
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0047490 A1

US 20120047490A1

Ambichl et al. (43) Pub. Date: Feb. 23, 2012

(54) ARCHITECTURE FOR STATE DRIVEN Publication Classification
TESTING (51) Int. Cl.

G06F 9/44 (2006.01)
(75) Inventors: Ernst Ambichl. Altenberg (AT). (52) U.S. Cl. ... 717/125: 717/124

Dietmar Strasser,
Weisskirchen/Traun (AT) (57) ABSTRACT

An architecture for a test script editor that can be used by
(73) Assignee: Micro Focus (US), Inc., Rockville, anybody in the development team, including non-program

MD (US) mer business analyst testers. Software testers can generate
test Scripts for validating and Verifying Software without navi

(21) Appl. No.: 12/890,547 gating all possible actions or keywords. The current applica
tion state is described with one or more test objects. Each test

(22) Filed: Sep. 24, 2010 object has one or more associated test methods and each test
9 method can describe one or more state transitions. Only test

O O methods accessible through test objects in the current appli
Related U.S. Application Data cation state are displayed to the software tester. The current

(63) Continuation of application No. 12/861,794, filed on state changes only if the state transition described by the test
Aug. 23, 2010, Continuation of application No.
12/861,801, filed on Aug. 23, 2010.

200

E. State
sitors Engine

Available
Attiors

method selected by the Software tester indicates a change
from the current state.

230

210

220 Test Script

Step
Step 2

Step in

250

xxyyxxxswerwynxwww.expengrassrycy

Patent Application Publication Feb. 23, 2012 Sheet 1 of 27 US 2012/0047490 A1

Ex

Test Method Parameter Parameter 2 Parameter 3 Parameter 4

setserNameAndassword user pwd
SelectOk

select

selectrow

Command
110

Line

Test Object

Test Method

Row index

- r - -
Append Delete Last insert Delete | | Locate

FIG. 1 15

Patent Application Publication Feb. 23, 2012 Sheet 2 of 27 US 2012/0047490 A1

200

Y-N 230
240 -----

State

est
Fair.ork 220 Test Script

State - Step
far. State M Step 2

sitors Engine Stepf

Available 250
Actions

ACES- ?
sibl: exists

AIS ?
xxyyxxxswerwyww.xwww.oryengtsenyey

Patent Application Publication Feb. 23, 2012 Sheet 3 of 27 US 2012/0047490 A1

}

TestObjectList getAccessibleTestObjects (Statestack stack, Teststep script,
int firstStep int last.Step)

for (int i=firstStep; i.<slast.Step; it +) // for all steps of a test script

TestStep step is scripti. ;
TestObject to step. getTestObject () ;
TestNethod tra step. gatestMethod () ;

A / Retrieve the list of state transitions which are defined for the test
// Inethod in the test framework
State Transitionist stList =

GetStateransitionList (TestFramework. to tin) ;

A / for all StateTransitions st in StateTransition List
for (StateTransition st : stList)
{
if (st . types-RestoreAppState) { 1N1 310

stack, pop () ;
}
if (st, type=s=SetAppState) { 1N1 320

stack.pop () ;
stack, push (st. testObjects) ;

if (st type=ssaddAppState) 1N1
TestObjectList testObjects=stack...pop () ;
testObjects, add (st, testObjects) ;
stack, push (testObjects) : 340

} 1N1
if (st . type=s=RemoveAppState) {
TestObjectList testObjects=Stack...pop () ;
testObjects, remove (st. testObjects);
stack, push (testObjects);

350
if (st, type==NewAppState) { 1N1

stack, push (st, testObjects);

330

return stack...pop () ;

FIG. 3 "

Patent Application Publication Feb. 23, 2012 Sheet 4 of 27 US 2012/0047490 A1

436

401 Na Wom

Cret state

New state Toro2, Tos
Pop 430

rol, Toa, Toa
To, To4
TO

Sh

420

410

TOI-TO5: Test Objects

FIG. 4A
400

TO1, TO2, TO3

TO1 TO4

N

TO1 TO2. TO3

TO1 TO4

440

TO4

440

N

TO1 TO2, TO3

450

350

N
NewAppState (TO4)

TO1, TO4

FIG. 4B
450

460

310 N
N- TO1, TO2, TO3

RestoreAppState
TO1, TO4

FIG. 4C

Patent Application Publication Feb. 23, 2012 Sheet 5 of 27 US 2012/0047490 A1

460

TO1, TO2, TO3

TO1 TO4

470
5

N
SetAppState (TO4)

TO1, TO4

F.G. 4D
470 480

475 330 N

AddAppState (TO1 TO3)
TO1, TO4 TO1, TO4

485

480 490

485 340 N

N- TO1 TO3
RemoveAppState (TO4)

TO1, TO4

495

Patent Application Publication Feb. 23, 2012 Sheet 6 of 27 US 2012/0047490 A1

Get all accessible test
objects after step 2 (e.g.,
getAccessibleTestObjects)

Save the state stack for
steps 1-2 (Fstack 1,2)

510 52O

530

Add the state transition for the
current accessible test object
and test method to the saved

state (stack 1,2,TO?TM)) 540

Are Subsequent steps
550 Yes still reachable through state transitions

when using the current state stack?
(state 1,2,TOITM)

Add the test object and test method NO
to the structure of accessible test 560

objects and methods

Restore the saved stack (=stack(1,2))

570

More test
methods of the Current test
object to be analyzed?

NO Yes

580

More test Yes
objects to be
analyzed?

590

No

Return the structure of
accessible test objects

and test methods

F.G. 5

Patent Application Publication Feb. 23, 2012 Sheet 7 of 27 US 2012/0047490 A1

610

Calculate the state for
steps 1 - 2

Save the state stack for
steps 1-2 (=stack[1,2)

Check whether
Subsequent steps are
still reachable through
state transitions when
using the current state

stack? (state 1,2)

630

640
Return the Structure of
accessible test objects

and test methods

FIG. 6

Patent Application Publication Feb. 23, 2012 Sheet 8 of 27 US 2012/0047490 A1

700N-1/ PaSSWOrd:

704

702

70 FIG. 7C

Patent Application Publication Feb. 23, 2012 Sheet 9 of 27 US 2012/0047490 A1

714 716

Edit Delete

730

73; 734 FIG. 7E

736

Patent Application Publication

815 N1 acaca
810

R(sa)-

Feb. 23, 2012 Sheet 10 of 27 US 2012/0047490 A1

l! SetJser later Password

lectOk

825 3. ? 820 SN2.
Main "“we set

835 select A s
-", 21

N- *- 830 865

845 85 reclog; E. "ass s S 835 -f
N s ar 1 SecA selects () sfect
selectLogot 1N1 -Y. V

