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(57) ABSTRACT 

Some embodiments of the invention provide a method for 
placing circuit modules in an integrated circuit (“IC) layout. 
The method computes a placement metric for the IC layout. In 
Some embodiments, computing the placement metric 
includes partitioning a region the IC layout into several Sub 
regions by using a cut graph, where the cut graph is an 
approximation of a diagonal cut line. These embodiments 
then generate congestion-cost estimates by measuring the 
number of nets cut by the cut graph. In some embodiments, 
the cut graph is a staircase cut graph. These staircase cut 
graphs include several horizontal and vertical cut lines. In 
Some embodiments, the cut graph is a cut arc. 
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METHOD AND APPARATUS FOR 
APPROXMATING DAGONAL LINES IN 

PLACEMENT 

FIELD OF THE INVENTION 

0001. Some embodiments of the invention provide a 
method for approximating diagonal lines in placement. 

BACKGROUND OF THE INVENTION 

0002 An integrated circuit (“IC) is a semiconductor 
device that includes many electronic components (e.g., tran 
sistors, resistors, diodes, etc.). These components are often 
interconnected to form multiple circuit components (e.g., 
gates, cells, memory units, arithmetic units, controllers, 
decoders, etc.) on the IC. The electronic and circuit compo 
nents of ICs are jointly referred to below as “components.” 
0003. An IC also includes multiple layers of metal and/or 
polysilicon wiring (collectively referred to below as “metal 
layers') that interconnect its electronic and circuit compo 
nents. For instance, many IC's are currently fabricated with 
five metal layers. In theory, the wiring on the metal layers can 
be all-angle wiring (i.e., the wiring can be in any arbitrary 
direction). Such all-angle wiring is commonly referred to as 
Euclidean wiring. In practice, however, each metal layer typi 
cally has a preferred wiring direction, and the preferred direc 
tion alternates between successive metal layers. Many IC's 
use the Manhattan wiring model, which specifies alternating 
layers of preferred-direction horizontal and vertical wiring. In 
this wiring model, the majority of the wires can only make 
90° turns. However, occasional diagonal jogs are sometimes 
allowed on the preferred horizontal and vertical layers. 
0004. Design engineers design IC's by transforming cir 
cuit description of the IC's into geometric descriptions, called 
layouts. To create layouts, design engineers typically use 
electronic design automation (“EDA) applications. These 
applications provide sets of computer-based tools for creat 
ing, editing, and analyzing IC design layouts. 
0005 EDA applications create layouts by using geometric 
shapes that represent different materials and devices on IC's. 
For instance, EDA tools commonly use rectangular lines to 
represent the wire segments that interconnect the IC compo 
nents. These tools also represent electronic and circuit IC 
components as geometric objects with varying shapes and 
sizes. For the sake of simplifying the discussion, these geo 
metric objects are shown as rectangular blocks in this docu 
ment. 

0006. Also, in this document, the phrase “circuit module' 
refers to the geometric representation of an electronic or 
circuit IC component by an EDA application. EDA applica 
tions typically illustrate circuit modules with pins on their 
sides. These pins connect to the interconnect lines. 
0007. A net is typically defined as a collection of pins that 
need to be electrically connected. A list of all or some of the 
nets in a layout is referred to as a net list. In other words, a net 
list specifies a group of nets, which, in turn, specify the 
interconnections between a set of pins. 
0008 FIG. 1 illustrates an example of an IC layout 100. 
This layout includes five circuit modules 105, 110, 115, 120, 
and 125 with pins 130-160. Four interconnect lines 165-180 
connect these modules through their pins. In addition, three 
nets specify the interconnection between the pins. Specifi 
cally, pins 135,145, and 160 define a three-pin net, while pins 
130 and 155, and pins 140 and 150 respectively define two 
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two-pin nets. As shown in FIG. 1, a circuit module (such as 
105) can have multiple pins on multiple nets. 
0009. The IC design process entails various operations. 
Some of the physical-design operations that EDA applica 
tions commonly perform to obtain the IC layouts are: (1) 
circuit partitioning, which partitions a circuit if the circuit is 
too large for a single chip; (2) floorplanning, which finds the 
alignment and relative orientation of the circuit modules; (3) 
placement, which determines more precisely the positions of 
the circuit modules; (4) routing, which completes the inter 
connects between the circuit modules; (5) compaction, which 
compresses the layout to decrease the total IC area; and (6) 
verification, which checks the layout to ensure that it meets 
design and functional requirements. 
0010 Placement is a key operation in the physical design 
cycle. It is the process of arranging the circuit modules on a 
layout, in order to achieve certain objectives, such as reducing 
layout area, wirelength, wire congestion, etc. A poor place 
ment configuration not only can consume a large area, but it 
also can make routing difficult and result in poor perfor 
aCC. 

0011 Numerous EDA placers have been proposed to date. 
Certain placers are constrained-optimization placers, which 
(1) use cost-calculating functions to generate placement 
scores (i.e., placement costs) that quantify the quality of 
placement configurations, and (2) use optimization algo 
rithms to modify iteratively the placement configurations to 
improve the placement scores generated by the cost-calculat 
ing functions. 
0012. A constrained-optimization placer typically 
receives (1) a list of circuit modules, (2) an initial placement 
configuration for these modules, and (3) a net list that speci 
fies the interconnections between the modules. The initial 
placement configuration can be random (i.e., all the modules 
can be positioned randomly). Alternatively, the initial con 
figuration can be partially or completely specified by a pre 
vious physical-design operation, such as the floor planning 
0013. A constrained-optimization placer then uses a cost 
calculating function to measure the quality of the initial 
placement configuration. The cost function generates a metric 
score that is indicative of the placement quality. Different 
cost-calculating functions measure different placement met 
rics. For instance, as further described below, some functions 
measure congestion (e.g., measure number of nets intersected 
by cut lines). 
0014. After calculating the metric cost of the initial place 
ment configuration, a constrained-optimization placer uses 
an optimization algorithm to modify iteratively the placement 
configuration to improve the placement score generated by its 
cost-calculating function. Different optimization techniques 
modify the placement configuration differently. For instance, 
at each iteration, some techniques move one circuit module, 
others Swap two modules, and yet others move a number of 
related modules. Also, at each iteration, some optimization 
techniques (e.g., KLFM and tabu search algorithms) search 
for the best move, while others (e.g., simulated annealing and 
local optimization) select random moves. In addition, some 
techniques (e.g., simulated annealing) accept moves that 
make the metric score worse, whereas others (e.g., local opti 
mization) do not. 
0015. One type of constrained-optimization placement 
technique uses min-cut bipartitioning. This technique uses 
horizontal and vertical cut lines to partition the IC layout 
recursively into Successive pairs of regions. At each level of 
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the recursion, this technique then moves the circuit modules 
between the regions at that level, in order to reduce the num 
ber of nets intersected by the cut line for that level. By mini 
mizing the net-cut cost at each level of the recursion, these 
techniques reduce the wire congestion across the cut lines. 
0016 FIGS. 2 and 3 illustrate one example of min-cut 
bipartitioning. FIG. 2 illustrates an IC layout 200 that is 
partitioned initially in two regions 210 and 215 by a vertical 
cut line 205. After defining this initial cut line, the min-cut 
bipartitioning method calculates the number of nets that are 
intersected by this cut line. This number is indicative of the 
wire congestion about this cut line. An optimization algo 
rithm (such as KLFM) is then used to modify the initial 
placement iteratively (i.e., to move the circuit modules itera 
tively), in order to minimize the net-cut cost across the initial 
cut line 205. 
0017. Once the congestion across the initial cut line is 
minimized, the min-cut bipartitioning method is applied 
recursively to the two regions created by the initial cut line, 
and then it is applied to the resulting regions created by the 
succeeding cut lines, and so on. FIG. 3 illustrates the IC 
layout 200 after it has been recursively partitioned by seven 
cut lines 205 and 220-245. 
0018. The above-described placement techniques do not 
consider diagonal wiring in calculating their placement-con 
figuration cost. Hence, when diagonal routes are selected for 
the interconnect lines, these techniques result in poor place 
ment configurations, which inefficiently consume the layout 
area, utilize too much wire, and/or have poor wire conges 
tions. Consequently, there is a need in the art for placers that 
consider diagonal wiring in calculating their placement-con 
figuration costs. 

