtgcgaccgg ctgctgtccg tgcccgagtg gagctacatc	300
atggaaaaag agaaccccg ggacggcctg tgctaccccg gcagcttcaa cgactacgag	360
gaactgaagc acctgctgtc cagcgtgaag cacttcgaga aggtgaaaat cctgcccaag	420
gaccggtgga cccagcacac caccacccggc ggcagcagag cctgtgccgt gagcggcaac	480
cccagcttct tccggaacat ggtgtggctg accaagaagg gcagcaacta ccccggtggcc	540
aagggcagct acaacaacac ctccggagaa cagatgctga tcatctgggg cgtgcaccac	600
cccaacgacg agacagagca gcgaccctg taccagaacg tgggcaccta cgtgagcgtg	660
ggcaccagca ccctgaacaa gcggagcacc cccgagatcg ccacccggcc caaggtgaac	720
ggcctggca gccggatgga attcagctgg accctgctgg acatgtggga caccatcaac	780
ttcagagagca ccggcaacct gatgcaccc gagtacggct tcaagatcag caagcggggc	840
agcagcggca tcatgaaaac cgagggcacc ctggaaaact gcgagacaaa gtgccagacc	900

13317203002seqlisting.txt

ccccctggcg ccatcaacac caccctgccc ttccacaacg tgcacccct gaccatcggc	960
gagtgc(ccca agtacgtgaa gagcgagaag ctgggtctgg ccaccggcct gcggAACgtg	1020
ccccagatcg agagcagggg cctgttcggc gccattgccg gattcatcga gggcggtgg	1080
cagggcatgg tggacgggtg gtacggctac caccacagca acgaccaggg cagcggctac	1140
gccggcaca aagagagcac ccagaaggcc ttgcacggca tcaccaacaa ggtgaacagc	1200
gtgatcgaga agatgaacac ccagttcgag gccgtggca aagagttcag caacctggaa	1260
cggcggtgg aaaacctgaa caagaaaatg gaagatggct tcctggacgt gtggacctac	1320
aacggccgagc tgctggtgct gatggaaaac gagaggaccc tggacttcca cgacagcaac	1380
gtgaagaacc tgtacgacaa agtgcggatg cagctgcggg acaacgtgaa agagctggc	1440
aacggctgct tcgagttcta ccacaagtgc gacgacgagt gcatgaactc cgtgaagaac	1500
ggcacctacg actaccctaa gtacgaggaa gagtccaagc tgaaccggaa cgagatcaag	1560
ggcgtgaagc tgtccagcat gggcgtgtac cagatcctgg ccatctacgc caccgtggcc	1620
ggcagcctga gcctggctat tatgatggct ggcatacgt tttggatgtg cagcaacggc	1680
agcctgcagt gccggatctg catctgatga ctcgagtc	1719

<210> 7
<211> 562
<212> PRT
<213> Artificial Sequence

<220>
<223> Influenza H2 amino acid sequence

<400> 7

Met Ala Ile Ile Tyr Leu Ile Leu Leu Phe Thr Ala Val Arg Gly Asp
1 5 10 15

Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Lys Val Asp
20 25 30

Thr Ile Leu Glu Arg Asn Val Thr Val Thr His Ala Lys Asp Ile Leu
35 40 45

Glu Lys Thr His Asn Gly Lys Leu Cys Lys Leu Asn Gly Ile Pro Pro
50 55 60

Leu Glu Leu Gly Asp Cys Ser Ile Ala Gly Trp Leu Leu Gly Asn Pro
65 70 75 80

Glu Cys Asp Arg Leu Leu Ser Val Pro Glu Trp Ser Tyr Ile Met Glu
85 90 95

Lys Glu Asn Pro Arg Asp Gly Leu Cys Tyr Pro Gly Ser Phe Asn Asp
100 105 110

Tyr Glu Glu Leu Lys His Leu Leu Ser Ser Val Lys His Phe Glu Lys
 115 120 125

Val Lys Ile Leu Pro Lys Asp Arg Trp Thr Gln His Thr Thr Thr Gly
 130 135 140

Gly Ser Arg Ala Cys Ala Val Ser Gly Asn Pro Ser Phe Phe Arg Asn
 145 150 155 160

Met Val Trp Leu Thr Lys Lys Gly Ser Asn Tyr Pro Val Ala Lys Gly
 165 170 175

Ser Tyr Asn Asn Thr Ser Gly Glu Gln Met Leu Ile Ile Trp Gly Val
 180 185 190

His His Pro Asn Asp Glu Thr Glu Gln Arg Thr Leu Tyr Gln Asn Val
 195 200 205

Gly Thr Tyr Val Ser Val Gly Thr Ser Thr Leu Asn Lys Arg Ser Thr
 210 215 220

Pro Glu Ile Ala Thr Arg Pro Lys Val Asn Gly Leu Gly Ser Arg Met
 225 230 235 240

Glu Phe Ser Trp Thr Leu Leu Asp Met Trp Asp Thr Ile Asn Phe Glu
 245 250 255

Ser Thr Gly Asn Leu Ile Ala Pro Glu Tyr Gly Phe Lys Ile Ser Lys
 260 265 270

Arg Gly Ser Ser Gly Ile Met Lys Thr Glu Gly Thr Leu Glu Asn Cys
 275 280 285

Glu Thr Lys Cys Gln Thr Pro Leu Gly Ala Ile Asn Thr Thr Leu Pro
 290 295 300

Phe His Asn Val His Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr Val
 305 310 315 320

Lys Ser Glu Lys Leu Val Leu Ala Thr Gly Leu Arg Asn Val Pro Gln
 325 330 335

Ile Glu Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly
 340 345 350

Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly Tyr His His Ser Asn
 355 360 365

Asp Gln Gly Ser Gly Tyr Ala Ala Asp Lys Glu Ser Thr Gln Lys Ala
 370 375 380

13317203002seqlisting.txt

Phe Asp Gly Ile Thr Asn Lys Val Asn Ser Val Ile Glu Lys Met Asn
 385 390 395 400

Thr Gln Phe Glu Ala Val Gly Lys Glu Phe Ser Asn Leu Glu Arg Arg
 405 410 415

Leu Glu Asn Leu Asn Lys Lys Met Glu Asp Gly Phe Leu Asp Val Trp
 420 425 430

Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu Asn Glu Arg Thr Leu
 435 440 445

Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Asp Lys Val Arg Met
 450 455 460

Gln Leu Arg Asp Asn Val Lys Glu Leu Gly Asn Gly Cys Phe Glu Phe
 465 470 475 480

Tyr His Lys Cys Asp Asp Glu Cys Met Asn Ser Val Lys Asn Gly Thr
 485 490 495

Tyr Asp Tyr Pro Lys Tyr Glu Glu Ser Lys Leu Asn Arg Asn Glu
 500 505 510

Ile Lys Gly Val Lys Leu Ser Ser Met Gly Val Tyr Gln Ile Leu Ala
 515 520 525

Ile Tyr Ala Thr Val Ala Gly Ser Leu Ser Leu Ala Ile Met Met Ala
 530 535 540

Gly Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile
 545 550 555 560

Cys Ile

<210> 8
 <211> 4628
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> pGX2006 DNA sequence

<400> 8
 gactcttcgc gatgtacggg ccagatatac gcgttgacat tgattattga ctagttatta 60
 atagtaatca attacgggtt cattagttca tagcccatat atggagttcc gcgttacata
 acttacggta aatggccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 120
 aatgacgtat gttcccatag taacgccaat agggacttgc cattgacgtc aatgggtgga
 gtatttacgg taaactgccc acttggcagt acatcaagtgc tatcatatgc caagtacgcc 180
 ccctattgac gtcaatgacg gtaaatggcc cgctggcat tatgccagt acatgacctt 240
 300
 360

