
(19) United States
US 201202973.54A1

(12) Patent Application Publication (10) Pub. No.: US 2012/0297354 A1
Scheffer (43) Pub. Date: Nov. 22, 2012

(54) METHOD AND APPARATUS FOR
APPROXMLATING DAGONAL LINES IN
PLACEMENT

(76)

(21)

(22)

(63)

Inventor:

Appl. No.:

Filed:

Related U.S. Application Data

Continuation of application No. 1 1/424,840, filed on

Louis K. Scheffer, Campbell, CA
(US)

13/476,921

May 21, 2012

Jun. 16, 2006, now Pat. No. 8,201,128.

125

Publication Classification

(51) Int. Cl.
G06F 7/50 (2006.01)

(52) U.S. Cl. .. 71.6/122
(57) ABSTRACT

Some embodiments of the invention provide a method for
placing circuit modules in an integrated circuit (“IC) layout.
The method computes a placement metric for the IC layout. In
Some embodiments, computing the placement metric
includes partitioning a region the IC layout into several Sub
regions by using a cut graph, where the cut graph is an
approximation of a diagonal cut line. These embodiments
then generate congestion-cost estimates by measuring the
number of nets cut by the cut graph. In some embodiments,
the cut graph is a staircase cut graph. These staircase cut
graphs include several horizontal and vertical cut lines. In
Some embodiments, the cut graph is a cut arc.

110
100

17
'\ . Y 115

Patent Application Publication Nov. 22, 2012 Sheet 1 of 29 US 2012/O297354 A1

s
Yu

w

Patent Application Publication Nov. 22, 2012 Sheet 2 of 29 US 2012/O297354 A1

210

215

205 200

200

Patent Application Publication Nov. 22, 2012 Sheet 3 of 29 US 2012/O297354 A1

i

US 2012/O297354 A1 Nov. 22, 2012 Sheet 4 of 29 Patent Application Publication

S09 () IS SIS SÕS

ç om mål. I I JØKET ue]]B?UBW ç JoÁBT JBQUILIO)OO

Patent Application Publication Nov. 22, 2012 Sheet 5 of 29 US 2012/O297354 A1

5

i
/N /N

Patent Application Publication Nov. 22, 2012 Sheet 6 of 29 US 2012/O297354 A1

D).
Figure 7

/N

Figure 8

US 2012/O297354 A1 Nov. 22, 2012 Sheet 7 of 29 Patent Application Publication

006

S [6 0 | 6 S06

6 om mål. I Suo?ãº I OAA) QUI, JOJ SISII ?ou Qu?OGI

Patent Application Publication Nov. 22, 2012 Sheet 8 of 29 US 2012/O297354 A1

1000
M

1005

1010
From 1080 Select net

1015

1020

Select first pin in the net

Identify region
for the pin.

1025

1030
Add net and pin to the list
for the identified region.

Select next pin in the net

Identify region
for the pin.

1035
From 1070

1040

TO 1045

Figure 10A

Figure 10A
Figure 10: Figure 10B

Patent Application Publication Nov. 22, 2012 Sheet 9 of 29 US 2012/O297354 A1

105()

Add pin to the list for the
identified region.

1045
Does this pin fal

in the same region as
the first pin?

Add pin to the list for
the identified region.

C=1.
Add net and pin to the list
for the identified region.

TO 1035 1

Yes

Add C to CoSt.
Store C as cost of current net

1080

TO 101 ()

Yes

Return cost
1085

Figure 10B

US 2012/O297354 A1 Nov. 22, 2012 Sheet 10 of 29 Patent Application Publication

z I ommãi.{

908. I

NIdxje HNITLODÅ 9]nduu00

gI ommål. I

II ommål. I

Patent Application Publication Nov. 22, 2012 Sheet 11 of 29 US 2012/O297354 A1

141 Ob

1405a

Figure 14

Patent Application Publication Nov. 22, 2012 Sheet 12 of 29 US 2012/O297354 A1

13 Of 29 US 2012/O297354 A1 Nov. 22, 2012 Sheet Publication atent Application

9I 9.1m8?I

Patent Application Publication Nov. 22, 2012 Sheet 14 of 29 US 2012/O297354 A1

s

- -

iT
2. l l

Patent Application Publication Nov. 22, 2012 Sheet 15 of 29 US 2012/O297354 A1

s

s

Patent Application Publication Nov. 22, 2012 Sheet 16 of 29 US 2012/O297354 A1

1905

From the staircase cut graph, identify a first horizontal cut line
Segment having the closest YoUTINE that is greater than YpN

1910

From the staircase cut graph, identify a second horizontal cut
line segment having the closest YoUTLINE that is lower than YPIN

1915

Identify a first vertical cut line segment that is coupled between
the first and Second identified horizontal cut line segments

1920 1925
M

Pin is
in the first region XPIN > XVERTICALCUTLINE

Pin is
in the second region

END

Figure 19

US 2012/O297354 A1 Nov. 22, 2012 Sheet 17 of 29 Patent Application Publication

0Z 0.1m81-IS90C 090€.

| ~ ~ | ¡ ¿ –––––1–––
S [0°C

Patent Application Publication Nov. 22, 2012 Sheet 18 of 29 US 2012/O297354 A1

Patent Application Publication Nov. 22, 2012 Sheet 19 of 29 US 2012/O297354 A1

Patent Application Publication Nov. 22, 2012 Sheet 20 of 29 US 2012/O297354 A1

g
C
er
can

f

i

US 2012/O297354 A1 Nov. 22, 2012 Sheet 21 of 29 Patent Application Publication

/ M
/ / N

|

\
\
w

-Y

Patent Application Publication Nov. 22, 2012 Sheet 22 of 29 US 2012/O297354 A1

f ly
co
S
s

O

s -
>

US 2012/O297354 A1 Nov. 22, 2012 Sheet 23 of 29 Patent Application Publication

SI97

9Z 9.1m81. I

Patent Application Publication Nov. 22, 2012 Sheet 24 of 29 US 2012/O297354 A1

2700
M

^" Receive an initial placement configuration

271 ()

Compute cost C of the initial placement configuration

2715

F = 1

M 2720
From 2765
Or 2780 Select a random move

2725

Identify all the nets affected by the move

2730

Compute current cost for the identified nets

o 2735

Modify the coordinates of
the module or modules Selected for the move

274()
Call the cost-calculating function to gencratc

a cost estimate for the identified nets

2745
Generate a delta cost estimate

To 2750

Figure 27A

Figure 27A
Figure 27: Figure 27B

Patent Application Publication Nov. 22, 2012 Sheet 25 of 29 US 2012/O297354 A1

From 2745

2755
M

Calculate new C by
wS - eS-)

adding delta to current C Y Delta < 0.

No

2750

2770

Revcrt to the previous coordinates
of the affected module or modules

and/or pins, and
revert the costs of the identified nets

Modify the two net lists for the
two Sub-regions defined by the
current cut line by using the two

net lists returned by the
bipartitioning method Increment F by 1.

2780

TO 2720 No-o. To 2720

Yes

Return placement
configuration

2785

Figure 27B

Patent Application Publication Nov. 22, 2012 Sheet 26 of 29 US 2012/O297354 A1

2800
M

Receive an initial placement configuration
2805

2810
Compute cost C of the initial placement configuration.

2815
Set F and N. Set T.

2820
From 2870 A.

Or 2875 Select a random move, and increment N

2825

Identify all the nets affected by the move

2830

Compute current cost for the identified nets

2835
Modify the coordinates of

the module or modules Selected for the move

2840
Call the cost-calculating function to generate

a cost estimate for the identified nets

2845
Generate a delta cost estimate

TO 2850

Figure 28A

Figure 28A
Figure 28B Figure 28:

Patent Application Publication Nov. 22, 2012 Sheet 27 of 29 US 2012/O297354 A1

From 2845

2850

x ------------------------ Yes------------------------C Delta < 02

2860

No

2880

2882

Modify the two nct lists for the
two Sub-regions defined by the
current cut line by using the two 2884

net lists returned by the Picked Number
bipartitioning method < Computed

Probability?

Revert to the previous coordinates of the 2886
affected module or modules and/or pins, and

revert the costs of the identified nets

NO Dr.T. 2888 CSC
Increment F by l.

? & To 2820 2890

Yes

2892

Return placement
configuration

Figure 28B

Patent Application Publication Nov. 22, 2012 Sheet 28 of 29 US 2012/O297354 A1

2.905

Receive an initial placement configuration

Compute cost C of the initial placement configuration

Flag = False. Set PBes and Porrent to initial placement configuration.

291 ()

2915

Initial cost of PBest and Pourrent equals to C
292

Defines Set M of all moves in PCurrent

O

2925

For each move in M,
compute cost of placement if move is made to Pourrent

o 2930 Make move with lowest cost to obtain new Pourrent, and remove move from s
M. Set the cost of Pourrent to the cost of the placement with the move

2935

Yes

2940
Set PBest to Pourrent. Set cost of PBest to cost of No

Pcurrent. Set Flag to True.