BRIEF SUMMARY OF THE INVENTION 

0019. Some embodiments of the invention provide a 
method for placing circuit modules in an integrated circuit 
(“IC) layout. The method computes a placement metric for 
the IC layout. In some embodiments, computing the place 
ment metric includes partitioning a region the IC layout into 
several Sub-regions by using a cut graph, where the cut graph 
is an approximation of a diagonal cut line. These embodi 
ments then generate congestion-cost estimates by measuring 
the number of nets cut by the cut graph. 
0020. In some embodiments, the cut graph is a staircase 
cut graph. These staircase cut graphs include several horizon 
tal and vertical cut lines. In some embodiments, the cut graph 
is a cut arc. 

BRIEF DESCRIPTION OF THE SEVERAL 
VIEWS OF THE DRAWINGS 

0021. The novel features of the invention are set forth in 
the appended claims. However, for purpose of explanation, 
several embodiments of the invention are set forth in the 
following figures. 
0022 FIG. 1 illustrates an example of an IC layout. 
0023 FIG. 2 illustrates an IC layout that is partitioned 

initially in two regions by a vertical cut line. 
0024 FIG.3 illustrates the IC layout of FIG. 2 after it has 
been recursively partitioned by seven cut lines. 
0025 FIG. 4 illustrates the wiring architecture of an IC 
layout that not only uses diagonal lines, but also uses hori 
Zontal and Vertical lines. 
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0026 FIG. 5 illustrates one manner of implementing the 
wiring architecture illustrated in FIG. 4. 
0027 FIG. 6 illustrates an IC layout that has been recur 
sively partitioned into a number of regions by only diagonal 
cut lines. 
(0028 FIGS. 7 and 8 illustrate two IC layouts that are 
recursively partitioned by combinations of diagonal, horizon 
tal, and vertical cut lines. 
0029 FIG. 9 is a process that defines a cut line that parti 
tions a layout region into two smaller regions. 
0030 FIG. 10 illustrates a process that generates a con 
gestion cost estimate, and partitions a set of nets, about a cut 
line. 
0031 FIGS. 11, 12, and 13 illustrate three processes for 
identifying a region for a pin. 
0032 FIG. 14 illustrates implementing a staircase cut 
graph to approximate a diagonal cut line. 
0033 FIG. 15 illustrates Manhattan cut line segments of a 
staircase cut graph with various lengths. 
0034 FIG. 16 illustrates implementing staircase cut 
graphs to emulate partitioning an IC layout using diagonal cut 
lines. 
0035 FIG. 17 illustrates implementing staircase cut 
graphs with various lengths to emulate partitioning an IC 
layout using diagonal cut lines. 
0036 FIG. 18 illustrate an IC layout that is recursively 
partitioned by combinations of diagonal, horizontal, and Ver 
tical and staircase cut graphs. 
0037 FIG. 19 illustrates a process for identifying a region 
for a pin. 
0038 FIG. 20 illustrates a staircase cut graph configura 
tion and pin. 
0039 FIG. 21 illustrates an example where staircase cut 
graphs provides an advantage over a diagonal cut line. 
0040 FIG. 22 illustrates the use of combination of a stair 
case cut graph and a diagonal cut line. 
0041 FIG. 23 illustrates implementing a cut arc in for 
partitioning an IC layout. 
0042 FIG. 24 illustrates using a cut arc to implement a 
diagonal cut line for partitioning an IC layout. 
0043 FIG. 25 illustrates another cut arc to implement a 
diagonal cut line for partitioning an IC layout. 
0044 FIG. 26 illustrates another process for identifying a 
region for a pin. 
0045 FIG. 27 illustrates one example of a local optimiza 
tion process. 
0046 FIG. 28 illustrates one example of a simulated 
annealing process. 
0047 FIG. 29 illustrates one example of a KLFM process. 
0048 FIG. 30 illustrates a computer system used by some 
embodiments of the invention. 

DETAILED DESCRIPTION OF THE INVENTION 

0049. In the following description, numerous details are 
set forth for purpose of explanation. However, one of ordinary 
skill in the art will realize that the invention may be practiced 
without the use of these specific details. In other instances, 
well-known structures and devices are shown in block dia 
gram form in order not to obscure the description of the 
invention with unnecessary detail. 
0050. Some embodiments of the invention provide a 
method for placing circuit modules in an integrated circuit 
(“IC) layout. The method computes a placement metric for 
the IC layout. The placement metric takes into account diago 
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nal routes. In some embodiments, computing the placement 
metric includes partitioning a region the IC layout into several 
Sub-regions by using a cut graph, where the cut graph is an 
approximation of a diagonal cut line. These embodiments 
then generate congestion-cost estimates by measuring the 
number of nets cut by the cut graph. 
0051. In some embodiments, the cut graph is a staircase 
cut graph. These staircase cut graphs include several horizon 
tal and vertical cut lines. In some embodiments, the cut graph 
is a cut arc. 
0052 I. Diagonal Wiring Architecture 
0053 Some embodiments of the invention calculate the 
cost of placement configurations for IC layouts that have 
diagonal interconnect lines (i.e., diagonal wiring). In some of 
these embodiments, the IC layouts not only have diagonal 
interconnect lines, but also have horizontal and vertical inter 
connect lines. 
0054 As used in this document, an interconnect line is 
"diagonal” if it forms an angle other than Zero or ninety 
degrees with respect to one of the sides of the layout bound 
ary. On the other hand, an interconnect line is “horizontal or 
“vertical” if it forms an angle of 0° or 90° with respect to one 
of the sides of the layout. 
0055 FIG. 4 illustrates the wiring architecture (i.e., the 
interconnect-line architecture) of an IC layout 400 that uti 
lizes horizontal, Vertical, and 45' diagonal interconnect lines. 
In this document, this architecture is referred to as the octago 
nal wiring model, in order to convey that an interconnect line 
can traverse in eight separate directions from any given point. 
0056. The horizontal lines 405 are the lines that are paral 

lel (i.e., are at 0°) to the x-axis, which is defined to be parallel 
to the width 410 of the layout. The vertical lines 415 are 
parallel to the y-axis, which is defined to be parallel to the 
height 420 of the layout. In other words, the vertical intercon 
nect lines 415 are perpendicular (i.e., are at 90°) to the width 
of the IC layout. In this architecture, one set 425 of diagonal 
lines are at +45° with respect to the width of the IC layout, 
while another set 430 are at -45 with respect to the width of 
the IC layout. 
0057 FIG. 5 illustrates one manner of implementing the 
wiring architecture illustrated in FIG. 4 on an IC. Specifically, 
FIG. 5 illustrates five metal layers for an IC. The first three 
layers 505-515 are Manhattan layers. In other words, the 
preferred direction for the wiring in these layers is either the 
horizontal direction or the vertical direction. The preferred 
wiring direction in the first three layers typically alternates so 
that no two consecutive layers have the same direction wiring. 
However, in some cases, the wiring in consecutive layers is in 
the same direction. 
0058. The next two layers 520 and 525 are diagonal layers. 
The preferred direction for the wiring in the diagonal layers is 
+45°. Also, as in the first three layers, the wiring directions in 
the fourth and fifth layer are typically orthogonal (i.e., one 
layer is +45° and the other is -45), although they do not have 
to be. 

