

US 20130036482A1

(19) United States

(12) Patent Application Publication Ohmori et al.

(10) **Pub. No.: US 2013/0036482 A1**(43) **Pub. Date:** Feb. 7, 2013

(54) METHOD FOR ASSESSMENT OF POTENTIAL FOR DEVELOPMENT OF DRAVET SYNDROME AND USE THEREOF

(75) Inventors: Iori Ohmori, Okayama-shi (JP);

Mamoru Ouchida, Okayama-shi (JP)

(73) Assignee: NATIONAL UNIVERSITY CORPORATION OKAYAMA

UNIVERSITY, Okayama-shi, Okayama

(JP)

(21) Appl. No.: 13/574,977

(22) PCT Filed: Jan. 27, 2011

(86) PCT No.: **PCT/JP2011/051636**

§ 371 (c)(1),

(2), (4) Date: Oct. 12, 2012

(30) Foreign Application Priority Data

Jan. 29, 2010 (JP) 2010-018705

Publication Classification

(51) Int. Cl.

A01K 67/027 (2006.01)

C12N 5/10 (2006.01)

G01N 33/53 (2006.01)

G01N 33/50 (2006.01)

C12Q 1/68 (2006.01)

C12Q 1/02 (2006.01)

C12N 15/01 (2006.01)

(57) ABSTRACT

Provided is a method of assessing a potential for development of Dravet syndrome with high accuracy, and use thereof. The method according to the present invention of assessing a potential for development of Dravet syndrome includes, with use of a sample taken from a subject, detecting whether or not a mutation is on α -subunit type 1 of voltage-gated sodium ion channel Na $_{\nu}1.1$, and detecting whether or not a mutation is on α -subunit type 1 of voltage-gated calcium ion channel Ca $_{\nu}2.$

_
. :
I G
ட

1' MEQIVLVPPGEDSENFFIRESLAAIERRIAEEKAKNPKPDKKODDENGPKDNSDLEAGKN ************************************	1021' 1	KGYATVKKIYEFIQOSFIFKQKILDBIKPLDDIANIKKDSCASNHTFEIGKDLDYLKDVN ************************************
LPFIYGDIPPEMVSEPLEDLDPYYINKTFIVLNKGKAIFERSATSALYILTPFNPLRKI ************************************	1081,	GTTSGIGTGSSVEKYIIDESDYMSFINNPSLTVTVPIAVGESDFENLNTEDFSSESDLEE ***********************************
AIKILVHSLFSMLIMCTILTNCVFWTMSNDPDWTKNVFYTFTGIYTFESLIKIIARGFCL ************************************	1141' 3	SKEKLNESSSSEGGSTVDIGAEVEEOPVVEPEETLEPEACFTEGCVQREKCCQINVEEGR ***********************************
EDFTFLRDFWNWLDFTVITFRYVTEFVDLGNVSALRTFRVLRALKTISVIEGLKTIVGAL ************************************	1201' ç 1201" (GKOMWILRRTCERIVEHNWEETEIVEMILLSSGALAFEDIYIDORKTIKTMLEVADKVET ************************************
IQSVKKLSDVALLTYPCLSVFALLCLQLFMGNLRNKCIQWPPTNASLEEHSIEKNITVNY ************************************	1261 1	YIFILEMLLKWVAYGYQTYFTNAWCWLDFLIVDVSLVSLFANALGYSELGAIKSLRTLFA ************************************
NGTLINETVEBEDWKSYIQDSRYHYFLEGFLDALLCGNSSDAGQCPEGYMCYKAGRNENY ****	1321' 1	LRPIRALSRFEGARVVVNALLGAIPSIMNVLIVCLIFWIIFSIMGVNLFAGKFYHCINTT ***********************************
Gynsedteswaelslerlatodewenlzoltraagktymitevlvielgseylinlila ***********************************	1381' 7	TEDREDIEDVNNHTDCLKLIERNETARWKNYKYNEDNYGFCYLSLLOVAFFKGMDIMTA *** * * **** *********************
VVANAYEBONOATLEBEAEOKBAEFOONTEOLKKOOBAAOOAATATASEHSEEPSAAGRLS ************************************	1441" 2	AVDSRNVELQPRVEESLYMYLYPVIFIIFGSPFTLALFIGVIIDNFNQQRKKFGGQDIFM ************************************
SEGGEEKDEDEFOKSESEDSTRRKGFRFSIEG ******* *** *************************	1501' 3	TEEOKKYYNAMKKIGSKKPOKPIPRPCNKROGAVFDFVTROVFDISIMILICINMYTAMV ************************************
nrlyyekryssphosilsirgslesprrnsryslesprgakovgsendfaddehstfed ************************************	1561' 1 1561" 1	ETDDQSEYVTTILSRINLVETVLETGECVLKLISLRHYYFTIGMNIFDFVVVILSIVGMF ****** *** *** **********************
NESRRDSLFVPRRHGERRNSNLSQTSRSSRMLAVFPANGKMHSTVDCNGVVSLVGGPSVP ***********************************	1621'] 1621"]	laeliekypvsptiprvirlarigriirlikgakgirtilealamsipalenigilelu ***********************************
TSEVGQLLPEVIIDKEATDDNGTTTETEMEKRRSSSFHVSMDFLEDFSGRQRAMSIASIL ************************************	1681' h	METYALFGKSNFAYVKREVGIDDMENFETFGNSMICLFQITTSAGMDGLLAPIINSKPPD ***********************************
DCSEYWLKVKHVVNLVVMDPEVDLAITICIVL ************************************	1741' (CDPNKVNPCSSVKGDCGNPSVGIFFFVSYIIISFLVVVNMYIAVILENFSVATEBSAEPI ************************************
NTLENAMEHYPMTDHENNYLTVGNLVFTGTFTAEMETKITAMDPYYYFQEGRNIFDGFTV ************************************	1801' 3	SEDDFEMFYEVWEKFDPDATQFWEFEKLSQFAALEPPINIPQPNKLQIIAMDIPWYSGD ************************************
TISIVELGLANVEGLSVIRSFRILRVFKLAKSWPTINMIIKIIGNSVGALGNITLVIAII **********************************	1861' j 1861" j	RIHCLD LLBAFTKRVLGBSGENDALKLQMEBRFMASNPSKVSYQP ITTTLKRKQBEVSAV ***********************************
VEIBAVVŒMOLDGKSYKDCVCKIASDCOLPRWHMDFFHSFLIVFRVLCGBWIETMMDCM **********************************	1921	IIQRAYRRHILKRTVKQASFTYNKNKIKGGANLIKEDMIIDRINENSITEKTDLTMSTA ************************************
EVAGGAMCLIVEMMYMVIGNLVVINLETALLLSSESADNLAATDDDNEMNNLGIAVDEMH ************************************	1981' 7	ACPPSYDRVTKPIVEKHEQEGKDEKAKGK ************************ ACPPSYDRVTKPIVEKHEQEGKDEKAKGK

F I G. 2

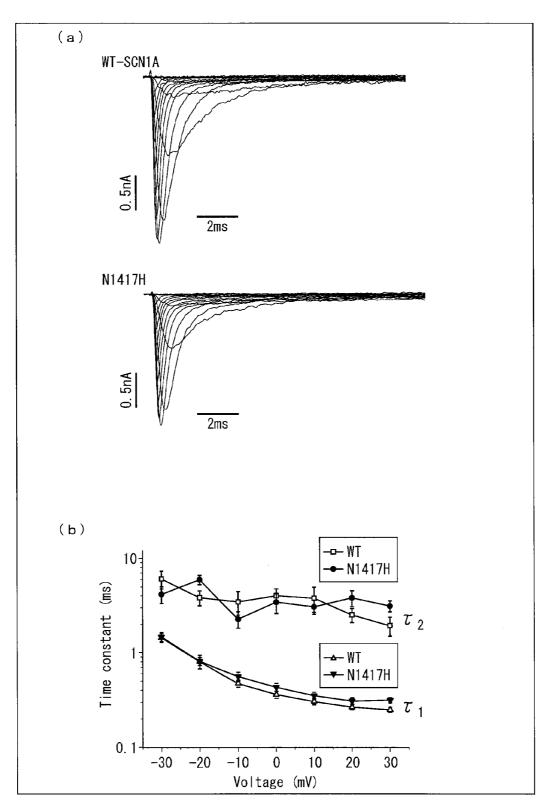
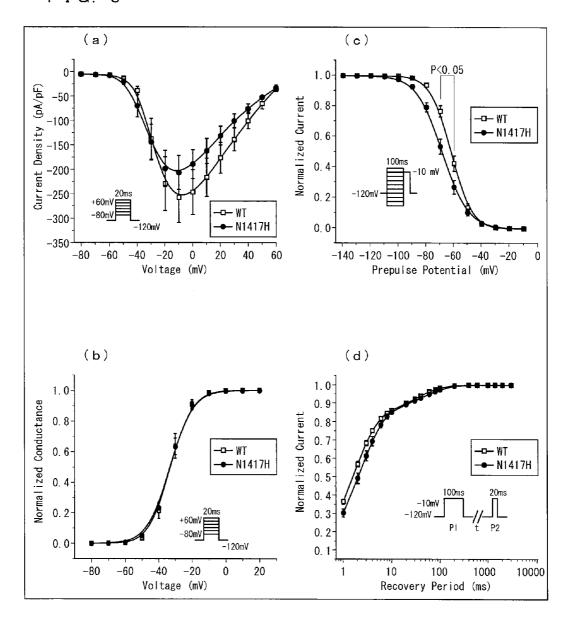
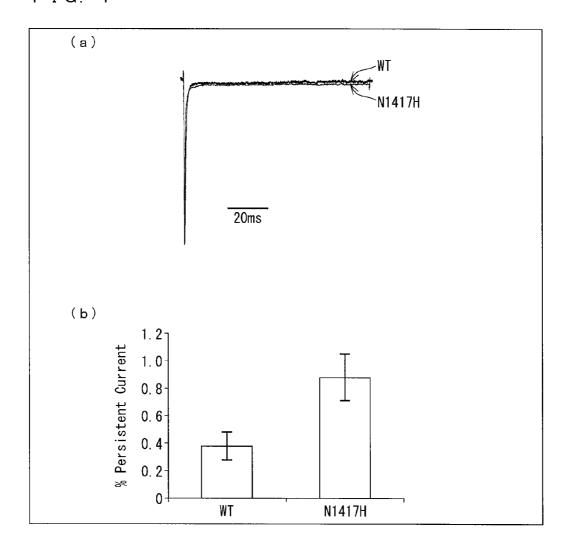
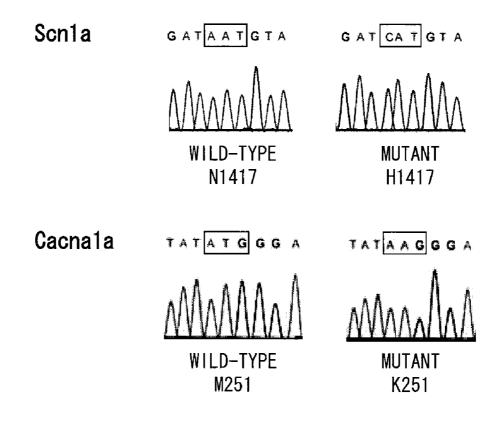
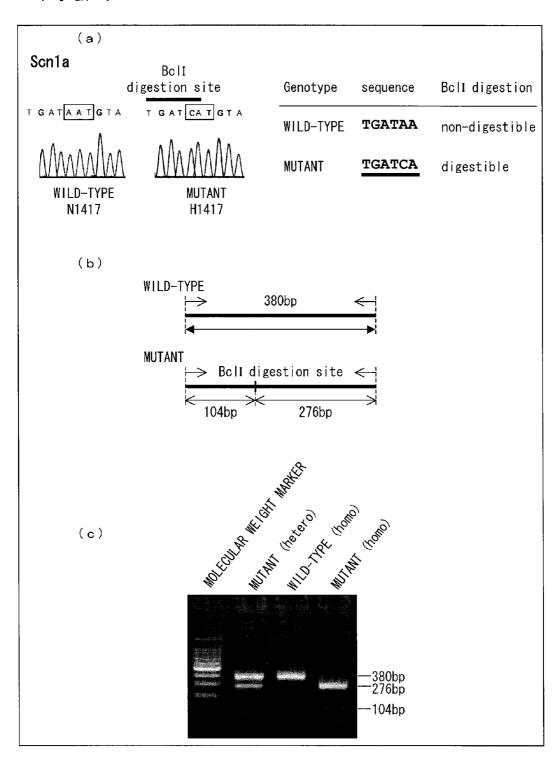




FIG. 3


F I G. 4


F I G. 5

```
(a)
P ; Scn1aMut/MutCacna1aWT/WT × Scn1aWT/WTCacna1aMut/Mut
    (Scn1A-mutated rat)
                               (Cacnala-mutated rat)
F1; Scn1aMut/WTCacna1aMut/WT
  (b)
F1; Scn1aMut/WTCacna1aMut/WT × Scn1aMut/WTCacna1aMut/WT
F2; Scn1aWT/WTCacna1aWT/WT
                             Scn1a wild-type (homo) + Cacna1a wild-type (homo) Control (1)
    Scn1aMut/WTCacna1aWT/WT
    Scn1aMut/MutCacna1aWT/WT
                             Scn1a mutant (homo) + Cacna1a wild-type (homo)
                                                                                                (2)
    Scn1aWT/WTCacna1aMut/WT
                             Scn1a wild-type (homo) + Cacna1a mutant (hetero) Control (4)
    Scn1aMut/WTCacna1aMut/WT
    Scn1a^{Mut/Mut}Cacna1a^{Mut/WT} Scn1a mutant (homo) + Cacna1a mutant (hetero)
                                                                                               (3)
    Scn1aWT/WTCacna1aMut/Mut
    Scn1a<sup>Mut/W⊤</sup>Cacna1a<sup>Mut/Mut</sup>
    Scn1aMut/MutCacna1aMut/Mut
```

FIG. 6

F I G. 7

F I G. 8

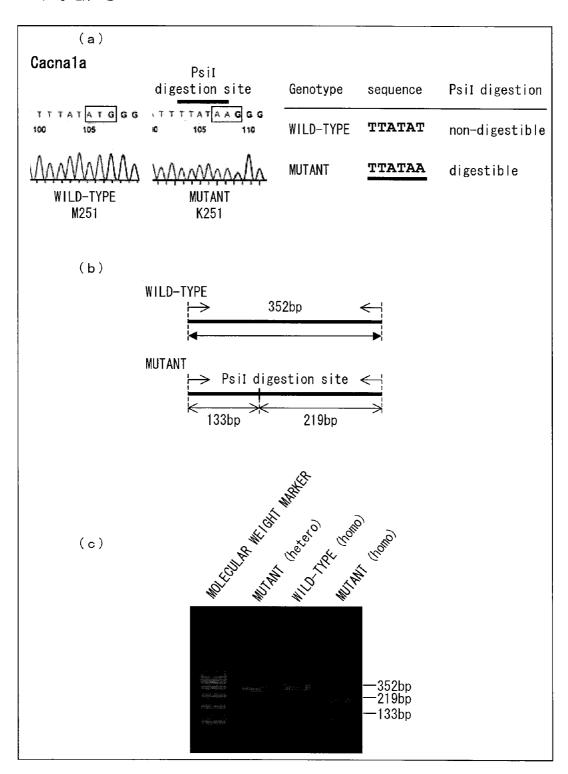


FIG. 9

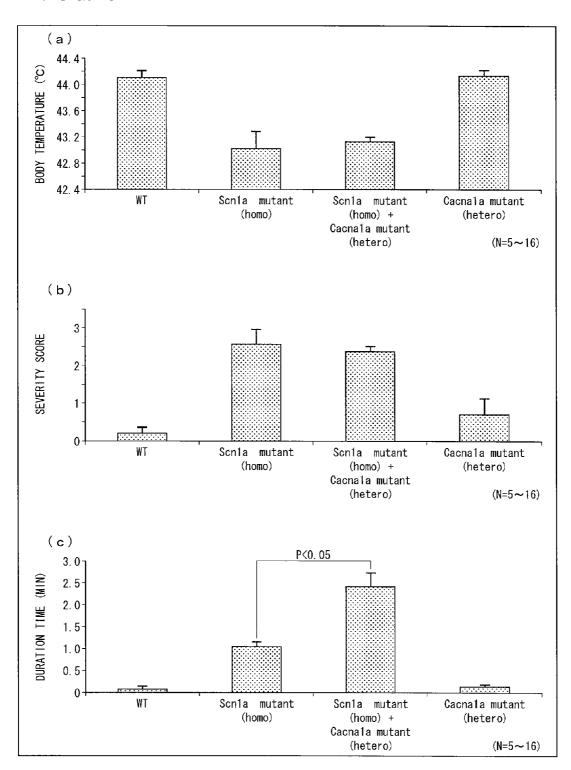
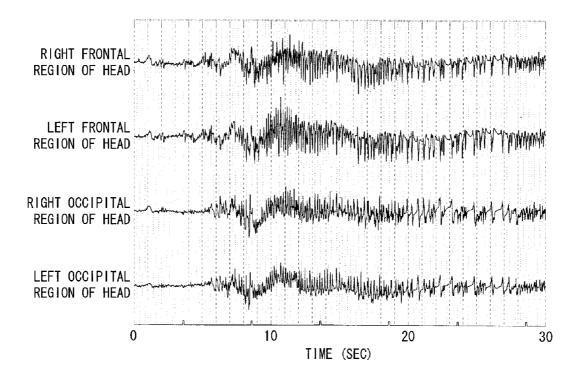



FIG. 10

QGAYFRDLWN ******** QGAYFRDLWN	AVEDCVVNSL ******** AVEDCVVNSL	EKNEVKARDR ******** EKNEVKARDR	MEMSIFYVVY ******** MEMSIFYVVY	TRHMPONKOS ******** TRHMPONKOS	FTSLFSLECV ******** FTSLFSLECV	FRAARLIKLL ******** FRAARLIKLL	DEDSDEDERQ ********* DEDSDEDERQ	GNEFAYFY ******* GNEFAYFYFV	ACGRIHYKOM * * * * ** AWGRMPYLDM	TALDIKIAKG ********* TALDIKIAKG	MEYYROSKAK ********* MEYYROSKAK	SSMKESPSWV * ****** SGLKESPSWV	LPMEGOTRAA ****** LPMEGOGRAA	RVPPEENORY ******* RVPPEENORH	PKDRKHRPHH ******** PKDRKHRQHH	SSSVSGSPAP ******** SSSVSGSPAP	APRRP- * ** QQQQAVARPG	RWP ACRHGGARWP	RS ** HASSGATGRS	EDDWC ****
KMIDIGIVLH ******** KMIDIGIVLH	KTIKRLPKLK ******* KTIKRLPKLK	RDCRGKYLLY ******** KDCRGKYLLY	ENOGPSPGYR ******* ENOGPSPGYR	IDFAISAKPL ******** IDFAISAKPL	ENALRVENIV ******** ENALRVENIV	NFINESFLRE ******** NFINESFLRE	VFGNIGIDGE ****** VFGNIGIDVE	KNSGIQKPEC **** KNSGILTREC	VRVWAEYDPA ****** VRVWAEYDPA	FNSTIMALIR ********* FNSTIMALIR	VGKIYAAMI ******* VGKIYAAMI	DPGGGLMAQE ****** DPGGALMAHE	TDGYSDSEHY ******* RDGYSDSEHY	ARRIDDYSLE ******* ARRIDDYSLE	SKDRDQDRGR ** *** *** SKERDQERGR	GREHATHROG **** **** GREHMAHROG	P0000000000	P * PGPARSESPR	GA-HEPAP ** GAYDAPPPVR	RGAHDAYSES
TGVFTFEMVI ******* TGVFTFEMVI	LRVLRVLRPL ******* LRVLRVLRPL	HCTDESKEFE ******** HCTDESKEFE	VLKHSVDATF ******** VLKHSVDATF	YSLEKNERAC ******* YSLEKNERAC	MKFYGASVAY ******** MKFYGASVAY	ILVTEFGN ****** ILVTEFGNPN	FFIYAIIGMQ ******** FFIYAIIGMQ	LSCLSGKPCD ******** LSCLSGKPCD	ILGPHHLDEY ******* ILGPHHLDEY	LPVADDNTVH	VTPHKSTDLT ******** VTPHKSTDLT	SQNALPSTQL ******* GONALPSTQL	SOSVEMREMG ******* SOSVEMREMG	KRSASVLGPK ******* KRSASVLGPK	SMTTQSGDLP	EORWSRSPSE ******* DORWSRSPSE	VIRKAGGSGP	GGSPRGCRRA * * * * * * * * * * * * * * * * * * *	REPPG SGGGEEAMA	APRPRTAR
NVLRYEDYVE ****** NVLRYEDYVE	KGKDINTIKS ******** KGKDINTIKS	AVQLEKGKEF ********* AVQLEKGKEF	TVSTGEGWPQ ******* TVSTGEGWPQ	QEQGDKWMEE \$ * * * * * * * * * * * * * * * * * * *	MIALNTIVLM ********* MIALNTIVLM	FVTVLGSITD ****** FVTVLGSITD	PYVCLLIAML ************************************	ATGEAWHNIM ******* ATGEAWHNIM	NFEYLTRDSS ********* NFEYLTRDSS	VACKRLLRMD ** ****** VAYKRLLRMD	NLSQKTLDLL ******** NLSQKTLDLL	PPSPTQEGGP ******** PPSPTQEGGP	PIDMPNSOPN ******* PTDMPNSOPN	LSTISDESPA ************************************	DVDTGLGTDL ******** DVDTGLGTDL	RPDTGRARAR *** **** RPDHGRARAR	TPRPLVSYSP **** TPRPHVSYSP	PP ** DRPPTGGHSS	GADYTEPDSP * * * * * GSDYDEADGP	LPNGYYAGHG A
DPVQPNAPRN ******* DPVQPNAPRN	LVAFAFTGNS ******** LVAFAFTGNS	MLEMFIFAVY ************************************	NVLWALLTLE ******** NVLWALLTLE	IFVALIITE IFVALIIITE	SPPFEYTIMA ************************************	YFRDAWNIFD ******* YFRDAWNIFD	WTFVQSFKAL ******** WTFVQSFKAL	FOALMLLFRS ******** FOALMLLFRS	LNLFVAVIMD ******** LNLFVAVIMD	LGLGKKCPHR ******* LGLGKKCPAR	LRKEMMAIWP ******* LRKEMMAIWP	RTPLMEORME ******* RTPLMEORME	TGTWSPERGP ****** TGTWSPEQGP	RREGRPRGNN ******* RRGRPRGNN	TSERSIGRYT ******* ASERSIGRYT	APDRERYAÇE * * * * * * PPDKDRYAÇE	GRROLPOTPC ******* GRROLPOTPS	AGPPA *** PGPTAEPLAG	RPR PGPRHHGYYR	CASP-RHGRR
AMSSIALAAE ******** AMSSIALAAE	ILDFIVVSGA ******** ILDFIVVSGA	KNVENILIVY * * * * * * * * * * * * * * * * * * *	EWKKYDFHYD **** EWKKYEFHYD	FVVEPEFFVN * * * * * * * * * * TVVEPEFFVN	FQYRMWQEVV ******* FQYRMWQEVV	LKVMAFGILN ******* LKVMAFGILN	ROGYTIRILL ************** ROGYTIRILL	ITEHNNFRTF ******* ITEHNNFRTF	SFIFICSFIM ******** SFIFICSFIM	YSLLRVISPP * ** ** YOMLRHMSPP	GADKQQNDAE ******** GADKQQNDAE	KLQAMREEQN ******** KLQAMREEQD	TORAQEMEOK ******* TORAQEMFOK	SMPRLPAENO ******** SMPRLPAENO	HORREDRGHR ****** ** HORREDRSHR	НННИНННЬЬ ******** ****	STSGTSTPRR ******** STSGTSTPRR	-AARRM ** RAATSGPRRY	AHAPEGP * *** ASGPHVSEGP	PRTPRAAG *****
1206 : 1258 :	1266 : 1318 :	1326 :	1386:	1446 :	1506 :	1566 : 1618 :	1624 :	1684 :	1744 :	1804 :	1864 :	1924 :	1984 : 2038 :	2044 :	2104 :	2164 : 2218 :	2224 :	2259 :	2285 :	2319 :
KOSMAORART * † * * * † * * * * KOSMAORART	IANCIVLALE IANCIVLALE	WNVMDEVVVL ******* WNVMDEVVVL	IGLLIFFAIL ******** IGLLIFFAIL	PYWEGPNNGI * * * * * * * * * * PYWEGPNNGI	FFELNLVLGV ******** FFELNLVLGV	TDVEQRHPED ** ***** TDGEQRHPED	FHKKERRMRF ******* FHKKERRMRF	LEMSEMFIKM ******** LEMSEMFIKM	RIFKVTKYWA ******* RIFKVTKYWA	TNEDTEPAAI ***********************************	FLAIAVDNLA ******* FLAIAVDNLA	KNOKPAKSVW ******* KNOKPAKSVW	VD POENRININ ******* VD POENRININ	SSPERAPGRE ** GSQEAELSRE	RPVAEG SGSPRIGADG	RHRHGPPA ***** RHRHGAPATY	DIDNMKNNKI * ****** DIDNMKNNKI	TPNNPGNPSN ******** TPNNPGNPSN	OVNKNANPDP ******* OVNKNANPDP	YFEMCILMVI *********
GGQPGAQRMY ** * * * * * * * * GGQPGAQRMY	PFEYMILATI ****** PFEYMILATI	FHKGSYLRNG ******** FHKGSYLRNG	IMKAMIPLLQ ******* IMKAMIPLLQ	RECPNGERCO ******** RECPNGERCO	YFIPLIIIGS ********* YFIPLIIIGS	AEEVILAEDE ******** AEEVILAEDE	KSAKLENSTF ******** KSAKLENSTF	LYYAEFIFLG ******** LYYAEFIFLG	ISVLRALRLL ********* ISVLRALRLL	Ofnedegypp ******** Ofnedegypp	LEGNYTLLNV ******** LEGNYTLLNV	NMSIAVKEQQ ********** NMSIAVKEQQ	VKTHLDRPLV ******** MKTHLDRPLV	DARRAWP **** AGLDARRPWA	H * HRQGGSRESR	DDGERKR * *** EGPDGGERRR	LGRODLPLAE ***** LGRODPPLAE	TNPONAASRR ******** TNPONASRR	CPPPLNHTVV * **********************************	RICHYILNIR *********
GGRGAGGSRQ ******** GGRGAGGSRQ	KYAKKITEWP ******* KYAKKITEWP	GIKIVALGFA **** **** GIKIIALGFA	IPSLQVVLKS ******** IPSLQVVLKS	PAPCGTEEPA ******** PAPCGTEEPA	DASGNIWNWL ******** DASGNIWNWL	INGYMEWISK ******* INGYMEWISK	VGSPFARASI ******** VGSPFARASI	YNQPEWLSDF ******* YNQPEWLSDF	AVIKEGISEG ******** AVIKEGISEG	ALLGMOLFGG ******* ALLGMOLFGG	VESIYEIVLT ******** VESIYEIVLT	VAEVSPLSAA ******** VAEVSPLSAA	TTYARPLRPD * * * * * * * * * * * * * * * * * * *	RESARDP *** HDRARDPSGS	KAGDAPRRHT **** KAGDPHRRHV	RPARAADGEG **** RPARGGEGEG	LSTTRPIQOD ********** LSTTRPIQOD	GPALA * * * GPMLAIPAMA	EHMAVEIPPA * * * * * * * * * * * * * * * * * * *	PKPMPPISSM FILSTINPLR ******* ******** DYDMDDVSCM bilenmini
PAAGVVVGAA ****** AAAGVVVGSG	FLESEDNVA ******* FLESEDNVA	YFIGIFCFEA	VLRPLKLVSG ******** VLRPLKLVSG	EGTDDIQGES ******* EGTDDIQGES	GWTDLLYNSN ******** GWTDLLYNSN	LRROCOIERE ******** LRROCOIERE	AEDQLADIAS ******** AEDQLADIAS	LNTLWLALVH **** LNTLCVALVH	IIGSIFEVIW ******** IIGSIFEVIW	FLLFLFIVVF **********************************	KSQGGVQGGW ******** KSQGVQGGM	ÇKLALÇKAKE ÇKLALÇKAKE	GDAAERWP * * * NEMDPDERWK	alrotard ** Edflekoary	VPWDADPERA * GFWEGEAERG	ERRPRPRDAT *** * ERRARHREGS	GSGVPMSGPN **** **** GSGVPVSGPN	PAKIGNSTNP *** *** * PAKMGNSTDP	PNSAKTARKP ******* TNSAKTARKP	PKPMPPYSSM *********
** ****** ** ***** . RYGGGGSG	QNCLTVNRSL *********	QHLPDDOKTP MSERLDDTEP ************************************	FDIRTLRAVR ******** FDIRTLRAVR	MGKFHTTCFE ******** MGKFHTTCFE	TOFDNILFAV LIVEQCITME ************************************	RVENERAFLK ******** RVENERAFLK	SKTDLLNPEE	FYWTVLSLVA ************************************	SSENCEDCGV ************************************	NSMKSIISLL *********************************	DWNEVMYDEI	DEQEEEEAAN ********************************	NLLASREALY ******** NLLASREALY	TNKSRAPE ****** INKSRAEPT VDQRLGQQRA	OREHAPPREH ** ARE-GSLEOP	PGDE-PDDRP ** * * PGEEGPEDKA	RRHRRRKESQ ******* RRHRRRKENQ	SLGHSGLPPS **** *** SLGHAGLPQS	LIVINESSTO	EEEADPGEDG *** * ***
: MARFGDEMPG RYGAGGGGSG ******* : MARFGDEMPA RYGGGGSG	: MALYNPIPVR : MALYNPIPVR	QHLPDDDDKTF	: TGILATVGTE ******** : TGILATVGTE	: IFAIIGLEFY : IFAIIGLEFY	TOFDNILFAV	LSGEFAKERE ******** LSGEFAKERE	GALRRATLKK GALRRTTIKK GALRRTTIKK	YIRRMVKTQA ******** YIRRMVKTQA	: YGLGTRPYFH ******** : YGLGTRPYFH	SLRNLVVSLL ********* SLRNLVVSLL	: MTVFQILTGE ******** : MTVFQILTGE	: NAQELTK ****** : NAQELTKVEA	: EORTSEMBKO ********* : EORTSEMBKO	: INKSRAPE ***** : INKSRAAEPT	GPYGRESEPQ ******* GPYGRESDHH	EPRRHRARR * **** ** EHRRHRAHRR	HDDRE * * EGDARREDKE	ATGEPASPHD ** * * ** ATAESAAPHG	: PGPPKTPENS ******** : PGPPKTPENS	LPKKEEEKKE ******************************
		121	181 :	241	301 :	361 :	421 :	481 :	541 : 539 :	601 : 599 :	661 : 659 :									• •

FIG. 12

FIG. 13

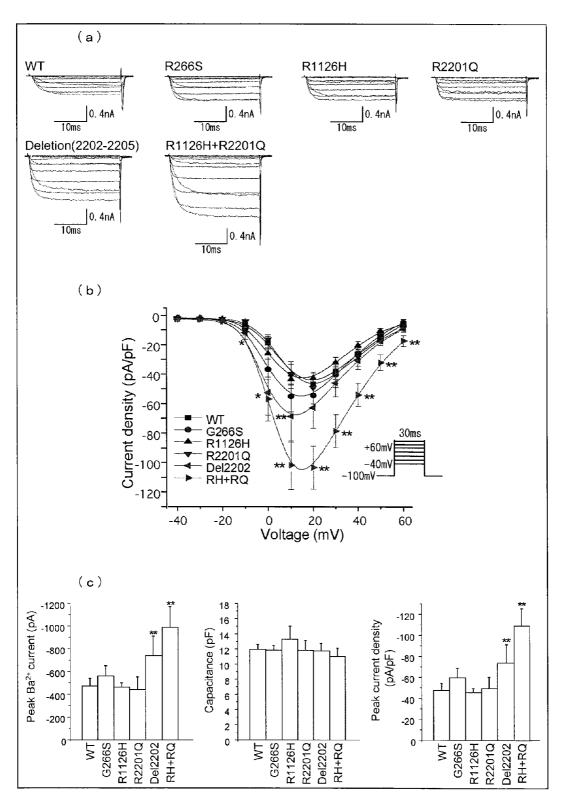
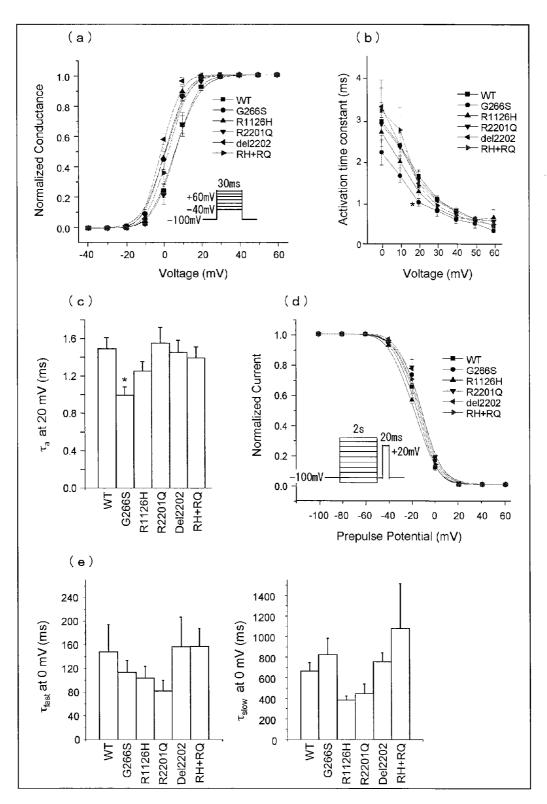



FIG. 14

METHOD FOR ASSESSMENT OF POTENTIAL FOR DEVELOPMENT OF DRAVET SYNDROME AND USE THEREOF

TECHNICAL FIELD

[0001] The present invention relates to a method for assessing a potential for development of Dravet syndrome, and use thereof.

BACKGROUND ART

[0002] Febrile seizure is a disease that has a high incidence rate of approximately 8% in infants. A main symptom of febrile seizure is known as a continuation of generalized convulsions for 1 to 5 minutes while suffering a fever at or over 38° C. caused by a viral or bacterial infection such as a cold, or microbism. Most cases of febrile seizure that have an onset of between 6 months after birth and around 5 years old cure by the time when the patient turns 6 years old. In many cases, febrile seizure does not require active treatment. Therefore, febrile seizure is considered, in principle, as a benign disease.

[0003] However, among patients whose onset of febrile seizure was under the age of one, other than the patients of the benign disease which cease as a regular febrile seizure, there are some patients who suffer from convulsions continuously even after turning 6 years old, and there are some patients who are patients of Dravet syndrome (previously called "Severe Myoclonic Epilepsy in Infancy; SMEI"), which are patients of an intractable epilepsy disease.

[0004] The patients of Dravet syndrome are triggered in the onset of convulsions under the age of one. An average age of the onset of convulsions for patients of Dravet syndrome is 4 months to 6 months after birth. An incipient seizure of convulsion for a patient of Dravet syndrome is generally a systemic or a unilateral tonic-clonic or clonic convulsion, and during infancy, may lead to status epilepticus. Moreover, this convulsion seizure is easily induced by fever or bathing.

[0005] Conventionally, febrile seizure was diagnosed and treated by a general pediatrician or a family doctor, and Dravet syndrome is also diagnosed based on clinical symptoms characteristic of Dravet syndrome such as convulsion seizure or the like. However, by the time the patients of Dravet syndrome turn two to three years old, that is around when the clinical symptoms of Dravet syndrome have all appeared, these patients would have suffered repetitive convulsions many times and would often have had experienced critical conditions such as status epilepticus or the like. Hence, it is necessary to develop a diagnosis method that enables detection of Dravet syndrome in its possible earliest stage by a general pediatrician or family doctor, who is engaged in primary medical care. Detection of Dravet syndrome at an earlier stage would allow for the patent to see an epilepsy specialist in advance, which would allow for preventing the patient from reaching a critical condition.

[0006] Recently, it has been reported that 30% to 80% of Dravet syndrome patients find missense mutation (mutation causing a substitution of an amino acid) and nonsense mutation (mutation causing protein synthesis to stop in an incomplete state) on a SCN1A gene that encodes a voltage-gated sodium ion channel Na $_{\nu}$ 1.1 α -subunit type 1 (see Non Patent Literature 1 and 2). From such a point in view, attempts have been made to examine abnormalities in the SCN1A gene to diagnose Dravet syndrome on the basis of genes.

[0007] For example, Patent Literatures 1 to 4 disclose that mutation of the SCN1A gene is related to SMEI. Moreover, Patent Literatures 1 to 4 disclose that SMEI can be diagnosed by use of the mutation of the SCN1A gene as an indicator.

[0008] More specifically, Patent Literature 1 discloses the diagnosis of SMEI by assessing a plurality of mutations on the SCN1A gene that relate to SMEI, as a whole.

[0009] Patent Literature 2 discloses the diagnosis of SMEI performed by detecting a presence of a mutation that frequently occurs on the SCN1A gene of a nerve that is affected by SMEI.

[0010] Patent Literatures 3 and 4 disclose a method of diagnosing epilepsy syndromes including SMEI and syndromes associated with SMEI, by detecting a change in the SCN1A gene and confirming whether that change is known as being related to SMEI or a syndrome associated with SMEI or is known as not being related to SMEI or a syndrome associated with SMEI.

CITATION LIST

Patent Literature

Patent Literature 1

[0011] Japanese Patent Application Publication, Tokukai, No. 2004-329153 A (Publication Date: Nov. 25, 2004)

Patent Literature 2

[0012] Japanese Patent Application Publication, Tokukai, No. 2004-73058 A (Publication Date: Mar. 11, 2004)

Patent Literature 3

[0013] Published Japanese Translations of PCT International Publication, Tokuhyo, No. 2008-546376 A (Publication Date: Dec. 25, 2008)

Patent Literature 4

[0014] Published Japanese Translations of PCT International Publication, Tokuhyo, No. 2006-524490 A (Publication Date: Nov. 2, 2006)

Non Patent Literature

Non Patent Literature 1

[0015] Sugawara T, Mazaki-Miyazaki E, Fukushima K, Shimomura J, Fujiwara T, Hamano S, Inoue Y, Yamakawa K. 2002. Frequent mutations of SCN1A in severe myoclonic epilepsy in infancy. Neurology 58: 1122-1124.

Non Patent Literature 2

[0016] Ohmori I, Ouchida M, Ohtsuka Y, Oka E, Shimizu K. 2002. Significant correlation of the SCN1A mutations and severe myoclonic epilepsy in infancy. Biochem Biophys Res Commun 295: 17-23.

Non Patent Literature 3

[0017] Escayg A, Heils A, MacDonald B T, Haug K, Sander T, and Meisler M H. 2001. A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus—and prevalence of variants in patients with epilepsy. Am J Hum Genet. 68: 866-873.

SUMMARY OF INVENTION

Technical Problem

[0018] As described above, the mutation on the SCN1A gene is found in an extremely large number of Dravet syndrome patients (30% to 80%). However, it is becoming revealed that the presence of a mutation on the SCN1A gene does not necessarily mean that the symptoms of Dravet syndrome would appear.

[0019] For example, Non Patent Literature 3 reports that not just the patients of the intractable Dravet syndrome, but also patients of febrile seizure and patients with a certain kind of benign epilepsy (e.g. GEFS+ (Generalized epilepsy with febrile seizure plus)) have a mutation on the SCN1A gene.

[0020] As such, the mutation on the SCN1A gene is not a phenomenon specific to Dravet syndrome. Hence, the conventional methods of examining just the abnormalities on the SCN1A gene as described in Patent Literatures 1 to 4 can be said as insufficient for specifically diagnosing Dravet syndrome

[0021] Therefore, in order to distinguish between the patients with benign febrile seizure and the patients with Dravet syndrome and to allow for the patients with Dravet syndrome to receive appropriate treatment by a specialist, further development is required in techniques for more accurately diagnosing Dravet syndrome.

[0022] The present invention is accomplished in view of the foregoing problems, and an object thereof is to provide a method of (specifically) assessing with high accuracy a potential for development of Dravet syndrome.

Solution to Problem

[0023] Patients of GEFS+ and the patients of Dravet syndrome are common in a point that the SCN1A gene has a mutation. Meanwhile, the inventors performed diligent study based on their unique point of view of focusing on the difference in malignancy between the diseases; they considered that the development of Dravet syndrome is related to not just the mutation on the SCN1A gene but also another factor, and that another cause is related to the worsening and intractableness of Dravet syndrome. As a result, the inventors uniquely found out that many Dravet syndrome patients have a mutation on the SCN1A gene and further a mutation on the CACNA1A gene that encodes a P/Q type voltage-gated calcium ion channel Ca $_{\rm p}2.1~\alpha1$ subunit.

[0024] Furthermore, based on this finding, the inventors produced a rat having both the mutations on the SCN1A gene and the CACNA1A gene, and demonstrated that the rat having both the mutations on the SCN1A gene and the CACNA1A gene experienced more serious convulsion seizures as compared to rats having just the mutation on the SCN1A gene.

[0025] Based on these results of analyzing genes and animal testing results, it was found that the potential for development of Dravet syndrome can be assessed with high accuracy by detecting mutations for both α -subunit type 1 of voltage-gated sodium ion channel Na_V1.1 and α -subunit type 1 of voltage-gated calcium ion channel Ca_V2.1, and accomplished the present invention.

[0026] Namely, the present invention includes the following inventions.

[0027] An assessment method according to the present invention is a method of assessing a potential for development of Dravet syndrome, the method including:

[0028] with use of a sample taken from a subject,

[0029] detecting whether or not a mutation is on α -subunit type 1 of voltage-gated sodium ion channel Na_v1.1; and

[0030] detecting whether or not a mutation is on α -subunit type 1 of voltage-gated calcium ion channel $Ca_{\nu}2.1$. It is preferable that the assessment method according to the present invention is a method of obtaining data for assessing potential for development of Dravet syndrome.

[0031] A kit according to the present invention is a kit for assessing a potential for development of Dravet syndrome, the kit comprising:

[0032] a polynucleotide being used for determining a mutation on α -subunit type 1 of voltage-gated sodium ion channel Na₇1.1: and

[0033] a polynucleotide being used for determining a mutation on α -subunit type 1 of voltage-gated calcium ion channel Ca $_{\nu}2.1$. The kit according to the present invention may be a kit for obtaining data for assessing a potential for development of Dravet syndrome.

[0034] A model animal of Dravet syndrome according to the present invention has a mutation on both α -subunit type 1 of voltage-gated sodium ion channel Na_{ν}1.1 and α -subunit type 1 of voltage-gated calcium ion channel Ca_{ν}2.1.

[0035] A production method according to the present invention of a model animal of Dravet syndrome is a method of producing the model animal of Dravet syndrome described above, which method includes:

[0036] introducing a mutation on a α -subunit type 1 of the voltage-gated sodium ion channel Na $_{\nu}1.1$; and

[0037] introducing a mutation on a α -subunit type 1 of the voltage-gated calcium ion channel $Ca_{\nu}2.1$.

[0038] A cell according to the present invention has a mutation on both α -subunit type 1 of voltage-gated sodium ion channel Na $_{\nu}1.1$ and α -subunit type 1 of voltage-gated calcium ion channel Ca $_{\nu}2.1$.

[0039] A method of producing a cell according to the present invention is a method of producing the cell described above, which method includes:

[0040] introducing a mutation on a α -subunit type 1 of the voltage-gated sodium ion channel Na $_{\nu}1.1$; and

[0041] introducing a mutation on a α -subunit type 1 of the voltage-gated calcium ion channel Ca_p2.1.

[0042] A screening method according to the present invention of a drug for treating Dravet syndrome includes:

[0043] administering a candidate agent to the model animal of Dravet syndrome according to the present invention; and

[0044] assessing whether or not the administering of the candidate agent has made Dravet syndrome improve or cure in the model animal of Dravet syndrome.

[0045] A screening method according to the present invention of a drug for treating Dravet syndrome includes:

[0046] administering a candidate agent to the cell according to the present invention; and

[0047] assessing whether or not the administering of the candidate agent has made activity of the voltage-gated sodium ion channel Na $_{\nu}1.1$ and/or activity of the voltage-gated calcium ion channel Ca $_{\nu}2.1$ change in the cell.

[0048] For a fuller understanding of the nature and advantages of the invention, reference should be made to the ensuing detailed description taken in conjunction with the accompanying drawings.

Advantageous Effects of Invention

[0049] The method according to the present invention of assessing a potential for development of Dravet syndrome allows for obtaining data for assessing the potential for development of Dravet syndrome, by detecting mutations for both α -subunit type 1 of voltage-gated sodium ion channel

[0050] Na_v1.1 and α -subunit type 1 of voltage-gated calcium ion channel Ca_v2.1.

[0051] Patients of GEFS+, being a benign epilepsy, inherit the mutation of the SCN1A gene within the family. In comparison, in patients of Dravet syndrome, approximately 90% of the mutations on SCN1A gene are de novo mutation, i.e. are anew mutations in which a mutation arises even though their parents have no mutation. As such, although the GEFS+ patients and the Dravet syndrome patients are common in that a mutation is on the SCN1A gene, the cause for the difference in malignancy of the disease was unknown. However, it was clarified by the present inventors for the first time, that the presence of mutations on both the SCN1A gene and the CACNA1A gene is related to the worsening and intractableness of Dravet syndrome.

[0052] As described above, reports have already been made that a mutation on α -subunit type 1 of voltage-gated sodium ion channel Na_V1.1 (hereinafter, referred to as "sodium ion channel α 1 subunit") is related to the development of Dravet syndrome. However, no reports have been made whatsoever that Dravet syndrome is related to a mutation on α -subunit type 1 of voltage-gated calcium ion channel Ca_V2.1 (hereinafter, referred to as "calcium ion channel α 1 subunit").

[0053] Reports have been made that a mutation on a subunit other than the α 1 subunit of voltage-gated calcium ion channel Ca $_{\nu}$ 2.1 is associated with Dravet syndrome (see Iori Ohmori et. Al., Neurobiology of Disease 32 (2008) 349-354). More specifically, this literature (Iori Ohmori et. Al.) discloses that a mutation on β 4 subunit of voltage-gated calcium ion channel Ca $_{\nu}$ 2.1 (hereinafter, simply referred to as "calcium ion channel (34 subunit") is associated with Dravet syndrome.

[0054] However, the foregoing literature strongly teaches regarding Dravet syndrome that a mutation on the "calcium ion channel $\beta 4$ subunit" is important together with the mutation on the " α -subunit of sodium ion channel Na $_{\nu}1.1$ ". This description in the literature hinders a motivation to arrive at a point that a mutation suitable for detecting Dravet syndrome is present in the calcium ion channel α 1 subunit.

[0055] In the first place, a skilled person would not arrive at considering, just because a relationship of a mutation on a specific subunit with a disease is known for a specific channel, that other subunits would also have a mutation related to that disease. At least, the finding that the voltage-gated sodium ion channel $Na_{\nu}1.1$ is related to Dravet syndrome is only known regarding the mutation on the " α 1 subunit"; this does not give motivation for analyzing mutations on other subunits.

[0056] As to a mutation on the calcium ion channel α 1 subunit, reports have been made stating a relationship with (1) epixodic ataxia type 2 (characterized in paroxysmal cerebellar ataxia), (2) familial hemiplegic migraine type 1 (e.g. hemiplegia, hemianopsia, dysphagia, throbbing headache), and (3) spinocerebellar ataxia type 6 (e.g. ataxic gait, limb ataxia, cerebellar dysarthria, nystagmus) (see Keiji IMOTO et al., "Igaku no Ayumi" (Development in Medical Science), Vol. 201, No. 13 (Issued Jun. 29, 2002); Taiji TSUNEMI et al., "Igaku no Ayumi" (Development in Medical Science), Vol. 201, No. 13 (Issued Jun. 29, 2002)). However, the dis-

eases of (1) to (3) all show no symptoms of epilepsy, and neither are diseases related to Dravet syndrome. At least, although the finding regarding the mutation on the calcium ion channel α 1 subunit is known as related to the diseases of (1) to (3), it is not one that gives motivation for analyzing a mutation on the calcium ion channel α 1 subunit in Dravet syndrome, which disease is completely unrelated to the diseases of (1) to (3).

[0057] The assessment method according to the present invention detects a mutation on α -subunit type 1 of the voltage-gated sodium ion channel Na_v1.1 and on α -subunit type 1 of the voltage-gated calcium ion channel Ca₁2.1. Hence, it is possible to detect Dravet syndrome with high accuracy. Consequently, the assessment method of the present invention brings about an effect that it is possible to improve reliability of a potential for detecting Dravet syndrome as compared to the conventional method by detecting a mutation on the SCN1A gene. Furthermore, detection of a mutation on α-subunit type 1 of the voltage-gated sodium ion channel $Na_{\nu}1.1$ and a mutation on α -subunit type 1 of the voltagegated calcium ion channel Ca_v2.1 is possible even with an infant under the age of one. Hence, according to the assessment method of the present invention, an effect is brought about that data for assessing the potential for development in Dravet syndrome can be obtained from a patient in an early stage of development or in a stage prior to the onset of the intractable disease, in particular of an infant under the age of one.

[0058] Moreover, as shown in Examples later described, an effect is brought about that by detecting a mutation on both α -subunit type 1 of the voltage-gated sodium ion channel Na $_{\nu}$ 1.1 and α -subunit type 1 of the voltage-gated calcium ion channel Ca $_{\nu}$ 2.1, the detection sensitivity of Dravet syndrome patients dramatically improve.

[0059] Furthermore, with use of the kit according to the present invention, it is possible to easily detect the mutation on both α -subunit type 1 of the voltage-gated sodium ion channel Na_{ν}1.1 and α -subunit type 1 of the voltage-gated calcium ion channel Ca_{ν}2.1. Hence, the kit according to the present invention is useful for a general pediatrician to screen, at an early stage of disease of under the age of one, a patient of Dravet syndrome that requires treatment by a specialist, among benign febrile epilepsy.

[0060] By using the assessment method and kit according to the present invention, it is possible to detect the patients of Dravet syndrome with high accuracy at the point in time of an age under one, which is an age difficult to detect until now. Moreover, by sending a blood sample to an examination center and examining its abnormal genes, it is possible to detect a Dravet syndrome patient with high accuracy even in a private hospital at a remote location or the like.

[0061] Moreover, the Dravet syndrome model animal and cell according to the present invention can be usefully used for resolving a development mechanism of the intractable Dravet syndrome, and for development and the like of medicament for Dravet syndrome.

BRIEF DESCRIPTION OF DRAWINGS

[0062] FIG. 1 is a view illustrating an amino acid sequence of a protein encoded by a human SCN1A gene and an amino acid sequence of a protein encoded by a rat Scn1a gene.

[0063] FIG. 2 is a view illustrating a result of performing function analysis of sodium ion channel, by use of patch clamping. Illustrated in (a) is a typical example of a sodium

current effected by a change in potential of a normal sodium ion channel and a mutant sodium ion channel. Illustrated in (b) is a result of examining a time constant (τ) at inactivation. [0064] FIG. 3 is a view illustrating a result of performing function analysis of a sodium ion channel, by use of patch clamping. Illustrated in (a) is a current-voltage relationship, illustrated in (b) is an activation curve of the sodium ion channel, illustrated in (c) is an inactivation curve of the sodium ion channel, and illustrated in (d) is a recovery curve from the inactivation of the sodium ion channel.

[0065] FIG. 4 is a view illustrating a result of performing function analysis of a sodium ion channel, by use of patch clamping. Illustrated in (a) is a sodium current flowing in the sodium ion channel, and illustrated in (b) is a relative value (%) of a persistent sodium current amount flowing into the sodium ion channel.

[0066] FIG. 5 is a view illustrating genotypes of parent rats (P), first filial generation (F1) rats, and second filial generation (F2) rats. Illustrated in (a) is a view showing genotypes of the parent rats (P) and the F1 rats. Illustrated in (b) are genotypes of the F1 rats and the F2 rats.

[0067] FIG. 6 is a view illustrating a method of identifying genotypes of the Scn1a gene and the Cacna1a gene of the F2 rat, by sequencing.

[0068] FIG. 7 is a view illustrating a method of identifying a genotype of the Scn1a gene of the F2 rat, by restriction enzyme digestion. Illustrated in (a) is a nucleotide sequence of where mutation is on a mutant Scn1a gene (N1417H), and a nucleotide sequence of a wild-type Scn1a gene corresponding to that nucleotide sequence of the mutant Scn1a gene. Illustrated in (b) is a size of a DNA fragment expected by the restriction enzyme digestion. Illustrated in (c) is a result of electrophoresis.

[0069] FIG. 8 is a view illustrating a method of identifying a genotype of the Cacna1a gene in a F2 rat, by restriction enzyme digestion. Illustrated in (a) is a nucleotide sequence of where a mutation is on a mutant Cacna1a gene (M251K), and a nucleotide sequence of a wild-type Cacna1a gene corresponding to that nucleotide sequence of the mutant Cacna1a gene. Illustrated in (b) is a size of a DNA fragment expected by the restriction enzyme digestion. Illustrated in (c) is a result of electrophoresis.

[0070] FIG. 9 is a view illustrating a result of examining an effect of a mutation on the Cacnala gene, in a rat having a mutation on Scnla gene. Illustrated in (a) is a body temperature at a time of convulsion onset (convulsion threshold), illustrated in (b) is a severity score, and illustrated in (c) is duration of the convulsion.

[0071] FIG. 10 is a view illustrating a part of an electroencephalogram at a time of seizure of a rat in group (3) (Scn1a mutant (homo)+Cacna1a mutant (hetero)).

[0072] FIG. 11 is a view illustrating an amino acid sequence of a protein encoded by a human CACNA1A gene and an amino acid sequence of a protein encoded by a rat Cacna1a gene.

[0073] FIG. 12 is a view illustrating a result of detecting a mutation on voltage-gated calcium ion channel $Ca_{\nu}2.1$ a 1 subunit. Illustrated in (a) is a result of a mutation analysis of the CACNA1A gene, and schematically illustrated in (b) is a part where a mutation was detected in the calcium ion channel $\alpha1$ subunit.

[0074] FIG. 13 is a view illustrating a result of performing function analysis of the calcium ion channel, by use of patch clamping. Illustrated in (a) is a barium current record effected by a change in potential of a normal calcium ion channel and a mutant calcium ion channel. Illustrated in (b) is a current-

voltage relationship, and illustrated in (c) is peak current value (pA), a total charge (pF) and a peak current density (pA/pF).

[0075] FIG. 14 is a view illustrating a result of performing function analysis of a calcium ion channel, by use of patch clamping. Illustrated in (a) is an activation curve of the calcium ion channel. Illustrated in (b) is a time constant of voltage-gated activation of the calcium ion channel. Illustrated in (c) is a time constant of voltage-gated activation at 20 mV. Illustrated in (d) is a voltage-gated inactivation curve of the calcium ion channel. Illustrated in (e) is a result of examining fast and slow inactivation time constants (τ) .

DESCRIPTION OF EMBODIMENTS

[0076] Described below is an embodiment of the present invention in detail. The present invention is not limited to this embodiment however, and may be carried out in modes of various modifications that are made within the described scope. Moreover, all academic literature and patent literature disclosed in the present specification are incorporated as reference. Unless mentioned otherwise, numerical ranges expressed as "A to B" denote "not less than A but not more than B"

[0077] 1. Assessment method according to the present invention

[0078] A method of assessing a potential for development of Dravet syndrome according to the present invention (also referred to as "assessment method according to the present invention") is a method of assessing a potential for development of Dravet syndrome in a subject, by use of a sample taken from the subject. In the present specification, the "potential for development of Dravet syndrome" includes a potential that the Dravet syndrome is already developed and a potential that the Dravet syndrome may develop in the future. [0079] The subject is not particularly limited, and may be

an individual in which Dravet syndrome has developed (individual having potential for development) or may be an individual in which the Dravet syndrome is not developed (individual having no potential for development). Out of such individuals, it is preferable that the subject is of either infants or children.

[0080] The assessment method according to the present invention, more specifically, may be of any method as long as it includes, with use of a sample taken from the subject: detecting whether or not a mutation is on α -subunit type 1 of voltage-gated sodium ion channel Na $_{\nu}1.1$; and detecting whether or not a mutation is on α -subunit type 1 of voltage-gated calcium ion channel Ca $_{\nu}2.1$. Any other specific configurations are not limited in particular.

[0081] In the embodiment, the voltage-gated sodium ion channel Na $_{\nu}1.1$ is made up of α -subunit type 1, β_1 subunit, and β_2 subunit. The β_1 subunit and the β_2 subunit are auxiliary subunits.