Pourrent - PBest
Cost of Pourrent -
Cost of PBest.

Set flag to false

460

Return P.
Figure 29

Patent Application Publication Nov. 22, 2012 Sheet 29 of 29 US 2012/O297354 A1

i

ly
er
C
er

Cd
er

CD Cd
.2 er
& S

er
r

Q)
2. s

C S
s lf g So s s CM > Ns

2 gd
w

D gd
O er
O

d
A

3.

s

US 2012/O297354 A1

METHOD AND APPARATUS FOR
APPROXMATING DAGONAL LINES IN

PLACEMENT

FIELD OF THE INVENTION

0001. Some embodiments of the invention provide a
method for approximating diagonal lines in placement.

BACKGROUND OF THE INVENTION

0002 An integrated circuit (“IC) is a semiconductor
device that includes many electronic components (e.g., tran
sistors, resistors, diodes, etc.). These components are often
interconnected to form multiple circuit components (e.g.,
gates, cells, memory units, arithmetic units, controllers,
decoders, etc.) on the IC. The electronic and circuit compo
nents of ICs are jointly referred to below as “components.”
0003. An IC also includes multiple layers of metal and/or
polysilicon wiring (collectively referred to below as “metal
layers') that interconnect its electronic and circuit compo
nents. For instance, many IC's are currently fabricated with
five metal layers. In theory, the wiring on the metal layers can
be all-angle wiring (i.e., the wiring can be in any arbitrary
direction). Such all-angle wiring is commonly referred to as
Euclidean wiring. In practice, however, each metal layer typi
cally has a preferred wiring direction, and the preferred direc
tion alternates between successive metal layers. Many IC's
use the Manhattan wiring model, which specifies alternating
layers of preferred-direction horizontal and vertical wiring. In
this wiring model, the majority of the wires can only make
90° turns. However, occasional diagonal jogs are sometimes
allowed on the preferred horizontal and vertical layers.
0004. Design engineers design IC's by transforming cir
cuit description of the IC's into geometric descriptions, called
layouts. To create layouts, design engineers typically use
electronic design automation (“EDA) applications. These
applications provide sets of computer-based tools for creat
ing, editing, and analyzing IC design layouts.
0005 EDA applications create layouts by using geometric
shapes that represent different materials and devices on IC's.
For instance, EDA tools commonly use rectangular lines to
represent the wire segments that interconnect the IC compo
nents. These tools also represent electronic and circuit IC
components as geometric objects with varying shapes and
sizes. For the sake of simplifying the discussion, these geo
metric objects are shown as rectangular blocks in this docu
ment.

0006. Also, in this document, the phrase “circuit module'
refers to the geometric representation of an electronic or
circuit IC component by an EDA application. EDA applica
tions typically illustrate circuit modules with pins on their
sides. These pins connect to the interconnect lines.
0007. A net is typically defined as a collection of pins that
need to be electrically connected. A list of all or some of the
nets in a layout is referred to as a net list. In other words, a net
list specifies a group of nets, which, in turn, specify the
interconnections between a set of pins.
0008 FIG. 1 illustrates an example of an IC layout 100.
This layout includes five circuit modules 105, 110, 115, 120,
and 125 with pins 130-160. Four interconnect lines 165-180
connect these modules through their pins. In addition, three
nets specify the interconnection between the pins. Specifi
cally, pins 135,145, and 160 define a three-pin net, while pins
130 and 155, and pins 140 and 150 respectively define two

Nov. 22, 2012

two-pin nets. As shown in FIG. 1, a circuit module (such as
105) can have multiple pins on multiple nets.
0009. The IC design process entails various operations.
Some of the physical-design operations that EDA applica
tions commonly perform to obtain the IC layouts are: (1)
circuit partitioning, which partitions a circuit if the circuit is
too large for a single chip; (2) floorplanning, which finds the
alignment and relative orientation of the circuit modules; (3)
placement, which determines more precisely the positions of
the circuit modules; (4) routing, which completes the inter
connects between the circuit modules; (5) compaction, which
compresses the layout to decrease the total IC area; and (6)
verification, which checks the layout to ensure that it meets
design and functional requirements.
0010 Placement is a key operation in the physical design
cycle. It is the process of arranging the circuit modules on a
layout, in order to achieve certain objectives, such as reducing
layout area, wirelength, wire congestion, etc. A poor place
ment configuration not only can consume a large area, but it
also can make routing difficult and result in poor perfor
aCC.

0011 Numerous EDA placers have been proposed to date.
Certain placers are constrained-optimization placers, which
(1) use cost-calculating functions to generate placement
scores (i.e., placement costs) that quantify the quality of
placement configurations, and (2) use optimization algo
rithms to modify iteratively the placement configurations to
improve the placement scores generated by the cost-calculat
ing functions.
0012. A constrained-optimization placer typically
receives (1) a list of circuit modules, (2) an initial placement
configuration for these modules, and (3) a net list that speci
fies the interconnections between the modules. The initial
placement configuration can be random (i.e., all the modules
can be positioned randomly). Alternatively, the initial con
figuration can be partially or completely specified by a pre
vious physical-design operation, such as the floor planning
0013. A constrained-optimization placer then uses a cost
calculating function to measure the quality of the initial
placement configuration. The cost function generates a metric
score that is indicative of the placement quality. Different
cost-calculating functions measure different placement met
rics. For instance, as further described below, some functions
measure congestion (e.g., measure number of nets intersected
by cut lines).
0014. After calculating the metric cost of the initial place
ment configuration, a constrained-optimization placer uses
an optimization algorithm to modify iteratively the placement
configuration to improve the placement score generated by its
cost-calculating function. Different optimization techniques
modify the placement configuration differently. For instance,
at each iteration, some techniques move one circuit module,
others Swap two modules, and yet others move a number of
related modules. Also, at each iteration, some optimization
techniques (e.g., KLFM and tabu search algorithms) search
for the best move, while others (e.g., simulated annealing and
local optimization) select random moves. In addition, some
techniques (e.g., simulated annealing) accept moves that
make the metric score worse, whereas others (e.g., local opti
mization) do not.
0015. One type of constrained-optimization placement
technique uses min-cut bipartitioning. This technique uses
horizontal and vertical cut lines to partition the IC layout
recursively into Successive pairs of regions. At each level of

US 2012/O297354 A1

the recursion, this technique then moves the circuit modules
between the regions at that level, in order to reduce the num
ber of nets intersected by the cut line for that level. By mini
mizing the net-cut cost at each level of the recursion, these
techniques reduce the wire congestion across the cut lines.
0016 FIGS. 2 and 3 illustrate one example of min-cut
bipartitioning. FIG. 2 illustrates an IC layout 200 that is
partitioned initially in two regions 210 and 215 by a vertical
cut line 205. After defining this initial cut line, the min-cut
bipartitioning method calculates the number of nets that are
intersected by this cut line. This number is indicative of the
wire congestion about this cut line. An optimization algo
rithm (such as KLFM) is then used to modify the initial
placement iteratively (i.e., to move the circuit modules itera
tively), in order to minimize the net-cut cost across the initial
cut line 205.
0017. Once the congestion across the initial cut line is
minimized, the min-cut bipartitioning method is applied
recursively to the two regions created by the initial cut line,
and then it is applied to the resulting regions created by the
succeeding cut lines, and so on. FIG. 3 illustrates the IC
layout 200 after it has been recursively partitioned by seven
cut lines 205 and 220-245.
0018. The above-described placement techniques do not
consider diagonal wiring in calculating their placement-con
figuration cost. Hence, when diagonal routes are selected for
the interconnect lines, these techniques result in poor place
ment configurations, which inefficiently consume the layout
area, utilize too much wire, and/or have poor wire conges
tions. Consequently, there is a need in the art for placers that
consider diagonal wiring in calculating their placement-con
figuration costs.

BRIEF SUMMARY OF THE INVENTION

0019. Some embodiments of the invention provide a
method for placing circuit modules in an integrated circuit
(“IC) layout. The method computes a placement metric for
the IC layout. In some embodiments, computing the place
ment metric includes partitioning a region the IC layout into
several Sub-regions by using a cut graph, where the cut graph
is an approximation of a diagonal cut line. These embodi
ments then generate congestion-cost estimates by measuring
the number of nets cut by the cut graph.
0020. In some embodiments, the cut graph is a staircase
cut graph. These staircase cut graphs include several horizon
tal and vertical cut lines. In some embodiments, the cut graph
is a cut arc.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0021. The novel features of the invention are set forth in
the appended claims. However, for purpose of explanation,
several embodiments of the invention are set forth in the
following figures.
0022 FIG. 1 illustrates an example of an IC layout.
0023 FIG. 2 illustrates an IC layout that is partitioned

initially in two regions by a vertical cut line.
0024 FIG.3 illustrates the IC layout of FIG. 2 after it has
been recursively partitioned by seven cut lines.
0025 FIG. 4 illustrates the wiring architecture of an IC
layout that not only uses diagonal lines, but also uses hori
Zontal and Vertical lines.