835 AAction, 845
AGrid, 845 select Ardgei
Ma
Y-1 select Caice, Sile:ECK

-N1.s 855 SG Colin, y 8s:-
is Col.2,
set Colurn 3

SU
855

*k. - AEditolaloyl-1855 Yu-1
"-U^ 850

FIG. 8

Patent Application Publication Feb. 23, 2012 Sheet 11 of 27 US 2012/0047490 A1

100

-N
testCase 1

Test Object Test Method Parameter 1 Parameter 2 Parameter 3 | Parameter 4 | Return

1 Start setUserNameAndassword user pwd

Command 905

Line 1

Test Object Start

Test Method SetUserNameAndpassword

selectCancel
selectOK
SetUserNameAndFassword

Username

Password

- - - - -
Append Delete last locate :

FIG. 9A

Patent Application Publication Feb. 23, 2012 Sheet 12 of 27 US 2012/0047490 A1

1OO

> testCase 1

Script

No, Test Object Test Method Parameter 1 Parameter 2 Parameter 3 Parameter 4 Return

Start setUserNameAcPassword user pwd
2 Start SelectOK Mail

Command

Line

Test Object Start W

Test Method selectOK

Usearne SelectCancel R
selectOK

Password setUserNameAndFassword

fice N 815

FIG. 9B

Patent Application Publication Feb. 23, 2012 Sheet 13 of 27 US 2012/0047490 A1

100

testCase 1

No Test object Test Method
pwd Start SetUserNameAndPassword user

2 Start SelectOk Main

8 Main selectA AGrid

Command

Test Object Main

Test Method selectA
selectA
select
selectLogout

- - - - -
Append Delete Last Insert Delete Locate I

FIG. 9C

Patent Application Publication Feb. 23, 2012 Sheet 14 of 27 US 2012/0047490 A1

testCase 1

Test Object Test Method Parameter Param(c. 2 Parameter 3

pwd setserNameAndpassword user

SelectOk Main

SelectA AGld

Command

Line

Test Object

Test Method

ROW index

910
- - - - -

Append Delete last | Locate l

FIG. 9D

Patent Application Publication Feb. 23, 2012 Sheet 15 of 27 US 2012/0047490 A1

testCase 1

setUserNameAndPassword user pwd
SelectOk Maln

selectA AGrid

selectroW 1 AAction

5 AAction selectEdit AEditDialog

Command

Line

Test Object

Test Method AAction
AGrid

ROW index Main

910
- or - -

Append Delete Last | Locate }

FIG. 9E

Patent Application Publication Feb. 23, 2012 Sheet 16 of 27 US 2012/0047490 A1

Parameter 1 Parameter 2 Parameter 3 Parameter 4

set serNameAndFassword user pwd

2 selectOk Main

3. Main Selecta AGld

4. AGrid selectrow AAction

5 AAction SelectEd AEditDialog

6 AEditDialog setColumn hello

Command 925

Line G W
Test Object

Test Method

Parameter selectCance
selectOK
selectOKAnd GotoB
setColumn
setConn2

Append Delete Last setColumn3

FIG. 9F

Patent Application Publication Feb. 23, 2012 Sheet 17 of 27 US 2012/0047490 A1

D

Test Method Parameter 1 Parameter 2 Parameter 3 Parameter 4

setUserNameAndaSSWCrd user pwd

selectOk Man

selecta AGrid

Selectrow AAction

selectEdit AEditialog

AEditDialog setColumn 1
7 AEdialog selectOkAndGotoB BGrid

Command 925

Line 7

Test Object AEditDialog

Test Method selectOkAndGotoB

selectCancel
selectOK
selectOKAndGotoB
setColumn
setColumn2
setColumn3

FIG. 9G

Patent Application Publication Feb. 23, 2012 Sheet 18 of 27 US 2012/0047490 A1

100

testCase 1

Script

No. Test Object Test Method
pWid Start setJserNameAndFassword user

Start selectOk Main

Main selecta AGlid

AGrid SelectroW AAction

AAction Selectedit AEditialog

AEditGialog setColumni hello
AEditialog selectOkAndGotoB BGld
Main selectogout Start a was selector set

Command

Line

Test Object

Test Method

910
- - - - -

Append Delete Last Locate l

FIG. 9H

Patent Application Publication Feb. 23, 2012 Sheet 19 of 27 US 2012/0047490 A1

100

testCase Ny

Test Object Test Method Parameter Parameter 2 Parameter 3 Parameter 4

Start SetJserNameAndPassword User pWC

Start selectOk

Main Selecta

AGrid selectrow AActor

AAction selectEdit AEditialog

AEditDialog setColumn
AEditlalog SelectOkAndGotoB EGrid

selectLogout

FIG. 10

Patent Application Publication Feb. 23, 2012 Sheet 20 of 27 US 2012/0047490 A1

testCase

Test Method Parameter Parameter 2 Parameter 3

Start SetJserNameAndPassword user pW(d

selectOk

selectA

AGrid selectrow AAction

AAction selectdit AEditdialog

AEditDialog setColumn
AEditDialog SelectOKAndGotoB
Main selectLogout Start

Command

1005

Append Delete last Insert Delete | locate

FIG. 11

Patent Application Publication Feb. 23, 2012 Sheet 21 of 27 US 2012/0047490 A1

1210
N-1

StartObject Start
TestMethod setUserNameAndPassword (String username, String password)
Test Method selectCancel ()
TestMethod selectOk () Returns Main

StateTransition SetAppState (Main)

TestObject Main
TestMethod selectA. () Returns AGrid

StateTransition SetAppState (Main AGrid)
TestMethod selectB () Returns BGrid

StateTransition SetAppState (Main, B.Grid)
TestMethod selectLogout () Returns Start

StateTransition SetAppState (Start)

TestObject AGrid
TestMethod selectrow (Integer rowIndex) Returns AAction

State Transition AddAppState (AAction)

N/N
TestObject AAction 1 220

TestMethod selectEdit () Returns AEditDialog
Stateransition NewAppState (AEditialog)

TestObject AEditDialog
TestMethod setColumn1 (String value)
TestMethod setColumn2 (String value)
TestMethod setColumn3 (String value)
Testylethod selectOk ()

StateTransition RestoreAppState
TestMethod selectCancel ()

StateTransition RestoreAppState
Testmethod selectOk. AndGotoR () Returns BGrid

StateTransition nM 1 230
RestoreAppState,
RemoveAppState (AAction, AGrid),
AddAppState (BGrid)

FIG. 12A "

Patent Application Publication Feb. 23, 2012 Sheet 22 of 27 US 2012/0047490 A1

(StartObject
public class Start (

public void setUserNameAndEPassword (String username String password) {
// Implementation Code of Test Method setUserNameAndPassword)

public void selectCancel ()
// Implementation Code of Test Method selectCancel.)