[0082] The α -subunit type 1 of voltage-gated sodium ion channel Na $_{\nu}1.1$ (hereinafter, referred to as "sodium ion channel $\alpha1$ subunit") is for example a polypeptide that is registered as GenBank accession No. AB093548 (i.e. amino acid sequence represented by SEQ ID NO. 1). Moreover, an example of a gene that encodes the α -subunit type 1 of voltage-gated sodium ion channel Na $_{\nu}1.1$ (hereinafter, called "sodium ion channel $\alpha1$ subunit gene") is, as a SCN1A gene, a polynucleotide made up of a nucleotide sequence registered as GenBank accession No. AB093548 (i.e. nucleotide sequence represented by SEQ ID NO. 2).

[0083] The voltage-gated calcium ion channel $\text{Ca}_{\nu}2.1$ is made up of α -subunit type 1, β subunit, γ subunit, and $\alpha2\delta$ subunit.

[0084] The voltage-gated calcium ion channel $\text{Ca}_{\nu}2.1$ α -subunit type 1 (hereinafter, referred to as "calcium ion channel al subunit") is for example a polypeptide registered as GenBank accession No. NM 023035 (i.e. amino acid sequence represented by SEQ ID NO. 3). Moreover, an example of a gene that codes the α -subunit type 1 of voltage-gated calcium ion channel $\text{Ca}_{\nu}2.1$ (hereinafter, referred to as "calcium ion channel α 1 subunit gene") is, as a CACNA1A gene, a polynucleotide made up of a nucleotide sequence registered as GenBank accession No. NM 023035 (i.e. nucleotide sequence represented by SEQ ID NO. 4).

[0085] In the present specification, for example, the term " α -subunit type 1 of voltage-gated sodium ion channel Na_v1.1" denotes " α -subunit type 1 protein of voltage-gated sodium ion channel Na_v1.1". Namely, in the present specification, unless it is clearly described as indicating a gene as like "gene encoding α -subunit type 1 of voltage-gated sodium ion channel Na_v1.1" or " α -subunit type 1 gene of voltage-gated sodium ion channel Na_v1.1", a protein is denoted. This way of description is not limited to the " α -subunit type 1 of voltage-gated sodium ion channel Na_v1.1", and " α -subunit type 1 of voltage-gated sodium ion channel Na_v1.1", is denoted similarly thereto.

[0086] It is preferable that the assessment method according to the present invention further includes, in addition to the detecting the presence of a mutation: detecting a change in activity of the voltage-gated sodium ion channel $Na_{\nu}1.1$; and detecting a change in activity of the voltage-gated calcium ion channel $Ca_{\nu}2.1$.

[0087] The assessment method according to the present invention may include, for detecting the mutation, a step such as preprocessing of a sample that is taken from the living organism. The "preprocessing" indicates, for example, a process of extracting DNA from the sample taken from the living organism, a process of extracting RNA from the sample taken from the living organism, a process of extracting protein from the sample taken from the living organism, or like process. These preprocessing can be carried out by use of conventionally known methods.

[0088] The assessment method according to the present invention may be a method of obtaining data for assessing a potential for development of Dravet syndrome. In this case, the present invention does not include the step of determining by a doctor.

[0089] (1-1. Detecting Presence of Mutation)

[0090] In the present specification, the "detecting presence of a mutation" denotes detecting a presence of a mutation on α -subunit type 1 of voltage-gated sodium ion channel Na_V1.1 and detecting a presence of a mutation on α -subunit type 1 of voltage-gated calcium ion channel Ca_V2.1.

[0091] In the assessment method according to the present invention, the detecting of the presence of a mutation on the α -subunit type 1 of voltage-gated sodium ion channel Na_V1.1 may be performed prior to the detecting of the presence of a mutation on the α -subunit type 1 of voltage-gated calcium ion channel Ca_V2.1 or vice versa, or may be performed simultaneously.

[0092] By detecting the presence of a mutation in both the sodium ion channel $\alpha 1$ subunit and the calcium ion channel $\alpha 1$ subunit, it is possible to obtain the data that enables accurate assessment of the potential for development of Dravet syndrome.

[0093] The mutation detected by the assessment method according to the present invention may be a mutation on a nucleotide sequence of a gene, or may be a mutation on an amino acid of a protein. The "mutation on a nucleotide sequence of a gene" is not limited in particular by a specific kind of mutation as long as it is a mutation that causes a change in an amino acid sequence of a protein encoded by a gene having a mutation on its nucleotide sequence as compared to an amino acid sequence of a protein encoded by a wild-type gene. Mutations on the nucleotide sequence as described above are, for example, missense mutation (substitution of an amino acid), nonsense mutation (synthesis of an amino acid stops in an incomplete state), frameshift (a frame of an amino acid codon shifts caused by insertion or deletion of a nucleotide, which causes an amino acid sequence downstream of the mutation position to change, thereby losing its original function), splicing defect (e.g. deletion of its exon region), minority nucleotide insertion or deletion (a part of amino acids is newly added or lost however its downstream is synthesized as normal amino acid), and minor deletion of an exon region (loss of one or a plurality of exon). Variations on the nucleotide sequence as such are not limited to mutations, and may also include gene polymorphism.

[0094] Moreover, in the assessment method according to the present invention, the detection of mutation may be performed to mRNA, cDNA, and proteins obtained from these genes.

[0095] In the present specification, "gene" can be replaced by "polynucleotide", "nucleic acid" or "nucleic acid molecule".

[0096] The "polynucleotide" means a polymer of a nucleotide. Hence, the term "gene" in the present specification includes not only the double stranded DNA but also a single stranded DNA and RNA (mRNA, etc.) such as a sense strand and an antisense strand that construct the double stranded DNA.

[0097] The term "DNA" encompasses cDNA, genomic DNA and the like that can be obtained by cloning, a chemically synthesized technique or a combination of these. Namely, DNA may be a "genome" type DNA, which includes a noncoding sequence such as intron or the like that is a form included in an animal genome, or may be a cDNA obtained from mRNA with use of reverse transcriptase or polymerase, i.e. "transcription" type DNA that does not include a noncoding sequence such as intron.

[0098] Examples of the mutation on sodium ion channel a 1 subunit is, more specifically, a mutation of asparagine (N) at position 1417 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, and is preferably a mutation of asparagine (N) at position 1417 to histidine (H) ("N1417H" in Table 1). This mutation is caused by, for example, a mutation of adenine (A) at position 4249 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of adenine (A) at position 4249 with cytosine (C) (A4249C). [0099] Moreover, another embodiment is a mutation of lysine (K) at position 1027 of the amino acid sequence of the sodium ion channel a 1 subunit represented by SEQ ID NO. 1, preferably a mutation of lysine (K) at position 1027 to a stop codon ("K1027X" in Table 1). This mutation is caused by, for example, a mutation of adenine (A) at position 3079 of the nucleotide sequence of sodium ion channel α1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of adenine (A) at position 3079 with thymine (T) (A3079T).

[0100] Yet another embodiment is a mutation of glutamine (Q) at position 1450 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a mutation of glutamine (Q) at position 1450 to arginine (R) ("Q1450R" in Table 1). This mutation is caused by, for example, a mutation of adenine (A) at position 4349 of a nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of adenine (A) at position 4349 with guanine (G) (A4349G).

[0101] Yet another embodiment is a mutation of threonine (T) at position 1082 of the amino acid sequence of sodium ion channel α1 subunit represented by SEQ ID NO. 1, preferably a mutation causing generation of a stop codon at position 1086 by frameshift ("T1082fsX1086" in Table 1). This mutation is caused by, for example, a mutation of cytosine (C) at position 3245 of a nucleotide sequence of sodium ion channel a 1 subunit gene represented by SEQ ID NO. 2, preferably a deletion of cytosine (C) at position 3245 (C3245de1).

[0102] Yet another embodiment is a mutation of lysine (K) at position 547 of the amino acid sequence of the sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a mutation causing generation of a stop codon at position 570 by frameshift ("K547fsX570" in Table 1). This mutation is caused by, for example, a mutation at position 1641 of the nucleotide sequence of the sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably an insertion of adenine (A) into position 1641 (1641insA).

[0103] Yet another embodiment is a mutation of proline (P) at position 707 of the amino acid sequence of sodium ion channel α1 subunit represented by SEQ ID NO. 1, preferably a mutation causing generation of a stop codon at position 714 by frameshift ("P707fsX714" in Table 1). This mutation is caused by, for example, a mutation of cytosine (C) at position 2120 in the nucleotide sequence of sodium ion channel al subunit gene represented by SEQ ID NO. 2, preferably a deletion of cytosine (C) at position 2120 (C2120de1).

[0104] Yet another embodiment is a mutation of arginine

(R) at position 712 of the amino acid sequence of sodium ion channel a subunit represented by SEQ ID NO. 1, preferably a mutation of arginine (R) at position 712 to a stop codon ("R712X" in Table 1). This mutation is caused by, for example, a mutation of cytosine (C) at position 2134 of the nucleotide sequence of the sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of cytosine (C) at position 2134 with thymine (T) (C2134T). [0105] Yet another embodiment is a mutation of leucine (L) at position 1265 of the amino acid sequence of the sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a mutation of leucine (L) at position 1265 to proline (P) ("L1265P" in Table 1). This mutation is caused by, for example, a mutation of thymine (T) at position 3794 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of thymine (T) at position 3794 with cytosine (C) (T3794C).

[0106] Yet another embodiment is a deletion of amino acid of positions 460 to 554 of the amino acid sequence of the sodium ion channel α 1 subunit represented by SEQ ID NO. 1 ("Exon10" in Table 1). This mutation is caused by, for example, a deletion of nucleotide at positions 1378 to 1662 (exon 10) of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2.

[0107] Yet another embodiment is a mutation of arginine (R) at position 865 of the amino acid sequence of the sodium ion channel α 1 subunit represented by SEQ ID NO. 1, pref-

erably a mutation of arginine (R) at position 865 to a stop codon ("R865X" in Table 1). This mutation is caused by, for example, a mutation of cytosine (C) at position 2593 of the nucleotide sequence of the sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of cytosine (C) at position 2593 with thymine (T) (C2593T). [0108] Yet another embodiment is a mutation of arginine (R) at position 1648 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a substitution of arginine (R) at position 1648 with cysteine (C) ("R1648C" in Table 1). This mutation is caused by, for example, a mutation of cytosine (C) at position 4942 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of cytosine (C) at position 4942 with thymine (T) (C4942T).

[0109] Yet another embodiment is a mutation of arginine (R) at position 931 in the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a substitution of arginine (R) at position 931 with cysteine (C) ("R931C" in Table 1). This mutation is caused by, for example, a mutation of cytosine (C) at position 2791 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of cytosine (C) at position 2791 with thymine (T) (C2791T).

[0110] Yet another embodiment is a mutation of arginine (R) at position 501 in the amino acid sequence of sodium ion channel α1 subunit represented by SEQ ID NO. 1, preferably a mutation causing generation of a stop codon at position 543 by frameshift ("R501fsX543" in Table 1). This mutation is caused by, for example, a mutation of guanine (G) at position 1502 of the nucleotide sequence of sodium ion channel al subunit gene represented by SEQ ID NO. 2, preferably a deletion of guanine (G) at position 1502 (G1502de1).

[0111] Yet another embodiment is a mutation of alanine (A) at position 1002 in the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a mutation causing generation of a stop codon at position 1009 by frameshift ("A1002fsX1009" in Table 1). This mutation is caused by, for example, a mutation of cytosine (C) at position 3006 of the nucleotide sequence of sodium ion channel al subunit gene represented by SEQ ID NO. 2, preferably a deletion of cytosine (C) at position 3006.

[0112] Yet another embodiment is a mutation of phenylalanine (F) at position 902 of the amino acid sequence of sodium ion channel $\alpha 1$ subunit represented by SEQ ID NO. 1, preferably a mutation of phenylalanine (F) at position 902 to cysteine (C) ("F902C" in Table 1). This mutation is caused by, for example, a mutation of thymine (T) at position 2705 of the nucleotide sequence of sodium ion channel $\alpha 1$ subunit gene represented by SEQ ID NO. 2, preferably by a substitution of thymine (T) at position 2705 with guanine (G) (T2705G).

[0113] Yet another embodiment is a mutation of glycine (G) at position 1674 of the amino acid sequence of aodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a substitution of glycine (G) at position 1674 with arginine (R) ("G1674R" in Table 1). This mutation is caused by, for example, a mutation of guanine (G) at position 5020 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of guanine (G) at position 5020 with cytosine (C) (G5020C).

[0114] Yet another embodiment is a mutation of valine (V) at position 1390 of the amino acid sequence of sodium ion channel $\alpha 1$ subunit represented by SEQ ID NO. 1, preferably a mutation of valine (V) at position 1390 to methionine (M)

("V1390M" in Table 1). This mutation is caused by, for example, a mutation of guanine (G) at position 4168 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of guanine (G) at position 4168 with adenine (A) (G4168A).

[0115] Yet another embodiment is a mutation of serine (S) at position 607 in the amino acid sequence of sodium ion channel α1 subunit represented by SEQ ID NO. 1, preferably a mutation causing generation of a stop codon at position 622 by frameshift ("S607fsX622" in Table 1). This mutation is caused by, for example, a mutation of cytosine (C) at position 1820 of the nucleotide sequence of sodium ion channel al subunit gene represented by SEQ ID NO. 2, preferably a deletion of cytosine (C) at position 1820 (C1820de1).

[0116] Yet another embodiment is a mutation of tryptophan (W) at position 1434 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a substitution of tryptophan (W) at position 1434 with arginine (R) ("W1434R" in Table 1). This mutation is caused by a mutation of thymine (T) at position 4300 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of thymine (T) at position 4300 with cytosine (C) (T4300C).

[0117] Yet another embodiment is a mutation of threonine (T) at position 1909 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a substitution of threonine (T) at position 1909 with isoleucine (I) ("T1909I" in Table 1). This mutation is caused by, for example, the mutation of cytosine (C) at position 5726 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably by a substitution of cytosine (C) at position 5726 with thymine (T) (C5726T).

[0118] Yet another embodiment is a mutation of phenylalanine (F) at position 1289 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a deletion of phenylalanine (F) at position 1289 ("F1289de1" in Table 1). This mutation is caused by, for example, mutations of cytosine (C) at position 3867, thymine (T) at position 3868, and thymine (T) at position 3869, each in the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a deletion of cytosine (C) at position 3867, thymine (T) at position 3868, and thymine (T) at position 3868, and thymine (T) at position 3869.

[0119] Yet another embodiment is a mutation of tryptophan (W) at position 1271 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a mutation of tryptophan (W) at position 1271 to a stop codon ("W1271X" in Table 1). This mutation is caused by, for example, a mutation of guanine (G) at position 3812 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably by a substitution of guanine (G) at position 3812 with adenine (A) (G3812A).

[0120] Yet another embodiment is a mutation of alanine (A) at position 1429 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a mutation causing generation of a stop codon at position 1443 by frameshift ("A1429fsX1443" in Table 1). This mutation is caused by, for example, a mutation of five-nucleotide CCACA between positions 4286 to 4290 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of CCACA at positions 4286 to 4290, with ATGTCC.

[0121] Moreover, another embodiment is a mutation of glycine (G) at position 1880 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a mutation causing generation of a stop codon at position 1881 by frameshift ("G1880fsX1881" in Table 1). This mutation is caused by mutation of six-nucleotide AGAGAT between positions 5640 to 5645 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of six-nucleotide AGAGAT between positions 5640 to 5645 with CTAGAGTA.

[0122] Yet another embodiment is a mutation of alanine (A) at position 1685 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a substitution of alanine (A) at position 1685 with aspartic acid (D) ("A1685D" in Table 1). This mutation is caused by, for example, a mutation of cytosine (C) at position 5054 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably by a substitution of cytosine (C) at position 5054 with adenine (A) (C5054A).

[0123] Yet another embodiment is a mutation of arginine (R) at position 377 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a substitution of arginine (R) at position 377 with leucine (L) ("R377L" in Table 1). This mutation is caused by, for example, a mutation of guanine (G) at position 1130 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably by substitution of guanine (G) at position 1130 with thymine (T) (G1130T).

[0124] Yet another embodiment is a mutation of serine (S) at position 1574 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a mutation of serine (S) at position 1574 to a stop codon ("51574X" in Table 1). This mutation is caused by, for example, a mutation of cytosine (C) at position 4721 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of cytosine (C) at position 4721 with guanine (G) (C4721G).

[0125] Yet another embodiment is a mutation of glutamine (Q) at position 1277 in the amino acid sequence of the sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a mutation of glutamine (Q) at position 1277 to a stop codon ("Q1277X" in Table 1). This mutation is caused by, for example, a mutation of cytosine (C) at position 3829 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably by a substitution of cytosine (C) at position 3829 with thymine (T) (C3829T).

[0126] Yet another embodiment is a mutation of glycine (G) at position 177 of the amino acid sequence of sodium ion channel $\alpha 1$ subunit represented by SEQ ID NO. 1, preferably a mutation of glycine (G) at position 177 to arginine (R) ("G 177R" in Table 1). This mutation is caused by, for example, a mutation of guanine (G) at position 529 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably by a substitution of guanine (G) at position 529 with adenine (A) (G529A).

[0127] Yet another embodiment is a mutation of glutamic acid (E) at position 788 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a substitution of glutamic acid (E) at position 788 with lysine (K) ("E788K" in Table 1). This mutation is caused by, for example, a mutation of guanine (G) at position 2362 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably by a substitution of guanine (G) at position 2362 with adenine (A) (G2362A).

[0128] Yet another embodiment is splicing defects at positions 1429 and subsequent positions of the amino acid sequence of sodium ion channel α1 subunit represented by SEQ ID NO. 1, preferably a deletion of positions at and subsequent to 1429 ("intron 21" in Table 1). This mutation is caused by, for example, a mutation of adenine (A) at a second last position (position -2), preferably a mutation in which adenine (A) at a second last position (position -2) of the intron 21 is substituted with guanine (G) (intron 21 ag(-2) gg), out of the intron 21 present in a genomic DNA between positions 4284 and 4285 of the nucleotide sequence of sodium ion channel a 1 subunit gene represented by SEQ ID NO. 2. Namely, the second last nucleotide sequence of the intron 21 present in the genomic DNA between positions 4284 (exon 21) and 4285 (exon 22) of the nucleotide sequence of sodium ion channel a 1 subunit gene represented by SEQ ID NO. 2 is ag, and is connected to the beginning of the exon 22. Generally, since the ag of the intron 21 is a recognition sequence that is spliced, in a case in which an abnormality exists at that position, the intron is determined as still continuing, which thus causes the exon immediately after (or in its downstream) to be abnormally spliced. This makes it impossible to generate a full-length protein.

[0129] Yet another embodiment is a mutation of serine (S) at position 1574 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a mutation of serine (S) at position 1574 to a stop codon ("51574X" in Table 1). This mutation is caused by, for example, a mutation of cytosine (C) at position 4721 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of cytosine (C) at position 4721 with guanine (G).

[0130] Yet another embodiment is a mutation of valine (V) at position 212 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a substitution of valine (V) at position 212 with alanine (A) ("V212A" in Table 1). This mutation is caused by, for example, a mutation of thymine (T) at position 635 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of thymine (T) at position 635 with cytosine (C) (T635C).

[0131] Yet another embodiment is a mutation of threonine (T) at position 1539 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a mutation of threonine (T) at position 1539 to proline (P) ("T1539P" in Table 1). This mutation is caused by, for example, a mutation of adenine (A) at position 4615 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of adenine (A) at position 4615 with cytosine (C) (A4615C).

[0132] Yet another embodiment is a mutation of tryptophan (W) at position 738 of the amino acid sequence of sodium ion channel α1 subunit represented by SEQ ID NO. 1, preferably by mutation causing generation of a stop codon at position 746 by frameshift ("W738fsX746" in Table 1). This mutation is caused by, for example, a mutation of guanine (G) at position 2213 in the nucleotide sequence of the sodium ion channel a 1 subunit gene represented by SEQ ID NO. 2, preferably a deletion of guanine (G) at position 2213 (G2213de1).

[0133] Yet another embodiment is a mutation of leucine (L) at position 990 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably by a mutation of leucine (L) at position 990 to phenylalanine (F) ("L990F" in Table 1). This mutation is caused by, for

example, a mutation of guanine (G) at position 2970 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of guanine (G) at position 2970 with thymine (T) (G2970T).

[0134] Yet another embodiment is a mutation of glycine (G) at position 163 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a mutation of glycine (G) at position 163 to glutamic acid (E) ("G163E" in Table 1). This mutation is caused by, for example, a mutation of guanine (G) at position 488 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of guanine (G) at position 488 with adenine (A) (G488A).

[0135] Yet another embodiment is a mutation of alanine (A) at position 1662 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a mutation of alanine (A) at position 1662 to valine (V) ("A1662V" in Table 1). This mutation is caused by, for example, a mutation of cytosine (C) at position 4985 in the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably by a substitution of cytosine (C) at position 4985 with thymine (T) (C4985T).

[0136] Yet another embodiment is a mutation of lysine (K) at position 1057 of the amino acid sequence of sodium ion channel α 1 subunit represented by SEQ ID NO. 1, preferably a mutation causing generation of a stop codon at position 1073 by frameshift ("K1057fsX1073" in Table 1). This mutation is caused by, for example, a mutation of 14 nucleotides (AGAAAGACAGTTGT) between positions 3170 to 3183 of the nucleotide sequence of sodium ion channel α 1 subunit gene represented by SEQ ID NO. 2, preferably a substitution of the 14 nucleotides between the positions 3170 to 3183 with TCATTCTGTATG.

[0137] It is needless to say that the mutation on the α -sub-unit type 1 of the voltage-gated sodium ion channel Na $_{\nu}1.1$ is not limited to the mutations exemplified above.

[0138] Examples of mutations on a calcium ion channel al subunit encompass, more specifically, a mutation on methionine (M) at position 249 of an amino acid sequence of calcium ion channel α 1 subunit represented by SEQ ID NO. 3, preferably a mutation on methionine (M) at position 249 to lysine (K) ("M249K" in Table 2). This mutation is caused by, for example, a mutation on thymidine (T) at position 746 of the nucleotide sequence of calcium ion channel α 1 subunit gene represented by SEQ ID NO. 4, preferably a mutation on thymidine (T) at position 746 substituted with adenine (A) (T746A).

[0139] Moreover, another embodiment is a mutation on glutamic acid (E) at position 921 of the amino acid sequence of calcium ion channel α 1 subunit represented by SEQ ID NO. 3, preferably a mutation on glutamic acid (E) at position 921 to aspartic acid (D) ("E921D" in Table 2). This mutation is, for example, caused by a mutation on adenine (A) at position 2762 of the nucleotide sequence of calcium ion channel α 1 subunit gene represented by SEQ ID NO. 4, preferably a substitution of adenine (A) at position 2762 with cytosine (C) (A2762C).

[0140] Yet another embodiment is a mutation on glutamic acid (E) at position 996 of the amino acid sequence of calcium ion channel α 1 subunit represented by SEQ ID NO. 3, preferably a mutation on glutamic acid (E) at position 996 to valine (V) ("E996V" in Table 2). This mutation is, for example, caused by a mutation on adenine (A) at position 2987 of the nucleotide sequence of the calcium ion channel α

1 subunit gene represented by SEQ ID NO. 4, preferably a substitution of adenine (A) at position 2987 with thymine (T) (A2987T).

[0141] Yet another embodiment is a mutation on arginine (R) at position 1126 of the amino acid sequence of calcium ion channel α 1 subunit represented by SEQ ID NO. 3, preferably a mutation on arginine (R) at position 1126 to histidine (H) ("R1126H" in Table 2). This mutation is, for example, caused by a mutation on guanine (G) at position 3377 of the nucleotide sequence of calcium ion channel α 1 subunit gene represented by SEQ ID NO. 4, preferably a substitution of guanine (G) at position 3377 with adenine (A) (G3377A).

[0142] Yet another embodiment is a mutation on arginine (R) at position 2201 of the amino acid sequence of calcium ion channel α 1 subunit represented by SEQ ID NO. 3, preferably a mutation on arginine (R) at position 2201 to glutamine (Q) ("R2201Q" in Table 2). This mutation is, for example, caused by mutation on guanine (G) at position 6602 of the nucleotide sequence of calcium ion channel α 1 subunit gene represented by SEQ ID NO. 4, preferably by a substitution of guanine (G) at position 6602 with adenine (A) (G6602A).

[0143] Yet another embodiment is a mutation on glycine (G) at position 1108 of the amino acid sequence of calcium ion channel α 1 subunit represented by SEQ ID NO. 3, preferably a mutation on glycine (G) at position 1108 to serine (S) ("G1108S" in Table 2). This mutation is, for example, caused by a mutation on guanine (G) at position 3322 of the nucleotide sequence of calcium ion channel α 1 subunit gene represented by SEQ ID NO. 4, preferably a substitution of guanine (G) at position 3322 with adenine (A) (G3322A).

[0144] Yet another embodiment is a mutation on alanine (A) at position 924 of the amino acid sequence of calcium ion channel α 1 subunit represented by SEQ ID NO. 3, preferably a mutation of alanine (A) at position 924 to glycine (G) ("A924G" in Table 2). This mutation is, for example, caused by a mutation on cytosine (C) at position 2771 of the nucleotide sequence of calcium ion channel α 1 subunit gene represented by SEQ ID NO. 4, preferably a substitution of cytosine (C) at position 2771 with guanine (G) (C2771G).

[0145] Yet another embodiment is a mutation on glycine (G) at position 266 of the amino acid sequence of calcium ion channel α 1 subunit represented by SEQ ID NO. 3, preferably a mutation on glycine (G) at position 266 to serine (S) ("G2665" in Table 2). This mutation is, for example, caused by a mutation on guanine (G) at position 796 of the nucleotide sequence of calcium ion channel α 1 subunit gene represented by SEQ ID NO. 4, preferably by a substitution of guanine (G) at position 796 with adenine (A) (G796A).

[0146] Yet another embodiment is a mutation on lysine (K) at position 472 of the amino acid sequence of calcium ion channel α 1 subunit represented by SEQ ID NO. 3, preferably a mutation on lysine (K) at position 472 to arginine (R) ("K472R" in Table 2). This mutation is, for example, caused by a mutation on adenine (A) at position 1415 of the nucleotide sequence of calcium ion channel α 1 subunit gene represented by SEQ ID NO. 4, preferably by a substitution of adenine (A) at position 1415 with guanine (G) (A1415G).

[0147] Yet another embodiment is a deletion of an amino acid at positions 2202 to 2205 of the amino acid sequence of calcium ion channel α 1 subunit represented by SEQ ID NO. 3 ("de12202-2205" in Table 2). This mutation is, for example, caused by a mutation on ACCAGGAGCGGG of positions 6605 to 6616 of the nucleotide sequence of calcium ion chan-

nel a 1 subunit gene represented by SEQ ID NO. 4, preferably a deletion of ACCAGGAGCGGG at positions 6605 to 6616 (de16605-6616).

[0148] It is needless to say that the mutations related to the function abnormality of voltage-gated calcium ion channel $Ca_{\nu}2.1$ is not limited to the mutations exemplified above.

[0149] The mutations on the foregoing sodium ion channel a 1 subunit and the mutations on the foregoing calcium ion channel α 1 subunit are organized into Table 1 and Table 2.

TABLE 1

M	Mutations on sodium ion channel α1 subunit								
1289de1F,	G177R,	Q1450R,	T1539P,						
A1002fsX1009,	G1880fsX1881,	R1648C,	T1909I,						
A1429fsX1443,	intron 21,	R377L,	V1390M,						
A1662V,	K1027X,	R501fsX543,	V212A,						
A1685D,	K1057fsX1073,	R712X,	W1271X,						
E788K,	K547fsX570,	R865X,	W1434R,						
Exon10*,	L1265P,	R931C,	W738fsX746,						
F902C,	L990F,	S1574X,	N1417H,						
G163E,	P707fsX714,	S607fsX622,							
G1674R,	Q1277X,	T1082fsX1086,							

Exon10* exon deletion detected by MLPA

TABLE 2

Mutations on calcium ion channel α1 subunit								
A924G, del 2202-2205, E921D, M249K	E996V, G1108S, G266S,	K472R, R1126H, R2201Q,						

[0150] In the assessment method according to the present invention, it is preferable that the mutation on sodium ion channel α 1 subunit is, more specifically, at least one mutation shown in Table 1, and the mutation on calcium ion channel al subunit is, more specifically, at least one mutation shown in Table 2.

[0151] The assessment method according to the present invention is not limited in particular of how the presence of a mutation is detected for both the sodium ion channel a 1 subunit and the calcium ion channel α 1 subunit, and any method conventionally known may be used.

[0152] Examples of methods for detecting the presence of the mutation for both the sodium ion channel α 1 subunit gene and the calcium ion channel α 1 subunit gene encompass mutation detecting methods such as DNA sequencing method using PCR, SSCP method (Single strand conformation polymorphism), DHPLC method (denaturing high performance liquid chromatography); polymorphism detecting methods using real-time PCR or DNA chip; method of detecting micro-deletion of exons of a gene; and Northern blotting, RT-PCR, Real-time PCR, and cDNA array, each of which detect an increase and decrease of mRNA. Moreover, when the presence of mutation is to be detected for both of sodium ion channel α 1 subunit protein and calcium ion channel α 1 subunit protein, a method such as Western blotting, immunostaining, protein array or the like may be used.

[0153] The following provides more specific descriptions, by separating into the following embodiments: (A) an embodiment detecting a gene mutation with use of a genomic DNA included in a sample taken from a subject, (B) an embodiment detecting a gene mutation with use of mRNA (cDNA) included in a sample taken from a subject, and (C) an embodiment detecting a protein mutation with use of a protein included in a sample taken from a subject.

[0154] (A) Embodiment Using Genomic DNA

[0155] In the embodiment detecting a gene mutation with use of a genomic DNA included in a sample taken from a subject, first, a genomic DNA is extracted from the sample taken from the subject, by a conventionally known method.

[0156] The "sample taken from the subject" is not limited in particular, and any sample from which a genomic DNA is extractable can be used. More specifically, a sample of blood, oral mucosa cells, bone marrow fluid, hair, various organs, peripheral lymphocytes, synovial cells or the like can be used. Moreover, cells taken from the subject may be cultured and a genomic DNA may be extracted from its proliferated cells.

[0157] Moreover, the extracted genomic DNA may be used upon amplification by a gene amplification method generally performed, for example, PCR (Polymerase Chain Reaction), NASBA (Nucleic acid sequence based amplification), TMA (Transcription-mediated amplification), SDA (Strand Displacement Amplification), LAMP (Loop-Mediated Isothermal Amplification), and ICAN (Isothermal and Chimeric primer-initiated Amplification of Nucleic acids).

[0158] The method of detecting the presence of mutation for both the sodium ion channel α 1 subunit gene and the calcium ion channel α 1 subunit gene with use of a sample including a genomic DNA prepared as such is not limited in particular, and examples encompass allele-specific oligonucleotide probe method, Oligonucleotide Ligation Assay, PCR-SSCP, PCR-CFLP, PCR-PHFA, invader method, RCA (Rolling Circle Amplification), Primer Oligo Base Extension, and like methods.

[0159] More specifically, a polynucleotide for detecting a mutation on α -subunit type 1 of the voltage-gated sodium ion channel Na $_{\nu}1.1$ and a polynucleotide for detecting a mutation on α -subunit type 1 of the voltage-gated calcium ion channel Ca $_{\nu}2.1$ are used to detect, from the genomic DNA, the presence of a mutation for both the sodium ion channel α 1 subunit gene and the calcium ion channel α 1 subunit gene.

[0160] The "polynucleotide for detecting a mutation on α -subunit type 1 of voltage-gated sodium ion channel Na $_{\nu}1$. 1" is indicative of a polynucleotide having a nucleotide sequence complementary to a set region in a sodium ion channel al subunit gene (e.g. a region including an exon, or boundary region between an exon and an intron). The "polynucleotide for detecting a mutation on α -subunit type 1 of voltage-gated calcium ion channel Ca $_{\nu}2$.1" is indicative of a polynucleotide having a nucleotide sequence complementary to a set region in the calcium ion channel α 1 subunit gene (e.g. a region including an exon, or a boundary region between an exon and an intron).

[0161] The "polynucleotide for detecting a mutation on α -subunit type 1 of voltage-gated sodium ion channel Na $_{\nu}1$. 1" is, more specifically, a polynucleotide having a nucleotide sequence represented by any one of SEQ ID NOs.: 5, 6, and 9 to 62, for example. Moreover, the "polynucleotide for detecting a mutation on α -subunit type 1 of voltage-gated calcium ion channel Ca $_{\nu}2$.1" is, more specifically, a polynucleotide having a nucleotide sequence represented by any one of SEQ ID NOs.: 7, 8, and 63 to 143.

[0162] Two kinds of the polynucleotides may be used in combination as a primer pair, or one kind may be used as a probe. When the two kinds are used in combination as a primer pair, the polynucleotides may be used in combinations as exemplified in Examples described later.

[0163] When two kinds of the polynucleotides are used in combination as a primer pair, it is possible, for example, to amplify a set region in the gene by PCR with use of a corre-

sponding primer pair, and thereafter, directly sequence the obtained PCR product, to detect the presence of the mutation in the gene.

[0164] Moreover, two kinds of fluorescence-labeled polynucleotides may be used as a primer pair, to amplify a set region of the gene by PCR, perform gel electrophoresis or capillary electrophoresis with the obtained PCR product, and study a strength of the signals, so as to detect the presence of a mutation in the gene.

[0165] Moreover, when one kind of the polynucleotides is to be solely used as a probe, the presence of the mutation on the gene can be detected by, for example, digesting the genomic DNA with an appropriate restriction enzyme and detecting a difference in size of the digested genomic DNA fragment by Southern blotting or the like.

[0166] As such, by detecting the presence of mutations for both the sodium ion channel α 1 subunit gene and calcium ion channel α 1 subunit gene with use of the genomic DNA included in the sample taken from the subject, it is possible to obtain data for assessing a potential for development of Dravet syndrome in the subject. More specifically, when a mutation is found on both the sodium ion channel α 1 subunit gene and the calcium ion channel α 1 subunit gene in the obtained data, it can be assessed that the subject has a high potential for development of Dravet syndrome.

[0167] The primer pair and probe used in the method of detecting the mutation may be prepared by a DNA synthesizer or the like, as in law of the art.

[0168] (B) Embodiment Using mRNA (cDNA)

[0169] In the embodiment of detecting a mutation with use of mRNA included in a sample taken from the subject, first, mRNA is extracted from a sample taken from the subject, with use of a conventionally known method.

[0170] The "sample taken from the subject" is not limited in particular, and any sample can be used as long as mRNA can be extracted therefrom and a gene that can be subjected to the detection of a mutation is expressed or is possibly expressed. The "sample taken from the subject" is preferably, for example, a peripheral blood leukemic cell, dermal fibroblast, oral mucosa cell, neuron, or muscle cell, each of a patient.

[0171] Subsequently, cDNA is prepared from the extracted mRNA by reverse transcription reaction. Furthermore, if necessary, the obtained cDNA may be amplified by a gene amplification method generally performed, for example PCR (Polymerase Chain Reaction), NASBA (Nucleic acid sequence based amplification), TMA (Transcription-mediated amplification), SDA (Strand Displacement Amplification), LAMP (Loop-Mediated Isothermal Amplification), and ICAN (Isothermal and Chimeric primer-initiated Amplification of Nucleic acids).

[0172] The method of detecting the presence of the mutation for both the sodium ion channel α 1 subunit gene and calcium ion channel α 1 subunit gene with use of a sample including cDNA prepared as such is not limited in particular; whether or not a gene mutation is present in a subject that is subjected to mutation detection may be detected with use of a similar method as with a case in which a gene mutation is detected with use of a genomic DNA, as described in the foregoing "(A) Embodiment using genomic DNA".

[0173] By detecting the presence of the mutation for both the sodium ion channel α 1 subunit gene and calcium ion channel α 1 subunit gene with use of mRNA included in the sample that is taken from the subject, it is possible to obtain data for assessing a potential for development of Dravet syn-

drome in the subject. More specifically, when a mutation is found in both the sodium ion channel α 1 subunit gene and the calcium ion channel α 1 subunit gene in the obtained data, it can be assessed that the subject has a high potential for the development of Dravet syndrome.

[0174] (C) Embodiment Using Protein

[0175] In the embodiment of detecting a mutation using protein included in the sample taken from a subject, first, protein is extracted from the sample taken from the subject with use of a conventionally known method.

[0176] The sample taken from the subject is not limited in particular, and may be any sample from which protein is extractable and in which both of sodium ion channel a 1 subunit protein and calcium ion channel α 1 subunit protein are expressed or is possibly expressed.

[0177] The method of detecting the presence of mutation for both the sodium ion channel α 1 subunit protein and the calcium ion channel α 1 subunit protein with use of the sample including the protein prepared as described above is not limited in particular, and for example an antibody which specifically recognizes just a protein having a set mutation may be prepared, to detect the mutation by ELISA or Western blotting using that antibody. In the present specification, the term "protein" may be used replaceable with "polypeptide" or "peptide".

[0178] Moreover, mutation may be detected by isolating a protein to be subjected to the mutation detection from the sample including the foregoing protein, and digesting the isolated protein with an enzyme or the like directly or if necessary, with use of a protein sequencer or a mass spectrometer. Alternatively, the mutation may be detected on the basis of an isoelectric point of the isolated protein.

[0179] As such, by detecting the presence of a mutation for both of the sodium ion channel $\alpha 1$ subunit protein and the calcium ion channel $\alpha 1$ subunit protein with use of a protein included in the sample taken from the subject, it is possible to obtain data for assessing potential for development of Dravet syndrome in the subject. More specifically, when a mutation is found on both the sodium ion channel $\alpha 1$ subunit protein and the calcium ion channel $\alpha 1$ subunit protein in the obtained data, it is possible to assess that the subject has a high potential for development of Dravet syndrome.

[0180] (1-2. Step of Detecting Change in Activity)

[0181] In the present specification, the "step of detecting change in activity" is indicative of a step of detecting whether activity of the voltage-gated sodium ion channel $\mathrm{Na}_{\nu}1.1$ has changed and a step of detecting whether activity of the voltage-gated calcium ion channel $\mathrm{Ca}_{\nu}2.1$ has changed.

[0182] As described in Examples later described, it is considered that the change in activity in both the voltage-gated sodium ion channel $Na_{\nu}1.1$ and the voltage-gated calcium ion channel $Ca_{\nu}2.1$, caused by the mutations on the sodium ion channel $\alpha 1$ subunit, is related to the development of Dravet syndrome. Hence, although the mutation on the sodium ion channel $\alpha 1$ subunit is not particularly limited in its position, it is preferable that the mutation is on a position that causes a change in the activity of the voltage-gated sodium ion channel $Na_{\nu}1.1$. Moreover, although the mutation on the calcium ion channel $\alpha 1$ subunit is not particularly limited in its position, it is preferable that the mutation is on a position that causes a change in the activity of the voltage-gated calcium ion channel $Ca_{\nu}2.1$.

[0183] Here, the activity of the voltage-gated sodium ion channel $Na_{\nu}1.1$ is, more specifically, an activity to allow transmission of sodium ion (Na+) into the cell by depending on membrane potential. The change in activity of the voltage-gated sodium ion channel $Na_{\nu}1.1$ is not limited in particular, and may be an increase of activity or may be a decrease in activity. Namely, the change is sufficiently one that shows an abnormality in the activity of the voltage-gated sodium ion channel $Na_{\nu}1.1$.

[0184] In the present specification, "the activity of the voltage-gated sodium ion channel $\mathrm{Na}_{\nu}1.1$ is changed" indicates that an activity of a mutant voltage-gated sodium ion channel $\mathrm{Na}_{\nu}1.1$ including the sodium ion channel $\alpha1$ subunit on which the mutation is present is of a value having a statistically significant difference based on a significant test as compared to an activity of a wild-type voltage-gated sodium ion channel $\mathrm{Na}_{\nu}1.1$, and preferably indicates that p is equal to or smaller than 0.05 by Student's t-test.

[0185] Moreover, the activity of the voltage-gated calcium ion channel $\text{Ca}_{\nu}2.1$ is, more specifically, an activity that causes transmission of calcium ion (Ca^{2+}) into the cell to be membrane voltage-gated. The change in function of the voltage-gated calcium ion channel $\text{Ca}_{\nu}2.1$ is not particularly limited, and may be the increase of activity or the decrease in activity. Namely, the change is sufficiently one that shows abnormality of the activity of the voltage-gated calcium ion channel $\text{Ca}_{\nu}2.1$.

[0186] In the present specification, "the activity of the voltage-gated calcium ion channel $Ca_{\nu}2.1$ is changed" indicates that the activity of a mutant voltage-gated calcium ion channel $Ca_{\nu}2.1$ including the calcium ion channel al subunit on which a mutation is present is of a value having a statistically significant difference based on a significant test as compared to an activity of a wild-type voltage-gated calcium ion channel $Ca_{\nu}2.1$, and preferably indicates that p is equal to or smaller than 0.05 by Student's t-test.

[0187] An example of a method of detecting that the activity of the voltage-gated sodium ion channel Na_v1.1 is changed by the mutation is, for example, (i) coexpressing, in a culture cell with use of a expression vector or the like, a sodium ion channel α 1 subunit gene on which a mutation is present with a wild-type gene (β_1 subunit gene and β_2 subunit gene) that encodes a subunit (β_1 subunit and β_2 subunit) other than the $\alpha 1$ subunit, which wild-type gene makes up the voltage-gated sodium ion channel Na_v1.1, (ii) measuring an activity of the voltage-gated sodium ion channel Na_v1.1 on which a mutation is present with use of the obtained cultured cell, and (iii) comparing the activity with an activity of the wild-type voltage-gated sodium ion channel Na_v1.1, to confirm whether the activity of the voltage-gated sodium ion channel Na_v1.1 is changed. The method of measuring the activity of the voltage-gated sodium ion channel Na_v1.1 is not particularly limited, however it is possible to use the conventionally known patch clamping, imaging with use of a fluorescence probe, or like method.

[0188] An example of a method of detecting that the activity of the voltage-gated calcium ion channel $Ca_{\nu}2.1$ is changed by mutation is by (i) coexpressing, in a culture cell with use of an expression vector or the like, a calcium ion channel al subunit gene on which a mutation is present with a wild-type gene (β subunit gene, γ subunit gene, and $\alpha 2\delta$ subunit gene) that encodes a subunit (β subunit, γ subunit, and $\alpha 2\delta$ subunit) other than the $\alpha 1$ subunit, which wild-type gene makes up the voltage-gated calcium ion channel $Ca_{\nu}2.1$, (ii)

measuring, with the obtained cultured cell, an activity of the voltage-gated calcium ion channel $Ca_{\nu}2.1$ on which the mutation is present, and (iii) comparing the activity with an activity of the wild-type voltage-gated calcium ion channel $Ca_{\nu}2.1$, to confirm whether the activity of the voltage-gated calcium ion channel $Ca_{\nu}2.1$ is changed. The method of measuring the activity of the voltage-gated calcium ion channel $Ca_{\nu}2.1$ is not limited in particular, however it is possible to use the conventionally known patch clamping, imaging using an optical probe, a calcium indicator, or a caged compound, for example.

[0189] The assessment method according to the present invention, since it includes the foregoing configuration, it is possible to obtain data for assessing a potential for development of Dravet syndrome in the subject. Hence, with the assessment method according to the present invention, it is possible to find out, with high accuracy and at an early stage, Dravet syndrome having the unfavorable prognosis, which thus allows for preparing a treatment management system by an epilepsy specialist from an earlier stage for a Dravet syndrome patient. As a result, it is possible to improve treatment intervention of the patient, reduce the mental burden on their families, and reduce the economical burden. Furthermore, it is possible to provide appropriate treatment for the patient of Dravet syndrome; this hence reduces medical fees.

[0190] 2. Kit According to the Present Invention

[0191] The present invention also encompasses a kit for assessing the potential for development of Dravet syndrome, with use of the assessment method according to the present invention (hereinafter, also referred simply as "kit according to the present invention").

[0192] The kit according to the present invention is not limited in its specific configuration in particular as long as it includes at least a reagent for detecting the presence of mutation on α -subunit type 1 of the voltage-gated sodium ion channel Na_{ν}1.1 and a reagent for detecting the presence of mutation on α -subunit type 1 of the voltage-gated calcium ion channel Ca_{ν}2.1.

[0193] As described in "1. Assessment method according to the present invention", ways considered to detect the presence of mutation for both of α -subunit type 1 of the voltagegated sodium ion channel Na $_{\nu}$ 1.1 and α -subunit type 1 of the voltage-gated calcium ion channel Ca $_{\nu}$ 2.1 are (A) detecting a gene mutation with use of a genomic DNA included in a sample taken from a subject, or (B) detecting a gene mutation with use of mRNA (cDNA) included in a sample taken from the subject.

[0194] Hence, in order to detect a mutation using a genomic DNA included in the sample taken from the subject or mRNA (cDNA) included in the sample taken from the subject, the kit according to the present invention includes a polynucleotide being used for determining a mutation on α -subunit type 1 of voltage-gated sodium ion channel Na_{ν}1.1; and a polynucleotide being used for determining a mutation on α -subunit type 1 of voltage-gated calcium ion channel Ca_{ν}2.1. Such polynucleotides can be used as, for example, a primer pair or a probe. These polynucleotides may be included solely or may be included as a combination of a plurality thereof.

[0195] The kit according to the present invention encompasses (A) a kit for detecting a mutation with use of a genomic DNA included in a sample taken from a subject and (B) a kit for detecting a mutation with use of a mRNA (cDNA) included in a sample taken from a subject. The following specifically describes the reagents included in the embodiments of the kits in (A) or (B).

[0196] (A) Kit for detecting mutation with use of genomic DNA included in sample taken from subject

[0197] For example, a configuration of the sodium ion channel $\alpha 1$ subunit and the calcium ion channel $\alpha 1$ subunit may include a primer pair designed so as to allow amplification of the genomic DNA of each of the genes or a part of its region, or may include a probe designed so that one of genomic DNA of its mutant type or wild-type can be specifically detected. These polynucleotides are as described in the foregoing (A) Embodiment using genomic DNA in "1. Assessment method according to the present invention", so hence its description has been omitted here.

[0198] Furthermore, such a kit may be configured to include, in addition to the primer pair or probe, a combination of one or more reagent necessary for detecting the presence of the mutation on the gene, such as a reagent used in PCR, Southern blotting, and nucleic acid sequencing.

[0199] The reagent is selected and employed as appropriate in accordance with the detection method of the present invention, and examples thereof are dATP, dCTP, dTTP, dGTP, DNA polymerase and the like. Furthermore, the kit according to the present invention may include a suitable buffer solution and a washing solution that can be used in the PCR, Southern blotting, and nucleic acid sequencing.

[0200] (B) Kit detecting mutation with use of mRNA (cDNA) included in sample taken from subject For example, a configuration of the sodium ion channel $\alpha 1$ subunit and the calcium ion channel $\alpha 1$ subunit may include a primer pair designed so as to allow amplification of the cDNA of each of the genes or a part of its region, or include a probe designed so that one of mRNA of its mutant type or wild-type can be specifically detected. These polynucleotides are as described in (B) Embodiment using mRNA (cDNA) in "1. Assessment method according to the present invention", so hence its description has been omitted here.

[0201] Furthermore, such a kit may be configured to include, in addition to the primer pair or probe, a combination of one or more reagent necessary for detecting the presence of a mutation on the gene, such as a reagent used in RT-PCR, Northern blotting, nucleic acid sequencing or the like.

[0202] The reagent is selected and employed as appropriate in accordance with the detection method of the present invention, and examples thereof are dATP, dCTP, dTTP, dGTP, DNA polymerase and the like. Furthermore, the kit according to the present invention may include a suitable buffer solution and a washing solution that can be used in RT-PCR, Northern blotting, and nucleic acid sequencing.

[0203] The kit according to the present invention may include the exemplified configuration in any combination. Furthermore, the kit may include other reagents other than the reagents exemplified above.

[0204] As described in the item "1. Assessment method according to the present invention", in order to detect the presence of mutation for both the sodium ion channel a 1 subunit and the calcium ion channel α 1 subunit, it is further considerable to (C) detect the mutation with use of a protein included in the sample taken from a subject.

[0205] Therefore, the kit according to the present invention may include, for example, an antibody that specifically bonds to just the wild-type or mutant protein among the proteins of the sodium ion channel α 1 subunit and the calcium ion channel α 1 subunit. Furthermore, the configuration may be

one which, in addition to the antibody, includes one or more reagent in combination, which reagent is used for ELISA or Western blotting.

[0206] Furthermore, the kit according to the present invention may include a reagent used for measuring activity of the voltage-gated sodium ion channel $Na_{\nu}1.1$, a reagent used for measuring activity of the voltage-gated calcium ion channel $Ca_{\nu}2.1$, or the like.

[0207] With use of the kit according to the present invention as described above, it is possible to easily obtain data for assessing the potential for development of Dravet syndrome in the subject. A subject to which the kit may be applied is not particularly limited, however is preferably applied to infants or children.

[0208] 3. Model Animal of Dravet Syndrome According to the Present Invention and its Production Method

[0209] The present invention encompasses a model animal of Dravet syndrome, and its production method.

[0210] (3-1. Model Animal of Dravet Syndrome According to the Present Invention)

[0211] The model animal of Dravet syndrome according to the present invention has a mutation on both the sodium ion channel α 1 subunit and the calcium ion channel α 1 subunit. The mutation on the sodium ion channel α 1 subunit and the mutation on the calcium ion channel α 1 subunit are as described in the item "1. Assessment method according to the present invention" described above, so therefore specific descriptions thereof are omitted here.

[0212] It is preferable in the model animal of the Dravet syndrome that both the activity of the voltage-gated sodium ion channel Na_v1.1 and the activity of the voltage-gated calcium ion channel Ca_v2.1 are changed as compared to a wildtype animal. This change in activity is not particularly limited, and may be an increase of activity or may be a decrease in activity. The method of confirming whether or not an activity of the voltage-gated sodium ion channel Na_V1.1 of the model animal of Dravet syndrome according to the present invention is changed from that of a wild-type, and the method of confirming whether or not an activity of the voltage-gated calcium ion channel Ca_v2.1 of the model animal of Dravet syndrome according to the present invention is changed from that of a wild-type, are both not particularly limited. For example, with an individual of a model animal of Dravet syndrome according to the present invention or cells collected from the model animal of Dravet syndrome according to the present invention, confirmation may be made by measuring the activity by use of the conventionally known patch clamping, slice patching, imaging with use of fluorescence probe and like method.

[0213] The model animal of Dravet syndrome according to the present invention has the mutation on both the sodium ion channel α 1 subunit and the calcium ion channel α 1 subunit, so therefore develops Dravet syndrome. Such a model animal of Dravet syndrome can be used advantageously for clarification of the development mechanism of the intractable Dravet syndrome, and for development of medicament for Dravet syndrome.

[0214] In the present specification, "model animal" denotes an experiment animal used for developing a prevention method or treatment against human diseases, and more specifically is a non-human mammal such as a mouse, rat, rabbit, monkey, goat, pig, sheep, cow, or dog, and other vertebrates.

[0215] (3-2. Production Method of Model Animal of Dravet Syndrome According to the Present Invention)

[0216] A method of producing a model animal of Dravet syndrome, according to the present invention, includes: introducing a mutation on sodium ion channel α 1 subunit and introducing a mutation on calcium ion channel α 1 subunit.

[0217] More specifically, a mutation can be introduced on each of the genes by manipulating the gene of the model animal. Here, the "manipulating the gene of the model animal" intends to mean manipulation of a gene of a model animal by use of a conventionally known gene manipulation technique. More specifically, this encompasses all of destruction of a gene of the model animal, an introduction of a mutation to that gene, a substitution of that gene with a mutant gene, and furthermore, introduction of a foreign gene into the model animal, and crossing of model animals.

[0218] The production method according to the present invention of the model animal of Dravet syndrome may include steps other than those described above. Specific steps, materials, conditions, used devices, used equipment and the like are not limited in particular.

[0219] With the production method according to the present invention of a model animal of Dravet syndrome, it is possible to produce a model animal developed in Dravet syndrome by manipulating genes of a model animal so that a mutation is introduced into the genes of the sodium ion channel a 1 subunit and the calcium ion channel α 1 subunit.

[0220] 4. Cells According to the Present Invention and its Production Method

[0221] The present invention also encompasses cells having a mutation on both the sodium ion channel α 1 subunit and the calcium ion channel α 1 subunit, and its production method.

[0222] (4-1. Cell According to the Present Invention)

[0223] The cell according to the present invention is a cell having a mutation on both the sodium ion channel α 1 subunit and the calcium ion channel α 1 subunit. The mutation on the sodium ion channel α 1 subunit and the mutation on the calcium ion channel α 1 subunit are as described in the item "1. Assessment method according to the present invention" described above, so therefore specific description thereof have been omitted here.

[0224] The cell according to the present invention intends to mean experimental culture cells having a mutation on both the sodium ion channel α 1 subunit and the calcium ion channel α 1 subunit. More specifically, the cell is an experimental culture cell derived from a mammal such as a human, mouse, rat, hamster, rabbit, monkey and the like, and other vertebrates.

[0225] It is preferable that with such a cell, both of activity of the voltage-gated sodium ion channel $\mathrm{Na}_{\nu}1.1$ and activity of the voltage-gated calcium ion channel $\mathrm{Ca}_{\nu}2.1$ are changed. This change in activity is not particularly limited, and may be an increase of activity or a decrease in activity. The method of confirming whether or not the activity of the voltage-gated sodium ion channel $\mathrm{Na}_{\nu}1.1$ of the cell according to the present invention is changed from that of a wild-type, and a method of confirming whether or not the activity of both of the voltage-gated calcium ion channel $\mathrm{Ca}_{\nu}2.1$ of the cell according to the present invention is changed from that of the wild-type are as described in "1. Assessment method according to the present invention" described above, so hence specific description thereof have been omitted here.

[0226] Such a cell can be used for clarification of a development mechanism of the intractable Dravet syndrome, and for the development in medicament for Dravet syndrome. For example, it is possible to suitably use this for screening of a drug for treating Dravet syndrome. Namely, this cell can also be said as a screening cell for a drug for treating Dravet syndrome. Accordingly, the present invention also encompasses a screening cell of a drug for treating Dravet syndrome (hereinafter, simply called "screening cell"), and its production method

[0227] (4-2. Production Method of Cell According to Present Invention)

[0228] A method of producing a cell according to the present invention is a method of producing a cell that has the foregoing properties, and includes: introducing a mutation on a sodium ion channel α 1 subunit; and introducing a mutation on a calcium ion channel α 1 subunit. More specifically, the following three embodiments can be raised. The following three embodiments are described specifically below, however the present invention is not limited to these.

[0229] (1) Method of Using Expression Vector Etc.

[0230] This method produces a cell that expresses a mutant voltage-gated sodium ion channel Na $_{\nu}1.1$ and mutant voltage-gated calcium ion channel Ca $_{\nu}2.1$, with use of an expression vector or the like. More specifically described, in order to make a cell express the mutant voltage-gated sodium ion channel Na $_{\nu}1.1$, for example, a sodium ion channel a 1 subunit gene having a mutation that causes a change in an amino acid is coexpressed, in a culture cell that serves as a host, with a wild-type gene (β_1 subunit gene and β_2 subunit gene) making up the voltage-gated sodium ion channel Na $_{\nu}1.1$, which wild-type gene encodes a subunit other than the $\alpha1$ subunit (β_1 subunit and β_2 subunit), with use of an expression vector or the like. This enables the cell to express the mutant voltage-gated sodium ion channel Na $_{\nu}1.1$ that includes the mutant sodium ion channel α 1 subunit.

[0231] Similarly, in order to make the cell express the mutant voltage-gated calcium ion channel $Ca_{\nu}2.1$, for example, a calcium ion channel α 1 subunit gene having a mutation that causes a change in an amino acid is coexpressed, in a culture cell that serves as a host, with a wild-type gene (β subunit gene, γ subunit gene, and $\alpha 2\delta$ subunit gene) making up a voltage-gated calcium ion channel $Ca_{\nu}2.1$, which wild-type gene encodes a subunit other than the α 1 subunit (β subunit, γ subunit, and $\alpha 2\delta$ subunit), with the expression vector or the like. This hence enables the cell to express a mutant voltage-gated calcium ion channel $Ca_{\nu}2.1$ that includes the mutant calcium ion channel α 1 subunit.

