Title: COLD FORMED GLASS APPLIQUE

Abstract: Disclosed herein are applique assemblies (200) comprising a substrate (210) comprising a first non-planar surface (220) defining a recess and a glass sheet (230) having a thickness of less than about 3 mm. wherein the glass sheet is configured to fit within the recess, and further wherein the glass sheet is cold formed to conform to the first non-planar surface. The applique assembly may include a chemically strengthened or non-chemically strengthened glass sheet having a thickness ranging from about 0.1 mm to about 2 mm. The applique assembly may be used to cover structural elements on the exterior of a vehicle.
COLD FORMED GLASS APPLIQUE
CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Serial No. 62/022982 filed on July 10, 2014 the content of which is relied upon and incorporated herein by reference in its entirety.

FIELD OF THE DISCLOSURE

[0002] Disclosed herein are decorative covers or appliques for the external surfaces of vehicles such as cars and, more particularly, cold-formed glass/plastic appliques including a chemically strengthened or non-chemically strengthened glass sheet.

BACKGROUND

[0003] An applique is a decorative member or cover which may be attached to a vehicle surface to add styling and/or to functionally cover portions of the vehicle which may be otherwise aesthetically unpleasing. For instance, a pillar may provide support to the roof of a vehicle and may be covered by a decorative applique. Where the glazing meets the frame elements of the vehicle, such as at the pillars, non-viewing regions may be created which may be covered so as to present a harmonious external surface appearance.

[0004] Recently, there has been an increased demand in the automotive industry for the use of glass on the external surfaces of vehicles to increase the aesthetics of the vehicle and/or to increase the visibility of the exterior surroundings for the passengers. The use of glass appliques may enhance the visual aspects of the vehicle because, e.g., the pillars may be covered with glass elements so as to match the adjacent windows. To improve breakage safety, glass may be thermally tempered in which case thicker glass may be required. However, the use of such thicker glass has the disadvantage of adding weight to the vehicle which, in turn, can reduce fuel efficiency, increase emissions, and/or raise the center of gravity of the vehicle.
Moreover, to match the overall shape of the vehicle exterior, the glass may also be thermally shaped or molded, which increases the vehicle production cost.

[0005] Because of the cost and weight issues associated with glass appliques, conventional appliques are typically constructed from metal and/or plastic. However, these appliques are not without their drawbacks. Plastic exterior elements can have reduced environmental durability and can be prone to scratching, fading, peeling, and/or discoloration. Painted metal elements can be durable, but they do not match the surrounding glass which may thwart the overall intended vehicle design aesthetic.

[0006] Accordingly, it would be advantageous to provide an applique assembly including a glass surface which does not suffer from the weight disadvantage associated with thicker glasses. It would also be advantageous to provide such appliques which do not require thermal processing to match the shape of the vehicle such that the cost disadvantage as compared to traditional plastic and/or metal parts can be reduced or eliminated.

SUMMARY

[0007] The disclosure relates, in various embodiments, to an applique assembly comprising a substrate comprising a first non-planar surface defining a recess, and a glass sheet having a thickness of less than about 3 mm, wherein the glass sheet is configured to fit within the recess, and further wherein the glass sheet is cold formed to conform to the first non-planar surface.

[0008] In certain non-limiting embodiments, the glass sheet may be chosen from aluminosilicate, alkali-aluminosilicate, borosilicate, alkali-borosilicate, aluminoborosilicate, and alkali-aluminoborosilicate glasses. The glass sheet may, in various embodiments, be chemically strengthened. In further embodiments, the glass sheet may have a thickness ranging from about 0.1 mm to about 2 mm, such as from about 0.3 mm to about 1.5 mm, or from about 0.5 mm to about 1 mm. The glass sheet can, in certain embodiments, have a compressive stress greater than about 100 MPa and a depth of layer of compressive stress (DOL) greater than about 10 microns, for
example, a compressive stress greater than about 700 MPa and a DOL greater than about 40 microns.

[0009] According to other non-limiting embodiments, the substrate may be chosen from metal and plastic substrates, such as molded or extruded plastic substrates. The substrate may include a recess comprising a groove having a depth substantially equal to, for example minimally greater than, the thickness of the glass sheet. In various embodiments, the glass sheet and substrate are attached using an adhesive layer or other interlayer. In yet further embodiments, the glass sheet and substrate are not adhered together. For example, the glass sheet and substrate may be otherwise held together, e.g., using frictional forces.