(SetAppState (Main. class)
public void selectOk. () (

W/ Implementation Code of Test Method selectOk. }

public class Main {
(SetAppState (Main, class AGrid. class}}
public void selecta () {

// Implementation Code of Test Method
SetAppState (Main, class, B.Grid, class})

public void selectB () {
// Implementation Code of Test Method

SetAppState (Start, class)
public void selectlogout () {

W/ Implementation Code of Test Method
}
public class AGrid (

(AddAppState (AAction, class)
public void selectRow (int row.Index) {

A / Implementation Code of Test Method)

}
public class AAction

(New AppState (AEditDialog, class)
public void selectEdit () {

f/ Implementation Code of Test Method

}
public class AEditoialog {

public void setColumn 1 (String value) {
f / Implementation Code of Test Method

public void setColumn2 (String value) {
// Implementation Code of Test Method)

public void setColumn3 (String value) {
f/ Implementation Code of Test Method

(RestoreAppState
public void selectOk () {

A / Implementation Code of Test Method
(RestoreAppState
public void selectCancel () {

// Implementation Code of Test Method)
(RestoreAppState
(Remove?AppState ((AAction, class AGrid. class})
(AddAppState (BGrid. class)
public void selectOkAndGotoB () {

W/ Implementation Code of Test Method)

F.G. 12B 1246

Patent Application Publication Feb. 23, 2012 Sheet 23 of 27 US 2012/0047490 A1

StartObject
public class Start {
public void setUserNameAndEPassword (String username, String password) {

// Implementation Code of Test Method setUserNameAndpassword)
public void selectCance. () {

// Implementation Code of Test Method selectCancel
SetAppState (Main. class)
public void selectOk () {

f/ Implementation Code of Test Method selectOk.)
}
public class Main {

SetApp State (typeof (Main) typeof (AGrid))
public void select A () (

// Implementation Code of Test Method)
SetAppState (typeof (Main), typeof (BGrid)

public void selectB ()
// Implementation Code of Test Method

SetAppState (typeof (Start))
public void selectLogout () {

A / Implementation Code of Test Method
}
public class AGrid {

Add appState (typeof (AAction)
public void selectrow (int row.Index) {

// Implementation Code of Test Method

}
public class AAction {

New AppState (typeof (AEditialog))
public void selectEdit () {

WA Implementation Code of Test Method

}
public class AEditDialog
public void setColumni (String value) {

// Implementation Code of Test Method
public void setColumn2 (String value) {

// Implementation Code of Test Method
public void setColumn3 (String value) {

?/ Implementation Code of Test Method
RestoreAppState
public void selectOk ()

// Implementation Code of Test Method
RestoreAppState
public void selectCancel () {

// Implementation Code of Test Method
RestoreAppState
RemoveAppState (type of (AAction, type of (AGrid))
AddAppState (typeof (BGrid)
public void selectOkAndGotoB () {

A/ Implementation Code of Test Method

Patent Application Publication Feb. 23, 2012 Sheet 24 of 27 US 2012/0047490 A1

<StartObject name="Start">
<Test Method name=" setUserNameAndPasswordf>

3Parameters>

<Parameter names "username" />
<Parameter name="password" />

</Parameters>
K/TestMethod.)
<TestMethod name=" selectCancel" />
<Testaethod name='selectOk">
4Stateransitions)

<SetAppState testObjectList="Main" />
</StateTransitions)

</TestMethod)
</StartObject>

<TestObject name="Main">
<TestMethod name=' selecta'>

<State transitions)
<SetAppState testObjectLists "Main AGrid" />

</State Transitions)
</Test Method)

KTestmethod name="selectB
KStateTransitions)

<SetAppState testObjectList="Main BGrid" />
</StateTransitions.>

</TestMethod.>
<TestMethod name="selectLogout">

KStateTransitions)
<SetAppState testObjectLists Start" />

</StateTransitions>
</TestMethod)

</TestObject>

KTestObject name="AGrid">
<esthethod names selectrow'>
<Parameters>

<Parameter name="rowIndex" />
</Parameters>
<State Transitions)

<AddAppState testObjectLists "AAction" />
</State Transitions)

</TestMethod.)

</TestObject>

<TestObject naIne="AAction">
{TestNethod nauties selectEdit)

<StateTransitions.
<NewAppState testObjectListe' AEditDialog" />

</State Transitions>
</TestMethod)

</TestObject>

FIG. 12D is

Patent Application Publication Feb. 23, 2012 Sheet 25 of 27 US 2012/0047490 A1

<TestObject name="AEditDialog">
KTestaethod name=' setColumn'>

3Parameters>
< Parameter names' value" />

</Parameters>
</TestMethod)

KTestmethod name="setColumn2'>
{Parameters>

<Parameter name=value" />
</Parameters>

</TestMethod.>

<estmethod name=' setColumn3">
KParameters>

<Parameter name="value" />
</Parameters>

</TestMethods

<Testlethod name=' selectOk'>
KStateTransitions.>

<RestoreAppState/>
</State Transitions>

</TestMethod.>

<Testmethod name="selectCance''>
<State Transitions)

<RestoreAppState/>
</StateTransitions)

</TestMethod)

<TestMethod nate= selectOkAIdGotoB'>
<State Transitions)

<RestoreAppState/>
<RemoveAppState testObjectLists"AAction, AGrid" />
<AddAppState testObjectLists "BGrid" />

</StateTransition>
</TestMethod>

</TestObject.>

FIG. 12E as

Patent Application Publication

Input Device

Cursor Control
KH

1 3 1 8

Feb. 23, 2012 Sheet 26 of 27

Communication
Interface

1312

US 2012/0047490 A1

1. 13OO

Disk Drive

1310

132O

FIG. 13

Patent Application Publication Feb. 23, 2012 Sheet 27 of 27 US 2012/0047490 A1

1400

n/

Test State
Machine F rk 36WO Module

Data

1465 1445

Verification
Module

Script 1435
1460 Generator

Module

Action
Module

1430

1455 Comm. 1425
Module

Repository Logic Module
142O

1405 1410 Interface
Module

1470

1415

F.G. 14

US 2012/0047490 A1

ARCHITECTURE FOR STATE DRIVEN
TESTING

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of prior applica
tion Ser. No. 12/861,794, filed Aug. 23, 2010, and entitled
“State Driven Testing, and a continuation of application Ser.
No. 12/861,801, filed Aug. 23, 2010, and entitled “State
Driven Test Editor, both of which are hereby incorporated by
reference in its entirety for all purposes.

FIELD

0002 The present invention relates generally to software,
More specifically, the present invention relates to automated
testing.