[0232] At this time, it is preferable that the culture cell serving as a host is a cell from which no voltage-gated sodium ion channel $Na_{\nu}1.1$ and the voltage-gated calcium ion channel $Ca_{\nu}2.1$ is expressed. With use of such a cell, no effect is caused by the residing voltage-gated sodium ion channel $Na_{\nu}1.1$ and residing voltage-gated calcium ion channel $Ca_{\nu}2.1$

[0233] (2) Method of Using Artificial Mutation Introduction

[0234] This method introduces mutation for both of the sodium ion channel α 1 subunit and the calcium ion channel a 1 in a culture cell expressing both the voltage-gated sodium ion channel Na_V1.1 and the voltage-gated calcium ion channel Ca_V2.1.

[0235] The method of introducing the mutation on the culture cell is not particularly limited, and a conventionally known gene manipulation technique is used in combination as appropriate.

[0236] (3) Method of Using Model Animal of Dravet Syndrome According to the Present Invention

[0237] This method extracts a tissue from the model animal of Dravet syndrome according to the present invention as described above, and prepares a culture cell from that tissue. The model animal of Dravet syndrome according to the present invention is as described in "3. Model animal of Dravet syndrome according to the present invention and its production method", and so therefore specific description thereof has been omitted here. Of course, the "tissue" that is extracted is intended to mean a tissue in which both the sodium ion channel α 1 subunit on which a mutation is introduced and the calcium ion channel α 1 subunit on which a mutation is introduced are expressed.

[0238] This hence allows for easy production of a cell that has a mutation on both the sodium ion channel α 1 subunit and the calcium ion channel α 1 subunit. The kinds of tissues extracted from the model animal of Dravet syndrome is not limited in particular, and may be selected as appropriate depending on its purpose.

[0239] The method according to the present invention of producing a cell may include steps other than the steps described above. Specific steps, materials, conditions, used devices, used equipment and the like are not limited in particular.

[0240] 5. Screening Method of Drug for Treating Dravet Syndrome

[0241] The model animal of Dravet syndrome according to the present invention and the cell according to the present invention can be used in development of a new treatment method and drug for treating Dravet syndrome. Hence, the present invention encompasses a screening method of a drug for treating Dravet syndrome, which screens a drug for treating Dravet syndrome (hereinafter, also called "screening method according to the present invention").

[0242] In the specification, an embodiment using a model animal of Dravet syndrome according to the present invention and an embodiment using a screening cell have been explained as embodiments of the screening method according to the present application. However, the present invention is not limited to these embodiments.

[0243] Namely, for example, the embodiment may use another model animal of Dravet syndrome instead of the model animal of Dravet syndrome according to the present invention.

[0244] (1) Case of using model animal of Dravet syndrome according to the present invention

[0245] The method is sufficient as long as it includes administering a candidate agent to the model animal of Dravet syndrome according to the present invention, and assessing whether or not Dravet syndrome shows improvement or is cured in the model animal of Dravet syndrome to which the candidate agent is administered.

[0246] Namely, according to the screening method of the drug for treating Dravet syndrome according to the present invention, a candidate agent is administered to the model animal of Dravet syndrome, to assess whether or not that candidate agent can serve as a drug for treating Dravet syndrome in the model animal of Dravet syndrome to which the candidate agent is administered, by having the improvement or curing of Dravet syndrome serve as an indicator.

[0247] The method of assessing whether or not Dravet syndrome is improved or cured in the model animal of Dravet syndrome to which the candidate agent is administered is not limited in particular, and is sufficiently assessed by use of characteristic symptoms of Dravet syndrome as indicators. For example, it is possible to determine whether Dravet syndrome is improved or cured by comparing a control animal not having a mutation that causes an amino acid change on the sodium ion channel al subunit gene and the calcium ion channel α 1 subunit gene (i.e. an animal not having a mutation on both of α -subunit type 1 of voltage-gated sodium ion channel Na_ν1.1 and α-subunit type 1 of voltage-gated calcium ion channel $Ca_{\nu}2.1$) with the model animal of Dravet syndrome according to the present invention, in terms of "body temperature at convulsion onset (convulsion threshold)", "severity score", "duration of convulsion", and the like each shown in the Examples later described.

[0248] The candidate agent is not limited in particular, however it is preferable that it is a compound expectable of giving effect on the expression of voltage-gated sodium ion channel $Na_{\nu}1.1$ and/or expression of voltage-gated calcium ion channel $Ca_{\nu}2.1$, or a compound expectable of giving effect on the activity of the voltage-gated sodium ion channel $Na_{\nu}1.1$ and/or the activity of voltage-gated calcium ion channel $Ca_{\nu}2.1$ (e.g. an inhibitor or candidate substance of an inhibitor, or an agonist or a candidate substance of an agonist, each of which has effect on both the voltage-gated sodium ion channel $Na_{\nu}1.1$ and the voltage-gated calcium ion channel $Ca_{\nu}2.1$).

[0249] Moreover, the candidate agent may be an expression plasmid vector or a virus vector that includes a polynucleotide made of a sodium ion channel α 1 subunit gene or a part of its nucleotide sequence. Moreover, the candidate agent may be an expression plasmid vector or a virus vector that includes a polynucleotide made of the calcium ion channel α 1 subunit gene or a part of its nucleotide sequence.

[0250] The method of administering such a candidate agent to the Dravet syndrome model animal according to the present invention is not limited in particular, and a suitable method is sufficiently selected from conventionally known methods in accordance with physical properties of that candidate agent.

[0251] (2) Case of Using Screening Cell According to the Present Invention

[0252] The method at least includes administering a candidate agent to a screening cell according to the present invention, and assessing whether or not activity of voltage-gated sodium ion channel $\mathrm{Na}_{\nu}1.1$ and/or activity of voltage-gated calcium ion channel $\mathrm{Ca}_{\nu}2.1$ in the screening cell of a drug for treating Dravet syndrome to which the candidate agent was administered, is changed.

[0253] Namely, with the screening method according to the present embodiment, it is possible to assess whether a candidate agent can serve as a drug for treating Dravet syndrome, by administering the candidate agent to the screening cell according to the present invention, based on an indicator of whether the activity of the voltage-gated sodium ion channel $Na_{\nu}1.1$ and/or the activity of the voltage-gated calcium ion channel $Ca_{\nu}2.1$ in the screening cell to which the candidate agent is administered, is changed.

[0254] Moreover, the method of assessing, in the screening cell to which the candidate agent is administered, whether or not the activity of the voltage-gated sodium ion channel $\mathrm{Na}_{\nu}1.1$ is changed and whether or not the activity of the

voltage-gated calcium ion channel $\text{Ca}_{\nu}2.1$ is changed are not limited in particular, and the assessments are sufficiently carried out by use of an electrophysiologic measurement device, fluorescence observation device, or the like.

[0255] The candidate agent is not limited in particular, and similar substances as those described in the foregoing "(1) Case of using model animal of Dravet syndrome according to the present invention" may be used.

[0256] The method of administering such a candidate agent to a cell according to the present invention is not limited in particular, and a suitable method based on the physical properties and the like of that candidate agent is selected and used from conventionally known methods.

[0257] It is preferable in the assessment method according to the present invention that the mutation on α -subunit type 1 of the voltage-gated sodium ion channel Na_{ν}1.1 is at least one of a mutation shown in Table 1, and

[0258] the mutation on α -subunit type 1 of the voltage-gated calcium ion channel Ca $_{\nu}2.1$ is at least one of a mutation shown in Table 2.

[0259] It is preferable in the assessment method according to the present invention to further include:

[0260] detecting a change in activity of the voltage-gated sodium ion channel $Na_{\nu}1.1$; and

[0261] detecting a change in activity of the voltage-gated calcium ion channel Ca_v2.1.

[0262] The present invention is not limited to the description of the embodiments above, but may be altered by a skilled person within the scope of the claims. An embodiment based on a proper combination of technical means disclosed in different embodiments is encompassed in the technical scope of the present invention.

EXAMPLES

[0263] The following describes more specifically of the present invention with use of Examples, however the present invention is not limited to the Examples.

Example 1

Identification of Risk Factors for Predicting Development of Dravet Syndrome

[0264] DNA were extracted from peripheral blood of 47 Dravet syndrome patients who visited Okayama University Hospital and/or its related hospitals, and mutations on various genes were analyzed. This study was performed upon receiving approval from Okayama University, Institutional Review Board of Human Genome and Gene Analysis Research.

[0265] More specifically, a genomic DNA was extracted from peripheral blood of a patient with use of a DNA extraction kit (WB kit; Nippon gene, Tokyo, Japan), and all exons were amplified by PCR. In PCR, a reaction solution of 25 μl was used, which includes 50 ng of human genomic DNA, 20 μmol of various primers, 0.8 mM of dNTPs, 1 reaction buffer, 1.5 mM of MgCl₂, and 0.7 units of AmpliTaq Gold DNA polymerase (Applied Biosystems, Foster City, Calif., USA). As to the nucleotide sequence (SEQ ID NOs.: 9-62) of the primer pair used, see "Sequence of primers" described later. [0266] An obtained PCR product was purified with use of PCR products pre-sequencing kit (Amersham Biosciences, Little Chalfont, Buckinghamshire, England). Subsequently, with use of Big Dye Terminator FS ready-reaction kit (Ap-

plied Biosystems), a sequence reaction was performed, and

with use of a fluorescence sequencer (ABI PRISM3100 sequencer; Applied Biosystems), a nucleotide sequence of the obtained PCR product was determined.

[0267] First, mutation analysis was performed of SCN1A gene that encodes α -subunit type 1 (also called "\$\alpha\$1 subunit") making up the voltage-gated sodium ion channel Na\$_\text{1.1}\$, for the 47 Dravet syndrome patients. As a result, a mutation in the SCN1A gene was found in 38 patients out of the 47 Dravet syndrome patients. For the 9 patients in which no mutation was detected, a further analysis was performed on the number of gene copies of the SCN1A gene, with use of Multiplex Ligation-dependent Probe Amplification (MLPA; MRC-Holland; SALSA MLPA kit P137). As a result, a deletion of exon 10 was detected in 1 patient. The number of patients in which no mutation of the SCN1A gene was found was 8. The mutation detected in the SCN1A gene is as shown in Table 1.

[0268] Next, with use of the DNA of the 47 patients, gene analysis was performed for GABRG2 gene, CACNA1A gene, CACNB4 gene, SCN1B gene, and SCN3A gene. These genes encode proteins as follows:

[0269] GABRG2: GABAA receptor γ2 subunit gene

[0270] CACNA1A: α 1 subunit of voltage-gated calcium ion channel Ca $_{\nu}$ 2.1

[0271] CACNB4: $\beta4$ subunit of voltage-gated calcium ion channel

[0272] SCN1B: β 1 subunit of voltage-gated sodium ion channel

[0273] SCN3A: α 3 subunit of voltage-gated sodium ion channel Na $_{\nu}$ 1.3

[0274] The nucleotide sequence (SEQ ID NOs.: 63-143) of the primer pair used for the gene analysis of the CACNA1A gene is shown in "Sequence of primers" described later.

[0275] As a result, various kinds of gene mutations were found in the CACNA1A gene that encodes α -subunit type 1 (also called " α 1 subunit") making up the voltage-gated calcium ion channel Ca_v2.1 (see Table 2 and FIG. 12).

[0276] Table 3 shows the gene mutations of SCN1A and CACNA1A that were detected in the Dravet syndrome patients.

TABLE 3

SC	CN1A and CACNA1A	gene mutations of patients	letected in	Dravet syn	idrome
P. No.	SCN1A gene		CACNA1A	gene	
1	G177R	G266S			
2	W738fsX746	K472R			
3	V1390M	A924G			
4	V212A	E921D	E996V		
5	R377L	E921D	E996V		
6	Deletion of exon 10	E921D	E996V		
	(Exon10*)				
7	P707fsX714	E921D	E996V		
8	R865X	E921D	E996V		
9	F902C	E921D	E996V		
10	T1082fsX1086	E921D	E996V		
11	Q1277X	E921D	E996V		
12	Q1450R	E921D	E996V		
13	A1685D	E921D	E996V		
14	T1909I	E921D	E996V	R1126H	R2201Q
15	G163E	R1126H	R2201Q		
16	K547fsX570	R1126H	R2201Q		
17	S1574X	R1126H	R2201Q		
18	R712X	G1108S			
19	R1648C	G1108S			
20	negative	G1108S			
21	negative	Del2202-2205			
22	R501fsX543	negative			

TABLE 3-continued

SCN1A and CACNA1A gene mutations detected in Dravet syndrome patients

P. No.	SCN1A gene	CACNA1A gene
23	S607fsX622	negative
24	E788K	negative
25	R931C	negative
26	R931C	negative
27	L990F	negative
28	A1002fsX1009	negative
29	K1027X	negative
30	K1057fsX1073	negative
31	L1265P	negative
32	W1271X	negative
33	1289delF	negative
34	Intron 21 splicing	negative
	error	
35	A1429fsX1443	negative
36	W1434R	negative
37	T1539R	negative
38	S1574X	negative
39	G1674R	negative
40	A1662V	negative
41	G1880fsX1881	negative
42	negative	negative
43	negative	negative
44	negative	negative
45	negative	negative
46	negative	negative
47	negative	negative

P. No. Patient Number

Exon10* exon deletion detected by MPLA

[0277] The following mutations are mutations of the CACNA1A gene detected this time. These mutations were mutations that cause an amino acid substitution, mutations that cause no amino acid substitution, and intron mutations.

(1) Missense Mutations

[0278]

G266S	1 case
K472R	1 case
E921D	11 cases
A924G	1 case
E996V	11 cases
G1108S	3 cases
R1126H	4 cases
R2201Q	4 cases

(2) Deletion of Amino Acids

[0279] 4 amino acid deletions (deletion 2202-2205) 1 case (3) Gene Mutation Causing No Amino Acid Change in Exon E292E (rs16006), E394E (rs2248069), 15251 (rs16010), T698T (rs16016), R1023R (rs16025), F1291F (rs16030), T1458T (new SNP or mutation), S1472S (new SNP or mutation), V1890V (rs17846921), H2225H (rs16051)

(4) Gene Mutation in Intron

[0280] exon 1 upstream (rs16000), intron 1 (rs16003), intron 3 (rs17846942), intron 8 (rs2306348), intron 11 (rs10407951), intron 17 (rs16018), intron 39 (rs3816027), intron 40 (rs17846925), intron 42 (new SNP or mutation).

[0281] The missense mutations and deletion mutations detected in coding regions of the CACNA1A gene shown in the foregoing (1), and (2) are shown in Table 4.

TABLE 4

Sumn	nary of mutatio	ns detected in codin Coding Regio		CNA1A gene
	Exon No.	Amino acid	Mutation type	SNP Reg. No.
1	Exon 6	G266S	Missense	_
2	Exon 11	K472R	Missense	_
3	Exon 19	E921D	Missense	rs16022
4	Exon 19	A924G	Missense	_
5	Exon 19	E996V	Missense	rs16023
6	Exon 20	G1108S	Missense	rs16027
7	Exon 20	R1126H	Missense	_
8	Exon 47	R2201Q	Missense	_
9	Exon 47	Del 2202-2205	Deletion	_

SNP Reg. No.: Single Nucleotide Polymorphism Registration Number

[0282] These mutations were compared and studied with a gene polymorphism (Single Nucleotide Polymorphism; SNP) database of NCBI (National Center for Biotechnology Information). As a result, it was found that 3 kinds of the mutations out of the 9 kinds of mutations were registered in the SNP database as gene polymorphism (Single Nucleotide Polymorphism; SNP).

[0283] The gene mutation shown in (3) and (4) were either a gene polymorphism registered in the SNP database, or a new gene polymorphism or mutation. The registered number in the SNP database is shown in the brackets.

[0284] Out of the SNP already reported, the mutations which caused a change in the amino acid were considered probably that although no seizure occurs just by that individual case having the CACNA1A gene SNP, but when an abnormality of SCN1A gene is simultaneously present, this is somewhat involved in the worsening of the symptom.

[0285] A comparison of patients having a mutation in either of the SCN1A gene and the CACNA1A gene or both of the SCN1A gene and CACNA1A gene, out of the 47 Dravet syndrome patients, resulted as follows.

[0286] Patients having a mutation on both SCN1A and CACNA1A: 19 cases

[0287] Patients having a mutation on just SCN1A: 20 cases [0288] Patients having a mutation on just CACNA1A: 2 cases

[0289] Patients having no mutation on either of SCN1A or CACNA1A: 6 cases.

[0290] No reports whatsoever have been made regarding abnormalities in the CACNA1A gene of the patients of Dravet syndrome, until now. The result of the present study shows that Dravet syndrome patients highly frequently has a mutation in SCN1A, i.e. a α 1 subunit gene of the voltage-gated sodium ion channel Na $_{\nu}$ 1.1, and in CACNA1A, i.e. a α 1 subunit gene of the voltage-gated calcium ion channel Ca $_{\nu}$ 2.1.

[0291] A literature disclosing that a mutation on a $\beta 4$ subunit of the voltage-gated calcium ion channel $Ca_{\nu}2.1$ (hereinafter, simply referred to as "calcium ion channel $\beta 4$ subunit") is involved with Dravet syndrome (Iori Ohmori et al., Neurobiology of Disease 32 (2008) 349-354) describes that out of 38 patients in which a mutation was detected in the sodium ion channel $\alpha 1$ subunit, 1 Dravet syndrome patient had a mutation on both the sodium ion channel $\alpha 1$ subunit and the calcium ion channel $\beta 4$ subunit.

[0292] In comparison, out of 39 patients in which a mutation was detected on the sodium ion channel α 1 subunit, the patients of Dravet syndrome having a mutation on both the sodium ion channel α 1 subunit and the calcium ion channel α 1 subunit were 19 patients (6 patients when excluding patients having registered SNP that cause a change in an amino acid in an exon). This result shows that by detecting the mutation for both the sodium ion channel α 1 subunit and the calcium ion channel α 1 subunit, the detection sensitivity of Dravet syndrome patients dramatically increase as compared to detecting the mutation for both the sodium ion channel a 1 subunit and the calcium ion channel α 4 subunit.

[0293] In the present specification, a nucleotide number in mRNA of the SCN1A gene and an amino acid number in a protein of SCN1A were made to be in line with GenBank accession No. AB093548; methionine, encoded by the initiation codon (ATG), was numbered as the first amino acid, and the initial A of the initiation codon was numbered as the first nucleotide.

[0294] Moreover, a genome sequence of the CACNA1A gene was in line with the GenBank accession number NC_000019. The number of the nucleotide in mRNA of CACNA1A gene and the number of the amino acid in CACNA1A protein was made to be in line with the GenBank accession number NM 023035; methionine, encoded by the initiation codon (ATG), was numbered as the primacy amino acid, and the initial A of the initiation codon was numbered as the primacy nucleotide.

Example 2

Study of Gene Mutation in Benign Febrile Seizure Patient

[0295] A study was performed of a SCN1A gene and CACNA1A gene abnormality in a benign febrile seizure patient. DNA was extracted from peripheral blood of 50 patients of benign generalized epilepsy with febrile seizure plus (GEFS+), who visited Okayama University Hospital and/or its related hospitals, and mutations on various genes were analyzed. The DNA extraction, PCR amplification of the gene, and sequencing reactions were performed by the methods described above.

[0296] First, mutation analysis of voltage-gated sodium ion channel SCN1A gene was performed, which resulted in detecting gene mutation that caused amino acid changes in 6 patients. Next, mutation analysis was performed for 9 kinds of mutations of missense mutations and deletion mutations that were detected in the coding region of the CACNA1A gene, which resulted in detecting a mutation in 16 patients. Each of the mutations are shown in Table 5.

TABLE 5

SCN1A and CACNA1A gene mutations detected in benion febrile seizure

SCINIA and CACIN	SCNTA and CACNATA gene indiations detected in benign feorme seizure							
Patient No.	SCN1A	CACN	JA1A					
1								
2	M1856T							
3		del 2202-2205						
4								
5		del 2202-2205						
6	R1575C							
7		E921D	E996V					
8		E921D	E996V					
9		E921D	E996V					

TABLE 5-continued

SCN1A and CACN.	A1A gene mutat	ions detected in ben	ign febrile seizure
Patient No.	SCN1A	CAC	NA1A
10			
11	74.64.677		
12	I1616T		
13 14			
15			
16			
17			
18		E921D	E996V
19			
20			
21			
22		E921D	E996V
23		E921D	E996V
24			
25		E021D	E00 CLZ
26 27		E921D	E996V
28		E921D	E996V
28 29		A924G	E990 V
30		E921D	E996V
31		27212	23301
32			
33		E921D	E996V
34		G1108S	
35			
36	I1616T		
37	I1616T		
38			
39	Y1769H	E021D	E00 CL
40 41		E921D	E996V
42			
43			
44			
45			
46			
47			
48		E921D	E996V
49			
50			

[0297] Out of the 50 benign epilepsy patients, it was confirmed that no patient had mutations simultaneously on both SCN1A gene and CACNA1A gene.

[0298] The following shows a result of gene mutation analysis of a total of 97 patients, of 47 malignant Dravet syndrome cases and 50 benign febrile seizure patient cases.
[0299] (1) As a result of screening patients having a mutation on the SCN1A gene among the 97 patients, 39 Dravet syndrome patients (39 cases out of 47 cases) and 6 benign epilepsy patients (6 cases out of 50 cases) were detected.

[0300] (2) As a result of screening patients having a mutation on both the SCN1A gene and CACNA1A gene out of the 97 patients, 19 Dravet syndrome patients (19 cases out of 47) were detected, and no (0) benign epilepsy patients were detected.

[0301] These results suggest that by examining both the SCN1A gene mutation and the CACNA1A gene mutation, it is possible to eliminate the false positive (benign febrile seizure patients) better than examining just the SCN1A gene mutation, and suggest a possibility of detecting the Dravet syndrome patients with higher accuracy.

Example 3

Study of Gene Mutation in a Healthy Person

[0302] To investigate whether the remaining 6 kinds of gene mutations excluding the registered 3 kinds out of the 9 kinds of missense mutations and deletion mutations detected in the coding region of the CACNA1A gene are of the gene polymorphism (SNP), gene mutation of the CACNA1A gene was similarly analyzed for DNA extracted from blood of 190 healthy persons. Results of the 9 kinds of the missense mutations and deletion mutations detected in the coding region of the CACNA1A gene are shown in Table 6. As a result, one kind of the CACNA1A gene mutation (G266S) was not detected from the healthy persons. From this result, it was found that the CACNA1A gene mutation of G266S is not an SNP, and is a novel gene mutation (gene abnormality) not found in the 190 healthy persons, which neither is in the NCBI SNP database.

TABLE 6

	CACNA1A gene mutation detected in healthy persons and Dravet syndrome								
Exon	Nucleotide Substitution	Amino Acid Substitution	Dravet	(n = 47)	Co (n = 1	p-value			
				Frequenc	cy of varia	nts	_		
6	A876G	G266S	1/47	2.1%	0/188	0%	0.20		
11	A1415G	K472R	1/47	2.1%	1/188	0.53%	0.36		
19	A2762C	E921D	11/47	23.4%	49/188	26.06%	0.71		
19	C2771G	A924G	1/47	2.1%	7/190	3.68%	1.00		
19	A2987T	E996V	11/47	23.4%	49/188	26.06%	0.71		
20	G3322A	G1108S	3/47	6.4%	16/189	8.46%	0.77		
20	G3377A	R1126H	4/47*	8.5%	1/188	0.53%	0.0061		
47	G6602A	R2201Q	4/47	8.5%	4/189	2.12%	0.052		
47	6605-6616del	DQER2202-	1/47	2.1%	3/190	1.58%	1.00		
		2205del							
				Free	uency of				
					ed mutation	ns			
							-		
19		E921D + E996V	11/47	23.4%	49/188	26.06%	0.71		
20 + 47		R1126H + R2201Q	4/47*	8.50%	0/188	0%	0.0014		

[0303] As a result of studying the comparison of frequencies in which mutations occur in healthy persons and Dravet syndrome patients, it was shown that the CACNA1A gene mutation R1126H was of a larger number with Dravet syndrome in terms of statistical significance (p=0.0061), and it was found that the CACNA1A gene mutation R2201Q also had a trend having a larger number with Dravet syndrome patients (p=0.052). The patients simultaneously having both mutations of R1126H and R2201Q on the CACNA1A gene were detected significantly in just the Dravet syndrome patients (4 cases out of 47 cases), and no healthy persons were detected (p=0.0014). Examination of DNA of the parents of these four patients revealed that the two mutations of R1126H and R2201Q were simultaneously present on one chromosome, i.e. within the same CACNA1A protein molecule, and that this double mutation was inherited from the parents.

Example 4

Study of Relation Between Genotype and Symptoms

[0304] A study was performed on how the 9 kinds of missense mutations and deletion mutations detected in the coding region of CACNA1A gene give effect on the worsening of symptoms of the disease. Out of Dravet syndrome patients whose seizure symptom data is managed in detail, the seizure symptoms under the age of 1 were compared between 20 patients who have just the SCN1A gene mutation and 19 patients who have a mutation on both the SCN1A gene and the CACNA1A gene. A result thereof is shown in Table 7. Note that "GTC" in Table 7 is an abbreviation of a generalized tonic-clonic seizure, and "CPS" is an abbreviation of a complex partial seizure.

Example 5

Analysis on Functions of Mutant Voltage-Gated Calcium Ion Channel

[0306] An analysis was performed on functions of a mutant calcium ion channel and a normal (wild-type) calcium ion channel, with use of culture cells. First, cDNA of a human CACNA1A gene (SEQ ID NO.: 4) was used to prepare an expression vector having a mutant CACNA1A (double mutation of G266S; R1126H; R2201Q; deletion 2202-2205; double mutation of R1126H and R2201Q) gene. After obtaining DNA fragments including the mutated parts by PCR, regions of a normal cDNA corresponding to those fragments were substituted with those fragments, to prepare the mutant cDNA. As a control, an expression vector (pMO14×2-CACNA1A) having a normal (wild-type) CACNA1A gene was used.

[0307] Analysis was performed on functions of the mutant calcium ion channel and the normal calcium ion channel, with use of the culture cells. A α -subunit type 1 of the voltagegated calcium ion channel $Ca_{\nu}2.1$, which is a CACNA1A gene product, had been subjected to function adjustment by the $\alpha2\delta$ subunit and $\beta4$ subunit that similarly configure the voltage-gated calcium ion channel $Ca_{\nu}2.1$. Hence, an expression vector having a CACNA1A gene that encodes a α -subunit type 1, and an expression vector having a human CACNB4 gene (GenBank accession No. U95020) (SEQ ID NO.: 151) encoding a P4 subunit and a rabbit $\alpha2\delta$ gene (GenBank accession No. NM_001082276) (SEQ ID NO.: 152) encoding a $\alpha2\delta$ subunit. were coexpressed on a human

TABLE 7

			-	Total no.	of 1 with genotype Type of Seizures			
Genotype	N	Seizure onset (months)	Total no. of seizures	prolonged (>10 min) seizures	GTC (%)	CPS (%)	Hemi- convulsion (%)	Myoclonic seizure (%)
SCN1A mutation + No CACNA1A variants	20	5.6 ± 0.3	10.2 ± 1.2	2.4 ± 0.4	95	45	50	15
SCN1A mutation + CACNA1A variants	19	4.6 ± 0.4*	10.7 ± 1.3	4.4 ± 0.7*	95	26	84*	11

GTC: generalized tonic-clone seizure.

CPS: complex partial seizure

p < 0.05

[0305] It was found that the patients having a CACNA1A variant, as compared to the patients having no CACNA1A variant, are (i) significantly quicker in seizure onset (p=0.049), (ii) significantly greater in the number of times prolonged seizures occur, which prolonged seizure is a convulsion seizure that continues for 10 or more minutes (p=0.019), and (iii) significantly higher in the frequency that a hemiconvulsion occurs (p=0.041). This indicates that when there is a variation of the CACNA1A gene including the polymorphism in addition to a SCN1A gene abnormality, there is a possibility that the symptom may worsen.

renal cell HEK293 with use of a transfection reagent. Electrophysiologic properties were studied by patch clamping of a whole cell record.

[0308] More specifically, recording of a calcium ion channel current was carried out at room temperature of 22° C. to 24° C., 72 hours after transfection. With use of a multistage P-97 Flaming-Brown micropipette puller, a patch electrode was prepared from borosilicate glass.

[0309] The composition of intracellular fluid was 110 mM CsOH, 20 mM CsCl, 5 mM MgCl₂, 10 mM EGTA, 5 mM MgATP, 5 mM creatine-phosphate, and 10 mM HEPES. On

the other hand, the composition of the used extracellular fluid was 5 mM BaCl, **150** mM TEA-Cl, 10 mM glucose, and 10 mM HEPES. The amplifier used was Axopatch200B (Axon Instruments).

[0310] Electrophysiologic properties of the mutation channel were compared with those of a normal channel, by studying voltage-gated channel activation, inactivation, recovery from inactivation, and duration current. The activation curve and the inactivation curve were analyzed by Boltzmann function, to find a half-maximal activation/inactivation ($V_{1/2}$) and a slope factor (k). The recovery curve from the inactivation was analyzed by a two exponential function. Statistics used the unpaired Student's t test. Clampfit 8.2 software and OriginPro 7.0 (OriginLab) were used for data analysis.

[0311] FIG. 13 and FIG. 14 are views illustrating results of performing function analysis of the calcium ion channel, by patch clamping. In the graphs in FIG. 13 and FIG. 14, the normal calcium ion channel is shown as "WT", and the mutant calcium ion channels are shown as "R266S", "R1126H", "R2201Q", "De12202", and "RH+RQ". The mutation "De12202" means the mutation "Deletion 2202-2205", and the mutation "RH+RQ" means the mutation "R1126H+R2201Q".

[0312] Illustrated in (a) of FIG. 13 is a barium current record in accordance with a change in potential of the normal calcium ion channel and the mutant calcium ion channel. Illustrated in (b) is a current-voltage relationship, and illustrated in (c) are a peak current value (pA), a total charge (pF), and a peak current density (pA/pF).

[0313] More specifically, (a) of FIG. 13 illustrates a current record of measuring barium current that is depolarized by changing a depolarizing stimulus by 10 mV each from -40 mV to +60 mV and is flowed therein. The current-voltage relationship illustrated in (b) of FIG. 13 is a graph obtained by (i) measuring a flowing barium current for every membrane potential while having a holding potential, being deeper than a resting membrane potential, as -100 mV, and a depolarizing stimulus being changed by 10 mV each from -40 mV to +60 mV, and (ii) plotting the membrane potential on a horizontal axis and a current value on a vertical axis. The view illustrated on the lower right of the graph in (b) of FIG. 13 shows that in this experiment, "the depolarizing stimulus was changed by 10 mV each from -40 mV to +60 mV for 30 ms (milliseconds), with the holding potential being -100 mV, which holding potential is deeper than the resting membrane potential".

[0314] As a result, it was found that the mutant calcium ion channel "Deletion2202-2205" and "R1126H+R2201Q" significantly increased in its flowed current amount, peak current value, and peak current density, as compared to the normal calcium ion channel.

[0315] Next, in order to specifically study the electrophysiologic properties of the calcium ion channel, a voltage-gated activity of the calcium ion channel ((a) of FIG. 14), a time constant (τ) at activation ((b) and (c) of FIG. 14), inactivation of the calcium ion channel ((d) of FIG. 14), and a time constant (τ) at inactivation ((e) FIG. 14) were measured.

[0316] The activation curve illustrated in (a) of FIG. 14 shows a barium current value flowing per membrane potential as a relative value, by having a maximum sodium current value obtained from the graph of (b) of FIG. 13 be 1, and an obtained curve was analyzed by Boltzmann function to find a half-maximal activation ($V_{1/2}$) and a slope factor (k). The view provided on the lower right of the graph in (a) of FIG. 14 represents that, in this experiment, "the depolarizing stimulus

was changed by 10~mV each from -40~mV to +60~mV for 30~ms (milliseconds), with the holding potential being -100~mV, which holding potential is deeper than the resting membrane potential".

[0317] As a result of analyzing the voltage-gated activity of the calcium ion channel, it was found that (i) the mutant calcium ion channel "G266S" and "R1126H" show a significant hyperpolarization shift as compared to the normal channel, and that (ii) the mutant calcium ion channel "R1126H" and "Deletion2202-2205" significantly increased in the voltage-gated property as compared to the normal channel, by comparing the slope factor (k) (see (a) of FIG. 14 and Table 8). This means that the mutant calcium ion channel "G266S", "R1126H" and "Deletion2202-2205" are easily activated even in a low membrane potential, thereby tending to cause excess hyperexcitability of nerve cells.

[0318] Table 8 shows electrophysiologic properties of the calcium ion channel. Statistical comparison of the normal CACNA1A and the mutant CACNA1A were performed by the Student's t test. The asterisk (*) in Table 8 indicates that there is a significant difference between the normal CACNA1A and the mutant CACNA1A when a critical rate is under 5%, and the double asterisk (**) indicates that there is a significant difference between the normal CACNA1A and the mutant CACNA1A when the critical rate is under 1%.

TABLE 8

Electrophysiologic properties of calcium ion channel								
	Activation							
	$V_{1/2}$			Inactivation				
	(mV)	k (mV)	n	$V_{1/2} \left(mV \right)$	k (mV)	n		
WT- CACNA1A	6.3 ± 1.3	4.3 ± 0.2	16	-16.9 ± 1.5	-4.5 ± 0.6	10		
G266S	1.0 ±	4.3 ± 0.4	11	-13.8 ± 1.6	-5.5 ± 0.3	10		
R1126H	0.4 ± 1.6**	$3.3 \pm 0.3*$	10	-18.9 ± 0.6	-6.1 ± 0.7	8		
R2201Q	6.4 ± 1.5	4.1 ± 0.2	8	-13.4 ± 1.7	-5.7 ± 0.4	10		
Deletion2202- 2205	1.3 ±	$3.4 \pm 0.2*$	8	-13.3 ± 1.2	-4.7 ± 0.6	9		
R1126H + R2201Q	2.6 ± 1.1	3.5 ± 0.2	10	-15.2 ± 0.9	-5.4 ± 0.1	10		

 $V_{1/2}$, half-maximal voltage activation and inactivation;

k, slope factor

Statistical coparison between WT-CACNA1A and mutant channels was performed by Student's t test (*P < 0.05 and **P < 0.01 versus WT-CACNA1A).

[0319] Illustrated in (b) of FIG. 14 is a time constant of channel voltage-gated activation, that is to say, a time required for each current to reach 66.7%. Moreover, (c) of FIG. 14 illustrates a time constant of voltage-gated activation at 20 mV. From (b) and (c) of FIG. 14, it was demonstrated that the mutant calcium ion channel "G266S" was significantly small in the time constant of voltage-gated activation at 20 mV, as compared to a normal channel. Since this point is considered as that the mutant calcium ion channel "G2665" is made so as to flow a lot of current within a short depolarization, this means that there is a trend of causing hyperexcitement in the nerve cells.

[0320] Illustrated in (d) of FIG. 14 is a voltage-gated inactivation curve of the calcium ion channel, which was measured upon changing a membrane potential to activate the calcium ion channel and thereafter providing a depolarizing stimulus to measure how much barium current was flown. Note that the view illustrated on the lower left of the graph

illustrated in (d) of FIG. 14 shows that, in this experiment, "the depolarizing stimulus was changed by 20 mV each from $-120~\mathrm{mV}$ to $+60~\mathrm{mV}$ for 2 s (seconds), and subsequently be changed to 20 mV, with the holding potential being $-100~\mathrm{mV}$, which holding potential is deeper than the resting membrane potential".

[0321] The voltage-gated inactivation curve of the calcium ion channel showed no recognizable significant difference, in either of the mutant channel or the normal channel.

[0322] Illustrated in (e) of FIG. 14 is a result of studying an inactivation time constant (τ) . There are two kinds of inactivation: inactivation of a fast component and inactivation of a slow component. The " τ_{fast} " in the left graph of (e) of FIG. 14 is a constant representing a time required until the inactivation of the fast component reaches 33.3%, and the " τ_{slow} " in the right graph is a constant representing a time required until the inactivation of the slow component reaches 33.3%. These inactivation time constants were, more specifically, calculated by analyzing the inactivation curve with use of Clampfit 8.2 software.

[0323] As a result, there was no significant difference in the inactivation time constant between that of the normal calcium ion channel and that of the mutant calcium ion channel. Table 9 shows physiological properties of the mutant calcium ion channel. The arrow pointing upwards (\^) in Table 9 indicates that an increase in channel activity was recognized, and the hyphen "-" indicates that no change was recognized in the channel activity.

TABLE 9

Summary of electrophysiological properties of mutant calcium ion channel

	CACNA1A						
Biophysical property	G266S	R1126H	R2201Q	Del 2202-2205	R1126H + R2201Q		
Peak current density Activation V _{1/2} Activation slop	<u>†</u>		_	<u>†</u>	<u>†</u> †		
Activation time constants	1	_	_	_	_		
Inactivation V _{1/2}	_	_	_	_	_		
Inactivation slope factor	_	_	_	_	_		

^{↑,} predicted gain of channel activity.

[0324] It was found that the mutations other than "R2201Q" in the calcium ion channel were mutations of a gain of function kind, and tends to cause excitement of the nerve cells.

Example 6

Production of Dravet Syndrome Model Rat

[0325] From the foregoing findings, it was considered that having some kind of mutation on both of SCN1A and CACNA1A is important in the development of Dravet syndrome. Accordingly, a rat was produced which has both of the mutation on α 1-subunit gene Scn1a of the voltage-gated sodium ion channel Na_{ν 1.1 and the mutation on α 1-subunit gene Cacna1a of the voltage-gated calcium ion channel Ca $_{\nu}$ 2.1, to study the worsening of symptoms (human genes are represented as SCN1A and CACNA1A, and rat genes are represented as Scn1a and Cacna1a).}

[0326] More specifically, a rat having a mutation on the Scn1a gene (F344-Scn1a^{Kyo811}) and a rat having a mutation on the Cacna1a gene (GRY (groggy rat, Cacna1a^{gry})) were used as parent rats. Each of these mice is described below.

[0327] <F344-Scn1a $^{Kyo811}>$

[0328] A rat produced by ENU mutagenesis, having a missense mutation on a $\alpha 1$ subunit gene (Scn1a) of the voltagegated sodium channel Na $_{\nu} 1.1$. Asparagine (N), which is an amino acid at position 1417, was mutated to histidine (H) (represented as "N1417H"). This rat served as a model animal of human generalized epilepsy febrile seizure plus (GEFS+). Background genealogy is F344/NS1c rat. This rat was provided from the Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University.

[0329] <GRY (Groggy Rat, Cacnala^{gry})>

[0330] A mutant rat produced by administering methyl nitrosourea to Scl: Wistar, whose main symptoms are ataxia and absence-like seizure. This rat has an autosomal recessive mode of inheritance, and has a missense mutation on the α 1-subunit of the voltage-gated calcium ion channel Ca $_{\nu}$ 2.1. Methionine (M), which is an amino acid at position 251, is mutated to lysine (K) (M251K). This rat was provided from the Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University.

[0331] FIG. 11 is a view showing an amino acid sequence of a protein encoded by a human CACNA1A gene and an amino acid sequence of a protein encoded by a rat Cacna1a gene. The upper line of the amino acid sequence shown in FIG. 11 represents an amino acid sequence of the protein encoded by the rat Cacna1a gene (GenBank accession No. NM_012918) (SEQ ID NO.: 147), and the lower line is the amino acid sequence of the protein encoded by the human CACNA1A gene (GenBank accession No. NM_023035) (SEQ ID NO.: 3). Moreover, the squared amino acid "M" in FIG. 11 is an amino acid that is mutated from the amino acid "M" to an amino acid "K" in the human mutant CACNA1A (M249K) protein (SEQ ID NO.: 148) and the rat mutant Cacna1a (M251K) protein (SEQ ID NO.: 149).

[0332] As illustrated in FIG. 11, the mutation (M251K) on the α 1 subunit of the rat voltage-gated calcium ion channel Ca_{ν 2.1 corresponds to the mutation (M249K) on the al subunit of the human voltage-gated calcium ion channel Ca_{ν 2.1.}}

[0333] The F344-Scn1a Kyo811 and GRY (groggy rat, Cacna1a gry) as described above were mated to produce a rat having each of the gene mutations.

[0334] (1. Analysis on Functions of Mutant Voltage-Gated Sodium Ion Channel)

[0335] An analysis was performed with use of culture cells, on functions of a mutant sodium ion channel and normal sodium ion channel, before tests using the rats were performed. The rat having a mutation on the Scn1a gene (F344-Scn1a^{Kyo811}) has asparagine (AAT), which is an amino acid at position 1417 of a protein encoded by the Scn1a gene, was changed to histidine (CAT) (N1417H). The asparagine at position 1417 is located in a pore formation region that is related to ionic permeation of sodium ion channel third domain. On this account, first, the function analysis of the mutant voltage-gated sodium ion channel included in F344-Scn1a^{Kyo811} was performed.

[0336] More specifically, an expression vector having a mutant SCN1A (N1417H) gene (SEQ ID NO.: 150) including a missense mutation was prepared with use of cDNA of

^{-,} no predicted change in channel activity.

human SCN1A gene. As control, an expression vector having a normal (wild-type) SCN1A gene (SEQ ID NO.: 2) was prepared.

[0337] FIG. 1 is a view showing an amino acid sequence of a protein encoded by the human SCN1A gene and an amino acid sequence of a protein encoded by the rat Scn1a gene. The upper line in the amino acid sequence shown in FIG. 1 represents an amino acid sequence of a protein that is encoded by the human SCN1A gene (SEQ ID NO.: 1), and the lower line represents an amino acid sequence of a protein that is encoded by the rat Scn1a gene (SEQ ID NO.: 144). Moreover, the squared amino acid "N" in FIG. 1 is an amino acid on which a mutation from an amino acid "N" to an amino acid "H" occurs, of the human mutant SCN1A (N1417H) protein (SEQ ID NO.: 145) and the rat mutant SCN1A (N1417H) protein (SEQ ID NO.: 146).

[0338] An analysis was performed with use of culture cells, on functions of the mutant sodium ion channel and the normal sodium ion channel. The α -subunit type 1 of the voltage-gated sodium ion channel $Na_{\nu}1.1$, which is a SCN1A gene product, was adjusted in its function by β_1 subunit and β_2 subunit that similarly make up the voltage-gated sodium ion channel $Na_{\nu}1.1$. Hence, an expression vector having the SCN1A gene that encodes the α -subunit type 1 was coexpressed with an expression vector having the SCN1B gene that encodes the β_1 subunit and the SCN2B gene that encodes the β_2 subunit in a human renal cell HEK293, with use of a transfection reagent. The electrophysiologic properties were studied by patch clamping based on whole cell recording.

[0339] More specifically, recording of the sodium ion channel current was carried out at room temperature of 22° C. to 24° C., 24 hours to 48 hours after transfection. A patch electrode was prepared from borosilicate glass by use of multistage P-97 Flaming-Brown micropipette puller.

[0340] Composition of intracellular fluid was 110 mM CsF, 10 mM NaF, 20 mM CsCl, 2 mM EGTA, and 10 mM HEPES. On the other hand, the composition of extracellular fluid was 145 mM NaCl, 4 mM KCl, 1.8 mM CaCl₂, 1 mM MgCl₂, and 10 mM HEPES. Axopatch200B (Axon Instruments) was used as the amplifier.

[0341] Electrophysiologic properties of the mutation channel were compared with those of a normal channel, by studying voltage-gated channel activation, inactivation, recovery from inactivation, and duration current. The activation curve and the inactivation curve were analyzed by Boltzmann function, to find a half-maximal activation/inactivation ($V_{1/2}$) and a slope factor (k). The recovery curve from the inactivation was analyzed by a two exponential function. Durable Na current was found by a difference in the duration current when depolarized at -10~mV for 100 ms, before and after addition of $10~\text{\mu M}$ of tetrodotoxin (TTX). Statistics used were unpaired Student's t test. Clampfit 8.2 software and Origin-Pro 7.0 (OriginLab) were used for data analysis.

[0342] FIGS. 2 to 4 are views illustrating results of performing function analysis of the sodium ion channel by patch clamping. The graphs of FIGS. 2 to 4 show the normal sodium ion channel as "WT" or "WT-SCN1A", and show the mutant sodium ion channel as "N1417H".

[0343] Illustrated in (a) of FIG. 2 is a typical example of a sodium current in response to a change in potential of the normal sodium ion channel and the mutant sodium ion channel. More specifically, a depolarizing stimulus was changed 10 mV each from -80 mV to +60 mV for depolarization, and sodium current that flowed in was measured. As a result, both

of the normal sodium ion channel and the mutant sodium ion channel function as a channel, and there was no significant difference between the two.

[0344] Illustrated in (b) of FIG. 2 is a result of studying the inactivation time constant (τ) . There are two types of inactivation; an inactivation of a fast component and an inactivation of a slow component. The " τ 1" in (b) of FIG. 2 is indicative of a constant indicative of a time required for the inactivation of the fast component to reach 33.3%, and the " τ 2" is indicative of a constant indicative of a time required for the inactivation of the slow component to reach 33.3%. These inactivation time constants, more specifically, were calculated by analyzing the inactive curve with use of the Clampfit 8.2 software. As a result, there was no significant difference in the inactivation time constant between that of the normal sodium ion channel and that of the mutant sodium ion channel.

[0345] Next, in order to specifically study the electrophysiologic properties of the sodium ion channel, a current-voltage relationship ((a) of FIG. 3), an activation of the sodium ion channel ((b) of FIG. 3), an inactivation of the sodium ion channel ((c) of FIG. 3), and recovery from the inactivation of the sodium ion channel ((d) of FIG. 3) were measured.

[0346] More specifically, the current-voltage relationship illustrated in (a) of FIG. 3 was obtained by (i) measuring a flowing sodium current for every membrane potential while having a holding potential, being deeper than a resting membrane potential, as -120 mV, and a depolarizing stimulus being changed by 10 mV each from -80 mV to +60 mV, and (ii) plotting the membrane potential on a horizontal axis and a current value on a vertical axis. The view illustrated on the lower left of the graph in (a) of FIG. 3 shows that in this experiment, "the depolarizing stimulus was changed by 10 mV each from -80 mV to +60 mV for 20 ms (milliseconds), with the holding potential being -120 mV, which holding potential is deeper than the resting membrane potential".

[0347] The activation curve illustrated in (b) of FIG. 3 shows a sodium current value flowing per membrane potential as a relative value, by having a maximum sodium current value obtained from the graph of (a) of FIG. 3 be 1, and an obtained curve was analyzed by Boltzmann function to find a half-maximal activation ($V_{1/2}$) and a slope factor (k). The view provided on the lower right of the graph in (b) of FIG. 3 represents that in this experiment, "the depolarizing stimulus was changed by 10 mV each from -80 mV to +60 mV, for 20 ms (milliseconds), with the holding potential being -120 mV, which holding potential is deeper than the resting membrane potential".

[0348] The inactive curve illustrated in (c) of FIG. 3 was obtained by similarly changing the membrane potential to activate the channel and thereafter providing depolarizing stimulus and measuring how much the sodium current flows, to find the half-maximal inactivation $(V_{1/2})$ and the slope factor (k). Note that the view provided on the lower left of the graph of (c) of FIG. 3 represents that in this experiment, "the depolarizing stimulus was changed by $10\,\mathrm{mV}$ each from $-140\,\mathrm{mV}$ to $+0\,\mathrm{mV}$ for $100\,\mathrm{ms}$ (milliseconds) and subsequently changed to $-10\,\mathrm{mV}$, with the holding potential being $-120\,\mathrm{mV}$ ".

[0349] The recovery curve from the inactivation illustrated in (d) of FIG. 3 was obtained as follows. When a depolarizing stimulus was provided with pulse 1 (P1), the channel became inactive upon opening. When the depolarizing stimulus was returned to the original -120 mV, the sodium ion channel returned to its resting state, and upon stimulation of pulse 2

(P2), the channel opened again. The recovery time of this pulse 1 and pulse 2 were changed to obtain the recovery curve from the inactivation. This curve was analyzed by a two exponential function. It was determined whether the function of the channel was made easily excited or in the opposite was made difficult to be excited, depending on whether the recovery was quicker or slower as compared to the normal channel. The view provided on the lower right of the graph of (d) of FIG. 3 indicates that in this experiment, "a holding potential was mV, -10 mV was provided for 100 ms (milliseconds) as the depolarizing stimulus and thereafter was returned to -120 mV, and after elapse of each of the times (milliseconds) shown on the x-axis, -10 mV was provided for 20 ms (milliseconds)".

[0350] As a result, no significant difference was recognized in the current-voltage relationship and the channel activation, between the normal sodium ion channel and the mutant sodium ion channel (see (a) and (b) of FIG. 3). Meanwhile, a significant test was performed regarding the channel inactivation, on a point that the normal sodium ion channel and the mutant sodium ion channel are inactivated by 50%, whereby resulted in finding that the mutant sodium ion channel had shifted significantly to the depolarization side (p<0.05)((c)) of FIG. 3).

[0351] As to the recovery from the channel inactivation, it was found that the recovery was significantly slow in the mutant sodium ion channel ((d) of FIG. 3). In (d) of FIG. 3, a part in which a period of recovery (Recovery period (ms)) from the inactivation was 1 ms to 8 ms corresponds to a "fast component", and a part in which the period of recovery from the inactivation was 10 ms to 100 ms corresponds to a "slow component".

[0352] More specifically, upon comparison between the normal sodium ion channel and an abnormal sodium ion channel based on a time required for the fast component in recovering from the inactivation to recover from the inactivation to 33.3%, it was found that the recovery was significantly slow for the mutant sodium ion channel (normal: τ_f =1.7±0.1 ms, n=14; mutant: τ_f =2.5±0.2 ms (P<0.01), n=12).

[0353] Similarly, upon comparison of the normal sodium ion channel with the abnormal sodium ion channel based on the time required for the slow component in recovering from the inactivation to recover from the inactivation to 33.3%, it was found that the mutant sodium ion channel was significantly slow in recovering (normal: τ_r =40.3±5.3 ms, n=14; mutant: τ_s =60.9±7.9 ms (P<0.05), n=12).

[0354] FIG. 4 shows that, even if the sodium ion channel was made inactivated after the potential was changed to activate the sodium ion channel, the baseline of the mutant sodium channel does not return back in the whole cell record, which indicates clearly that the sodium current was persistently flowing into the mutant sodium ion channel. The persistent sodium current is considered as an obstruction of an inactivation gate. From the view of (a) of FIG. 4, it was confirmed that even after the elapse of time, the inactivation was insufficient in the mutant sodium ion channel as compared to that of the normal sodium ion channel.

[0355] So as to find the persistent sodium current shown in (a) of FIG. 4, a relative value (%) was found by dividing, with a maximum current amount, a final current amount that flowed between 80 milliseconds to 100 milliseconds when a depolarizing stimulus of 100 milliseconds was given. Results thereof are shown in (b) of FIG. 4. From these results, it was found that the mutant sodium ion channel had properties that the persistent sodium current increases.

[0356] This data show that the function of the voltage-gated sodium ion channel Na $_{\nu}1.1$ became abnormal by the mutation. Namely, this means that by having the mutation, the nerve cells are easily excessively excited, that is to say, more easily causes the occurrence of a convulsion.

[0357] Literature (Satoko Tokuda et. al., BRAINRE-SEARCH 1133 (2007) 168-177; Kenta Tanaka et. al., Neuroscience Letters 426 (2007) 75-80) discloses that the function of the voltage-gated calcium ion channel $Ca_{\nu}2.1$ of a rat becomes abnormal due to a mutation (M251K) on the α 1 subunit of the voltage-gated calcium ion channel $Ca_{\nu}2.1$ of the rat.

[0358] Therefore, with a rat having the mutation on both the Scn1a gene and Cacna1a gene described later, it can be considered that the functions of both the voltage-gated sodium ion channel Na $_{\nu}1.1$ and the voltage-gated calcium ion channel Ca $_{\nu}2.1$ are abnormal.

[0359] (2. Confirmation of Gene Mutation in Dravet Syndrome Model Rat)

[0360] The foregoing F344-Scn1a^{Kyo81} and the GRY (groggy rat, Cacna1a^{gry}) were mated as parent rats (P) to produce F1 (first filial generation) rats, and these F1 rats were mated to produce F2 (second filial generation) rats. FIG. 5 is a view showing genotypes of the parent rats (P), the F1 rats and the F2 rats. As illustrated in (a) of FIG. 5, the F1 rats have the heterozygous mutation on both the Scn1a gene and the Cacna1a gene (referred to as "Scn1a mutant (hetero)+ Cacna1a mutant (hetero)"). Moreover, as illustrated in (b) of F1G. 5, rats showing 9 types of genotypes were born from the F2 rats. The genotypes of each of the rats were identified by extracting a tip tissue of the tail of the rats and extracting its DNA, to perform DNA sequencing with the extracted DNA and detect its gene mutation, or by detecting a digested pattern with use of a restriction enzyme.

[0361] (Method of Confirming Gene Mutation by DNA Sequencing)

[0362] Confirmation of gene mutation by DNA sequencing was performed as follows. First, a genomic DNA was amplified with use of a primer pair that sandwiches a mutation point (a nucleotide sequence of a Scn1a amplification primer pair is represented by SEQ ID NO.: 5 and SEQ ID NO.: 6, and a nucleotide sequence of a Cacna1a amplification primer pair is represented by SEQ ID NO.: 7 and SEQ ID NO.: 8), and thereafter, an obtained PCR product was purified with use of a PCR products pre-sequencing kit (Amersham Biosciences, Little Chalfont, Buckinghamshire, England). See the item "Sequence of primers" later described for the nucleotide sequence of the used primer pairs.

[0363] Next, sequence reaction was performed with use of a Big Dye Terminator FS ready-reaction kit (Applied Biosystems), to determine a nucleotide sequence with a fluorescence sequencer (ABI PRISM3100 sequencer; Applied Biosystems)

[0364] FIG. 6 is a view illustrating a method of identifying a genotype of the Scn1a gene and the Cacna1a gene of the F2 rats, by sequencing. As illustrated in FIG. 6, a wild-type Scn1a gene has a nucleotide at position 4249 be "A". In comparison, a mutant Scn1a gene (N1417H) has a nucleotide at position 4249 that is mutated from "A" to "C". As a result, a codon "AAT" that designates asparagine (N) being an amino acid at position 1417 in the wild-type Scn1a gene, is mutated to a codon "CAT" which designates histidine (H), in the mutant Scn1a gene (N1417H).

[0365] Moreover, the wild-type Cacnala gene has a nucleotide at position 752 be "T". In comparison, the mutant Cacnala gene (M251K) has a nucleotide at position 752 that is mutated from "T" to "A". As a result, a codon "ATG" that designates methionine, which is an amino acid at position 251, is mutated to a codon "AAG" that designates lysine.

[0366] (Method of Confirming Gene Mutation by Restriction Enzyme Digestion)

[0367] The method of confirming gene mutation by the restriction enzyme digestion was performed as follows. When detecting mutation in the Scn1a gene, a genomic DNA was amplified with use of a primer pair (SEQ ID NOs.: 5 and 6) that sandwich a mutation point in the Scn1a gene, and thereafter an obtained PCR product was reacted for three hours at 50° C., with use of a restriction enzyme BcII. Thereafter, the PCR product reacted with the restriction enzyme was subjected to electrophoresis with use of 4% agarose gel, and the size of the band was detected. FIG. 7 is a view illustrating a method of identifying the genotype of the Scn1a gene of the F2 rats, by restriction enzyme digestion.

[0368] As shown in (a) and (b) of FIG. 7, the wild-type Scn1a gene was not digested with BM so the size of the band remained as the size of the PCR product (nucleotide of 380 bp). On the other hand, the mutant Scn1a gene (N1417H) was digested with BM so two fragments (nucleotides of 276 bp and 104 bp) were detected. In a case of a heterozygous rat of the wild-type Scn1a gene and the mutant Scn1a gene (N1417H), three fragments (nucleotides of 380 bp, 276 bp, and 104 bp) were detected. Illustrated in (c) of FIG. 7 shows a result of electrophoresis.

[0369] In a case of detecting the mutation on the Cacna1a gene, a genomic DNA was amplified with use of a primer pair (SEQ ID NOs.: 7 and 8) that sandwich a mutation point of the Cacna1a gene, and thereafter, an obtained PCR product was reacted for hour at 37° C. with use of a restriction enzyme PciI. Thereafter, the PCR product reacted with the restriction enzyme was subjected to electrophoresis with use of 4% agarose gel, to detect the size of a band.