0059 Even though some embodiments of the invention 
are described below to work with IC layouts that utilize the 
above-described octagonal wiring model, one of ordinary 
skill will understand that the invention can be used with any 
wiring model. For instance, the invention can be used with 
wiring architectures that are strictly diagonal (i.e., that do not 
have horizontal and vertical preferred direction wiring). 
0060 Also, some embodiments are used with non-45° 
diagonal wiring. For example, Some embodiments are used 
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with IC layouts that have horizontal, vertical, and +120° 
diagonal interconnect lines. In this document, such a wiring 
architecture is referred to as the hexagonal wiring model, in 
order to convey that an interconnect line can traverse in six 
separate directions from any given point. 
0061 II. Min-Cut Bipartitioning with Diagonal Lines 
0062 A. Diagonal Cut Lines 
0063 Some embodiments of the invention are min-cut 
bipartitioning techniques that utilize diagonal cut lines. As 
further described below by reference to FIGS. 6-8, some 
embodiments only utilize diagonal cut lines, while other 
embodiments use diagonal, horizontal, and vertical cut lines. 
As will be further described below in Section II.A and B, 
Some embodiments utilize approximations of diagonal cut 
lines. 
0064. The cut lines are used to partition the IC layout 
recursively into Successive pairs of regions. After defining the 
cut line at each level of the recursion, the invention's min-cut 
bipartitioning method calculates the number of nets that are 
intersected by the cutline of the particular level. This number 
is indicative of the wire congestion about this cut line. Next, 
at each recursion level, an optimization technique is used to 
move the circuit modules between the regions at that level, in 
order to reduce the number of nets intersected by the cut line 
of that level. The minimization of the net-cut costateach level 
of the recursion reduces wire congestion across the cut line at 
that level. 
0065. The invention's min-cut bipartitioning technique 
can be used with IC layouts that only use the Manhattan 
wiring model (i.e., IC layouts that only have preferred hori 
Zontal and vertical direction wiring). In other instances, the 
invention’s min-cut bipartitioning technique is used with IC 
layouts that have diagonal interconnect lines. In some of these 
instances, the diagonal cut lines are in the same direction as 
Some or all of the diagonal interconnect lines. For instance, 
for IC layouts that use the octagonal wiring model (i.e., that 
use horizontal, vertical, and 45' diagonal lines), some 
embodiments use 45' diagonal cut lines. 
0066 FIG. 6 illustrates an IC layout 600 that has been 
recursively partitioned into a number of regions by only 
diagonal cut lines. Such a strict diagonal-partitioning 
approach is typically used when the IC layout uses only 
diagonal interconnect lines. However, Such an approach can 
be taken when the IC layout uses diagonal and Manhattan 
interconnect lines. 
0067 FIGS. 7 and 8 respectively illustrate two IC layouts 
700 and 800 that are recursively partitioned by combinations 
of diagonal, horizontal, and vertical cut lines. In FIG. 7, 
diagonal cut lines are used at all levels of the recursion. On the 
other hand, in FIG. 8, the diagonal cut lines are only used at 
the higher recursion levels, and Manhattan cut lines are used 
at the lower levels of the recursion. 
0068. In other words, the partitioning scheme illustrated in 
FIG. 8 stops using diagonal cut lines once it reaches some of 
the lower levels of the recursion process. Such a partitioning 
scheme (i.e., a scheme that stops using diagonal cut lines at 
the lower recursion levels) is useful in connection with IC 
layouts that have their diagonal layers as their top metal 
layers. Such a partitioning scheme is useful for Such layouts 
because the first set of cut lines reduce the congestion of 
longer wires, and the longer wires are likely to be diagonal 
wires. In octagonal wiring models that have the diagonal 
layers as the top metal layers, the diagonal wires tend to be 
long, because otherwise it would be wasteful to incur the 
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delay costs associated with the Vias necessary for performing 
the routing on the higher layers. 
0069 FIGS. 9 and 10 illustrate two processes 900 and 
1000 that a placer can use to perform min-cut bipartitioning 
with diagonal cut lines. The placer can repeatedly use these 
processes 900 and 1000 to minimize congestion across the IC 
layout. Specifically, the placer can repeatedly perform the 
process 900 of FIG. 9 to define a series of cut lines that 
recursively partition the IC layout into smaller and smaller 
regions. After defining the cut line at a particular level of the 
recursion, the placer can then use the process 1000 of FIG. 10 
to obtain congestion cost estimates, and to partition nets, 
across the cut line of that level. 
0070. The process 900 starts wheneverit receives the coor 
dinates of a region of the IC layout. As shown in FIG. 9, this 
process initially defines (at 905) a horizontal, vertical, or 
diagonal cut line that divides the received region into two 
sub-regions. After defining the cut line, the process 900 
defines (at 910) two regions created by the cut line. Some 
embodiments use the following convention to define the 
regions: (1) when the cut line is horizontal or diagonal, the 
first region is above the cut line, while the second region is 
below the cutline, and (2) when the cutline is vertical, the first 
region is to the right of the cut line, and the second region is 
to the left of the cut line. 
(0071 Finally, the process 900 initializes two net lists for 
the two regions created by the cut line defined at 905. As 
further described below, the first time the process 1000 is 
performed for all the nets in the received region, the process 
1000 adds the nets in this received region and the pins of these 
net to these two netlists. Also, as further described below, the 
placer and the process 1000 might remove and add nets and 
pins to these two net lists during the optimization process. 
0072 FIG. 10 illustrates a process 1000 that a placer can 
use to partition a set of nets, and to calculate the congestion 
cost of these nets, about a cut line that can be diagonal. The 
process 1000 starts whenever it receives (1) a list of nets, and 
(2) a cut line for partitioning the nets. 
0073. Each net on the received net list has several circuit 
elements associated with it (i.e., each net is defined to include 
several circuit elements). In other words, the nets on the net 
list specify the interconnection between some orall the circuit 
elements in the IC layout. In the embodiments described 
below, the circuit elements associated with the nets are the 
pins of the circuit modules in the IC layout. Other embodi 
ments, however, treat the circuit modules as the circuit ele 
ments of the nets. Some of these embodiments treat the circuit 
modules as the net circuit elements and obviate the need to 
distinguish between the different pin locations, by assuming 
that the pins of each module are all located at uniform loca 
tions (e.g., located at the origin of the modules). 
0074. In some embodiments, an initial placement configu 
ration is defined by the positions of the net circuit elements 
before the process 1000 is performed for the first cut line. In 
Some of these embodiments, the initial placement configura 
tion is random. In other embodiments, a previous physical 
design operation, Such as the floorplanning, partially or com 
pletely specifies the initial placement configuration. Other 
embodiments use another placer to specify the initial place 
ment configuration, and then use processes 900 and 1000 to 
optimize the placement configuration for a wiring architec 
ture that uses diagonal wiring. 
0075. As shown in FIG. 10, the process 1000 initially sets 
(at 1005) the congestion cost (Cost) equal to 0. The process 
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then selects (at 1010) a net from the received net list. It then 
sets (at 1015) a net-cut variable (C) to 0. The process next 
selects (at 1020) a first pin of the selected net. After selecting 
the pin, the process determines (at 1025) which of the two 
regions defined by the cut line contains the pin. When diago 
nal, horizontal or vertical cut lines are used, the process 1000 
identifies the region for the pin by using one of three pro 
cesses, which are illustrated in FIGS. 11, 12, and 13. 
(0076. The process 1000 calls the process 1100 of FIG. 11 
when the cut line is horizontal. As shown in FIG. 11, the 
process 1100 determines (at 1105) whether the y-coordinate 
of the pin is greater than the y-coordinate of the horizontal cut 
line. If so, the process specifies (at 1110) that the pin is in the 
first region defined by the cut line. Otherwise, the process 
specifies (at 1115) that the pin is in the second region defined 
the cut line. 

(0077. The process 1000 uses the process 1200 of FIG. 12 
when the cut line is vertical. As shown in FIG. 12, the process 
1200 determines (at 1205) whether the x-coordinate of the pin 
is greater than the x-coordinate of the vertical cut line. If so, 
the process specifies (at 1210) that the pin is in the first region 
defined by the cut line. Otherwise, the process specifies (at 
1215) that the pin is in the second region defined the cut line. 
(0078. The process 1000 calls the process 1300 of FIG. 13 
when the cut line is diagonal. As shown in FIG. 13, the 
process 1300 inserts (at 1305) the x-coordinate of the pin in 
the linear equation (y-mx+b) that represents the cut line. This 
equation expresses the y-coordinate value of the cut line in 
terms of its slope (m), x-coordinate, and y-intersect (b). The 
process then determines (1310) whether the derivedy-value 
of the diagonal line at the inserted X-location is greater than 
the y-coordinate of the pin. If not, the process specifies (at 
1315) that the pin is in the first region defined by the cut line. 
Otherwise, the process specifies (at 1320) that the pin is in the 
second region defined the cut line. 
0079. As will be further described below in Section II.A 
and B, some embodiments of the invention utilize an approxi 
mation of a diagonal cut line to define Sub-regions. In 
instances where such approximations are implemented, the 
process 1000 may identify the region for the pin by the two 
processes illustrated in FIGS. 19 and 26. These two processes 
will also be further described below in Section II.A and B. 