Nov. 22, 2012

0026 FIG. 5 illustrates one manner of implementing the
wiring architecture illustrated in FIG. 4.
0027 FIG. 6 illustrates an IC layout that has been recur
sively partitioned into a number of regions by only diagonal
cut lines.
(0028 FIGS. 7 and 8 illustrate two IC layouts that are
recursively partitioned by combinations of diagonal, horizon
tal, and vertical cut lines.
0029 FIG. 9 is a process that defines a cut line that parti
tions a layout region into two smaller regions.
0030 FIG. 10 illustrates a process that generates a con
gestion cost estimate, and partitions a set of nets, about a cut
line.
0031 FIGS. 11, 12, and 13 illustrate three processes for
identifying a region for a pin.
0032 FIG. 14 illustrates implementing a staircase cut
graph to approximate a diagonal cut line.
0033 FIG. 15 illustrates Manhattan cut line segments of a
staircase cut graph with various lengths.
0034 FIG. 16 illustrates implementing staircase cut
graphs to emulate partitioning an IC layout using diagonal cut
lines.
0035 FIG. 17 illustrates implementing staircase cut
graphs with various lengths to emulate partitioning an IC
layout using diagonal cut lines.
0036 FIG. 18 illustrate an IC layout that is recursively
partitioned by combinations of diagonal, horizontal, and Ver
tical and staircase cut graphs.
0037 FIG. 19 illustrates a process for identifying a region
for a pin.
0038 FIG. 20 illustrates a staircase cut graph configura
tion and pin.
0039 FIG. 21 illustrates an example where staircase cut
graphs provides an advantage over a diagonal cut line.
0040 FIG. 22 illustrates the use of combination of a stair
case cut graph and a diagonal cut line.
0041 FIG. 23 illustrates implementing a cut arc in for
partitioning an IC layout.
0042 FIG. 24 illustrates using a cut arc to implement a
diagonal cut line for partitioning an IC layout.
0043 FIG. 25 illustrates another cut arc to implement a
diagonal cut line for partitioning an IC layout.
0044 FIG. 26 illustrates another process for identifying a
region for a pin.
0045 FIG. 27 illustrates one example of a local optimiza
tion process.
0046 FIG. 28 illustrates one example of a simulated
annealing process.
0047 FIG. 29 illustrates one example of a KLFM process.
0048 FIG. 30 illustrates a computer system used by some
embodiments of the invention.

DETAILED DESCRIPTION OF THE INVENTION

0049. In the following description, numerous details are
set forth for purpose of explanation. However, one of ordinary
skill in the art will realize that the invention may be practiced
without the use of these specific details. In other instances,
well-known structures and devices are shown in block dia
gram form in order not to obscure the description of the
invention with unnecessary detail.
0050. Some embodiments of the invention provide a
method for placing circuit modules in an integrated circuit
(“IC) layout. The method computes a placement metric for
the IC layout. The placement metric takes into account diago

US 2012/O297354 A1

nal routes. In some embodiments, computing the placement
metric includes partitioning a region the IC layout into several
Sub-regions by using a cut graph, where the cut graph is an
approximation of a diagonal cut line. These embodiments
then generate congestion-cost estimates by measuring the
number of nets cut by the cut graph.
0051. In some embodiments, the cut graph is a staircase
cut graph. These staircase cut graphs include several horizon
tal and vertical cut lines. In some embodiments, the cut graph
is a cut arc.
0052 I. Diagonal Wiring Architecture
0053 Some embodiments of the invention calculate the
cost of placement configurations for IC layouts that have
diagonal interconnect lines (i.e., diagonal wiring). In some of
these embodiments, the IC layouts not only have diagonal
interconnect lines, but also have horizontal and vertical inter
connect lines.
0054 As used in this document, an interconnect line is
"diagonal” if it forms an angle other than Zero or ninety
degrees with respect to one of the sides of the layout bound
ary. On the other hand, an interconnect line is “horizontal or
“vertical” if it forms an angle of 0° or 90° with respect to one
of the sides of the layout.
0055 FIG. 4 illustrates the wiring architecture (i.e., the
interconnect-line architecture) of an IC layout 400 that uti
lizes horizontal, Vertical, and 45' diagonal interconnect lines.
In this document, this architecture is referred to as the octago
nal wiring model, in order to convey that an interconnect line
can traverse in eight separate directions from any given point.
0056. The horizontal lines 405 are the lines that are paral

lel (i.e., are at 0°) to the x-axis, which is defined to be parallel
to the width 410 of the layout. The vertical lines 415 are
parallel to the y-axis, which is defined to be parallel to the
height 420 of the layout. In other words, the vertical intercon
nect lines 415 are perpendicular (i.e., are at 90°) to the width
of the IC layout. In this architecture, one set 425 of diagonal
lines are at +45° with respect to the width of the IC layout,
while another set 430 are at -45 with respect to the width of
the IC layout.
0057 FIG. 5 illustrates one manner of implementing the
wiring architecture illustrated in FIG. 4 on an IC. Specifically,
FIG. 5 illustrates five metal layers for an IC. The first three
layers 505-515 are Manhattan layers. In other words, the
preferred direction for the wiring in these layers is either the
horizontal direction or the vertical direction. The preferred
wiring direction in the first three layers typically alternates so
that no two consecutive layers have the same direction wiring.
However, in some cases, the wiring in consecutive layers is in
the same direction.
0058. The next two layers 520 and 525 are diagonal layers.
The preferred direction for the wiring in the diagonal layers is
+45°. Also, as in the first three layers, the wiring directions in
the fourth and fifth layer are typically orthogonal (i.e., one
layer is +45° and the other is -45), although they do not have
to be.

0059 Even though some embodiments of the invention
are described below to work with IC layouts that utilize the
above-described octagonal wiring model, one of ordinary
skill will understand that the invention can be used with any
wiring model. For instance, the invention can be used with
wiring architectures that are strictly diagonal (i.e., that do not
have horizontal and vertical preferred direction wiring).
0060 Also, some embodiments are used with non-45°
diagonal wiring. For example, Some embodiments are used

Nov. 22, 2012

with IC layouts that have horizontal, vertical, and +120°
diagonal interconnect lines. In this document, such a wiring
architecture is referred to as the hexagonal wiring model, in
order to convey that an interconnect line can traverse in six
separate directions from any given point.
0061 II. Min-Cut Bipartitioning with Diagonal Lines
0062 A. Diagonal Cut Lines
0063 Some embodiments of the invention are min-cut
bipartitioning techniques that utilize diagonal cut lines. As
further described below by reference to FIGS. 6-8, some
embodiments only utilize diagonal cut lines, while other
embodiments use diagonal, horizontal, and vertical cut lines.
As will be further described below in Section II.A and B,
Some embodiments utilize approximations of diagonal cut
lines.
0064. The cut lines are used to partition the IC layout
recursively into Successive pairs of regions. After defining the
cut line at each level of the recursion, the invention's min-cut
bipartitioning method calculates the number of nets that are
intersected by the cutline of the particular level. This number
is indicative of the wire congestion about this cut line. Next,
at each recursion level, an optimization technique is used to
move the circuit modules between the regions at that level, in
order to reduce the number of nets intersected by the cut line
of that level. The minimization of the net-cut costateach level
of the recursion reduces wire congestion across the cut line at
that level.
0065. The invention's min-cut bipartitioning technique
can be used with IC layouts that only use the Manhattan
wiring model (i.e., IC layouts that only have preferred hori
Zontal and vertical direction wiring). In other instances, the
invention’s min-cut bipartitioning technique is used with IC
layouts that have diagonal interconnect lines. In some of these
instances, the diagonal cut lines are in the same direction as
Some or all of the diagonal interconnect lines. For instance,
for IC layouts that use the octagonal wiring model (i.e., that
use horizontal, vertical, and 45' diagonal lines), some
embodiments use 45' diagonal cut lines.
0066 FIG. 6 illustrates an IC layout 600 that has been
recursively partitioned into a number of regions by only
diagonal cut lines. Such a strict diagonal-partitioning
approach is typically used when the IC layout uses only
diagonal interconnect lines. However, Such an approach can
be taken when the IC layout uses diagonal and Manhattan
interconnect lines.
0067 FIGS. 7 and 8 respectively illustrate two IC layouts
700 and 800 that are recursively partitioned by combinations
of diagonal, horizontal, and vertical cut lines. In FIG. 7,
diagonal cut lines are used at all levels of the recursion. On the
other hand, in FIG. 8, the diagonal cut lines are only used at
the higher recursion levels, and Manhattan cut lines are used
at the lower levels of the recursion.
0068. In other words, the partitioning scheme illustrated in
FIG. 8 stops using diagonal cut lines once it reaches some of
the lower levels of the recursion process. Such a partitioning
scheme (i.e., a scheme that stops using diagonal cut lines at
the lower recursion levels) is useful in connection with IC
layouts that have their diagonal layers as their top metal
layers. Such a partitioning scheme is useful for Such layouts
because the first set of cut lines reduce the congestion of
longer wires, and the longer wires are likely to be diagonal
wires. In octagonal wiring models that have the diagonal
layers as the top metal layers, the diagonal wires tend to be
long, because otherwise it would be wasteful to incur the