[0370] FIG. 8 is a view illustrating a method of identifying a genotype of the Cacnala gene of the F2 rats, by restriction enzyme digestion. As illustrated in (a) and (b) of FIG. 8, a wild-type Cacnala gene was not digested with PciI, so hence the size of the band remained as the size of the PCR product (nucleotide of 352 bp). On the other hand, the mutant Cacnala gene (M251K) was digested with PciI, and thus two fragments (nucleotides of 219 by and 133 bp) were detected. With a heterozygous rat of the wild-type Cacnala gene and an abnormal Cacnala gene (M251K), three fragments (nucleotides of 352 bp, 219 bp, and 133 bp) were detected. Illustrated in (c) of FIG. 8 is a result of electrophoresis.

Example 7

Analysis of Dravet Syndrome Model Rat

[0371] A study was performed on what kind of (worsening) effect was given on the seizure when a mutation on the Cacnala gene was added to a mutation on the Scnla gene, with use of a Dravet syndrome model rat. More specifically, comparison was made regarding symptoms when a convulsion seizure was induced by heat load, between a rat having a homozygous mutation on the Scnla gene (referred to as "Scnla mutant (homo)+Cacnala wild-type (homo)") and a rat having a homozygous mutation on the Scnla gene and a heterozygous mutation on the Cacnala gene (referred to as "Scnla mutant (homo)+Cacnala mutant (hetero)").

[0372] The Scn1a mutant (homo)+Cacna1a wild-type (homo) and the Scn1a mutant (homo)+Cacna1a mutant (hetero) both have a homozygous mutation on the Scn1a gene (N1417H). Hence, comparison is made between the wild-type Cacna1a gene and the mutant Cacna1a gene (M251K), under the condition of the homozygous mutation of the Scn1a gene.

[0373] Moreover, a rat having a wild-type Scn1a gene and a wild-type Cacna1a gene (referred to as "Scn1a wild-type (homo)+Cacna1a wild-type (homo)") and a rat having a wild-type homozygous mutation on the Scn1a gene and a heterozygous mutation on the Cacna1a gene (referred to as "Scn1a wild-type (homo)+Cacna1a mutation (hetero)") were used as control. The following lists the genotypes of the rats used in the experiment. The following numbers (1) to (4) correspond to the numbers in (b) of FIG. 5.

[0374] (1) Scn1a^{wt/wt}Cacna1a^{wt/wt} (Scn1a wild-type (homo)+Cacna1a wild-type (homo)) 14 males

[0375] (2) Scn1 $a^{mut/mut}$ Cacna1 $a^{wt/wt}$ (Scn1a mutant (homo)+Cacna1a wild-type (homo)) 7 males

[0376] (3) Scn1a^{mut/mut} Cacnala^{wt/mut} (Scn1a mutant (homo)+Cacnala mutant (hetero)) 17 males

[0377] (4) Scn1a^{wt}/^{wt} Cacna1a^{wt}/^{mut} (Scn1a wild-type (homo)+Cacna1a mutant (hetero)) 12 males.

[0378] Hot bath load (45° C.) were given on male rats of 5 weeks old of the groups (1) to (4) described above, to compare their body temperatures at a time when a convulsion is induced, their duration of the convulsion, and their severity score of the convulsion. A rectal temperature at the time when the seizure started was measured, to serve as the body temperature at the time when the convulsion was induced. The seizure severity score of the convulsion were evaluated as follows: 0=no seizure, 1=facial convulsion, 2=clonic convulsion of both arms while maintaining posture, 3=sprint or jump, 4=generalized convulsion unable to maintain posture, and 5=death caused by persistent convulsion.

[0379] The results were as shown in FIG. 9. FIG. 9 is a view showing a result of the effect caused by the mutation on the Cacnala gene in the Scnla gene-mutated rat. In the graphs of (a) to (c) in FIG. 9, Scnla^{mut/mut}Cacnala^{wt/vt} (the foregoing rat (2)) is shown as "Scnla mutant (homo)". Scnla^{mut/mut}Cacnala^{wt/mut} (the foregoing rat (3)) is shown as "Scnla mutant (homo)+Cacnala mutant (hetero)". Moreover, control Scnla^{wt/vt}Cacnala^{wt/vt} (foregoing rat (1)) is shown as "WT", and control Scnla^{wt/vt}Cacnala^{wt/mut} (foregoing rat (4)) is shown as "Cacnala mutant (hetero)".

[0380] As a result of analysis, the group (3) rats (Scn1a mutant (homo)+Cacna1a mutant (hetero)) had no large difference in the body temperatures at the time of convulsion onset (convulsion threshold) ((a) of FIG. 9) and severity scores ((b) of FIG. 9), from those of the group (2) rats (Scn1a mutant (homo)+Cacna1a wild-type (homo)). However, it was found that the duration of the convulsion ((c) of FIG. 9) became significantly long. This result demonstrates that the mutation of the Cacna1a gene relates to the worsening of the symptoms of convulsion.

[0381] Furthermore, FIG. 10 shows a part of an electroencephalogram during a seizure of a group (3) rat (Scn1a mutant (homo)+Cacna1a mutant (hetero)). It was considered from this result that a rat having a mutation on the Scn1a gene and the Cacna1a gene could serve as a model rat of the intractable Dravet syndrome. The model rat is expected to be usefully used in the future for clarification of the onset mechanism of the intractable Dravet syndrome, development of medicament for Dravet syndrome, and like uses.

[0382] Moreover, these results are considered as supporting the gene analysis data of Example 1, that a variation of the CACNA1A gene was detected in addition to a mutation on the SCN1A gene, in a patient of Dravet syndrome which is an intractable epilepsy. Namely, the method according to the present invention of obtaining data for assessing the potential for development of Dravet syndrome can be said as a technique supported by the gene analysis results of the Examples, a mutant channel function analysis result, and animal experiment results.

CONCLUSION

[0383] The present invention was developed based on a molecular foundation of development of the intractable Dravet syndrome; the assessment method according to the present invention can be said as useful as an early detection method of Dravet syndrome patients. By use of the assessment method according to the present invention, it is possible to find Dravet syndrome, which has an unfavorable prognosis, in high accuracy and at an early stage. This allows for an epilepsy specialist to prepare a treatment management system for the patient of Dravet syndrome from an early stage. As a result, this leads to improvement in therapeutic intervention of the patient, reduction of mental load on the family, and reduction of economical burden. Moreover, it is possible to

carry out appropriate treatment to the Dravet syndrome patient, so therefore is considered as contributive to the reduction of medical fees.

[0384] Furthermore, with use of the kit according to the present invention, it is possible to easily detect the mutation for both the SCN1A gene and CACNA1A gene. Consequently, the kit according to the present invention is useful for a general pediatrician to distinguish a patient of Dravet syndrome who requires treatment by a specialist out of the benign febrile epilepsies, during the initial stage of the disease under the age of one.

[0385] By use of the assessment method and the kit according to the present invention, it is possible to detect with high accuracy a patient of Dravet syndrome at the point in time of under the age of one, which was difficult to detect until now. Moreover, by examining gene abnormalities upon sending the blood taken to an examination center, it is possible to detect Dravet syndrome patients in high accuracy even for a remote personal hospital or the like.

[0386] Moreover, the model animal and cell according to the present invention may be usefully used in the clarification of an onset mechanism of the intractable Dravet syndrome, the development of medicament for Dravet syndrome, and like uses

[0387] <Primer Sequences>

[0388] Table 10 shows a nucleotide sequence of a primer pair used for amplifying the Scn1a gene and amplifying the Cacna1a gene.

TABLE 10

Scnla amplification	Sense primer: Antisense primer:					SEQ ID NO.: 5 SEQ ID NO.: 6
Cacnala amplification	Sense primer: Antisense primer:	5'-TCT 5'-GTG	 	 	 	SEQ ID NO: 7 SEQ ID NO.: 8

[0389] Tables 11 and 12 show nucleotide sequences of primer pairs used for detecting SCN1A gene genomes.

TABLE 11

Exon 1 amplification	Sense primer: Antisense primer:	5'-tcatggcacagttcctgtatc-3' 5'-gcagtaggcaattagcagcaa-3'	SEQ ID NO.: 9 SEQ ID NO.: 10
Exon 2 amplification	Sense primer: Antisense primer:	5'-tggggcactttagaaattgtg-3' 5'-tgacaaagatgcaaaatgagag-3'	SEQ ID NO.: 11 SEQ ID NO.: 12
Exon 3 amplification	Sense primer: Antisense primer:	5'-gcagtttgggcttttcaatg-3' 5'-tgagcattgtcctcttgctg-3'	SEQ ID NO.: 13 SEQ ID NO.: 14
Exon 4 amplification	Sense primer: Antisense primer:	5'-agggctacgtttcatttgtatg-3' 5'-tgtgctaaattgaaatccagag-3'	SEQ ID NO.: 15 SEQ ID NO.: 16
Exon 5 amplification	Sense primer: Antisense primer:	5'-CAGCTCTTCGCACTTTCAGA-3' 5'-TCAAGCAGAGAAGGATGCTGA-3'	SEQ ID NO.: 17 SEQ ID NO.: 18

TABLE 11 -continued

	1111	JEE II CONCINGO	
Exon 6 amplification	Sense primer: Antisense primer:	5'-agcgttgcaaacattcttgg-3' 5'-gggatatccagcccctcaag-3'	SEQ ID NO.: 19 SEQ ID NO.: 20
Exon 7 amplification	Sense primer:	5'-gacaaatacttgtgcctttgaatg-3' 5'-acataatctcatactttatcaaaaacc-3'	SEQ ID
Exon 8 amplification	Sense primer: Antisense primer:	5'-gaaatggaggtgttgaaaatgc-3' 5'-aatccttggcatcactctgc-3'	SEQ ID NO.: 23 SEQ ID NO.: 24
Exon 9 amplification	Sense primer: Antisense primer:	5'-agtacagggtgctatgaccaac-3' 5'-tcctcatacaaccacctgctc-3'	SEQ ID NO.: 25 SEQ ID NO.: 26
Exon 10 amplification	Sense primer: Antisense primer:	5'-tetecaaaageetteattagg-3' 5'-ttetaatteteeceetetetee-3'	SEQ ID NO.: 27 SEQ ID NO.: 28
Exon 11 amplification	Sense primer: Antisense primer:	5'-tcctcattctttaatcccaagg-3' 5'-gccgttctgtagaaacactgg-3'	SEQ ID NO.: 29 SEQ ID NO.: 30
Exon 12 amplification	Sense primer: Antisense primer:	5'-gtcagaaatatctgccatcacc-3' 5'-gaatgcactattcccaactcac-3'	SEQ ID NO.: 31 SEQ ID NO.: 32
Exon 13 amplification	Sense primer: Antisense primer:	5'-tgggctctatgtgtgtgtctg-3' 5'-ggaagcatgaaggatggttg-3'	SEQ ID NO.: 33 SEQ ID NO.: 34
Exon 14 amplification	Sense primer: Antisense primer:	5'-tacttcgcgtttccacaagg-3' 5'-gctatgcaagaaccctgattg-3'	SEQ ID NO.: 35 SEQ ID NO.: 36

TABLE 12

Exon 15 amplification	Sense primer: Antisense primer:	5'-atgageetgagaeggttagg-3' 5'-atacatgtgeeatgetggtg-3'	SEQ ID NO.: 37 SEQ ID NO.: 38
Exon 16 amplification	Sense primer: Antisense primer:	5'-tgctgtggtgtttccttctc-3' 5'-tgtattcataccttcccacacc-3'	SEQ ID NO.: 39 SEQ ID NO.: 40
Exon 17 amplification	Sense primer: Antisense primer:	5'-aaaagggttagcacagacaatg-3' 5'-attgggcagatataatcaaagc-3'	SEQ ID NO.: 41 SEQ ID NO.: 42
Exon 18 amplification	Sense primer: Antisense primer:	5'-cacacagetgatgaatgtge-3' 5'-tgaagggetacaetttetgg-3'	SEQ ID NO.: 43 SEQ ID NO.: 44
Exon 19 amplification	Sense primer: Antisense primer:	5'-tctgccctcctattccaatg-3' 5'-gcccttgtcttccagaaatg-3'	SEQ ID NO.: 45 SEQ ID NO.: 46

TABLE 12 -continued

Exon 20	Sense	5'-aaaaattacatcctttacatcaaactg-3	
amplification	primer: Antisense primer:	5'-ttttgcatgcatagattttcc-3'	NO.: 47 SEQ ID NO.: 48
Exon 21 amplification	Sense primer:	5'-tgaaccttgcttttacatatcc-3'	SEQ ID
	Antisense primer:	5'-acccatctgggctcataaac-3'	SEQ ID NO.: 50
Exon 22 amplification	Sense primer:	5'-tgtcttggtccaaaatctgtg-3'	SEQ ID NO.: 51
	Antisense primer:	5'-ttggtcgtttatgctttattcg-3'	SEQ ID NO.: 52
Exon 23 amplification	Sense primer:	5'-ccctaaaggccaatttcagg-3'	SEQ ID NO.: 53
-	Antisense primer:	5'-atttggcagagaaaacactcc-3'	SEQ ID NO.: 54
Exon 24 amplification	Sense primer:	5'-gagatttgggggtgtttgtc-3'	SEQ ID NO.: 55
-	Antisense primer:	5'-ggattgtaatggggtgcttc-3'	SEQ ID NO.: 56
Exon 25 amplification	Sense primer:	5'-caaaaatcagggccaatgac-3'	SEQ ID NO.: 57
•	Antisense primer:	5'-tgattgctgggatgatcttg-3'	SEQ ID NO.: 58
Exon 26(1) amplification	Sense primer:	5'-aggactctgaaccttaccttgg-3'	SEQ ID NO.: 59
-	Antisense primer:	5'-ccatgaatcgctcttccatc-3'	SEQ ID NO.: 60
Exon 26(2) amplification	Sense primer:	5'-tgtgggaacccatctgttg-3'	SEQ ID NO.: 61
	Antisense primer:	5'-gtttgctgacaaggggtcac-3'	SEQ ID NO.: 62

[0390] Tables 13 and 14 show nucleotide sequences of primer pairs used for detecting the CACNA1A gene genome. In Tables 13 and 14, for example, E1F indicates an Exon 1 amplification sense primer, and E1Rv indicates an Exon 1 amplification antisense primer.

TABLE 13

Exon 1 amplification	CACNA1A-E1F: CACNA1A-E1Rv:	5'-teteegeagtegtageteeag-3' 5'-agagattettteacacteetee-3'		ID NO.:	
Exon 2 amplification	CACNA1A-E2F: CACNA1A-E2Rv:	5'-tttagaagtcacctgatctggg-3' 5'-gacagagcgagactctggttca-3'	_	ID NO.:	
Exon 3 amplification	CACNA1A-E3F: CACNA1A-E3RV:	5'-gacaagagaactctgcaagagg-3' 5'-atacagctgagacatggaggtg-3'	~	ID NO.:	
Exon 4 amplification	CACNA1A-E4F: CACNA1A-E4Rv:	5'-tttatcccgtgaggcaggtactg-3' 5'-cctcctgagatgctctgcatag-3'		ID NO.:	
Exon 5 amplification	CACNA1A-E5F: CACNA1A-E5Rv:	5'-tgtggtgcttccttcaccattg-3' 5'-cagaggctatttcactcactgc-3'		ID NO.:	
Exon 6 amplification	CACNA1A-E6F: CACNA1A-E6Rv:	5'-ccccaaagccaaacattgatctc-3' 5'-actctgattgtccacacacactg-3'	~	ID NO.:	
Exon 7 amplification	CACNA1A-E7F: CACNA1A-E7Rv:	5'-cagaaaacgttcctccatttccc-3' 5'-aagcttcaatggcctctacttgg-3'	-	ID NO.:	
Exon 8 amplification	CACNA1A-E8F: CACNA1A-E8Rv:	5'-gccatactctggcttttctatgc-3' 5'-cgtgatgtcagatcctggcttc-3'		ID NO.:	
Exon 9 amplification	CACNA1A-E9F: CACNA1A-E9Rv:	5'-gttggctattgctactgttgcg-3' 5'-gatccttagaaccagtcacctg-3'		ID NO.:	

TABLE 13 -continued

Exon 10 amplification	CACNA1A-E1OF: CACNA1A-E1ORv:	5'-tgatagtgccaccttgaacctc-3' 5'-tgatgtaatctgcccaggacac-3'		NO . :	
Exon 11 amplification	CACNA1A-E11F: CACNA1A-E11Rv:	5'-ctgcaacagagaactatcagcc-3' 5'-aagagaagtggaaaaagggtgtg-3'	~	NO . :	
Exon 12 amplification	CACNA1A-E12F: CACNA1A-E12Rv:	5'-gtagttctagcatgttggaggc-3' 5'-atctgtcattccaggcaagagc-3'	~	NO . :	
Exon 13~15 amplification	CACNA1A-E13F: CACNA1A-E15Rv:	5'-atggatgaatgagggggtcaag-3' 5'-agcaggcactttcatctgtgac-3'	~	NO . :	
Exon 13~15 amplification	CACNA1A-E13F2: CACNA1A-E15Rv:	5'-tccatttggagggaggagtttg-3' 5'-agcaggcactttcatctgtgac-3'	~	NO . :	
Exon 14~15 amplification	CACNA1A-E14F: CACNA1A-E15Rv:	5'-cctccagaaagttgggaaagtg-3' 5'-agcaggcactttcatctgtgac-3'		NO.:	
Exon 16~17 amplification	CACNA1A-E16F: CACNA1A-E17Rv:	5'-aaggagaagccaacacggagtc-3' 5'-ggtggtaactttgccagagaaac-3'	-	NO . :	
Exon 18 amplification	CACNA1A-E18F: CACNA1A-E18Rv:	5'-agcaggtacccattccaattgg-3' 5'-aatctgtgcctgggatagtgtg-3'	-	NO . :	
Exon 19 amplification (1)	CACNA1A-E19F: CACNA1A-E19Rv:	5'-cctgactcagatgctcacagac-3' 5'-acacagcacgtgctactttggc-3'		NO . :	
Exon 19 amplification (2)	CACNA1A-E19F2: CACNA1A-E19Rv:	5'-gaggactteeteaggaaacag-3' 5'-acacageaegtgetaetttgge-3'		NO . :	
Exon 20 amplification	CACNA1A-E20F: CACNA1A-E20Rv:	5'-agatggaatcttagctaggatcc-3' 5'-aattatctcactgaaccctccac-3'		NO . :	
Exon 21 amplification	CACNA1A-E21F: CACNA1A-E21Rv:	5'-agaaatgtcagccgcttcttgc-3' 5'-ggtggtcaacactcactcattg-3'		NO . :	
Exon 22 amplification	CACNA1A-E22F: CACNA1A-E22Rv:	5'-tttgttgtgtaggaggccttgg-3' 5'-aacatcccaccctacctatgag-3'	~	NO . :	

TABLE 14

Exon 23	CACNA1A-E23F:	5'-cctgcgcaactgtatatagcag-3'	SEQ ID NO.: 104
amplification	CACNA1A-E23Rv:	5'-ctcaacctcctgatctcaagtg-3'	SEQ ID NO.: 105
Exon 24 amplification	CACNA1A-E24F:	5'-cccaaagtttggatctaagagcc-3'	SEQ ID NO.: 106
	CACNA1A-E24Rv:	5'-aaagccatcgaagctcttcctg-3'	SEQ ID NO.: 107
Exon 25	CACNA1A-E25F:	5'-caggtgaaatggaccactcttc-3'	SEQ ID NO.: 108
amplification	CACNA1A-E25Rv:	5'-tccttgagcagtgtacaacctg-3'	SEQ ID NO.: 109
Exon 26	CACNA1A-E26F:	5'-gaatgccaggattgagtccaac-3'	SEQ ID NO.: 110
amplification	CACNA1A-E26Rv:	5'-gaatgtgctggaaagtggagac-3'	SEQ ID NO.: 111
Exon 27	CACNA1A-E27F:	5'-cactgcttcccaagcagtctag-3'	SEQ ID NO.: 112
amplification	CACNA1A-E27Rv:	5'-attacaggcgtgagccaccatg-3'	SEQ ID NO.: 113
Exon 28	CACNA1A-E28F:	5'-tttccctctgttcctgttctgc-3'	SEQ ID NO.: 114
amplification	CACNA1A-E28Rv:	5'-ttcggttgggacaatgcttctg-3'	SEQ ID NO.: 115
Exon 29	CACNA1A-E29F:	5'-ctcaagcaactgtagctgttgg-3'	SEQ ID NO.: 116
amplification	CACNA1A-E29Rv:	5'-ttatcagggtagaggcaggaac-3'	SEQ ID NO.: 117
Exon 30	CACNA1A-E30F:	5'-gtgaaaagaagagcctagtccg-3'	SEQ ID NO.: 118
amplification	CACNA1A-E30Rv:	5'-atggtaacactcacaggttggg-3'	SEQ ID NO.: 119
Exon 31 amplification	CACNA1A-E31F:	5'-gcccttcgaacaaccataactg-3'	SEQ ID NO.: 120
	CACNA1A-E31Rv:	5'-cctacagccaagctttggttac-3'	SEQ ID NO.: 121
Exon 32	CACNA1A-E32F:	5'-cccattggttttttggcactgg-3'	SEQ ID NO.: 122
amplification	CACNA1A-E32Rv:	5'-ggacagacagacagaggagag-3'	SEQ ID NO.: 123

TABLE 14 -continued

Exon 33~35 amplification	CACNA1A-E33F: CACNA1A-E35Rv:	5'-tgttggttggcttcatgtaggg-3' 5'-cagaattatcagagcaggtccc-3'	~	ID NO.: ID NO.:	
Exon 36 amplification	CACNA1A-E36F: CACNA1A-E36Rv:	5'-teteageteccagtaaaaggag-3' 5'-caacagtgetgagtttgagaeg-3'	~	ID NO.: ID NO.:	
Exon 37 amplification	CACNA1A-E37F: CACNA1A-E37Rv:	5'-ggcctctgtgtacatgtctttg-3' 5'-gggtatgcaagggtgatgattc-3'	~	ID NO.: ID NO.:	
Exon 38 amplification	CACNA1A-E38F: CACNA1A-E38Rv:	5'-tgtttetecceaeetetette-3' 5'-aaaaaaaecceagtgeetggaeg-3'	~	ID NO.: ID NO.:	
Exon 39 amplification	CACNA1A-E39F: CACNA1A-E39Rv:	5'-agaaactgagtactgggacagg-3' 5'-ggaagagtgaatgaagatccgg-3'		ID NO.: ID NO.:	
Exon 40~41 amplification	CACNA1A-E40F: CACNA1A-E41Rv:	5'-aaagattggggtetegtteteg-3' 5'-ccctcatattccagttggttec-3'		ID NO.: ID NO.:	
Exon 42~44 amplification	CACNA1A-E42F: CACNA1A-E44Rv:	5'-gtgtgtgtgtgtgtatactggg-3' 5'-cagactgcttcagagactgaag-3'		ID NO.: ID NO.:	
Exon 45 amplification	CACNA1A-E45F: CACNA1A-E45Rv:	5'-cegatttetettgatgecagtg-3' 5'-agggtgegattgecaaagaaag-3'		ID NO.: ID NO.:	
Exon 46~47 amplification	CACNA1A-E46F: CACNA1A-E47Rv:	5'-acccagagccctgattgatcag-3' 5'-ttggatggggtatccccttctc-3'	-	ID NO.: ID NO.:	
Exon 48 amplification	CACNA1A-E48F: CACNA1A-E48Rv:	5'-tetetteeteecaateeegtg-3' 5'-tgeeeaggagggtetettttg-3'	-	ID NO.: ID NO.:	

INDUSTRIAL APPLICABILITY

[0391] As described above, by detecting the presence of a mutation on both α -subunit type 1 of voltage-gated sodium ion channel Na $_{\nu}$ 1.1 and α -subunit type 1 of voltage-gated calcium ion channel Ca $_{\nu}$ 2.1, it is possible to obtain data for assessing a potential for development of Dravet syndrome of a subject who has not yet been subjected to onset of Dravet syndrome, with high accuracy. Hence, it is possible to distinguish a patient of Dravet syndrome that requires treatment by a specialist, out of benign febrile seizure patents, at an initial stage of disease under the age of one. Hence, it is possible to

use not only in the field of diagnosis medical treatment such as medical devices, diagnosis kits and the like, but broadly in the health science and medical field industry.

[0392] Moreover, in the present invention, by introducing a mutation on both of α -subunit type 1 of voltage-gated sodium ion channel Na $_{\nu}$ 1.1 and α -subunit type 1 of voltage-gated calcium ion channel Ca $_{\nu}$ 2.1, it is possible to produce a model animal of Dravet syndrome. Such a model animal of Dravet syndrome can be used for development of medicament and treatment methods of Dravet syndrome. Hence, the present invention can be widely used in the industry of life science fields including the pharmaceutical field.

SEQUENCE LISTING

												COII	CIII	ueu	
Asp	Pro	Tyr	Tyr	Ile 85	Asn	Lys	Lys	Thr	Phe 90	Ile	Val	Leu	Asn	Lys 95	Gly
rys	Ala	Ile	Phe 100	Arg	Phe	Ser	Ala	Thr 105	Ser	Ala	Leu	Tyr	Ile 110	Leu	Thr
Pro	Phe	Asn 115	Pro	Leu	Arg	ГЛа	Ile 120	Ala	Ile	rya	Ile	Leu 125	Val	His	Ser
Leu	Phe 130	Ser	Met	Leu	Ile	Met 135	СЛа	Thr	Ile	Leu	Thr 140	Asn	Cys	Val	Phe
Met 145	Thr	Met	Ser	Asn	Pro 150	Pro	Asp	Trp	Thr	Lys 155	Asn	Val	Glu	Tyr	Thr 160
Phe	Thr	Gly	Ile	Tyr 165	Thr	Phe	Glu	Ser	Leu 170	Ile	Lys	Ile	Ile	Ala 175	Arg
Gly	Phe	Cys	Leu 180	Glu	Asp	Phe	Thr	Phe 185	Leu	Arg	Asp	Pro	Trp 190	Asn	Trp
Leu	Asp	Phe 195	Thr	Val	Ile	Thr	Phe 200	Ala	Tyr	Val	Thr	Glu 205	Phe	Val	Asp
Leu	Gly 210	Asn	Val	Ser	Ala	Leu 215	Arg	Thr	Phe	Arg	Val 220	Leu	Arg	Ala	Leu
Lys 225	Thr	Ile	Ser	Val	Ile 230	Pro	Gly	Leu	Lys	Thr 235	Ile	Val	Gly	Ala	Leu 240
Ile	Gln	Ser	Val	Lys 245	Lys	Leu	Ser	Asp	Val 250	Met	Ile	Leu	Thr	Val 255	Phe
CAa	Leu	Ser	Val 260	Phe	Ala	Leu	Ile	Gly 265	Leu	Gln	Leu	Phe	Met 270	Gly	Asn
Leu	Arg	Asn 275	Lys	CAa	Ile	Gln	Trp 280	Pro	Pro	Thr	Asn	Ala 285	Ser	Leu	Glu
Glu	His 290	Ser	Ile	Glu	Lys	Asn 295	Ile	Thr	Val	Asn	Tyr 300	Asn	Gly	Thr	Leu
Ile 305	Asn	Glu	Thr	Val	Phe 310	Glu	Phe	Asp	Trp	Lys 315	Ser	Tyr	Ile	Gln	Asp 320
Ser	Arg	Tyr	His	Tyr 325	Phe	Leu	Glu	Gly	Phe 330	Leu	Asp	Ala	Leu	Leu 335	CAa
Gly	Asn	Ser	Ser 340	Asp	Ala	Gly	Gln	Cys 345	Pro	Glu	Gly	Tyr	Met 350	Сув	Val
rys	Ala	Gly 355	Arg	Asn	Pro	Asn	Tyr 360	Gly	Tyr	Thr	Ser	Phe 365	Asp	Thr	Phe
Ser	Trp 370	Ala	Phe	Leu	Ser	Leu 375	Phe	Arg	Leu	Met	Thr 380	Gln	Asp	Phe	Trp
Glu 385	Asn	Leu	Tyr	Gln	Leu 390	Thr	Leu	Arg	Ala	Ala 395	Gly	Lys	Thr	Tyr	Met 400
Ile	Phe	Phe	Val	Leu 405	Val	Ile	Phe	Leu	Gly 410	Ser	Phe	Tyr	Leu	Ile 415	Asn
Leu	Ile	Leu	Ala 420	Val	Val	Ala	Met	Ala 425	Tyr	Glu	Glu	Gln	Asn 430	Gln	Ala
Thr	Leu	Glu 435	Glu	Ala	Glu	Gln	Lys 440	Glu	Ala	Glu	Phe	Gln 445	Gln	Met	Ile
Glu	Gln 450	Leu	Lys	Lys	Gln	Gln 455	Glu	Ala	Ala	Gln	Gln 460	Ala	Ala	Thr	Ala
Thr 465	Ala	Ser	Glu	His	Ser 470	Arg	Glu	Pro	Ser	Ala 475	Ala	Gly	Arg	Leu	Ser 480
Asp	Ser	Ser	Ser	Glu 485	Ala	Ser	ГЛа	Leu	Ser 490	Ser	ГÀа	Ser	Ala	Lys 495	Glu

Arg	Arg	Asn	Arg 500	Arg	Lys	Lys	Arg	Lys 505	Gln	Lys	Glu	Gln	Ser 510	Gly	Gly
Glu	Glu	Lys 515	Asp	Glu	Asp	Glu	Phe 520	Gln	Lys	Ser	Glu	Ser 525	Glu	Asp	Ser
Ile	Arg 530	Arg	Lys	Gly	Phe	Arg 535	Phe	Ser	Ile	Glu	Gly 540	Asn	Arg	Leu	Thr
Tyr 545	Glu	Lys	Arg	Tyr	Ser 550	Ser	Pro	His	Gln	Ser 555	Leu	Leu	Ser	Ile	Arg 560
Gly	Ser	Leu	Phe	Ser 565	Pro	Arg	Arg	Asn	Ser 570	Arg	Thr	Ser	Leu	Phe 575	Ser
Phe	Arg	Gly	Arg 580	Ala	Lys	Asp	Val	Gly 585	Ser	Glu	Asn	Asp	Phe 590	Ala	Asp
Asp	Glu	His 595	Ser	Thr	Phe	Glu	Asp	Asn	Glu	Ser	Arg	Arg 605	Aap	Ser	Leu
Phe	Val 610	Pro	Arg	Arg	His	Gly 615	Glu	Arg	Arg	Asn	Ser 620	Asn	Leu	Ser	Gln
Thr 625	Ser	Arg	Ser	Ser	Arg 630	Met	Leu	Ala	Val	Phe 635	Pro	Ala	Asn	Gly	Lys 640
Met	His	Ser	Thr	Val 645	Asp	Cys	Asn	Gly	Val 650	Val	Ser	Leu	Val	Gly 655	Gly
Pro	Ser	Val	Pro 660	Thr	Ser	Pro	Val	Gly 665	Gln	Leu	Leu	Pro	Glu 670	Val	Ile
Ile	Asp	Lys 675	Pro	Ala	Thr	Asp	Asp 680	Asn	Gly	Thr	Thr	Thr 685	Glu	Thr	Glu
Met	Arg 690	Lys	Arg	Arg	Ser	Ser 695	Ser	Phe	His	Val	Ser 700	Met	Asp	Phe	Leu
Glu 705	Asp	Pro	Ser	Gln	Arg 710	Gln	Arg	Ala	Met	Ser 715	Ile	Ala	Ser	Ile	Leu 720
Thr	Asn	Thr	Val	Glu 725	Glu	Leu	Glu	Glu	Ser 730	Arg	Gln	Lys	Cys	Pro 735	Pro
Cys	Trp	Tyr	Lys 740	Phe	Ser	Asn	Ile	Phe 745	Leu	Ile	Trp	Asp	Сув 750	Ser	Pro
Tyr	Trp	Leu 755	Lys	Val	Lys	His	Val 760	Val	Asn	Leu	Val	Val 765	Met	Asp	Pro
Phe	Val 770	Asp	Leu	Ala	Ile	Thr 775	Ile	Сув	Ile	Val	Leu 780	Asn	Thr	Leu	Phe
Met 785	Ala	Met	Glu	His	Tyr 790	Pro	Met	Thr	Asp	His 795	Phe	Asn	Asn	Val	Leu 800
Thr	Val	Gly	Asn	Leu 805	Val	Phe	Thr	Gly	Ile 810	Phe	Thr	Ala	Glu	Met 815	Phe
Leu	Lys	Ile	Ile 820	Ala	Met	Asp	Pro	Tyr 825	Tyr	Tyr	Phe	Gln	Glu 830	Gly	Trp
Asn	Ile	Phe 835	Asp	Gly	Phe	Ile	Val 840	Thr	Leu	Ser	Leu	Val 845	Glu	Leu	Gly
Leu	Ala 850	Asn	Val	Glu	Gly	Leu 855	Ser	Val	Leu	Arg	Ser 860	Phe	Arg	Leu	Leu
Arg 865	Val	Phe	Lys	Leu	Ala 870	Lys	Ser	Trp	Pro	Thr 875	Leu	Asn	Met	Leu	Ile 880
Lys	Ile	Ile	Gly	Asn 885	Ser	Val	Gly	Ala	Leu 890	Gly	Asn	Leu	Thr	Leu 895	Val
Leu	Ala	Ile	Ile	Val	Phe	Ile	Phe	Ala	Val	Val	Gly	Met	Gln	Leu	Phe

												_	cor	ıtir	iuec	i	
			900					90	5					910)		
Gly	Lys	Ser 915	Tyr	Lys	Asp	СЛа	Val 920		s L	ys 1	[le	Ala	Ser 925		р Су:	3 Gln	
Leu	Pro 930	Arg	Trp	His	Met	Asn 935	Asp) Ph	ie Pi	he F	lis	Ser 940		e Let	ı Ile	e Val	
Phe 945	Arg	Val	Leu	Cys	Gly 950	Glu	Trp) Il	e G		Thr 955	Met	Trp	As]	о Су:	Met 960	
Glu	Val	Ala	Gly	Gln 965	Ala	Met	Суя	: Le		hr \ 70	/al	Phe	Met	: Met	Va: 97!	l Met	
Val	Ile	Gly	Asn 980	Leu	Val	Val	Leu	1 As		eu E	Phe	Leu	Ala	Let 990		ı Leu	
Ser	Ser	Phe 995	Ser	Ala	Asp	Asn	Leu 100		la 2	Ala	Thr	As	_	sp 2 005	Aap i	Asn Glu	
Met	Asn 1010	Asr	ı Lev	ı Glr	ı Ile	e Ala 10:		al	Asp	Arg	у Ме		is 020	Lys	Gly	Val	
Ala	Tyr 1025	Val	L Lys	arç	J Lys	3 Ile 103		yr	Glu	Phe	∍ Il		ln 035	Gln	Ser	Phe	
Ile	Arg 1040		Glr	ı Lys	∃ Ile	e Let 104		ap	Glu	Ile	∍ Ьу		ro 050	Leu	Asp	Aap	
Leu	Asn 1055	Asr	і Гу	s Lys	s Ası	Ser 100		Дa	Met	Ser	As		is 065	Thr	Thr	Glu	
Ile	Gly 1070	Lys	a Ası	Leu	ı Asp	7 Ty:		eu	Lys	Asp	V a		sn 080	Gly	Thr	Thr	
Ser	Gly 1085	Ile 5	e Gly	/ Thi	: Gly	7 Ser 109		er	Val	Glu	ι Ьу		yr 095	Ile	Ile	Asp	
Glu	Ser 1100		туз	. Met	: Sei	r Phe 110		le	Asn	Asr	n Pr		er 110	Leu	Thr	Val	
Thr	Val 1115	Pro) Ile	e Ala	a Val	l Gly 112		lu	Ser	Asp) Ph		lu 125	Asn	Leu	Asn	
Thr	Glu 1130		Phe	e Sei	Sei	r Glu 113		er	Asp	Leu	ı Gl		lu 140	Ser	Lys	Glu	
Lys	Leu 1145	Asr	ı Glu	ı Sei	: Sei	r Sei 119		er	Ser	Glu	ı Gl		er 155	Thr	Val	Aap	
Ile	Gly 1160	Ala	a Pro	Va]	Glu	ı Glu 116		Sln	Pro	Val	L Va		lu 170	Pro	Glu	Glu	
	Leu 1175	Glu 5	ı Pro			a Cys 118		he					ys 185		Gln	Arg	
Phe	Lys 1190	Суя	з Суя	Glr	ı Ile	e Ası 119		al	Glu	Glu	ı Gl		rg 200	Gly	Lys	Gln	
Trp	Trp 1205	Asr	ı Lev	ı Arç	g Arg	g Th: 12:		Aa	Phe	Arg	j Il		al 215	Glu	His	Asn	
Trp	Phe 1220	Glu	ı Thi	r Phe	e Ile	e Val		he	Met	Ile	e Le		eu 230	Ser	Ser	Gly	
Ala	Leu 1235	Ala	a Phe	e Glu	ı Asp	2 Ile 124		yr	Ile	Asp	Gl		rg 245	Lys	Thr	Ile	
Lys	Thr 1250	Met	: Le	ı Glu	ι Туз	r Ala 125		ap	Lys	Val	l Ph		hr 260	Tyr	Ile	Phe	
Ile	Leu 1265	Glu 5	ı Met	: Lev	ı Leı	1 Ly:		rp	Val	Ala	а Ту		ly 275	Tyr	Gln	Thr	
Tyr	Phe 1280		Ası	n Ala	Tr	Cys 128		rp	Leu	Asp) Ph		eu 290	Ile	Val	Asp	

Val	Ser 1295	Leu	Val	Ser	Leu	Thr 1300		Asn	Ala	Leu	Gly 1305	Tyr	Ser	Glu
Leu	Gly 1310	Ala	Ile	Lys	Ser	Leu 1315		Thr	Leu	Arg	Ala 1320	Leu	Arg	Pro
Leu	Arg 1325	Ala	Leu	Ser	Arg	Phe 1330		Gly	Met	Arg	Val 1335	Val	Val	Asn
Ala	Leu 1340	Leu	Gly	Ala	Ile	Pro 1345		Ile	Met	Asn	Val 1350	Leu	Leu	Val
CAa	Leu 1355	Ile	Phe	Trp	Leu	Ile 1360		Ser	Ile	Met	Gly 1365	Val	Asn	Leu
Phe	Ala 1370	Gly	Lys	Phe	Tyr	His 1375		Ile	Asn	Thr	Thr 1380		Gly	Asp
Arg	Phe 1385	Asp	Ile	Glu	Asp	Val 1390		Asn	His	Thr	Asp 1395	Cys	Leu	Lys
Leu	Ile 1400	Glu	Arg	Asn	Glu	Thr 1405	Ala	Arg	Trp	Lys	Asn 1410	Val	Lys	Val
Asn	Phe 1415	Asp	Asn	Val	Gly	Phe 1420		Tyr	Leu	Ser	Leu 1425	Leu	Gln	Val
Ala	Thr 1430	Phe	Lys	Gly	Trp	Met 1435		Ile	Met	Tyr	Ala 1440	Ala	Val	Asp
Ser	Arg 1445	Asn	Val	Glu	Leu	Gln 1450		ГЛа	Tyr	Glu	Glu 1455	Ser	Leu	Tyr
Met	Tyr 1460	Leu	Tyr	Phe	Val	Ile 1465		Ile	Ile	Phe	Gly 1470	Ser	Phe	Phe
Thr	Leu 1475	Asn	Leu	Phe	Ile	Gly 1480		Ile	Ile	Asp	Asn 1485	Phe	Asn	Gln
Gln	Lys 1490	Lys	Lys	Phe	Gly	Gly 1495		Asp	Ile	Phe	Met 1500	Thr	Glu	Glu
Gln	Lys 1505	ГÀЗ	Tyr	Tyr	Asn	Ala 1510		ГÀЗ	Lys	Leu	Gly 1515	Ser	ГÀЗ	ГÀз
Pro	Gln 1520	Lys	Pro	Ile	Pro	Arg 1525		Gly	Asn	Lys	Phe 1530	Gln	Gly	Met
Val	Phe 1535	Asp	Phe	Val	Thr	Arg 1540		Val	Phe	Asp	Ile 1545	Ser	Ile	Met
Ile	Leu 1550	Ile	Cys	Leu	Asn	Met 1555		Thr	Met	Met	Val 1560	Glu	Thr	Asp
_	Gln 1565		Glu	Tyr		Thr 1570		Ile	Leu		Arg 1575		Asn	Leu
Val	Phe 1580	Ile	Val	Leu	Phe	Thr 1585	Gly	Glu	Cys	Val	Leu 1590	Lys	Leu	Ile
Ser	Leu 1595	Arg	His	Tyr	Tyr	Phe 1600		Ile	Gly	Trp	Asn 1605	Ile	Phe	Asp
Phe	Val 1610	Val	Val	Ile	Leu	Ser 1615	Ile	Val	Gly	Met	Phe 1620	Leu	Ala	Glu
Leu	Ile 1625	Glu	ГÀв	Tyr	Phe	Val 1630		Pro	Thr	Leu	Phe 1635	Arg	Val	Ile
Arg	Leu 1640	Ala	Arg	Ile	Gly	Arg 1645	Ile	Leu	Arg	Leu	Ile 1650	ГЛа	Gly	Ala
Lys	Gly 1655	Ile	Arg	Thr	Leu	Leu 1660		Ala	Leu	Met	Met 1665	Ser	Leu	Pro
Ala	Leu 1670	Phe	Asn	Ile	Gly	Leu 1675		Leu	Phe	Leu	Val 1680	Met	Phe	Ile

Tyr	Ala 1685	Ile	Phe	Gly	Met	Ser 1690	Asn	Phe	Ala	Tyr	Val 1695	Lys	Arg	Glu
Val	Gly 1700	Ile	Asp	Asp	Met	Phe 1705	Asn	Phe	Glu	Thr	Phe 1710	Gly	Asn	Ser
Met	Ile 1715	CAa	Leu	Phe	Gln	Ile 1720		Thr	Ser	Ala	Gly 1725	Trp	Asp	Gly
Leu	Leu 1730	Ala	Pro	Ile	Leu	Asn 1735	Ser	Lys	Pro	Pro	Asp 1740	CÀa	Asp	Pro
Asn	Lys 1745	Val	Asn	Pro	Gly	Ser 1750	Ser	Val	Lys	Gly	Asp 1755	Cys	Gly	Asn
Pro	Ser 1760	Val	Gly	Ile	Phe	Phe 1765	Phe	Val	Ser	Tyr	Ile 1770	Ile	Ile	Ser
Phe	Leu 1775	Val	Val	Val	Asn	Met 1780		Ile	Ala	Val	Ile 1785	Leu	Glu	Asn
Phe	Ser 1790	Val	Ala	Thr	Glu	Glu 1795	Ser	Ala	Glu	Pro	Leu 1800	Ser	Glu	Asp
Asp	Phe 1805	Glu	Met	Phe	Tyr	Glu 1810	Val	Trp	Glu	Lys	Phe 1815	Asp	Pro	Asp
Ala	Thr 1820	Gln	Phe	Met	Glu	Phe 1825	Glu	Lys	Leu	Ser	Gln 1830	Phe	Ala	Ala
Ala	Leu 1835	Glu	Pro	Pro	Leu	Asn 1840	Leu	Pro	Gln	Pro	Asn 1845	Lys	Leu	Gln
Leu	Ile 1850	Ala	Met	Asp	Leu	Pro 1855	Met	Val	Ser	Gly	Asp 1860	Arg	Ile	His
Cya	Leu 1865	Asp	Ile	Leu	Phe	Ala 1870	Phe	Thr	Lys	Arg	Val 1875	Leu	Gly	Glu
Ser	Gly 1880	Glu	Met	Asp	Ala	Leu 1885	Arg	Ile	Gln	Met	Glu 1890	Glu	Arg	Phe
Met	Ala 1895	Ser	Asn	Pro	Ser	Lys 1900	Val	Ser	Tyr	Gln	Pro 1905	Ile	Thr	Thr
Thr	Leu 1910	Lys	Arg	Lys	Gln	Glu 1915	Glu	Val	Ser	Ala	Val 1920	Ile	Ile	Gln
Arg	Ala 1925	Tyr	Arg	Arg	His	Leu 1930	Leu	Lys	Arg	Thr	Val 1935	Lys	Gln	Ala
Ser	Phe 1940	Thr	Tyr	Asn	Lys	Asn 1945	ГЛа	Ile	Lys	Gly	Gly 1950	Ala	Asn	Leu
Leu	Ile 1955	ГÀа	Glu	Asp	Met	Ile 1960	Ile	Asp	Arg	Ile	Asn 1965	Glu	Asn	Ser
Ile	Thr 1970	Glu	Lys	Thr	Asp	Leu 1975	Thr	Met	Ser	Thr	Ala 1980	Ala	Cys	Pro
Pro	Ser 1985	Tyr	Asp	Arg	Val	Thr 1990	ГХа	Pro	Ile	Val	Glu 1995	ГЛа	His	Glu
Gln	Glu 2000	Gly	Lys	Asp	Glu	Lys 2005	Ala	Lys	Gly	Lys				
<211 <211 <211	0> SE(1> LEI 2> TYI 3> OR(NGTH PE: I GANIS	: 603 DNA SM: I	30 Homo	sap:	iens								

<400> SEQUENCE: 2

tctcttgcgg	ctattgaaag	acgcattgca	gaagaaaagg	caaagaatcc	caaaccagac	120
aaaaaagatg	acgacgaaaa	tggcccaaag	ccaaatagtg	acttggaagc	tggaaagaac	180
cttccattta	tttatggaga	cattcctcca	gagatggtgt	cagagcccct	ggaggacctg	240
gacccctact	atatcaataa	gaaaactttt	atagtattga	ataaagggaa	ggccatcttc	300
cggttcagtg	ccacctctgc	cctgtacatt	ttaactccct	tcaatcctct	taggaaaata	360
gctattaaga	ttttggtaca	ttcattattc	agcatgctaa	ttatgtgcac	tattttgaca	420
aactgtgtgt	ttatgacaat	gagtaaccct	cctgattgga	caaagaatgt	agaatacacc	480
ttcacaggaa	tatatacttt	tgaatcactt	ataaaaatta	ttgcaagggg	attctgttta	540
gaagatttta	ctttccttcg	ggatccatgg	aactggctcg	atttcactgt	cattacattt	600
gcgtacgtca	cagagtttgt	ggacctgggc	aatgtctcgg	cattgagaac	attcagagtt	660
ctccgagcat	tgaagacgat	ttcagtcatt	ccaggcctga	aaaccattgt	gggagccctg	720
atccagtctg	tgaagaagct	ctcagatgta	atgatcctga	ctgtgttctg	tctgagcgta	780
tttgctctaa	ttgggctgca	gctgttcatg	ggcaacctga	ggaataaatg	tatacaatgg	840
cctcccacca	atgetteett	ggaggaacat	agtatagaaa	agaatataac	tgtgaattat	900
aatggtacac	ttataaatga	aactgtcttt	gagtttgact	ggaagtcata	tattcaagat	960
tcaagatatc	attatttcct	ggagggtttt	ttagatgcac	tactatgtgg	aaatagctct	1020
gatgcaggcc	aatgtccaga	gggatatatg	tgtgtgaaag	ctggtagaaa	tcccaattat	1080
ggctacacaa	gctttgatac	cttcagttgg	gcttttttgt	ccttgtttcg	actaatgact	1140
caggacttct	gggaaaatct	ttatcaactg	acattacgtg	ctgctgggaa	aacgtacatg	1200
atattttttg	tattggtcat	tttcttgggc	tcattctacc	taataaattt	gatcctggct	1260
gtggtggcca	tggcctacga	ggaacagaat	caggccacct	tggaagaagc	agaacagaaa	1320
gaggccgaat	ttcagcagat	gattgaacag	cttaaaaagc	aacaggaggc	agctcagcag	1380
gcagcaacgg	caactgcctc	agaacattcc	agagagccca	gtgcagcagg	caggctctca	1440
gacageteat	ctgaagcctc	taagttgagt	tccaagagtg	ctaaggaaag	aagaaatcgg	1500
aggaagaaaa	gaaaacagaa	agagcagtct	ggtggggaag	agaaagatga	ggatgaattc	1560
caaaaatctg	aatctgagga	cagcatcagg	aggaaaggtt	ttegettete	cattgaaggg	1620
aaccgattga	catatgaaaa	gaggtactcc	tecceacace	agtctttgtt	gagcatccgt	1680
ggctccctat	tttcaccaag	gcgaaatagc	agaacaagcc	ttttcagctt	tagagggcga	1740
gcaaaggatg	tgggatctga	gaacgacttc	gcagatgatg	agcacagcac	ctttgaggat	1800
aacgagagcc	gtagagattc	cttgtttgtg	ccccgacgac	acggagagag	acgcaacagc	1860
aacctgagtc	agaccagtag	gtcatcccgg	atgctggcag	tgtttccagc	gaatgggaag	1920
atgcacagca	ctgtggattg	caatggtgtg	gtttccttgg	ttggtggacc	ttcagttcct	1980
acategeetg	ttggacagct	tctgccagag	gtgataatag	ataagccagc	tactgatgac	2040
aatggaacaa	ccactgaaac	tgaaatgaga	aagagaaggt	caagttcttt	ccacgtttcc	2100
atggactttc	tagaagatcc	ttcccaaagg	caacgagcaa	tgagtatagc	cagcattcta	2160
acaaatacag	tagaagaact	tgaagaatcc	aggcagaaat	gcccaccctg	ttggtataaa	2220
ttttccaaca	tattcttaat	ctgggactgt	tctccatatt	ggttaaaagt	gaaacatgtt	2280
gtcaacctgg	ttgtgatgga	cccatttgtt	gacctggcca	tcaccatctg	tattgtctta	2340
aatactcttt	tcatggccat	ggagcactat	ccaatgacgg	accatttcaa	taatgtgctt	2400

acagtaggaa	acttggtttt	cactgggatc	tttacagcag	aaatgtttct	gaaaattatt	2460
gccatggatc	cttactatta	tttccaagaa	ggctggaata	tctttgacgg	ttttattgtg	2520
acgcttagcc	tggtagaact	tggactcgcc	aatgtggaag	gattatctgt	tctccgttca	2580
tttcgattgc	tgcgagtttt	caagttggca	aaatcttggc	caacgttaaa	tatgctaata	2640
aagatcatcg	gcaattccgt	gggggctctg	ggaaatttaa	ccctcgtctt	ggccatcatc	2700
gtcttcattt	ttgccgtggt	cggcatgcag	ctctttggta	aaagctacaa	agattgtgtc	2760
tgcaagatcg	ccagtgattg	tcaactccca	cgctggcaca	tgaatgactt	cttccactcc	2820
ttcctgattg	tgttccgcgt	getgtgtggg	gagtggatag	agaccatgtg	ggactgtatg	2880
gaggttgctg	gtcaagccat	gtgccttact	gtcttcatga	tggtcatggt	gattggaaac	2940
ctagtggtcc	tgaatctctt	tetggeettg	cttctgagct	catttagtgc	agacaacctt	3000
gcagccactg	atgatgataa	tgaaatgaat	aatctccaaa	ttgctgtgga	taggatgcac	3060
aaaggagtag	cttatgtgaa	aagaaaaata	tatgaattta	ttcaacagtc	cttcattagg	3120
aaacaaaaga	ttttagatga	aattaaacca	cttgatgatc	taaacaacaa	gaaagacagt	3180
tgtatgtcca	atcatacaac	agaaattggg	aaagatcttg	actatcttaa	agatgtaaat	3240
ggaactacaa	gtggtatagg	aactggcagc	agtgttgaaa	aatacattat	tgatgaaagt	3300
gattacatgt	cattcataaa	caaccccagt	cttactgtga	ctgtaccaat	tgctgtagga	3360
gaatctgact	ttgaaaattt	aaacacggaa	gactttagta	gtgaatcgga	tctggaagaa	3420
agcaaagaga	aactgaatga	aagcagtagc	tcatcagaag	gtagcactgt	ggacatcggc	3480
gcacctgtag	aagaacagcc	cgtagtggaa	cctgaagaaa	ctcttgaacc	agaagcttgt	3540
ttcactgaag	gctgtgtaca	aagattcaag	tgttgtcaaa	tcaatgtgga	agaaggcaga	3600
ggaaaacaat	ggtggaacct	gagaaggacg	tgtttccgaa	tagttgaaca	taactggttt	3660
gagaccttca	ttgttttcat	gattctcctt	agtagtggtg	ctctggcatt	tgaagatata	3720
tatattgatc	agcgaaagac	gattaagacg	atgttggaat	atgctgacaa	ggttttcact	3780
tacattttca	ttctggaaat	gcttctaaaa	tgggtggcat	atggctatca	aacatatttc	3840
accaatgcct	ggtgttggct	ggacttctta	attgttgatg	tttcattggt	cagtttaaca	3900
gcaaatgcct	tgggttactc	agaacttgga	gccatcaaat	ctctcaggac	actaagagct	3960
ctgagacctc	taagagcctt	atctcgattt	gaagggatga	gggtggttgt	gaatgccctt	4020
ttaggagcaa	ttccatccat	catgaatgtg	cttctggttt	gtcttatatt	ctggctaatt	4080
ttcagcatca	tgggcgtaaa	tttgtttgct	ggcaaattct	accactgtat	taacaccaca	4140
actggtgaca	ggtttgacat	cgaagacgtg	aataatcata	ctgattgcct	aaaactaata	4200
gaaagaaatg	agactgctcg	atggaaaaat	gtgaaagtaa	actttgataa	tgtaggattt	4260
gggtatctct	ctttgcttca	agttgccaca	ttcaaaggat	ggatggatat	aatgtatgca	4320
gcagttgatt	ccagaaatgt	ggaactccag	cctaagtatg	aagaaagtct	gtacatgtat	4380
ctttactttg	ttattttcat	catctttggg	tccttcttca	ccttgaacct	gtttattggt	4440
gtcatcatag	ataatttcaa	ccagcagaaa	aagaagtttg	gaggtcaaga	catctttatg	4500
acagaagaac	agaagaaata	ctataatgca	atgaaaaaat	taggatcgaa	aaaaccgcaa	4560
aagcctatac	ctcgaccagg	aaacaaattt	caaggaatgg	tctttgactt	cgtaaccaga	4620
caagtttttg	acataagcat	catgattctc	atctgtctta	acatggtcac	aatgatggtg	4680

gaaacagacg	accagagega	acacgegace	. accaeceege	cacgeaceaa ceeggegeee	1710
attgtgctat	ttactggaga	gtgtgtactg	g aaactcatct	ctctacgcca ttattatttt	4800
accattggat	ggaatatttt	tgattttgtg	gttgtcattc	tctccattgt aggtatgttt	4860
cttgccgagc	tgatagaaaa	gtatttcgtg	tcccctaccc	tgttccgagt gatccgtctt	4920
gctaggattg	gccgaatcct	acgtctgatc	: aaaggagcaa	aggggateeg caegetgete	4980
tttgctttga	tgatgtccct	tcctgcgttg	g tttaacatcg	gcctcctact cttcctagtc	5040
atgttcatct	acgccatctt	tgggatgtcc	aactttgcct	atgttaagag ggaagttggg	5100
atcgatgaca	tgttcaactt	tgagaccttt	ggcaacagca	tgatctgcct attccaaatt	5160
acaacctctg	ctggctggga	tggattgcta	gcacccattc	tcaacagtaa gccacccgac	5220
tgtgacccta	ataaagttaa	ccctggaago	: tcagttaagg	gagactgtgg gaacccatct	5280
gttggaattt	tcttttttgt	cagttacato	atcatatcct	tcctggttgt ggtgaacatg	5340
tacatcgcgg	tcatcctgga	gaacttcagt	gttgctactg	aagaaagtgc agagcctctg	5400
agtgaggatg	actttgagat	gttctatgag	gtttgggaga	agtttgatcc cgatgcaact	5460
cagttcatgg	aatttgaaaa	attatctcag	tttgcagctg	cgcttgaacc gcctctcaat	5520
ctgccacaac	caaacaaact	ccagctcatt	gccatggatt	tgcccatggt gagtggtgac	5580
cggatccact	gtcttgatat	cttatttgct	tttacaaagc	gggttctagg agagagtgga	5640
gagatggatg	ctctacgaat	acagatggaa	gagcgattca	tggcttccaa tccttccaag	5700
gtctcctatc	agccaatcac	tactacttta	aaacgaaaac	aagaggaagt atctgctgtc	5760
attattcagc	gtgcttacag	acgccacctt	ttaaagcgaa	ctgtaaaaca agcttccttt	5820
acgtacaata	aaaacaaaat	caaaggtggg	gctaatcttc	ttataaaaga agacatgata	5880
attgacagaa	taaatgaaaa	ctctattaca	gaaaaaactg	atctgaccat gtccactgca	5940
gcttgtccac	cttcctatga	ccgggtgaca	aagccaattg	tggaaaaaca tgagcaagaa	6000
ggcaaagatg	aaaaagccaa	agggaaataa	ι		6030
	TH: 2512 PRT NISM: Homo	sapiens			
<400> SEQUE	ENCE: 3				
Met Ala Arg	Phe Gly A	sp Glu Met	Pro Ala Arg 10	Tyr Gly Gly Gly 15	
Ser Gly Ala	a Ala Ala G 20	ly Val Val	Val Gly Ser 25	Gly Gly Gly Arg Gly 30	
Ala Gly Gly 35	/ Ser Arg G	ln Gly Gly 40	Gln Pro Gly	Ala Gln Arg Met Tyr 45	
Lys Gln Ser 50	Met Ala G	ln Arg Ala 55	Arg Thr Met	Ala Leu Tyr Asn Pro 60	
Ile Pro Val	. Arg Gln A	_	Thr Val Asn 75	Arg Ser Leu Phe Leu 80	
Phe Ser Glu	ı Asp Asn V	al Val Arg	Lys Tyr Ala 90	Lys Lys Ile Thr Glu 95	
Trp Pro Pro	Phe Glu Ty	yr Met Ile	Leu Ala Thr 105	Ile Ile Ala Asn Cys 110	

gaaacagatg accagagtga atatgtgact accattttgt cacgcatcaa tctggtgttc 4740

Met	Ser 130	Glu	Arg	Leu	Asp	Asp 135	Thr	Glu	Pro	Tyr	Phe	Ile	Gly	Ile	Phe
Суs 145	Phe	Glu	Ala	Gly	Ile 150	ГÀз	Ile	Ile	Ala	Leu 155	Gly	Phe	Ala	Phe	His 160
rys	Gly	Ser	Tyr	Leu 165	Arg	Asn	Gly	Trp	Asn 170	Val	Met	Asp	Phe	Val 175	Val
Val	Leu	Thr	Gly 180	Ile	Leu	Ala	Thr	Val 185	Gly	Thr	Glu	Phe	Asp 190	Leu	Arg
Thr	Leu	Arg 195	Ala	Val	Arg	Val	Leu 200	Arg	Pro	Leu	Lys	Leu 205	Val	Ser	Gly
Ile	Pro 210	Ser	Leu	Gln	Val	Val 215	Leu	Lys	Ser	Ile	Met 220	Lys	Ala	Met	Ile
Pro 225	Leu	Leu	Gln	Ile	Gly 230	Leu	Leu	Leu	Phe	Phe 235	Ala	Ile	Leu	Ile	Phe 240
Ala	Ile	Ile	Gly	Leu 245	Glu	Phe	Tyr	Met	Gly 250	ГЛа	Phe	His	Thr	Thr 255	Cys
Phe	Glu	Glu	Gly 260	Thr	Asp	Asp	Ile	Gln 265	Gly	Glu	Ser	Pro	Ala 270	Pro	Cys
Gly	Thr	Glu 275	Glu	Pro	Ala	Arg	Thr 280	Cys	Pro	Asn	Gly	Thr 285	Lys	Cys	Gln
Pro	Tyr 290	Trp	Glu	Gly	Pro	Asn 295	Asn	Gly	Ile	Thr	Gln 300	Phe	Asp	Asn	Ile
Leu 305	Phe	Ala	Val	Leu	Thr 310	Val	Phe	Gln	Cys	Ile 315	Thr	Met	Glu	Gly	Trp 320
Thr	Asp	Leu	Leu	Tyr 325	Asn	Ser	Asn	Asp	Ala 330	Ser	Gly	Asn	Thr	Trp 335	Asn
Trp	Leu	Tyr	Phe 340	Ile	Pro	Leu	Ile	Ile 345	Ile	Gly	Ser	Phe	Phe 350	Met	Leu
Asn	Leu	Val 355	Leu	Gly	Val	Leu	Ser 360	Gly	Glu	Phe	Ala	Lys 365	Glu	Arg	Glu
Arg	Val 370	Glu	Asn	Arg	Arg	Ala 375	Phe	Leu	Lys	Leu	Arg 380	Arg	Gln	Gln	Gln
Ile 385	Glu	Arg	Glu	Leu	Asn 390	Gly	Tyr	Met	Glu	Trp 395	Ile	Ser	Lys	Ala	Glu 400
Glu	Val	Ile	Leu	Ala 405	Glu	Asp	Glu	Thr	Asp 410	Gly	Glu	Gln	Arg	His 415	Pro
Phe	Asp	Gly	Ala 420	Leu	Arg	Arg	Thr	Thr 425	Ile	Lys	Lys	Ser	Lys 430	Thr	Asp
Leu	Leu	Asn 435	Pro	Glu	Glu	Ala	Glu 440	Asp	Gln	Leu	Ala	Asp 445	Ile	Ala	Ser
Val	Gly 450	Ser	Pro	Phe	Ala	Arg 455	Ala	Ser	Ile	Lys	Ser 460	Ala	Lys	Leu	Glu
Asn 465	Ser	Thr	Phe	Phe	His 470	Lys	Lys	Glu	Arg	Arg 475	Met	Arg	Phe	Tyr	Ile 480
Arg	Arg	Met	Val	Lys 485	Thr	Gln	Ala	Phe	Tyr 490	Trp	Thr	Val	Leu	Ser 495	Leu
Val	Ala	Leu	Asn 500	Thr	Leu	Cys	Val	Ala 505	Ile	Val	His	Tyr	Asn 510	Gln	Pro
Glu	Trp	Leu 515	Ser	Asp	Phe	Leu	Tyr 520	Tyr	Ala	Glu	Phe	Ile 525	Phe	Leu	Gly
Leu	Phe	Met	Ser	Glu	Met	Phe	Ile	Lys	Met	Tyr	Gly	Leu	Gly	Thr	Arg