0080. After identifying the region for the pin, the process 
adds (at 1030) the selected net and pin to the net list for the 
identified region. The process then selects (at 1035) the next 
pin in the net. At 1040, the process identifies the region for the 
pin selected at 1035 by calling the same processes described 
above for 1025. 

I0081. The process then determines (at 1045) whether the 
current pin (i.e., the pin selected at 1035) falls in the same 
region as the first pin. If so, the process adds the current pinto 
the net previously added (at 1030) to the net list for the 
identified region. The process then transitions to 1070, which 
will be described below. 

I0082 On the other hand, if the process determines (at 
1045) that the current pin does not fall in the same region as 
the first pin, the process determines whether the intersection 
variable C equals 0. If so, the process realizes that it has 
detected a net cut. Hence, it changes the value of the inter 
section variable C to 1, and adds the net and the current pinto 
the net list for the identified region of the current pin. How 
ever, if the process determines (at 1055) that the intersection 
variable is not 0, the process realizes that it has previously 
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detected the net cut. Therefore, the process simply adds (at 
1060) the current pin to the net list for the identified region. 
I0083. From 1060 and 1065, the process transitions to 
1070, where it determines whether it has examined the last 
pin in the current net. If not, the process transitions back to 
1035 to examine the next pin in the net. Otherwise, the pro 
cess (at 1075) (1) adds the intersection cost C to the conges 
tion cost (Cost), and (2) stores the intersection cost C as the 
cost of the current net. 
I0084. Next, the process determines (at 1080) whether it 
has examined the last net. If not, the process returns to 1010 
to (1) select another net, (2) partition this net about the cut 
line, and (3) determine whether this net crosses the cut line. 
Otherwise, the process returns (at 1085) (1) the congestion 
cost of the current placement configuration, and (2) the two 
net lists that represent the partitioning of the received net list 
about the received cut line. 
0085. As mentioned above, a placer can repeatedly per 
form the process 900 of FIG.9 to define a series of cut lines 
that recursively partition the IC layout into smaller and 
Smaller regions. At each level of the recursion, the placer can 
then use the process 1000 of FIG. 10 to obtain congestion cost 
estimate, and to partition nets, across the cut line of that level. 
I0086 Specifically, for each recursion level, the placer ini 
tially supplies the process 1000 with (1) the cut line for that 
level, and (2) a list of all the nets in that level's region. The 
process 1000 then (1) partitions the nets in that region about 
the cut line (i.e., as described above, the process adds the nets 
and their correspondingpins to the appropriate netlists for the 
Sub-regions created by the cut line), and (2) calculates a cost 
for the congestion across the cut line. 
0087. After receiving from the process 1000 the conges 
tion cost of the initial net configuration within a recursion 
level’s region, the placer then uses an optimization algorithm 
that iteratively modifies the net configuration within this 
region to improve the congestion cost generated by the pro 
cess 1000. In some embodiments, the optimization process 
uses the process 1000 to calculate the placement-configura 
tion cost for each possible iterative modification to the place 
ment configuration. This is further described below in Section 
III, which presents several Suitable optimization techniques. 
0088 B. Staircase Cut Graph as an Approximation of a 
Diagonal Cut Line 
0089. As mentioned above, some embodiment use 
approximations of diagonal cut lines to implement min-cut 
bipartitioning. In some embodiments, a staircase cut graph 
that includes vertical and horizontal cut line segments may be 
used to approximate Such diagonal cutlines. In some embodi 
ments, such approximations may be used by placer to con 
sider diagonal cut lines. 
0090 FIG. 14 illustrates how such a staircase cut graph 
may be used to approximate diagonal cut lines. As shown in 
this figure, the diagonal cut graph 1400 can be divided into a 
set of vertical and horizontal cut line segments 1405-1410. As 
further shown in this figure, different embodiments may use 
different lengths for the vertical and horizontal cut line seg 
ments to approximate a diagonal cut line. FIG. 14 also illus 
trates that as the length of the vertical and horizontal cut line 
segments 1405-1410 become shorter relative to the length of 
the diagonal cut line 1400, the set of vertical and horizontal 
cut line segments 1405-1410 more accurately approximates 
the diagonal cut line 1400. 
0091. In addition to using different lengths for the vertical 
and horizontal cutline segments, some embodiments may use 
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different combinations of length for the vertical and horizon 
tal cut line segments. As shown in FIG. 15, the use of different 
length combinations may be used to approximate diagonal 
cut lines that are not 45 degree in Some embodiments. 
0092 FIG. 16 illustrates an IC layout 1600 that has been 
recursively partitioned into a number of regions by a staircase 
cut graph. Specifically, this figure illustrates how the IC lay 
out 600 of FIG. 6, which only used diagonal cut lines, can be 
similarly produced by only using staircase cut graphs that are 
approximations of diagonal cut lines. In some embodiments, 
Some of the vertical and horizontal cut line segments of the 
staircase cut graph have different lengths, as shown in FIG. 
17. 
0093. As previously mentioned above and shown in FIGS. 
7 and 8, different embodiments may use diagonal cut lines 
during some or all of the levels of recursion. Similarly, some 
embodiments may use approximations of diagonal cut lines 
during some or all of the levels of recursion. Moreover, 
approximations of diagonal cut lines may be used in combi 
nation with other cut lines. FIG. 18 illustrates an IC layout 
1800 that is recursively partitioned by combinations of diago 
nal, horizontal, Vertical and staircase cut graphs. In some 
embodiments, the use of staircase cut graphs can be used at all 
levels of the recursion, while the use of staircase cut graphs 
may only be used for a particular level of the recursion in 
other embodiments. 
0094. In some embodiments, the processes of FIGS. 9 and 
10 may be used in conjunction with a staircase cut graph. In 
such instances, the process 1000 calls the process 1900 of 
FIG. 19 to identify the region for the pin when the current cut 
graph is a staircase cut graph. As shown in FIG. 19, from the 
staircase cut graph, the process 1900 identifies (at 1905) a first 
horizontal cut line segment with the closesty-coordinate that 
is higher than the y-coordinate of the pin (i.e., horizontal cut 
line segment with the lowest y-coordinate value greater than 
y-coordinate value of the pin). 
0.095 From the staircase cut graph, the process 1900 iden 

tifies (at 1905) a second horizontal cut line segment with the 
closesty-coordinate that is lower than the y-coordinate of the 
pin (i.e., horizontal cut line segment with the highest y-coor 
dinate value that is less than the y-coordinate value of the pin). 
(0096. The process then identifies (at 1915) a vertical cut 
line segment from the staircase cut graph that is coupled 
between the two identified horizontal cut line segments (at 
1905 and 1910). The process 1900 determines (at 1920) 
whether the X-coordinate of the pin is greater than the X-co 
ordinate of the identified vertical cut line segment. If so, the 
process specifies (at 1925) that the pin is in the first region 
defined and ends. Otherwise, the process specifies (at 1930) 
that the pin is in the second region and ends. 
(0097 Thus, with reference to the staircase cut graph 2000 
and pin 2005 shown in FIG. 20, the process identifies (at 
1905) the horizontal cut line segment 2015. The process then 
identifies (at 1910) the horizontal cut line segment 2025. 
Based on these two identified cut line segments, the process 
identifies (at 1915) the vertical cut line segment 2020. Next, 
the process determines whether the x-coordinate of the pin 
2005 is greater than the x-coordinate of the vertical cut line 
segment 2020. In this particular example, it is not. Therefore, 
the process specifies (at 1930) that the pin 2005 is in the 
second region. 
0098. Additionally, some embodiments may first identify 
two vertical cut line segments (e.g., 2040 and 2050) and based 
on these two vertical cut line segments, identify a horizontal 
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cut line segment (e.g., 2045) coupled between the two iden 
tified vertical cutlines segments. The process then determines 
whether the y-coordinate of the pin (e.g., pin 2005) is greater 
than the y-coordinate of the identified horizontal cut line 
segment (e.g., cut line segment 2045). If so, the pin is speci 
fied to be in the first region. If not, the pin is specified to be in 
the second region. 
0099. One advantage of using staircase cut graphs is that 
they are more accurate in determining on which side a pin is 
located on in certain circumstances. FIG. 21 illustrates an 
example where staircase cut graphs provides such an advan 
tage. As shown in this figure, the IC layout 2100 includes an 
L block 2105 that is fixed (i.e., cannot be moved). As further 
shown in this figure, a diagonal cut line 2110 partitions the IC 
layout 2100 such that the diagonal cut line 2110 goes through 
the L block 2105. This partitioning process creates a region 
2115 (triangular region defined by the cut line 2110 and the 
interior corner of the L block 2105) where the partitioning 
process would compute the region 2115 to be on the left side 
of the cut line 2110. However, because the region 2115 is 
surrounded by the L block 2105, any routing from a pin (e.g., 
pin 2120) on the left side of the diagonal cut line 2110 to a pin 
(e.g., 2125) in the region 2115 would entail going through the 
right side of the diagonal cut line 2110. 
0100. As illustrated in FIG. 22, a combination of a diago 
nal cut line 2205 and a staircase cut graph 2210 may be used 
to partition an IC layout to partition around the L block 2105 
in some embodiments. When Such a combination is used, the 
regions around an L block can be properly computed to be on 
the correct side of a cut line or cut graph. For example, pin 
2125 can be properly computed to be on the right side of the 
diagonal cut line 2205 and staircase cut graph 2210. 
0101 C. Cit Arc as an Approximation of a Diagonal Cut 
Line 
0102 Some embodiments of the invention may use other 
cut graphs to approximate a diagonal cut lines. For example, 
Some embodiments use cut arcs. An arc is defined as a seg 
ment along the circumference of a circle. 
0103 FIG. 23 illustrates how a cut arc can be used to 
approximate a diagonal cut line. Specifically, this figure illus 
trates how a cut arc may be implemented in a min cut bipar 
titioning process to emulate a min cut bipartitioning process 
that uses diagonal cut lines. 
0104. As shown in this figure, the IC layout 2300 includes 
diagonal cut lines 2305-2315, cut arc 2320, and pin 2325. As 
further shown in this figure, the cut arc 2325 is defined by the 
circle 2330 (only partial circle is shown) having a center 2335 
and a radius 2340. 