[0010] The applique assembly disclosed herein may be used, for instance, as a decorative cover for a vehicle, such as a car, truck, bus or boat, to name a few. The substrate may, for example, comprise a second surface which can be attached to an exterior surface of the vehicle, such as a vehicle pillar. The applique assembly, e.g., portions of the assembly such as the glass sheet may comprise one or more surfaces which may or may not be covered with a decorative and/or anti-splinter film. According to various embodiments, a functional element, such as a light source, antenna, sensor, or indicator, may be present within or behind the applique assembly.

[0011] Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the methods described herein, including the detailed description which follows, the claims, as well as the appended drawings.

[0012] It is to be understood that both the foregoing general description and the following detailed description present various embodiments of the disclosure, and are intended to provide an overview or framework for understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various non-limiting embodiments and together with the description serve to explain the principles and operations of the disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Various features, aspects and advantages of the present disclosure are better understood when the following detailed description is read with reference to the accompanying drawings wherein like structures are indicated with like reference numerals when possible, in which:

[0014] FIG. 1 illustrates an exemplary vehicle having various components which may be decoratively covered by an applique assembly according to aspects of the disclosure;

[0015] FIG. 2A is an end view of an applique assembly in accordance with various aspects of the disclosure;

[0016] FIG. 2B is an end view of an applique assembly in accordance with aspects of the disclosure;

[0017] FIG. 3A is a top view of an applique assembly in accordance with aspects of the disclosure;

[0018] FIG. 3B is a top view of an applique assembly in accordance with aspects of the disclosure;

[0019] FIG. 4 is a side view of an applique assembly in accordance with aspects of the disclosure;

[0020] FIG. 5 is an oblique view of an applique assembly in accordance with aspects of the disclosure;

[0021] FIG. 6A is an end view of an applique sub-assembly in accordance with aspects of the disclosure;

[0022] FIG. 6B is an end view of an applique sub-assembly in accordance with aspects of the disclosure;

[0023] FIG. 6C is an end view of an applique sub-assembly in accordance with aspects of the disclosure; and

[0024] FIG. 6D is an end view of an applique sub-assembly in accordance with aspects of the disclosure
DETAILED DESCRIPTION

[0025] Disclosed herein are applique assemblies comprising a substrate comprising a first non-planar surface defining a recess and a glass sheet having a thickness of less than about 3 mm, wherein the glass sheet is configured to fit within the recess, and further wherein the glass sheet is cold formed to conform to the first non-planar surface.

[0026] Applique assemblies may be used in a wide range of applications in accordance with various aspects of the disclosure. For example, applique assemblies may be used in various decorative applications such as coverings for exterior surfaces of vehicles including, but not limited to, cars, trucks, buses, and boats. The applique assemblies may, in some embodiments, be incorporated as outer coverings for vehicle pillars or other support structures. FIG. 1 illustrates an exemplary vehicle 100, which includes front and rear assemblies 110 and 120, having front and rear windows 130 and 140. The vehicle 100 further comprises a forward pillar A, conventionally referred to as an A-pillar, a rear pillar C, conventionally referred to as a C-pillar, and a center pillar B, located between the front and rear windows 130 and 140 and conventionally referred to as a B-pillar. According to various non-limiting embodiments, the applique assemblies disclosed herein can be used as decorative covers for any of the pillars A, B, and/or C. Of course, applique assemblies according to the instant disclosure can also be applied to other portions of the vehicle, such as the roof, e.g., between the windshield top edge and the glass roof elements found in a sunroof or panoramic roof, to name a few.

[0027] FIGS. 2A and 2B illustrate side views of exemplary applique assemblies 200 according to the disclosure. The applique assembly 200 can comprise a substrate 210 comprising a first non-planar surface 220 defining a recess in which a glass sheet 230, having a thickness less than about 3 mm, is configured to fit. For example, the recess may comprise a groove, channel, or lip 240 having a depth substantially equal to, e.g., marginally larger than, the thickness of the glass sheet 230. The groove, channel, or lip 240 may extend fully or partially around the edge of the recess and may have any shape. For example, it may have a rectangular edge as
shown in FIG. 2A, or a smooth edge as shown in FIG. 2B, or any other shape suitable to retain the glass sheet 230.