BACKGROUND

0003 Testing is a critical component in the development
of software. Testing is the process of validating and Verifying
that a Software program, application, or product meets the
business and technical requirements that guided its design
and development, works as expected, and can be imple
mented with the same characteristics.
0004 Some software development tools help automate
testing by recording tests that are run, allowing “playback of
the test routines. However, an entire test routine is rarely, if
ever, applicable to more than one release of one application.
Data-driven testing adds some modularity by keeping test
input and output values separate from the test procedure, but
the procedure itself is still in a single script. Keyword-driven
testing breaks the test procedure into logical components that
can then be used repeatedly in the assembly of new test
Scripts. Keyword driven testing separated much of the pro
gramming work of test automation from the actual test
design, allowing tests to be developed earlier and making the
tests easier to maintain.
0005 Tools such as keyword driven testing allows such
business analysts earlier in the testing process. Every soft
ware product has a target audience. For example, the audience
for video game software is completely different from banking
Software. An organization's business analysts may have a
deep understanding of the target audience, but very little
programming knowledge.
0006 Keyword driven testing is useful, but applications
can easily require thousands of automation keywords to be
developed and used. Navigating, constructing and maintain
ing test Scripts based on thousands of keywords are cumber
SO.

0007 Computer scientists attempt to keep track of the
behavior of systems through tools such as State diagrams.
However, state diagrams require the creation of distinct nodes
for every valid combination of parameters that define the
state, leading to a very large number of nodes and transitions
between nodes for all but the simplest of systems (the “state
and transition explosion problem”). While UML state dia
grams and Harel state charts try to solve the state and transi
tion explosion problem by providing complex formalisms
like hierarchical nested States, orthogonal regions, entry and
exit actions, and internal transitions, their complexity is inap
propriate for the problem of modeling test Script navigation
for graphical user interface (“GUI) applications. Even with
advanced State diagrams and state charts, it remains cumber

Feb. 23, 2012

Some to understand the interrelationship as well as to main
tain changes in the framework from both a structuring as well
as a navigation aspect.
0008. There are continuing efforts to improve automated
testing.

BRIEF DESCRIPTION OF THE DRAWINGS

0009. The present invention will be readily understood by
the following detailed description in conjunction with the
accompanying drawings. Like reference numerals designate
like structural elements. Although the drawings depict vari
ous examples of the invention, the invention is not limited by
the depicted examples. Furthermore, the depictions are not
necessarily to scale.
0010 FIG. 1 illustrates an exemplary test script editor that
creates test scripts;
0011 FIG. 2 illustrates a diagram 200 of the various com
ponents of a state driven testing system and their relationships
to each other;
0012 FIG. 3 illustrates an exemplary algorithm for calcu
lating the application state using Java-like pseudo-code for
determining which test objects are accessible when append
ing an action at the end of a sequence of actions;
0013 FIG. 4A is an exemplary application state stack with
low level state stack methods;
0014 FIGS. 4B through 4F illustrate an exemplary appli
cation state stack after some navigation has occurred and
certain sequence of actions are taken;
(0015 FIG. 5 illustrates an exemplary flowchart for deter
mining which test objects are accessible when inserting an
action within a sequence of actions;
0016 FIG. 6 illustrates an exemplary flowchart for deter
mining whether an action or a consecutive sequence of
actions can be deleted from a test Script withoutbreaking state
transitions;
(0017 FIGS. 7A through 7F illustrate an various user inter
face screens of an exemplary system under test after a certain
sequence of actions are taken;
0018 FIG. 8 illustrates a state diagram for navigating the
state transitions for the exemplary application described in
FIGS. 7A-7F:
(0019 FIG. 9A through 9H illustrate the exemplary test
script editor of FIG. 1 creating a test script for the exemplary
application described in FIGS. 7A-7F and 8:
0020 FIG. 10 illustrates the exemplary test script editor of
FIG. 1 when steps four through seven are selected;
0021 FIG. 11 illustrates the exemplary test script editor of
FIG. 1 when steps four through six are selected;
0022 FIG. 12A through 12E illustrate exemplary nota
tions for a test framework using the exemplary system under
test of FIGS. 7A-7F:
0023 FIG. 13 illustrates an exemplary computer system
Suitable for testing Software; and
0024 FIG. 14 illustrates an exemplary platform for gen
erating test Scripts.

DETAILED DESCRIPTION

0025 Various embodiments or examples may be imple
mented in numerous ways, including as a system, a process,
an apparatus, a user interface, or a series of program instruc
tions on a computer readable medium such as a computer
readable storage medium or a computer network where the
program instructions are sent over optical, electronic, or wire

US 2012/0047490 A1

less communication links. In general, operations of disclosed
processes may be performed in an arbitrary order, unless
otherwise provided in the claims.
0026. A detailed description of one or more examples is
provided below along with accompanying figures. The
detailed description is provided in connection with Such
examples, but is not limited to any particular example. In
other examples, the described techniques may be varied in
design, architecture, code structure, or other aspects and are
not limited to any of the examples provided. The scope is
limited only by the claims and numerous alternatives, modi
fications, and equivalents are encompassed. Numerous spe
cific details are set forth in the following description in order
to provide a thorough understanding. These details are pro
vided for the purpose of example and the described tech
niques may be practiced according to the claims without
some or all of these specific details. For clarity, technical
material that is known in the technical fields related to the
examples has not been described in detail to avoid unneces
sarily obscuring the description.
0027 State driven testing identifies state transitions of
user interface (“UI) objects such that the set of allowed UI
actions (e.g., keywords) at a specific point in a test Script can
be minimized. Instead of presenting the tester with all avail
able keywords, only those keywords available at a specific
point in navigation are accessible to the user. The limited
keywords allows for the rapid development and maintenance
of test cases through tools such as a test case editor.
0028 FIG. 1 illustrates an exemplary test script editor 100
that creates and modifies testscripts. The test script editor 100
enables the building of maintainable and stable test scripts by
selecting from a set of accessible actions 110. Actions 110 are
a combination of test objects 120 and test methods 130. The
availability of any action (e.g., available test objects 140) is
based on the specific point in navigation. The test Script editor
100 may also further provide context sensitive navigation
help 150 for appending steps at the end of the script, inserting
steps within the script, changing existing steps and deleting
steps.
0029. A test method 130 represents an action against the
system under test (“SUT) like entering data, verifying
response data and navigating in the application. A test object
120 is typically used to structure the test framework so that all
available actions are represented for a specific UI container of
the SUT (e.g., dialog, tree-view, data-grid, pane, frame, or
menu).
0030 FIG. 2 illustrates a diagram 200 of the various com
ponents of a state driven testing system and their relationships
to each other. The diagram 200 indicates the interactions
between the test script 210, the application state engine 220,
the application state stack 230, the test framework 240, and
the available actions 250. The test script 210 is the sequence
of test steps or actions to be taken against the SUT.
0031. Accessible actions are calculated by the state engine
220, which calculates all state transitions of preceding actions
and, preferably, Subsequent actions in the Script. The state
engine 210 can preferably determine (A) which test objects
are accessible when appending an action at the end of a
sequence of actions, (B) which test objects and test methods
are accessible when inserting an action within a sequence of
actions, (C) which test objects and test methods can be
changed for an existing test Script step while maintaining the
integrity of the test Script, i.e., without breaking state transi
tions for Succeeding actions, and (D) which consecutive