0105 Different embodiments may use different sized cut 
arcs. FIGS. 24 and 25 illustrate two different size cut arcs are 
implemented on the same IC layout 2400. As shown in FIG. 
24, the IC layout 2400 includes a diagonal cut line 2402, pins 
2405, 2407 and 2408. This figure further illustrates that pins 
2405 and 2407 are above the diagonal cut line 2402. There 
fore, these pins 2405 and 2407 are in the first region. On the 
other hand, the pin 2408 is below the diagonal cut line 2402 
and therefore is in the second region. 
01.06 As further shown in FIG. 24, if the cut arc 2417 is 
used for partitioning the IC layout (instead of using the diago 
nal cut line 2402), pin 2407 would be in the first region 
(region outside the radius of the circle) and pins 2405 and 
2408 would be in the second region (region inside the radius 
of the circle). This result is different than what was specified 
using the diagonal cut line 2402. To achieve results that are 
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more accurate (or in line with the diagonal cut line 2402), a 
circle with a larger radius may be used. This is because as the 
radius of circle increases, the arc of circle becomes more like 
a diagonal line. FIG. 25 illustrates the use of such a larger 
circle 2510 (partial circle shown). As shown in this figure, the 
cut arc 2505 is a closer approximation of the diagonal line 
2402 than the cut arc 2405. Moreover, when a process uses 
this cut arc 2505, the pin 2405 and 2407 are in the first region, 
whereas the pin 2408 is in the second region. This result is the 
same as one achieved using the diagonal cut line 2402. As 
Such, a cut arc may be used to accurately approximate a 
diagonal cut line if the radius of the circle that defines the cut 
arc is sufficiently large. 
0107. In instances whena cut arc is used for partitioning an 
IC layout, some embodiments, use the process 2600 of FIG. 
26 to identify the region for the pin. Accordingly, when the 
processes of FIGS. 9 and 10 use a cut arc to partition an IC 
layout, the process 1000 may call the process 2600 to identify 
the region for the pin. 
0108. As shown in FIG. 26, the process 2600 computes 
(2605) a distance between the particular pin the IC layout and 
the center of the circle that defines the cut arc. Some embodi 
ments use Equation (F) to determine such a distance (“Dp'). 

where Xi and Yi are the coordinates of the pin and, X, and 
Y are the coordinates of the center of the circle that defines 
the cut arc. The process determines (at 2610) whether the 
distance (“Dp') between the pin and the center of the circle is 
greater than the radius of the circle. Thus, in reference to the 
IC layout shown in FIG. 24, the process determines (at 2610) 
whether the distance 2420 between the center of the circle 
2410 and pin 2405 is greater than the radius 2415 of the circle 
2410. If the distance (“Dp) is greater than the radius 2415, 
the process specifies (at 2615) that the pin is in the first region 
defined by the cut arc and ends. Otherwise, the process speci 
fies (at 2620) that the pin 2405 is in the second region defined 
by the cut arc and ends. 
0109 III. Optimization Techniques 
0110. As mentioned above, the invention's cost-calculat 
ing methods can be used with a variety of optimization tech 
niques. Three Suitable optimization techniques are described 
below. These three are: (1) local optimization, (2) simulated 
annealing, and (3) KLFM. 
0111 A. Local Optimization 
0112 Local optimization is a technique that iteratively 
modifies the placement configuration to improve the place 
ment score generated by a cost-calculating function. At each 
iteration, this technique might move one circuit module, Swap 
two modules, or move a number of related modules, etc. Also, 
at each iteration, this technique randomly selects moves. In 
addition, this techniques does not accept moves that make the 
calculated cost worse. 

0113 FIG. 27 illustrates one example of a local optimiza 
tion process 2700. This process initially receives (at 2705) an 
initial placement configuration. In some embodiments, the 
process receives the initial configuration by receiving a list of 
circuit modules, a starting placement configuration for these 
modules, and a net list that specifies the interconnection 
between these modules. 
0114. After receiving the initial placement configuration, 
the process 2700 calls (at 2710) a cost-calculating method, 
like one of the cost-calculating methods described above in 

Equation (F) 
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Section II. In response, this cost-calculating method com 
putes and returns the cost (C) of the initial placement con 
figuration. 
0115. When the process 2700 calls the cost-calculating 
method, it supplies this method with a net list that specifies 
the initial placement configuration (i.e., a net list that identi 
fies all the nets in the IC layout before any modifications to the 
positions of the modules in the layout). 
0116. Also, when the cost-calculating method is the bipar 
titioning process 1000 described above, the process 2700 
calls the process 900 before calling the process 1000. As 
described above, the process 900 defines a cut line for the 
current IC region being optimized by the optimization pro 
cess 2700. The process 2700 supplies the congestion-calcu 
lating process 1000 with this cut line along with the initial 
configuration's net list, in order to receive from the process 
1000 the net-cut congestion cost (C) of the initial placement 
configuration. From the process 1000, the process 2700 also 
receives two net lists that specify the nets and the pins in the 
two regions defined by the current cut line. 
0117. After obtaining cost of the initial placement con 
figuration at 2710, the process sets (at 2715) a futile-iteration 
counter (F) equal to 1. As further described below, the process 
uses counter to determine whether it needs to terminate its 
operation as it has performed a predetermined number of 
iterations without improving the score. 
0118. The process then selects (at 2720) a random move 
that requires the modification of the coordinates of one or 
more circuit modules in the IC layout. The process next 
identifies (at 2725) all the nets affected by this random move. 
Depending on how nets are defined, these nets are the nets that 
either (1) contain the circuit module or modules selected for 
the move, or (2) contain the pins of these circuit modules. 
0119. At 2730, the process computes the current cost for 
the nets identified at 2725. As mentioned above, the cost 
calculating process 1000 store the cost for each net. Hence, 
the process 2700 can compute the current cost for the identi 
fied nets by Summing the stored cost values for these nets. 
0120 According to the selected random move, the process 
2700 modifies (at 2735) the coordinates of each circuit mod 
ule and/or pin affected by the move. In other words, at 2735. 
the process makes the move by modifying the coordinates of 
the affected circuit module or modules and/or their associated 
pins to match the random location identified at 2720. 
0121 The process then calls the cost-calculating process 
and Supplies this process with a net list that specifies the 
identified nets that are affected by the selected move. This net 
list specifies the configuration of the identified nets after the 
selected move, since the process 2700 modified the coordi 
nates of the affected circuit modules and/or pins at 2735. In 
the embodiments where the cost-calculating process is the 
bipartitioning process 1000, the process 2700 supplies this 
process 1000 with the cut line for the current IC region being 
optimized, along with the list of the identified nets. 
0122. In response to the call at 2740, the cost-calculating 
method computes and returns the cost (C) for the configura 
tion of the identified nets after the potential modification. 
When the cost-calculating method is the bipartitioning pro 
cess 1000, this process also partitions the identified nets about 
the cut line, and returns two netlists that reflect this partition 
1ng. 
(0123. After receiving (at 2740) the cost for the identified 
nets after the potential modification, the process generates (at 
2745) a delta cost by subtracting the cost for the identified 
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nets after the potential modification (i.e., the cost calculated at 
2740) from the cost for the identified nets before the potential 
modification (i.e., the cost calculated at 2730) 
(0.124. At 2750, the process determines whether the delta 
cost is less than Zero. If so, the selected move reduces the 
placement cost, and the process decides to retain the move. 
Specifically, when the delta cost is less than Zero, the process 
sets (at 2755) the cost of the current placement configuration 
(i.e., the placement configuration with the selected move) 
equal to the cost of the previous placement configuration (i.e., 
the placement configuration without the selected move) plus 
the delta cost. The delta cost is negative and thereby reduces 
the overall placement configuration cost C. 
(0.125. The process 2700 then resets (at 2760) the futile 
iteration counter F to 1. The process 2700 uses (at 2765) the 
two net lists returned by the method 1000 at 2740 to modify 
the two netlists for the two sub-regions defined by the current 
cut line. The process then returns to 2720 to select another 
random move. 