As shown in FIG. 3A, which illustrates a top view of an exemplary applique assembly 300, the glass sheet 330 can cover a majority of the substrate 310 except for a narrow band around the edge, which may optionally comprise a groove, channel, or lip. In certain embodiments, the recessed area may be maximized and the groove, channel, or lip area of the substrate may be minimized such that as much of the exterior surface of the assembly as possible is covered by glass. The glass sheet 330 can, by way of non-limiting example only, be positioned in, e.g. slid into, a recess provided in the substrate 310 and held in place, such as by frictional forces. For instance, as shown in FIG. 3A, the glass sheet 330 may be retained by a groove, channel, or lip on three sides. In the illustrated non-limiting embodiment, the glass sheet 330 may be inserted into the applique assembly from the bottom side. Alternatively, as illustrated in FIG. 3B, a retention feature 350, such as a ridge or raised portion in the substrate, may be provided to hold the glass sheet 330 in place. In such instances, the glass sheet 330 may be slid over the retention feature 350 during assembly, the retention feature capable of being subsequently snapped up or otherwise fastening the fourth edge of the glass in place to provide additional stability. It is also envisioned that the glass sheet 330 may cover less than a majority of the substrate 310 according to further embodiments.

The glass sheet once positioned in the substrate recess can be in a bent, non-planar state which can create friction between the substrate and glass elements sufficient to hold the glass in place without the need for an adhesive or lamination. Thus, in some embodiments, the applique assembly does not comprise an adhesive layer between the substrate and the glass sheet and/or the substrate is not laminated to the glass sheet. It is to be understood that an adhesive layer attaching the glass sheet to the substrate is to be distinguished from an adhesive layer attaching an optional film or element (such as an anti-splinter film, decorative film, or functional element) to the glass sheet, which is discussed in more detail below. Thus, in some embodiments, the applique assembly may not comprise an adhesive layer attaching the
glass sheet to the substrate, but may comprise an adhesive layer attaching a different film, layer, or element to the glass sheet. In other embodiments, the glass sheet may be adhered or laminated to the substrate.

[0030] FIG. 4 presents a cross-sectional side view of an exemplary applique assembly 400, demonstrating that the top surface of the substrate 410 is not flat, e.g., the substrate 410 comprises a non-planar surface 420. The glass sheet 430 can be shaped to conform to the curvature of the non-planar surface 420. As used herein, the term "conform" is intended to denote that the glass sheet is shaped or molded so as to match or substantially match the shape or curvature of the non-planar surface of the substrate. In this manner, the exterior surface of the glass sheet can be substantially even with the surrounding local regions of the vehicle, e.g., the surrounding glass windows of the vehicle.

[0031] FIG. 5 presents yet another view of an exemplary applique assembly 500 as viewed from an oblique angle, illustrating a substrate 510 and a glass sheet 530 fit within a recess in the substrate.

[0032] The thickness of the applique assembly may vary depending on the particular application. Relatively thin substrates and/or glass sheets may be used in various applications to reduce material costs and/or weight of the applique assembly, while still providing sufficient strength. In further embodiments, relatively thick substrates and/or glass sheets may be used in applications where further support is desired to maintain the mechanical integrity of the applique assembly. The substrate thickness may, in at least certain embodiments, be a function of the glass thickness. For example, a thinner glass sheet may be held in place by a thinner substrate or a thicker glass sheet may be fit with a thicker substrate. By way of non-limiting embodiment, a metal substrate may have a thickness substantially equal to or greater than the thickness of the glass sheet. A plastic substrate may, in certain embodiments, have a thickness substantially equal to or greater than the thickness of the glass sheet, such as about two or three times thicker than the glass sheet. In various embodiments, the applique assembly may have a thicknesses ranging from about 0.2 mm to about 10 mm, such as from about 0.5 mm to about 8 mm, from about 1 mm to about 6 mm, from
about 2 mm to about 5 mm, or from about 3 mm to about 4 mm, including all ranges and
subranges therebetween. Other thicknesses may be provided depending on the
particular application.

[0033] The applique assembly can include a substrate comprisin a wide
range of materials and/or a wide range of thicknesses and configurations. For instance,
the substrate may be chosen from metals, such as steel, cold rolled steel, aluminum or
any other suitable metal. In other embodiments, the substrate may be chosen from
plastics, such as molded or extruded plastic elements of various shapes and sizes. Of
course, any other suitable substrate material used in the industry can be employed as a
substrate in an exemplary applique assembly and the aforementioned examples should
not limit the scope of the claims appended herewith.