13317203002seqlisting.txt

atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta ccatggtgat	420
gcgggtttgg cagtacatca atggcgtgg atagcggtt gactcacggg gatttccaag	480
tctccacccc attgacgtca atggagttt gttttggcac caaaatcaac gggactttcc	540
aaaatgtcgt aacaactccg ccccattgac gcaaatggc ggtaggcgtg tacggtggga	600
ggtctatata agcagagctc tctggctaac tagagaaccc actgcttact ggcttatcga	660
aattaatacg actcactata gggagaccca agctggctag cgtttaaact taagcttgcc	720
accatggcca tcatctacct gatcctgctg ttcaccgccc tgcggggcga ccagatctgc	780
atcggctacc acgccaacaa cagcaccgag aaggtggaca ccatcctgga acggaacgtg	840
accgtgaccc acgccaagga catcctggaa aagaccacca acggcaagct gtgcaagctg	900
aacggcatcc cccccctgga actgggcgac tgcagcattg cccgctggct gctggcaac	960
cccgagtgcg accggctgct gtcgtgccc gagtggagct acatcatgga aaaagagaac	1020
ccccgggacg gcctgtgcta cccggcagc ttcaacgact acgaggaact gaagcacctg	1080
ctgtccagcg tgaagcactt cgagaaggta aaaatcctgc ccaaggaccc gtggacccag	1140
cacaccacca cggcggcag cagacgtgt gccgtgagcg gcaacccag cttctccgg	1200
aacatggtgt ggctgacca gaagggcagc aactaccccg tggccaaggg cagctacaac	1260
aacacctccg gagaacagat gctgatcatc tggggcgtgc accaccccaa cgacgagaca	1320
gagcagcggc ccctgtacca gaacgtggc acctacgtga gcgtggcac cagcacccctg	1380
aacaagcggc gcaccccca gatgccacc cggcccaagg tgaacggcct gggcagccgg	1440
atggaattca gctggaccct gctggacatg tggacacca tcaacttcga gagcaccggc	1500
aacctgatcg cccccgagta cggcttcaag atcagcaagc gggcagcag cggcatcatg	1560
aaaaccgagg gcacccctgga aaactgcgag acaaagtgcc agacccccc gggcgccatc	1620
aacaccaccc tgcccttcca caacgtgcac cccctgacca tcggcgagtg ccccaagtac	1680
gtgaagagcg agaagcttgt gctggccacc ggcctgcca acgtgcccc gatcgagagc	1740
aggggcctgt tcggcgccat tgccggattc atcgagggcg gctggcaggg catggggac	1800
gggtggtagc gctaccacca cagcaacgac cagggcagcg gctacgcccgc cgacaaagag	1860
agcaccacca aggccttcga cggcatcacc aacaaggta acagcgtgat cgagaagatg	1920
aacaccagt tcgaggccgt gggcaaagag ttcagcaacc tggAACGGCG gctggaaaac	1980
ctgaacaaga aaatggaaga tggcttcctg gacgtgtgga cctacaacgc cgagctgctg	2040
gtgctgatgg aaaacgagag gaccctggac ttccacgaca gcaacgtgaa gaacctgtac	2100
gacaaagtgc ggatgcagct gcgggacaac gtgaaagagc tggcaacgg ctgcttcgag	2160
ttctaccaca agtgcgacga cgagtgcacg aactccgtga agaacggcac ctacgactac	2220
cctaagtacg aggaagagtc caagctgaac cggAACGAGA tcaaggcgat gaagctgtcc	2280
agcatggcg tgtaccagat cctggccatc tacggcaccg tggccggcag cctgagcctg	2340
gctattatga tggctggcat cagttttgg atgtgcagca acggcagcct gcagtgccgg	2400

13317203002seqlisting.txt

atctgcacatct	gatgactcga	gtcttagaggg	cccgttaaa	cccgctgatc	agcctcgact	2460
gtgccttcta	gttgccagcc	atctgttgtt	tgcgcctccc	ccgtgccttc	cttgaccctg	2520
gaagggtgccca	ctcccaactgt	ccttcctaa	taaaatgagg	aaattgcac	gcattgtctg	2580
agtaggtgtc	attctattct	gggggtggg	gtggggcagg	acagcaaggg	ggaggattgg	2640
gaagacaata	gcaggcatgc	tggggatgcg	gtgggcctta	tggcttctac	tggcggtt	2700
tatggacagc	aagcgaaccg	gaattgccag	ctggggcgcc	ctctggtaag	gttgggaagc	2760
cctgcaaagt	aaactggatg	gctttcttgc	cgccaaggat	ctgatggcgc	agggatcaa	2820
gctctgatca	agagacagga	tgaggatcgt	ttcgcatgt	tgaacaagat	ggattgcacg	2880
caggttctcc	ggccgcttgg	gtggagaggc	tattcgcta	tgactggca	caacagacaa	2940
tcggctgctc	tgatgccgcc	gtgttccggc	tgtcagcgca	ggggcgcccg	gttcttttg	3000
tcaagaccga	cctgtccggt	gccctgaatg	aactgcaaga	cgaggcagcg	cggctatcgt	3060
ggctggccac	gacgggcgtt	cctgcbcag	ctgtgctcga	cgttgcact	gaagcggaa	3120
gggactggct	gctattgggc	gaagtgcgg	ggcaggatct	cctgtcatct	cacctgctc	3180
ctgcccagaa	agtatccatc	atggctgatg	caatgcggcg	gctgcatacg	cttgatccgg	3240
ctaccctgccc	attcgaccac	caagcgaaac	atcgcatcga	gcgagcacgt	actcggatgg	3300
aagccggct	tgtcgatcag	gatgatctgg	acgaagagca	tcaggggctc	gcccagccg	3360
aactgttcgc	caggctcaag	gcgagcatgc	ccgacggcga	ggatctcg	gtgaccatg	3420
gcgatgcctg	cttgcgaat	atcatggtgg	aaaatggccg	ctttctgga	ttcatcgact	3480
gtggccggct	gggtgtggcg	gaccgctatc	aggacatagc	gttggctacc	cgtgatattg	3540
ctgaagagct	tggcggcgaa	tggctgacc	gcttcctcgt	gctttacgg	atcgccgctc	3600
ccgattcgca	gcgcacgc	ttctatcgcc	ttcttgacga	gttcttctga	attattaacg	3660
cttacaattt	cctgatgcgg	tatttctcc	ttacgcatct	gtgcggatt	tcacaccgca	3720
tcaggtggca	ctttcgggg	aaatgtgcgc	ggaacccta	tttgttatt	tttctaaata	3780
cattcaaata	tgtatccgct	catgagacaa	taaccctgat	aaatgctca	ataatagcac	3840
gtgctaaaac	ttcattttta	atttaaaagg	atcttaggtga	agatccttt	tgataatctc	3900
atgaccaaaa	tcccttaacg	tgagtttcg	ttccactgag	cgtcagaccc	cgtagaaaag	3960
atcaaaggat	cttcttgaga	tcctttttt	ctgcgcgtaa	tctgctgctt	gcaaacaaaa	4020
aaaccaccgc	taccagcggt	ggtttgggg	ccggatcaag	agctaccaac	tcttttccg	4080
aaggttaactg	gcttcagcag	agcgcagata	ccaaatactg	ttcttctagt	gtagccgtag	4140
ttaggccacc	acttcaagaa	ctctgttagca	ccgcctacat	acctcgctc	gctaattctg	4200
ttaccagtgg	ctgctgccag	tggcgataag	tcgtgtctt	ccgggttgg	ctcaagacga	4260
tagttaccgg	ataaggcgca	gcggcggggc	tgaacgggg	gttcgtgcac	acagcccagc	4320
ttggagcgaa	cgacctacac	cgaactgaga	tacctacagc	gtgagctatg	agaaagcgcc	4380
acgcttcccg	aaggagaaaa	ggccggacagg	tatccgtaa	gcggcagggt	cggaacagga	4440

13317203002seqlisting.txt

gagcgcacga	gggagcttcc	agggggaaac	gcctggtac	tttatagtcc	tgtcgggttt	4500
cgcacctct	gactttagcg	tcgattttg	tgatgctcg	caggggggcg	gagcctatgg	4560
aaaaacgcca	gcaacgcggc	cttttacgg	ttcctggcct	tttgctggcc	tttgctcac	4620
atgttctt						4628

<210> 9
<211> 1695
<212> DNA
<213> Artificial Sequence

<220>
<223> Influenza U2 DNA sequence

<400> 9	aaggccaagc	tgctggtgct	gctgtgcacc	ttcgccgcca	ccaacgcccga	caccatctgc	60
atcggctacc	acgccaacaa	cagcaccgac	accgtggata	ccgtgctggaa	aaagaacgtg		120
accgtgaccc	acagcgtgaa	cctgctggaa	gataaggaca	acggcaagct	gtgcaagctg		180
aagggaatcg	ccccctgca	gctgggcaag	tgcaatatcg	ccggctggat	tctggcaac		240
cccgagtgcg	agagcctgag	cagcaagagc	agctggcct	acatcgtggaa	aaccccaac		300
agcgagaacg	gcacctgtta	ccccggcgcac	ttcgccgact	acgaggaact	gcgcgagcag		360
ctgagcagcg	tgtccagctt	cgagagattc	gagatcttcc	ccaagaccag	cagctggccc		420
aaccacgacg	tgaccaaggg	cgtgaccgct	agctgttagcc	acgcaggcgc	cagcagcttc		480
tacaagaacc	tgctgtggct	gaccaagaag	aacggcagct	accccaagct	gagcaagagc		540
tacatcaaca	acaaagaaaa	agaggtgctg	gtcctctggg	gcgtccacca	ccccagcaca		600
atcgccgacc	agcagagcct	gtaccagaac	gagaacgcct	acgtgtccgt	gggcagcagc		660
cactacagcc	ggaagttcac	ccccgagatc	gccaaagcggc	ccaaagtgcg	ggaccaggaa		720
ggccggatca	actactactg	gaccctgctg	gaacccggcg	acaccatcat	ttcgaggcc		780
aacggcaacc	tgatcgcccc	cagatacgcc	ttcgccctga	gcagaggctt	cggcagcggc		840
atcatcatca	gcaacgcccc	catgcacgac	tgcgacacca	agtgccagac	ccctcagggc		900
gccatcaaca	gcagcctgcc	tttccagaac	atccaccccg	tgaccatcgg	cgagtgcggc		960
aaatacgtgc	ggagcaccaa	gctgcggatg	gccaccggcc	tgcggaacat	ccccagcatc		1020
cagagcagag	gcctgttcgg	cgccattgcc	ggcttcatcg	agggcggctg	gaccggaatg		1080
gtggacgggt	ggtacggcta	ccaccaccag	aatgagcagg	gcagcggcta	cggcggcgcac		1140
cagaagtcca	cccagaacgc	catgcacggc	atcaccaaca	aagtgaacag	cgtgatcgag		1200
aagatgaaca	cccagttcac	cgcgtgggc	aaagagttca	acaagctgg	aaagcggatg		1260
aaaaacctga	acaagaaggt	ggacgacggc	ttcctggaca	tctggaccta	caacgcccga		1320
ctgctcgtgc	tgctggaaaa	cgagcggacc	ctggacttcc	acgacagcaa	cgtgaagaac		1380
ctgtacgaga	aagtgaagtc	ccagctgaag	aacaacgcca	aagagatcgg	caacggctgc		1440
ttcgagttct	accacaagt	caacaacgag	tgcatggaaa	gcgtgaagaa	cggAACCTAC		1500