US 2012/O297354 A1

delay costs associated with the Vias necessary for performing
the routing on the higher layers.
0069 FIGS. 9 and 10 illustrate two processes 900 and
1000 that a placer can use to perform min-cut bipartitioning
with diagonal cut lines. The placer can repeatedly use these
processes 900 and 1000 to minimize congestion across the IC
layout. Specifically, the placer can repeatedly perform the
process 900 of FIG. 9 to define a series of cut lines that
recursively partition the IC layout into smaller and smaller
regions. After defining the cut line at a particular level of the
recursion, the placer can then use the process 1000 of FIG. 10
to obtain congestion cost estimates, and to partition nets,
across the cut line of that level.
0070. The process 900 starts wheneverit receives the coor
dinates of a region of the IC layout. As shown in FIG. 9, this
process initially defines (at 905) a horizontal, vertical, or
diagonal cut line that divides the received region into two
sub-regions. After defining the cut line, the process 900
defines (at 910) two regions created by the cut line. Some
embodiments use the following convention to define the
regions: (1) when the cut line is horizontal or diagonal, the
first region is above the cut line, while the second region is
below the cutline, and (2) when the cutline is vertical, the first
region is to the right of the cut line, and the second region is
to the left of the cut line.
(0071 Finally, the process 900 initializes two net lists for
the two regions created by the cut line defined at 905. As
further described below, the first time the process 1000 is
performed for all the nets in the received region, the process
1000 adds the nets in this received region and the pins of these
net to these two netlists. Also, as further described below, the
placer and the process 1000 might remove and add nets and
pins to these two net lists during the optimization process.
0072 FIG. 10 illustrates a process 1000 that a placer can
use to partition a set of nets, and to calculate the congestion
cost of these nets, about a cut line that can be diagonal. The
process 1000 starts whenever it receives (1) a list of nets, and
(2) a cut line for partitioning the nets.
0073. Each net on the received net list has several circuit
elements associated with it (i.e., each net is defined to include
several circuit elements). In other words, the nets on the net
list specify the interconnection between some orall the circuit
elements in the IC layout. In the embodiments described
below, the circuit elements associated with the nets are the
pins of the circuit modules in the IC layout. Other embodi
ments, however, treat the circuit modules as the circuit ele
ments of the nets. Some of these embodiments treat the circuit
modules as the net circuit elements and obviate the need to
distinguish between the different pin locations, by assuming
that the pins of each module are all located at uniform loca
tions (e.g., located at the origin of the modules).
0074. In some embodiments, an initial placement configu
ration is defined by the positions of the net circuit elements
before the process 1000 is performed for the first cut line. In
Some of these embodiments, the initial placement configura
tion is random. In other embodiments, a previous physical
design operation, Such as the floorplanning, partially or com
pletely specifies the initial placement configuration. Other
embodiments use another placer to specify the initial place
ment configuration, and then use processes 900 and 1000 to
optimize the placement configuration for a wiring architec
ture that uses diagonal wiring.
0075. As shown in FIG. 10, the process 1000 initially sets
(at 1005) the congestion cost (Cost) equal to 0. The process

Nov. 22, 2012

then selects (at 1010) a net from the received net list. It then
sets (at 1015) a net-cut variable (C) to 0. The process next
selects (at 1020) a first pin of the selected net. After selecting
the pin, the process determines (at 1025) which of the two
regions defined by the cut line contains the pin. When diago
nal, horizontal or vertical cut lines are used, the process 1000
identifies the region for the pin by using one of three pro
cesses, which are illustrated in FIGS. 11, 12, and 13.
(0076. The process 1000 calls the process 1100 of FIG. 11
when the cut line is horizontal. As shown in FIG. 11, the
process 1100 determines (at 1105) whether the y-coordinate
of the pin is greater than the y-coordinate of the horizontal cut
line. If so, the process specifies (at 1110) that the pin is in the
first region defined by the cut line. Otherwise, the process
specifies (at 1115) that the pin is in the second region defined
the cut line.

(0077. The process 1000 uses the process 1200 of FIG. 12
when the cut line is vertical. As shown in FIG. 12, the process
1200 determines (at 1205) whether the x-coordinate of the pin
is greater than the x-coordinate of the vertical cut line. If so,
the process specifies (at 1210) that the pin is in the first region
defined by the cut line. Otherwise, the process specifies (at
1215) that the pin is in the second region defined the cut line.
(0078. The process 1000 calls the process 1300 of FIG. 13
when the cut line is diagonal. As shown in FIG. 13, the
process 1300 inserts (at 1305) the x-coordinate of the pin in
the linear equation (y-mx+b) that represents the cut line. This
equation expresses the y-coordinate value of the cut line in
terms of its slope (m), x-coordinate, and y-intersect (b). The
process then determines (1310) whether the derivedy-value
of the diagonal line at the inserted X-location is greater than
the y-coordinate of the pin. If not, the process specifies (at
1315) that the pin is in the first region defined by the cut line.
Otherwise, the process specifies (at 1320) that the pin is in the
second region defined the cut line.
0079. As will be further described below in Section II.A
and B, some embodiments of the invention utilize an approxi
mation of a diagonal cut line to define Sub-regions. In
instances where such approximations are implemented, the
process 1000 may identify the region for the pin by the two
processes illustrated in FIGS. 19 and 26. These two processes
will also be further described below in Section II.A and B.

0080. After identifying the region for the pin, the process
adds (at 1030) the selected net and pin to the net list for the
identified region. The process then selects (at 1035) the next
pin in the net. At 1040, the process identifies the region for the
pin selected at 1035 by calling the same processes described
above for 1025.

I0081. The process then determines (at 1045) whether the
current pin (i.e., the pin selected at 1035) falls in the same
region as the first pin. If so, the process adds the current pinto
the net previously added (at 1030) to the net list for the
identified region. The process then transitions to 1070, which
will be described below.

I0082 On the other hand, if the process determines (at
1045) that the current pin does not fall in the same region as
the first pin, the process determines whether the intersection
variable C equals 0. If so, the process realizes that it has
detected a net cut. Hence, it changes the value of the inter
section variable C to 1, and adds the net and the current pinto
the net list for the identified region of the current pin. How
ever, if the process determines (at 1055) that the intersection
variable is not 0, the process realizes that it has previously

US 2012/O297354 A1

detected the net cut. Therefore, the process simply adds (at
1060) the current pin to the net list for the identified region.
I0083. From 1060 and 1065, the process transitions to
1070, where it determines whether it has examined the last
pin in the current net. If not, the process transitions back to
1035 to examine the next pin in the net. Otherwise, the pro
cess (at 1075) (1) adds the intersection cost C to the conges
tion cost (Cost), and (2) stores the intersection cost C as the
cost of the current net.
I0084. Next, the process determines (at 1080) whether it
has examined the last net. If not, the process returns to 1010
to (1) select another net, (2) partition this net about the cut
line, and (3) determine whether this net crosses the cut line.
Otherwise, the process returns (at 1085) (1) the congestion
cost of the current placement configuration, and (2) the two
net lists that represent the partitioning of the received net list
about the received cut line.
0085. As mentioned above, a placer can repeatedly per
form the process 900 of FIG.9 to define a series of cut lines
that recursively partition the IC layout into smaller and
Smaller regions. At each level of the recursion, the placer can
then use the process 1000 of FIG. 10 to obtain congestion cost
estimate, and to partition nets, across the cut line of that level.
I0086 Specifically, for each recursion level, the placer ini
tially supplies the process 1000 with (1) the cut line for that
level, and (2) a list of all the nets in that level's region. The
process 1000 then (1) partitions the nets in that region about
the cut line (i.e., as described above, the process adds the nets
and their correspondingpins to the appropriate netlists for the
Sub-regions created by the cut line), and (2) calculates a cost
for the congestion across the cut line.
0087. After receiving from the process 1000 the conges
tion cost of the initial net configuration within a recursion
level’s region, the placer then uses an optimization algorithm
that iteratively modifies the net configuration within this
region to improve the congestion cost generated by the pro
cess 1000. In some embodiments, the optimization process
uses the process 1000 to calculate the placement-configura
tion cost for each possible iterative modification to the place
ment configuration. This is further described below in Section
III, which presents several Suitable optimization techniques.
0088 B. Staircase Cut Graph as an Approximation of a
Diagonal Cut Line
0089. As mentioned above, some embodiment use
approximations of diagonal cut lines to implement min-cut
bipartitioning. In some embodiments, a staircase cut graph
that includes vertical and horizontal cut line segments may be
used to approximate Such diagonal cutlines. In some embodi
ments, such approximations may be used by placer to con
sider diagonal cut lines.
0090 FIG. 14 illustrates how such a staircase cut graph
may be used to approximate diagonal cut lines. As shown in
this figure, the diagonal cut graph 1400 can be divided into a
set of vertical and horizontal cut line segments 1405-1410. As
further shown in this figure, different embodiments may use
different lengths for the vertical and horizontal cut line seg
ments to approximate a diagonal cut line. FIG. 14 also illus
trates that as the length of the vertical and horizontal cut line
segments 1405-1410 become shorter relative to the length of
the diagonal cut line 1400, the set of vertical and horizontal
cut line segments 1405-1410 more accurately approximates
the diagonal cut line 1400.
0091. In addition to using different lengths for the vertical
and horizontal cutline segments, some embodiments may use