[0034] As illustrated in the figures, the substrate can include a first non-
planar surface having any desired shape. In certain embodiments, the non-planar
surface will have a curvature matching the shape of the exterior surface to be covered.
The applique assembly can then be used to create the appearance of a smooth,
continuous exterior surface which conforms to the surrounding topography of the
vehicle and matches the desired curvature of the local vehicle surface. The glass sheet
recessed in the substrate can therefore be shaped, e.g., cold formed, to conform to, or
assume a shape similar to that of the non-planar surface of the substrate.

[0035] The glass sheet may be chosen so as to be thin enough to enable it
to conform to the non-planar surface of the substrate, yet strong enough not to break
when so formed. The shaping of flat glass sheets to form a non-flat (or non-planar)
shape, without raising the temperature of the glass to its softening point is known as
"cold-forming" or "cold-bending." When cold-forming glass, the force required to bend
the glass out of plane will be converted to stress in the glass. The glass should possess
sufficient strength to absorb this additional stress in addition to the strength necessary
to provide whatever function the application requires. The stiffness of a sheet of glass
is proportional to the cube of its thickness, thus a much greater force may be needed to
bend a thicker sheet of glass than a thinner sheet of glass to the same radius. In the
case of cold-forming, thin glass has the advantage of generating a much lower internal stress when bent to a particular shape or radius.

[0036] Use of a chemically-strengthened glass, such as Corning® Gorilla® glass may, in certain embodiments, enable the glass sheet to be very thin, e.g., less than 1 mm, while still possessing high strength to withstand the cold-bending process. Conventional glass, such as soda lime glass cannot be fully strengthened via thermal tempering unless it is comparatively thick, e.g., greater than 3 mm (such as 3-5mm), which is too thick to bend into a non-planar shape by cold-bending processes and would require a thermal shaping process to achieve the desired shape. Thinner soda lime glass may be easier to bend using cold processing methods, but can be thermally tempered to only several tens of MPa of compressive stress. Thus, conventional soda lime glasses fail to provide both the necessary thinness and strength required to be shaped in cold-bending processes to produce applique assemblies with the desired weight and cost parameters.

[0037] The applique assembly disclosed herein can include a chemically strengthened or non-chemically strengthened glass sheet having a thickness of less than about 3 mm, such as about 2mm or less, or about 1 mm or less, including all ranges and subranges therebetween. In certain embodiments, the glass sheet may have a thickness ranging from about 0.1 mm to about 2 mm, from about 0.3 mm to about 1.5 mm, or from about 0.5 mm to about 1 mm, including all ranges and subranges therebetween. In one non-limiting embodiment, the glass sheet may have a thickness of about 0.7 mm. In another embodiment, the glass sheet may have a thickness of about 1 mm. In a further embodiment, the glass sheet may have a thickness of about 0.3 mm. According to yet a further embodiment, the glass sheet may have a thickness of about 0.1 mm. The glass sheet may comprise, according to various embodiments, a glass such as aluminosilicate, alkali-aluminosilicate, borosilicate, alkali-borosilicate, aluminoborosilicate, or alkali-aluminoborosilicate glasses, or any other suitable glass.

[0038] Various glass forming techniques may be used to produce glass sheets that may be incorporated within the applique assembly. For instance, fusion down draw techniques, fusion updraw techniques, slot draw techniques, float
techniques, or other processes may be used to provide a glass ribbon that may be processed into glass sheets having the desired dimensional configuration. For example, a fusion draw process can be provided to obtain a substantially pristine surface. According to certain embodiments, the glass sheet can be chosen from clear, opaque, and colored glasses.

[0039] In one embodiment, the glass sheets can comprise chemically strengthened glass such as Corning® Gorilla® glass from Corning Incorporated. Such chemically strengthened glass, for example, may be provided in accordance with U.S. Patent Application Nos. 7,666,511, 4,483,700, and 5,674,790, which are incorporated herein by reference in their entireties. Corning® Willow™ glass and Corning® EAGLE XG® glass from Corning Incorporated may also be suitable for use as the glass sheet in various embodiments. Of course, glasses from other manufacturers, such as Xensation® from Schott and Dragontrail™ from Asahi Glass Company, can also be used, to name a few.