Feb. 23, 2012

sequence of actions can be deleted from a sequence of actions
without breaking state transitions. A broken state transition
causes actions that are not reachable through the state transi
tions of the predecessor actions and violates the integrity of
the test script.
0032. The application state stack 230 allows application
states to be easily re-established to former application states
by providing a mechanism to maintain multiple application
states (e.g., a last in, first out (LIFO) stack). An application
state stack 230 is useful, among other things, in Scenarios
where a former application state needs to be preserved. A
modal dialog is one example of when it would be desirable to
preserve the application state and introduce a new application
state that only covers actions available inside the modal dia
log. In user interface design, a modal dialog is a child window
that requires users to interact with it before they can return to
operating the parent application thus preventing the workflow
on the application main window (e.g., age verification, pass
word entry, file name selection). After closing the modal
dialog it is usually desirable to re-establish the application
state of the application that existed before opening the modal
dialog,
0033. In computer science the behavior of a system is a
function of (a) the execution instructions, (b) the input and (c)
the current state. A state is traditionally defined as a unique
configuration of information in a program or machine, For a
SUT, the application state can be defined by the sequence of
all prior state transitions and can be represented by the list of
available test objects 140 that are accessible at a specific
position in the test Script 210. A state transition can be asso
ciated with a test method 130 and defines the accessible test
objects 140 after executing the test method 130. Multiple
state transition methods can be used to change the application
state. Additionally, if the accessible test objects 140 of a test
method 130 (the test method's state transition) is the same as
the current state, then no change in application state will
OCCU.

0034. The test framework 240 represents the collection of
all test objects 120 and associated test methods 130 (shown in
FIG. 1) including the state transitions, which describes all
possible navigation in the SUT.
0035 FIG. 3 illustrates an exemplary algorithm 300 using
Java-like pseudo-code for determining which test objects are
accessible at a certain position of the test Script. State transi
tion methods such as RestoreAppState 310, SetAppState 320,
AddAppState 330, Remove AppState 340 and New AppState
350, are indicated as being used to change the application
state stack. New AppState 350 is described in connection with
FIG. 4B, RestoreAppState 310 is described in connection
with FIG. 4C, SetAppState 320 is described in connection
with FIG. 4D. AddAppState 330 is described in connection
with FIG. 4E and RemoveAppState 340 is described in con
nection with FIG. 4F.
0036 FIG. 4A illustrates an exemplary application state
stack 400 with low level state stack methods (“push” and
“pop”). An application state 410, 420, 430 represents the set
of test objects that are accessible at a specific position in the
test Script. The application start state 410 is a special appli
cation state represented by the set of test objects that are used
to describe the user's first possible interactions. Any given
application state is defined by the sequence of state transitions
defined for preceding test Script lines (actions) starting from
the application start state 410, including the current applica
tion state 430, and all intermediate application states 420. The

US 2012/0047490 A1

“New State box 433 with the basic Stack function “Push is
used to illustrate how to add a new state at the top of the state
stack (current state). The “TO1, TO2, TO3” box 436 with
the basic stack function “Pop' is used to illustrate how to
remove the current state from the state stack.
0037. The exemplary application state stack 400 can be
acted upon by the state engine 220 using the algorithm 300.
FIG. 4B illustrates the exemplary application state stack 440
after the New AppState 350 transition method with an input of
TO4 is applied. The transition method New AppState 350
saves the current application state 430 on the application state
stack 440 and sets the current state to the newly created state
450. In other words, the first set of states (TO1, TO2, TO3)
ceases being the current state and the second set of States
(TO4) becomes the new current state.
0038 FIG. 4C illustrates the exemplary application state
stack 460 after the RestoreAppState 310 transition method is
applied. The transition method RestoreAppState 310
removes the existing application state 450 from the applica
tion state Stack 440, resulting in an application state stack 460
identical to the application state stack 400 prior to the
New AppState 350 transition method being applied.
0039 FIG. 4D illustrates the exemplary application state
stack 470 after the SetAppState 320 transition method with an
input of TO4 is applied. The transition method SetAppState
320 sets the current application state 475 to the list of test
objects provided as input, removing former test objects of the
prior current state 430.
0040 FIG. 4E illustrates the exemplary application state
stack 480 after the AddAppState 330 transition method with
an input of TO1 and TO3 is applied. The transition method
AddAppState 330 adds the list of test objects provided as
input to the current application state 485 while retaining the
set of test objects of the former state 475.
0041 FIG. 4F illustrates the exemplary application state
stack 490 after the Remove AppState 340 transition method
with an input of TO4 is applied. The transition method
Remove AppState 340 removes from the former state 485 the
list of test objects provided as input from the current applica
tion State 495.
0042 FIG. 5 illustrates an exemplary flowchart 500 for
determining which test objects are accessible when inserting
an action within a sequence of actions. The exemplary algo
rithm 500 assumes a five step test script 210 with an action
inserted after the second step. The output of the exemplary
flowchart 500 is a test script describing the structure of acces
sible test objects and test methods.
0043. In block 510 all accessible test objects after the
insertion point (i.e., step 2) are retrieved. In a preferred
embodiment, algorithm 300 may be used to for block 510. In
block 520, the state stack prior to the insertion point is saved.
Block 530 then begins the decision tree that occurs for each of
the returned test objects. In block 530 the state transition for
the test object and test method under analysis is added to the
saved stack. In block 540 a check is made whether the sub
sequent steps (i.e., steps three through five) are still reachable
through state transitions when using the current state stack.
Subsequent steps are reachable if the test object of the step is
part of the accessible test objects for the application state. If
the subsequent steps are reachable, then in block 550 the test
object and test method is added to the structure of accessible
test objects and methods. In block 560 the saved stack is then
restored. Block 570 ensures the process is repeated for each
test method of the current test object. Similarly, block 580