Nov. 22, 2012

different combinations of length for the vertical and horizon
tal cut line segments. As shown in FIG. 15, the use of different
length combinations may be used to approximate diagonal
cut lines that are not 45 degree in Some embodiments.
0092 FIG. 16 illustrates an IC layout 1600 that has been
recursively partitioned into a number of regions by a staircase
cut graph. Specifically, this figure illustrates how the IC lay
out 600 of FIG. 6, which only used diagonal cut lines, can be
similarly produced by only using staircase cut graphs that are
approximations of diagonal cut lines. In some embodiments,
Some of the vertical and horizontal cut line segments of the
staircase cut graph have different lengths, as shown in FIG.
17.
0093. As previously mentioned above and shown in FIGS.
7 and 8, different embodiments may use diagonal cut lines
during some or all of the levels of recursion. Similarly, some
embodiments may use approximations of diagonal cut lines
during some or all of the levels of recursion. Moreover,
approximations of diagonal cut lines may be used in combi
nation with other cut lines. FIG. 18 illustrates an IC layout
1800 that is recursively partitioned by combinations of diago
nal, horizontal, Vertical and staircase cut graphs. In some
embodiments, the use of staircase cut graphs can be used at all
levels of the recursion, while the use of staircase cut graphs
may only be used for a particular level of the recursion in
other embodiments.
0094. In some embodiments, the processes of FIGS. 9 and
10 may be used in conjunction with a staircase cut graph. In
such instances, the process 1000 calls the process 1900 of
FIG. 19 to identify the region for the pin when the current cut
graph is a staircase cut graph. As shown in FIG. 19, from the
staircase cut graph, the process 1900 identifies (at 1905) a first
horizontal cut line segment with the closesty-coordinate that
is higher than the y-coordinate of the pin (i.e., horizontal cut
line segment with the lowest y-coordinate value greater than
y-coordinate value of the pin).
0.095 From the staircase cut graph, the process 1900 iden

tifies (at 1905) a second horizontal cut line segment with the
closesty-coordinate that is lower than the y-coordinate of the
pin (i.e., horizontal cut line segment with the highest y-coor
dinate value that is less than the y-coordinate value of the pin).
(0096. The process then identifies (at 1915) a vertical cut
line segment from the staircase cut graph that is coupled
between the two identified horizontal cut line segments (at
1905 and 1910). The process 1900 determines (at 1920)
whether the X-coordinate of the pin is greater than the X-co
ordinate of the identified vertical cut line segment. If so, the
process specifies (at 1925) that the pin is in the first region
defined and ends. Otherwise, the process specifies (at 1930)
that the pin is in the second region and ends.
(0097 Thus, with reference to the staircase cut graph 2000
and pin 2005 shown in FIG. 20, the process identifies (at
1905) the horizontal cut line segment 2015. The process then
identifies (at 1910) the horizontal cut line segment 2025.
Based on these two identified cut line segments, the process
identifies (at 1915) the vertical cut line segment 2020. Next,
the process determines whether the x-coordinate of the pin
2005 is greater than the x-coordinate of the vertical cut line
segment 2020. In this particular example, it is not. Therefore,
the process specifies (at 1930) that the pin 2005 is in the
second region.
0098. Additionally, some embodiments may first identify
two vertical cut line segments (e.g., 2040 and 2050) and based
on these two vertical cut line segments, identify a horizontal

US 2012/O297354 A1

cut line segment (e.g., 2045) coupled between the two iden
tified vertical cutlines segments. The process then determines
whether the y-coordinate of the pin (e.g., pin 2005) is greater
than the y-coordinate of the identified horizontal cut line
segment (e.g., cut line segment 2045). If so, the pin is speci
fied to be in the first region. If not, the pin is specified to be in
the second region.
0099. One advantage of using staircase cut graphs is that
they are more accurate in determining on which side a pin is
located on in certain circumstances. FIG. 21 illustrates an
example where staircase cut graphs provides such an advan
tage. As shown in this figure, the IC layout 2100 includes an
L block 2105 that is fixed (i.e., cannot be moved). As further
shown in this figure, a diagonal cut line 2110 partitions the IC
layout 2100 such that the diagonal cut line 2110 goes through
the L block 2105. This partitioning process creates a region
2115 (triangular region defined by the cut line 2110 and the
interior corner of the L block 2105) where the partitioning
process would compute the region 2115 to be on the left side
of the cut line 2110. However, because the region 2115 is
surrounded by the L block 2105, any routing from a pin (e.g.,
pin 2120) on the left side of the diagonal cut line 2110 to a pin
(e.g., 2125) in the region 2115 would entail going through the
right side of the diagonal cut line 2110.
0100. As illustrated in FIG. 22, a combination of a diago
nal cut line 2205 and a staircase cut graph 2210 may be used
to partition an IC layout to partition around the L block 2105
in some embodiments. When Such a combination is used, the
regions around an L block can be properly computed to be on
the correct side of a cut line or cut graph. For example, pin
2125 can be properly computed to be on the right side of the
diagonal cut line 2205 and staircase cut graph 2210.
0101 C. Cit Arc as an Approximation of a Diagonal Cut
Line
0102 Some embodiments of the invention may use other
cut graphs to approximate a diagonal cut lines. For example,
Some embodiments use cut arcs. An arc is defined as a seg
ment along the circumference of a circle.
0103 FIG. 23 illustrates how a cut arc can be used to
approximate a diagonal cut line. Specifically, this figure illus
trates how a cut arc may be implemented in a min cut bipar
titioning process to emulate a min cut bipartitioning process
that uses diagonal cut lines.
0104. As shown in this figure, the IC layout 2300 includes
diagonal cut lines 2305-2315, cut arc 2320, and pin 2325. As
further shown in this figure, the cut arc 2325 is defined by the
circle 2330 (only partial circle is shown) having a center 2335
and a radius 2340.

0105 Different embodiments may use different sized cut
arcs. FIGS. 24 and 25 illustrate two different size cut arcs are
implemented on the same IC layout 2400. As shown in FIG.
24, the IC layout 2400 includes a diagonal cut line 2402, pins
2405, 2407 and 2408. This figure further illustrates that pins
2405 and 2407 are above the diagonal cut line 2402. There
fore, these pins 2405 and 2407 are in the first region. On the
other hand, the pin 2408 is below the diagonal cut line 2402
and therefore is in the second region.
01.06 As further shown in FIG. 24, if the cut arc 2417 is
used for partitioning the IC layout (instead of using the diago
nal cut line 2402), pin 2407 would be in the first region
(region outside the radius of the circle) and pins 2405 and
2408 would be in the second region (region inside the radius
of the circle). This result is different than what was specified
using the diagonal cut line 2402. To achieve results that are

Nov. 22, 2012

more accurate (or in line with the diagonal cut line 2402), a
circle with a larger radius may be used. This is because as the
radius of circle increases, the arc of circle becomes more like
a diagonal line. FIG. 25 illustrates the use of such a larger
circle 2510 (partial circle shown). As shown in this figure, the
cut arc 2505 is a closer approximation of the diagonal line
2402 than the cut arc 2405. Moreover, when a process uses
this cut arc 2505, the pin 2405 and 2407 are in the first region,
whereas the pin 2408 is in the second region. This result is the
same as one achieved using the diagonal cut line 2402. As
Such, a cut arc may be used to accurately approximate a
diagonal cut line if the radius of the circle that defines the cut
arc is sufficiently large.
0107. In instances whena cut arc is used for partitioning an
IC layout, some embodiments, use the process 2600 of FIG.
26 to identify the region for the pin. Accordingly, when the
processes of FIGS. 9 and 10 use a cut arc to partition an IC
layout, the process 1000 may call the process 2600 to identify
the region for the pin.
0108. As shown in FIG. 26, the process 2600 computes
(2605) a distance between the particular pin the IC layout and
the center of the circle that defines the cut arc. Some embodi
ments use Equation (F) to determine such a distance (“Dp').

where Xi and Yi are the coordinates of the pin and, X, and
Y are the coordinates of the center of the circle that defines
the cut arc. The process determines (at 2610) whether the
distance (“Dp') between the pin and the center of the circle is
greater than the radius of the circle. Thus, in reference to the
IC layout shown in FIG. 24, the process determines (at 2610)
whether the distance 2420 between the center of the circle
2410 and pin 2405 is greater than the radius 2415 of the circle
2410. If the distance (“Dp) is greater than the radius 2415,
the process specifies (at 2615) that the pin is in the first region
defined by the cut arc and ends. Otherwise, the process speci
fies (at 2620) that the pin 2405 is in the second region defined
by the cut arc and ends.
0109 III. Optimization Techniques
0110. As mentioned above, the invention's cost-calculat
ing methods can be used with a variety of optimization tech
niques. Three Suitable optimization techniques are described
below. These three are: (1) local optimization, (2) simulated
annealing, and (3) KLFM.
0111 A. Local Optimization
0112 Local optimization is a technique that iteratively
modifies the placement configuration to improve the place
ment score generated by a cost-calculating function. At each
iteration, this technique might move one circuit module, Swap
two modules, or move a number of related modules, etc. Also,
at each iteration, this technique randomly selects moves. In
addition, this techniques does not accept moves that make the
calculated cost worse.