13317203002seqlisting.txt

gactacccca agtacagcga ggaaagcaag ctgaaccggg aagagatcga cggcgtgaag	1560
ctggaatcca tggcggtgta ccagatcctg gccatctaca gcaccgtggc tagcagcctg	1620
tgctgctgg tgtccctggg cccatctcc ttttggatgt gctccaacgg cagcctgcag	1680
tgccggatct gcata	1695

<210> 10
<211> 565
<212> PRT
<213> Artificial Sequence

<220>
<223> Influenza U2 amino acid sequence

<400> 10

Lys Ala Lys Leu Leu Val Leu Leu Cys Thr Phe Ala Ala Thr Asn Ala
1 5 10 15

Asp Thr Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr Val
20 25 30

Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn Leu
35 40 45

Leu Glu Asp Lys His Asn Gly Lys Leu Cys Lys Leu Lys Gly Ile Ala
50 55 60

Pro Leu Gln Leu Gly Lys Cys Asn Ile Ala Gly Trp Ile Leu Gly Asn
65 70 75 80

Pro Glu Cys Glu Ser Leu Ser Ser Lys Ser Ser Trp Ser Tyr Ile Val
85 90 95

Glu Thr Pro Asn Ser Glu Asn Gly Thr Cys Tyr Pro Gly Asp Phe Ala
100 105 110

Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe Glu
115 120 125

Arg Phe Glu Ile Phe Pro Lys Thr Ser Ser Trp Pro Asn His Asp Val
130 135 140

Thr Lys Gly Val Thr Ala Ser Cys Ser His Ala Gly Ala Ser Ser Phe
145 150 155 160

Tyr Lys Asn Leu Leu Trp Leu Thr Lys Lys Asn Gly Ser Tyr Pro Lys
165 170 175

Leu Ser Lys Ser Tyr Ile Asn Asn Lys Glu Lys Glu Val Leu Val Leu
180 185 190

13317203002seqlisting.txt

Trp Gly Val His His Pro Ser Thr Ile Ala Asp Gln Gln Ser Leu Tyr
195 200 205

Gln Asn Glu Asn Ala Tyr Val Ser Val Gly Ser Ser His Tyr Ser Arg
210 215 220

Lys Phe Thr Pro Glu Ile Ala Lys Arg Pro Lys Val Arg Asp Gln Glu
225 230 235 240

Gly Arg Ile Asn Tyr Tyr Trp Thr Leu Leu Glu Pro Gly Asp Thr Ile
245 250 255

Ile Phe Glu Ala Asn Gly Asn Leu Ile Ala Pro Arg Tyr Ala Phe Ala
260 265 270

Leu Ser Arg Gly Phe Gly Ser Gly Ile Ile Ile Ser Asn Ala Pro Met
275 280 285

His Asp Cys Asp Thr Lys Cys Gln Thr Pro Gln Gly Ala Ile Asn Ser
290 295 300

Ser Leu Pro Phe Gln Asn Ile His Pro Val Thr Ile Gly Glu Cys Pro
305 310 315 320

Lys Tyr Val Arg Ser Thr Lys Leu Arg Met Ala Thr Gly Leu Arg Asn
325 330 335

Ile Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe
340 345 350

Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr His
355 360 365

His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Gln Lys Ser Thr
370 375 380

Gln Asn Ala Ile Asp Gly Ile Thr Asn Lys Val Asn Ser Val Ile Glu
385 390 395 400

Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn Lys Leu
405 410 415

Glu Lys Arg Met Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe Leu
420 425 430

Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn Glu
435 440 445

Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Glu Lys
450 455 460

13317203002seqlisting.txt

Val Lys Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly Cys
 465 470 475 480

Phe Glu Phe Tyr His Lys Cys Asn Asn Glu Cys Met Glu Ser Val Lys
 485 490 495

Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ser Lys Leu Asn
 500 505 510

Arg Glu Glu Ile Asp Gly Val Lys Leu Glu Ser Met Gly Val Tyr Gln
 515 520 525

Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Leu Val
 530 535 540

Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln
 545 550 555 560

Cys Arg Ile Cys Ile
 565

<210> 11
 <211> 1809

<212> DNA

<213> Artificial Sequence

<220>
 <223> IgE-U2-HATAntigen DNA Sequence

<400> 11	
ggtaccggat ccgccaccat ggactggacc tggattctgt tcctggtcgc cgctgctacc	60
cgggtgcact ctaaggccaa gctgctggtg ctgctgtgca cttcgccgc caccaacgcc	120
gacaccatct gcatcggcta ccacgccaac aacagcaccg acaccgtgga taccgtgctg	180
gaaaagaacg tgaccgtgac ccacagcgtg aacctgctgg aagataagca caacggcaag	240
ctgtgcaagc tgaaggaaat cgcccccctg cagctggca agtgcaatat cgccggctgg	300
attctggca accccgagtg cgagagcctg agcagcaaga gcagctggtc ctacatcgtg	360
gaaaccccca acagcgagaa cggcacctgt tacccggcg acttcgcccga ctacgaggaa	420
ctgcgcgagc agctgagcag cgtgtccagc ttcgagagat tcgagatctt ccccaagacc	480
agcagctggc ccaaccacga cgtgaccaag ggcgtgaccg ctagctgttag ccacgcaggc	540
gccagcagct tctacaagaa cctgctgtgg ctgaccaaga agaacggcag ctaccccaag	600
ctgagcaaga gctacatcaa caacaaagaa aaagaggtgc tggcctctg gggcgccac	660
caccccgacca aatcgccga ccagcagagc ctgtaccaga acgagaacgc ctacgtgtcc	720
gtggcagca gccactacag ccgaaagtgc acccccgaga tcgccaagcg gcccaaagtgc	780
cgggaccagg aaggccggat caactactac tggaccctgc tggacccgg cgacaccatc	840
atcttcgagg ccaacggcaa cctgatcgcc cccagatacg cttcgccct gagcagaggc	900
ttcggcagcg gcatcatcat cagcaacgcc cccatgcacg actgcgacac caagtggccag	960

13317203002seqlisting.txt

acccctcagg	gcccataa	cagcagcctg	cccttccaga	acatccaccc	cgtgaccatc	1020
ggcgagtgcc	ccaaataacgt	gcggagcacc	aagctgcgga	tggccaccgg	cctgcggaac	1080
atccccagca	tccagagcag	aggcctgttc	ggcgccattg	ccggcttcat	cgagggcggc	1140
tggaccggaa	tggtggacgg	gtggtacggc	taccaccacc	agaatgagca	gggcagcggc	1200
tacccgccc	accagaagtc	caccagaac	gccatcgacg	gcatcaccaa	caaagtgaac	1260
agcgtatcg	agaagatgaa	caccagttc	accgcccgtgg	gcaaagagtt	caacaagctg	1320
gaaaagcgg	tgaaaacct	gaacaagaag	gtggacgacg	gcttcctgga	catctggacc	1380
tacaacgccc	aactgctcgt	gctgctggaa	aacgagcgg	ccctggactt	ccacgacagc	1440
aacgtgaaga	acctgtacga	gaaagtgaag	tcccagctga	agaacaacgc	caaagagatc	1500
ggcaacggct	gcttcgagtt	ctaccacaag	tgcaacaacg	agtgcata	aaagcgtgaag	1560
aacggaacct	acgactaccc	caagtacagc	gaggaaagca	agctgaaccc	ggaagagatc	1620
gacggcgtga	agctggaatc	catggcgtg	taccagatcc	tggccatcta	cagcaccgtg	1680
gctagcagcc	tggtgcgtct	ggtgtccctg	ggcgccatct	cctttggat	gtgctccaac	1740
ggcagcctgc	agtgccggat	ctgcata	ccctacgacg	tgcccgacta	cgcctgatga	1800
ctcgagctc						1809

<210> 12
 <211> 592
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> IgE-U2-HATantigen amino acid Sequence