	530					535					540				
Pro 545	Tyr	Phe	His	Ser	Ser 550	Phe	Asn	Сув	Phe	Asp 555	Сла	Gly	Val	Ile	Ile 560
Gly	Ser	Ile	Phe	Glu 565	Val	Ile	Trp	Ala	Val 570	Ile	Lys	Pro	Gly	Thr 575	Ser
Phe	Gly	Ile	Ser 580	Val	Leu	Arg	Ala	Leu 585	Arg	Leu	Leu	Arg	Ile 590	Phe	Lys
Val	Thr	Lys 595	Tyr	Trp	Ala	Ser	Leu 600	Arg	Asn	Leu	Val	Val 605	Ser	Leu	Leu
Asn	Ser 610	Met	Lys	Ser	Ile	Ile 615	Ser	Leu	Leu	Phe	Leu 620	Leu	Phe	Leu	Phe
Ile 625	Val	Val	Phe	Ala	Leu 630	Leu	Gly	Met	Gln	Leu 635	Phe	Gly	Gly	Gln	Phe 640
Asn	Phe	Asp	Glu	Gly 645	Thr	Pro	Pro	Thr	Asn 650	Phe	Asp	Thr	Phe	Pro 655	Ala
Ala	Ile	Met	Thr 660	Val	Phe	Gln	Ile	Leu 665	Thr	Gly	Glu	Asp	Trp 670	Asn	Glu
Val	Met	Tyr 675	Asp	Gly	Ile	ГÀв	Ser 680	Gln	Gly	Gly	Val	Gln 685	Gly	Gly	Met
Val	Phe 690	Ser	Ile	Tyr	Phe	Ile 695	Val	Leu	Thr	Leu	Phe 700	Gly	Asn	Tyr	Thr
Leu 705	Leu	Asn	Val	Phe	Leu 710	Ala	Ile	Ala	Val	Asp 715	Asn	Leu	Ala	Asn	Ala 720
Gln	Glu	Leu	Thr	Lys 725	Val	Glu	Ala	Asp	Glu 730	Gln	Glu	Glu	Glu	Glu 735	Ala
Ala	Asn	Gln	Lys 740	Leu	Ala	Leu	Gln	Lys 745	Ala	ГÀа	Glu	Val	Ala 750	Glu	Val
Ser	Pro	Leu 755	Ser	Ala	Ala	Asn	Met 760	Ser	Ile	Ala	Val	Lys 765	Glu	Gln	Gln
Lys	Asn 770	Gln	ГЛа	Pro	Ala	Lys 775	Ser	Val	Trp	Glu	Gln 780	Arg	Thr	Ser	Glu
Met 785	Arg	Lys	Gln	Asn	Leu 790	Leu	Ala	Ser	Arg	Glu 795	Ala	Leu	Tyr	Asn	Glu 800
Met	Asp	Pro	Asp	Glu 805	Arg	Trp	Lys	Ala	Ala 810	Tyr	Thr	Arg	His	Leu 815	Arg
Pro	Asp	Met	Lys 820	Thr	His	Leu	Asp	Arg 825	Pro	Leu	Val	Val	Asp 830	Pro	Gln
Glu	Asn	Arg 835	Asn	Asn	Asn	Thr	Asn 840	Lys	Ser	Arg	Ala	Ala 845	Glu	Pro	Thr
Val	850	Gln	Arg	Leu	Gly	Gln 855	Gln	Arg	Ala	Glu	Asp	Phe	Leu	Arg	Lys
Gln 865	Ala	Arg	Tyr	His	870	Arg	Ala	Arg	Asp	Pro 875	Ser	Gly	Ser	Ala	Gly 880
Leu	Asp	Ala	Arg	Arg 885	Pro	Trp	Ala	Gly	Ser 890	Gln	Glu	Ala	Glu	Leu 895	Ser
Arg	Glu	Gly	Pro 900	Tyr	Gly	Arg	Glu	Ser 905	Asp	His	His	Ala	Arg 910	Glu	Gly
Ser	Leu	Glu 915	Gln	Pro	Gly	Phe	Trp 920	Glu	Gly	Glu	Ala	Glu 925	Arg	Gly	Lys
Ala	Gly 930	Asp	Pro	His	Arg	Arg 935	His	Val	His	Arg	Gln 940	Gly	Gly	Ser	Arg

Glu 945	Ser	Arg	Ser	_	Ser : 950	Pro A	rg Tl	nr G		la Ai	ap Gly	y Glı	u His	s Arg 960
Arg	His	Arg	Ala	His 965	Arg I	Arg P:	ro G		lu G: 70	lu G	ly Pro	o Glu	u Ası 97!	
Ala	Glu	Arg	Arg 980	Ala	Arg 1	His A		lu G: 35	ly S	er A:	rg Pro	990		g Gly
Gly	Glu	Gly 995	Glu	Gly	Glu (ro 2	Asp (Gly (Gly (rg 2 005	Arg A	Arg Arg
His	Arg 1010		g Gly	⁄ Ala	Pro	Ala 1015		Tyr	Glu	Gly	Asp 1020	Ala	Arg	Arg
Glu	Asp 1025		Glu	ı Arg	Arg	His 1030		Arg	Arg	Lys	Glu 1035	Asn	Gln	Gly
Ser	Gly 1040		l Pro	Val	. Ser	Gly 1045		Asn	Leu	Ser	Thr 1050		Arg	Pro
Ile	Gln 1055		ı Asp	Leu	Gly	Arg 1060		Asp	Pro	Pro	Leu 1065	Ala	Glu	Asp
Ile	Asp 1070		n Met	: Lys	Asn	Asn 1075		Leu	Ala	Thr	Ala 1080		Ser	Ala
Ala	Pro 1085		s Gly	ser Ser	Leu	Gly 1090		Ala	Gly	Leu	Pro 1095	Gln	Ser	Pro
Ala	1100		Gly	/ Asn	. Ser	Thr 1105		Pro	Gly	Pro	Met 1110		Ala	Ile
Pro	Ala 1115		: Ala	Thr	Asn	Pro 1120		Asn	Ala	Ala	Ser 1125	Arg	Arg	Thr
Pro	Asn 1130		n Pro	Gly	Asn	Pro 1135		Asn	Pro	Gly	Pro 1140	Pro	ГÀа	Thr
Pro	Glu 1145		n Ser	Leu	ılle	Val 1150		Asn	Pro	Ser	Gly 1155		Gln	Thr
Asn	Ser 1160		a Lys	Thr	Ala	Arg 1165		Pro	Asp	His	Thr 1170		Val	Asp
Ile	Pro 1175) Ala	cys	Pro	Pro 1180		Leu	Asn	His	Thr 1185	Val	Val	Gln
Val	Asn 1190		e Asn	n Ala	. Asn	Pro 1195		Pro	Leu	Pro	Lys 1200		Glu	Glu
Glu	Lys 1205		Glu	ı Glu	Glu	Glu 1210		Asp	Arg	Gly	Glu 1215	Asp	Gly	Pro
	Pro 1220		Pro			Ser 1225		Met			Leu 1230		Thr	Thr
Asn	Pro 1235		ı Arg	g Arg	, Leu	Cys 1240	His	Tyr	Ile	Leu	Asn 1245	Leu	Arg	Tyr
Phe	Glu 1250		Cys	; Ile	e Leu	Met 1255	Val	Ile	Ala	Met	Ser 1260	Ser	Ile	Ala
Leu	Ala 1265		a Glu	ı Asp	Pro	Val 1270	Gln	Pro	Asn	Ala	Pro 1275	Arg	Asn	Asn
Val	Leu 1280		J Tyr	Phe	e Asp	Tyr 1285	Val	Phe	Thr	Gly	Val 1290	Phe	Thr	Phe
Glu	Met 1295		l Il∈	. Lys	Met	Ile 1300		Leu	Gly	Leu	Val 1305	Leu	His	Gln
Gly	Ala 1310	_	? Phe	e Arg	l Yab	Leu 1315		Asn	Ile	Leu	Asp 1320	Phe	Ile	Val
Val	Ser 1325	_	/ Ala	ı Lev	ı Val	Ala 1330		Ala	Phe	Thr	Gly 1335	Asn	Ser	Lys

Gly	Lys 1340	Asp	Ile	Asn	Thr	Ile 1345	Lys	Ser	Leu	Arg	Val 1350	Leu	Arg	Val
Leu	Arg 1355	Pro	Leu	Lys	Thr	Ile 1360	Lys	Arg	Leu	Pro	Lys 1365	Leu	Lys	Ala
Val	Phe 1370	Asp	CAa	Val	Val	Asn 1375	Ser	Leu	Lys	Asn	Val 1380	Phe	Asn	Ile
Leu	Ile 1385	Val	Tyr	Met	Leu	Phe 1390	Met	Phe	Ile	Phe	Ala 1395	Val	Val	Ala
Val	Gln 1400	Leu	Phe	Lys	Gly	Lys 1405	Phe	Phe	His	CAa	Thr 1410	Asp	Glu	Ser
Lys	Glu 1415	Phe	Glu	Lys	Asp	Cys 1420	Arg	Gly	Lys	Tyr	Leu 1425	Leu	Tyr	Glu
Lys	Asn 1430	Glu	Val	Lys	Ala	Arg 1435	Asp	Arg	Glu	Trp	Lys 1440	rys	Tyr	Glu
Phe	His 1445	Tyr	Asp	Asn	Val	Leu 1450	Trp	Ala	Leu	Leu	Thr 1455	Leu	Phe	Thr
Val	Ser 1460	Thr	Gly	Glu	Gly	Trp 1465	Pro	Gln	Val	Leu	Lys 1470	His	Ser	Val
Asp	Ala 1475	Thr	Phe	Glu	Asn	Gln 1480	Gly	Pro	Ser	Pro	Gly 1485	Tyr	Arg	Met
Glu	Met 1490	Ser	Ile	Phe	Tyr	Val 1495	Val	Tyr	Phe	Val	Val 1500	Phe	Pro	Phe
Phe	Phe 1505	Val	Asn	Ile	Phe	Val 1510	Ala	Leu	Ile	Ile	Ile 1515	Thr	Phe	Gln
Glu	Gln 1520	Gly	Asp	Lys	Met	Met 1525	Glu	Glu	Tyr	Ser	Leu 1530	Glu	Lys	Asn
Glu	Arg 1535	Ala	Cys	Ile	Asp	Phe 1540	Ala	Ile	Ser	Ala	Lys 1545	Pro	Leu	Thr
Arg	His 1550	Met	Pro	Gln	Asn	Lys 1555	Gln	Ser	Phe	Gln	Tyr 1560	Arg	Met	Trp
Gln	Phe 1565	Val	Val	Ser	Pro	Pro 1570	Phe	Glu	Tyr	Thr	Ile 1575	Met	Ala	Met
Ile	Ala 1580	Leu	Asn	Thr	Ile	Val 1585	Leu	Met	Met	Lys	Phe 1590	Tyr	Gly	Ala
Ser	Val 1595	Ala	Tyr	Glu	Asn	Ala 1600	Leu	Arg	Val	Phe	Asn 1605	Ile	Val	Phe
Thr	Ser 1610	Leu	Phe	Ser	Leu	Glu 1615	Cys	Val	Leu	Lys	Val 1620	Met	Ala	Phe
Gly	Ile 1625	Leu	Asn	Tyr	Phe	Arg 1630	Asp	Ala	Trp	Asn	Ile 1635	Phe	Asp	Phe
Val	Thr 1640	Val	Leu	Gly	Ser	Ile 1645	Thr	Asp	Ile	Leu	Val 1650	Thr	Glu	Phe
Gly	Asn 1655	Pro	Asn	Asn	Phe	Ile 1660	Asn	Leu	Ser	Phe	Leu 1665	Arg	Leu	Phe
Arg	Ala 1670	Ala	Arg	Leu	Ile	Lys 1675	Leu	Leu	Arg	Gln	Gly 1680	Tyr	Thr	Ile
Arg	Ile 1685	Leu	Leu	Trp	Thr	Phe 1690	Val	Gln	Ser	Phe	Lys 1695	Ala	Leu	Pro
Tyr	Val 1700	CÀa	Leu	Leu	Ile	Ala 1705	Met	Leu	Phe	Phe	Ile 1710	Tyr	Ala	Ile
Ile	Gly	Met	Gln	Val	Phe	Gly	Asn	Ile	Gly	Ile	Asp	Val	Glu	Asp

											- COI	atir	iuec	1	
	1715					1720					1725				_
Glu	Asp 1730		Asp	Glu	Asp	Glu 1735		Gln	Ile	Thr	Glu 1740	His	Asn	Asn	
Phe	Arg 1745	Thr	Phe	Phe	Gln	Ala 1750	Leu	Met	Leu	Leu	Phe 1755	Arg	Ser	Ala	
Thr	Gly 1760	Glu	Ala	Trp	His	Asn 1765		Met	Leu	Ser	Cys 1770	Leu	Ser	Gly	
Lys	Pro 1775		Asp	Lys	Asn	Ser 1780	Gly	Ile	Leu	Thr	Arg 1785	Glu	CÀa	Gly	
Asn	Glu 1790	Phe	Ala	Tyr	Phe	Tyr 1795		Val	Ser	Phe	Ile 1800	Phe	Leu	САв	
Ser	Phe 1805		Met	Leu	Asn	Leu 1810	Phe	Val	Ala	Val	Ile 1815	Met	Asp	Asn	
Phe	Glu 1820		Leu	Thr	Arg	Asp 1825		Ser	Ile	Leu	Gly 1830	Pro	His	His	
Leu	Asp 1835	Glu	Tyr	Val	Arg	Val 1840	Trp	Ala	Glu	Tyr	Asp 1845	Pro	Ala	Ala	
Trp	Gly 1850	Arg	Met	Pro	Tyr	Leu 1855	Asp	Met	Tyr	Gln	Met 1860	Leu	Arg	His	
Met	Ser 1865	Pro	Pro	Leu	Gly	Leu 1870	Gly	Lys	Lys	СЛа	Pro 1875	Ala	Arg	Val	
Ala	Tyr 1880		Arg	Leu	Leu	Arg 1885		Asp	Leu	Pro	Val 1890	Ala	Asp	Aap	
Asn	Thr 1895	Val	His	Phe	Asn	Ser 1900	Thr	Leu	Met	Ala	Leu 1905	Ile	Arg	Thr	
Ala	Leu 1910	Asp	Ile	Lys	Ile	Ala 1915		Gly	Gly	Ala	Asp 1920		Gln	Gln	
Met	Asp 1925	Ala	Glu	Leu	Arg	Lys 1930		Met	Met	Ala	Ile 1935	Trp	Pro	Asn	
Leu	Ser 1940	Gln	Lys	Thr	Leu	Asp 1945	Leu	Leu	Val	Thr	Pro 1950	His	Lys	Ser	
Thr	Asp 1955	Leu	Thr	Val	Gly	Lys 1960		Tyr	Ala	Ala	Met 1965	Met	Ile	Met	
Glu	Tyr 1970		Arg	Gln	Ser	Lys 1975	Ala	ГÀа	Lys	Leu	Gln 1980	Ala	Met	Arg	
Glu	Glu 1985					Pro 1990							Glu	Pro	
Pro	Ser 2000	Pro	Thr	Gln	Glu	Gly 2005	Gly	Pro	Gly	Gln	Asn 2010	Ala	Leu	Pro	
Ser	Thr 2015	Gln	Leu	Asp	Pro	Gly 2020	Gly	Ala	Leu	Met	Ala 2025	His	Glu	Ser	
Gly	Leu 2030	ГÀв	Glu	Ser	Pro	Ser 2035	Trp	Val	Thr	Gln	Arg 2040	Ala	Gln	Glu	
Met	Phe 2045	Gln	ГÀа	Thr	Gly	Thr 2050	Trp	Ser	Pro	Glu	Gln 2055	Gly	Pro	Pro	
Thr	Asp 2060	Met	Pro	Asn	Ser	Gln 2065	Pro	Asn	Ser	Gln	Ser 2070	Val	Glu	Met	
Arg	Glu 2075	Met	Gly	Arg	Asp	Gly 2080	Tyr	Ser	Asp	Ser	Glu 2085	His	Tyr	Leu	
Pro	Met 2090	Glu	Gly	Gln	Gly	Arg 2095	Ala	Ala	Ser	Met	Pro 2100	Arg	Leu	Pro	

Ala	Glu 2105	Asn	Gln	Arg	Arg	Arg 2110		Arg	Pro	Arg	Gly 2115	Asn	Asn	Leu
Ser	Thr 2120	Ile	Ser	Asp	Thr	Ser 2125		Met	Lys	Arg	Ser 2130	Ala	Ser	Val
Leu	Gly 2135	Pro	Lys	Ala	Arg	Arg 2140		Asp	Asp	Tyr	Ser 2145	Leu	Glu	Arg
Val	Pro 2150	Pro	Glu	Glu	Asn	Gln 2155		His	His	Gln	Arg 2160	Arg	Arg	Asp
Arg	Ser 2165	His	Arg	Ala	Ser	Glu 2170	_	Ser	Leu	Gly	Arg 2175	Tyr	Thr	Asp
Val	Asp 2180	Thr	Gly	Leu	Gly	Thr 2185	Asp	Leu	Ser	Met	Thr 2190		Gln	Ser
Gly	Asp 2195	Leu	Pro	Ser	Lys	Glu 2200		Asp	Gln	Glu	Arg 2205	Gly	Arg	Pro
Lys	Asp 2210	Arg	Lys	His	Arg	Gln 2215		His	His	His	His 2220	His	His	His
His	His 2225	Pro	Pro	Pro	Pro	Asp 2230		Asp	Arg	Tyr	Ala 2235	Gln	Glu	Arg
Pro	Asp 2240	His	Gly	Arg	Ala	Arg 2245		Arg	Asp	Gln	Arg 2250	-	Ser	Arg
Ser	Pro 2255	Ser	Glu	Gly	Arg	Glu 2260		Met	Ala	His	Arg 2265	Gln	Gly	Ser
Ser	Ser 2270	Val	Ser	Gly	Ser	Pro 2275		Pro	Ser	Thr	Ser 2280	Gly	Thr	Ser
Thr	Pro 2285	Arg	Arg	Gly	Arg	Arg 2290		Leu	Pro	Gln	Thr 2295	Pro	Ser	Thr
Pro	Arg 2300	Pro	His	Val	Ser	Tyr 2305		Pro	Val	Ile	Arg 2310	ГÀа	Ala	Gly
Gly	Ser 2315	Gly	Pro	Pro	Gln	Gln 2320		Gln	Gln	Gln	Gln 2325	Gln	Gln	Gln
Gln	Gln 2330	Gln	Ala	Val	Ala	Arg 2335		Gly	Arg	Ala	Ala 2340		Ser	Gly
Pro	Arg 2345	Arg	Tyr	Pro	Gly	Pro 2350		Ala	Glu	Pro	Leu 2355	Ala	Gly	Asp
Arg	Pro 2360	Pro	Thr	Gly	Gly	His 2365	Ser	Ser	Gly	Arg	Ser 2370	Pro	Arg	Met
	Arg 2375		Val	Pro		Pro 2380			Ser		Ser 2385		Arg	Ala
CAa	Arg 2390	His	Gly	Gly	Ala	Arg 2395		Pro	Ala	Ser	Gly 2400	Pro	His	Val
Ser	Glu 2405	Gly	Pro	Pro	Gly	Pro 2410	Arg	His	His	Gly	Tyr 2415	Tyr	Arg	Gly
Ser	Asp 2420	Tyr	Asp	Glu	Ala	Asp 2425		Pro	Gly	Ser	Gly 2430	Gly	Gly	Glu
Glu	Ala 2435	Met	Ala	Gly	Ala	Tyr 2440	Asp	Ala	Pro	Pro	Pro 2445	Val	Arg	His
Ala	Ser 2450	Ser	Gly	Ala	Thr	Gly 2455	Arg	Ser	Pro	Arg	Thr 2460	Pro	Arg	Ala
Ser	Gly 2465	Pro	Ala	Cys	Ala	Ser 2470	Pro	Ser	Arg	His	Gly 2475	Arg	Arg	Leu
Pro	Asn 2480	Gly	Tyr	Tyr	Pro	Ala 2485		Gly	Leu	Ala	Arg 2490	Pro	Arg	Gly

Pro Gly Ser Arg Lys Gly Leu His Glu Pro Tyr Ser Glu Ser Asp Asp Asp Trp Cys 2510 <210> SEQ ID NO 4 <211> LENGTH: 7539 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 4 60 atggcccgct tcggagacga gatgccggcc cgctacgggg gaggaggctc cggggcagcc 120 geeggggtgg tegtgggeag eggaggeggg egaggageeg ggggeageeg geagggeggg 180 cagecegggg egeaaaggat gtacaageag teaatggege agagagegeg gaceatggea ctctacaacc ccatccccgt ccgacagaac tgcctcacgg ttaaccggtc tctcttcctc 240 ttcagcqaaq acaacqtqqt qaqaaaatac qccaaaaaqa tcaccqaatq qcctccttt 300 gaatatatga ttttagccac catcatagcg aattgcatcg tcctcgcact ggagcagcat 360 ctgcctgatg atgacaagac cccgatgtct gaacggctgg atgacacaga accatacttc 420 attggaattt tttgtttcga ggctggaatt aaaatcattg cccttgggtt tgccttccac 480 aaaggeteet aettgaggaa tggetggaat gteatggaet ttgtggtggt getaaeggge 540 atcttggcga cagttgggac ggagtttgac ctacggacgc tgagggcagt tcgagtgctg 600 cggccgctca agctggtgtc tggaatccca agtttacaag tcgtcctgaa gtcgatcatg 660 aaggegatga teeetttget geagategge eteeteetat tittigeaat eettatiitt 720 gcaatcatag ggttagaatt ttatatggga aaatttcata ccacctgctt tgaagagggg 780 acagatgaca ttcagggtga gtctccggct ccatgtggga cagaagagcc cgcccgcacc 840 tgccccaatg ggaccaaatg tcagccctac tgggaagggc ccaacaacgg gatcactcag 900 ttcgacaaca tcctgtttgc agtgctgact gttttccagt gcataaccat ggaagggtgg actgatctcc tctacaatag caacgatgcc tcagggaaca cttggaactg gttgtacttc atececetea teateategg eteetttttt atgetgaace ttgtgetggg tgtgetgtea 1080 ggggagtttg ccaaagaaag ggaacgggtg gagaaccggc gggcttttct gaagctgagg 1140 cqqcaacaac aqattqaacq tqaqctcaat qqqtacatqq aqtqqatctc aaaaqcaqaa 1200 gaggtgatee tegeogagga tgaaactgae ggggageaga ggeateeett tgatggaget 1260 1320 ctgcggagaa ccaccataaa gaaaaqcaag acagatttgc tcaaccccga agaggctgag gatcagctgg ctgatatagc ctctgtgggt tctcccttcg cccgagccag cattaaaagt 1380 gccaagctgg agaactcgac ctttttcac aaaaaggaga ggaggatgcg tttctacatc 1440 cgccgcatgg tcaaaactca ggccttctac tggactgtac tcagtttggt agctctcaac 1500 1560 acqctqtqtq ttqctattqt tcactacaac caqcccqaqt qqctctccqa cttcctttac tatgcagaat tcattttctt aggactcttt atgtccgaaa tgtttataaa aatgtacggg 1620 cttgggacgc ggccttactt ccactettee tteaactget ttgactgtgg ggttateatt 1680 gggagcatct tcgaggtcat ctgggctgtc ataaaacctg gcacatcctt tggaatcagc 1740 gtgttacgag ccctcaggtt attgcgtatt ttcaaagtca caaagtactg ggcatctctc 1800 agaaacctgg tcgtctctct cctcaactcc atgaagtcca tcatcagcct gttgtttctc 1860

cttttcotgt toattgtogt ettegecett tigggaatge aactetigg eggecagttt 1920 aattegatg aaggactee teccaccaac tiegatactt ticcagcag ataatgag 1980 gtgitteaga tectgaggg egaagactg aacgaggta tigaagag gatcaagtet 2000 aaggaggdg tegaagggag eacgaggg aacgaggag aaggaggag tegaaggag tegaaggag tegaaggag atgitte tecateatt teatigatet gaccaccac 2160 aaggaggdg tegaaggga gaggagga gaaggagag aagaaggag gaacaagaa 2220 citteectaa agaaagcaa gaggaggag gaaggagag aagaagaag agaagaa							
gtgtttcaga tcctqacqqq cqaqqactqq catqqqqqqq qtqaqqqqq catqqqqqqq qtqqqqqqq qtqqqqqqq qtqqqqqqq qtqqqqqqq qtqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqq qqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqq qqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqq qqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqq qqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqq	cttttcctgt	tcattgtcgt	cttcgccctt	ttgggaatgc	aactcttcgg	cggccagttt	1920
cagggaggeg tgcaggggg catggttete tecatetatt teattgtact gacgetettt 2100 gggaactaca cectectgaa tgtgttettg gccategetg tggaacatet ggccaacgec 2160 cagggagctac cecaaggtggg ggggacgag caaggaggaag aagaagaag gaacaagaaa 2220 cttgccctac agaaagccaa ggaggtggg agaagtagc ctctgtccgg ggccaacatg 2280 tctatagctg tgaaagagca acaggaggatg caagaggaag caaggaggggg ggaagcctg gtgtaggagaa 2340 cggaacagtg agatgggaa gaaggagtgc tacacgggg acaggggcct gtataacgaa 2400 atggaccagtg agatgggag caaggaggcg cacagaggag caaggagggg acaggagggg accgaggga accgaacaa caacaccaac 2520 aagaggcggg cggcgggg caccgtgggac caccgtggac caccgtggac caccgaggaga accgaacaa caacaccaac 2520 aagaggcggg cggcggggc caccgtggac caccgtggac caccgagga acccaagag cgccgaggag 2680 ttcctcagga acaagggccg ggcggaac caccgtggac caggagccgg acccaagg cgccgaggag 2680 ttcctcagga acaagggccg ggagggaagc caccaggg cagggaggg	aatttcgatg	aagggactcc	tcccaccaac	ttcgatactt	ttccagcagc	aataatgacg	1980
gggaactaca cectectgaa tigtitettig gecategetig tiggacaatet gggecaaege 2220 caaggagetta ceaaggtiga ggggaacgaq caagaggaag aagaagaag gaaccagaaa 2220 cittigeceta agaaagcaa ggaggtigaca gaagtigagtie etetigicege ggecaacatig 2280 tetatagetig tigaaagaaga acaagaagaa caaaagcaag caaagteegi gigggaagcaag 2340 caggaccagtig agatgegaa acagaagaat caaaagcaag caaagteegi gigggaagcaag 2400 atggaccagtig agatgegac gaagactig etacacagaa 2400 atggaccagg acgaggaccag gaagagcectig gaaggaccag gaagagcectig gaaggaccag caccaggagaa accgaacaaa caaacacaaaa 2520 aagaagcagg agacgagga caccaggagaa accgaacaaa caaacacaaaa 2520 aagaagacgag acggacgagga caccaggagaa accgaacaaa caacacaaaa 2520 aagaagaccag gggagaaca caccagtggaa caccaggaga acccaaggag cegaaggaac 2580 teeteetaagaa aacaggacca ggaggaagaa cagaggagaa accgaagaga cagaggagaaca 2580 etacacagaa acaaggacgag agacgagagaa gggagaacac caaggccagg gaaggaag	gtgtttcaga	tcctgacggg	cgaagactgg	aacgaggtca	tgtacgacgg	gatcaagtct	2040
cagagactca caaagtgga gegggacga caagaggaag aagaagcagc gaaccagaaa 2220 cttgccctac agaaagcaa ggaggtgga gaagtgagtc ctctgccgc ggccaacatg 2280 tctatagctg tgaaagagca acagaagaat caaaagccag ccaagtccgt gtgggagcag 2340 cggaaccagt agatgcgaa acagaagaat caaaagccag ccaagtccgt gtgggagcag 2340 cggaaccagt agatgcgaa acagaagaat caaaagccag ggagggcct gtataacgaa 2400 atggaccagg acagacggg agatgggac caccgggaaga accgcaacaa caacaccaac 2520 aagaagccgg cggccggggc gggggagc caccggggac caccggggaa accgcaacaa caacaccaac 2520 aagaagccgg cggccgagc caccgggaac caccggggaa cacgcaggg cgccgagggac 2580 ttcotcagga acaggaccc caccgggaac caccggggac caccgggga accccaaca cacccaaca 2520 caggaggaca gggggacca ggggggaagc cacaggagcc gaggggaccc 2700 ttacggcggga accccaac ggaggccgg gggggagcc 2700 ttacggcggga ccaacaggag caaggggacc 2700 ttacggcgggag caaggggagc caccgggg gaaggaccac 2700 gaggggagac cgaaccggag caaggggagc caggggagcc ggagggag	caggggggcg	tgcagggcgg	catggtgttc	tccatctatt	tcattgtact	gacgctcttt	2100
cttsgectac agaaagccaa gaaggtggaa gaagtgagte etetgteege ggecaacatg 2280 tetatagetg tgaaagagca acagaagaat caaaagccag ccaagtcegt gtgggagcag 2340 cggaccagtg agatgegaaa gcagaacttg etggecagce gggaggecet gtataaacgaa 2400 atggaccagt acaggegetg gaaggeteec tacacagcgg acctggaccag acaacacaacaacacacacacacacacacaca	gggaactaca	ccctcctgaa	tgtgttcttg	gccatcgctg	tggacaatct	ggccaacgcc	2160
tetatagetg tgaaagagea acagaagaat caaaagccag ceaagteegt gtgggageag 2340 cggaccagtg agatgegaaa geagactge taeacagege acetgegee agacatgaag 2460 acgaccagtg agatgegeet gaaggetgee taeacagege acetgegee agacatgaag 2460 acgaccagtg acetgggeegeegeegeegeegeegeegeegeegeegeegee	caggagctca	ccaaggtgga	ggcggacgag	caagaggaag	aagaagcagc	gaaccagaaa	2220
atggaccagg agatggaaa gcagactg ctggacgcc gggaggccc gaactgaag 2460 atggaccagg accaggaga agacgccgct ggtggtggac ccgcaggaga accgcaacaa caaccaaac 2520 aagacgggg cggccgagcc caccgtggac caccgaggaga accgcaacaa caaccaaca 2520 aagacgggg cggccgagcc caccgtggac caccgaggaga accgcaacgac caccacgaga 2580 ttcctcagga aacaggacc caccgtggac caggacgcgg gcccaggagac 2580 ttcctcagga aacaggaccg ctaccacgat cgggcccgg accccaacgg ctcggcgggc 2640 ctggacgaca ggaggaccc gggggaagc caggaggaccc gggaggaccc 2700 taccggcgg agtcggacac ggaggacac caccgccgg gagggacacc ggagggacac ggagggag	cttgccctac	agaaagccaa	ggaggtggca	gaagtgagtc	ctctgtccgc	ggccaacatg	2280
atggaccegg acgaegect gatggagac cacegagaga accepagaca acaceaaca 2520 aagagcegg eggecgagce gatggagac cacegagaga acceaacaa caaceaaca 2520 aagagcegg eggecgagce cacegtggac cagegceteg gecagcagce gecagagaga 2580 tteetcagga aacaggeceg etaceacgat eggecegg acceaacaa caaceaaca 2520 aagagcegg eggecgagce cacegtggac caggagceg gacecaagegg eteggegge 2640 eteggacgaa gagagceet ggeggagag caggaggecg agetgagceg ggagggacce 2700 taceggacgag agteggaca cacecacgg gagggacge tggagcace egggtetetgg 2760 gagggegagag eggagageg cagegggg gacececace ggaggacace egggtetetgg 2760 gaggggagaga geggagageg cagegggg gacececace ggaggacace ggaggagag 2820 gggggagaga ggagagacg cagegggge eggggagg gaggagagg 2830 egtcategeg egacegaag ecggeggg eggggagg gaggagagg 2940 gegeggacac gegagggaa ecggeegge egggggg agggagagg egaggggag 2940 gegeggagag aggeagaga agggagage etggagggg aggggaggg egaggggag 2940 gegeggagag aggeagaga agggagaga etggagggg aggggaggg 2940 gegeggagag aggeagaga agggagaga etggaggga agggagagg 2940 gegeggagag aggeagaga accepagaga etggaggec eaggeggeg agggegaggg 2940 gegeggagagg aggeagaga accepagaga etggaggag 2940 gegeggagagg aggeagaga accepagaga etggaggag 2940 gegeggagagg aggeacaga accepagaga etggaggag 2940 gegeggagagg aggeacaga accepagaga etggaggag 2940 gegeggagagg aggeagaga aggeagaga egggaggag 2940 gegeggagagg aggeagaga egggaggag 2940 gegeggagagg aggeagaga egggaggag 2940 gegeggagagg aggeagaga egggaggag 2940 gegeggagagg aggeagaga acceaacag 2930 gegeggagag aggagagg agggaggaga 2930 gegeggagag aggagagg agggaggaga 2930 gagagagagag aggacegg agggagga 2930 gagteeggg eteceaagg 2930 aacagaacaa ecceaagg 2930 aacagaacaa eccacagg 2930 aacagaacaa eccacagg 2930 aacagaacaa eccacaga 2930 aacagaaca 2930 aacagaaca 2930 aacagaaca 2930 aacagaaca 2930 aacagaaca 2930 aacaaacaa 2930	tctatagctg	tgaaagagca	acagaagaat	caaaagccag	ccaagtccgt	gtgggagcag	2340
acgcacttgg accggcgct ggtggtggac ccgcaggaga accgcacaa caacaccaac 2520 aagagccggg cggccgagcc caccgtggac cagcgcctcg gccagaggac gccagaggac 2580 ttcctcagga aacaggccg ctaccacgat cgggcccggg accccagcgg ctcggcgggac 2640 ctggacgca ggaggccctg ggcgggaagc caggagccg acccaacgcg ctcggcgggc 2640 ctggacgca ggaggccctg ggcgggaagc caggagccg agctgagccg ggagggaccc 2700 tacggccgcg agtcggacca ccacgccgg gagggcagcc tggagcacc cgggttctgg 2760 gagggcgagag ccgagcgag caaggccggg gaccccacc ggaggcagc gagcaggag 2820 gggggcagca gggagagcc cagcggggag gaggtccgg ggagcacgg ggagcatcga 2880 cgtcatcgcg cgcaccgcag gcccggggag gagggtccgg agggcaggg ggagcatcga 2880 cgtcatcgcg cgcacgag ccggcggga gagggtccgg agggcaggg ggagcagg 2940 gcggggacac gcgaggag aaggcaccgg caggggggag agggcaggg ggagcaggag 2940 gcggggagga aggcaagga aaggcaccgg caggggggg agggcaggag ggagggac 3000 gacgggggagg aggcaagga aggcaccgg caggggggg aaggcaggag 2940 gcgcggaggg aggcaagga gcggaggac cgggggggg	cggaccagtg	agatgcgaaa	gcagaacttg	ctggccagcc	gggaggccct	gtataacgaa	2400
aagageeggg eggeegagee cacegtgga eagegeeteg geeageagg egeegaggae 2580 tteeteagga aacaggeeeg etaceacgat eggegeeggg acceecagegg eteggeggge 2640 etggaegaa ggaggeettg ggegggaage eagaggeeg agetgageeg ggagggaeee 2700 taacggeegg agteggaeea eagegeegg gaggeagee tggageaace egggttetgg 2760 gagggegagg eegageggg eaaggeegg gaceeceace ggaggeagg ggageatega 2820 gggggaagea gggaaggeeg eagegggee eegggaagg ggageatega 2880 egteategeg egeacegag geeegggaag gaggeteegg aggaeaagg ggageatega 2880 egteategeg egeacegag geeegggaag gagggeegg aggaeagg ggageagg 2940 gegeggeace gegagggaag eeggeegge egggggegg agggeaggg egagggagg	atggacccgg	acgagcgctg	gaaggctgcc	tacacgcggc	acctgcggcc	agacatgaag	2460
tteeteagga aacaggeegg etaceaggat egggeeggg acceagggg eteggeggge 2640 ctggacgcac ggaggeetg ggegggaage eaggaggeeg agetgageeg ggagggacee 2700 taceggeegg agteggacca ceacgeegg gagggagee tggagcace egggttetgg 2760 gagggegagg cegagegagg caaggeeggg gaceeceace ggaggeagg gagcatega 2820 gggggcagca gggagagee eageegggtee eegegacgg gegeggacgg ggageatega 2880 egteategee geaceegag eeeggggaag gaggteegg aggacaagge ggageggagg 2940 gegegggaace gegagggaag eeggeegge eggggegg aggacaagge gaggeggagg 2940 gegegggagg aggacaagga aaggeacegg eatggegge aggacgagg egaggggag 2940 gegeggaggg aggacaagga eeggeeggee eggagggga aggacaagge gaggggagg 2940 gegeggaggg aggacaagga aaggacaegg eatggegge aggacgagg egaggggag 2940 gegeggagggg aggacaagga eeggaggace eggaggggg aggacaagge egaggggag 2940 gegeggagggg aggacaagga eeggaggace eggaggggg aggacaagg egaggggag 2940 gegeggagggg aggacaagga eeggaggaga eeggagggga aggacaagga eeggagggga 3120 gteeetgtgt egggeeceaa eetgteaace aceggecaa teeageagga eetgggeege 3180 caagaaceea eetggeaga ggatattgae aacatgaaga acaacaaget ggecacegeg 3240 gagteggeeg eteeecaagg eageettgge eacgeeggee tgeeecagag eecagecaag 3300 atgggaaaca geacegacee eggeeceatg etgggeatee etgeecatega eaceaaceee 3360 eagaacgeeg eeageegeeg gacgeecaaa aaceegggga acceateeaa teeeggeece 3420 eecaagacee eegagaatag eettategte accaaceea geggeaceaa gaccaattea 3480 getaagactg eeaggaaaag eggaceaacae aaceegggga acceateeaa teeeggeece 3540 eeceteaace acacegtegt acaagtgaac aaaaacgeea acceagacee actgecaaca 3600 aaagagggaag agaagaagga ggaggaggaa gaggacagg eettaagee 3720 eattacatee tgaaceteeg etacttttgag atgtgeatee teatggteat tgecatgage 3720 eattacatee tgaacetgeg etacttttgag atgtgeatee teatggteat tgecatgage 3780 agcateggge tegteetga teagggtee tactteegtg accetetgga caaggaaaa 3900 agactgggge tegteetga teagggtee tetteetgt accetegga taagaacaa 4020 gacatcaaca egattaaate eeteeggte ttteettea etggcaatag caaaggaaa 4020 gacatcaaca egattaaate eeteeggte teeteeggte tacgacete taaaacete 4080 aaaggggetge eaaggggge eaaggteegggggggggg	acgcacttgg	accggccgct	ggtggtggac	ccgcaggaga	accgcaacaa	caacaccaac	2520
ctggacgcac ggaggcctg ggcggaagc caggaggcg agctgagccg ggagggaccc 2700 tacggccgcg agtcggacac ccacgccgg gagggcagcc tggagcaacc cgggttctgg 2760 gagggcgagg ccgagcgagg cagagcggg gaccccacc ggaggcagt gcaccggcag 2820 gggggcagca gggagagcc cagcggggtcc ccgcgcacg ggagcacgt gcaccggcag 2820 gggggcagca gggagagccg cagcgggag gaggtccgg gggcgacgg ggagcatcga 2880 cgtcatcgcg cgcaccgcag gcccgggag gaggtccgg agggcaggg ggagcatcga 2880 cgtcatcgcg cgcaccgcag gcccgggag gagggccgg agggcgagg ggagcatcga 2940 gcggcggaacc gcgagggaag ccggccggc cgggggggcg agggcgaggg gaggggccc 3000 gacgggggag agccaagga aaggcaccgg catggcgcc cagccacgta cgagggggac 3060 gccgggaggg aggacaagga agggacacg cggagggga aaggacaagg cgaggggac 3060 gccgggaggg aggacaagga gcggaggat cggagggga aaggacaaga cctgggggg 3120 gtccctgtgt cgggcccaa cctgtcaacc acccggcaa tccagcagga cctgggcgc 3180 caagaccac cctggcaga ggatattgac aacatgaaga acacaaggt ggcaccgcg 3240 gagtcggcg ctccccacgg cagccttggc caccgcgcc tgccccagag cccagcaag 3300 atgggaaaca gcaccgacc cggcccatg ctggccatc ctgccatagc caccacccc 3360 cagaaccgcc ccgagaatag ccttatcgtc accacccca gcgcaccca gaccaatcca 3480 gctaagactg ccagcgaaac cgaccaacc accgggga accaccacca gaccaatcca 3480 gctaagactg ccaggaaac cgaccaacc acagtggaca tcccccaag ctgccaccc 3540 cccctcaacc acaccgtcgt acaagtgaac acaacccca gcggcacca gaccaatcca 3600 aaagaggaag agaagaagga ggaggaggaa gacgaccgt gggaagacg cctaagcca 3600 aaagaggaag agaagaagga ggaggaggaa agcaccgtg gggaagacg cctaagcca 3600 aaagagggaa ggaagaagga ggaggaggaa accaaccc acaggggac cccaagcca acccctcga ctgccaacc 3720 cattacatcc tgacctgcg ctactttgag atgtgcatc tcatggtcat tgccatagac 3720 cattacatcc tgacctgca ggaccctgt caccacacc accctcggaa caacgtctg 3720 cattacatct tgacctgca ggaccctgt caccacac accctctggaa caacgtctg 3840 cgatactttg actactgtt tacagggtc tttactcttt aggtgat caagagaaa 4020 gacctggggc tcgtcctgca tcagggtcc tttactcttt aggtgat tcatggaa tattctcgac 3960 ttcatagtgg tcagtgggc cctggatgc tttgccttca ctggcaatag caaaggaaa 4020 gacatcaaca cgattaaatc cctccgagtc ttccgggtg tacgatcct taaaaccact 4100	aagagccggg	cggccgagcc	caccgtggac	cagegeeteg	gccagcagcg	cgccgaggac	2580
tacggccggg agtcggacca ccacgccgg gagggcagcc tggagcaacc cgggttctgg 2760 gagggcgagg ccgagcgagg caaggccggg gaccccacc ggaggcacgt gcaccggcag 2820 ggggggaaga gggagagccg cagcggggtcc ccgcgcacgg gcgcggacgg ggagcatcga 2880 cgtcatcgcg cgcaccgcag gcccgggagg gaggtccgg aggacaagg ggagcggagg 2940 gcgcggacc gcgagggag ccgggagg ccggggagg agggcggagg gaggggagg 2940 gcgcgggacc gcgagggag ccggggagg ccggaggggagg agggcggagg agggcggagg agggcggagg agggcgagg agggcgagg agggcgagg agggcgagg agggcgaggg agggcgaggg agggcgaggg agggcgagg agggcgaggg agggcgagggggaggggagggggggg	ttcctcagga	aacaggcccg	ctaccacgat	cgggcccggg	accccagcgg	ctcggcgggc	2640
gagggcagg ccgagcgagg caaggccggg gacccccacc ggaggcact gcaccggcag 2880 cggaggcagca gggagaccc cagcgggtcc ccgcgcacgg gcgcggacgg ggagcatcga 2880 cgtcatcgcg cgcaccgcag gcccggggag gaggctccgg aggagcatcga 2880 cgtcatcgcg cgcaccgcag gcccggggag gagggtccgg aggaccacgg ggagcgaggg 2940 gcgcgggacc gcgagggca ccggcggcc cgggggggag aggacgaggg cgaggggag 2940 gcgcggggag aggacgaggag ccgagggacc cgggggggag aggacgaggag cgaggggag aggacgaggag aaggacacgg catggcgct cagcacgta cgaggggac 3000 gcgcggaggg aggacaagga gcggagggat cggagggag aagacaagga gcgagggag aaggacacag ggatattgac accaggacaa tccagcagga cctgggccgc 3180 caagacccac ccctggcaga ggatattgac aacatgaaga acaacaagct ggccaccgcg 3240 gagtcggcg ctcccacgg cagccttggc caccacgcg tgcccaaga ccagcaag 3300 atgggaaaca gcaccgacc cggcccatg ctggccatcc ctgccatggc caccaacccc 3360 cagaaacgccg caagccgcg gacgcccaac aacccgggga acccatccaa tcccggcccc 3420 cccaagaccc cgggaaatag ccttatcgtc accaacccc agggcaccaa gaccaattca 3480 gctaagact ccaggaaacc cgaccacac acaagtggaca tcccccaag ctgccaaca 3600 aaagaggaag agaagaaac ggaagagaaa gacgaccaca acccagacca acccacaccc 3540 cccctcaacc acacgtcgt acaagtgaac aaaaacgcca acccatcaa accccagacca acccctaacca acacgtcgt gggaaggaaga gagaagaaga gagaggagaa gacgaccgtg gggaagacca actgccaaaa 3600 aaaagaggaag agaagaagaa gagaggagaa gacgaccgtg gggaagacca acccatcaa 3780 accatcaccc tgaaccacac ataccgtcg ctactttgag atgtgcatcc tcatggtcat tgccaacaa 3780 accatcaccc tgaaccacac tgaaccacac acacgtcgt gggaagacga caacgtcgtg 3720 cattacatcc tgaacctgg ggaccctgtg cagcccaacg accccttcg acccttagac 3780 agacatcgcc tggccgccga ggaccttgt cagcccaaca acccccttcg acctcggaa caagtgctg 3840 cgatactttt actacgttt tacagggtc tttacctttg agatggtgat caagatgat 3900 ttcatagtgg tcagtgggg cctggtagc tttgccttca ctggcaatag caaaggaaaa 4020 gacatcaaca cgattaaatc cctccgagtc ctccgggtc tacgacctct taaaaacatc 4080 aaggggctgc caaagctcaa ggctgtgttt gactgtgtg tgaactcact taaaaacgtc ttaaaaacgtc ttaaaaacgtc ttaaaaacgtc ttaaaaacgtc ttaaaaacgtc taaaaacgtc taaaaacgtc taaaaacgtc ttaaaaacgtc ttaaaaacgtc taaaaacgtc taaaaacgtc agacctct taaaaacgtc taaaaacgtc aca	ctggacgcac	ggaggccctg	ggcgggaagc	caggaggccg	agctgagccg	ggagggaccc	2700
ggggggcagca gggagagccg cagcgggtcc cegcgcacgg gcgcggacgg ggagcatcga 2880 cgtcatcgcg cgcaccgcag gcccggggag gagggtccg aggacaaggc ggagcgaggg 2940 gcgcgggacc gcgagggcag gcccggggagg gagggtccgg aggacaaggc ggagggagg 2940 gcgcgggacc gcgagggca ccggggggc caggggcgc aggggcacgg gaggggagg 3000 gacggggggg agggcaagga aaggcacgg catggcgctc cagccacgta cgaggggac 3000 gcgcgggaggg aggacaagga gcggaggga acgagggaga aaggacacag gcgagggag aggacaagga gcgagggaa aagagaacca gggctccggg 3120 gtccctgtgt cgggcccaa cctgtcaacc accggccaa tccagcagga cctgggccg 3180 caagacccac ccctggcaag ggatattgac aacatgaaga acaacaagct ggccaccgcg 3240 gagtcggccg ctccccacgg cagccttggc cacgccgcc tgcccaaga cccagccaag 3300 atgggaaaca gcaccaccc cggccccatg ctggccatc ctgcccaaga cccagccaag 3300 atgggaaaca gcaccgccg gacgcccaac aaccgggga acccatccaa tcccggcccc 3360 cagaacgccg caagccgcg gacgcccaac aaccgggga acccatcaa tcccggcccc 3420 cccaagaccc ccgagaaatag ccttatcgtc accaacccc aggggacccaa gaccaattca 3480 gctaagact gcaggaaacc cgaccacac acagtggaca tcccccaag ctgcccaaca 3540 cccctcaacc acaccgtcgt acaagtgaac aaaaacgcca acccagaccc actgccaaaa 3600 aaaagaggaag agaagaagga ggaggaggaa gagggagaa accactctag ccctaagcca 3660 atgcctcct atagctccat gttcatcgt tccacgacca accccttcg ccgcctgtgc 3720 cattacatcc tgaacctgc ttactttgag atgtgcatcc tcatggtcat tgccatgagc 3780 agacatcgcc tggccgcag ggaccttgt cagcccaaca cacctcggaa caacgtgctg 3840 cgatactttg actacgttt tacagggtc tttacctttg agatggtgat caagatgatt 3900 gacctggggc tcgtcctgaa tcagggtgc tacttcgga acctctggaa tattctcgac 3960 ttcatagtgg tcagtgggg cctggtagc tttgccttca ctggcaatag caaaggaaaa 4020 gacactaaaca cgattaaatc cctccgagtc tttgccttca ctggcaatag caaaggaaaa 4020 gacactaaaca cgattaaatc cctccgagtc ctccgggtgc tacgacctct taaaaacatc 4080 aagggggtcg caaagctcaa ggctgtgttt gactgtgtg tgaactcact taaaaacgtc ttaaaaacgtc taaaaacgtca taaaaggaaaaaagggagacacgaaaaaaagggagaaaaaa	tacggccgcg	agteggaeea	ccacgcccgg	gagggcagcc	tggagcaacc	cgggttctgg	2760
cegteategee egeacegeag geologiggaa gagggteegg aggacaagge egaggeggagg egagggagag cegagggacae gegagggaag cegagggacae eggaggagaa aaggacaegg eatggegete eageacagta egaggggaa 3000 gaacgggggagg aggacaagga aaggacaegg eatggegete eageacagta egagggggaa 3000 gacggggagga aggacaagga gegagggaat eggaggagga aaggacaegg eteetggg 3120 gteectgtgt eggacecaa ectgteaace acceggecaa tecagagga eetgggeegg 3180 caagacecae eetggaaga ggatattgae aacatgaaga acaacaaget ggecaeegge 3240 gagteeggeeg eteeceaegg eageettgge eacgeeggee tgeeceagag ecageeaag 3300 atggggaaaca geacegaeg eageettgge eageecate etggecatee etgeeatage eaceaacece 3360 eagaacgeeg eageeceatg etggecatee etgeeataga eacaacece 3420 eccaagacee eggacaaca aaceegggga acceateeaa teeeggeece 3420 eccaagacee eegagaatag eettategte accaacecea geggacacea gaceaattea 3480 getaagactg ecaggaaace egaceaacae acagtggaca teeeceagae etgeeaaca 3600 aaagaggaag agaagaaga gagaggagaa gacgacega eacgaaceca acceeteaae acceeteaae acceeteaae eacaegggaa acceatacaa acceeteaae acceeteaae eacaegggaa acceatacaa acceeteaae acceeteaae eaceeteaae eacaeggagaa gagaggagaa gacgacegga gggaagacg eectaagaca 3600 aaaagaggaag agaagaagaa gagagaggaa gacgaceggg gggaagacgg eectaagaca 3600 aagacateee tgaaceteea gtteateetg teeacgacea acceetteg eegeetgtge 3720 eattacatee tgaacetgeg etaetttgaa atgtgeatee teatggtaat tgeeatggag 3780 agcateegee tggeegeaa gaaceettgg aggacacaag caaceteggaa eaaeggtegg 3840 egaacetggge tegteetgea teagggtee taetteegt acceeteggaa tattetegac 3900 gacetgggge tegteetgea teagggtee taetteegtg acceteggaa tattetegac 3960 tteatagtgg teagtggge eetggtagee tttgeettea etggaaatag eaaaggaaaa 4020 gacatacaaca egattaaate eeteeggate etcegggte taetteegt taaaaceete taaaaacate 4080 aageeggetge eaaageteaa ggetgtgtt gactggtgg taaaceete taaaaacgte 4080 aageeggaggaeaaaacae ggetggtgt taacteace taaaaceete 4080 aageeggaeetge eaaageteaa ggetgtgtt gactgtgtg tgaacteact taaaaacgte 4020 aaageeggetge eaaageteaa ggetgtgtt gactgtgtgt tgaacteact taaaaacgte 4020	gagggcgagg	ccgagcgagg	caaggccggg	gacccccacc	ggaggcacgt	gcaccggcag	2820
gegegggace gegagggag eeggeeggee egggggggg aggggaggg egagggeee 3000 gaeggggggg agegegggag agggegggg aggggggga agggaggg	gggggcagca	gggagagccg	cagegggtee	ccgcgcacgg	gcgcggacgg	ggagcatcga	2880
gacgggggcg agcgcaggag aaggcaccgg catggcgctc cagccacgta cgagggggac 3060 gcgcggaggg aggacaagga gcggaggcat cggagggga aagaacca gggctccggg 3120 gtccctgtgt cgggccccaa cctgtcaacc acccggccaa tccagcagga cctgggccgc 3180 caagacccac ccctggcaga ggatattgac aacatgaaga acaacaagct ggccaccgcg 3240 gagtcggccg ctccccacgg cagccttggc cacgcggcc tgccccagag cccagccaag 3300 atgggaaaca gcaccgaccc cggcccatg ctggccatcc ctgccatggc caccaacccc 3360 cagaacggc cagccgcg gacgcccaac aacccgggga acccatccaa tcccggcccc 3420 cccaagaccc ccggaaatag ccttatcgtc accaaccca gcggcaccaa gaccaattca 3480 gctaagactg ccaggaaacc cgaccacac acagtggaca tcccccaagc ctgcccaccc 3540 cccctcaagc acaccgtcgt acaagtgaac aaaaacgcca acccagaccc actgccaaaa 3600 aaagaggaag agaagaagga ggaggaggaa gacgaccgtg gggaagaccg cctaagcca 3660 atgcctcct atagctcat gttcatcctg tccacgacca accccttcg ccgcctgtgc 3720 cattacatcc tgaacctgcg ctactttgag atgtgcatcc tcatggtcat tgccatgagc 3780 agcatcgcc tggccccca ggaccctgtg cagcccaacg cacctcggaa caacgtgctg 3840 cgatactttg actactgtt tacagggtc tttaccttg agatggtgat caagatgatt 3900 gacctgggg tcgtcctgca tcagggtgc tacttccgtg acctctggaa tattctcgac 3960 ttcatagtgg tcagtggggc cctggtagcc tttaccttg actctggaa tattctcgac 3960 ttcatagtgg tcagtggggc cctggtagcc ttttaccttc ctggcaatag caaaggaaaa 4020 gacatcaaca cgattaaatc cctccgagtc tttgccttca ctggcaatag caaaggaaaa 4020 gacatcaaca cgattaaatc cctccgagtc ctccggtgc tacgtctct taaaaccatc 4080 aagcggctgc caaagctcaa ggctgtgttt gactgtggg tgaactcact taaaaccatc 4080 aagcggctgc caaagctcaa ggctgtgttt gactgtgtg tgaactcact taaaaccatc 4080	cgtcatcgcg	cgcaccgcag	gcccggggag	gagggtccgg	aggacaaggc	ggagcggagg	2940
gegeggaggg aggacaagga geggaggcat eggaggagga aagagaacca gggeteeggg 3180 caagacccac ceetggcaga ggatattgac aacatgaaga acaacaaget ggecaceggg 3240 gagteggeeg etceccaegg cageettgge caegeeggee tgeeccagag eccagecaag 3300 atgggaaaca geacegaece eggeeccatg etggecatee etgeecagag eccagecaag 3360 cagaacgceg ceageeggee gaegeecaac aaceegggga acceatecaa teceggeece 3420 ccaagaacge ecageeggeg gaegeecaac aaceegggga acceatecaa teceggeece 3420 cccaagacce ecgagaatag eettategte accaacecea geggeaceca gaecaattea 3480 getaagactg ecaggaaace egaceacace acagtggaca teceeceage etgeecacec 3540 ecceteaace acacegtegt acaagtgaac aaaaacgeca acceagaece actgeeaaaa 3600 aaagaggaag agaagaagga ggaggaggaa gaegacegtg gggaagaege eettaageca 3660 atgeeteect atageteeat gtteateetg tecaegaeca acceetteg eegeetgtge 3720 cattacatee tgaacetgeg etaetttgag atgtgeatee teatggetat tgeeatgage 3780 ageategeec tggeegeega ggaceetgtg eageecaacg caecteggaa caacgtgetg 3840 egatactttg actaegtttt tacaggegte tttacetttg agatggtgat caagatgatt 3900 gaectgggge tegteetgea teaggggee taetteegg accetetegaa tattetegae 3960 tteatagtgg teagteggee ectggtagee taetteegg teaggaatag caaaggaaaa 4020 gacatcaaca egattaaate ecteegagte etcegggtge taegaeetet taaaaacate 4080 aageggetge caaageteaa ggetgtgttt gaetggtgg tgaacteact taaaaacgte 4080 aageggetge caaageteaa ggetgtgttt gaetgtgtgg tgaacteact taaaaacgte	gcgcggcacc	gcgagggcag	ccggccggcc	cggggcggcg	agggcgaggg	cgagggcccc	3000
gtecctgtgt egggecceaa cetgteaace acceggecaa tecageagga cetgggecge 3180 caagacceae ecetggeaga ggatattgae aacatgaaga acaacaaget ggecacegeg 3240 gagteggeeg etececacgg cageettgge cacgeeggee tgececagag cecagecaag 3300 atgggaaaca geacegacee eggececatg etggecatee etgecatgge caccaacece 3360 cagaacgeeg ceageegeeg gaegeceaac aaccegggga acceatecaa teceggeece 3420 eccaagacee eegagaatag cettategte accaacecea geggeaceca gaecaattea 3480 getaagactg ecaggaaace egaceaceac acagtggaca tecececage etgeceacec 3540 ecceteaace acacegtegt acaagtgaac aaaaacgeca acceagacea actgecaaaa 3600 aaagaggaag agaagaagga ggaggaggaa gaegacegtg gggaagacgg ceetaageca 3660 atgeeteeet atageteeat gtteateetg tecacgacea acceetteg eegeetgtge 3720 eattacatee tgaacetgeg etaetttgag atggeatee teatggteat tgecatgage 3840 ecgatacette acacgetegt tacaggete tetaeettg agatggtgat caaagtgetg 3840 ecgatacettg actaegttt tacaggete tttacettg agatggtgat caaagtgatt 3900 gacetgggge tegteetgea teagggtgee tacteteeggaa tattetegac 3960 tteatagtgg teagtggge eetggtagee tettgeettea etggeaatag caaaggaaaa 4020 gacatcaaca egattaaate eeteeggate eteegggtge tacgacetet taaaaccate 4080 aageggetge caaageteaa ggetgtgttt gaettgtgg tgaacteact taaaaacgte 4140	gacgggggcg	agcgcaggag	aaggcaccgg	catggcgctc	cagccacgta	cgaggggac	3060
caagacccac ccctggcaga ggatattgac aacatgaaga acaacaagct ggccaccgcg 3240 gagtcggccg ctccccacgg cagccttggc cacgccggcc tgccccaagg cccagccaag 3300 atgggaaaca gcaccgaccc cggccccatg ctggccatcc ctgccatggc caccaacccc 3360 cagaacgccg ccagccgcg gacgcccaac aacccgggga acccatcaa tcccggcccc 3420 cccaagaccc ccgagaatag ccttatcgtc accaacccca gcggcaccca gaccaattca 3480 gctaagactg ccaggaaacc cgaccaccac acagtggaca tccccccagc ctgcccaccc 3540 cccctcaacc acaccgtcgt acaagtgaac aaaaacgcca acccagaccc actgccaaca 3600 aaagaggaag agaagaagga ggaggaggaa gacgaccgtg gggaagacgg ccctaagcca 3660 atgcctccct atagctccat gttcatcctg tccacgacca accccttcg ccgcctgtgc 3720 cattacatcc tgaacctgcg ctactttgag atgtgcatcc tcatggtcat tgccatgagc 3780 agcatcgcc tggccgcga ggaccctgtg cagcccaacg cacctcggaa caacgtgctg 3840 cgatactttg actacgttt tacaggcgtc tttaccttt agatggtgat caagatgatt 3900 gacctggggc tcgtcctgca tcagggtgcc tacttccgg acctctggaa tattctcgac 3960 ttcatagtgg tcagtggggc cctggtagcc tttgccttca ctggcaatag caaaggaaaa 4020 gacatcaaca cgattaaatc cctccgagtc ctccgggtgc tacgacctct taaaaccatc 4080 aagcggctgc caaaggctgc caaaggctca ggctgtgttt gactgtgtgg tgaactcact taaaaacgtc 4140	gcgcggaggg	aggacaagga	gcggaggcat	cggaggagga	aagagaacca	gggctccggg	3120
gagteggeeg etececaegg cageettgge caegeeggee tgeeceagag cecagecaag 3300 atgggaaaca geacegaece eggeeceatg etggeeatee etgeeatgge caecaaecee 3420 cagaaegeeg ceageeggeg gaegeecaac aaceegggga acecatecaa teceggeece 3420 eecaagaece eeggaaatag eettategte aceaaeceea geggeaecea gaecaattea 3480 getaagaetg eeaggaaace egaceaeca acagtggaca tececeeage etgeecaece 3540 eeceeteaae acacegtegt acaagtgaac aaaaaegeea acecagaece actgeeaaaa 3600 aaagaggaag agaagaagag ggaggaggaa gaegaeeggg gggaagaegg eeetaageea 3660 atgeeteet atageteeat gtteateetg tecaegaeca aceceetteg eegeetgtge 3720 eattacatee tgaaectgge etaetttgag atgtgeatee teatggteat tgeeatgage 3780 ageateegee tggeegeega ggaeeetgtg eageeeaaeg eaceteggaa eaaegtgetg 3840 egaaetttg actaeegtt taeaggege tettaeettg acaaegtgaa acaceteggaa tattetegae 3960 tteataggge tegteetgea teagggtee taetteegg aceteteggaa tattetegae 3960 tteataggge tegteetgea teagggtee taetteegt acetetggaa tattetegae 3960 tteataggege teagteggee eetagggee teteegggte etaegggee taegaeetet taaaaacaac 4080 aageeggeege eaaageteaa ggetgtttt gaetgtgtg tgaaeteaet taaaaacate 4080 aageeggeege eaaageteaa ggetgtgttt gaetgtgtgg tgaaeteaet taaaaacate 4140	gtccctgtgt	cgggccccaa	cctgtcaacc	acccggccaa	tccagcagga	cctgggccgc	3180
atgggaaaca gcaccgacc cggccccatg ctggccatcc ctgccatggc caccaacccc 3360 cagaacgccg ccagccgccg gacgcccaac aacccgggga acccatccaa tcccggcccc 3420 cccaagaccc ccgagaatag ccttatcgtc accaacccca gcggcaccca gaccaattca 3480 gctaagactg ccaggaaacc cgaccacca acagtggaca tcccccagc ctgcccaccc 3540 cccctcaacc acaccgtcgt acaagtgaac aaaaacgcca acccagaccc actgccaaaa 3600 aaagaggaag agaagaagga ggaggaggaa gacgaccgtg gggaagacgg ccctaagcca 3660 atgcctccct atagctcat gttcatcctg tccacgacca acccccttcg ccgcctgtgc 3720 cattacatcc tgaacctgcg ctactttgag atgtgcatcc tcatggtcat tgccatgagc 3780 agcatcgcc tggccgccga ggaccctgtg cagcccaacg cacctcggaa caacgtgctg 3840 cgatactttg actacgttt tacaggcgtc tttacctttg agatggtgat caagatgatt 3900 gacctggggc tcgtcctgca tcagggtgcc tacttccgtg acctctggaa tattctcgac 3960 ttcatagtgg tcagtgggc cctggtagcc tttgccttca ctggcaatag caaaggaaaa 4020 gacatcaaca cgattaaatc cctccgagtc ctccgggtgc tacgacctct taaaaacgtc 4080 aagcggctgc caaaggctca ggctgttt gactgtgtg tgaactcact taaaaacgtc 4140	caagacccac	ccctggcaga	ggatattgac	aacatgaaga	acaacaagct	ggccaccgcg	3240
cagaacgccg ccagccgccg gacgcccaac aacccgggga acccatccaa tcccggcccc 3420 cccaagaccc ccgagaatag ccttatcgtc accaacccca gcggcaccca gaccaattca 3480 gctaagactg ccaggaaacc cgaccacacc acagtggaca tcccccagc ctgcccaccc 3540 cccctcaacc acaccgtcgt acaagtgaac aaaaacgcca acccagaccc actgccaaaa 3600 aaagaggaag agaagaagga ggaggaggaa gacgaccgtg gggaagacgg ccctaagcca 3660 atgcctccct atagctccat gttcatcctg tccacgacca accccttcg ccgcctgtgc 3720 cattacatcc tgaacctgcg ctactttgag atgtgcatcc tcatggtcat tgccatgagc 3780 agcatcgccc tggccgcga ggaccctgtg cagcccaacg cacctcggaa caacgtgctg 3840 cgatactttg actacgttt tacaggcgtc tttacctttg agatggtgat caagatgatt 3900 gacctggggc tcgtcctgca tcagggtgcc tacttccgtg acctctggaa tattctcgac 3960 ttcatagtgg tcagtggggc cctggtagcc tttgccttca ctggcaatag caaaggaaaa 4020 gacatcaaca cgattaaatc cctccgagtc ctccgggtgc tacgacctct taaaaaccatc 4080 aagcggctgc caaagctcaa ggctgtttt gactgtgtgg tgaactcact taaaaacgtc 4140	gagteggeeg	ctccccacgg	cagccttggc	cacgccggcc	tgccccagag	cccagccaag	3300
cccaagaccc ccgagaatag ccttatcgtc accaaccca gcggcacca gaccaattca 3480 gctaagactg ccaggaaacc cgaccacca acagtggaca tcccccagc ctgcccaccc 3540 cccctcaacc acaccgtcgt acaagtgaac aaaaacgcca acccagaccc actgccaaaa 3600 aaagaggaag agaagaagga ggaggaggaa gacgaccgtg gggaagacgg ccctaagcca 3660 atgcctccct atagctccat gttcatcctg tccacgacca accccttcg ccgcctgtgc 3720 cattacatcc tgaacctgcg ctactttgag atgtgcatcc tcatggtcat tgccatgagc 3780 agcatcgcc tggccgcga ggaccctgtg cagcccaacg cacctcggaa caacgtgctg 3840 cgatactttg actacgttt tacaggcgtc tttacctttg agatggtgat caagatgatt 3900 gacctggggc tcgtcctgca tcagggtgcc tacttccgtg acctctggaa tattctcgac 3960 ttcatagtgg tcagtgggc cctggtagcc tttgccttca ctggcaatag caaaggaaaa 4020 gacatcaaca cgattaaatc cctccgagtc ctccgggtgc tacgacctct taaaaaccatc 4080 aagcggctgc caaagctcaa ggctgtttt gactgtgtgg tgaactcact taaaaacgtc 4140	atgggaaaca	gcaccgaccc	cggccccatg	ctggccatcc	ctgccatggc	caccaacccc	3360
getaagactg ccaggaaacc cgaccacacc acagtggaca tececcage etgeccacce 3540 eeecteaacc acacegtegt acaagtgaac aaaaacgcca acceagacce actgccaaaa 3600 aaagaggaag agaagaagga ggaggaggaa gacgaccgtg gggaagacgg eeetaagcca 3660 atgecteet atagetecat gtteatectg tecacgacca accecetteg eegeetgtge 3720 eattacatee tgaacetgeg etactttgag atgtgeatee teatggteat tgecatgage 3780 agcategee tggeegeega ggaccetgtg eageecaacg caceteggaa caacgtgetg 3840 egatactttg actacgttt tacaggegte tttacetttg agatggtgat caagatgatt 3900 gacctgggge tegteetgea teagggtgee tactteegtg acctetggaa tattetegac 3960 tteatagtgg teagtgggge eetggtagee tttgeettea etggeaatag caaaggaaaa 4020 gacateaaca egattaaate eeteegagte eteegggtge tacgacctet taaaaccate 4080 aageggetge eaaageteaa ggetgttt gactgtgtgg tgaacteact taaaaacgte 4140	cagaacgccg	ccagccgccg	gacgcccaac	aacccgggga	acccatccaa	tcccggcccc	3420
cccctcaacc acaccgtcgt acaagtgaac aaaaacgcca acccagaccc actgccaaaa 3600 aaagaggaag agaagaagga ggaggaggaa gacgaccgtg gggaagacgg ccctaagcca 3660 atgcctccct atagctccat gttcatcctg tccacgacca acccccttcg ccgcctgtgc 3720 cattacatcc tgaacctgcg ctactttgag atgtgcatcc tcatggtcat tgccatgagc 3780 agcatcgccc tggccgccga ggaccctgtg cagcccaacg cacctcggaa caacgtgctg 3840 cgatactttg actacgtttt tacaggcgtc tttacctttg agatggtgat caagatgatt 3900 gacctggggc tcgtcctgca tcagggtgcc tacttccgtg acctctggaa tattctcgac 3960 ttcatagtgg tcagtggggc cctggtagcc tttgccttca ctggcaatag caaaggaaaa 4020 gacatcaaca cgattaaatc cctccgagtc ctccgggtgc tacgacctct taaaaccatc 4080 aagcggctgc caaagctcaa ggctgtgttt gactggtgg tgaactcact taaaaacgtc 4140	cccaagaccc	ccgagaatag	ccttatcgtc	accaacccca	gcggcaccca	gaccaattca	3480
aaagaggaag agaagaagga ggaggaggaa gacgaccgtg gggaagacgg ccctaagcca 3660 atgcctccct atagctccat gttcatcctg tccacgacca acccccttcg ccgcctgtgc 3720 cattacatcc tgaacctgcg ctactttgag atgtgcatcc tcatggtcat tgccatgagc 3780 agcatcgccc tggccgccga ggaccctgtg cagcccaacg cacctcggaa caacgtgctg 3840 cgatactttg actacgtttt tacaggcgtc tttacctttg agatggtgat caagatgatt 3900 gacctggggc tcgtcctgca tcagggtgcc tacttccgtg acctctggaa tattctcgac 3960 ttcatagtgg tcagtgggc cctggtagcc tttgccttca ctggcaatag caaaggaaaa 4020 gacatcaaca cgattaaatc cctccgagtc ctccgggtgc tacgacctct taaaaaccatc 4080 aagcggctgc caaagctcaa ggctgtgttt gactggtgg tgaactcact taaaaacgtc 4140	gctaagactg	ccaggaaacc	cgaccacacc	acagtggaca	tccccccagc	ctgcccaccc	3540
atgecteect atageteeat gtteateetg tecaegacea accecetteg cegeetgtge 3720 cattacatee tgaacetgeg etaetttgag atgtgeatee teatggteat tgecatgage 3780 ageategeee tggeegeega ggaecetgtg eageceaacg caceteggaa caacgtgetg 3840 egatactttg actaegttt tacaggegte tttacetttg agatggtgat caagatgatt 3900 gacetgggge tegteetgea teagggtgee tactteegtg acceteggaa tattetegae 3960 tteatagtgg teagtgggge eetggtagee tttgeettea etggeaatag caaaggaaaa 4020 gacateaaca egattaaate eeteegagte eteegggtge tacgaectet taaaaceate 4080 aageggetge caaageteaa ggetgttt gactggtgg tgaacteact taaaaacgte 4140	ccctcaacc	acaccgtcgt	acaagtgaac	aaaaacgcca	acccagaccc	actgccaaaa	3600
cattacatec tgaacetgeg ctactttgag atgtgeatec teatggteat tgecatgage 3780 ageategeec tggeegeega ggaceetgtg cageecaacg caceteggaa caacgtgetg 3840 egatactttg actacgtttt tacaggegte tttacetttg agatggtgat caagatgatt 3900 gacetgggge tegteetgea teagggtgee tactteegtg acetetggaa tattetegae 3960 tteatagtgg teagtgggge cetggtagee tttgeettea etggeaatag caaaggaaaa 4020 gacateaaca egattaaate eeteegagte eteegggtge tacgacetet taaaaceate 4080 aageggetge caaageteaa ggetgtgttt gactgtgtgg tgaacteact taaaaacgte 4140	aaagaggaag	agaagaagga	ggaggaggaa	gacgaccgtg	gggaagacgg	ccctaagcca	3660
agcatcgccc tggccgcga ggaccctgtg cagcccaacg cacctcggaa caacgtgctg 3840 cgatactttg actacgtttt tacaggcgtc tttacctttg agatggtgat caagatgatt 3900 gacctggggc tcgtcctgca tcagggtgcc tacttccgtg acctctggaa tattctcgac 3960 ttcatagtgg tcagtggggc cctggtagcc tttgccttca ctggcaatag caaaggaaaa 4020 gacatcaaca cgattaaatc cctccgagtc ctccgggtgc tacgacctct taaaaccatc 4080 aagcggctgc caaagctcaa ggctgtgtt gactgtgtgg tgaactcact taaaacgtc 4140	atgcctccct	atagctccat	gttcatcctg	tccacgacca	acccccttcg	ccgcctgtgc	3720
cgatactttg actacgtttt tacaggcgtc tttacctttg agatggtgat caagatgatt 3900 gacctggggc tcgtcctgca tcagggtgcc tacttccgtg acctctggaa tattctcgac 3960 ttcatagtgg tcagtggggc cctggtagcc tttgccttca ctggcaatag caaaggaaaa 4020 gacatcaaca cgattaaatc cctccgagtc ctccgggtgc tacgacctct taaaaccatc 4080 aagcggctgc caaagctcaa ggctgtgttt gactgtgtgg tgaactcact taaaaacgtc 4140	cattacatcc	tgaacctgcg	ctactttgag	atgtgcatcc	tcatggtcat	tgccatgagc	3780
gacctggggc tcgtcctgca tcagggtgcc tacttccgtg acctctggaa tattctcgac 3960 ttcatagtgg tcagtggggc cctggtagcc tttgccttca ctggcaatag caaaggaaaa 4020 gacatcaaca cgattaaatc cctccgagtc ctccgggtgc tacgacctct taaaaccatc 4080 aagcggctgc caaagctcaa ggctgtgttt gactgtgtgg tgaactcact taaaaacgtc 4140	agcatcgccc	tggccgccga	ggaccctgtg	cagcccaacg	cacctcggaa	caacgtgctg	3840
ttcatagtgg tcagtggggc cctggtagce tttgccttca ctggcaatag caaaggaaaa 4020 gacatcaaca cgattaaatc cctccgagtc ctccgggtgc tacgacctct taaaaccatc 4080 aagcggctgc caaagctcaa ggctgtgttt gactgtgtgg tgaactcact taaaaacgtc 4140	cgatactttg	actacgtttt	tacaggcgtc	tttacctttg	agatggtgat	caagatgatt	3900
gacatcaaca cgattaaatc cctccgagtc ctccgggtgc tacgacctct taaaaccatc 4080 aagcggctgc caaagctcaa ggctgtgttt gactgtgtgg tgaactcact taaaaacgtc 4140	gacctggggc	tcgtcctgca	tcagggtgcc	tacttccgtg	acctctggaa	tattctcgac	3960
aageggetge caaageteaa ggetgtgttt gaetgtgtgg tgaacteact taaaaaegte 4140	ttcatagtgg	tcagtggggc	cctggtagcc	tttgccttca	ctggcaatag	caaaggaaaa	4020
	gacatcaaca	cgattaaatc	cctccgagtc	ctccgggtgc	tacgacctct	taaaaccatc	4080
ttcaacatcc tcatcgtcta catgctattc atgttcatct tcgccgtggt ggctgtgcag 4200	aageggetge	caaagctcaa	ggctgtgttt	gactgtgtgg	tgaactcact	taaaaacgtc	4140
	ttcaacatcc	tcatcgtcta	catgctattc	atgttcatct	tcgccgtggt	ggctgtgcag	4200