[0040] Chemical strengthening may be carried out by an ion exchange process. For instance, a glass sheet (e.g., aluminosilicate glass, alkali-aluminoborosilicate glass) may be made by fusion drawing and then chemically strengthening by immersing the glass sheet in a molten salt bath for a predetermined period of time. Ions within the glass sheet at or near the surface of the glass sheet are exchanged for larger metal ions, for example, from the salt bath. The temperature of the molten salt bath and treatment time period will vary; however, it is within the ability of one skilled in the art to determine the time and temperature according to the desired application. By way of a non-limiting example, the temperature of the molten salt bath may range from about 400°C to about 800°C, such as from about 400°C to about 500°C, and the predetermined time period may range from about 1 to about 24 hours, such as from about 4 hours to about 10 hours, although other temperature and time combinations are envisioned.

[0041] Without wishing to be bound by theory, it is believed that the incorporation of the larger ions into the glass strengthens the sheet by creating a compressive stress in a near surface region. A corresponding tensile stress is induced
within a central region of the glass sheet to balance the compressive stress. The chemical strengthening process of Corning® Gorilla® glass can provide a relatively high compressive stress (e.g., greater than about 500 MPa, such as from about 700 MPa to about 730 MPa; and even capable of greater than 800 MPa) with a relatively deep depth of layer which is in compression (e.g., about 40 to 50 microns; and even capable of greater than 100 microns). Such glass can have a high retained strength and high resistance to scratch damage, high impact resistance, and/or high flexural strength as well as a substantially pristine surface.

[0042] According to various embodiments, the glass sheet may have a compressive stress greater than about 100 MPa and a depth of layer of compressive stress (DOL) greater than about 10 microns. In further embodiments, the glass sheet may have a compressive stress greater than about 500 MPa and a DOL greater than about 20 microns. In still further embodiments, the glass sheet may have a compressive stress greater than about 700 MPa and a DOL greater than about 40 microns. The glass sheets employed in the applique assemblies disclosed herein can have enough strength to allow bending by a cold-forming process while still possessing enough residual strength to withstand damage such as scratching, abrading, and/or breakage.

[0043] The applique assemblies disclosed herein may comprise one or more additional layers and/or films, such as an anti-splinter film (ASF) material, which may retain the glass fragments in the event of breakage. ASF materials include, by way of a non-limiting example, plastic films with an adhesive layer. As illustrated in FIGS. 6A-B, the glass sheet 630 may comprise a first surface 660 and a second surface 670, with an ASF film 680 on the second surface 670. In FIG. 6A, the ASF film 680 is clear, e.g., not colored, such that the exterior surface of the applique assembly has the same color as the underlying substrate (not shown). In FIG. 6B, the ASF film 680 is colored and, in some embodiments, the color may be chosen so as to match the exterior surface of the applique assembly to the color of the surrounding glass. In FIG. 6C, a colored decorative layer 690, such as paint or another colored material or interlayer, e.g., a polyvinyl butyrate (PVB) material, ethylene vinyl acetate (EVA), acoustic PVB,
thermoplastic polyurethane (TPU), an ionomer, etc., may be provided on the second surface 670 of the glass sheet 630, e.g., between the glass sheet 630 and an ASF film 680. In this embodiment, the exterior surface of the applique assembly will exhibit the pattern and/or color of the underlying decorative layer 690. FIG. 6D illustrates an exemplary embodiment where the glass sheet 630 is colored, with an ASF film 680 on the second surface 670 which may, e.g., be clear. This embodiment may be desirable when the surrounding glass itself is colored, such that the applique assembly with a colored glass surface can be chosen to match the vehicle glass. These and other related embodiments may allow for decorative and functional appliques which can be custom designed as desired by the manufacturer or consumer.

[0044] Functional or other decorative elements may also be employed within or in conjunction with the applique assemblies disclosed herein. For example, a lighting element may be employed. In one exemplary and non-limiting embodiment, a message may be created on the applique by printing or laminating a solid color on a surface of the glass, e.g., the interior surface of the glass, and not printing the color in the area of the message. When lit from behind, such as by a light bulb or LED, the message may become visible. Alternatively, a decorative lighting element may be provided by a light source within or behind the applique assembly, which can shine through a transparent or semi-transparent portion of a decoration, pattern, or color on the glass sheet. These lighting effects can be decorative in nature or can serve as an indicator to the passenger, for instance, to notify a passenger that a door is ajar. The space between the applique assembly and the vehicle frame can also, in other embodiments, be utilized to store an antenna or other functional element. For example, an antenna can be affixed within the assembly or can be created by an electrically-conductive material on one or more surfaces of the assembly.