Feb. 23, 2012

ensures the process is repeated for each test object. Block 590
returns the structure of accessible test objects and test meth
ods, completing the algorithm 500.
0044) The algorithm of FIG. 5 can similarly be used to
determine which test objects are accessible when changing an
action within a sequence of actions. Assuming the step to be
modified is the third step of the test script 210, the same
algorithm can be used except that in block 540 the subsequent
steps that need to be checked for reachability are only steps
four and five since step three is the step being changed.
004.5 FIG. 6 illustrates an exemplary flowchart 600 for
determining whether an action or a consecutive sequence of
actions can be deleted from a test script 210 withoutbreaking
state transitions. The exemplary algorithm 600 assumes the
deleted action(s) start with step 3. The output of the exem
plary flowchart 600 is a test script describing the structure of
accessible test objects and test methods.
0046. In block 610 the state engine 220 calculates the state
for the steps preceding the deletion point (i.e., steps one and
two). In block 620 the state stack prior to the deletion point is
saved. Block 620 may have an implementation that is similar
to block 520 in FIG. 5. In step 630 a check is made whether
steps subsequent to the deleted steps are still reachable
through state transitions when using the current state stack.
For example, if steps three and four are being deleted, and the
testscript 210 is only five steps long, then only step five needs
to be checked for reachability. In block 640 the accessible test
objects and test methods are returned. Block 640 may have an
implementation that is similar to block 590 in FIG. 5. If no
Subsequent steps are reachable, then only the saved state stack
(i.e., steps one and two) would be returned.
0047. As described herein, state transitions are associated
with test methods and define how the accessible test objects
potentially change after executing the test method. However,
in an alternative approach of application state management
state transitions can be defined through changes of accessible
test methods instead of changes of accessible test objects.
This alternative approach, however, may become cumber
some for a SUT that offers hundreds to thousands test meth
ods. By defining a state transition on the test object level, state
management loses some accuracy by not exactly defining
which test methods of a test object are accessible, but gains
practicability as users only need to define which test objects
are accessible after executing a test method.
0048 FIG. 7A illustrates an application login dialog 700
for an exemplary application that is to be tested with state
driven testing. After starting the exemplary application the
login dialog is the first choice presented to the user. Pressing
the Cancel button 702 will exit the application. Specifying
“User”, “Password”, and pressing the OK button 704 will
bring up the main window of the application.
0049 FIG. 7B illustrates the main window 710 for the
exemplary application under test after logging in. In the main
window, pressing the Abutton 712 opens the grid pane dis
playing order data (A-Grid). Pressing the B button 714
opens the grid pane displaying order item data (“B-Grid').
Pressing the Logout button 716 logs the user out and displays
the login dialog 700.
0050 FIG. 7C illustrates the main window 710 for the
exemplary application under test after the Abutton 712 was
pressed. Pressing the Abutton 712 opened up a grid pane 724
with three columns and also displayed the New button 718,

US 2012/0047490 A1

the Edit button 720 and the Delete button 722. The Edit button
720 and the Delete button 722 are disabled as long as no row
is selected.

0051 FIG. 7D illustrates the main window 710 for the
exemplary application under test after a row 726 in the grid
pane 724 was selected. The Edit button 720 and the Delete
button 722 are enabled as a result of selecting the row 726.
0052 FIG. 7E illustrates a modal dialog 730 that was
created as a result of pressing the Edit button 720. Pressing the
OK button 732 saves the changes and goes back to the grid
pane for A. Pressing the Go to B button 734 saves the changes
and goes to the grid for B.
0053 FIG. 7F illustrates the main window 710 for the
exemplary application under test displaying a grid pane 736
with B-Grid data.

0054 FIG. 8 illustrates an improved state diagram 800 for
navigating the state transitions for the exemplary application
described in FIGS. 7A-7F. Six application states 810, 820,
830, 840, 850 and 860 are depicted and each is described by
the test objects available at that point in the navigation of the
SUT. Each application state has an associated set of test
objects with its test methods 815,825,835,845,855,865 that
are accessible for that state. The application states and their
associated test objects are described in detail below.
0055 FIG. 9A illustrates the exemplary test script editor
100 starting a test script for the exemplary application
described in FIGS. 7A-7F and 8. When working with the test
framework for the exemplary application the first available
test object is the Start object 905. Within the Start object 905
the user can choose from the available test methods 815
selectOk, selectCancel, and setUserNameAndFassword. The
application state is described in the improved State diagram
800 in FIG. 8 with the Start State 810.

0056 FIG.9B illustrates the exemplary test script editor
100 after the action Start.setUserNameAndEPassword is com
pleted. The state transition associated with the test method
setUserNameAndFassword is the Start state 810. Since the
application state was already in the Start state 810 no state
change occurred. The same set of test objects and test meth
ods that was accessible for step one is also accessible for step
two. Accordingly, a test method's 'state transition' does not
always result in a changed State; it merely identifies the state
of the application after the test method is executed.
0057 FIG.9C illustrates the exemplary test script editor
100 after the action Start.selectOK is completed, which
caused the application state to change and made the Main
object 910 accessible. Within the Main object 910 the user
can choose from available test methods 825 selectA, selectB,
and selectLogout. The application state is described in the
improved state diagram 800 in FIG.8 with the Main state 820.
0058 FIG. 9D illustrates the exemplary test script editor
100 after the action Main...select A is completed, which caused
the application state to change and made both the AGrid
object 915 and the Main object 910 available for step four.
Together, the two objects 910 and 915 represent the applica
tion state, and are described in the improved State diagram
800 in FIG.8 with the AGrid, Main state 830. Although FIG.
8 does not distinguish between the two test objects, the avail
able test methods 835 are associated with the specific test
object. Accordingly, within the Main object 910 the user can
choose from available test methods selectA, selectB, and
selectLogout and within the AGrid object 915 the user can
choose from available test method selectRow.

Feb. 23, 2012

0059 FIG.9E illustrates the exemplary test script editor
100 after the action AGrid.selectRow is completed, which
caused the application state to change and made the AAction
object 920, the AGrid object 915 and the Main object 910
available for step five. Together, the three objects represent
the application state, and are described in the improved State
diagram 800 in FIG.8 with the AAction, AGrid, Main state
840. As previously described, only certain test methods are
available in connection with certain test objects. As before,
within the Main object 910 the user can choose from available
test methods selectA, selectB, and selectLogout and within
the AGrid object the user can choose from available test
method selectRow. The new test object AAction also allows
the user to choose from available test method selectEdit.
0060 FIG.9F illustrates the exemplary test script editor
100 after the action AAction.selectEdit is completed, which
caused the application state to change and made the AEdit
Dialog object 925 accessible for step six. Within the AEdit
Dialog object 925 the user can choose from available test
methods 855 selectCancel, selectOK, selectOkAndGotoB,
setColumn1, setColumn2 and setColumn3. The application
state is described in the improved state diagram 800 in FIG. 8
with the Main State 850.
0061 FIG.9G illustrates the exemplary test script editor
100 after the action AEditDialog.setColumn 1 is completed.
Since no state change occurred, the same set of test objects
and test methods that was accessible for step six is also
accessible for step seven.
0062 FIG. 9H illustrates the exemplary test script editor
100 after the action AEdit)ialog.selectOkAndGotoB is com
pleted, which caused the application state to change and made
both the BGrid object 930 and the Main object 910 available
for step eight. The application state is described in the
improved state diagram 800 in FIG.8 with the BGrid, Main
State 860.
0063 FIG. 10 illustrates the exemplary test script editor
100 when steps four through seven are selected. Since the
delete button 1005 is enabled, the test object in step eight
(“Main’) is reachable through state transitions of steps one,
two, three and eight. In other words, step eight can be inte
grated with step three.
0064 FIG. 11 illustrates the exemplary test script editor
100 when steps fourthrough six are selected. Since the delete
button 1005 is disabled, the test object in a step subsequent to
step six (in this case, step seven, AEditDialog) is not reach
able. A modified test Script of steps one, two, three, and seven
has lost its integrity and step seven cannot be integrated with
step three.
0065 FIG. 12A illustrates an exemplary notation 1200
using a Domain Specific Language for indicating the test
framework using a state Stack for state transitions. StartOb
ject 1210 defines the test object(s) which are available after
starting the application. StateTransition 1220 defines the state
transitions for a test method. Multiple calls to state transitions
methods (e.g., AddAppState, New AppState, SetAppState,
RestoreAppState, RemoveAppState) can be listed to define a
state transition. The state transition for the test method selec
tOkAndGotoB 1230 removes the current application state
from the stack to express that the modal dialog 730 (AEdit
Dialog) is closed and sets the current application state to the
previous state. It also removes the test objects AAction and
AGrid from the new current state to express that the A-Grid
and its actions are not available and adds the test object BGrid
to the current application state to express that the B-Grid is