<400> 12

Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val
 1 5 10 15

His Ser Lys Ala Lys Leu Leu Val Leu Leu Cys Thr Phe Ala Ala Thr
 20 25 30

Asn Ala Asp Thr Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp
 35 40 45

Thr Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val
 50 55 60

Asn Leu Leu Glu Asp Lys His Asn Gly Lys Leu Cys Lys Leu Lys Gly
 65 70 75 80

Ile Ala Pro Leu Gln Leu Gly Lys Cys Asn Ile Ala Gly Trp Ile Leu
 85 90 95

Gly Asn Pro Glu Cys Glu Ser Leu Ser Ser Lys Ser Ser Trp Ser Tyr
 100 105 110

13317203002seqlisting.txt

Ile Val Glu Thr Pro Asn Ser Glu Asn Gly Thr Cys Tyr Pro Gly Asp
115 120 125

Phe Ala Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser
130 135 140

Phe Glu Arg Phe Glu Ile Phe Pro Lys Thr Ser Ser Trp Pro Asn His
145 150 155 160

Asp Val Thr Lys Gly Val Thr Ala Ser Cys Ser His Ala Gly Ala Ser
165 170 175

Ser Phe Tyr Lys Asn Leu Leu Trp Leu Thr Lys Lys Asn Gly Ser Tyr
180 185 190

Pro Lys Leu Ser Lys Ser Tyr Ile Asn Asn Lys Glu Lys Glu Val Leu
195 200 205

Val Leu Trp Gly Val His His Pro Ser Thr Ile Ala Asp Gln Gln Ser
210 215 220

Leu Tyr Gln Asn Glu Asn Ala Tyr Val Ser Val Gly Ser Ser His Tyr
225 230 235 240

Ser Arg Lys Phe Thr Pro Glu Ile Ala Lys Arg Pro Lys Val Arg Asp
245 250 255

Gln Glu Gly Arg Ile Asn Tyr Tyr Trp Thr Leu Leu Glu Pro Gly Asp
260 265 270

Thr Ile Ile Phe Glu Ala Asn Gly Asn Leu Ile Ala Pro Arg Tyr Ala
275 280 285

Phe Ala Leu Ser Arg Gly Phe Gly Ser Gly Ile Ile Ile Ser Asn Ala
290 295 300

Pro Met His Asp Cys Asp Thr Lys Cys Gln Thr Pro Gln Gly Ala Ile
305 310 315 320

Asn Ser Ser Leu Pro Phe Gln Asn Ile His Pro Val Thr Ile Gly Glu
325 330 335

Cys Pro Lys Tyr Val Arg Ser Thr Lys Leu Arg Met Ala Thr Gly Leu
340 345 350

Arg Asn Ile Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala
355 360 365

Gly Phe Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly
370 375 380

13317203002seqlisting.txt

Tyr His His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Gln Lys
385 390 395 400

Ser Thr Gln Asn Ala Ile Asp Gly Ile Thr Asn Lys Val Asn Ser Val
405 410 415

Ile Glu Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn
420 425 430

Lys Leu Glu Lys Arg Met Glu Asn Leu Asn Lys Lys Val Asp Asp Gly
435 440 445

Phe Leu Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu
450 455 460

Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr
465 470 475 480

Glu Lys Val Lys Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn
485 490 495

Gly Cys Phe Glu Phe Tyr His Lys Cys Asn Asn Glu Cys Met Glu Ser
500 505 510

Val Lys Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ser Lys
515 520 525

Leu Asn Arg Glu Glu Ile Asp Gly Val Lys Leu Glu Ser Met Gly Val
530 535 540

Tyr Gln Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu
545 550 555 560

Leu Val Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser
565 570 575

Leu Gln Cys Arg Ile Cys Ile Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
580 585 590

<210> 13

<211> 1749

<212> DNA

<213> Artificial Sequence

<220>

<223> BHA DNA Sequence

<400> 13

aaggccatca tcgtgctgct gatgggtggtc acaagcaacg ccgaccggat ctgcaccggc 60

atcaccagca gcaacagccc ccacgtggtc aaaaccgcca cccagggcga agtgaacgtg 120

accggcgtga tccccctgac caccacccca accaagagcc acttcgccaa cctgaaggc 180

13317203002seqlisting.txt

accaagaccc	ggggaaagct	gtgccccaaag	tgccctgaact	gcaccgaccc	ggacgtggcc	240
ctggcagac	ctatgtgcgt	gggcaccacc	cctagcgcca	aggccagcat	cctgcacgaa	300
gtgcggcccg	tgaccagcgg	ctgcttcccc	atcatgcacg	accggaccaa	gatccggcag	360
ctccccaacc	tgctgcgggg	ctacgagaac	atccggctga	gcacccagaa	cgtgatcaac	420
gccgagaagg	cccctggcgg	cccttacaga	ctgggcacaa	gcggcttgc	ccccaaacgccc	480
accagcaaga	gcggctttt	cgcacaatg	gcctggcgg	tgcccaagga	caacaacaag	540
accgcccacca	acccctgac	cgtggaagtg	ccctacatct	gcaccgaggg	cgaggaccag	600
atcaccgtgt	ggggcttcca	cagcgataac	aagacccaga	tgaagaacct	gtacggcgcac	660
agcaaccccc	agaagttcac	cagctccgcc	aacggcgtga	ccacccacta	cgtgtcccag	720
atcggcggct	tccccgacca	gacagaggat	ggcggcctgc	cccagagcgg	cagaatcgtg	780
gtggactaca	tggtgcagaa	gcccggaag	accggcacca	tcgtgtacca	gcggggcatc	840
ctgctgcccc	agaaagtgtg	gtgcgcagc	ggccggtcca	aagtgtatcaa	ggcagcctg	900
cctctgatcg	gcgaggccga	ttgcctgcac	gagaagtacg	gcggcctgaa	caagagcaag	960
ccctactaca	ccggcgagca	cgcggaaagcc	atcggcaact	gccccatctg	ggtcaaaacc	1020
cccctgaagc	tggccaacgg	caccaagtac	cggcctcccg	ccaagctgct	gaaagagcgg	1080
ggcttctcg	gcgctatcgc	cggcttctg	gaaggcggct	gggagggcat	gatcgccggc	1140
tggcacggct	acacatctca	cggcgctcat	ggcgtggccg	tggccgctga	tctgaagtcc	1200
acccaggaag	ccatcaacaa	gatcaccaag	aacctaaca	gcctgagcga	gctggaagtg	1260
aagaatctgc	agcggctgag	cggcgccatg	gacgagctgc	acaacgagat	cctgaaactg	1320
gacgagaagg	tggacgaccc	gcgggcccac	accatctcca	gccagatcga	gctggccgtg	1380
ctgctgtcca	acgagggcat	catcaacagc	gaggacgagc	atctgctggc	cctgaaacgg	1440
aagctgaaga	agatgctgg	ccctagcgcc	gtggacatcg	gcaacggctg	tttcgagaca	1500
aagcacaagt	gcaaccagac	ctgcctggac	cggatcgctg	ccggcacctt	caacgccggc	1560
gagttcagcc	tgcccaccc	cgacagcctg	aacatcaccg	ccgccagcct	gaacgacgac	1620
ggcctggaca	accacaccat	cctgctgtac	tacagcaccg	cagcctccag	cctggccgtg	1680
accctgtatga	tcgcccattt	catcggtac	atggtgtctc	gggacaacgt	gtcctgcagc	1740
atctgcctg						1749