ctcttcaagg	ggaaattett	ccactgcact	gacgagtcca	aagagtttga	gaaagattgt	4260
cgaggcaaat	acctcctcta	cgagaagaat	gaggtgaagg	cgcgagaccg	ggagtggaag	4320
aagtatgaat	tccattacga	caatgtgctg	tgggetetge	tgaccctctt	caccgtgtcc	4380
acgggagaag	gctggccaca	ggtcctcaag	cattcggtgg	acgccacctt	tgagaaccag	4440
ggccccagcc	ccgggtaccg	catggagatg	tccattttct	acgtcgtcta	ctttgtggtg	4500
ttccccttct	tctttgtcaa	tatctttgtg	gccttgatca	tcatcacctt	ccaggagcaa	4560
ggggacaaga	tgatggagga	atacagcctg	gagaaaaatg	agagggcctg	cattgatttc	4620
gccatcagcg	ccaagccgct	gacccgacac	atgeegeaga	acaagcagag	cttccagtac	4680
cgcatgtggc	agttcgtggt	gteteegeet	ttcgagtaca	cgatcatggc	catgategee	4740
ctcaacacca	tegtgettat	gatgaagttc	tatggggctt	ctgttgctta	tgaaaatgcc	4800
ctgcgggtgt	tcaacatcgt	cttcacctcc	ctcttctctc	tggaatgtgt	gctgaaagtc	4860
atggcttttg	ggattctgaa	ttatttccgc	gatgcctgga	acatettega	ctttgtgact	4920
gttctgggca	gcatcaccga	tatectegtg	actgagtttg	ggaatccgaa	taacttcatc	4980
aacctgagct	tteteegeet	cttccgagct	gcccggctca	tcaaacttct	ccgtcagggt	5040
tacaccatcc	gcattcttct	ctggaccttt	gtgcagtcct	tcaaggccct	gccttatgtc	5100
tgtctgctga	tegecatget	cttcttcatc	tatgccatca	ttgggatgca	ggtgtttggt	5160
aacattggca	tcgacgtgga	ggacgaggac	agtgatgaag	atgagttcca	aatcactgag	5220
cacaataact	teeggaeett	cttccaggcc	ctcatgcttc	tcttccggag	tgccaccggg	5280
gaagcttggc	acaacatcat	gctttcctgc	ctcagcggga	aaccgtgtga	taagaactct	5340
ggcatcctga	ctcgagagtg	tggcaatgaa	tttgcttatt	tttactttgt	ttccttcatc	5400
ttcctctgct	cgtttctgat	gctgaatctc	tttgtcgccg	tcatcatgga	caactttgag	5460
tacctcaccc	gagactcctc	catcctgggc	ccccaccacc	tggatgagta	cgtgcgtgtc	5520
tgggccgagt	atgaccccgc	agcttggggc	cgcatgcctt	acctggacat	gtatcagatg	5580
ctgagacaca	tgtctccgcc	cctgggtctg	gggaagaagt	gtccggccag	agtggcttac	5640
aagcggcttc	tgcggatgga	cctgcccgtc	gcagatgaca	acaccgtcca	cttcaattcc	5700
accctcatgg	ctctgatccg	cacagecetg	gacatcaaga	ttgccaaggg	aggagccgac	5760
aaacagcaga	tggacgctga	gctgcggaag	gagatgatgg	cgatttggcc	caatctgtcc	5820
cagaagacgc	tagacctgct	ggtcacacct	cacaagtcca	cggacctcac	cgtggggaag	5880
atctacgcag	ccatgatgat	catggagtac	taccggcaga	gcaaggccaa	gaagctgcag	5940
gccatgcgcg	aggagcagga	ccggacaccc	ctcatgttcc	agcgcatgga	gccccgtcc	6000
ccaacgcagg	aagggggacc	tggccagaac	gccctcccct	ccacccagct	ggacccagga	6060
ggagccctga	tggctcacga	aagcggcctc	aaggagagcc	cgtcctgggt	gacccagcgt	6120
gcccaggaga	tgttccagaa	gacgggcaca	tggagtccgg	aacaaggccc	ccctaccgac	6180
atgcccaaca	gccagcctaa	ctctcagtcc	gtggagatgc	gagagatggg	cagagatggc	6240
tactccgaca	gcgagcacta	cctccccatg	gaaggccagg	gccgggctgc	ctccatgccc	6300
cgcctccctg	cagagaacca	gaggagaagg	ggccggccac	gtgggaataa	cctcagtacc	6360
atctcagaca	ccagccccat	gaagcgttca	gcctccgtgc	tgggccccaa	ggcccgacgc	6420
ctggacgatt	actcgctgga	gcgggtcccg	cccgaggaga	accagcggca	ccaccagcgg	6480

-continued						
egeogegace geagecaceg egeotetgag egetecetgg geogetacae egatgtggac	6540					
acaggettgg ggacagaeet gageatgaee acceaateeg gggaeetgee gtegaaggag	6600					
cgggaccagg agcggggccg gcccaaggat cggaagcatc gacagcacca ccaccaccac	6660					
caccaccacc accatccccc gccccccgac aaggaccgct atgcccagga acggccggac	6720					
caeggeeggg caegggeteg ggaceagege tggteeeget egeeeagega gggeegagag	6780					
cacatggege aceggeaggg cagtagttee gtaagtggaa geceageece etcaacatet	6840					
ggtaccagca ctccgcggcg gggccgccgc cagctccccc agaccccctc cacccccgg	6900					
ccacacgtgt cctattcccc tgtgatccgt aaggccggcg gctcggggcc cccgcagcag	6960					
cagcagcagc agcagcagca gcagcagcag caggcggtgg ccaggccggg ccgggcggcc	7020					
accageggee cteggaggta cecaggeece aeggeegage etetggeegg agateggeeg	7080					
cccacggggg gccacagcag cggccgctcg cccaggatgg agaggcgggt cccaggcccg	7140					
gcccggagcg agtcccccag ggcctgtcga cacggcgggg cccggtggcc ggcatctggc	7200					
cogcacgtgt cogaggggcc cocgggtccc cggcaccatg gctactaccg gggctccgac	7260					
tacgacgagg ccgatggccc gggcagcggg ggcggcgagg aggccatggc cggggcctac	7320					
gacgegecae ecceegtaeg acaegegtee tegggegeca eegggegete geeeaggaet	7380					
coccgggcct cgggcccggc ctgcgcctcg ccttctcggc acggccggcg actccccaac	7440					
ggctactacc cggcgcacgg actggccagg ccccgcgggc cgggctccag gaagggcctg	7500					
cacgaaccct acagcgagag tgacgatgat tggtgctaa	7539					
<210> SEQ ID NO 5 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide						
<400> SEQUENCE: 5						
tgacttttct ttctctccgt ttg	23					
<210> SEQ ID NO 6 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide						
<400> SEQUENCE: 6						
tggctgcaat aatcactttg tt	22					
<210> SEQ ID NO 7 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide <400> SEQUENCE: 7						

21

tctctgtctc cccaggttta c

```
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 8
gtggctaaca cacagctttg c
                                                                          21
<210> SEQ ID NO 9
<211> LENGTH: 21
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 9
tcatggcaca gttcctgtat c
                                                                          21
<210> SEQ ID NO 10
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 10
gcagtaggca attagcagca a
                                                                          21
<210> SEQ ID NO 11
<211> LENGTH: 21
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 11
                                                                          21
tggggcactt tagaaattgt g
<210> SEQ ID NO 12
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 12
                                                                          22
tgacaaagat gcaaaatgag ag
<210> SEQ ID NO 13
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 13
gcagtttggg cttttcaatg
                                                                          20
```

<210> SEQ ID NO 14

```
<211> LENGTH: 20
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 14
tgagcattgt cctcttgctg
                                                                       20
<210> SEQ ID NO 15
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 15
                                                                       22
agggctacgt ttcatttgta tg
<210> SEQ ID NO 16
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 16
tgtgctaaat tgaaatccag ag
                                                                       22
<210> SEQ ID NO 17
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 17
cagetetteg caettteaga
                                                                       20
<210> SEQ ID NO 18
<211> LENGTH: 21
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEOUENCE: 18
                                                                       21
tcaagcagag aaggatgctg a
<210> SEQ ID NO 19
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 19
agcgttgcaa acattcttgg
                                                                       20
```

```
<210> SEQ ID NO 20
<211> LENGTH: 20
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 20
                                                                       20
gggatatcca gcccctcaag
<210> SEQ ID NO 21
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 21
gacaaatact tgtgcctttg aatg
                                                                       24
<210> SEQ ID NO 22
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
<400> SEQUENCE: 22
acataatctc atactttatc aaaaacc
                                                                       27
<210> SEQ ID NO 23
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 23
gaaatggagg tgttgaaaat gc
<210> SEQ ID NO 24
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 24
aatccttggc atcactctgc
                                                                       2.0
<210> SEQ ID NO 25
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 25
agtacagggt gctatgacca ac
```

```
<210> SEQ ID NO 26
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 26
tecteataca accaectget e
                                                                       21
<210> SEQ ID NO 27
<211> LENGTH: 21
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 27
tctccaaaag ccttcattag g
                                                                       21
<210> SEQ ID NO 28
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 28
ttctaattct ccccctctct cc
                                                                       22
<210> SEQ ID NO 29
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 29
                                                                       22
tcctcattct ttaatcccaa gg
<210> SEQ ID NO 30
<211> LENGTH: 21
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 30
gccgttctgt agaaacactg g
                                                                       21
<210> SEQ ID NO 31
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 31
```

```
gtcagaaata tctgccatca cc
                                                                       22
<210> SEQ ID NO 32
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 32
                                                                       22
gaatgcacta ttcccaactc ac
<210> SEQ ID NO 33
<211> LENGTH: 21
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 33
                                                                       21
tgggctctat gtgtgtgtct g
<210> SEQ ID NO 34
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 34
ggaagcatga aggatggttg
                                                                       20
<210> SEQ ID NO 35
<211> LENGTH: 20
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 35
tacttcgcgt ttccacaagg
                                                                       20
<210> SEQ ID NO 36
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 36
gctatgcaag aaccctgatt g
                                                                       21
<210> SEQ ID NO 37
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 37
```

atgageetga gaeggttagg 20 <210> SEQ ID NO 38 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide <400> SEQUENCE: 38 20 atacatgtgc catgctggtg <210> SEQ ID NO 39 <211> LENGTH: 20 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide <400> SEQUENCE: 39 tgctgtggtg tttccttctc 20 <210> SEQ ID NO 40 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide <400> SEQUENCE: 40 tgtattcata ccttcccaca cc 22 <210> SEQ ID NO 41 <211> LENGTH: 22 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide <400> SEQUENCE: 41 22 aaaagggtta gcacagacaa tg <210> SEQ ID NO 42 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide <400> SEQUENCE: 42 22 attgggcaga tataatcaaa gc <210> SEQ ID NO 43 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide

<400> SEQUENCE: 43						
cacacagctg atgaatgtgc 20						
<pre><210> SEQ ID NO 44 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide</pre>						
<400> SEQUENCE: 44						
tgaagggcta cactttctgg 20						
<pre><210> SEQ ID NO 45 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized</pre>						
<400> SEQUENCE: 45						
tetgecetce tattecaatg 20						
<210> SEQ ID NO 46 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide						
<400> SEQUENCE: 46						
gcccttgtct tccagaaatg 20						
<pre><210> SEQ ID NO 47 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide <400> SEQUENCE: 47</pre>						
aaaaattaca tootttacat caaactg 27						
<pre><210> SEQ ID NO 48 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide</pre>						
<400> SEQUENCE: 48						
ttttgcatgc atagattttc c 21						
<210> SEQ ID NO 49 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide						

```
<400> SEQUENCE: 49
tgaaccttgc ttttacatat cc
                                                                         22
<210> SEQ ID NO 50
<211> LENGTH: 20
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 50
acccatctgg gctcataaac
                                                                         20
<210> SEQ ID NO 51
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 51
tgtcttggtc caaaatctgt g
                                                                         21
<210> SEQ ID NO 52
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 52
ttggtcgttt atgctttatt cg
                                                                         22
<210> SEQ ID NO 53
<211> LENGTH: 20
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 53
                                                                         20
ccctaaaggc caatttcagg
<210> SEQ ID NO 54
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 54
                                                                         21
atttggcaga gaaaacactc c
<210> SEQ ID NO 55
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
```

```
Oligonucleotide
<400> SEQUENCE: 55
                                                                         20
gagatttggg ggtgtttgtc
<210> SEQ ID NO 56
<211> LENGTH: 20
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 56
ggattgtaat ggggtgcttc
                                                                         20
<210> SEQ ID NO 57
<211> LENGTH: 20
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 57
caaaaatcag ggccaatgac
                                                                         20
<210> SEQ ID NO 58
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 58
tgattgctgg gatgatcttg
                                                                         20
<210> SEQ ID NO 59
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 59
                                                                         22
aggactetga acettacett gg
<210> SEQ ID NO 60
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 60
ccatgaatcg ctcttccatc
                                                                         20
<210> SEQ ID NO 61 <211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

```
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
<400> SEQUENCE: 61
tgtgggaacc catctgttg
                                                                       19
<210> SEQ ID NO 62
<211> LENGTH: 20
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 62
gtttgctgac aaggggtcac
                                                                       2.0
<210> SEQ ID NO 63
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEOUENCE: 63
tctccgcagt cgtagctcca g
                                                                       2.1
<210> SEQ ID NO 64
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 64
agagattett teacaeteet ee
                                                                       22
<210> SEQ ID NO 65
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 65
tttagaagtc acctgatctg gg
                                                                       22
<210> SEO ID NO 66
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEOUENCE: 66
                                                                       22
gacagagcga gactctggtt ca
<210> SEQ ID NO 67
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
```

```
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 67
                                                                       22
gacaagagaa ctctgcaaga gg
<210> SEQ ID NO 68
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 68
                                                                       22
atacagetga gacatggagg tg
<210> SEQ ID NO 69
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 69
tttatcccgt gaggcaggta ctg
                                                                       23
<210> SEQ ID NO 70
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 70
cctcctgaga tgctctgcat ag
                                                                       22
<210> SEQ ID NO 71
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 71
tgtggtgctt ccttcaccat tg
                                                                       22
<210> SEQ ID NO 72
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 72
cagaggctat ttcactcact gc
                                                                       2.2
<210> SEQ ID NO 73
<211> LENGTH: 23
<212> TYPE: DNA
```

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 73
ccccaaagcc aaacattgat ctc
                                                                         23
<210> SEQ ID NO 74
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 74
                                                                         23
actctgattg tccacacaca ctg
<210> SEQ ID NO 75
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 75
cagaaaacgt tcctccattt ccc
                                                                         23
<210> SEQ ID NO 76
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 76
                                                                         23
aagcttcaat ggcctctact tgg
<210> SEQ ID NO 77
<211> LENGTH: 23
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 77
                                                                         23
gccatactct ggcttttcta tgc
<210> SEQ ID NO 78
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 78
cgtgatgtca gatcctggct tc
                                                                         22
<210> SEQ ID NO 79
<211> LENGTH: 22
```

```
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 79
                                                                        22
gttggctatt gctactgttg cg
<210> SEQ ID NO 80
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 80
gateettaga accagteace tg
                                                                        2.2
<210> SEQ ID NO 81
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 81
tgatagtgcc accttgaacc tc
                                                                        22
<210> SEQ ID NO 82
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 82
tgatgtaatc tgcccaggac ac
                                                                        22
<210> SEQ ID NO 83
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 83
                                                                        22
ctgcaacaga gaactatcag cc
<210> SEQ ID NO 84
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 84
aagagaagtg gaaaaagggt gtg
                                                                        23
<210> SEQ ID NO 85
```

```
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 85
gtagttctag catgttggag gc
                                                                         22
<210> SEQ ID NO 86
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 86
atctgtcatt ccaggcaaga gc
                                                                         22
<210> SEQ ID NO 87
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 87
atggatgaat gagggggtca ag
                                                                         22
<210> SEQ ID NO 88
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 88
                                                                         22
agcaggcact ttcatctgtg ac
<210> SEQ ID NO 89
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 89
                                                                         22
tccatttgga gggaggagtt tg
<210> SEQ ID NO 90
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 90
cctccagaaa gttgggaaag tg
                                                                         22
```

```
<210> SEQ ID NO 91
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 91
aaggagaagc caacacggag tc
                                                                       22
<210> SEQ ID NO 92
<211> LENGTH: 23
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 92
                                                                       2.3
ggtggtaact ttgccagaga aac
<210> SEQ ID NO 93
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 93
agcaggtacc cattccaatt gg
                                                                       22
<210> SEQ ID NO 94
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 94
aatctgtgcc tgggatagtg tg
                                                                       22
<210> SEQ ID NO 95
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEOUENCE: 95
                                                                       22
cctgactcag atgctcacag ac
<210> SEQ ID NO 96
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 96
acacagcacg tgctactttg gc
                                                                       22
```

```
<210> SEQ ID NO 97
<211> LENGTH: 21
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 97
                                                                       21
gaggacttcc tcaggaaaca g
<210> SEQ ID NO 98
<211> LENGTH: 23
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 98
agatggaatc ttagctagga tcc
                                                                       23
<210> SEQ ID NO 99
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
<400> SEQUENCE: 99
aattatctca ctgaaccctc cac
                                                                       23
<210> SEQ ID NO 100
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 100
agaaatgtca gccgcttctt gc
<210> SEQ ID NO 101
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
     Oligonucleotide
<400> SEQUENCE: 101
                                                                       22
ggtggtcaac actcactcat tg
<210> SEQ ID NO 102
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 102
tttgttgtgt aggaggcctt gg
```

```
<210> SEQ ID NO 103
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 103
aacatcccac cctacctatg ag
                                                                       22
<210> SEQ ID NO 104
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 104
cctgcgcaac tgtatatagc ag
                                                                       22
<210> SEQ ID NO 105
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 105
ctcaacctcc tgatctcaag tg
                                                                       22
<210> SEQ ID NO 106
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 106
                                                                       23
cccaaagttt ggatctaaga gcc
<210> SEQ ID NO 107
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 107
aaagccatcg aagctcttcc tg
                                                                       22
<210> SEQ ID NO 108
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 108
```

```
caggtgaaat ggaccactct tc
                                                                       22
<210> SEQ ID NO 109
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 109
                                                                       22
tccttgagca gtgtacaacc tg
<210> SEQ ID NO 110
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 110
                                                                       22
gaatgccagg attgagtcca ac
<210> SEQ ID NO 111
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 111
gaatgtgctg gaaagtggag ac
                                                                       22
<210> SEQ ID NO 112
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 112
                                                                       22
cactgcttcc caagcagtct ag
<210> SEQ ID NO 113
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 113
attacaggcg tgagccacca tg
                                                                       22
<210> SEQ ID NO 114
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 114
```

tttccctctg ttcctgttct gc 22 <210> SEQ ID NO 115 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide <400> SEQUENCE: 115 22 ttcggttggg acaatgcttc tg <210> SEQ ID NO 116 <211> LENGTH: 22 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide <400> SEQUENCE: 116 ctcaagcaac tgtagctgtt gg 22 <210> SEQ ID NO 117 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide <400> SEQUENCE: 117 ttatcagggt agaggcagga ac 22 <210> SEQ ID NO 118 <211> LENGTH: 22 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide <400> SEQUENCE: 118 22 gtgaaaagaa gagcctagtc cg <210> SEQ ID NO 119 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide <400> SEQUENCE: 119 22 atggtaacac tcacaggttg gg <210> SEQ ID NO 120 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized Oligonucleotide

	-concinued	
<400>	SEQUENCE: 120	
gccctt	ccgaa caaccataac tg	22
	SEQ ID NO 121 LENGTH: 22	
<212>	TYPE: DNA ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Description of Artificial Sequence Oligonucleotide	: Synthesized
<400>	SEQUENCE: 121	
cctaca	agcca agctttggtt ac	22
	SEQ ID NO 122	
<212>	LENGTH: 22 TYPE: DNA OPGANISM. Artificial Sequence	
<220>	ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Description of Artificial Sequence	: Synthesized
<400>	Oligonucleotide SEQUENCE: 122	
	- Eggtt ttttggcact gg	22
<210>	SEQ ID NO 123	
	LENGTH: 21	
	TYPE: DNA	
<213>	ORGANISM: Artificial Sequence	
	FEATURE:	
	OTHER INFORMATION: Description of Artificial Sequence Oligonucleotide	: Synthesized
<400>	SEQUENCE: 123	
ggacag	gacag acagaggaga g	21
<210>	SEQ ID NO 124	
<211>	LENGTH: 22	
<212>	TYPE: DNA	
<213>	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Description of Artificial Sequence Oligonucleotide	: Synthesized
	SEQUENCE: 124	
tgttgg	yttgg cttcatgtag gg	22
<210>	SEQ ID NO 125	
<211>	LENGTH: 22	
	TYPE: DNA	
<213>	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Description of Artificial Sequence Oligonucleotide	: Synthesized
	SEQUENCE: 125	
cagaat	ctato agagoaggto oo	22
	SEQ ID NO 126	
	LENGTH: 22	
	TYPE: DNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Description of Artificial Sequence Oligonucleotide	: Synthesized

```
<400> SEQUENCE: 126
tctcagctcc cagtaaaagg ag
                                                                         22
<210> SEQ ID NO 127
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 127
caacagtgct gagtttgaga cg
                                                                         22
<210> SEQ ID NO 128
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 128
ggcctctgtg tacatgtctt tg
                                                                         22
<210> SEQ ID NO 129
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 129
gggtatgcaa gggtgatgat tc
                                                                         22
<210> SEQ ID NO 130
<211> LENGTH: 21
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 130
                                                                         21
tgtttctccc cacctctctt c
<210> SEQ ID NO 131
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 131
                                                                         22
aaaaaaaccc agtgcctgga cg
<210> SEQ ID NO 132
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
```

```
Oligonucleotide
<400> SEQUENCE: 132
agaaactgag tactgggaca gg
                                                                         22
<210> SEQ ID NO 133
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 133
                                                                         22
ggaagagtga atgaagatcc gg
<210> SEQ ID NO 134
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 134
aaagattggg gtctcgttct cg
                                                                         22
<210> SEQ ID NO 135
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 135
ccctcatatt ccagttggtt cc
                                                                         22
<210> SEQ ID NO 136
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 136
                                                                         22
gtgtgtgtgt gtgtatactg gg
<210> SEQ ID NO 137
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 137
cagactgctt cagagactga ag
                                                                         22
<210> SEQ ID NO 138
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