0113 FIG. 27 illustrates one example of a local optimiza
tion process 2700. This process initially receives (at 2705) an
initial placement configuration. In some embodiments, the
process receives the initial configuration by receiving a list of
circuit modules, a starting placement configuration for these
modules, and a net list that specifies the interconnection
between these modules.
0114. After receiving the initial placement configuration,
the process 2700 calls (at 2710) a cost-calculating method,
like one of the cost-calculating methods described above in

Equation (F)

US 2012/O297354 A1

Section II. In response, this cost-calculating method com
putes and returns the cost (C) of the initial placement con
figuration.
0115. When the process 2700 calls the cost-calculating
method, it supplies this method with a net list that specifies
the initial placement configuration (i.e., a net list that identi
fies all the nets in the IC layout before any modifications to the
positions of the modules in the layout).
0116. Also, when the cost-calculating method is the bipar
titioning process 1000 described above, the process 2700
calls the process 900 before calling the process 1000. As
described above, the process 900 defines a cut line for the
current IC region being optimized by the optimization pro
cess 2700. The process 2700 supplies the congestion-calcu
lating process 1000 with this cut line along with the initial
configuration's net list, in order to receive from the process
1000 the net-cut congestion cost (C) of the initial placement
configuration. From the process 1000, the process 2700 also
receives two net lists that specify the nets and the pins in the
two regions defined by the current cut line.
0117. After obtaining cost of the initial placement con
figuration at 2710, the process sets (at 2715) a futile-iteration
counter (F) equal to 1. As further described below, the process
uses counter to determine whether it needs to terminate its
operation as it has performed a predetermined number of
iterations without improving the score.
0118. The process then selects (at 2720) a random move
that requires the modification of the coordinates of one or
more circuit modules in the IC layout. The process next
identifies (at 2725) all the nets affected by this random move.
Depending on how nets are defined, these nets are the nets that
either (1) contain the circuit module or modules selected for
the move, or (2) contain the pins of these circuit modules.
0119. At 2730, the process computes the current cost for
the nets identified at 2725. As mentioned above, the cost
calculating process 1000 store the cost for each net. Hence,
the process 2700 can compute the current cost for the identi
fied nets by Summing the stored cost values for these nets.
0120 According to the selected random move, the process
2700 modifies (at 2735) the coordinates of each circuit mod
ule and/or pin affected by the move. In other words, at 2735.
the process makes the move by modifying the coordinates of
the affected circuit module or modules and/or their associated
pins to match the random location identified at 2720.
0121 The process then calls the cost-calculating process
and Supplies this process with a net list that specifies the
identified nets that are affected by the selected move. This net
list specifies the configuration of the identified nets after the
selected move, since the process 2700 modified the coordi
nates of the affected circuit modules and/or pins at 2735. In
the embodiments where the cost-calculating process is the
bipartitioning process 1000, the process 2700 supplies this
process 1000 with the cut line for the current IC region being
optimized, along with the list of the identified nets.
0122. In response to the call at 2740, the cost-calculating
method computes and returns the cost (C) for the configura
tion of the identified nets after the potential modification.
When the cost-calculating method is the bipartitioning pro
cess 1000, this process also partitions the identified nets about
the cut line, and returns two netlists that reflect this partition
1ng.
(0123. After receiving (at 2740) the cost for the identified
nets after the potential modification, the process generates (at
2745) a delta cost by subtracting the cost for the identified

Nov. 22, 2012

nets after the potential modification (i.e., the cost calculated at
2740) from the cost for the identified nets before the potential
modification (i.e., the cost calculated at 2730)
(0.124. At 2750, the process determines whether the delta
cost is less than Zero. If so, the selected move reduces the
placement cost, and the process decides to retain the move.
Specifically, when the delta cost is less than Zero, the process
sets (at 2755) the cost of the current placement configuration
(i.e., the placement configuration with the selected move)
equal to the cost of the previous placement configuration (i.e.,
the placement configuration without the selected move) plus
the delta cost. The delta cost is negative and thereby reduces
the overall placement configuration cost C.
(0.125. The process 2700 then resets (at 2760) the futile
iteration counter F to 1. The process 2700 uses (at 2765) the
two net lists returned by the method 1000 at 2740 to modify
the two netlists for the two sub-regions defined by the current
cut line. The process then returns to 2720 to select another
random move.

0.126 If the process determines (at 2750) that the delta cost
is not less than Zero, the process realizes that the selected
move does not reduce the placement cost. Consequently, the
process changes (at 2770) the coordinates of the affected
circuit module or modules and/or their corresponding pins
back to their original coordinates before the move (i.e., their
coordinates before 2735). The process also changes the cost
of each of the identified nets back to its original value (i.e.,
back to the cost stored for the net before 2740).
I0127. The process then increments (at 2775) the futile
iteration counter by one. The process then determines (at
2780) whether the futile-iteration count equals a pre-specified
maximum. If not, the process returns to 2720 to select another
random move. Otherwise, the process realizes (at 2780) that
it has performed a pre-specified maximum number of itera
tions without improving the placement score. Hence, the
process returns (at 2785) a net list specifying the current
placement configuration, and then ends.
I0128 B. Simulated Annealing
I0129. Simulated annealing is an optimization technique
that iteratively modifies the placement configuration to
improve the placement score generated by a cost-calculating
function. At each iteration, this technique might move one
circuit module, Swap two modules, move a number of related
modules, etc. Also, at each iteration, this technique randomly
selects moves. It also accepts moves that make the calculated
cost worse, but its tolerates fewer bad moves as the number of
iterations increases.

0.130 FIG. 28 illustrates one example of a local optimiza
tion process 2800. This process initially receives (at 2805) an
initial placement configuration. In some embodiments, the
process receives the initial configuration by receiving a list of
circuit modules, a starting placement configuration for these
modules, and a net list that specifies the interconnection
between these modules.

I0131. After receiving the initial placement configuration,
the process 2800 calls (at 2810) a cost-calculating method,
like one of the cost-calculating methods described above in
Section II. In response, this cost-calculating method com
putes and returns the cost (C) of the initial placement con
figuration.
0.132. When the process 2800 calls the cost-calculating
method, it supplies this method with a net list that specifies
the initial placement configuration (i.e., a net list that identi

US 2012/O297354 A1

fies all the nets in the IC layout before any modifications to the
positions of the modules in the layout).
0.133 Also, when the cost-calculating method is the bipar
titioning process 1000 described above, the process 2800
calls the process 900 before calling the process 1000. As
described above, the process 900 defines a cut line for the
current IC region being optimized by the optimization pro
cess 2800. The process 2800 supplies the congestion-calcu
lating process 1000 with this cut line along with the initial
configuration's net list, in order to receive from the process
1000 the net-cut congestion cost (C) of the initial placement
configuration. From the process 1000, the process 2800 also
receives two net lists that specify the nets and the pins in the
two regions defined by the current cut line.
0134. After obtaining cost of the initial placement con
figuration at 2810, the process sets (at 2815) a futile-iteration
counter (F) equal to 1. As further described below, the process
uses counter to determine whether it needs to terminate its
operation as it has performed a predetermined number of
iterations without improving the score.
0135. At 2815, the process also sets an annealing “tem
perature'. T and iteration counter N. As further described
below, the annealing temperature determines how likely the
process 2800 will accept bad moves. The iteration counter is
used to decrease this temperature over time, so as to make
process 2800 less and less willing to accept bad moves.
0136. At 2820, the process then (1) selects a random move
that requires the modification of the coordinates of one or
more circuit modules in the IC layout, and (2) increments the
iteration counter N. The process next identifies (at 2825) all
the nets affected by this random move. Depending on how
nets are defined, these nets are the nets that either (1) contain
the circuit module or modules selected for the move, or (2)
contain the pins of these circuit modules.
0.137. At 2830, the process computes the current cost for
the nets identified at 2825. As mentioned above, the cost
calculating process 1000 stores the cost for each net. Hence,
the process 2800 can compute the current cost for the identi
fied nets by Summing the stored cost values for these nets.
0138 According to the selected random move, the process
2800 modifies (at 2835) the coordinates of each circuit mod
ule and/or pin affected by the move. In other words, at 2835,
the process makes the move by modifying the coordinates of
the affected circuit module or modules and/or their associated
pins to match the random location identified at 2820.
0.139. The process then calls the cost-calculating process
and Supplies this process with a net list that specifies the
identified nets that are affected by the selected move. This net
list specifies the configuration of the identified nets after the
selected move, since the process 2800 modified the coordi
nates of the affected circuit modules and/or pins at 2835. In
the embodiments where the cost-calculating process is the
bipartitioning process 1000, the process 2800 supplies this
process 1000 with the cut line for the current IC region being
optimized, along with the list of the identified nets.
0140. In response to the call at 2840, the cost-calculating
method computes and returns the cost (C) for the configura
tion of the identified nets after the potential modification.
When the cost-calculating method is the bipartitioning pro
cess 1000, this process also partitions the identified nets about
the cut line, and returns two netlists that reflect this partition
1ng.
0141. After receiving (at 2840) the cost for the identified
nets after the potential modification, the process generates (at