<210> 14
<211> 583
<212> PRT
<213> Artificial Sequence

<220>
<223> BHA Amino Acid Sequence

<400> 14

Lys Ala Ile Ile Val Leu Leu Met Val Val Thr Ser Asn Ala Asp Arg
1 5 10 15

13317203002seqlisting.txt

Ile Cys Thr Gly Ile Thr Ser Ser Asn Ser Pro His Val Val Lys Thr
20 25 30

Ala Thr Gln Gly Glu Val Asn Val Thr Gly Val Ile Pro Leu Thr Thr
35 40 45

Thr Pro Thr Lys Ser His Phe Ala Asn Leu Lys Gly Thr Lys Thr Arg
50 55 60

Gly Lys Leu Cys Pro Lys Cys Leu Asn Cys Thr Asp Leu Asp Val Ala
65 70 75 80

Leu Gly Arg Pro Met Cys Val Gly Thr Thr Pro Ser Ala Lys Ala Ser
85 90 95

Ile Leu His Glu Val Arg Pro Val Thr Ser Gly Cys Phe Pro Ile Met
100 105 110

His Asp Arg Thr Lys Ile Arg Gln Leu Pro Asn Leu Leu Arg Gly Tyr
115 120 125

Glu Asn Ile Arg Leu Ser Thr Gln Asn Val Ile Asn Ala Glu Lys Ala
130 135 140

Pro Gly Gly Pro Tyr Arg Leu Gly Thr Ser Gly Ser Cys Pro Asn Ala
145 150 155 160

Thr Ser Lys Ser Gly Phe Phe Ala Thr Met Ala Trp Ala Val Pro Lys
165 170 175

Asp Asn Asn Lys Thr Ala Thr Asn Pro Leu Thr Val Glu Val Pro Tyr
180 185 190

Ile Cys Thr Glu Gly Glu Asp Gln Ile Thr Val Trp Gly Phe His Ser
195 200 205

Asp Asn Lys Thr Gln Met Lys Asn Leu Tyr Gly Asp Ser Asn Pro Gln
210 215 220

Lys Phe Thr Ser Ser Ala Asn Gly Val Thr Thr His Tyr Val Ser Gln
225 230 235 240

Ile Gly Gly Phe Pro Asp Gln Thr Glu Asp Gly Gly Leu Pro Gln Ser
245 250 255

Gly Arg Ile Val Val Asp Tyr Met Val Gln Lys Pro Gly Lys Thr Gly
260 265 270

Thr Ile Val Tyr Gln Arg Gly Ile Leu Leu Pro Gln Lys Val Trp Cys
275 280 285

13317203002seqlisting.txt

Ala Ser Gly Arg Ser Lys Val Ile Lys Gly Ser Leu Pro Leu Ile Gly
290 295 300

Glu Ala Asp Cys Leu His Glu Lys Tyr Gly Gly Leu Asn Lys Ser Lys
305 310 315 320

Pro Tyr Tyr Thr Gly Glu His Ala Lys Ala Ile Gly Asn Cys Pro Ile
325 330 335

Trp Val Lys Thr Pro Leu Lys Leu Ala Asn Gly Thr Lys Tyr Arg Pro
340 345 350

Pro Ala Lys Leu Leu Lys Glu Arg Gly Phe Phe Gly Ala Ile Ala Gly
355 360 365

Phe Leu Glu Gly Gly Trp Glu Gly Met Ile Ala Gly Trp His Gly Tyr
370 375 380

Thr Ser His Gly Ala His Gly Val Ala Val Ala Ala Asp Leu Lys Ser
385 390 395 400

Thr Gln Glu Ala Ile Asn Lys Ile Thr Lys Asn Leu Asn Ser Leu Ser
405 410 415

Glu Leu Glu Val Lys Asn Leu Gln Arg Leu Ser Gly Ala Met Asp Glu
420 425 430

Leu His Asn Glu Ile Leu Glu Leu Asp Glu Lys Val Asp Asp Leu Arg
435 440 445

Ala Asp Thr Ile Ser Ser Gln Ile Glu Leu Ala Val Leu Leu Ser Asn
450 455 460

Glu Gly Ile Ile Asn Ser Glu Asp Glu His Leu Leu Ala Leu Glu Arg
465 470 475 480

Lys Leu Lys Lys Met Leu Gly Pro Ser Ala Val Asp Ile Gly Asn Gly
485 490 495

Cys Phe Glu Thr Lys His Lys Cys Asn Gln Thr Cys Leu Asp Arg Ile
500 505 510

Ala Ala Gly Thr Phe Asn Ala Gly Glu Phe Ser Leu Pro Thr Phe Asp
515 520 525

Ser Leu Asn Ile Thr Ala Ala Ser Leu Asn Asp Asp Gly Leu Asp Asn
530 535 540

His Thr Ile Leu Leu Tyr Tyr Ser Thr Ala Ala Ser Ser Leu Ala Val
545 550 555 560

13317203002seqlisting.txt

Thr Leu Met Ile Ala Ile Phe Ile Val Tyr Met Val Ser Arg Asp Asn
565 570 575

Val Ser Cys Ser Ile Cys Leu
580

<210> 15
<211> 1865
<212> DNA
<213> Artificial Sequence

<220>
<223> IgE-BHA-HATantigen DNA Sequence

<400> 15
ggtaccggat ccgccaccat ggactggacc tggattctgt tcctggtggc cgctgccaca 60
cgggtgcaca gcaaggccat catcgtgctg ctgatggtgg tcacaagcaa cgccgaccgg 120
atctgcaccg gcatcaccag cagcaacagc ccccacgtgg tcaaaaccgc cacccagggc 180
gaagtgaacg tgaccggcgt gatccccctg accaccaccc ccaccaagag ccacttcgccc 240
aacctgaagg gcaccaagac ccggggaaag ctgtgccccca agtgcctgaa ctgcaccgac 300
ctggacgtgg ccctggcag acctatgtgc gtgggcacca cccctagcgc caaggccagc 360
atcctgcacg aagtgcggcc cgtgaccagc ggctgcttcc ccatcatgca cgaccggacc 420
aagatccggc agctcccaa cctgctgcgg ggctacgaga acatccggct gagcacccag 480
aacgtgatca acgcccagaaa ggcccctggc ggcccttaca gactgggcac aagcggctct 540
tgccccaaacg ccaccagcaa gagcggcttt ttgcaccaaa tggcctgggc cgtgccccag 600
gacaacaaca agaccggcac caacccctg accgtggaag tgccctacat ctgcaccgag 660
ggcgaggacc agatcaccgt gtggggcttc cacagcgata acaagaccca gatgaagaac 720
ctgtacggcg acagcaaccc ccagaagttc accagctccg ccaacggcgt gaccacccac 780
tacgtgtccc agatcggcgg cttcccgac cagacagagg atggcggcct gccccagagc 840
ggcagaatcg tggacta catggcag aagccggca agaccggcac catcgat 900
cagccccca tcctgctgcc ccagaaagt tggcgcacca gcccgggtc caaagtgtac 960
aaggcagcc tgcctctgat cggcgaggcc gattgcctgc acgagaagta cggcggcctg 1020
aacaagagca agccctacta caccggcgag cacgccaaag ccatcgccaa ctgccccatc 1080
tgggtcaaaa ccccccgtaa gctggccaaac ggcaccaagt accggcctcc cgccaaagctg 1140
ctgaaagagc gggcttctt cggcgctatc gccggcttc tggcggcgg ctgggagggc 1200
atgatcgccg gctggcacgg ctacacatct cacggcgctc atggcgtggc cgtggccgt 1260
gatctgaagt ccacccagga agccatcaac aagatcacca agaacctgaa cagcctgagc 1320
gagcttggaaag tgaagaatct gcagcggctg agcggcgcca tggacgagct gcacaacgag 1380
atccttggaaac tggacgagaa ggtggacgac ctgcggcccg acaccatctc cagccagatc 1440
gagcttggccg tgctgctgtc caacgaggcc atcatcaaca gcgaggacga gcatctgtc 1500

13317203002seqlisting.txt

gccctggaac	ggaagctgaa	gaagatgctg	ggccctagcg	ccgtggacat	cgcaacggc	1560
tgcttcgaga	caaagcacaa	gtcaaccag	acctgcctgg	accggatcgc	tgccggcacc	1620
ttcaacgccc	gcgagttcag	cctgcccacc	ttcgacagcc	tgaacatcac	cgcggccagc	1680
ctgaacgacg	acggcctgga	caaccacacc	atcctgctgt	actacagcac	cgcagcctcc	1740
agcctggccg	tgaccctgat	gatgccatc	ttcatcggt	acatgggttc	tcgggacaac	1800
gtgtcctgca	gcatctgcct	gtaccctac	gacgtgccc	actacgctga	tgactcgagc	1860
tcctc						1865

<210> 16
 <211> 610
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> IgE-BHA-HATantigen Amino Acid Sequence

<400> 16

Met	Asp	Trp	Thr	Trp	Ile	Leu	Phe	Leu	Val	Ala	Ala	Ala	Thr	Arg	Val
1				5				10						15	

His	Ser	Lys	Ala	Ile	Ile	Val	Leu	Leu	Met	Val	Val	Thr	Ser	Asn	Ala
				20			25					30			

Asp	Arg	Ile	Cys	Thr	Gly	Ile	Thr	Ser	Ser	Asn	Ser	Pro	His	Val	Val
				35		40				45					

Lys	Thr	Ala	Thr	Gln	Gly	Gl	Val	Asn	Val	Thr	Gly	Val	Ile	Pro	Leu
				50		55				60					

Thr	Thr	Thr	Pro	Thr	Lys	Ser	His	Phe	Ala	Asn	Leu	Lys	Gly	Thr	Lys
				65		70			75			80			

Thr	Arg	Gly	Lys	Leu	Cys	Pro	Lys	Cys	Leu	Asn	Cys	Thr	Asp	Leu	Asp
				85			90			95					

Val	Ala	Leu	Gly	Arg	Pro	Met	Cys	Val	Gly	Thr	Thr	Pro	Ser	Ala	Lys
				100				105				110			

Ala	Ser	Ile	Leu	His	Glu	Val	Arg	Pro	Val	Thr	Ser	Gly	Cys	Phe	Pro
		115				120				125					

Ile	Met	His	Asp	Arg	Thr	Lys	Ile	Arg	Gln	Leu	Pro	Asn	Leu	Leu	Arg
				130		135			140						

Gly	Tyr	Glu	Asn	Ile	Arg	Leu	Ser	Thr	Gln	Asn	Val	Ile	Asn	Ala	Glu
				145		150			155			160			

Lys	Ala	Pro	Gly	Gly	Pro	Tyr	Arg	Leu	Gly	Thr	Ser	Gly	Ser	Cys	Pro
				165			170			175					