```
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 138
ccgatttctc ttgatgccag tg
<210> SEQ ID NO 139
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 139
agggtgcgat tgccaaagaa ag
                                                                       2.2
<210> SEQ ID NO 140
<211> LENGTH: 22
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEOUENCE: 140
acccagagee etgattgate ag
                                                                       2.2
<210> SEQ ID NO 141
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 141
ttggatgggg tatccccttc tc
                                                                       22
<210> SEQ ID NO 142
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 142
tctcttcctc ccaatcccgt g
                                                                       21
<210> SEO ID NO 143
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthesized
      Oligonucleotide
<400> SEQUENCE: 143
                                                                       21
tgcccaggag ggtctctttt g
<210> SEQ ID NO 144
<211> LENGTH: 2009
<212> TYPE: PRT
<213 > ORGANISM: Rattus norvegicus
```

< 400)> SI	EQUEI	ICE:	144											
Met 1	Glu	Gln	Thr	Val 5	Leu	Val	Pro	Pro	Gly 10	Pro	Asp	Ser	Phe	Asn 15	Phe
Phe	Thr	Arg	Glu 20	Ser	Leu	Ala	Ala	Ile 25	Glu	Arg	Arg	Ile	Ala 30	Glu	Glu
ràa	Ala	Lys 35	Asn	Pro	ГÀз	Pro	Asp 40	Lys	Lys	Asp	Asp	Asp 45	Glu	Asn	Gly
Pro	Lys 50	Pro	Asn	Ser	Asp	Leu 55	Glu	Ala	Gly	Lys	Asn 60	Leu	Pro	Phe	Ile
Tyr 65	Gly	Asp	Ile	Pro	Pro 70	Glu	Met	Val	Ser	Glu 75	Pro	Leu	Glu	Asp	Leu 80
Asp	Pro	Tyr	Tyr	Ile 85	Asn	Lys	Lys	Thr	Phe 90	Ile	Val	Leu	Asn	Lys 95	Gly
ГÀа	Ala	Ile	Phe 100	Arg	Phe	Ser	Ala	Thr 105	Ser	Ala	Leu	Tyr	Ile 110	Leu	Thr
Pro	Phe	Asn 115	Pro	Leu	Arg	Lys	Ile 120	Ala	Ile	ГÀв	Ile	Leu 125	Val	His	Ser
Leu	Phe 130	Ser	Met	Leu	Ile	Met 135	Cys	Thr	Ile	Leu	Thr 140	Asn	Cys	Val	Phe
Met 145	Thr	Met	Ser	Asn	Pro 150	Pro	Asp	Trp	Thr	Lув 155	Asn	Val	Glu	Tyr	Thr 160
Phe	Thr	Gly	Ile	Tyr 165	Thr	Phe	Glu	Ser	Leu 170	Ile	Lys	Ile	Ile	Ala 175	Arg
Gly	Phe	CÀa	Leu 180	Glu	Asp	Phe	Thr	Phe 185	Leu	Arg	Asp	Pro	Trp 190	Asn	Trp
		195					200					205		Val	
	210					215					220			Ala	
225					230		_		-	235			_	Ala	240
				245					250					Val 255	
			260					265					270	Gly	
		275					280					285		Leu	
	290					295				_	300		Ī	Thr	
305					310			Ī	_	315				Gln	320
				325					330					335	
-			340	_		_		345			-	-	350	C\ha	
-		355	_				360	_	_			365	_	Thr	
	370					375					380			Phe	
Glu 385	Asn	Leu	Tyr	Gln	Leu 390	Thr	Leu	Arg	Ala	Ala 395	Gly	Lys	Thr	Tyr	Met 400

Ile	Phe	Phe	Val	Leu 405	Val	Ile	Phe	Leu	Gly 410	Ser	Phe	Tyr	Leu	Ile 415	Asn
Leu	Ile	Leu	Ala 420	Val	Val	Ala	Met	Ala 425	Tyr	Glu	Glu	Gln	Asn 430	Gln	Ala
Thr	Leu	Glu 435	Glu	Ala	Glu	Gln	Lys 440	Glu	Ala	Glu	Phe	Gln 445	Gln	Met	Leu
Glu	Gln 450	Leu	Lys	Lys	Gln	Gln 455	Glu	Ala	Ala	Gln	Gln 460	Ala	Ala	Ala	Ala
Thr 465	Ala	Ser	Glu	His	Ser 470	Arg	Glu	Pro	Ser	Ala 475	Ala	Gly	Arg	Leu	Ser 480
Asp	Ser	Ser	Ser	Glu 485	Ala	Ser	Lys	Leu	Ser 490	Ser	Lys	Ser	Ala	Lys 495	Glu
Arg	Arg	Asn	Arg 500	Arg	Lys	Lys	Arg	Lys 505	Gln	Lys	Glu	Gln	Ser 510	Gly	Gly
Glu	Glu	Lys 515	Asp	Asp	Asp	Glu	Phe 520	His	ГЛа	Ser	Glu	Ser 525	Glu	Asp	Ser
Ile	Arg 530	Arg	Lys	Gly	Phe	Arg 535	Phe	Ser	Ile	Glu	Gly 540	Asn	Arg	Leu	Thr
Tyr 545	Glu	Lys	Arg	Tyr	Ser 550	Ser	Pro	His	Gln	Ser 555	Leu	Leu	Ser	Ile	Arg 560
Gly	Ser	Leu	Phe	Ser 565	Pro	Arg	Arg	Asn	Ser 570	Arg	Thr	Ser	Leu	Phe 575	Ser
Phe	Arg	Gly	Arg 580	Ala	ГÀв	Asp	Val	Gly 585	Ser	Glu	Asn	Asp	Phe 590	Ala	Asp
	Glu	595					600				_	605	_		
	Val 610			_		615		_	-		620				
625	Ser				630				_	635				_	640
	His			645	_	-		_	650					655	_
	Ser		660					665					670		
	Asp	675				_	680		_			685			
	Arg 690	-				695					700		_		
705	Aap				710		•			715					720
	Asn			725					730					735	
	Trp	_	740					745			_	_	750		
-	Trp	755	-				760					765		-	
	Val 770	-				775		-			780				
Met 785	Ala	Met	Glu	His	Tyr 790	Pro	Met	Thr	Glu	His 795	Phe	Asn	His	Val	Leu 800
Thr	Val	Gly	Asn	Leu	Val	Phe	Thr	Gly	Ile	Phe	Thr	Ala	Glu	Met	Phe

	805	810	815
Leu Lys Ile Ile	Ala Met Asp I	Pro Tyr Tyr Tyr	Phe Gln Glu Gly Trp
820		825	830
Asn Ile Phe Asp	•	al Thr Leu Ser	Leu Val Glu Leu Gly
835		340	845
Leu Ala Asn Val	Glu Gly Leu 8	Ser Val Leu Arg	Ser Phe Arg Leu Leu
850	855		860
Arg Val Phe Lys	Leu Ala Lys 8	Ser Trp Pro Thr	Leu Asn Met Leu Ile
865		875	880
Lys Ile Ile Gly	Asn Ser Val (Gly Ala Leu Gly	Asn Leu Thr Leu Val
	885	890	895
Leu Ala Ile Ile	Val Phe Ile I	Phe Ala Val Val	Gly Met Gln Leu Phe
900		905	910
Gly Lys Ser Tyr		al Cys Lys Ile	Ala Thr Asp Cys Lys
915		20	925
Leu Pro Arg Trp 930	His Met Asn A	Asp Phe Phe His	Ser Phe Leu Ile Val 940
Phe Arg Val Leu	Cys Gly Glu 7	rp Ile Glu Thr	Met Trp Asp Cys Met
945		955	960
Glu Val Ala Gly	Gln Ala Met 0	Cys Leu Thr Val	Phe Met Met Val Met
	965	970	975
Val Ile Arg Asn	Leu Val Val I	eu Asn Leu Phe	Leu Ala Leu Leu
980		985	990
Ser Ser Phe Ser		eu Ala Ala Th	r Asp Asp Asp Asn Glu
995		.000	1005
Met Asn Asn Lev	ı Gln Ile Ala		et His Lys Gly Val
1010	1019		1020
Ala Tyr Val Lys	s Arg Lys Ile		le Gln Gln Ser Phe
1025	1030		1035
Val Arg Lys Glr	n Lys Ile Leu	Asp Glu Ile L	ys Pro Leu Asp Asp
1040	1049		1050
Leu Asn Asn Arg	J Lys Asp Asn	Cys Thr Ser A	sn His Thr Thr Glu
1055	1060		1065
Ile Gly Lys Asy	Deu Asp Cys	Leu Lys Asp V	al Asn Gly Thr Thr
1070	1079		1080
Ser Gly Ile Gly	y Thr Gly Ser		ys Tyr Ile Ile Asp
1085	1090		1095
Glu Ser Asp Tyr	r Met Ser Phe		ro Ser Leu Thr Val
1100	1109		1110
Thr Val Pro Ile	e Ala Val Gly 1120	Glu Ser Asp P	he Glu Asn Leu Asn 1125
Thr Glu Asp Phe	e Ser Ser Glu	-	lu Glu Ser Lys Glu
1130	1135		1140
Lys Leu Asn Glu	ı Ser Ser Ser		ly Ser Thr Val Asp
1145	1150		1155
Ile Gly Ala Pro	Ala Glu Glu		et Glu Pro Glu Glu
1160	1169		1170
Thr Leu Glu Pro	Glu Ala Cys 1180		ly Cys Val Gln Arg 1185

Tro	Trn	Λan	Lou	Λrα	λxα	Thr	Cva	Dho	Λrα	T10	17.2.1	Clu	Uia	7 an
irp	1205		ьeu	Arg		1210		Pne	Arg	шe	Val 1215		HIS	ASII
Trp	Phe 1220	Glu	Thr	Phe	Ile	Val 1225		Met	Ile	Leu	Leu 1230		Ser	Gly
Ala	Leu 1235	Ala	Phe	Glu	Asp	Ile 1240		Ile	Asp	Gln	Arg 1245	Lys	Thr	Ile
Lys	Thr 1250	Met	Leu	Glu	Tyr	Ala 1255		Lys	Val	Phe	Thr 1260		Ile	Phe
Ile	Leu 1265	Glu	Met	Leu	Leu	Lys 1270	-	Val	Ala	Tyr	Gly 1275	-	Gln	Thr
Tyr	Phe 1280	Thr	Asn	Ala	Trp	Сув 1285	-	Leu	Asp	Phe	Leu 1290		Val	Asp
Val	Ser 1295	Leu	Val	Ser	Leu	Thr 1300		Asn	Ala	Leu	Gly 1305		Ser	Glu
Leu	Gly 1310	Ala	Ile	Lys	Ser	Leu 1315		Thr	Leu	Arg	Ala 1320	Leu	Arg	Pro
Leu	Arg 1325	Ala	Leu	Ser	Arg	Phe 1330		Gly	Met	Arg	Val 1335	Val	Val	Asn
Ala	Leu 1340	Leu	Gly	Ala	Ile	Pro 1345		Ile	Met	Asn	Val 1350	Leu	Leu	Val
CAa	Leu 1355	Ile	Phe	Trp	Leu	Ile 1360		Ser	Ile	Met	Gly 1365	Val	Asn	Leu
Phe	Ala 1370	Gly	ГÀв	Phe	Tyr	His 1375		Val	Asn	Thr	Thr 1380	Thr	Gly	Asp
Thr	Phe 1385	Glu	Ile	Thr	Glu	Val 1390		Asn	His	Ser	Asp 1395	CAa	Leu	Lys
Leu	Ile 1400	Glu	Arg	Asn	Glu	Thr 1405	Ala	Arg	Trp	Lys	Asn 1410	Val	Lys	Val
Asn	Phe 1415	Asp	Asn	Val	Gly	Phe 1420	Gly	Tyr	Leu	Ser	Leu 1425	Leu	Gln	Val
Ala	Thr 1430	Phe	Lys	Gly	Trp	Met 1435	Asp	Ile	Met	Tyr	Ala 1440	Ala	Val	Asp
Ser	Arg 1445	Asn	Val	Glu	Leu	Gln 1450		Lys	Tyr	Glu	Glu 1455	Ser	Leu	Tyr
Met	Tyr 1460	Leu	Tyr	Phe	Val	Ile 1465	Phe	Ile	Ile	Phe	Gly 1470		Phe	Phe
Thr	Leu 1475	Asn	Leu	Phe	Ile	Gly 1480	Val	Ile	Ile	Asp	Asn 1485	Phe	Asn	Gln
Gln	Lys 1490	ГÀа	Lys	Phe	Gly	Gly 1495	Gln	Asp	Ile	Phe	Met 1500	Thr	Glu	Glu
Gln	Lys 1505	Lys	Tyr	Tyr	Asn	Ala 1510	Met	Lys	Lys	Leu	Gly 1515	Ser	Lys	Lys
Pro	Gln 1520	Lys	Pro	Ile	Pro	Arg 1525	Pro	Gly	Asn	Lys	Phe 1530	Gln	Gly	Met
Val	Phe 1535	Asp	Phe	Val	Thr	Arg 1540	Gln	Val	Phe	Asp	Ile 1545	Ser	Ile	Met
Ile	Leu 1550	Ile	CAa	Leu	Asn	Met 1555		Thr	Met	Met	Val 1560	Glu	Thr	Asp
Asp	Gln 1565	Ser	Asp	Tyr	Val	Thr 1570		Ile	Leu	Ser	Arg 1575	Ile	Asn	Leu
Val	Phe 1580	Ile	Val	Leu	Phe	Thr 1585	Gly	Glu	Cys	Val	Leu 1590	Lys	Leu	Ile

Ser	Leu 1595	Arg	His	Tyr	Tyr	Phe 1600	Thr	Ile	Gly	Trp	Asn 1605	Ile	Phe	Asp
Phe	Val 1610	Val	Val	Ile	Leu	Ser 1615	Ile	Val	Gly	Met	Phe 1620	Leu	Ala	Glu
Leu	Ile 1625	Glu	Lys	Tyr	Phe	Val 1630	Ser	Pro	Thr	Leu	Phe 1635	Arg	Val	Ile
Arg	Leu 1640	Ala	Arg	Ile	Gly	Arg 1645	Ile	Leu	Arg	Leu	Ile 1650	Lys	Gly	Ala
Lys	Gly 1655	Ile	Arg	Thr	Leu	Leu 1660	Phe	Ala	Leu	Met	Met 1665	Ser	Leu	Pro
Ala	Leu 1670	Phe	Asn	Ile	Gly	Leu 1675	Leu	Leu	Phe	Leu	Val 1680	Met	Phe	Ile
Tyr	Ala 1685	Ile	Phe	Gly	Met	Ser 1690	Asn	Phe	Ala	Tyr	Val 1695	Lys	Arg	Glu
Val	Gly 1700	Ile	Asp	Asp	Met	Phe 1705	Asn	Phe	Glu	Thr	Phe 1710	Gly	Asn	Ser
Met	Ile 1715	CÀa	Leu	Phe	Gln	Ile 1720	Thr	Thr	Ser	Ala	Gly 1725	Trp	Asp	Gly
Leu	Leu 1730	Ala	Pro	Ile	Leu	Asn 1735	Ser	Lys	Pro	Pro	Asp 1740	Cys	Asp	Pro
Asn	Lys 1745	Val	Asn	Pro	Gly	Ser 1750	Ser	Val	Lys	Gly	Asp 1755	Сув	Gly	Asn
Pro	Ser 1760	Val	Gly	Ile	Phe	Phe 1765	Phe	Val	Ser	Tyr	Ile 1770	Ile	Ile	Ser
Phe	Leu 1775	Val	Val	Val	Asn	Met 1780	Tyr	Ile	Ala	Val	Ile 1785	Leu	Glu	Asn
Phe	Ser 1790	Val	Ala	Thr	Glu	Glu 1795	Ser	Ala	Glu	Pro	Leu 1800	Ser	Glu	Asp
Asp	Phe 1805	Glu	Met	Phe	Tyr	Glu 1810	Val	Trp	Glu	Lys	Phe 1815	Asp	Pro	Asp
Ala	Thr 1820	Gln	Phe	Met	Glu	Phe 1825	Glu	Lys	Leu	Ser	Gln 1830	Phe	Ala	Ala
Ala	Leu 1835	Glu	Pro	Pro	Leu	Asn 1840	Leu	Pro	Gln	Pro	Asn 1845	Lys	Leu	Gln
Leu	Ile 1850	Ala	Met	Asp	Leu	Pro 1855	Met	Val	Ser	Gly	Asp 1860	Arg	Ile	His
CÀa	Leu 1865	Asp	Ile	Leu	Phe	Ala 1870	Phe	Thr	Lys	Arg	Val 1875	Leu	Gly	Glu
Ser	Gly 1880	Glu	Met	Asp	Ala	Leu 1885	Arg	Ile	Gln	Met	Glu 1890	Glu	Arg	Phe
Met	Ala 1895	Ser	Asn	Pro	Ser	Lys 1900	Val	Ser	Tyr	Gln	Pro 1905	Ile	Thr	Thr
Thr	Leu 1910	ГÀв	Arg	Lys	Gln	Glu 1915	Glu	Val	Ser	Ala	Val 1920	Ile	Ile	Gln
Arg	Ala 1925	Tyr	Arg	Arg	His	Leu 1930	Leu	Lys	Arg	Thr	Val 1935	Lys	Gln	Ala
Ser	Phe 1940	Thr	Tyr	Asn	Lys	Asn 1945	Lys	Leu	Lys	Gly	Gly 1950	Ala	Asn	Leu
Leu	Val 1955	Lys	Glu	Asp	Met	Ile 1960	Ile	Asp	Arg	Ile	Asn 1965	Glu	Asn	Ser
Ile	Thr	Glu	Lys	Thr	Asp	Leu	Thr	Met	Ser	Thr	Ala	Ala	CAa	Pro

	1970 1975 1980														
	1970)				197	75				19	980			
Pro	Ser 1985		r Asr	Arg	y Val	199		s Pi	:0 II	Le Va		Lu I 995	ja P	lis (3lu
Gln	Glu 2000		/ Lys	s Asp	Glu	1 Lys 200		la Ly	/s G]	ГА Г	7S				
<211 <212	0 > SE L > LE 2 > TY 3 > OF	ENGTI PE:	H: 20 PRT	009	sar	oiens	3								
< 400)> SE	EQUE1	ICE :	145	-										
Met 1	Glu	Gln	Thr	Val 5	Leu	Val	Pro	Pro	Gly 10	Pro	Asp	Ser	Phe	Asn 15	Phe
Phe	Thr	Arg	Glu 20	Ser	Leu	Ala	Ala	Ile 25	Glu	Arg	Arg	Ile	Ala 30	Glu	Glu
Lys	Ala	Lys 35	Asn	Pro	Lys	Pro	Asp 40	Lys	Lys	Asp	Asp	Asp 45	Glu	Asn	Gly
Pro	Lys	Pro	Asn	Ser	Asp	Leu 55	Glu	Ala	Gly	ГЛа	Asn 60	Leu	Pro	Phe	Ile
Tyr 65	Gly	Asp	Ile	Pro	Pro 70	Glu	Met	Val	Ser	Glu 75	Pro	Leu	Glu	Asp	Leu 80
Asp	Pro	Tyr	Tyr	Ile 85	Asn	ГÀз	ГÀа	Thr	Phe 90	Ile	Val	Leu	Asn	Lys 95	Gly
Lys	Ala	Ile	Phe 100	Arg	Phe	Ser	Ala	Thr 105	Ser	Ala	Leu	Tyr	Ile 110	Leu	Thr
Pro	Phe	Asn 115	Pro	Leu	Arg	ГÀв	Ile 120	Ala	Ile	Lys	Ile	Leu 125	Val	His	Ser
Leu	Phe 130	Ser	Met	Leu	Ile	Met 135	Cys	Thr	Ile	Leu	Thr 140	Asn	Cys	Val	Phe
Met 145	Thr	Met	Ser	Asn	Pro 150	Pro	Asp	Trp	Thr	Lys 155	Asn	Val	Glu	Tyr	Thr 160
Phe	Thr	Gly	Ile	Tyr 165	Thr	Phe	Glu	Ser	Leu 170	Ile	Lys	Ile	Ile	Ala 175	Arg
Gly	Phe	Cys	Leu 180	Glu	Asp	Phe	Thr	Phe 185	Leu	Arg	Asp	Pro	Trp 190	Asn	Trp
Leu	Asp	Phe 195	Thr	Val	Ile	Thr	Phe 200	Ala	Tyr	Val	Thr	Glu 205	Phe	Val	Asp
Leu	Gly 210	Asn	Val	Ser	Ala	Leu 215	Arg	Thr	Phe	Arg	Val 220	Leu	Arg	Ala	Leu
225	Thr	Ile	Ser	Val	Ile 230	Pro	Gly	Leu	Lys	Thr 235	Ile	Val	Gly	Ala	Leu 240
Ile	Gln	Ser	Val	Lys 245	Lys	Leu	Ser	Asp	Val 250	Met	Ile	Leu	Thr	Val 255	Phe
CAa	Leu	Ser	Val 260	Phe	Ala	Leu	Ile	Gly 265	Leu	Gln	Leu	Phe	Met 270	Gly	Asn
Leu	Arg	Asn 275	ГЛа	CAa	Ile	Gln	Trp 280	Pro	Pro	Thr	Asn	Ala 285	Ser	Leu	Glu
Glu	His 290	Ser	Ile	Glu	Lys	Asn 295	Ile	Thr	Val	Asn	Tyr 300	Asn	Gly	Thr	Leu
Ile 305	Asn	Glu	Thr	Val	Phe 310	Glu	Phe	Asp	Trp	Lys 315	Ser	Tyr	Ile	Gln	Asp 320
Ser	Arg	Tyr	His	Tyr	Phe	Leu	Glu	Gly	Phe	Leu	Asp	Ala	Leu	Leu	Cys

												COII	CIII	ueu	
				325					330					335	
Gly	Asn	Ser	Ser 340	Asp	Ala	Gly	Gln	Сув 345	Pro	Glu	Gly	Tyr	Met 350	Cys	Val
Lys	Ala	Gly 355	Arg	Asn	Pro	Asn	Tyr 360	Gly	Tyr	Thr	Ser	Phe 365	Asp	Thr	Phe
Ser	Trp 370	Ala	Phe	Leu	Ser	Leu 375	Phe	Arg	Leu	Met	Thr 380	Gln	Asp	Phe	Trp
Glu 385	Asn	Leu	Tyr	Gln	Leu 390	Thr	Leu	Arg	Ala	Ala 395	Gly	Lys	Thr	Tyr	Met 400
Ile	Phe	Phe	Val	Leu 405	Val	Ile	Phe	Leu	Gly 410	Ser	Phe	Tyr	Leu	Ile 415	Asn
Leu	Ile	Leu	Ala 420	Val	Val	Ala	Met	Ala 425	Tyr	Glu	Glu	Gln	Asn 430	Gln	Ala
Thr	Leu	Glu 435	Glu	Ala	Glu	Gln	Lys 440	Glu	Ala	Glu	Phe	Gln 445	Gln	Met	Ile
Glu	Gln 450	Leu	Lys	Lys	Gln	Gln 455	Glu	Ala	Ala	Gln	Gln 460	Ala	Ala	Thr	Ala
Thr 465	Ala	Ser	Glu	His	Ser 470	Arg	Glu	Pro	Ser	Ala 475	Ala	Gly	Arg	Leu	Ser 480
Asp	Ser	Ser	Ser	Glu 485	Ala	Ser	Lys	Leu	Ser 490	Ser	Lys	Ser	Ala	Lys 495	Glu
Arg	Arg	Asn	Arg 500	Arg	ГÀа	ГÀа	Arg	505	Gln	ГÀа	Glu	Gln	Ser 510	Gly	Gly
Glu	Glu	Lys 515	Asp	Glu	Asp	Glu	Phe 520	Gln	Lys	Ser	Glu	Ser 525	Glu	Asp	Ser
Ile	Arg 530	Arg	Lys	Gly	Phe	Arg 535	Phe	Ser	Ile	Glu	Gly 540	Asn	Arg	Leu	Thr
Tyr 545	Glu	Lys	Arg	Tyr	Ser 550	Ser	Pro	His	Gln	Ser 555	Leu	Leu	Ser	Ile	Arg 560
Gly	Ser	Leu	Phe	Ser 565	Pro	Arg	Arg	Asn	Ser 570	Arg	Thr	Ser	Leu	Phe 575	Ser
Phe	Arg	Gly	Arg 580	Ala	Lys	Asp	Val	Gly 585	Ser	Glu	Asn	Asp	Phe 590	Ala	Asp
Asp	Glu	His 595	Ser	Thr	Phe	Glu	Asp 600	Asn	Glu	Ser	Arg	Arg 605	Asp	Ser	Leu
Phe	Val 610	Pro	Arg	Arg	His	Gly 615	Glu	Arg	Arg	Asn	Ser 620	Asn	Leu	Ser	Gln
Thr 625	Ser	Arg	Ser	Ser	Arg 630	Met	Leu	Ala	Val	Phe 635	Pro	Ala	Asn	Gly	Lys 640
Met	His	Ser	Thr	Val 645	Asp	Cys	Asn	Gly	Val 650	Val	Ser	Leu	Val	Gly 655	Gly
Pro	Ser	Val	Pro 660	Thr	Ser	Pro	Val	Gly 665	Gln	Leu	Leu	Pro	Glu 670	Val	Ile
Ile	Asp	Lys 675	Pro	Ala	Thr	Asp	Asp 680	Asn	Gly	Thr	Thr	Thr 685	Glu	Thr	Glu
Met	Arg 690	Lys	Arg	Arg	Ser	Ser 695	Ser	Phe	His	Val	Ser 700	Met	Asp	Phe	Leu
Glu 705	Asp	Pro	Ser	Gln	Arg 710	Gln	Arg	Ala	Met	Ser 715	Ile	Ala	Ser	Ile	Leu 720
Thr	Asn	Thr	Val	Glu 725	Glu	Leu	Glu	Glu	Ser 730	Arg	Gln	Lys	Cys	Pro 735	Pro

												0011	. C 111	aca	
CAa	Trp	Tyr	Lys 740	Phe	Ser	Asn	Ile	Phe 745	Leu	Ile	Trp	Asp	Сув 750	Ser	Pro
Tyr	Trp	Leu 755	Lys	Val	Lys	His	Val 760	Val	Asn	Leu	Val	Val 765	Met	Asp	Pro
Phe	Val 770	Asp	Leu	Ala	Ile	Thr 775	Ile	Cya	Ile	Val	Leu 780	Asn	Thr	Leu	Phe
Met 785	Ala	Met	Glu	His	Tyr 790	Pro	Met	Thr	Asp	His 795	Phe	Asn	Asn	Val	Leu 800
Thr	Val	Gly	Asn	Leu 805	Val	Phe	Thr	Gly	Ile 810	Phe	Thr	Ala	Glu	Met 815	Phe
Leu	Lys	Ile	Ile 820	Ala	Met	Asp	Pro	Tyr 825	Tyr	Tyr	Phe	Gln	Glu 830	Gly	Trp
Asn	Ile	Phe 835	Asp	Gly	Phe	Ile	Val 840	Thr	Leu	Ser	Leu	Val 845	Glu	Leu	Gly
Leu	Ala 850	Asn	Val	Glu	Gly	Leu 855	Ser	Val	Leu	Arg	Ser 860	Phe	Arg	Leu	Leu
Arg 865	Val	Phe	Lys	Leu	Ala 870	Lys	Ser	Trp	Pro	Thr 875	Leu	Asn	Met	Leu	Ile 880
Lys	Ile	Ile	Gly	Asn 885	Ser	Val	Gly	Ala	Leu 890	Gly	Asn	Leu	Thr	Leu 895	Val
Leu	Ala	Ile	Ile 900	Val	Phe	Ile	Phe	Ala 905	Val	Val	Gly	Met	Gln 910	Leu	Phe
Gly	Lys	Ser 915	Tyr	Lys	Asp	CÀa	Val 920	Cas	Lys	Ile	Ala	Ser 925	Asp	Cys	Gln
Leu	Pro 930	Arg	Trp	His	Met	Asn 935	Asp	Phe	Phe	His	Ser 940	Phe	Leu	Ile	Val
Phe 945	Arg	Val	Leu	СЛа	Gly 950	Glu	Trp	Ile	Glu	Thr 955	Met	Trp	Asp	Cys	Met 960
Glu	Val	Ala	Gly	Gln 965	Ala	Met	Сла	Leu	Thr 970	Val	Phe	Met	Met	Val 975	Met
Val	Ile	Gly	Asn 980	Leu	Val	Val	Leu	Asn 985	Leu	Phe	Leu	Ala	Leu 990	Leu	Leu
Ser	Ser	Phe 995	Ser	Ala	Asp	Asn	Leu 1000		a Ala	a Th:	r Asj	p As	_	sp A	sn Glu
Met	Asn 1010		ı Lev	ı Glı	n Ile	10:		al As	ap A:	rg Me		is 020	rys (Gly '	Val
Ala	Tyr 1025		l Lys	a Arç	g Lys	103		yr G	lu Pl	ne I		ln 035	Gln	Ser :	Phe
Ile	Arg 1040	-	s Glr	ı Ly:	∃ Ile	Let 104		sp G	lu I	le Ly		ro 050	Leu .	Asp 2	Asp
Leu	Asn 1055		ı Lys	s Ly:	a Asl	Se:		ys Me	∍t S∈	er A		is 065	Thr '	Thr	Glu
Ile	Gly 1070		s Asp	Le:	ı Asp	10°		eu Ly	a Y	sp Va		sn 080	Gly '	Thr '	Thr
Ser	Gly 1085		e Gly	/ Thi	r Gly	7 Sei 109		∍r Va	al G	lu Ly		yr 095	Ile	Ile 2	Asp
Glu	Ser 1100		э Туз	r Met	Sei	Phe 110		le As	en A	∍n P:		er 110	Leu '	Thr '	Val
Thr	Val 1115) Ile	e Ala	a Val	Gly 112		lu Se	er A	sp Pl		lu . 125	Asn :	Leu i	Asn
Thr	Glu 1130		Phe	e Sei	r Sei	Gl: 113		er As	sp L	eu Gi		lu 140	Ser :	Lys (Glu

Lys	Leu 1145	Asn	Glu	Ser	Ser	Ser 1150	Ser	Ser	Glu	Gly	Ser 1155	Thr	Val	Asp
Ile	Gly 1160	Ala	Pro	Val	Glu	Glu 1165	Gln	Pro	Val	Val	Glu 1170	Pro	Glu	Glu
Thr	Leu 1175	Glu	Pro	Glu	Ala	Cys 1180	Phe	Thr	Glu	Gly	Cys 1185	Val	Gln	Arg
Phe	Lys 1190	Cys	Cys	Gln	Ile	Asn 1195	Val	Glu	Glu	Gly	Arg 1200	Gly	Lys	Gln
Trp	Trp 1205	Asn	Leu	Arg	Arg	Thr 1210	CAa	Phe	Arg	Ile	Val 1215	Glu	His	Asn
Trp	Phe 1220	Glu	Thr	Phe	Ile	Val 1225	Phe	Met	Ile	Leu	Leu 1230	Ser	Ser	Gly
Ala	Leu 1235	Ala	Phe	Glu	Asp	Ile 1240	Tyr	Ile	Asp	Gln	Arg 1245	Lys	Thr	Ile
Lys	Thr 1250	Met	Leu	Glu	Tyr	Ala 1255	Asp	Lys	Val	Phe	Thr 1260	Tyr	Ile	Phe
Ile	Leu 1265	Glu	Met	Leu	Leu	Lys 1270	Trp	Val	Ala	Tyr	Gly 1275	Tyr	Gln	Thr
Tyr	Phe 1280	Thr	Asn	Ala	Trp	Cys 1285		Leu	Asp	Phe	Leu 1290	Ile	Val	Asp
Val	Ser 1295	Leu	Val	Ser	Leu	Thr 1300	Ala	Asn	Ala	Leu	Gly 1305	Tyr	Ser	Glu
Leu	Gly 1310	Ala	Ile	Lys	Ser	Leu 1315	Arg	Thr	Leu	Arg	Ala 1320	Leu	Arg	Pro
Leu	Arg 1325	Ala	Leu	Ser	Arg	Phe 1330	Glu	Gly	Met	Arg	Val 1335	Val	Val	Asn
Ala	Leu 1340	Leu	Gly	Ala	Ile	Pro 1345	Ser	Ile	Met	Asn	Val 1350	Leu	Leu	Val
CAa	Leu 1355	Ile	Phe	Trp	Leu	Ile 1360	Phe	Ser	Ile	Met	Gly 1365	Val	Asn	Leu
Phe	Ala 1370	Gly	Lys	Phe	Tyr	His 1375	Cys	Ile	Asn	Thr	Thr 1380	Thr	Gly	Asp
Arg	Phe 1385	Asp	Ile	Glu	Asp	Val 1390	Asn	Asn	His	Thr	Asp 1395	Сув	Leu	Lys
Leu	Ile 1400	Glu	Arg	Asn	Glu	Thr 1405	Ala	Arg	Trp	Lys	Asn 1410	Val	Lys	Val
Asn	Phe 1415	Asp	His	Val	Gly	Phe 1420	Gly	Tyr	Leu	Ser	Leu 1425	Leu	Gln	Val
Ala	Thr 1430	Phe	Lys	Gly	Trp	Met 1435	Asp	Ile	Met	Tyr	Ala 1440	Ala	Val	Asp
Ser	Arg 1445	Asn	Val	Glu	Leu	Gln 1450	Pro	Lys	Tyr	Glu	Glu 1455	Ser	Leu	Tyr
Met	Tyr 1460	Leu	Tyr	Phe	Val	Ile 1465	Phe	Ile	Ile	Phe	Gly 1470	Ser	Phe	Phe
Thr	Leu 1475	Asn	Leu	Phe	Ile	Gly 1480	Val	Ile	Ile	Asp	Asn 1485	Phe	Asn	Gln
Gln	Lys 1490	Lys	Lys	Phe	Gly	Gly 1495	Gln	Asp	Ile	Phe	Met 1500	Thr	Glu	Glu
Gln	Lys 1505	Lys	Tyr	Tyr	Asn	Ala 1510	Met	Lys	Lys	Leu	Gly 1515	Ser	Lys	Lys
Pro	Gln	Lys	Pro	Ile	Pro	Arg	Pro	Gly	Asn	Lys	Phe	Gln	Gly	Met

_	\sim	\cap	n	╆	٦	n	11	e	\sim

											-CO1	ntir	iuec	i
	1520					1525					1530			
Val	Phe 1535	Asp	Phe	Val	Thr	Arg 1540	Gln	Val	Phe	Asp	Ile 1545	Ser	Ile	Met
Ile	Leu 1550	Ile	CAa	Leu	Asn	Met 1555	Val	Thr	Met	Met	Val 1560	Glu	Thr	Asp
Asp	Gln 1565	Ser	Glu	Tyr	Val	Thr 1570		Ile	Leu	Ser	Arg 1575	Ile	Asn	Leu
Val	Phe 1580	Ile	Val	Leu	Phe	Thr 1585	Gly	Glu	CÀa	Val	Leu 1590		Leu	Ile
Ser	Leu 1595	Arg	His	Tyr	Tyr	Phe 1600	Thr	Ile	Gly	Trp	Asn 1605	Ile	Phe	Asp
Phe	Val 1610	Val	Val	Ile	Leu	Ser 1615	Ile	Val	Gly	Met	Phe 1620	Leu	Ala	Glu
Leu	Ile 1625	Glu	ГÀа	Tyr	Phe	Val 1630		Pro	Thr	Leu	Phe 1635	Arg	Val	Ile
Arg	Leu 1640	Ala	Arg	Ile	Gly	Arg 1645	Ile	Leu	Arg	Leu	Ile 1650	ГÀа	Gly	Ala
ГÀа	Gly 1655	Ile	Arg	Thr	Leu	Leu 1660		Ala	Leu	Met	Met 1665	Ser	Leu	Pro
Ala	Leu 1670	Phe	Asn	Ile	Gly	Leu 1675	Leu	Leu	Phe	Leu	Val 1680	Met	Phe	Ile
Tyr	Ala 1685	Ile	Phe	Gly	Met	Ser 1690	Asn	Phe	Ala	Tyr	Val 1695	ГÀа	Arg	Glu
Val	Gly 1700	Ile	Asp	Asp	Met	Phe 1705	Asn	Phe	Glu	Thr	Phe 1710	Gly	Asn	Ser
Met	Ile 1715	CÀa	Leu	Phe	Gln	Ile 1720		Thr	Ser	Ala	Gly 1725	Trp	Asp	Gly
Leu	Leu 1730	Ala	Pro	Ile	Leu	Asn 1735	Ser	Lys	Pro	Pro	Asp 1740	CÀa	Asp	Pro
	1745					1750					Asp 1755	CÀa	Gly	Asn
	1760					1765					Ile 1770		Ile	
	1775					1780					Ile 1785			
	Ser 1790		Ala			Glu 1795		Ala			Leu 1800		Glu	Asp
Asp	Phe 1805	Glu	Met	Phe	Tyr	Glu 1810	Val	Trp	Glu	Lys	Phe 1815	Asp	Pro	Asp
Ala	Thr 1820	Gln	Phe	Met	Glu	Phe 1825	Glu	Lys	Leu	Ser	Gln 1830	Phe	Ala	Ala
Ala	Leu 1835	Glu	Pro	Pro	Leu	Asn 1840	Leu	Pro	Gln	Pro	Asn 1845	ГЛа	Leu	Gln
Leu	Ile 1850	Ala	Met	Asp	Leu	Pro 1855	Met	Val	Ser	Gly	Asp 1860	Arg	Ile	His
CAa	Leu 1865	Asp	Ile	Leu	Phe	Ala 1870	Phe	Thr	Lys	Arg	Val 1875	Leu	Gly	Glu
Ser	Gly 1880	Glu	Met	Asp	Ala	Leu 1885	Arg	Ile	Gln	Met	Glu 1890	Glu	Arg	Phe
Met	Ala 1895	Ser	Asn	Pro	Ser	Lys 1900	Val	Ser	Tyr	Gln	Pro 1905	Ile	Thr	Thr

Thr	Leu 1910	_	s Arç	g Lys	Glr	ı Glı 191		lu Va	al Se	er A		al 920	Ile	Ile	Gln
Arg	Ala 1925	_	r Arg	g Arg	g His	Let 193		eu Ly	ys A:	rg Tl		al 935	Lys (Gln .	Ala
Ser	Phe 1940		г Туз	r Asr	ı Lys	194		ys I:	le Ly	ys G	-	ly 950	Ala	Asn	Leu
Leu	Ile 1955	_	s Glu	ı Asp	Met	: Ile 196		le A	sp A:	rg I		sn 965	Glu	Asn	Ser
Ile	Thr 1970		і Гу	7hi	: Asp	Le:		ır Me	et S	er Tl		la 980	Ala	Cys	Pro
Pro	Ser 1985	_	r Asl	Arg	y Val	. Thi		ys P:	ro I	le V		lu 995	Lys i	His	Glu
Gln	Glu 2000	_	y Lys	a Asp	Glu	Ly:		la Ly	ys G	ly L	λa				
<211 <212	0 > SE L > LE 2 > TY 3 > OF	NGTI PE :	H: 20 PRT	009	us r	orve	egicu	ıs							
< 400)> SE	QUE	ICE:	146											
Met 1	Glu	Gln	Thr	Val 5	Leu	Val	Pro	Pro	Gly 10	Pro	Asp	Ser	Phe	Asn 15	Phe
Phe	Thr	Arg	Glu 20	Ser	Leu	Ala	Ala	Ile 25	Glu	Arg	Arg	Ile	Ala 30	Glu	Glu
Lys	Ala	35 Lys	Asn	Pro	ГÀа	Pro	Asp 40	Lys	Lys	Asp	Asp	Asp 45	Glu	Asn	Gly
Pro	Lys 50	Pro	Asn	Ser	Asp	Leu 55	Glu	Ala	Gly	ГÀа	Asn 60	Leu	Pro	Phe	Ile
Tyr 65	Gly	Asp	Ile	Pro	Pro 70	Glu	Met	Val	Ser	Glu 75	Pro	Leu	Glu	Asp	Leu 80
Asp	Pro	Tyr	Tyr	Ile 85	Asn	Lys	Lys	Thr	Phe 90	Ile	Val	Leu	Asn	Lys 95	Gly
Lys	Ala	Ile	Phe 100	Arg	Phe	Ser	Ala	Thr 105	Ser	Ala	Leu	Tyr	Ile 110	Leu	Thr
Pro	Phe	Asn 115	Pro	Leu	Arg	ràa	Ile 120	Ala	Ile	ГÀа	Ile	Leu 125	Val	His	Ser
Leu	Phe 130	Ser	Met	Leu	Ile	Met 135	СЛа	Thr	Ile	Leu	Thr 140	Asn	. Cys	Val	Phe
Met 145	Thr	Met	Ser	Asn	Pro 150	Pro	Asp	Trp	Thr	Lys 155	Asn	Val	Glu	Tyr	Thr 160
Phe	Thr	Gly	Ile	Tyr 165	Thr	Phe	Glu	Ser	Leu 170	Ile	ГÀа	Ile	lle	Ala 175	
Gly	Phe	Cys	Leu 180	Glu	Asp	Phe	Thr	Phe 185	Leu	Arg	Asp	Pro	Trp 190	Asn	Trp
Leu	Asp	Phe 195	Thr	Val	Ile	Thr	Phe 200	Ala	Tyr	Val	Thr	Glu 205	Phe	Val	Asp
Leu	Gly 210	Asn	Val	Ser	Ala	Leu 215	Arg	Thr	Phe	Arg	Val 220	Leu	Arg	Ala	Leu
Lys 225	Thr	Ile	Ser	Val	Ile 230	Pro	Gly	Leu	Lys	Thr 235	Ile	Val	Gly	Ala	Leu 240
Ile	Gln	Ser	Val	Lys 245	Lys	Leu	Ser	Asp	Val 250	Met	Ile	Leu	Thr	Val 255	Phe

												COII	CIII	Jeu	
CÀa	Leu	Ser	Val 260	Phe	Ala	Leu	Ile	Gly 265	Leu	Gln	Leu	Phe	Met 270	Gly	Asn
Leu	Arg	Asn 275	Lys	Cys	Val	Gln	Trp 280	Pro	Pro	Thr	Asn	Ala 285	Ser	Leu	Glu
Glu	His 290	Ser	Ile	Glu	ГÀз	Asn 295	Val	Thr	Thr	Asp	Tyr 300	Asn	Gly	Thr	Leu
Val 305	Asn	Glu	Thr	Val	Phe 310	Glu	Phe	Asp	Trp	Lys 315	Ser	Tyr	Ile	Gln	Asp 320
Ser	Arg	Tyr	His	Tyr 325	Phe	Leu	Glu	Gly	Val 330	Leu	Asp	Ala	Leu	Leu 335	Cys
Gly	Asn	Ser	Ser 340	Asp	Ala	Gly	Gln	Cys 345	Pro	Glu	Gly	Tyr	Met 350	Cys	Val
ГÀа	Ala	Gly 355	Arg	Asn	Pro	Asn	Tyr 360	Gly	Tyr	Thr	Ser	Phe 365	Asp	Thr	Phe
Ser	Trp 370	Ala	Phe	Leu	Ser	Leu 375	Phe	Arg	Leu	Met	Thr 380	Gln	Asp	Phe	Trp
Glu 385	Asn	Leu	Tyr	Gln	Leu 390	Thr	Leu	Arg	Ala	Ala 395	Gly	Lys	Thr	Tyr	Met 400
Ile	Phe	Phe	Val	Leu 405	Val	Ile	Phe	Leu	Gly 410	Ser	Phe	Tyr	Leu	Ile 415	Asn
Leu	Ile	Leu	Ala 420	Val	Val	Ala	Met	Ala 425	Tyr	Glu	Glu	Gln	Asn 430	Gln	Ala
Thr	Leu	Glu 435	Glu	Ala	Glu	Gln	Lys 440	Glu	Ala	Glu	Phe	Gln 445	Gln	Met	Leu
Glu	Gln 450	Leu	Lys	Lys	Gln	Gln 455	Glu	Ala	Ala	Gln	Gln 460	Ala	Ala	Ala	Ala
Thr 465	Ala	Ser	Glu	His	Ser 470	Arg	Glu	Pro	Ser	Ala 475	Ala	Gly	Arg	Leu	Ser 480
Asp	Ser	Ser	Ser	Glu 485	Ala	Ser	Lys	Leu	Ser 490	Ser	Lys	Ser	Ala	Lys 495	Glu
Arg	Arg	Asn	Arg 500	Arg	ГÀз	ГÀа	Arg	Lys	Gln	Lys	Glu	Gln	Ser 510	Gly	Gly
Glu	Glu	Lys 515	Asp	Asp	Asp	Glu	Phe 520	His	Lys	Ser	Glu	Ser 525	Glu	Asp	Ser
Ile	Arg 530	Arg	Lys	Gly	Phe	Arg 535	Phe	Ser	Ile	Glu	Gly 540	Asn	Arg	Leu	Thr
Tyr 545	Glu	ГЛа	Arg	Tyr	Ser 550	Ser	Pro	His	Gln	Ser 555	Leu	Leu	Ser	Ile	Arg 560
Gly	Ser	Leu	Phe	Ser 565	Pro	Arg	Arg	Asn	Ser 570	Arg	Thr	Ser	Leu	Phe 575	Ser
Phe	Arg	Gly	Arg 580	Ala	ГÀа	Asp	Val	Gly 585	Ser	Glu	Asn	Asp	Phe 590	Ala	Asp
Asp	Glu	His 595	Ser	Thr	Phe	Glu	Asp 600	Asn	Glu	Ser	Arg	Arg 605	Asp	Ser	Leu
Phe	Val 610	Pro	Arg	Arg	His	Gly 615	Glu	Arg	Arg	Asn	Ser 620	Asn	Leu	Ser	Gln
Thr 625	Ser	Arg	Ser	Ser	Arg 630	Met	Leu	Ala	Gly	Leu 635	Pro	Ala	Asn	Gly	Lys 640
Met	His	Ser	Thr	Val 645	Asp	CAa	Asn	Gly	Val 650	Val	Ser	Leu	Val	Gly 655	Gly
Pro	Ser	Val	Pro 660	Thr	Ser	Pro	Val	Gly 665	Gln	Leu	Leu	Pro	Glu 670	Val	Ile

Ile	Asp	Lys 675	Pro	Ala	Thr	Asp	Asp 680	Asn	Gly	Thr	Thr	Thr 685	Glu	Thr	Glu
Met	Arg 690	Lys	Arg	Arg	Ser	Ser 695	Ser	Phe	His	Val	Ser 700	Met	Asp	Phe	Leu
Glu 705	Asp	Pro	Ser	Gln	Arg 710	Gln	Arg	Ala	Met	Ser 715	Ile	Ala	Ser	Ile	Leu 720
Thr	Asn	Thr	Val	Glu 725	Glu	Leu	Glu	Glu	Ser 730	Arg	Gln	Lys	Cys	Pro 735	Pro
Cys	Trp	Tyr	Lys 740	Phe	Ser	Asn	Ile	Phe 745	Leu	Ile	Trp	Asp	Сув 750	Ser	Pro
Tyr	Trp	Leu 755	Lys	Val	Lys	His	Ile 760	Val	Asn	Leu	Val	Val 765	Met	Asp	Pro
Phe	Val 770	Asp	Leu	Ala	Ile	Thr 775	Ile	Cha	Ile	Val	Leu 780	Asn	Thr	Leu	Phe
Met 785	Ala	Met	Glu	His	Tyr 790	Pro	Met	Thr	Glu	His 795	Phe	Asn	His	Val	Leu 800
Thr	Val	Gly	Asn	Leu 805	Val	Phe	Thr	Gly	Ile 810	Phe	Thr	Ala	Glu	Met 815	Phe
Leu	Lys	Ile	Ile 820	Ala	Met	Asp	Pro	Tyr 825	Tyr	Tyr	Phe	Gln	Glu 830	Gly	Trp
Asn	Ile	Phe 835	Asp	Gly	Phe	Ile	Val 840	Thr	Leu	Ser	Leu	Val 845	Glu	Leu	Gly
Leu	Ala 850	Asn	Val	Glu	Gly	Leu 855	Ser	Val	Leu	Arg	Ser 860	Phe	Arg	Leu	Leu
Arg 865	Val	Phe	Lys	Leu	Ala 870	Lys	Ser	Trp	Pro	Thr 875	Leu	Asn	Met	Leu	Ile 880
Lys	Ile	Ile	Gly	Asn 885	Ser	Val	Gly	Ala	Leu 890	Gly	Asn	Leu	Thr	Leu 895	Val
Leu	Ala	Ile	Ile 900	Val	Phe	Ile	Phe	Ala 905	Val	Val	Gly	Met	Gln 910	Leu	Phe
Gly	Lys	Ser 915	Tyr	Lys	Asp	Cys	Val 920	Сув	Lys	Ile	Ala	Thr 925	Asp	Cys	Lys
Leu	Pro 930	Arg	Trp	His	Met	Asn 935	Asp	Phe	Phe	His	Ser 940	Phe	Leu	Ile	Val
Phe 945	Arg	Val	Leu	Cys	Gly 950	Glu	Trp	Ile	Glu	Thr 955	Met	Trp	Asp	Cys	Met 960
Glu	Val	Ala	Gly	Gln 965	Ala	Met	Cys	Leu	Thr 970	Val	Phe	Met	Met	Val 975	Met
Val	Ile	Arg	Asn 980	Leu	Val	Val	Leu	Asn 985	Leu	Phe	Leu	Ala	Leu 990	Leu	Leu
Ser	Ser	Phe 995	Ser	Ala	Asp	Asn	Leu 1000		a Ala	a Th:	r Ası	As;		sp A	sn Glu
Met	Asn 1010		ı Lev	ı Glr	ı Ile	e Ala 101		al As	sp A:	rg Me		is 020	Lys (Gly '	Val
Ala	Tyr 1025		L Lys	a Arç	J Lys	103		yr G	lu Pl	ne I		ln 035	Gln s	Ser 1	Phe
Val	Arg 1040	_	Glr	ı Lys	3 Ile	e Let 104		sp GI	lu I	le Ly		ro 050	Leu <i>l</i>	Asp 1	Asp
Leu	Asn 1055		n Arg	g Lys	a Asp	Ası 100		ys Tl	nr Se	er A		is 065	Thr '	Thr (Glu
Ile	Gly	Lys	a Asp) Let	ı Asp	Cy:	∃ Le	eu Ly	ys A:	ap Va	al As	sn '	Gly :	Thr '	Thr

														· -
	1070					1075					1080			
Ser	Gly 1085	Ile	Gly	Thr	Gly	Ser 1090		Val	Glu	Lys	Tyr 1095	Ile	Ile	Asp
Glu	Ser 1100	Asp	Tyr	Met	Ser	Phe 1105		Asn	Asn	Pro	Ser 1110	Leu	Thr	Val
Thr	Val 1115	Pro	Ile	Ala	Val	Gly 1120	Glu	Ser	Asp	Phe	Glu 1125	Asn	Leu	Asn
Thr	Glu 1130	Asp	Phe	Ser	Ser	Glu 1135		Asp	Leu	Glu	Glu 1140	Ser	Lys	Glu
ГÀа	Leu 1145	Asn	Glu	Ser	Ser	Ser 1150		Ser	Glu	Gly	Ser 1155	Thr	Val	Asp
Ile	Gly 1160	Ala	Pro	Ala	Glu	Glu 1165	Gln	Pro	Val	Met	Glu 1170	Pro	Glu	Glu
Thr	Leu 1175	Glu	Pro	Glu	Ala	Cys 1180		Thr	Glu	Gly	Cys 1185	Val	Gln	Arg
Phe	Lys 1190		CAa	Gln	Ile	Ser 1195		Glu	Glu	Gly	Arg 1200	Gly	Lys	Gln
Trp	Trp 1205	Asn	Leu	Arg	Arg	Thr 1210		Phe	Arg	Ile	Val 1215	Glu	His	Asn
Trp	Phe 1220		Thr	Phe	Ile	Val 1225		Met	Ile	Leu	Leu 1230	Ser	Ser	Gly
Ala	Leu 1235	Ala	Phe	Glu	Asp	Ile 1240		Ile	Asp	Gln	Arg 1245	Lys	Thr	Ile
Lys	Thr 1250		Leu	Glu	Tyr	Ala 1255	_	Lys	Val	Phe	Thr 1260	Tyr	Ile	Phe
Ile	Leu 1265	Glu	Met	Leu	Leu	Lys 1270		Val	Ala	Tyr	Gly 1275	Tyr	Gln	Thr
Tyr	Phe 1280		Asn	Ala	Trp	Сув 1285		Leu	Asp	Phe	Leu 1290	Ile	Val	Asp
Val	Ser 1295	Leu	Val	Ser	Leu	Thr 1300		Asn	Ala	Leu	Gly 1305	Tyr	Ser	Glu
Leu	Gly 1310	Ala	Ile	Lys	Ser	Leu 1315	Arg	Thr	Leu	Arg	Ala 1320	Leu	Arg	Pro
Leu	Arg 1325	Ala	Leu	Ser	Arg	Phe 1330	Glu	Gly	Met	Arg	Val 1335	Val	Val	Asn
Ala	Leu 1340	Leu	Gly	Ala	Ile	Pro 1345		Ile	Met	Asn	Val 1350	Leu	Leu	Val
Cya	Leu 1355	Ile	Phe	Trp	Leu	Ile 1360		Ser	Ile	Met	Gly 1365	Val	Asn	Leu
Phe	Ala 1370	Gly	Lys	Phe	Tyr	His 1375		Val	Asn	Thr	Thr 1380	Thr	Gly	Asp
Thr	Phe 1385	Glu	Ile	Thr	Glu	Val 1390	Asn	Asn	His	Ser	Asp 1395	Cys	Leu	Lys
Leu	Ile 1400	Glu	Arg	Asn	Glu	Thr 1405	Ala	Arg	Trp	Lys	Asn 1410	Val	ГÀв	Val
Asn	Phe 1415	Asp	His	Val	Gly	Phe 1420		Tyr	Leu	Ser	Leu 1425	Leu	Gln	Val
Ala	Thr 1430	Phe	Lys	Gly	Trp	Met 1435	Asp	Ile	Met	Tyr	Ala 1440	Ala	Val	Asp
Ser	Arg 1445	Asn	Val	Glu	Leu	Gln 1450		Lys	Tyr	Glu	Glu 1455	Ser	Leu	Tyr

Met	Tyr 1460	Leu	Tyr	Phe	Val	Ile 1465		Ile	Ile	Phe	Gly 1470		Phe	Phe
Thr	Leu 1475	Asn	Leu	Phe	Ile	Gly 1480		Ile	Ile	Asp	Asn 1485	Phe	Asn	Gln
Gln	Lys 1490	Lys	Lys	Phe	Gly	Gly 1495	Gln	Asp	Ile	Phe	Met 1500		Glu	Glu
Gln	Lуз 1505		Tyr	Tyr	Asn	Ala 1510		Lys	Lys	Leu	Gly 1515	Ser	Lys	Lys
Pro	Gln 1520	-	Pro	Ile	Pro	Arg 1525		Gly	Asn	Lys	Phe 1530	Gln	Gly	Met
Val	Phe 1535	Asp	Phe	Val	Thr	Arg 1540		Val	Phe	Asp	Ile 1545	Ser	Ile	Met
Ile	Leu 1550		Cys	Leu	Asn	Met 1555		Thr	Met	Met	Val 1560	Glu	Thr	Asp
Asp	Gln 1565	Ser	Asp	Tyr	Val	Thr 1570		Ile	Leu	Ser	Arg 1575	Ile	Asn	Leu
Val	Phe 1580	Ile	Val	Leu	Phe	Thr 1585	-	Glu	Cys	Val	Leu 1590	-	Leu	Ile
Ser	Leu 1595	Arg	His	Tyr	Tyr	Phe 1600		Ile	Gly	Trp	Asn 1605	Ile	Phe	Asp
Phe	Val 1610	Val	Val	Ile	Leu	Ser 1615		Val	Gly	Met	Phe 1620		Ala	Glu
Leu	Ile 1625	Glu	Lys	Tyr	Phe	Val 1630		Pro	Thr	Leu	Phe 1635	Arg	Val	Ile
Arg	Leu 1640	Ala	Arg	Ile	Gly	Arg 1645		Leu	Arg	Leu	Ile 1650	ГÀа	Gly	Ala
Lys	Gly 1655	Ile	Arg	Thr	Leu	Leu 1660		Ala	Leu	Met	Met 1665	Ser	Leu	Pro
Ala	Leu 1670	Phe	Asn	Ile	Gly	Leu 1675		Leu	Phe	Leu	Val 1680	Met	Phe	Ile
Tyr	Ala 1685	Ile	Phe	Gly	Met	Ser 1690		Phe	Ala	Tyr	Val 1695	Lys	Arg	Glu
Val	Gly 1700	Ile	Asp	Asp	Met	Phe 1705		Phe	Glu	Thr	Phe 1710	Gly	Asn	Ser
Met	Ile 1715	CAa	Leu	Phe	Gln	Ile 1720		Thr	Ser	Ala	Gly 1725	Trp	Asp	Gly
	Leu 1730		Pro	Ile		Asn 1735		Lys	Pro		Asp 1740		Asp	Pro
Asn	Lys 1745	Val	Asn	Pro	Gly	Ser 1750		Val	Lys	Gly	Asp 1755	CAa	Gly	Asn
Pro	Ser 1760	Val	Gly	Ile	Phe	Phe 1765		Val	Ser	Tyr	Ile 1770		Ile	Ser
Phe	Leu 1775	Val	Val	Val	Asn	Met 1780		Ile	Ala	Val	Ile 1785	Leu	Glu	Asn
Phe	Ser 1790	Val	Ala	Thr	Glu	Glu 1795	Ser	Ala	Glu	Pro	Leu 1800	Ser	Glu	Asp
Asp	Phe 1805	Glu	Met	Phe	Tyr	Glu 1810		Trp	Glu	ГÀв	Phe 1815	Asp	Pro	Asp
Ala	Thr 1820	Gln	Phe	Met	Glu	Phe 1825		ГЛа	Leu	Ser	Gln 1830		Ala	Ala
Ala	Leu 1835	Glu	Pro	Pro	Leu	Asn 1840		Pro	Gln	Pro	Asn 1845	Lys	Leu	Gln

Leu Ile Ala Me 1850	t Asp Lei	Pro 1855	Met Va	al Ser (Gly Asp 186		Ile	His
Cys Leu Asp Il 1865	e Leu Phe	Ala 1870	Phe Th	nr Lys I	Arg Val		Gly	Glu
Ser Gly Glu Me	t Asp Ala	Leu 1885	Arg Il	e Gln I	Met Glu 189		Arg	Phe
Met Ala Ser As 1895	n Pro Sei	Lys 1900	Val Se	er Tyr (Gln Pro 190		Thr	Thr
Thr Leu Lys Ar 1910	g Lys Glr	1 Glu 1915	Glu Va	al Ser	Ala Val 192		Ile	Gln
Arg Ala Tyr Ar 1925	g Arg His	Leu 1930	Leu Ly	s Arg '	Thr Val 193		Gln	Ala
Ser Phe Thr Ty	r Asn Lys	1945	Lys Le	eu Lys (Gly Gly 195		Asn	Leu
Leu Val Lys Gl 1955	u Asp Met	Ile 1960	Ile As	sp Arg	Ile Asn 196		Asn	Ser
Ile Thr Glu Ly 1970	s Thr Asp	Leu 1975	Thr Me	et Ser '	Thr Ala 198		CAa	Pro
Pro Ser Tyr As 1985	p Arg Val	Thr 1990	Lys Pr	o Ile '	Val Glu 199		His	Glu
Gln Glu Gly Ly 2000	s Asp Glu	Lys 2005	Ala Ly	s Gly	Lys			
<210> SEQ ID NO <211> LENGTH: 2								
<212> TYPE: PRT <213> ORGANISM:	Rattus r	orvegi	lcus					
<212> TYPE: PRT		orvegi	lcus					
<212> TYPE: PRT <213> ORGANISM:	147			Gly Arg	g Tyr G	ly Ala	a Gly 15	, Gly
<212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Ala Arg Phe	147 Gly Asp 5	Glu M∈	et Pro	10			15	
<212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Ala Arg Phe 1 Gly Gly Ser Gly	147 Gly Asp 5 Pro Ala	Glu Me	et Pro ly Val 25 In Gly	10 Val Va	l Gly A	la Ala 30 ly Ala	15 a Gly	gly
<212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Ala Arg Phe 1 Gly Gly Ser Gly 20 Arg Gly Ala Gly	147 Gly Asp 5 Pro Ala Gly Ser	Glu Me Ala Gl Arg Gl	et Pro Ly Val 25 Ln Gly	10 Val Va Gly Gli	l Gly A n Pro G 4	la Ala 30 ly Ala 5	15 a Gly a Glr	Gly Arg
<212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Ala Arg Phe 1 Gly Gly Ser Gly 20 Arg Gly Ala Gly 35 Met Tyr Lys Gln	Gly Asp 5 Pro Ala Gly Ser Ser Met	Glu Me Ala Gl Arg Gl 40 Ala Gl 55	ly Val 25 in Gly	10 Val Va Gly Gli Ala Are	l Gly Ann Pro G 4 g Thr M	la Ala 30 ly Ala 5 et Ala	15 a Gly a Glr a Leu	Gly Arg
<pre><212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Ala Arg Phe 1 Gly Gly Ser Gly 20 Arg Gly Ala Gly 35 Met Tyr Lys Gln 50</pre> Asn Pro Ile Pro	Gly Asp Fro Ala Gly Ser Ser Met Val Arg 70	Glu Me Ala Gl Arg Gl 40 Ala Gl 55	et Pro Ly Val 25 Ln Gly Ln Arg sn Cys	10 Val Va Gly Gl Ala Arc Leu Th. 75	n Pro G 4 g Thr M 60 r Val A	la Ala 30 ly Ala 5 et Ala sn Arg	15 a Gly a Glr a Leu g Ser	Gly Arg Tyr Leu 80