Nov. 22, 2012

2845) a delta cost by subtracting the cost for the identified
nets after the potential modification (i.e., the cost calculated at
2840) from the cost for the identified nets before the potential
modification (i.e., the cost calculated at 2830).
0142. At 2850, the process determines whether the delta
cost is less than Zero. If so, the selected move reduces the
placement cost, and the process decides to retain the move.
Specifically, when the delta cost is less than Zero, the process
resets (at 2855) the futile-iteration counter F to 1. The process
then sets (at 2860) the cost of the current placement configu
ration (i.e., the placement configuration with the selected
move) equal to the cost of the previous placement configura
tion (i.e., the placement configuration without the selected
move) plus the delta cost. The delta cost is negative and
thereby reduces the overall placement configuration cost C.
The process 2800 uses (at 2865) the two net lists returned by
the method 1000 at 2840 to modify the two netlists for the two
sub-regions defined by the current cut line.
0143. The process next determines (at 2870) whether the
iteration counter N has reached a maximum. If not, the pro
cess returns to 2820 to select another random move. Other
wise, the process decreases the annealing temperature and
resets the iteration counter at 2875, and then returns to 2820
to select another random move.
0144. If the process determines (at 2850) that the delta cost

is not less than Zero, the process computes (at 2880) a prob
ability between 0 and 1. In some embodiments, the equation
for computing the probability equalse', where Delta
is the value computed at 2845 and T is the annealing tempera
ture.

0145 Next, the process picks (at 2882) a random number
between 0 and 1. At 2884, the process then determines
whether the random number is less than the computed prob
ability. If so, the process decides to make the move, and
thereby transitions to 2860 to perform the other operations
associated with the move, as described above.
0146 If the selected random number is not less than the
computed probability, the process changes (at 2886) the coor
dinates of the affected circuit module or modules and/or their
corresponding pins back to their original coordinates before
the move (i.e., their coordinates before 2835). At 2886, the
process also changes the cost of each of the identified nets
back to its original value (i.e., back to the cost stored for the
net before 2840).
0147 The process then increments (at 2888) the futile
iteration counter by one. The process then determines (at
2890) whether the futile-iteration count equals a pre-specified
maximum. If not, the process transitions to 2870, which was
described above. Otherwise, the process realizes (at 2890)
that it has performed a pre-specified maximum number of
iterations without improving the placement score. Hence, the
process returns (at 2892) a net list specifying the current
placement configuration, and then ends.
0148 C. KLFM
0149 KLFM is an optimization technique that iteratively
modifies the placement configuration to improve the place
ment score generated by a cost-calculating function. At each
iteration, this technique might move one circuit module, Swap
two modules, move a number of related modules, etc. Unlike
local optimization and simulated annealing, KLFM does not
randomly select moves. Instead, at each iteration, it selects
the best move over all the possible moves that it can make.
KLFM will make moves that make the placement cost worse.
Over an entire sweep, it then identifies the best placement

US 2012/O297354 A1

configuration that it sees, and if that best placement configu
ration has a better cost than the original placement configu
ration, KLFM starts over with the improved solution.
0150 FIG. 29 illustrates one example of a KLFM process
2900. This process initially receives (at 2905) an initial place
ment configuration. In some embodiments, the process
receives the initial configuration by receiving a list of circuit
modules, a starting placement configuration for these mod
ules, and a net list that specifies the interconnection between
these modules.

0151. After receiving the initial placement configuration,
the process 2900 calls (at 2910) a cost-calculating method,
like one of the cost-calculating methods described above in
Section II. In response, this cost-calculating method com
putes and returns the cost (C) of the initial placement con
figuration.
0152. When the process 2900 calls the cost-calculating
method, it supplies this method with a net list that specifies
the initial placement configuration (i.e., a net list that identi
fies all the nets in the IC layout before any modifications to the
positions of the modules in the layout).
0153. Also, when the cost-calculating method is the bipar
titioning process 1000 described above, the process 2900
calls the process 900 before calling the process 1000. As
described above, the process 900 defines a cut line for the
current IC region being optimized by the optimization pro
cess 2900. The process 2900 supplies the congestion-calcu
lating process 1000 with this cut line along with the initial
configuration's net list, in order to receive from the process
1000 the net-cut congestion cost (C) of the initial placement
configuration. From the process 1000, the process 2900 also
receives two net lists that specify the nets and the pins in the
two regions defined by the current cut line.
0154 After obtaining cost of the initial placement con
figuration at 2910, the process sets (at 2915) a flag (F) equal
to false. As further described below, the process uses this flag
after performing a number of moves to determine whether
any of the moves improved the placement-configuration
score. At 2915, the process also (1) identifies the initial place
ment configuration as the current and best placement configu
rations, and (2) initializes the costs of the current and best
configurations to the cost of the initial configuration.
(O155 Next, the process defines (at 2920) a set M of all
moves in the current placement configuration (P). For
each move in M, the process computes (at 2925) the cost (C)
of the placement configuration after the move. To compute
the cost of each move, the process performs the following six
operations. First, the process (1) identifies all the nets affected
by the move, and (2) computes the current cost for the iden
tified nets by Summing the stored cost values for these nets.
Second, the process modifies the coordinates of each circuit
element affected by the move according to the move.
0156 Third, it supplies the cost-calculating process with a
netlist that specifies the identified nets that are affected by the
selected move. When the cost-calculating process is the
bipartitioning process 1000, the process 2900 also supplies
the cost-calculating process with the cut line for the current IC
region. From the cost-calculating process, the process 2900
receives the cost for the identified nets after the potential
move. When the cost-calculating process is the bipartitioning
process 1000, the process 2900 also receives two netlists that
represent the partitioning of the identified net list by the
process 1000.

Nov. 22, 2012

0157 Fourth, after receiving the cost for the identified nets
after the potential modification, the process generates a delta
cost by subtracting the cost for the identified nets after the
potential modification from the cost for the identified nets
before the potential modification.
0158 Fifth, the process generates the cost of the move by
adding the computed delta cost to the cost of the current
placement configuration. Sixth, the process (1) changes the
coordinates of the affected circuit elements (modules and/or
pins) back to their original coordinates before the move, and
(2) changes the cost of each of the identified nets back to its
original value before the move.
0159. At 2930, the process makes the move with the low
est placement-configuration cost to obtain a new current
placement configuration P. At this stage, the process
also removes the selected move from the set M of possible
moves. The process also sets the cost of the current placement
configuration equal to the cost of the placement after the
move. Also, when the cost-calculating method is the biparti
tioning method 1000, the process modifies (at 2930) the two
netlists for the two sub-regions defined by the current cut line
by using the two net lists returned by this method at 2925 for
the move.

(0160. The process then determines (at 2935) whether the
cost of the current placement configuration (i.e., the configu
ration obtained at 2930) is less than the lowest placement
configuration cost yet seen. If not, the process transitions to
2945, which will be described below. Otherwise, the process
(at 2940) (1) defines the best placement configuration to be
the current placement configuration, (2) sets the cost of the
best placement configuration to the cost of the current place
ment configuration, and (3) sets the flag (F) to true to indicate
that at least one of the performed moves improved the place
ment cost. The process then transitions to 2945.
(0161. At 2945, the process determines whether the set M
of possible moves is empty. If not, the process transitions
back to 2925 to compute, for each remaining move in the set,
the cost (C) of the placement configuration after the move.
The process recomputes the cost associated with the moves
because the previous move might have affected the placement
configuration costs for the remaining moves.
(0162. If the process determines (at 2945) that the set M is
empty, the process determines that it has performed all the
moves in the set defined at 2920. Consequently, the process
determines (at 2950) whether one of the performed moves
improved the placement cost by determining whether the flag
(F) is set to true.
(0163. If the flag is true, the process (at 2955) (1) sets the
current placement configuration equal to the best placement
configuration identified in the last Sweep through the moves,
(2) define the cost of the current placement configuration
equal to the cost of the best placement configuration, and (3)
sets the flag (F) to true. The process then returns to 2920 to
repeat for the current placement configuration, in order to
determine whether it can improve on this configuration.
0164. If the process determines (at 2950) that the flag is
false, the process returns (at 2960) the best placement con
figuration that it identified as the final placement configura
tion. The process then ends.
(0165
0166 FIG. 30 conceptually illustrates a computer system
with which some embodiments of the invention is imple
mented. Computer system 3000 includes a bus 3005, a pro