13317203002seqlisting.txt

Asn Ala Thr Ser Lys Ser Gly Phe Phe Ala Thr Met Ala Trp Ala Val
180 185 190

Pro Lys Asp Asn Asn Lys Thr Ala Thr Asn Pro Leu Thr Val Glu Val
195 200 205

Pro Tyr Ile Cys Thr Glu Gly Glu Asp Gln Ile Thr Val Trp Gly Phe
210 215 220

His Ser Asp Asn Lys Thr Gln Met Lys Asn Leu Tyr Gly Asp Ser Asn
225 230 235 240

Pro Gln Lys Phe Thr Ser Ser Ala Asn Gly Val Thr Thr His Tyr Val
245 250 255

Ser Gln Ile Gly Gly Phe Pro Asp Gln Thr Glu Asp Gly Gly Leu Pro
260 265 270

Gln Ser Gly Arg Ile Val Val Asp Tyr Met Val Gln Lys Pro Gly Lys
275 280 285

Thr Gly Thr Ile Val Tyr Gln Arg Gly Ile Leu Leu Pro Gln Lys Val
290 295 300

Trp Cys Ala Ser Gly Arg Ser Lys Val Ile Lys Gly Ser Leu Pro Leu
305 310 315 320

Ile Gly Glu Ala Asp Cys Leu His Glu Lys Tyr Gly Gly Leu Asn Lys
325 330 335

Ser Lys Pro Tyr Tyr Thr Gly Glu His Ala Lys Ala Ile Gly Asn Cys
340 345 350

Pro Ile Trp Val Lys Thr Pro Leu Lys Leu Ala Asn Gly Thr Lys Tyr
355 360 365

Arg Pro Pro Ala Lys Leu Leu Lys Glu Arg Gly Phe Phe Gly Ala Ile
370 375 380

Ala Gly Phe Leu Glu Gly Gly Trp Glu Gly Met Ile Ala Gly Trp His
385 390 395 400

Gly Tyr Thr Ser His Gly Ala His Gly Val Ala Val Ala Ala Asp Leu
405 410 415

Lys Ser Thr Gln Glu Ala Ile Asn Lys Ile Thr Lys Asn Leu Asn Ser
420 425 430

Leu Ser Glu Leu Glu Val Lys Asn Leu Gln Arg Leu Ser Gly Ala Met
435 440 445

13317203002seqlisting.txt

Asp Glu Leu His Asn Glu Ile Leu Glu Leu Asp Glu Lys Val Asp Asp
450 455 460

Leu Arg Ala Asp Thr Ile Ser Ser Gln Ile Glu Leu Ala Val Leu Leu
465 470 475 480

Ser Asn Glu Gly Ile Ile Asn Ser Glu Asp Glu His Leu Leu Ala Leu
485 490 495

Glu Arg Lys Leu Lys Lys Met Leu Gly Pro Ser Ala Val Asp Ile Gly
500 505 510

Asn Gly Cys Phe Glu Thr Lys His Lys Cys Asn Gln Thr Cys Leu Asp
515 520 525

Arg Ile Ala Ala Gly Thr Phe Asn Ala Gly Glu Phe Ser Leu Pro Thr
530 535 540

Phe Asp Ser Leu Asn Ile Thr Ala Ala Ser Leu Asn Asp Asp Gly Leu
545 550 555 560

Asp Asn His Thr Ile Leu Leu Tyr Tyr Ser Thr Ala Ala Ser Ser Leu
565 570 575

Ala Val Thr Leu Met Ile Ala Ile Phe Ile Val Tyr Met Val Ser Arg
580 585 590

Asp Asn Val Ser Cys Ser Ile Cys Leu Tyr Pro Tyr Asp Val Pro Asp
595 600 605

Tyr Ala
610

<210> 17

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> IgE Leader Amino Acid Sequence

<400> 17

Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val
1 5 10 15

His Ser

<210> 18

<211> 9

<212> PRT

<213> Artificial Sequence

13317203002seqlisting.txt

<220>
<223> HA tag amino acid sequence

<400> 18

Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
1 5

<210> 19
<211> 1707
<212> DNA
<213> Artificial Sequence

<220>
<223> Influenza H1 DNA sequence

<400> 19
atggaaaaga tcgtgctgct gttcgccatc gtgagcctgg tgaagagcga ccagatctgc 60
atcggttacc acgccaacaa cagcaccgag caggtggaca ccatcatgga aaaaaacgtg 120
accgtgaccc acgcccagga catcctggaa aagaccaca acggcaagct gtgcgacctg 180
gacggcgtga agcccctgat cctgcgggac tgcagcgtgg ccggctggct gctggcaac 240
cccatgtgcg acgagttcat caacgtgccc gagtggagct acatcgtgga gaaggccaac 300
cccgtgaacg acctgtgcta ccccgccgac ttcaacgact acgaggaact gaagcacctg 360
ctgtcccgga tcaaccactt cgagaagatc cagatcatcc ccaagagcag ctggtccagc 420
cacgaggcca gcctggcgt gagcagcgcc tgcccatacc agggcaagtc cagcttcttc 480
cggaacgtgg tgtggctgat caagaagaac agcacctacc ccaccatcaa gcggagctac 540
aacaacacca accaggaaga tctgctggtc ctgtggggca tccaccaccc caacgacgcc 600
gccgagcaga ccaagctgta ccagaaccccc accacctaca tcagcgtgg caccagcacc 660
ctgaaccagc ggctggtgcc ccggatcgcc acccggtcca aggtgaacgg ccagagcggc 720
cgatggaat tcttctggac catcctgaag cccaaacgatg ccatcaactt cgagagcaac 780
ggcaacttca tcgcccccca gtacgcctac aagatcgtga agaaggcga cagcaccatc 840
atgaagagcg agctggataa cggcaactgc aacaccaagt gccagacccc catggcgc 900
atcaacagca gcatgccctt ccacaacatc caccctgaa ccatcgccgaa gtgccccaaag 960
tacgtgaaga gcaacaggct ggtgctggcc accggcctgc ggaacagccc ccagcgggag 1020
cgccggccg ccgccccggg cctgttcggc gccatcgccg gcttcatcga gggcggctgg 1080
cagggcatgg tggacgggtg gtacggctac caccacagca atgagcaggg cagcggctac 1140
gccgcccaca aagagagcac ccagaaggcc atcgacggcg tcaccaacaa ggtgaacagc 1200
atcatcgaca agatgaacac ccagttcgag gccgtggcc gggagttcaa caacctggaa 1260
cgccggatcg agaacctgaa caagaaaatg gaagatggct tcctggacgt gtggacctac 1320
aacggccgagc tgctggtgct gatggaaaac gagcggaccc tggacttcca cgacagcaac 1380
gtgaagaacc tgtacgacaa agtgcggctg cagctgcggg acaacgccaa agagctggc 1440
aacggctgct tcgagttcta ccacaagtgc gacaacgagt gcatggaaag cgtgcggaaac 1500

13317203002seqlisting.txt

ggcacctacg	actaccccca	gtacagcgag	gaagcccg	tgaagcggg	gaaatcagc	1560
ggcgtgaaac	tggaaagcat	cggcatctac	cagatcctga	gcatctacag	caccgtggcc	1620
agcagcctgg	ccctggccat	catggtggcc	ggcctgagcc	tgtggatgtg	cagcaacggc	1680
agcctgcagt	gccggatctg	catctag				1707

<210> 20
<211> 568
<212> PRT
<213> Artificial Sequence

<220>
<223> Influenza Protein H1 Sequence

<400> 20

Met	Glu	Lys	Ile	Val	Leu	Leu	Phe	Ala	Ile	Val	Ser	Leu	Val	Lys	Ser
1				5					10				15		

Asp	Gln	Ile	Cys	Ile	Gly	Tyr	His	Ala	Asn	Asn	Ser	Thr	Glu	Gln	Val
					20			25				30			

Asp	Thr	Ile	Met	Glu	Lys	Asn	Val	Thr	Val	Thr	His	Ala	Gln	Asp	Ile
35						40					45				

Leu	Glu	Lys	Thr	His	Asn	Gly	Lys	Leu	Cys	Asp	Leu	Asp	Gly	Val	Lys
50					55					60					

Pro	Leu	Ile	Leu	Arg	Asp	Cys	Ser	Val	Ala	Gly	Trp	Leu	Leu	Gly	Asn
65					70				75				80		

Pro	Met	Cys	Asp	Glu	Phe	Ile	Asn	Val	Pro	Glu	Trp	Ser	Tyr	Ile	Val
				85					90			95			

Glu	Lys	Ala	Asn	Pro	Val	Asn	Asp	Leu	Cys	Tyr	Pro	Gly	Asp	Phe	Asn
				100				105				110			

Asp	Tyr	Glu	Glu	Leu	Lys	His	Leu	Leu	Ser	Arg	Ile	Asn	His	Phe	Glu
						115		120			125				

Lys	Ile	Gln	Ile	Ile	Pro	Lys	Ser	Ser	Trp	Ser	Ser	His	Glu	Ala	Ser
						130		135			140				

Leu	Gly	Val	Ser	Ser	Ala	Cys	Pro	Tyr	Gln	Gly	Lys	Ser	Ser	Phe	Phe
145						150			155			160			