0.126 If the process determines (at 2750) that the delta cost 
is not less than Zero, the process realizes that the selected 
move does not reduce the placement cost. Consequently, the 
process changes (at 2770) the coordinates of the affected 
circuit module or modules and/or their corresponding pins 
back to their original coordinates before the move (i.e., their 
coordinates before 2735). The process also changes the cost 
of each of the identified nets back to its original value (i.e., 
back to the cost stored for the net before 2740). 
I0127. The process then increments (at 2775) the futile 
iteration counter by one. The process then determines (at 
2780) whether the futile-iteration count equals a pre-specified 
maximum. If not, the process returns to 2720 to select another 
random move. Otherwise, the process realizes (at 2780) that 
it has performed a pre-specified maximum number of itera 
tions without improving the placement score. Hence, the 
process returns (at 2785) a net list specifying the current 
placement configuration, and then ends. 
I0128 B. Simulated Annealing 
I0129. Simulated annealing is an optimization technique 
that iteratively modifies the placement configuration to 
improve the placement score generated by a cost-calculating 
function. At each iteration, this technique might move one 
circuit module, Swap two modules, move a number of related 
modules, etc. Also, at each iteration, this technique randomly 
selects moves. It also accepts moves that make the calculated 
cost worse, but its tolerates fewer bad moves as the number of 
iterations increases. 

0.130 FIG. 28 illustrates one example of a local optimiza 
tion process 2800. This process initially receives (at 2805) an 
initial placement configuration. In some embodiments, the 
process receives the initial configuration by receiving a list of 
circuit modules, a starting placement configuration for these 
modules, and a net list that specifies the interconnection 
between these modules. 

I0131. After receiving the initial placement configuration, 
the process 2800 calls (at 2810) a cost-calculating method, 
like one of the cost-calculating methods described above in 
Section II. In response, this cost-calculating method com 
putes and returns the cost (C) of the initial placement con 
figuration. 
0.132. When the process 2800 calls the cost-calculating 
method, it supplies this method with a net list that specifies 
the initial placement configuration (i.e., a net list that identi 
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fies all the nets in the IC layout before any modifications to the 
positions of the modules in the layout). 
0.133 Also, when the cost-calculating method is the bipar 
titioning process 1000 described above, the process 2800 
calls the process 900 before calling the process 1000. As 
described above, the process 900 defines a cut line for the 
current IC region being optimized by the optimization pro 
cess 2800. The process 2800 supplies the congestion-calcu 
lating process 1000 with this cut line along with the initial 
configuration's net list, in order to receive from the process 
1000 the net-cut congestion cost (C) of the initial placement 
configuration. From the process 1000, the process 2800 also 
receives two net lists that specify the nets and the pins in the 
two regions defined by the current cut line. 
0134. After obtaining cost of the initial placement con 
figuration at 2810, the process sets (at 2815) a futile-iteration 
counter (F) equal to 1. As further described below, the process 
uses counter to determine whether it needs to terminate its 
operation as it has performed a predetermined number of 
iterations without improving the score. 
0135. At 2815, the process also sets an annealing “tem 
perature'. T and iteration counter N. As further described 
below, the annealing temperature determines how likely the 
process 2800 will accept bad moves. The iteration counter is 
used to decrease this temperature over time, so as to make 
process 2800 less and less willing to accept bad moves. 
0136. At 2820, the process then (1) selects a random move 
that requires the modification of the coordinates of one or 
more circuit modules in the IC layout, and (2) increments the 
iteration counter N. The process next identifies (at 2825) all 
the nets affected by this random move. Depending on how 
nets are defined, these nets are the nets that either (1) contain 
the circuit module or modules selected for the move, or (2) 
contain the pins of these circuit modules. 
0.137. At 2830, the process computes the current cost for 
the nets identified at 2825. As mentioned above, the cost 
calculating process 1000 stores the cost for each net. Hence, 
the process 2800 can compute the current cost for the identi 
fied nets by Summing the stored cost values for these nets. 
0138 According to the selected random move, the process 
2800 modifies (at 2835) the coordinates of each circuit mod 
ule and/or pin affected by the move. In other words, at 2835, 
the process makes the move by modifying the coordinates of 
the affected circuit module or modules and/or their associated 
pins to match the random location identified at 2820. 
0.139. The process then calls the cost-calculating process 
and Supplies this process with a net list that specifies the 
identified nets that are affected by the selected move. This net 
list specifies the configuration of the identified nets after the 
selected move, since the process 2800 modified the coordi 
nates of the affected circuit modules and/or pins at 2835. In 
the embodiments where the cost-calculating process is the 
bipartitioning process 1000, the process 2800 supplies this 
process 1000 with the cut line for the current IC region being 
optimized, along with the list of the identified nets. 
0140. In response to the call at 2840, the cost-calculating 
method computes and returns the cost (C) for the configura 
tion of the identified nets after the potential modification. 
When the cost-calculating method is the bipartitioning pro 
cess 1000, this process also partitions the identified nets about 
the cut line, and returns two netlists that reflect this partition 
1ng. 
0141. After receiving (at 2840) the cost for the identified 
nets after the potential modification, the process generates (at 
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2845) a delta cost by subtracting the cost for the identified 
nets after the potential modification (i.e., the cost calculated at 
2840) from the cost for the identified nets before the potential 
modification (i.e., the cost calculated at 2830). 
0142. At 2850, the process determines whether the delta 
cost is less than Zero. If so, the selected move reduces the 
placement cost, and the process decides to retain the move. 
Specifically, when the delta cost is less than Zero, the process 
resets (at 2855) the futile-iteration counter F to 1. The process 
then sets (at 2860) the cost of the current placement configu 
ration (i.e., the placement configuration with the selected 
move) equal to the cost of the previous placement configura 
tion (i.e., the placement configuration without the selected 
move) plus the delta cost. The delta cost is negative and 
thereby reduces the overall placement configuration cost C. 
The process 2800 uses (at 2865) the two net lists returned by 
the method 1000 at 2840 to modify the two netlists for the two 
sub-regions defined by the current cut line. 
0143. The process next determines (at 2870) whether the 
iteration counter N has reached a maximum. If not, the pro 
cess returns to 2820 to select another random move. Other 
wise, the process decreases the annealing temperature and 
resets the iteration counter at 2875, and then returns to 2820 
to select another random move. 
0144. If the process determines (at 2850) that the delta cost 

is not less than Zero, the process computes (at 2880) a prob 
ability between 0 and 1. In some embodiments, the equation 
for computing the probability equalse', where Delta 
is the value computed at 2845 and T is the annealing tempera 
ture. 