US 2012/0047490 A1

now accessible. Alternatively the following (simpler) state
transition can be used to express the same state transition:
StateTransition: RestoreAppState, SetAppState(BGrid). In
one embodiment, specifying more than one state transition
for a test method will not cause those state transitions to be
executed in the order specified, but instead in the following
order: (1) RestoreAppState, (2) SetAppState, (3) AddApp
State, (4) RemoveAppState, and (5) New AppState.
0066 FIG. 12B illustrates an exemplary test framework
1240 using a state stack for state transitions using an inline
definition of state transitions using Java annotations.
0067 FIG. 12C illustrates an exemplary test framework
1250 using a state stack for state transitions using an inline
definition of state transitions using Net attributes,
0068 FIGS. 12D and 12E illustrate an exemplary test
framework 1260 and 1261 using a state stack for state tran
sitions using an external definition of a state transition model
through XML. By using an external XML notion with refer
ences to the implementation of test methods the test frame
work 1260 and 1261 can be easily applied to test frameworks
written in programming languages that provides an external
call-level interface (e.g., C-DLLs. COM interface, .NET
assembly, Java class file).
0069. Those skilled in the art will appreciate that by pro
viding a state transition model that uses a state stack to define
and maintain state transitions as part of the actions (expressed
throughtest objects and test methods) of the system solves the
problem of state and transition explosion in a very effective
and simple way.
0070. In some examples, the described techniques may be
implemented as a computer program or application (“appli
cation') or as a plug-in, module, or sub-component of another
application. The described techniques may be implemented
as Software, hardware, firmware, circuitry, or a combination
thereof. If implemented as software, the described techniques
may be implemented using various types of programming,
development, Scripting, or formatting languages, frame
works, syntax, applications, protocols, objects, schema, or
techniques, including, but not limited to, VB, C, Objective C,
C++, C#, JavaTM, JavascriptTM, COBOL, XML, MXML,
PHP, and others. The described techniques may be varied and
are not limited to the examples or descriptions provided.
0071 FIG. 13 illustrates an exemplary computer system
Suitable for disk storage performance using digital memory
and data compression. In some examples, computer system
1300 may be used to implement computer programs, appli
cations, methods, processes, or other software to perform the
above-described techniques. Computer system 1300 includes
a bus 1302 or other communication mechanism for commu
nicating information, which interconnects Subsystems and
devices, such as processor 1304, system memory 1306 (e.g.,
RAM), storage device 1308 (e.g., ROM), disk drive 1310
(e.g., magnetic or optical), communication interface 1312
(e.g., modem or Ethernet card), display 1314 (e.g., CRT or
LCD), input device 1316 (e.g., keyboard), and cursor control
1318 (e.g., mouse or trackball).
0072 According to some examples, computer system
1300 performs specific operations by processor 1304 (which
may include a plurality of processors) executing one or more
sequences of one or more instructions stored in System
memory 1306. Such instructions may be read into system
memory 1306 from another computer readable medium, such
as static storage device 1308 or disk drive 1310. In some

Feb. 23, 2012

examples, hard-wired circuitry may be used in place of or in
combination with Software instructions for implementation.
0073. The term “computer readable medium” refers to any
tangible medium that participates in providing instructions to
processor 1304 for execution, Such a medium may take many
forms, including but not limited to, non-volatile media and
volatile media, Non-volatile media includes, for example,
optical or magnetic disks, such as disk drive 1310. Volatile
media includes dynamic memory, Such as System memory
1306. In some examples, a single apparatus (i.e., device,
machine, System, or the like) may include both flash and hard
disk-based storage facilities (e.g., solid state drives (SSD),
hard disk drives (HDD), or others). In other examples, mul
tiple, disparate (i.e., separate) storage facilities in different
apparatus may be used. Further, the techniques described
herein may be used with any type of digital memory without
limitation or restriction. The described techniques may be
varied and are not limited to the examples or descriptions
provided.
0074 Common forms of computer readable media
includes, for example, floppy disk, flexible disk, hard disk,
magnetic tape, any other magnetic medium, CD-ROM, any
other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, RAM, PROM,
EPROM, FLASH-EPROM, any other memory chip or car
tridge, or any other medium from which a computer can read.
0075 Instructions may further be transmitted or received
using a transmission medium. The term “transmission
medium may include any tangible or intangible medium that
is capable of storing, encoding or carrying instructions for
execution by the machine, and includes digital or analog
communications signals or other intangible medium to facili
tate communication of such instructions. Transmission media
includes coaxial cables, copper wire, and fiber optics, includ
ing wires that comprise bus 1302 for transmitting a computer
data signal.
0076. In some examples, execution of the sequences of
instructions may be performed by a single computer system
1300. According to some examples, two or more computer
systems 1300 coupled by communication link 1320 (e.g.,
LAN, PSTN, or wireless network) may perform the sequence
of instructions in coordination with one another. Computer
system 1300 may transmit and receive messages, data, and
instructions, including program, i.e., application code,
through communication link 1320 and communication inter
face 1312. Received program code may be executed by pro
cessor 1304 as it is received, and/or stored in disk drive 1310,
or other non-volatile storage for later execution.
(0077 FIG. 14 illustrates an exemplary platform 1400 for
generating test scripts. Platform 1400 includes logic module
1405, repository 1410, interface module 1415, communica
tions module 1420, action module 1425, script generator
module 1430, verification module 1435, state machine mod
ule 1445, test script data 1455, state stack data 1460, test
framework data1465, and bus 1470. Platform 1400 illustrates
a block modular architecture of an application configured to
perform the described techniques. Logic module 1405 may be
implemented as logic configured to generate control signals
to repository 1410, interface module 1415, communications
module 1420, action module 1425, script generator module
1430, verification module 1435, state machine module 1445,
test script data 1455, state stack data 1460, test framework
data 1465, and bus 1470. Logic module 1405 may be imple
mented as a module, function, Subroutine, function set, rule