Arg	Asn	Val	Val	Trp	Leu	Ile	Lys	Lys	Asn	Ser	Thr	Tyr	Pro	Thr	Ile
						165			170			175			

Lys	Arg	Ser	Tyr	Asn	Asn	Thr	Asn	Gln	Glu	Asp	Leu	Leu	Val	Leu	Trp
							180		185			190			

Gly	Ile	His	His	Pro	Asn	Asp	Ala	Ala	Glu	Gln	Thr	Lys	Leu	Tyr	Gln

13317203002seqlisting.txt
195 200 205

Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg
210 215 220 225

Leu Val Pro Arg Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly
225 230 235 240

Arg Met Glu Phe Phe Trp Thr Ile Leu Lys Pro Asn Asp Ala Ile Asn
245 250 255

Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Tyr Ala Tyr Lys Ile
260 265 270

Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly
275 280 285

Asn Cys Asn Thr Lys Cys Gln Thr Pro Met Gly Ala Ile Asn Ser Ser
290 295 300

Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys
305 310 315 320

Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser
325 330 335

Pro Gln Arg Glu Arg Arg Ala Ala Ala Arg Gly Leu Phe Gly Ala Ile
340 345 350

Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr
355 360 365

Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys
370 375 380

Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser
385 390 395 400

Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe
405 410 415

Asn Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp
420 425 430

Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met
435 440 445

Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu
450 455 460

Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly
Page 32

465

470

475

480

Asn Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Glu Cys Met Glu
 485 490 495

Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala
 500 505 510

Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly
 515 520 525

Ile Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala
 530 535 540

Leu Ala Ile Met Val Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly
 545 550 560

Ser Leu Gln Cys Arg Ile Cys Ile
 565

<210> 21
 <211> 1728

<212> DNA
 <213> Artificial Sequence

<220>
 <223> Influenza DNA H1 Sequence

<400> 21
 ggtaccaagc ttgccaccat gaaggtgaaa ctgctggtgc tgctgtgcac cttcaccgccc 60
 acctacgccc acaccatctg catcggtac cacgccaaca acagcaccga caccgtggat 120
 accgtgctgg aaaagaacgt gaccgtgacc cacagcgtga acctgctgga agatagccac 180
 aacggcaagc tgtgcctgct gaaaggcatc gccccctgc agctgggcaa ctgcagcgtg 240
 gccggctgga tcctgggcaa ccccgagtgc gagctgctga tttccaaaga aagctggtcc 300
 tacatcggtgg agaccccaa ccccgagaac ggcacctgct accccggctca cttcgccgac 360
 tacgaggaac tgcgggagca gctgtccagc gtgagcagct tcgagcgggtt cgagatcttc 420
 cccaaagaga gcagctggcc caaccacacc gtgaccggcg tgagcgccag ctgctccac 480
 aatggcaaga gcagttcta ccggaacctg ctgtggctga ccggcaagaa cggcctgtac 540
 cccaacctga gcaagagacta cgccaataac aaagaaaagg aagtgctggc gctgtggggc 600
 gtgcaccacc cccccaacat cggcgaccag cggccctgt accacaccga gaacgcctac 660
 gtgagcgtgg tgtccagcca ctacagccgg cggttacccc ccgagatcgc caagcggccc 720
 aaagtgcggg accaggaagg ccggatcaac tactactgga ccctgctgga acccggcgac 780
 accatcatct tcgaggccaa cgccaacctg atcgccccca gatacgccct cggccctgagc 840
 cggggcttcg gcagcggcat catcaccagc aacgccccca tggacgagtg cgacgccaag 900
 tgccagaccc ctcagggagc tattaacagc agcctgcct tccagaacgt gcacccgtg 960

accatcgccg	agtgc(ccaa	gtacgtgcgg	agcgccaagc	tgccggatgg	gaccggcctg	1020
cggaacatcc	ccagcatcca	gagcaggggc	ctgttcggcg	ccatcgccgg	cttcatcgag	1080
ggcggctgga	ccggcatgg	ggacgggtgg	tacggctacc	accaccagaa	cgagcagggc	1140
agcggctacg	ccgcccacca	gaagagcacc	cagaacgcca	tcaacggcat	caccaacaag	1200
gtgaacagcg	tgatcgagaa	gatgaacacc	cagttcaccg	ccgtgggcaa	agagttcaac	1260
aagcttggAAC	ggcggatgg	aaacctgaac	aagaagggtgg	acgacggctt	cctggacatc	1320
tggacctaca	acggcgagct	gctggtgctg	ctggaaaacg	agcggaccct	ggacttccac	1380
gacagcaacg	tgaagaacct	gtacgagaag	gtgaaaagcc	agctgaagaa	caacgccaaa	1440
gagatcggca	acggctgctt	cgagttctac	cacaagtgc	acgacgagtg	catggaaagc	1500
gtgaagaatg	gcacctacga	ctaccccaag	tacagcgagg	aaagcaagct	gaaccgggag	1560
aagatcgcacg	gcgtgaagct	ggaaagcatg	ggcgtgtacc	agatcctggc	catctacagc	1620
accgtcgctt	ccagcctcgt	cctgctcgtg	tccctggcg	ccatctcctt	ttggatgtgc	1680
agcaacggca	gcctgcagtg	ccggatctgc	atctgatgac	tcgagctc		1728

<210> 22

<211> 565

<212> PRT

<213> Artificial Sequence

<220>

<223> Influenza Protein H1 Sequence

<400> 22

Met	Lys	Val	Lys	Leu	Leu	Val	Leu	Leu	Cys	Thr	Phe	Thr	Ala	Thr	Tyr
1				5					10					15	

Ala	Asp	Thr	Ile	Cys	Ile	Gly	Tyr	His	Ala	Asn	Asn	Ser	Thr	Asp	Thr
			20				25						30		

Val	Asp	Thr	Val	Leu	Glu	Lys	Asn	Val	Thr	Val	Thr	His	Ser	Val	Asn
			35			40						45			

Leu	Leu	Glu	Asp	Ser	His	Asn	Gly	Lys	Leu	Cys	Leu	Leu	Lys	Gly	Ile
	50				55					60					

Ala	Pro	Leu	Gln	Leu	Gly	Asn	Cys	Ser	Val	Ala	Gly	Trp	Ile	Leu	Gly
65				70					75			80			

Asn	Pro	Glu	Cys	Glu	Leu	Leu	Ile	Ser	Lys	Glu	Ser	Trp	Ser	Tyr	Ile
				85					90				95		

Val	Glu	Thr	Pro	Asn	Pro	Glu	Asn	Gly	Thr	Cys	Tyr	Pro	Gly	Tyr	Phe
					100			105				110			

Ala	Asp	Tyr	Glu	Glu	Leu	Arg	Glu	Gln	Leu	Ser	Ser	Val	Ser	Ser	Phe
					115				120			125			

13317203002seqlisting.txt

Glu Arg Phe Glu Ile Phe Pro Lys Glu Ser Ser Trp Pro Asn His Thr
130 135 140

Val Thr Gly Val Ser Ala Ser Cys Ser His Asn Gly Lys Ser Ser Phe
145 150 155 160

Tyr Arg Asn Leu Leu Trp Leu Thr Gly Lys Asn Gly Leu Tyr Pro Asn
165 170 175

Leu Ser Lys Ser Tyr Ala Asn Asn Lys Glu Lys Glu Val Leu Val Leu
180 185 190

Trp Gly Val His His Pro Pro Asn Ile Gly Asp Gln Arg Ala Leu Tyr
195 200 205

His Thr Glu Asn Ala Tyr Val Ser Val Val Ser Ser His Tyr Ser Arg
210 215 220

Arg Phe Thr Pro Glu Ile Ala Lys Arg Pro Lys Val Arg Asp Gln Glu
225 230 235 240

Gly Arg Ile Asn Tyr Tyr Trp Thr Leu Leu Glu Pro Gly Asp Thr Ile
245 250 255

Ile Phe Glu Ala Asn Gly Asn Leu Ile Ala Pro Arg Tyr Ala Phe Ala
260 265 270

Leu Ser Arg Gly Phe Gly Ser Gly Ile Ile Thr Ser Asn Ala Pro Met
275 280 285

Asp Glu Cys Asp Ala Lys Cys Gln Thr Pro Gln Gly Ala Ile Asn Ser
290 295 300

Ser Leu Pro Phe Gln Asn Val His Pro Val Thr Ile Gly Glu Cys Pro
305 310 315 320

Lys Tyr Val Arg Ser Ala Lys Leu Arg Met Val Thr Gly Leu Arg Asn
325 330 335

Ile Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe
340 345 350

Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr His
355 360 365

His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Gln Lys Ser Thr
370 375 380

Gln Asn Ala Ile Asn Gly Ile Thr Asn Lys Val Asn Ser Val Ile Glu
385 390 395 400

13317203002seqlisting.txt

Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn Lys Leu
405 410 415

Glu Arg Arg Met Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe Leu
420 425 430

Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn Glu
435 440 445

Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Glu Lys
450 455 460

Val Lys Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly Cys
465 470 475 480