0145 Next, the process picks (at 2882) a random number 
between 0 and 1. At 2884, the process then determines 
whether the random number is less than the computed prob 
ability. If so, the process decides to make the move, and 
thereby transitions to 2860 to perform the other operations 
associated with the move, as described above. 
0146 If the selected random number is not less than the 
computed probability, the process changes (at 2886) the coor 
dinates of the affected circuit module or modules and/or their 
corresponding pins back to their original coordinates before 
the move (i.e., their coordinates before 2835). At 2886, the 
process also changes the cost of each of the identified nets 
back to its original value (i.e., back to the cost stored for the 
net before 2840). 
0147 The process then increments (at 2888) the futile 
iteration counter by one. The process then determines (at 
2890) whether the futile-iteration count equals a pre-specified 
maximum. If not, the process transitions to 2870, which was 
described above. Otherwise, the process realizes (at 2890) 
that it has performed a pre-specified maximum number of 
iterations without improving the placement score. Hence, the 
process returns (at 2892) a net list specifying the current 
placement configuration, and then ends. 
0148 C. KLFM 
0149 KLFM is an optimization technique that iteratively 
modifies the placement configuration to improve the place 
ment score generated by a cost-calculating function. At each 
iteration, this technique might move one circuit module, Swap 
two modules, move a number of related modules, etc. Unlike 
local optimization and simulated annealing, KLFM does not 
randomly select moves. Instead, at each iteration, it selects 
the best move over all the possible moves that it can make. 
KLFM will make moves that make the placement cost worse. 
Over an entire sweep, it then identifies the best placement 



US 2012/O297354 A1 

configuration that it sees, and if that best placement configu 
ration has a better cost than the original placement configu 
ration, KLFM starts over with the improved solution. 
0150 FIG. 29 illustrates one example of a KLFM process 
2900. This process initially receives (at 2905) an initial place 
ment configuration. In some embodiments, the process 
receives the initial configuration by receiving a list of circuit 
modules, a starting placement configuration for these mod 
ules, and a net list that specifies the interconnection between 
these modules. 

0151. After receiving the initial placement configuration, 
the process 2900 calls (at 2910) a cost-calculating method, 
like one of the cost-calculating methods described above in 
Section II. In response, this cost-calculating method com 
putes and returns the cost (C) of the initial placement con 
figuration. 
0152. When the process 2900 calls the cost-calculating 
method, it supplies this method with a net list that specifies 
the initial placement configuration (i.e., a net list that identi 
fies all the nets in the IC layout before any modifications to the 
positions of the modules in the layout). 
0153. Also, when the cost-calculating method is the bipar 
titioning process 1000 described above, the process 2900 
calls the process 900 before calling the process 1000. As 
described above, the process 900 defines a cut line for the 
current IC region being optimized by the optimization pro 
cess 2900. The process 2900 supplies the congestion-calcu 
lating process 1000 with this cut line along with the initial 
configuration's net list, in order to receive from the process 
1000 the net-cut congestion cost (C) of the initial placement 
configuration. From the process 1000, the process 2900 also 
receives two net lists that specify the nets and the pins in the 
two regions defined by the current cut line. 
0154 After obtaining cost of the initial placement con 
figuration at 2910, the process sets (at 2915) a flag (F) equal 
to false. As further described below, the process uses this flag 
after performing a number of moves to determine whether 
any of the moves improved the placement-configuration 
score. At 2915, the process also (1) identifies the initial place 
ment configuration as the current and best placement configu 
rations, and (2) initializes the costs of the current and best 
configurations to the cost of the initial configuration. 
(O155 Next, the process defines (at 2920) a set M of all 
moves in the current placement configuration (P). For 
each move in M, the process computes (at 2925) the cost (C) 
of the placement configuration after the move. To compute 
the cost of each move, the process performs the following six 
operations. First, the process (1) identifies all the nets affected 
by the move, and (2) computes the current cost for the iden 
tified nets by Summing the stored cost values for these nets. 
Second, the process modifies the coordinates of each circuit 
element affected by the move according to the move. 
0156 Third, it supplies the cost-calculating process with a 
netlist that specifies the identified nets that are affected by the 
selected move. When the cost-calculating process is the 
bipartitioning process 1000, the process 2900 also supplies 
the cost-calculating process with the cut line for the current IC 
region. From the cost-calculating process, the process 2900 
receives the cost for the identified nets after the potential 
move. When the cost-calculating process is the bipartitioning 
process 1000, the process 2900 also receives two netlists that 
represent the partitioning of the identified net list by the 
process 1000. 
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0157 Fourth, after receiving the cost for the identified nets 
after the potential modification, the process generates a delta 
cost by subtracting the cost for the identified nets after the 
potential modification from the cost for the identified nets 
before the potential modification. 
0158 Fifth, the process generates the cost of the move by 
adding the computed delta cost to the cost of the current 
placement configuration. Sixth, the process (1) changes the 
coordinates of the affected circuit elements (modules and/or 
pins) back to their original coordinates before the move, and 
(2) changes the cost of each of the identified nets back to its 
original value before the move. 
0159. At 2930, the process makes the move with the low 
est placement-configuration cost to obtain a new current 
placement configuration P. At this stage, the process 
also removes the selected move from the set M of possible 
moves. The process also sets the cost of the current placement 
configuration equal to the cost of the placement after the 
move. Also, when the cost-calculating method is the biparti 
tioning method 1000, the process modifies (at 2930) the two 
netlists for the two sub-regions defined by the current cut line 
by using the two net lists returned by this method at 2925 for 
the move. 

(0160. The process then determines (at 2935) whether the 
cost of the current placement configuration (i.e., the configu 
ration obtained at 2930) is less than the lowest placement 
configuration cost yet seen. If not, the process transitions to 
2945, which will be described below. Otherwise, the process 
(at 2940) (1) defines the best placement configuration to be 
the current placement configuration, (2) sets the cost of the 
best placement configuration to the cost of the current place 
ment configuration, and (3) sets the flag (F) to true to indicate 
that at least one of the performed moves improved the place 
ment cost. The process then transitions to 2945. 
(0161. At 2945, the process determines whether the set M 
of possible moves is empty. If not, the process transitions 
back to 2925 to compute, for each remaining move in the set, 
the cost (C) of the placement configuration after the move. 
The process recomputes the cost associated with the moves 
because the previous move might have affected the placement 
configuration costs for the remaining moves. 
(0162. If the process determines (at 2945) that the set M is 
empty, the process determines that it has performed all the 
moves in the set defined at 2920. Consequently, the process 
determines (at 2950) whether one of the performed moves 
improved the placement cost by determining whether the flag 
(F) is set to true. 
(0163. If the flag is true, the process (at 2955) (1) sets the 
current placement configuration equal to the best placement 
configuration identified in the last Sweep through the moves, 
(2) define the cost of the current placement configuration 
equal to the cost of the best placement configuration, and (3) 
sets the flag (F) to true. The process then returns to 2920 to 
repeat for the current placement configuration, in order to 
determine whether it can improve on this configuration. 
0164. If the process determines (at 2950) that the flag is 
false, the process returns (at 2960) the best placement con 
figuration that it identified as the final placement configura 
tion. The process then ends. 
(0165 
0166 FIG. 30 conceptually illustrates a computer system 
with which some embodiments of the invention is imple 
mented. Computer system 3000 includes a bus 3005, a pro 