US 2012/0047490 A1

set, or other type of Software, hardware, circuitry, or combi
nation that enables control of application 1400 and the
described elements.
0078. As shown, repository 1410 may be implemented as
a single, multiple-instance, standalone, distributed, or other
type of data storage facility, similar to those described above
in connection with FIG. 13. In other examples, repository
1410 may also be implemented partially or completely as a
local storage facility for data operated upon by platform 1400
and the described elements. In other examples, repository
1410 may be a remote data storage facility that is used to
provide storage for platform 1400. Still further, some or all of
repository 1410 may be used to provide a cache or queue for
one or more of the elements shown for platform 1400.
Although test framework data 1465, state stack data 1460,
and test script data 1455 are depicted for ease of understand
ing as separate from repository 1410, they may all be part of
the same data storage facility.
0079 Interface module 1415 may be implemented to uti
lize input/output devices. In some examples, an input may be
a graphical, visual, or iconic representation displayed on a
computer screen that, when selected using an input/output
device (e.g., mouse, keyboard, or others) indicates an item
(e.g., data structure (e.g., table, record, file, queue, or others),
function (e.g., pull down menu, pop-up window, or others),
feature (e.g., radio button, textbox, form, or others)) or type
of item that should be included in an application. FIGS. 9-11
are an example of screens that interface module 1415 can
displayed to a user.
0080. In some examples, communications module 1420
may be configured to send and receive data from platform
1400. For example, platform 1400 may be implemented on
one or more remote servers and, when a message (e.g., data
packet) is received from a remote client over a data network
(e.g., network of FIG. 13), communications module 1420
receives, decodes, or otherwise interprets data from the mes
sage and transmits the data over bus 1470. Some implemen
tations may have the actual testing of the SUT be performed
remotely and the communications module 1420 ensures the
final test script is sent to the remote server testing the SUT. In
Such an implementation, the business analysts responsible for
using the platform 1400 and performing the navigations that
generate the test Scripts may be segregated from the actual
coders responsible for the SUT.
0081. In one embodiment, action module 1425 analyzes
data from the test framework data 1465, the state stack data
1460, and a user's input from the interface module 1415 in
order to determine which test methods are accessible from a
selected test objects in the current state. State stack data 1460
keeps track of the current state and is modified as the appli
cation is used. Test framework data 1465 represents the col
lection of all test objects, test methods, and State transitions,
including their various relationships. For example, each test
method is associated with a single test object. Similarly, in
one embodiment, each test method is associated with a poten
tial state transition (whether a test method results in an actual
state transition depends on the current state of the SUT). If the
current state has multiple test objects, then in one embodi
ment the user must select one test object in order to view the
accessible test methods for the selected test object. Test
framework data 1465 can be created individually or collabo
ratively by coders of the SUT and business analysts.
0082. The verification module 1435uses the state machine
module 1445 to test modifications proposed by a user through

Feb. 23, 2012

the interface module 1415 and ensures the user is not propos
ing a broken State transition where one state is not reachable
through prior test object/test method choices. The verification
module 1435 can also work with the action module 1425 to:
propose test objects and test methods when an action is to be
inserted within the test script, identify test objects and test
methods that can be altered, and identify actions that can be
deleted. The verification module 1435 ensures that script
integrity is maintained for any modifications to the test Script.
I0083. Script generator module 1430 updates the test script
from the testscript data 1455 and a user's navigation, received
as inputs from the interface module 1415. The test script is
output to the test script data 1455.
I0084 State machine module 1445 additionally uses the
state stack data 1460 and inputs from either the verification
module 1435 or the interface module 1415 to update the state
stack data 1460.
I0085 Although the foregoing examples have been
described in some detail for purposes of clarity of understand
ing, the invention is not limited to the details provided. There
are many alternative ways of implementing the invention. The
disclosed examples are illustrative and not restrictive.
What is claimed:
1. A system comprising:
a memory configured to store application states, test

objects, test methods, and their relationships:
an action module configured to generate a Subset of acces

sible test methods from a test object selection, the subset
being determined by the relationship between the test
methods, the test objects and the application states; and

a script generator module configured to generate a test
Script in response to a test method selection from the
Subset of accessible test methods.

2. The system of claim 1, further comprising:
a state machine module configured to modify an applica

tion state stack in response to the selection of test meth
ods,

wherein the memory is further configured to maintain an
application state stack.

3. The system of claim 2, wherein each state in the state
stack includes accessible test objects.

4. The system of claim 2, wherein each test method is
associated with state whereby a test method selection results
in a potential state transition.

5. The system of claim 1, further comprising an interface
module that is configured to receive the test method selection,

6. The system of claim 1, further comprising a verification
module that is configured to ensure Script integrity is main
tained for any modifications to the test Script.

7. The system of claim 6, wherein the modifications to the
test Script can include appending an action to the end of the
test Script, inserting an action within the test script, deleting
an action from the test Script and altering an action within the
test Script.

8. A system comprising:
a memory configured to store application states, test

objects and test methods and their relationships; and
a verification module that is configured to check the integ

rity of a modification to the test Script, the integrity being
determined by the relationship between the test meth
ods, the test objects and the application states; and

a script generator module configured to generate a test
Scripts.

US 2012/0047490 A1

9. The system of claim 8, further comprising:
a state machine module configured to modify an applica

tion state stack in response to a selection of a test
method,

wherein the memory is further configured to maintain an
application state stack.

10. The system of claim 9, wherein each state in the state
stack includes accessible test objects.

11. The system of claim 9, wherein each test method is
associated with state whereby a test method selection results
in a potential state transition.

12. The system of claim 8, further comprising an interface
module that is configured to receive the test method selection.

13. The system of claim 8, wherein the modifications to the
test Script can include appending an action to the end of the
test Script, inserting an action within the test script, deleting
an action from the test Script and altering an action within the
test Script.

Feb. 23, 2012

14. A system comprising:
a memory configured to store application States, a state

stack, test objects and test methods, wherein the appli
cation state includes a first set of test objects, the test
methods can be associated with one or more state tran
sitions, and each test method is associated with one test
object;

a state machine module configured to modify an applica
tion state stack in response to a selection of a test
method;

a verification module that is configured to check the integ
rity of a modification to the test Script, the integrity being
determined by the relationship between the test meth
ods, the test objects and the application states; and

a script generator module configured to generate a test
Scripts.

15. The system of claim 14, further comprising an action
module configured to generate a Subset of accessible test
methods from a test object selection.

c c c c c