[0045] In additional embodiments, an applique assembly may be configured with a sensor, indicator, or active device. For example, a touch pad and the associated electronics may be provided in an underlying substrate or may be provided in an intermediate interlayer whereupon a cold formed glass sheet can provided directly adjacent to the touch pad. Due to the thinness of the glass sheet, a user can interface
with the touch pad and, for example, input a code to unlock a car door, provide instructions to a microprocessor remote from the respective pillar, etc. Thus, embodiments described herein can be used both for their lightweight capabilities as well as their tactile capabilities.

[0046] The applique assembly may be configured for mounting, e.g., on a vehicle exterior surface. For instance, the substrate may have a second surface comprising one or more features which can engage or attach to a vehicle body. These features may for example, be molded into the substrate itself, or can be affixed by adhesives or physical fasteners, such as clips or screws. The applique assembly can be further stabilized or fastened to the exterior of the vehicle by adhesive mounting strips or other adhesive materials known in the automotive industry.

[0047] Applique assemblies of the present disclosure may have a number of advantages over conventional appliques, e.g., metal/plastic appliques or appliques employing soda lime glass. For example, applique assemblies of the present disclosure may cover vehicle structural elements while also matching the appearance of the surrounding glass windows, as both areas would exhibit a glass surface, which cannot be achieved using, e.g., painted metal/plastic appliques. In addition, the applique assemblies of the present disclosure may provide enhanced durability as compared, e.g., to vinyl or painted plastic, thus preserving the quality of the surface for extended periods of exposure to environmental elements.

[0048] As compared to appliques employing thicker, thermally-tempered soda lime glass, chemically strengthened glass can be much thinner while still providing the desired strength characteristics, thus providing weight savings which can improve fuel efficiency, decrease emissions, and/or lower the center of gravity of the vehicle. Additionally, these thinner glasses can be cold-formed to achieve a desired shape, rather than the more costly thermal forming process required for thicker glasses such as soda lime. Cold formed glass surfaces can also exhibit superior pristine surface qualities compared to thermally formed and tempered thick glass. Chemically strengthened glasses such as Corning® Gorilla® glass can also possess a much high compressive stress and deeper depth of layer than thin soda lime glasses, which allows
them to better withstand damage such as scratching and breakage. Furthermore, whereas tempered soda lime glasses may release glass chips to the surrounding environment when broken, chemically strengthened glasses such as Corning® Gorilla® glass, or thin glass sheets coated with ASF layers as disclosed herein may be able to retain glass fragments in place in case of breakage.

[0049] The applique assemblies disclosed herein can employ a glass sheet held in place within the recess of the substrate by frictional forces, thereby eliminating the need to laminate or adhere the glass sheet to the substrate, which can reduce production cost and time. In addition, because the glass sheet is not laminated to the underlying substrate, if the glass is broken during use, the glass sheet can be slid out and replaced with a new glass sheet, thereby simplifying the repair process.

[0050] It will be appreciated that the various disclosed embodiments may involve particular features, elements or steps that are described in connection with that particular embodiment. It will also be appreciated that a particular feature, element or step, although described in relation to one particular embodiment, may be interchanged or combined with alternate embodiments in various non-illustrated combinations or permutations.

[0051] It is also to be understood that, as used herein the terms "the," "a," or "an," mean "at least one," and should not be limited to "only one" unless explicitly indicated to the contrary. Thus, for example, reference to "a light source" includes examples having two or more such light sources unless the context clearly indicates otherwise.

[0052] Ranges can be expressed herein as from "about" one particular value, and/or to "about" another particular value. When such a range is expressed, examples include from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about," it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
The terms "substantial," "substantially," and variations thereof as used herein are intended to note that a described feature is equal or approximately equal to a value or description. For example, "substantially equal" is intended to denote that two values are equal or approximately equal, such as within about 5% of each other, or within about 2% of each other. In some embodiments, "substantially similar" is intended to denote, e.g., that one element is approximately the same shape as another element.

Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.