IV. Computer System 
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cessor 3010, a system memory 3015, a read-only memory 
3020, a permanent storage device 3025, input devices 3030, 
and output devices 3035. 
(0167. The bus 3005 collectively represents all system, 
peripheral, and chipset buses that support communication 
among internal devices of the computer system 3000. For 
instance, the bus 3005 communicatively connects the proces 
sor 3010 with the read-only memory 3020, the system 
memory 3015, and the permanent storage device 3025. 
(0168 From these various memory units, the processor 
3010 retrieves instructions to execute and data to process in 
order to execute the processes of the invention. The read 
only-memory (ROM)3020 stores static data and instructions 
that are needed by the processor 3010 and other modules of 
the computer system. The permanent storage device 3025, on 
the other hand, is a read-and-write memory device. This 
device is a non-volatile memory unit that stores instruction 
and data even when the computer system 3000 is off. Some 
embodiments of the invention use a mass-storage device 
(such as a magnetic or optical disk and its corresponding disk 
drive) as the permanent storage device 3025. Other embodi 
ments use a removable storage device (such as a floppy disk or 
ZipR disk, and its corresponding disk drive) as the permanent 
storage device. 
(0169. Like the permanent storage device 3025, the system 
memory 3015 is a read-and-write memory device. However, 
unlike storage device 3025, the system memory is a volatile 
read-and-write memory, such as a random access memory. 
The System memory stores some of the instructions and data 
that the processor needs at runtime. In some embodiments, 
the invention's processes are stored in the system memory 
3015, the permanent storage device 3025, and/or the read 
only memory 3020. 
(0170 The bus 3005 also connects to the input and output 
devices 3030 and 3035. The input devices enable the user to 
communicate information and select commands to the com 
puter system. The input devices 3030 include alphanumeric 
keyboards and cursor-controllers. The output devices 3035 
display images generated by the computer system. The output 
devices include printers and display devices, such as cathode 
ray tubes (CRT) or liquid crystal displays (LCD). 
(0171 Finally, as shown in FIG. 30, bus 3005 also couples 
computer 3000 to a network 3065 through a network adapter 
(not shown). In this manner, the computer can be a part of a 
network of computers (such as a local area network (“LAN”), 
a wide area network (“WAN), or an Intranet) or a network of 
networks (such as the Internet). Any or all of the components 
of computer system 3000 may be used in conjunction with the 
invention. However, one of ordinary skill in the art will appre 
ciate that any other system configuration may also be used in 
conjunction with the invention. 
0172. While the invention has been described with refer 
ence to numerous specific details, one of ordinary skill in the 
art will recognize that the invention can be embodied in other 
specific forms without departing from the spirit of the inven 
tion. For example, the above mentioned cut graphs are 
described as approximations for diagonal cut lines. However, 
in Some embodiments, these cut graphs may be implemented 
for other reasons. Moreover, other types of cut graphs may be 
used to approximate diagonal cut lines. Additionally, the 
above optimization techniques are described with reference 
to using cut lines. However, such optimization techniques 
may be used with various cut graphs. Furthermore, various 
mathematical procedures are described to determine on 
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which side of a cut linea pin is located on. However, different 
embodiments may use different mathematical procedures. 
For instance, to determine on which side of a cut arc a pin is 
located on, some embodiments compute the squared value of 
the distance (i.e., Dp) between the pin and the centerofcircle 
that defines the circle and compare it with the squared value of 
the radius (i.e., R) of the circle. Thus, one of ordinary skill in 
the art would understand that the invention is not to be limited 
by the foregoing illustrative details, but rather is to be defined 
by the appended claims. 

1-19. (canceled) 
20. An automated method for placing a set of circuit mod 

ules in an integrated circuit (“IC) layout, the method com 
prising: 

computing a placement metric for the IC layout, wherein 
computing the placement metric comprises: 
partitioning a region of the IC layout into a plurality of 

Sub-regions by using a set of cut graphs that comprises 
a staircase cut graph, said staircase cut graph com 
prising horizontal and vertical segments, wherein a 
plurality of said horizontal and vertical segments do 
not intersect any other cut graphs; and 

generating congestion-cost estimates by measuring a 
number of nets cut by the set of cut graphs; and 

by a computer, determining a placement for the set of 
circuit modules based on the computed placement met 
1C. 

21. The automated method of claim 20, wherein the stair 
case cut graph is an approximation of a diagonal cut line. 

22. The automated method of claim 20, wherein the set of 
cut graphs comprises a plurality of horizontal cut lines. 

23. The automated method of claim 20, wherein the set of 
cut graphs comprises a plurality of vertical cut lines. 

24. The automated method of claim 20, wherein computing 
the placement metric further comprises recursively partition 
ing the region of the IC layout into a plurality of sub-regions. 

25. The automated method of claim 24, wherein a first 
staircase cut graph is used during a first recursive partitioning 
of the region of the IC layout. 

26. The automated method of claim 25, wherein a second 
staircase cut graph is used during a second recursive parti 
tioning of the region of the IC layout. 

27. The automated method of claim 26, wherein the first 
staircase cut graph comprises a first set of horizontal and 
Vertical segments, wherein a plurality of said horizontal and 
Vertical segments do not intersect any other cut graphs, 
wherein the second staircase cut graph comprises a second set 
of horizontal and vertical segments, wherein a plurality of 
said horizontal and vertical segments do not intersect any 
other cut graphs, wherein a length of each of the first set of 
segments is different than a length of each of the second set of 
Segments. 

28. The automated method of claim 20, wherein a length of 
each of said plurality of said vertical segments is different 
than a length of each of said plurality of said horizontal 
Segments. 

29. A non-transitory computer readable medium storing a 
computer program for placing a set of circuit modules in an 
integrated circuit (“IC) layout, the computer program 
executable by at least one processor, the computer program 
comprising sets of instructions for: 

computing a placement metric for the IC layout, wherein 
the set of instructions for computing the placement met 
ric comprises sets of instructions for: 



US 2012/O297354 A1 

partitioning a region of the IC layout into a plurality of 
Sub-regions by using a set of cut graphs that comprise 
a staircase cut graph, said staircase cut graph com 
prising horizontal and vertical segments, wherein a 
plurality of said horizontal and vertical segments do 
not intersect any other cut graphs; and 

generating congestion-cost estimates by measuring a 
number of nets cut by the set of cut graphs; and 

determining a placement for the set of circuit modules 
based on the computed placement metric. 

30. The non-transitory computer readable medium of claim 
29, wherein each net comprises a plurality of pins, wherein 
the set of instructions for measuring the number of nets cut by 
the staircase cut graph comprises sets of instructions for itera 
tively, for each net in the region: 

Selecting each pin in the net; 
identifying a Sub-region for each pin based on the staircase 

cut graph; and 
determining that the net is cut when at least one pin is 

identified in a first Sub-region and at least one pin is 
identified in a second sub-region, wherein the first sub 
region and the second Sub-region are different Sub-re 
gions. 

31. The non-transitory computer readable medium of claim 
30, wherein the set of instructions for identifying a sub-region 
of a pin based on the staircase cut graph comprises a set of 
instructions for: 

identifying a first horizontal cut line segment having a 
closesty coordinate that is greater thanay coordinate of 
the pin; 

identifying a second horizontal cut line segment having a 
closesty coordinate that is not greater than a y coordi 
nate of the pin; 

identifying a vertical cut line segment that is coupled 
between the first and second identified horizontal cut 
line segments; 

determining whether an X coordinate of the pin is greater 
than an X coordinate of the vertical cut line segment; 

determining that the pin is in the first sub-region of the IC 
layout when theX coordinate of the pin is greater than the 
X coordinate of the vertical cut line segment and deter 
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mining that the pin is in the second Sub-region of the IC 
layout when the X coordinate of the pin is not greater 
than the X coordinate of the vertical line segment. 

32. An automated method for placing a set of circuit mod 
ules in an integrated circuit (“IC) layout, wherein the set of 
circuit modules comprises a plurality of pins, the method 
comprising: 

computing a placement metric for the IC layout, wherein 
computing the placement metric comprises partitioning 
a region of the IC layout by using a cut arc, wherein the 
cut arc comprises a curve, wherein said curve does not 
include any straight segments; and 

by a computer, determining a placement for the set of 
circuit modules based on the computed placement met 
ric. 

33. The automated method of claim32, whereincomputing 
a placement metric for the IC layout further comprises gen 
erating congestion-cost estimates by measuring a number of 
nets cut by the cut arc, wherein generating the congestion 
cost estimates comprises: 

computing a distance between a pin in the IC layout and a 
center of a circle that defines the cut arc; and 

determining whether the distance between the pin and the 
center of the circle is greater than a radius of the circle. 

34. The automated method of claim33, wherein generating 
the congestion-cost estimates further comprises specifying 
that the pin is in a first region when the distance is greater than 
the radius. 

35. The automated method of claim34, wherein generating 
the congestion-cost estimates further comprises specifying 
that the pin is in a second region when the distance is not 
greater than the radius. 

36. The automated method of claim32, whereincomputing 
the placement metric further comprises recursively partition 
ing the region of the IC layout into a plurality of Sub-regions. 

37. The automated method of claim32, wherein the cutarc 
is a curved approximation of a diagonal cut line. 

38. The automated method of claim32, wherein the cutarc 
is defined by a circle with a radius that is less than a sum of a 
height and a width of the region of the IC layout. 

c c c c c 