IV. Computer System

US 2012/0297354 A1

cessor 3010, a system memory 3015, a read-only memory
3020, a permanent storage device 3025, input devices 3030,
and output devices 3035.
(0167. The bus 3005 collectively represents all system,
peripheral, and chipset buses that support communication
among internal devices of the computer system 3000. For
instance, the bus 3005 communicatively connects the proces
sor 3010 with the read-only memory 3020, the system
memory 3015, and the permanent storage device 3025.
(0168 From these various memory units, the processor
3010 retrieves instructions to execute and data to process in
order to execute the processes of the invention. The read
only-memory (ROM)3020 stores static data and instructions
that are needed by the processor 3010 and other modules of
the computer system. The permanent storage device 3025, on
the other hand, is a read-and-write memory device. This
device is a non-volatile memory unit that stores instruction
and data even when the computer system 3000 is off. Some
embodiments of the invention use a mass-storage device
(such as a magnetic or optical disk and its corresponding disk
drive) as the permanent storage device 3025. Other embodi
ments use a removable storage device (such as a floppy disk or
ZipR disk, and its corresponding disk drive) as the permanent
storage device.
(0169. Like the permanent storage device 3025, the system
memory 3015 is a read-and-write memory device. However,
unlike storage device 3025, the system memory is a volatile
read-and-write memory, such as a random access memory.
The System memory stores some of the instructions and data
that the processor needs at runtime. In some embodiments,
the invention's processes are stored in the system memory
3015, the permanent storage device 3025, and/or the read
only memory 3020.
(0170 The bus 3005 also connects to the input and output
devices 3030 and 3035. The input devices enable the user to
communicate information and select commands to the com
puter system. The input devices 3030 include alphanumeric
keyboards and cursor-controllers. The output devices 3035
display images generated by the computer system. The output
devices include printers and display devices, such as cathode
ray tubes (CRT) or liquid crystal displays (LCD).
(0171 Finally, as shown in FIG. 30, bus 3005 also couples
computer 3000 to a network 3065 through a network adapter
(not shown). In this manner, the computer can be a part of a
network of computers (such as a local area network (“LAN”),
a wide area network (“WAN), or an Intranet) or a network of
networks (such as the Internet). Any or all of the components
of computer system 3000 may be used in conjunction with the
invention. However, one of ordinary skill in the art will appre
ciate that any other system configuration may also be used in
conjunction with the invention.
0172. While the invention has been described with refer
ence to numerous specific details, one of ordinary skill in the
art will recognize that the invention can be embodied in other
specific forms without departing from the spirit of the inven
tion. For example, the above mentioned cut graphs are
described as approximations for diagonal cut lines. However,
in Some embodiments, these cut graphs may be implemented
for other reasons. Moreover, other types of cut graphs may be
used to approximate diagonal cut lines. Additionally, the
above optimization techniques are described with reference
to using cut lines. However, such optimization techniques
may be used with various cut graphs. Furthermore, various
mathematical procedures are described to determine on

Nov. 22, 2012

which side of a cut linea pin is located on. However, different
embodiments may use different mathematical procedures.
For instance, to determine on which side of a cut arc a pin is
located on, some embodiments compute the squared value of
the distance (i.e., Dp) between the pin and the centerofcircle
that defines the circle and compare it with the squared value of
the radius (i.e., R) of the circle. Thus, one of ordinary skill in
the art would understand that the invention is not to be limited
by the foregoing illustrative details, but rather is to be defined
by the appended claims.

1-19. (canceled)
20. An automated method for placing a set of circuit mod

ules in an integrated circuit (“IC) layout, the method com
prising:

computing a placement metric for the IC layout, wherein
computing the placement metric comprises:
partitioning a region of the IC layout into a plurality of

Sub-regions by using a set of cut graphs that comprises
a staircase cut graph, said staircase cut graph com
prising horizontal and vertical segments, wherein a
plurality of said horizontal and vertical segments do
not intersect any other cut graphs; and

generating congestion-cost estimates by measuring a
number of nets cut by the set of cut graphs; and

by a computer, determining a placement for the set of
circuit modules based on the computed placement met
1C.

21. The automated method of claim 20, wherein the stair
case cut graph is an approximation of a diagonal cut line.

22. The automated method of claim 20, wherein the set of
cut graphs comprises a plurality of horizontal cut lines.

23. The automated method of claim 20, wherein the set of
cut graphs comprises a plurality of vertical cut lines.

24. The automated method of claim 20, wherein computing
the placement metric further comprises recursively partition
ing the region of the IC layout into a plurality of sub-regions.

25. The automated method of claim 24, wherein a first
staircase cut graph is used during a first recursive partitioning
of the region of the IC layout.

26. The automated method of claim 25, wherein a second
staircase cut graph is used during a second recursive parti
tioning of the region of the IC layout.

27. The automated method of claim 26, wherein the first
staircase cut graph comprises a first set of horizontal and
Vertical segments, wherein a plurality of said horizontal and
Vertical segments do not intersect any other cut graphs,
wherein the second staircase cut graph comprises a second set
of horizontal and vertical segments, wherein a plurality of
said horizontal and vertical segments do not intersect any
other cut graphs, wherein a length of each of the first set of
segments is different than a length of each of the second set of
Segments.

28. The automated method of claim 20, wherein a length of
each of said plurality of said vertical segments is different
than a length of each of said plurality of said horizontal
Segments.

29. A non-transitory computer readable medium storing a
computer program for placing a set of circuit modules in an
integrated circuit (“IC) layout, the computer program
executable by at least one processor, the computer program
comprising sets of instructions for:

computing a placement metric for the IC layout, wherein
the set of instructions for computing the placement met
ric comprises sets of instructions for:

US 2012/O297354 A1

partitioning a region of the IC layout into a plurality of
Sub-regions by using a set of cut graphs that comprise
a staircase cut graph, said staircase cut graph com
prising horizontal and vertical segments, wherein a
plurality of said horizontal and vertical segments do
not intersect any other cut graphs; and

generating congestion-cost estimates by measuring a
number of nets cut by the set of cut graphs; and

determining a placement for the set of circuit modules
based on the computed placement metric.

30. The non-transitory computer readable medium of claim
29, wherein each net comprises a plurality of pins, wherein
the set of instructions for measuring the number of nets cut by
the staircase cut graph comprises sets of instructions for itera
tively, for each net in the region:

Selecting each pin in the net;
identifying a Sub-region for each pin based on the staircase

cut graph; and
determining that the net is cut when at least one pin is

identified in a first Sub-region and at least one pin is
identified in a second sub-region, wherein the first sub
region and the second Sub-region are different Sub-re
gions.

31. The non-transitory computer readable medium of claim
30, wherein the set of instructions for identifying a sub-region
of a pin based on the staircase cut graph comprises a set of
instructions for:

identifying a first horizontal cut line segment having a
closesty coordinate that is greater thanay coordinate of
the pin;

identifying a second horizontal cut line segment having a
closesty coordinate that is not greater than a y coordi
nate of the pin;

identifying a vertical cut line segment that is coupled
between the first and second identified horizontal cut
line segments;

determining whether an X coordinate of the pin is greater
than an X coordinate of the vertical cut line segment;

determining that the pin is in the first sub-region of the IC
layout when theX coordinate of the pin is greater than the
X coordinate of the vertical cut line segment and deter

Nov. 22, 2012

mining that the pin is in the second Sub-region of the IC
layout when the X coordinate of the pin is not greater
than the X coordinate of the vertical line segment.

32. An automated method for placing a set of circuit mod
ules in an integrated circuit (“IC) layout, wherein the set of
circuit modules comprises a plurality of pins, the method
comprising:

computing a placement metric for the IC layout, wherein
computing the placement metric comprises partitioning
a region of the IC layout by using a cut arc, wherein the
cut arc comprises a curve, wherein said curve does not
include any straight segments; and

by a computer, determining a placement for the set of
circuit modules based on the computed placement met
ric.

33. The automated method of claim32, whereincomputing
a placement metric for the IC layout further comprises gen
erating congestion-cost estimates by measuring a number of
nets cut by the cut arc, wherein generating the congestion
cost estimates comprises:

computing a distance between a pin in the IC layout and a
center of a circle that defines the cut arc; and

determining whether the distance between the pin and the
center of the circle is greater than a radius of the circle.

34. The automated method of claim33, wherein generating
the congestion-cost estimates further comprises specifying
that the pin is in a first region when the distance is greater than
the radius.

35. The automated method of claim34, wherein generating
the congestion-cost estimates further comprises specifying
that the pin is in a second region when the distance is not
greater than the radius.

36. The automated method of claim32, whereincomputing
the placement metric further comprises recursively partition
ing the region of the IC layout into a plurality of Sub-regions.

37. The automated method of claim32, wherein the cutarc
is a curved approximation of a diagonal cut line.

38. The automated method of claim32, wherein the cutarc
is defined by a circle with a radius that is less than a sum of a
height and a width of the region of the IC layout.

c c c c c