While various features, elements or steps of particular embodiments may be disclosed using the transitional phrase "comprising," it is to be understood that alternative embodiments, including those that may be described using the transitional phrases "consisting" or "consisting essentially of," are implied. Thus, for example, implied alternative embodiments to an assembly that comprises A+B+C include embodiments where an assembly consists of A+B+C and embodiments where an assembly consists essentially of A+B+C.

It will be apparent to those skilled in the art that various modifications and variations can be made to the present disclosure without departing from the spirit and scope of the disclosure. Since modifications combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the disclosure may occur to persons skilled in the art, the disclosure should be construed to include everything within the scope of the appended claims and their equivalents.
What is claimed is:

1. An applique assembly comprising:
 a substrate comprising a first non-planar surface defining a recess; and
 a glass sheet having a thickness of less than about 3 mm configured to fit within
 the recess;
 wherein the glass sheet is cold formed to conform to the first non-planar surface.

2. The applique assembly of claim 1, wherein the substrate is chosen from a plastic
 substrate, a molded plastic substrate, an extruded plastic substrate, and a metal
 substrate.

3. The applique assembly of claim 1, wherein the recess comprises a groove
 having a depth substantially equal to the thickness of the glass sheet.

4. The applique assembly of claim 1, wherein the assembly does not comprise an
 adhesive layer attaching the substrate to the glass sheet.

5. The applique assembly of claim 1, wherein the glass sheet is chosen from
 aluminosilicate, alkali-aluminosilicate, borosilicate, alkali-borosilicate,
 aluminoborosilicate, and alkali-aluminoborosilicates glasses.

6. The applique assembly of claim 1, wherein the glass sheet is chemically
 strengthened.

7. The applique assembly of claim 1, wherein the glass is chosen from clear,
 colored, and opaque glasses.

8. The applique assembly of claim 1, wherein the glass sheet has a thickness
 ranging from about 0.1 mm to about 2 mm.
9. The applique assembly of claim 1, wherein the glass sheet has a thickness ranging from about 0.5 mm to about 1.5 mm.

10. The applique assembly of claim 1, wherein the glass sheet has a compressive stress greater than about 100 MPa and a depth of layer of compressive stress greater than about 10 microns.

11. The applique assembly of claim 1, wherein the glass sheet has a compressive stress greater than about 700 MPa and a depth of layer of compressive stress greater than about 40 microns.

12. The applique assembly of claim 1, wherein the substrate has a second surface, the second surface being configured so as to attach to an exterior surface of a vehicle.

13. The applique assembly of claim 12, wherein the second surface is attached to a pillar of the vehicle.

14. The applique assembly of claim 1, further comprising at least one additional layer chosen from clear and colored anti-splinter films, adhesive films, and decorative films.

15. The applique assembly of claim 1, further comprising at least one additional element chosen from a light source, touch sensor, antennae, and combinations thereof.
INTERNATIONAL SEARCH REPORT

PCT/US2015/039871

A. CLASSIFICATION OF SUBJECT MATTER

INV. B44C5/00 B44C5/04 B60R13/04

ADD.

According to International Patent Classification (IPC) into both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B44C B60R B44F E04F A47G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 22 03 387 A1 (BUSSE RIDO) 9 August 1973 (1973-08-09) the whole document</td>
<td>1-14</td>
</tr>
<tr>
<td>A</td>
<td>paragraph [0012] - paragraph [0016]; figures 1,2</td>
<td>1-14</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*A" document member of the same patent family

Date of the actual completion of the international search

7 October 2015

Date of mailing of the international search report

15/10/2015

Authorized officer

Bjbrkl und, Sofie
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 37 37 736 A1 (DAIMLER BENZ AG [DE])</td>
<td>1-15</td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>DE 2203387</td>
<td>09-08-1973</td>
<td>NONE</td>
</tr>
<tr>
<td>DE 102007058272</td>
<td>18-06-2009</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2014049949</td>
<td>20-02-2014</td>
<td>CA 2675787 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011036044 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014049949 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 766794 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5460001 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0109379 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2402689 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1418279 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10013496 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10191060 D2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1268953 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0300036 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003528233 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 357374 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003077417 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0171122 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200207507 A</td>
</tr>
<tr>
<td>DE 3737736</td>
<td>24-05-1989</td>
<td>DE 3737736 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H01148670 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4932712 A</td>
</tr>
</tbody>
</table>