Phe Glu Phe Tyr His Lys Cys Asn Asp Glu Cys Met Glu Ser Val Lys
485 490 495

Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ser Lys Leu Asn
500 505 510

Arg Glu Lys Ile Asp Gly Val Lys Leu Glu Ser Met Gly Val Tyr Gln
515 520 525

Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Leu Val
530 535 540

Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln
545 550 555 560

Cys Arg Ile Cys Ile
565

<210> 23

<211> 1731

<212> DNA

<213> Artificial Sequence

<220>

<223> Influenza DNA H3 Sequence

<400> 23

ggtaccaagg ttgccaccat gaaaaccatc atcgccctga gctacatcct gtgcctggtg 60

ttcgcccaga agctgcccgg caacgacaac agcaccgcca ccctgtgtct gggccaccac 120

gccgtgccc acggcaccat cgtaaaaca atcacaacg accagatcga ggtgaccaac 180

gccaccgagc tggcgcagag cagcagcacc ggcggcatct gcgcacagccc ccaccagatc 240

ctggacggcg agaactgcac cctgatcgac gcccgtctgg gcgcaccctca gtgcgacggc 300

ttccagaaca aaaagtggga cctgttcgtg gagcggagca aggcctacag caactgctac 360

ccctacgacg tgcccgacta cgccagcctg cggagcctgg tggccagcag cggcacccctg 420

13317203002seqlisting.txt

gaattcaaca acgagagctt	caactggacc	ggcgtgaccc	agaacggcac	cagcagcgcc	480	
tgcaagcggc	ggagcaacaa	cagttcttt	tccagactga	actggctgac	ccacctgaag	540
ttcaagtacc	ccgcccgtaa	cgtgaccatg	cccaacaatg	agaagttcga	caagctgtac	600
atctggggcg	tgcaccaccc	cggcaccgac	aatgaccaga	tcagcctgta	cgtccaggcc	660
agcggccgga	tcaccgtgag	caccaagcgg	agccagcaga	ccgtgatccc	caacatcgcc	720
agccggccca	gagtgagaga	catcccccagc	cggatcagca	tctactggac	aatcgtgaag	780
cccggcgaca	tcctgctgat	caactccacc	ggcaacctga	tcgccccccag	gggctacttc	840
aagatcagaa	gcggcaagag	cagcatcatg	cggagcgcacg	cccccatcgg	caagtgcac	900
agcgagtgca	tcaccccaa	tggcagcatc	cccaacgaca	agcccttcca	gaacgtgaac	960
cggatcacct	acggcgctg	ccccagatac	gtgaagcaga	acaccctgaa	gctggccacc	1020
ggcatgcgga	acgtgcccga	gaagcagacc	cggggcatct	tcggcgccat	cgtccggcttc	1080
atcgagaacg	gctgggaggg	catggtggac	gggtggtacg	gcttccggca	ccagaactcc	1140
gagggcatcg	gccaggccgc	cgacctgaag	agcacccagg	ccgccccatcaa	ccagatcaac	1200
ggcaagctga	accggctgat	cggcaagacc	aacgagaagt	tccaccagat	cgaaaaagaa	1260
ttcagcgagg	tggagggccg	gatccaggac	ctggaaaagt	acgtggagga	caccaagatc	1320
gacctgtgga	gctacaacgc	cgagctgctg	gtcgcctgg	aaaaccagca	caccatcgac	1380
ctgaccgaca	gcgagatgaa	caagctgttc	gagcggacca	agaagcagct	gcgggagaac	1440
gccgaggaca	tggcaacgg	ctgcttaag	atctaccaca	agtgcgacaa	cgcctgcac	1500
ggcagcatcc	ggaacggcac	ctacgaccac	gacgtgtacc	gggacgaggc	cctgaacaac	1560
cggttccaga	tcaagggcgt	ggagctgaag	agcggctaca	aggactggat	cctgtggatc	1620
agcttcgcca	tcagctgctt	tctgctgtgc	gtggccctgc	tgggattcat	catgtgggcc	1680
tgccagaagg	gcaacatccg	ctgcaacatc	tgcacatgtat	gactcgagct	c	1731

<210> 24

<211> 566

<212> PRT

<213> Artificial Sequence

<220>

<223> Influenza Protein H3 Sequence

<400> 24

Met	Lys	Thr	Ile	Ile	Ala	Leu	Ser	Tyr	Ile	Leu	Cys	Leu	Val	Phe	Ala	
1				5					10				15			

Gln	Lys	Leu	Pro	Gly	Asn	Asp	Asn	Ser	Thr	Ala	Thr	Leu	Cys	Leu	Gly
				20				25				30			

His	His	Ala	Val	Pro	Asn	Gly	Thr	Ile	Val	Lys	Thr	Ile	Thr	Asn	Asp
							35		40			45			

Gln	Ile	Glu	Val	Thr	Asn	Ala	Thr	Glu	Leu	Val	Gln	Ser	Ser	Ser	Thr
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

50 55 60
13317203002seqlisting.txt

Gly Gly Ile Cys Asp Ser Pro His Gln Ile Leu Asp Gly Glu Asn Cys
65 70 75 80

Thr Leu Ile Asp Ala Leu Leu Gly Asp Pro Gln Cys Asp Gly Phe Gln
85 90 95

Asn Lys Lys Trp Asp Leu Phe Val Glu Arg Ser Lys Ala Tyr Ser Asn
100 105 110

Cys Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser Leu Arg Ser Leu Val
115 120 125

Ala Ser Ser Gly Thr Leu Glu Phe Asn Asn Glu Ser Phe Asn Trp Thr
130 135 140

Gly Val Thr Gln Asn Gly Thr Ser Ser Ala Cys Lys Arg Arg Ser Asn
145 150 155 160

Asn Ser Phe Phe Ser Arg Leu Asn Trp Leu Thr His Leu Lys Phe Lys
165 170 175

Tyr Pro Ala Leu Asn Val Thr Met Pro Asn Asn Glu Lys Phe Asp Lys
180 185 190

Leu Tyr Ile Trp Gly Val His His Pro Gly Thr Asp Asn Asp Gln Ile
195 200 205

Ser Leu Tyr Ala Gln Ala Ser Gly Arg Ile Thr Val Ser Thr Lys Arg
210 215 220

Ser Gln Gln Thr Val Ile Pro Asn Ile Gly Ser Arg Pro Arg Val Arg
225 230 235 240

Asp Ile Pro Ser Arg Ile Ser Ile Tyr Trp Thr Ile Val Lys Pro Gly
245 250 255

Asp Ile Leu Leu Ile Asn Ser Thr Gly Asn Leu Ile Ala Pro Arg Gly
260 265 270

Tyr Phe Lys Ile Arg Ser Gly Lys Ser Ser Ile Met Arg Ser Asp Ala
275 280 285

Pro Ile Gly Lys Cys Asn Ser Glu Cys Ile Thr Pro Asn Gly Ser Ile
290 295 300

Pro Asn Asp Lys Pro Phe Gln Asn Val Asn Arg Ile Thr Tyr Gly Ala
305 310 315 320

Cys Pro Arg Tyr Val Lys Gln Asn Thr Leu Lys Leu Ala Thr Gly Met
Page 38

13317203002seqlisting.txt

325

330

335

Arg Asn Val Pro Glu Lys Gln Thr Arg Gly Ile Phe Gly Ala Ile Ala
340 345 350

Gly Phe Ile Glu Asn Gly Trp Glu Gly Met Val Asp Gly Trp Tyr Gly
355 360 365

Phe Arg His Gln Asn Ser Glu Gly Ile Gly Gln Ala Ala Asp Leu Lys
370 375 380

Ser Thr Gln Ala Ala Ile Asn Gln Ile Asn Gly Lys Leu Asn Arg Leu
385 390 395 400

Ile Gly Lys Thr Asn Glu Lys Phe His Gln Ile Glu Lys Glu Phe Ser
405 410 415

Glu Val Glu Gly Arg Ile Gln Asp Leu Glu Lys Tyr Val Glu Asp Thr
420 425 430

Lys Ile Asp Leu Trp Ser Tyr Asn Ala Glu Leu Leu Val Ala Leu Glu
435 440 445

Asn Gln His Thr Ile Asp Leu Thr Asp Ser Glu Met Asn Lys Leu Phe
450 455 460

Glu Arg Thr Lys Lys Gln Leu Arg Glu Asn Ala Glu Asp Met Gly Asn
465 470 475 480

Gly Cys Phe Lys Ile Tyr His Lys Cys Asp Asn Ala Cys Ile Gly Ser
485 490 495

Ile Arg Asn Gly Thr Tyr Asp His Asp Val Tyr Arg Asp Glu Ala Leu
500 505 510

Asn Asn Arg Phe Gln Ile Lys Gly Val Glu Leu Lys Ser Gly Tyr Lys
515 520 525

Asp Trp Ile Leu Trp Ile Ser Phe Ala Ile Ser Cys Phe Leu Leu Cys
530 535 540

Val Ala Leu Leu Gly Phe Ile Met Trp Ala Cys Gln Lys Gly Asn Ile
545 550 555 560

Arg Cys Asn Ile Cys Ile
565