<212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Ala Arg Phe 1 Gly Gly Ser Gly 20 Arg Gly Ala Gly 35 Met Tyr Lys Gln 50 Asn Pro Ile Pro 65	Gly Asp 5 Pro Ala Gly Ser Ser Met Val Arg 70 Glu Asp 85	Glu Me Ala Gl Arg Gl 40 Ala Gl 55 Gln As	et Pro Ly Val 25 Ln Gly Ln Arg En Cys al Val	Val Val Val Gly Gly Ala Ard Leu Th. 75	n Pro G 4 g Thr M 60 r Val A	la Ala 30 ly Ala 5 et Ala sn Arç	15 a Gly a Glr a Leu g Ser 5 Lys 95	Gly Arg Tyr Leu 80
<pre><212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Ala Arg Phe 1 Gly Gly Ser Gly 20 Arg Gly Ala Gly 35 Met Tyr Lys Gln 50 Asn Pro Ile Pro 65 Phe Leu Phe Ser</pre> Thr Glu Trp Pro	Gly Asp 5 Pro Ala Gly Ser Ser Met Val Arg 70 Glu Asp 85 Pro Phe	Glu Me Ala Gl Arg Gl 40 Ala Gl 55 Gln As Asn Va	et Pro Ly Val 25 Ln Gly Ln Arg Ln Arg Sn Cys al Val Vr Met 105 Lu Gln	Val	n Pro G 4 g Thr M 60 r Val A s Tyr A u Ala T	la Ala 30 ly Ala 5 et Ala sn Arg la Lys hr Ila	15 15 15 16 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	Gly Arg Tyr Leu 80 GIle
<pre><212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Ala Arg Phe 1 Gly Gly Ser Gly 20 Arg Gly Ala Gly 35 Met Tyr Lys Gln 50 Asn Pro Ile Pro 65 Phe Leu Phe Ser Thr Glu Trp Pro 100 Asn Cys Ile Val</pre>	147 Gly Asp Pro Ala Gly Ser Ser Met Val Arg 70 Glu Asp 85 Pro Phe Leu Ala	Glu Me Ala Gl Arg Gl 40 Ala Gl 55 Gln As Asn Va Glu Ty Leu Gl 12	Ly Val 25 in Gly in Arg an Cys al Val Val 105 in Gln 20	Val Vai Gly Gli Ala Arc Leu Th: 75 Arg Ly: 90 Ile Le: His Le:	1 Gly A n Pro G 4 g Thr M 60 r Val A s Tyr A u Ala T	la Ala 30 ly Ala 5 et Ala sn Arg la Lys hr Ile 110 sp Asp	15 15 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Gly Arg Tyr Leu 80 Ile Ala
<pre><212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Ala Arg Phe 1 Gly Gly Ser Gly 20 Arg Gly Ala Gly 35 Met Tyr Lys Gln 50 Asn Pro Ile Pro 65 Phe Leu Phe Ser Thr Glu Trp Pro 100 Asn Cys Ile Val 115</pre> Thr Pro Met Ser	147 Gly Asp Fro Ala Gly Ser Ser Met Val Arg 70 Glu Asp Fro Phe Leu Ala Glu Arg	Glu Me Ala Gl Arg Gl Ala Gl 55 Gln As Asn Va Glu Ty Leu Gl 12 Leu As 135	ly Val 25 In Gly In Arg In Arg In Cys Al Val Vr Met 105 Iu Gln 20 Sp Asp	Val Val Gly Gl: Ala Are Leu Th. 75 Arg Ly: 90 Ile Lei Thr Gl:	I Gly A n Pro G 4 g Thr M 60 r Val A s Tyr A u Ala T u Pro A 1 1 u Pro T 140	la Ala 30 ly Ala 5 et Ala sn Arg la Lys hr Ile 110 sp Asp 25	15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Gly Arg Tyr Leu 80 Ile Ala Lys
<pre><212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Ala Arg Phe 1 Gly Gly Ser Gly 20 Arg Gly Ala Gly 35 Met Tyr Lys Gln 50 Asn Pro Ile Pro 65 Phe Leu Phe Ser Thr Glu Trp Pro 100 Asn Cys Ile Val 115 Thr Pro Met Ser 130</pre>	147 Gly Asp Ser Met Val Arg 70 Glu Asp 85 Pro Phe Leu Ala Glu Arg Glu Arg	Glu Me Ala Gl Arg Gl 40 Ala Gl 55 Gln As Asn Va Glu Ty Leu Gl 12 Leu As 135 Gly Il	et Pro Ly Val 25 Ln Gly Ln Arg Ln Arg Ly Wet 105 Lu Gln 20 Lu Gln 20 Le Lys	Val Val Val Gly Gli Ala Arg Leu Th: 75 Arg Ly: 90 Ile Let Thr Gli Ile Val 15	I Gly A n Pro G 4 g Thr M 60 r Val A s Tyr A u Ala T u Pro A 1 u Pro T 140	la Ala 30 ly Ala 5 et Ala sn Arc la Lys hr Ile 110 sp Asp 25 yr Phe eu Gly	15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Gly Arg Tyr Leu 80 Ile Ala Lys Gly Ala 160 Phe

Leu	Arg	Thr	Leu	Arg	Ala	Val	Arg	Val	Leu	Arg	Pro	Leu	Lys	Leu	Val
Cor	C1**	195	Dro	Cor	Lou	Cln	200	v. l	Lou	Tria	Cor	205	Mo+	Lys	71.
ser	210	iie	PIO	ser	ьец	215	vai	vai	ьец	пув	220	116	мес	пув	Ala
Met 225	Ile	Pro	Leu	Leu	Gln 230	Ile	Gly	Leu	Leu	Leu 235	Phe	Phe	Ala	Ile	Leu 240
Ile	Phe	Ala	Ile	Ile 245	Gly	Leu	Glu	Phe	Tyr 250	Met	Gly	Lys	Phe	His 255	Thr
Thr	Сув	Phe	Glu 260	Glu	Gly	Thr	Asp	Asp 265	Ile	Gln	Gly	Glu	Ser 270	Pro	Ala
Pro	Cys	Gly 275	Thr	Glu	Glu	Pro	Ala 280	Arg	Thr	Cys	Pro	Asn 285	Gly	Thr	Lys
Cys	Gln 290	Pro	Tyr	Trp	Glu	Gly 295	Pro	Asn	Asn	Gly	Ile 300	Thr	Gln	Phe	Asp
Asn 305	Ile	Leu	Phe	Ala	Val 310	Leu	Thr	Val	Phe	Gln 315	Cys	Ile	Thr	Met	Glu 320
Gly	Trp	Thr	Asp	Leu 325	Leu	Tyr	Asn	Ser	Asn 330	Asp	Ala	Ser	Gly	Asn 335	Thr
Trp	Asn	Trp	Leu 340	Tyr	Phe	Ile	Pro	Leu 345	Ile	Ile	Ile	Gly	Ser 350	Phe	Phe
Met	Leu	Asn 355	Leu	Val	Leu	Gly	Val 360	Leu	Ser	Gly	Glu	Phe 365	Ala	Lys	Glu
Arg	Glu 370	Arg	Val	Glu	Asn	Arg 375	Arg	Ala	Phe	Leu	380 Tàa	Leu	Arg	Arg	Gln
Gln 385	Gln	Ile	Glu	Arg	Glu 390	Leu	Asn	Gly	Tyr	Met 395	Glu	Trp	Ile	Ser	Lys 400
Ala	Glu	Glu	Val	Ile 405	Leu	Ala	Glu	Asp	Glu 410	Thr	Asp	Val	Glu	Gln 415	Arg
His	Pro	Phe	Asp 420	Gly	Ala	Leu	Arg	Arg 425	Ala	Thr	Leu	Lys	Lys 430	Ser	Lys
Thr	Asp	Leu 435	Leu	Asn	Pro	Glu	Glu 440	Ala	Glu	Asp	Gln	Leu 445	Ala	Asp	Ile
Ala	Ser 450	Val	Gly	Ser	Pro	Phe 455	Ala	Arg	Ala	Ser	Ile 460	Lys	Ser	Ala	Lys
Leu 465	Glu	Asn	Ser	Thr	Phe 470	Phe	His	Lys	Lys	Glu 475	Arg	Arg	Met	Arg	Phe 480
Tyr	Ile	Arg	Arg	Met 485	Val	Lys	Thr	Gln	Ala 490	Phe	Tyr	Trp	Thr	Val 495	Leu
Ser	Leu	Val	Ala 500	Leu	Asn	Thr	Leu	Trp 505	Leu	Ala	Ile	Val	His 510	Tyr	Asn
Gln	Pro	Glu 515	Trp	Leu	Ser	Asp	Phe 520	Leu	Tyr	Tyr	Ala	Glu 525	Phe	Ile	Phe
Leu	Gly 530	Leu	Phe	Met	Ser	Glu 535	Met	Phe	Ile	Lys	Met 540	Tyr	Gly	Leu	Gly
Thr 545	Arg	Pro	Tyr	Phe	His 550	Ser	Ser	Phe	Asn	Cys 555	Phe	Asp	Cys	Gly	Val 560
Ile	Ile	Gly	Ser	Ile 565	Phe	Glu	Val	Ile	Trp 570	Ala	Val	Ile	Lys	Pro 575	Gly
Thr	Ser	Phe	Gly 580	Ile	Ser	Val	Leu	Arg 585	Ala	Leu	Arg	Leu	Leu 590	Arg	Ile
Phe	Lys	Val	Thr	Lys	Tyr	Trp	Ala	Ser	Leu	Arg	Asn	Leu	Val	Val	Ser

		595					600					605			
Leu	Leu 610	Asn	Ser	Met	Lys	Ser 615	Ile	Ile	Ser	Leu	Leu 620	Phe	Leu	Leu	Phe
Leu 625	Phe	Ile	Val	Val	Phe 630	Ala	Leu	Leu	Gly	Met 635	Gln	Leu	Phe	Gly	Gly 640
Gln	Phe	Asn	Phe	Asp 645	Glu	Gly	Thr	Pro	Pro 650	Thr	Asn	Phe	Asp	Thr 655	Phe
Pro	Ala	Ala	Ile 660	Met	Thr	Val	Phe	Gln 665	Ile	Leu	Thr	Gly	Glu 670	Asp	Trp
Asn	Glu	Val 675	Met	Tyr	Asp	Glu	Ile 680	ГÀа	Ser	Gln	Gly	Gly 685	Val	Gln	Gly
Gly	Met 690	Val	Phe	Ser	Ile	Tyr 695	Phe	Ile	Val	Leu	Thr 700	Leu	Phe	Gly	Asn
Tyr 705	Thr	Leu	Leu	Asn	Val 710	Phe	Leu	Ala	Ile	Ala 715	Val	Asp	Asn	Leu	Ala 720
Asn	Ala	Gln	Glu	Leu 725	Thr	Lys	Asp	Glu	Gln 730	Glu	Glu	Glu	Glu	Ala 735	Ala
Asn	Gln	Lys	Leu 740	Ala	Leu	Gln	Lys	Ala 745	Lys	Glu	Val	Ala	Glu 750	Val	Ser
Pro	Leu	Ser 755	Ala	Ala	Asn	Met	Ser 760	Ile	Ala	Val	ГÀа	Glu 765	Gln	Gln	Lys
Asn	Gln 770	Lys	Pro	Ala	Lys	Ser 775	Val	Trp	Glu	Gln	Arg 780	Thr	Ser	Glu	Met
Arg 785	Lys	Gln	Asn	Leu	Leu 790	Ala	Ser	Arg	Glu	Ala 795	Leu	Tyr	Gly	Asp	Ala 800
Ala	Glu	Arg	Trp	Pro 805	Thr	Thr	Tyr	Ala	Arg 810	Pro	Leu	Arg	Pro	Asp 815	Val
Lys	Thr	His	Leu 820	Asp	Arg	Pro	Leu	Val 825	Val	Asp	Pro	Gln	Glu 830	Asn	Arg
Asn	Asn	Asn 835	Thr	Asn	Lys	Ser	Arg 840	Ala	Pro	Glu	Ala	Leu 845	Arg	Gln	Thr
Ala	Arg 850	Pro	Arg	Glu	Ser	Ala 855	Arg	Asp	Pro	Asp	Ala 860	Arg	Arg	Ala	Trp
Pro 865	Ser	Ser	Pro	Glu	Arg 870	Ala	Pro	Gly	Arg	Glu 875	Gly	Pro	Tyr	Gly	Arg 880
Glu	Ser	Glu	Pro	Gln 885	Gln	Arg	Glu	His	Ala 890	Pro	Pro	Arg	Glu	His 895	Val
Pro	Trp	Asp	Ala 900	Asp	Pro	Glu	Arg	Ala 905	Lys	Ala	Gly	Asp	Ala 910	Pro	Arg
Arg	His	Thr 915	His	Arg	Pro	Val	Ala 920	Glu	Gly	Glu	Pro	Arg 925	Arg	His	Arg
Ala	Arg 930	Arg	Arg	Pro	Gly	Asp 935	Glu	Pro	Asp	Asp	Arg 940	Pro	Glu	Arg	Arg
Pro 945	Arg	Pro	Arg	Asp	Ala 950	Thr	Arg	Pro	Ala	Arg 955	Ala	Ala	Asp	Gly	Glu 960
Gly	Asp	Asp	Gly	Glu 965	Arg	Lys	Arg	Arg	His 970	Arg	His	Gly	Pro	Pro 975	Ala
His	Asp	Asp	Arg 980	Glu	Arg	Arg	His	Arg 985	Arg	Arg	Lys	Glu	Ser 990	Gln	Gly
Ser	Gly	Val 995	Pro	Met	Ser	Gly	Pro 1000		ı Lev	ı Se	r Thi	r Th:		rg Pi	ro Ile

Gln	Gln 1010	Asp	Leu	Gly	Arg	Gln 1015		Leu	Pro	Leu	Ala 1020	Glu	Asp	Leu
Asp	Asn 1025		ГÀз	Asn	Asn	Lys 1030		Ala	Thr	Gly	Glu 1035	Pro	Ala	Ser
Pro	His 1040	Asp	Ser	Leu	Gly	His 1045		Gly	Leu	Pro	Pro 1050		Pro	Ala
Lys	Ile 1055		Asn	Ser	Thr	Asn 1060		Gly	Pro	Ala	Leu 1065	Ala	Thr	Asn
Pro	Gln 1070		Ala	Ala	Ser	Arg 1075	_	Thr	Pro	Asn	Asn 1080	Pro	Gly	Asn
Pro	Ser 1085	Asn	Pro	Gly	Pro	Pro 1090		Thr	Pro	Glu	Asn 1095		Leu	Ile
Val	Thr 1100		Pro	Ser	Ser	Thr 1105		Pro	Asn	Ser	Ala 1110	_	Thr	Ala
Arg	Lys 1115		Glu	His	Met	Ala 1120		Glu	Ile	Pro	Pro 1125		Cys	Pro
Pro	Leu 1130		His	Thr	Val	Val 1135		Val	Asn	Lys	Asn 1140		Asn	Pro
Asp	Pro 1145	Leu	Pro	ГÀа	ГÀа	Glu 1150		Glu	Lys	ГÀа	Glu 1155	Glu	Glu	Glu
Ala	Asp 1160		Gly	Glu	Asp	Gly 1165		Lys	Pro	Met	Pro 1170		Tyr	Ser
Ser	Met 1175	Phe	Ile	Leu	Ser	Thr 1180		Asn	Pro	Leu	Arg 1185	Arg	Leu	Cys
His	Tyr 1190		Leu	Asn	Leu	Arg 1195		Phe	Glu	Met	Cys 1200		Leu	Met
Val	Ile 1205	Ala	Met	Ser	Ser	Ile 1210		Leu	Ala	Ala	Glu 1215	Asp	Pro	Val
Gln	Pro 1220	Asn	Ala	Pro	Arg	Asn 1225		Val	Leu	Arg	Tyr 1230		Asp	Tyr
Val	Phe 1235	Thr	Gly	Val	Phe	Thr 1240		Glu	Met	Val	Ile 1245	ràa	Met	Ile
Asp	Leu 1250	Gly	Leu	Val	Leu	His 1255		Gly	Ala	Tyr	Phe 1260	_	Asp	Leu
Trp	Asn 1265	Ile	Leu	Asp	Phe	Ile 1270		Val	Ser	Gly	Ala 1275	Leu	Val	Ala
	Ala 1280		Thr	Gly		Ser 1285		Gly	Lys		Ile 1290		Thr	Ile
Lys	Ser 1295	Leu	Arg	Val	Leu	Arg 1300		Leu	Arg	Pro	Leu 1305	ГÀа	Thr	Ile
Lys	Arg 1310	Leu	Pro	ГЛа	Leu	Lys 1315	Ala	Val	Phe	Asp	Cys 1320		Val	Asn
Ser	Leu 1325	ГÀа	Asn	Val	Phe	Asn 1330		Leu	Ile	Val	Tyr 1335	Met	Leu	Phe
Met	Phe 1340	Ile	Phe	Ala	Val	Val 1345	Ala	Val	Gln	Leu	Phe 1350	ГÀа	Gly	Lys
Phe	Phe 1355	His	СЛа	Thr	Asp	Glu 1360		ГЛа	Glu	Phe	Glu 1365	Arg	Asp	САв
Arg	Gly 1370		Tyr	Leu	Leu	Tyr 1375	Glu	ГЛа	Asn	Glu	Val 1380	Lys	Ala	Arg
Asp	Arg 1385	Glu	Trp	Lys	Lys	Tyr 1390		Phe	His	Tyr	Asp 1395	Asn	Val	Leu

Trp	Ala 1400	Leu	Leu	Thr	Leu	Phe 1405	Thr	Val	Ser	Thr	Gly 1410	Glu	Gly	Trp
Pro	Gln 1415	Val	Leu	Lys	His	Ser 1420	Val	Asp	Ala	Thr	Phe 1425	Glu	Asn	Gln
Gly	Pro 1430	Ser	Pro	Gly	Tyr	Arg 1435	Met	Glu	Met	Ser	Ile 1440	Phe	Tyr	Val
Val	Tyr 1445	Phe	Val	Val	Phe	Pro 1450	Phe	Phe	Phe	Val	Asn 1455	Ile	Phe	Val
Ala	Leu 1460	Ile	Ile	Ile	Thr	Phe 1465	Gln	Glu	Gln	Gly	Asp 1470	rys	Met	Met
Glu	Glu 1475	Tyr	Ser	Leu	Glu	Lys 1480	Asn	Glu	Arg	Ala	Cys 1485	Ile	Asp	Phe
Ala	Ile 1490	Ser	Ala	Lys	Pro	Leu 1495	Thr	Arg	His	Met	Pro 1500	Gln	Asn	Lys
Gln	Ser 1505	Phe	Gln	Tyr	Arg	Met 1510	Trp	Gln	Phe	Val	Val 1515	Ser	Pro	Pro
Phe	Glu 1520	Tyr	Thr	Ile	Met	Ala 1525	Met	Ile	Ala	Leu	Asn 1530	Thr	Ile	Val
Leu	Met 1535	Met	Lys	Phe	Tyr	Gly 1540	Ala	Ser	Val	Ala	Tyr 1545	Glu	Asn	Ala
Leu	Arg 1550	Val	Phe	Asn	Ile	Val 1555	Phe	Thr	Ser	Leu	Phe 1560	Ser	Leu	Glu
Cys	Val 1565	Leu	Lys	Val	Met	Ala 1570	Phe	Gly	Ile	Leu	Asn 1575	Tyr	Phe	Arg
Asp	Ala 1580	Trp	Asn	Ile	Phe	Asp 1585	Phe	Val	Thr	Val	Leu 1590	Gly	Ser	Ile
Thr	Asp 1595	Ile	Leu	Val	Thr	Glu 1600	Phe	Gly	Asn	Asn	Phe 1605	Ile	Asn	Leu
Ser	Phe 1610	Leu	Arg	Leu	Phe	Arg 1615	Ala	Ala	Arg	Leu	Ile 1620	Lys	Leu	Leu
Arg	Gln 1625	Gly	Tyr	Thr	Ile	Arg 1630	Ile	Leu	Leu	Trp	Thr 1635	Phe	Val	Gln
Ser	Phe 1640	Lys	Ala	Leu	Pro	Tyr 1645	Val	Cys	Leu	Leu	Ile 1650	Ala	Met	Leu
Phe	Phe 1655	Ile	Tyr	Ala	Ile	Ile 1660	Gly	Met	Gln	Val	Phe 1665	Gly	Asn	Ile
Gly	Ile 1670	Asp	Gly	Glu	Asp	Glu 1675	Asp	Ser	Asp	Glu	Asp 1680	Glu	Phe	Gln
Ile	Thr 1685	Glu	His	Asn	Asn	Phe 1690	Arg	Thr	Phe	Phe	Gln 1695	Ala	Leu	Met
Leu	Leu 1700	Phe	Arg	Ser	Ala	Thr 1705	Gly	Glu	Ala	Trp	His 1710	Asn	Ile	Met
Leu	Ser 1715	Cys	Leu	Ser	Gly	Lys 1720	Pro	Cys	Asp	Lys	Asn 1725	Ser	Gly	Ile
Gln	Lys 1730	Pro	Glu	Cys	Gly	Asn 1735	Glu	Phe	Ala	Tyr	Phe 1740	Tyr	Phe	Val
Ser	Phe 1745	Ile	Phe	Leu	Cys	Ser 1750	Phe	Leu	Met	Leu	Asn 1755	Leu	Phe	Val
Ala	Val 1760	Ile	Met	Asp	Asn	Phe 1765	Glu	Tyr	Leu	Thr	Arg 1770	Asp	Ser	Ser
Ile	Leu	Gly	Pro	His	His	Leu	Asp	Glu	Tyr	Val	Arg	Val	Trp	Ala

											COI	ICII	ruec	
	1775					1780					1785			
Glu	Tyr 1790	Asp	Pro	Ala	Ala	Cys 1795	Gly	Arg	Ile	His	Tyr 1800	Lys	Asp	Met
Tyr	Ser 1805	Leu	Leu	Arg	Val	Ile 1810	Ser	Pro	Pro	Leu	Gly 1815	Leu	Gly	Lys
ГÀа	Cys 1820	Pro	His	Arg	Val	Ala 1825	Cys	Lys	Arg	Leu	Leu 1830	Arg	Met	Asp
Leu	Pro 1835	Val	Ala	Asp	Asp	Asn 1840	Thr	Val	His	Phe	Asn 1845	Ser	Thr	Leu
Met	Ala 1850	Leu	Ile	Arg	Thr	Ala 1855	Leu	Asp	Ile	Lys	Ile 1860	Ala	Lys	Gly
Gly	Ala 1865	Asp	Lys	Gln	Gln	Met 1870	Asp	Ala	Glu	Leu	Arg 1875	Lys	Glu	Met
Met	Ala 1880	Ile	Trp	Pro	Asn	Leu 1885	Ser	Gln	Lys	Thr	Leu 1890	Asp	Leu	Leu
Val	Thr 1895	Pro	His	Lys	Ser	Thr 1900	Asp	Leu	Thr	Val	Gly 1905	ГÀа	Ile	Tyr
Ala	Ala 1910	Met	Met	Ile	Met	Glu 1915	Tyr	Tyr	Arg	Gln	Ser 1920	Lys	Ala	Lys
Lys	Leu 1925	Gln	Ala	Met	Arg	Glu 1930	Glu	Gln	Asn	Arg	Thr 1935	Pro	Leu	Met
Phe	Gln 1940	Arg	Met	Glu	Pro	Pro 1945	Ser	Pro	Thr	Gln	Glu 1950	Gly	Gly	Pro
Ser	Gln 1955	Asn	Ala	Leu	Pro	Ser 1960	Thr	Gln	Leu	Asp	Pro 1965	Gly	Gly	Gly
Leu	Met 1970	Ala	Gln	Glu	Ser	Ser 1975	Met	Lys	Glu	Ser	Pro 1980	Ser	Trp	Val
Thr	Gln 1985	Arg	Ala	Gln	Glu	Met 1990	Phe	Gln	Lys	Thr	Gly 1995	Thr	Trp	Ser
Pro	Glu 2000	Arg	Gly	Pro	Pro	Ile 2005	Asp	Met	Pro	Asn	Ser 2010	Gln	Pro	Asn
Ser	Gln 2015	Ser	Val	Glu	Met	Arg 2020	Glu	Met	Gly	Thr	Asp 2025	Gly	Tyr	Ser
Asp	Ser 2030	Glu	His	Tyr	Leu	Pro 2035	Met	Glu	Gly	Gln	Thr 2040	Arg	Ala	Ala
Ser	Met 2045	Pro	Arg	Leu	Pro	Ala 2050	Glu	Asn	Gln	Arg	Arg 2055	Arg	Gly	Arg
Pro	Arg 2060	Gly	Asn	Asn	Leu	Ser 2065	Thr	Ile	Ser	Asp	Thr 2070	Ser	Pro	Met
Lys	Arg 2075	Ser	Ala	Ser	Val	Leu 2080	Gly	Pro	Lys	Ala	Arg 2085	Arg	Leu	Asp
Asp	Tyr 2090	Ser	Leu	Glu	Arg	Val 2095	Pro	Pro	Glu	Glu	Asn 2100	Gln	Arg	Tyr
His	Gln 2105	Arg	Arg	Arg	Asp	Arg 2110	Gly	His	Arg	Thr	Ser 2115	Glu	Arg	Ser
Leu	Gly 2120	Arg	Tyr	Thr	Asp	Val 2125	Asp	Thr	Gly	Leu	Gly 2130	Thr	Asp	Leu
Ser	Met 2135	Thr	Thr	Gln	Ser	Gly 2140	Asp	Leu	Pro	Ser	Lys 2145	Asp	Arg	Asp
Gln	Asp 2150	Arg	Gly	Arg	Pro	Lys 2155	Asp	Arg	Lys	His	Arg 2160	Pro	His	His

His	His 2165		His	His	His	His 2170		Pro	Pro	Ala	Pro 2175	Asp	Arg	Glu
Arg	Tyr 2180		Gln	Glu	Arg	Pro 2185	_	Thr	Gly	Arg	Ala 2190	Arg	Ala	Arg
Glu	Gln 2195		Trp	Ser	Arg	Ser 2200		Ser	Glu	Gly	Arg 2205	Glu	His	Ala
Thr	His 2210		Gln	Gly	Ser	Ser 2215		Val	Ser	Gly	Ser 2220	Pro	Ala	Pro
Ser	Thr 2225		Gly	Thr	Ser	Thr 2230		Arg	Arg	Gly	Arg 2235	Arg	Gln	Leu
Pro	Gln 2240		Pro	Cys	Thr	Pro 2245	_	Pro	Leu	Val	Ser 2250	Tyr	Ser	Pro
Ala	Pro 2255		Arg	Pro	Ala	Ala 2260		Arg	Met	Ala	Gly 2265	Pro	Pro	Ala
Pro	Pro 2270		Gly	Ser	Pro	Arg 2275		Cys	Arg	Arg	Ala 2280	Pro	Arg	Trp
Pro	Ala 2285		Ala	Pro	Glu	Gly 2290		Arg	Pro	Arg	Gly 2295	Ala	Asp	Tyr
Thr	Glu 2300		Asp	Ser	Pro	Arg 2305		Pro	Pro	Gly	Gly 2310	Ala	His	Glu
Pro	Ala 2315		Arg	Ser	Pro	Arg 2320		Pro	Arg	Ala	Ala 2325	Gly	Cys	Ala
Ser	Pro 2330		His	Gly	Arg	Arg 2335		Pro	Asn	Gly	Tyr 2340	_	Ala	Gly
His	Gly 2345		Pro	Arg	Pro	Arg 2350		Ala	Arg	Arg	Gly 2355	Ala	His	Asp
Ala	Tyr 2360		Glu	Ser	Glu	Asp	_	Trp	Cys					
						2365								
<212 <212	D> SE L> LE 2> TY B> OR	Q ID NGTH	: 25 PRT	12	sap.									
<211 <211 <213	D> SE L> LE 2> TY	Q ID NGTH PE: GANI	: 25 PRT SM:	12 Homo	sap									
<213 <213 <213	O> SE 1> LE 2> TY 3> OR O> SE	Q ID NGTH PE: GANI	: 25 PRT SM: CE: Phe	12 Homo 148		iens		ro A 1		rg T	yr Gl	y Gl}	/ Gl _\	, Gly
<213 <213 <213 <400 Met 1	D> SE 1> LE 2> TY 3> OR D> SE Ala	Q ID NGTH PE: GANI QUEN Arg	: 25 PRT SM: CE: Phe	12 Homo 148 Gly 5	Asp (iens Glu M	let P	1 al G	0		yr Gl; ly Gl;		15	
<211 <211 <211 <400 Met 1	D> SE L> LE 2> TY 3> OR D> SE Ala Gly	Q ID NGTH PE: GANI QUEN Arg	: 25 PRT SM: CE: Phe Ala 20	12 Homo 148 Gly 5 Ala	Asp (iens Glu M Val V Gly G	let P Yal V 2	1 al G 5	o ly s	er G		30 30	15 / Arg	g Gly
<211 <212 <213 <400 Met 1 Ser	D> SE 1> LE 2> TY 3> OR D> SE Ala Gly	Q ID NGTH PE: GANI QUEN Arg Ala Gly 35	: 25 PRT SM: CE: Phe Ala 20 Ser	12 Homo 148 Gly 5 Ala Arg	Asp (Gly)	iens Glu M Val V Gly G 4	let P Tal V 2 Sly G	al G 5 ln P	0 ly S ro G	er G ly A	ly Gly la Gli 45 la Lei	y Gly 30 n Arg	15 / Arg	g Gly
<211 <212 <213 <400 Met 1 Ser Ala	Color SE	Q ID NGTH PE: GANI QUEN Arg Ala Gly 35 Ser	: 25 PRT SM: CE: Phe Ala 20 Ser Met	Homo 148 Gly 5 Ala Arg Ala	Asp (Gly Gln (iens Glu M Val V Gly G 4 Arg A	det P 'al V 2 Sly G 0	al G 5 ln P rg T	0 ly s ro G hr M	er G ly A et A 6 sn A	ly Gly la Gli 45 la Lei	y Gly 30 n Arç	15 / Arg Met	Gly Tyr
<211. 1 100</td <212.	0> SEE 1> LE 2> TY 3> OR 0> SE Ala Gly Gly Gln 50 Pro	Q ID NGTH PE: GANI QUEN Arg Ala Gly 35 Ser	: 25 PRT SM: CE: Phe Ala 20 Ser Met Arg	Homo 148 Gly 5 Ala Arg Gln	Asp (Gly) Gln (Gln) Asn (70)	iens Glu M Val V 4 Arg A S55 Cys I	'al V 2 2 3 0 0 0 1 1 a A	al G 5 ln P rg T	o ly s ro G hr M al A yr A	er G ly A et A 6 sn A	ly Gl la Gl 45 la Le	y Gly 30 n Arg 1 Ty:	15 / Arc	Gly Tyr Pro Leu 80
<211.<2112<2131 <4000 Met 1 Ser Ala Lys Ile 65 Phe	O>> SE 1> LE 2> TY 3> OR Ala Gly Gly Gln 50 Pro	Q ID NGTH PE: GANI QUEN Arg Ala Gly 35 Ser Val Glu	: 25 PRT SM: CE: Phe Ala 20 Ser Met Arg	Homo 148 Gly 5 Ala Arg Ala Gln Asn 85	Gly Gln GGln GGln GGln GGln GGln GGln GG	Glu M Val V Val V Arg A Arg A Cys L	et P al V 2 2 0 0 0 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1	al G 5 ln P rg T hr V	O ly S ro G hr M al A 7 yr A	er G ly A et A 6 sn A 5	ly Gly la Gln 45 la Ler 0	y Gly 30 n Arq n Tyn r Lew	15 7 Arg Met 2 Asr 1 Phe 2 Thi 95 a Asr	Gly Tyr Pro Leu 80 Glu
<211 <211 <211 <400 Met 1 Ser Ala Lys Ile 65 Phe Trp	O)> SE 1> LE 2> TY 3> OR Ala Gly Gly Fro Ser Pro	Q ID NGTH PE: GANI QUEN Arg Ala Gly 35 Ser Val Glu Pro	: 25 PRT SM: CE: Phe Ala 20 Ser Met Arg Asp Phe 100	Homo 148 Gly 5 Ala Arg Gln Asn Asn 85 Glu	Asp Gly Gln	iens Glu M Val V Val V Arg A Arg A Arg A Met I	al V 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	al G 5 ln P rg T hr V ys T 9 eu A	0 ly S ro G hr M al A 7 yr A 0 la T	er G ly A et A 6 sn A 5	ly Gly la Gli 45 la Lei 0 rg Se:	y Gly 30 Arc 11 Tyr Let 25 Ile 110 C Ly:	15 Arc Arc Asr Phe 95 Asr Asr	g Gly Tyr Pro Leu 80 Glu Cys

Cys Phe Glu Ala Gly Ile Lys Ile Ala Leu Ala Lys Gly Ser Tyr Leu Arg Asn Gly Trp Asn Val Met Asp Phe Val Leu Thr Gly Ile Leu Ala Thr Arg Fr Ile Arg Pro Leu Leu Phe Asp Ile Pro Ser Leu Gl Val Leu Leu Fr Leu Val Pro Leu Ser Leu Gl Val Val Leu Lys Ser Ile Lys Ala Pro Leu Ser Leu Gl Leu Leu<	Val Val 175 Leu Arg Ser Gly Met Ile Ile Phe 240 Thr Cys 255 Pro Cys Cys Gln
The The	Leu Arg Ser Gly Met Ile Ile Phe 240 Thr Cys 255 Pro Cys Cys Gln
Thr Leu Arg 195 Val 200 Leu 200 Pro 210 Leu Lys 205	Ser Gly Met Ile Ile Phe 240 Thr Cys 255 Pro Cys Cys Gln
195 200 205 205 205 206 207	Met Ile Ile Phe 240 Thr Cys 255 Pro Cys Cys Gln
210 215 220 220 221 220 220 225 230 240 245 245 245 245 245 250 250 250 250 250 250 250 250 250 25	Ile Phe 240 Thr Cys 255 Pro Cys Cys Gln
225 230 235 Ala Ile Ile Gly Leu Glu Phe Tyr Lys Gly Lys Phe His Thr 245 Phe Glu Glu Gly Thr Asp Asp Ile Gln Gly Glu Ser Pro Ala 260 235	240 Thr Cys 255 Pro Cys Cys Gln
Phe Glu Glu Gly Thr Asp Asp Ile Gln Gly Glu Ser Pro Ala 260 265 270	255 Pro Cys Cys Gln
260 265 270	Cys Gln
Gly Thr Glu Glu Pro Ala Arg Thr Cys Pro Asn Gly Thr Lys 275 280 285	Asn Ile
Pro Tyr Trp Glu Gly Pro Asn Asn Gly Ile Thr Gln Phe Asp 290 295 300	
Leu Phe Ala Val Leu Thr Val Phe Gln Cys Ile Thr Met Glu 305 310 310	Gly Trp 320
Thr Asp Leu Leu Tyr Asn Ser Asn Asp Ala Ser Gly Asn Thr 325 330	Trp Asn 335
Trp Leu Tyr Phe Ile Pro Leu Ile Ile Ile Gly Ser Phe Phe 340 345 350	Met Leu
Asn Leu Val Leu Gly Val Leu Ser Gly Glu Phe Ala Lys Glu 355 360 365	Arg Glu
Arg Val Glu Asn Arg Arg Ala Phe Leu Lys Leu Arg Arg Gln 370 375 380	Gln Gln
Ile Glu Arg Glu Leu Asn Gly Tyr Met Glu Trp Ile Ser Lys 385 390 395	Ala Glu 400
Glu Val Ile Leu Ala Glu Asp Glu Thr Asp Gly Glu Gln Arg $$405$$	His Pro 415
Phe Asp Gly Ala Leu Arg Arg Thr Thr Ile Lys Lys Ser Lys 420 425 430	Thr Asp
Leu Leu Asn Pro Glu Glu Ala Glu Asp Gln Leu Ala Asp Ile 435 440 445	Ala Ser
Val Gly Ser Pro Phe Ala Arg Ala Ser Ile Lys Ser Ala Lys 450 455 460	Leu Glu
Asn Ser Thr Phe Phe His Lys Lys Glu Arg Arg Met Arg Phe 465 470 475	Tyr Ile 480
Arg Arg Met Val Lys Thr Gln Ala Phe Tyr Trp Thr Val Leu 485 490	Ser Leu 495
Val Ala Leu Asn Thr Leu Cys Val Ala Ile Val His Tyr Asn 500 505 510	Gln Pro
Glu Trp Leu Ser Asp Phe Leu Tyr Tyr Ala Glu Phe Ile Phe 515 520 525	Leu Gly
Leu Phe Met Ser Glu Met Phe Ile Lys Met Tyr Gly Leu Gly 530 535 540	Thr Arg
Pro Tyr Phe His Ser Ser Phe Asn Cys Phe Asp Cys Gly Val 545 550 555	Ile Ile 560

Clv	Cor	T10	Dho	Clu	Wal.	T10	Trn	712	7727	T10	Lva	Pro	Clvr	Thr	Cor
GIY	Set	116	riie	565	vai	116	шр	AIA	570	116	пуъ	FIO	GIY	575	ser
Phe	Gly	Ile	Ser 580	Val	Leu	Arg	Ala	Leu 585	Arg	Leu	Leu	Arg	Ile 590	Phe	Lys
Val	Thr	Lys 595	Tyr	Trp	Ala	Ser	Leu 600	Arg	Asn	Leu	Val	Val 605	Ser	Leu	Leu
Asn	Ser 610	Met	Lys	Ser	Ile	Ile 615	Ser	Leu	Leu	Phe	Leu 620	Leu	Phe	Leu	Phe
Ile 625	Val	Val	Phe	Ala	Leu 630	Leu	Gly	Met	Gln	Leu 635	Phe	Gly	Gly	Gln	Phe 640
Asn	Phe	Asp	Glu	Gly 645	Thr	Pro	Pro	Thr	Asn 650	Phe	Asp	Thr	Phe	Pro 655	Ala
Ala	Ile	Met	Thr 660	Val	Phe	Gln	Ile	Leu 665	Thr	Gly	Glu	Asp	Trp 670	Asn	Glu
Val	Met	Tyr 675	Asp	Gly	Ile	Lys	Ser 680	Gln	Gly	Gly	Val	Gln 685	Gly	Gly	Met
Val	Phe 690	Ser	Ile	Tyr	Phe	Ile 695	Val	Leu	Thr	Leu	Phe 700	Gly	Asn	Tyr	Thr
Leu 705	Leu	Asn	Val	Phe	Leu 710	Ala	Ile	Ala	Val	Asp 715	Asn	Leu	Ala	Asn	Ala 720
Gln	Glu	Leu	Thr	Lys 725	Val	Glu	Ala	Asp	Glu 730	Gln	Glu	Glu	Glu	Glu 735	Ala
Ala	Asn	Gln	Lys 740	Leu	Ala	Leu	Gln	Lys 745	Ala	ГЛа	Glu	Val	Ala 750	Glu	Val
Ser	Pro	Leu 755	Ser	Ala	Ala	Asn	Met 760	Ser	Ile	Ala	Val	Lys 765	Glu	Gln	Gln
Lys	Asn 770	Gln	Lys	Pro	Ala	Lys 775	Ser	Val	Trp	Glu	Gln 780	Arg	Thr	Ser	Glu
Met 785	Arg	Lys	Gln	Asn	Leu 790	Leu	Ala	Ser	Arg	Glu 795	Ala	Leu	Tyr	Asn	Glu 800
Met	Asp	Pro	Asp	Glu 805	Arg	Trp	Lys	Ala	Ala 810	Tyr	Thr	Arg	His	Leu 815	Arg
Pro	Asp	Met	Lys 820	Thr	His	Leu	Asp	Arg 825	Pro	Leu	Val	Val	Asp 830	Pro	Gln
Glu	Asn	Arg 835	Asn	Asn	Asn	Thr	Asn 840	Lys	Ser	Arg	Ala	Ala 845	Glu	Pro	Thr
Val	Asp 850	Gln	Arg	Leu	Gly	Gln 855	Gln	Arg	Ala	Glu	Asp	Phe	Leu	Arg	Lys
Gln 865	Ala	Arg	Tyr	His	Asp 870	Arg	Ala	Arg	Asp	Pro 875	Ser	Gly	Ser	Ala	Gly 880
Leu	Asp	Ala	Arg	Arg 885	Pro	Trp	Ala	Gly	Ser 890	Gln	Glu	Ala	Glu	Leu 895	Ser
Arg	Glu	Gly	Pro 900	Tyr	Gly	Arg	Glu	Ser 905	Asp	His	His	Ala	Arg 910	Glu	Gly
Ser	Leu	Glu 915	Gln	Pro	Gly	Phe	Trp 920	Glu	Gly	Glu	Ala	Glu 925	Arg	Gly	Lys
Ala	Gly 930	Asp	Pro	His	Arg	Arg 935	His	Val	His	Arg	Gln 940	Gly	Gly	Ser	Arg
Glu 945	Ser	Arg	Ser	Gly	Ser 950	Pro	Arg	Thr	Gly	Ala 955	Asp	Gly	Glu	His	Arg 960
Arg	His	Arg	Ala	His	Arg	Arg	Pro	Gly	Glu	Glu	Gly	Pro	Glu	Asp	Lys

_				965				9'	70				97!	5
Ala	Glu	Arg	Arg 980		Arg :	His A				er A	rg Pr	o Al. 99	a Arç	
Gly		Gly 995	Glu	Gly	Glu		ro <i>i</i> 000	Aap (Gly (Gly (rg . 005	Arg 1	Arg Arg
His	Arg 1010		Gly	Ala	Pro	Ala 1015		Tyr	Glu	Gly	Asp 1020	Ala	Arg	Arg
Glu	Asp 1025		Glu	Arg	g Arg	His 1030	_	Arg	Arg	ГÀа	Glu 1035	Asn	Gln	Gly
Ser	Gly 1040		Pro	Val	. Ser	Gly 1045	Pro	Asn	Leu	Ser	Thr 1050	Thr	Arg	Pro
Ile	Gln 1055		. Asp	Leu	ı Gly	Arg 1060	Gln	Asp	Pro	Pro	Leu 1065	Ala	Glu	Asp
Ile	Asp 1070		. Met	Lys	s Asn	Asn 1075		Leu	Ala	Thr	Ala 1080	Glu	Ser	Ala
Ala	Pro 1085		Gly	Ser	Leu	Gly 1090	His	Ala	Gly	Leu	Pro 1095	Gln	Ser	Pro
Ala	1100		Gly	Asr	ser	Thr 1105		Pro	Gly	Pro	Met 1110	Leu	Ala	Ile
Pro	Ala 1115		Ala	Thr	Asn	Pro 1120	Gln	Asn	Ala	Ala	Ser 1125	Arg	Arg	Thr
Pro	Asn 1130		Pro	Gly	/ Asn	Pro 1135		Asn	Pro	Gly	Pro 1140	Pro	ГÀа	Thr
Pro	Glu 1145		Ser	Leu	ı Ile	Val 1150	Thr	Asn	Pro	Ser	Gly 1155	Thr	Gln	Thr
Asn	Ser 1160		Lys	Thr	Ala	Arg 1165	ГÀа	Pro	Asp	His	Thr 1170	Thr	Val	Asp
Ile	Pro 1175		Ala	. Сув	Pro	Pro 1180	Pro	Leu	Asn	His	Thr 1185	Val	Val	Gln
Val	Asn 1190		Asn	Ala	. Asn	Pro 1195	Asp	Pro	Leu	Pro	Lys 1200	Lys	Glu	Glu
Glu	Lys 1205		Glu	. Glu	ı Glu	Glu 1210	Asp	Asp	Arg	Gly	Glu 1215	Asp	Gly	Pro
ГÀа	Pro 1220		Pro	Pro	Tyr	Ser 1225	Ser	Met	Phe	Ile	Leu 1230	Ser	Thr	Thr
Asn	Pro 1235		Arg	Arg	, Leu	Cys 1240		Tyr	Ile	Leu	Asn 1245	Leu	Arg	Tyr
Phe	Glu 1250		Cys	Ile	e Leu	Met 1255		Ile	Ala	Met	Ser 1260		Ile	Ala
Leu	Ala 1265		Glu	. Asp	Pro	Val 1270		Pro	Asn	Ala	Pro 1275		Asn	Asn
Val	Leu 1280	_	Tyr	Ph∈	a Asp	Tyr 1285		Phe	Thr	Gly	Val 1290		Thr	Phe
Glu	Met 1295		Ile	Lys	Met	Ile 1300		Leu	Gly	Leu	Val 1305	Leu	His	Gln
Gly	Ala 1310		Phe	Arg	l Yab	Leu 1315		Asn	Ile	Leu	Asp 1320	Phe	Ile	Val
Val	Ser 1325	_	Ala	Leu	ı Val	Ala 1330		Ala	Phe	Thr	Gly 1335	Asn	Ser	Lys
Gly	Lys 1340		Ile	Asr	1 Thr	Ile 1345	-	Ser	Leu	Arg	Val 1350		Arg	Val

Leu		Pro	Leu	Lys	Thr	Ile	Lys	Arg	Leu	Pro	Lys		Lys	Ala
	1355					1360					1365			
Val	Phe 1370	Asp	CÀa	Val	Val	Asn 1375		Leu	Lys	Asn	Val 1380		Asn	Ile
Leu	Ile 1385	Val	Tyr	Met	Leu	Phe 1390		Phe	Ile	Phe	Ala 1395		Val	Ala
Val	Gln 1400	Leu	Phe	ГЛа	Gly	Lys 1405		Phe	His	CAa	Thr 1410	Asp	Glu	Ser
Lys	Glu 1415	Phe	Glu	Lys	Asp	Cys 1420		Gly	Lys	Tyr	Leu 1425		Tyr	Glu
Lys	Asn 1430	Glu	Val	Lys	Ala	Arg 1435		Arg	Glu	Trp	Lys 1440		Tyr	Glu
Phe	His 1445	Tyr	Asp	Asn	Val	Leu 1450		Ala	Leu	Leu	Thr 1455		Phe	Thr
Val	Ser 1460	Thr	Gly	Glu	Gly	Trp 1465		Gln	Val	Leu	Lys 1470		Ser	Val
Asp	Ala 1475	Thr	Phe	Glu	Asn	Gln 1480		Pro	Ser	Pro	Gly 1485	Tyr	Arg	Met
Glu	Met 1490	Ser	Ile	Phe	Tyr	Val 1495		Tyr	Phe	Val	Val 1500		Pro	Phe
Phe	Phe 1505	Val	Asn	Ile	Phe	Val 1510		Leu	Ile	Ile	Ile 1515		Phe	Gln
Glu	Gln 1520	Gly	Asp	Lys	Met	Met 1525		Glu	Tyr	Ser	Leu 1530	Glu	ГÀв	Asn
Glu	Arg 1535	Ala	CAa	Ile	Asp	Phe 1540		Ile	Ser	Ala	Lys 1545	Pro	Leu	Thr
Arg	His 1550	Met	Pro	Gln	Asn	Lys 1555		Ser	Phe	Gln	Tyr 1560	Arg	Met	Trp
Gln	Phe 1565	Val	Val	Ser	Pro	Pro 1570	Phe	Glu	Tyr	Thr	Ile 1575	Met	Ala	Met
Ile	Ala 1580	Leu	Asn	Thr	Ile	Val 1585	Leu	Met	Met	Lys	Phe 1590	Tyr	Gly	Ala
Ser	Val 1595	Ala	Tyr	Glu	Asn	Ala 1600		Arg	Val	Phe	Asn 1605	Ile	Val	Phe
Thr	Ser 1610	Leu	Phe	Ser	Leu	Glu 1615	Cys	Val	Leu	Lys	Val 1620	Met	Ala	Phe
Gly	Ile 1625	Leu	Asn	Tyr	Phe	Arg 1630	Asp	Ala	Trp	Asn	Ile 1635	Phe	Asp	Phe
Val	Thr 1640	Val	Leu	Gly	Ser	Ile 1645		Asp	Ile	Leu	Val 1650		Glu	Phe
Gly	Asn 1655	Pro	Asn	Asn	Phe	Ile 1660		Leu	Ser	Phe	Leu 1665	Arg	Leu	Phe
Arg	Ala 1670	Ala	Arg	Leu	Ile	Lys 1675		Leu	Arg	Gln	Gly 1680	-	Thr	Ile
Arg	Ile 1685	Leu	Leu	Trp	Thr	Phe 1690		Gln	Ser	Phe	Lys 1695	Ala	Leu	Pro
Tyr	Val 1700	CAa	Leu	Leu	Ile	Ala 1705	Met	Leu	Phe	Phe	Ile 1710		Ala	Ile
Ile	Gly 1715	Met	Gln	Val	Phe	Gly 1720		Ile	Gly	Ile	Asp 1725	Val	Glu	Asp
Glu	Asp 1730	Ser	Asp	Glu	Asp	Glu 1735		Gln	Ile	Thr	Glu 1740	His	Asn	Asn

Phe	Arg 1745	Thr	Phe	Phe	Gln	Ala 1750	Leu	Met	Leu	Leu	Phe 1755	Arg	Ser	Ala
Thr	Gly 1760	Glu	Ala	Trp	His	Asn 1765	Ile	Met	Leu	Ser	Cys 1770	Leu	Ser	Gly
Lys	Pro 1775	Cys	Asp	Lys	Asn	Ser 1780	Gly	Ile	Leu	Thr	Arg 1785	Glu	CAa	Gly
Asn	Glu 1790	Phe	Ala	Tyr	Phe	Tyr 1795	Phe	Val	Ser	Phe	Ile 1800	Phe	Leu	Cys
Ser	Phe 1805	Leu	Met	Leu	Asn	Leu 1810	Phe	Val	Ala	Val	Ile 1815	Met	Asp	Asn
Phe	Glu 1820	Tyr	Leu	Thr	Arg	Asp 1825	Ser	Ser	Ile	Leu	Gly 1830	Pro	His	His
Leu	Asp 1835	Glu	Tyr	Val	Arg	Val 1840	Trp	Ala	Glu	Tyr	Asp 1845	Pro	Ala	Ala
Trp	Gly 1850	Arg	Met	Pro	Tyr	Leu 1855	Asp	Met	Tyr	Gln	Met 1860	Leu	Arg	His
Met	Ser 1865	Pro	Pro	Leu	Gly	Leu 1870	Gly	Lys	Lys	СЛа	Pro 1875	Ala	Arg	Val
Ala	Tyr 1880	Lys	Arg	Leu	Leu	Arg 1885	Met	Asp	Leu	Pro	Val 1890	Ala	Asp	Asp
Asn	Thr 1895	Val	His	Phe	Asn	Ser 1900	Thr	Leu	Met	Ala	Leu 1905	Ile	Arg	Thr
Ala	Leu 1910	Asp	Ile	Lys	Ile	Ala 1915	Lys	Gly	Gly	Ala	Asp 1920	Lys	Gln	Gln
Met	Asp 1925	Ala	Glu	Leu	Arg	Lys 1930	Glu	Met	Met	Ala	Ile 1935	Trp	Pro	Asn
Leu	Ser 1940	Gln	Lys	Thr	Leu	Asp 1945	Leu	Leu	Val	Thr	Pro 1950	His	ГÀа	Ser
Thr	Asp 1955	Leu	Thr	Val	Gly	Lys 1960	Ile	Tyr	Ala	Ala	Met 1965	Met	Ile	Met
Glu	Tyr 1970	Tyr	Arg	Gln	Ser	Lys 1975	Ala	Lys	Lys	Leu	Gln 1980	Ala	Met	Arg
Glu	Glu 1985	Gln	Asp	Arg	Thr	Pro 1990	Leu	Met	Phe	Gln	Arg 1995	Met	Glu	Pro
Pro	Ser 2000	Pro	Thr	Gln	Glu	Gly 2005	Gly	Pro	Gly	Gln	Asn 2010	Ala	Leu	Pro
Ser	Thr 2015	Gln	Leu	Asp	Pro	Gly 2020	Gly	Ala	Leu	Met	Ala 2025	His	Glu	Ser
Gly	Leu 2030	Lys	Glu	Ser	Pro	Ser 2035	Trp	Val	Thr	Gln	Arg 2040	Ala	Gln	Glu
Met	Phe 2045	Gln	Lys	Thr	Gly	Thr 2050	Trp	Ser	Pro	Glu	Gln 2055	Gly	Pro	Pro
Thr	Asp 2060	Met	Pro	Asn	Ser	Gln 2065	Pro	Asn	Ser	Gln	Ser 2070	Val	Glu	Met
Arg	Glu 2075	Met	Gly	Arg	Asp	Gly 2080	Tyr	Ser	Asp	Ser	Glu 2085	His	Tyr	Leu
Pro	Met 2090	Glu	Gly	Gln	Gly	Arg 2095	Ala	Ala	Ser	Met	Pro 2100	Arg	Leu	Pro
Ala	Glu 2105	Asn	Gln	Arg	Arg	Arg 2110	Gly	Arg	Pro	Arg	Gly 2115	Asn	Asn	Leu
Ser	Thr	Ile	Ser	Asp	Thr	Ser	Pro	Met	rys	Arg	Ser	Ala	Ser	Val

											- COI	atir	iuec	1
	2120					2125					2130			
Leu	Gly 2135		Lys	Ala	Arg	Arg 2140	Leu	Asp	Asp	Tyr	Ser 2145		Glu	Arg
Val	Pro 2150		Glu	Glu	Asn	Gln 2155	Arg	His	His	Gln	Arg 2160	Arg	Arg	Asp
Arg	Ser 2165	His	Arg	Ala	Ser	Glu 2170	Arg	Ser	Leu	Gly	Arg 2175	_	Thr	Asp
Val	Asp 2180		Gly	Leu	Gly	Thr 2185		Leu	Ser	Met	Thr 2190	Thr	Gln	Ser
Gly	Asp 2195		Pro	Ser	ГЛа	Glu 2200	_	Asp	Gln	Glu	Arg 2205	-	Arg	Pro
Lys	Asp 2210		ГЛа	His	Arg	Gln 2215		His	His	His	His 2220	His	His	His
His	His 2225		Pro	Pro	Pro	Asp 2230		Asp	Arg	Tyr	Ala 2235		Glu	Arg
Pro	Asp 2240		Gly	Arg	Ala	Arg 2245	Ala	Arg	Asp	Gln	Arg 2250	_	Ser	Arg
Ser	Pro 2255	Ser	Glu	Gly	Arg	Glu 2260	His	Met	Ala	His	Arg 2265	Gln	Gly	Ser
Ser	Ser 2270	Val	Ser	Gly	Ser	Pro 2275	Ala	Pro	Ser	Thr	Ser 2280	Gly	Thr	Ser
Thr	Pro 2285	Arg	Arg	Gly	Arg	Arg 2290	Gln	Leu	Pro	Gln	Thr 2295	Pro	Ser	Thr
Pro	Arg 2300		His	Val	Ser	Tyr 2305	Ser	Pro	Val	Ile	Arg 2310		Ala	Gly
Gly	Ser 2315	Gly	Pro	Pro	Gln	Gln 2320	Gln	Gln	Gln	Gln	Gln 2325	Gln	Gln	Gln
Gln	Gln 2330		Ala	Val	Ala	Arg 2335	Pro	Gly	Arg	Ala	Ala 2340	Thr	Ser	Gly
Pro	Arg 2345	Arg	Tyr	Pro	Gly	Pro 2350	Thr	Ala	Glu	Pro	Leu 2355	Ala	Gly	Asp
Arg	Pro 2360	Pro	Thr	Gly	Gly	His 2365	Ser	Ser	Gly	Arg	Ser 2370	Pro	Arg	Met
Glu	Arg 2375	Arg	Val	Pro	Gly	Pro 2380	Ala	Arg	Ser	Glu	Ser 2385	Pro	Arg	Ala
CAa						Arg 2395					Gly 2400		His	Val
Ser	Glu 2405	Gly	Pro	Pro	Gly	Pro 2410	Arg	His	His	Gly	Tyr 2415	Tyr	Arg	Gly
Ser	Asp 2420	Tyr	Asp	Glu	Ala	Asp 2425	Gly	Pro	Gly	Ser	Gly 2430	Gly	Gly	Glu
Glu	Ala 2435	Met	Ala	Gly	Ala	Tyr 2440	Asp	Ala	Pro	Pro	Pro 2445	Val	Arg	His
Ala	Ser 2450	Ser	Gly	Ala	Thr	Gly 2455	Arg	Ser	Pro	Arg	Thr 2460	Pro	Arg	Ala
Ser	Gly 2465	Pro	Ala	Сув	Ala	Ser 2470	Pro	Ser	Arg	His	Gly 2475	Arg	Arg	Leu
Pro	Asn 2480	Gly	Tyr	Tyr	Pro	Ala 2485	His	Gly	Leu	Ala	Arg 2490	Pro	Arg	Gly
Pro	Gly 2495	Ser	Arg	Lys	Gly	Leu 2500	His	Glu	Pro	Tyr	Ser 2505	Glu	Ser	Asp

Asp Asp Trp Cys 2510 <210> SEQ ID NO 149 <211> LENGTH: 2368 <212> TYPE: PRT <213> ORGANISM: Rattus norvegicus <400> SEQUENCE: 149 Met Ala Arg Phe Gly Asp Glu Met Pro Gly Arg Tyr Gly Ala Gly Gly Gly Gly Ser Gly Pro Ala Ala Gly Val Val Gly Ala Ala Gly Gly 25 Arg Gly Ala Gly Gly Ser Arg Gln Gly Gly Gln Pro Gly Ala Gln Arg 40 Met Tyr Lys Gln Ser Met Ala Gln Arg Ala Arg Thr Met Ala Leu Tyr Asn Pro Ile Pro Val Arg Gln Asn Cys Leu Thr Val Asn Arg Ser Leu 70 Phe Leu Phe Ser Glu Asp Asn Val Val Arg Lys Tyr Ala Lys Lys Ile 90 Thr Glu Trp Pro Pro Phe Glu Tyr Met Ile Leu Ala Thr Ile Ile Ala 100 105 Asn Cys Ile Val Leu Ala Leu Glu Gln His Leu Pro Asp Asp Lys Thr Pro Met Ser Glu Arg Leu Asp Asp Thr Glu Pro Tyr Phe Ile Gly 135 Ile Phe Cys Phe Glu Ala Gly Ile Lys Ile Val Ala Leu Gly Phe Ala Phe His Lys Gly Ser Tyr Leu Arg Asn Gly Trp Asn Val Met Asp Phe Val Val Val Leu Thr Gly Ile Leu Ala Thr Val Gly Thr Glu Phe Asp Leu Arg Thr Leu Arg Ala Val Arg Val Leu Arg Pro Leu Lys Leu Val Ser Gly Ile Pro Ser Leu Gln Val Val Leu Lys Ser Ile Met Lys Ala 215 Met Ile Pro Leu Leu Gln Ile Gly Leu Leu Phe Phe Ala Ile Leu 230 Ile Phe Ala Ile Ile Gly Leu Glu Phe Tyr Lys Gly Lys Phe His Thr 250 Thr Cys Phe Glu Glu Gly Thr Asp Asp Ile Gln Gly Glu Ser Pro Ala 265 Pro Cys Gly Thr Glu Glu Pro Ala Arg Thr Cys Pro Asn Gly Thr Lys 280 Cys Gln Pro Tyr Trp Glu Gly Pro Asn Asn Gly Ile Thr Gln Phe Asp Asn Ile Leu Phe Ala Val Leu Thr Val Phe Gln Cys Ile Thr Met Glu 310 315 Gly Trp Thr Asp Leu Leu Tyr Asn Ser Asn Asp Ala Ser Gly Asn Thr 325 330 Trp Asn Trp Leu Tyr Phe Ile Pro Leu Ile Ile Ile Gly Ser Phe Phe 345

												COII	CIII	ucu	
Met	Leu	Asn 355	Leu	Val	Leu	Gly	Val 360	Leu	Ser	Gly	Glu	Phe 365	Ala	Lys	Glu
Arg	Glu 370	Arg	Val	Glu	Asn	Arg 375	Arg	Ala	Phe	Leu	180	Leu	Arg	Arg	Gln
Gln 385	Gln	Ile	Glu	Arg	Glu 390	Leu	Asn	Gly	Tyr	Met 395	Glu	Trp	Ile	Ser	Lys 400
Ala	Glu	Glu	Val	Ile 405	Leu	Ala	Glu	Asp	Glu 410	Thr	Asp	Val	Glu	Gln 415	Arg
His	Pro	Phe	Asp 420	Gly	Ala	Leu	Arg	Arg 425	Ala	Thr	Leu	Lys	Lys 430	Ser	Lys
Thr	Asp	Leu 435	Leu	Asn	Pro	Glu	Glu 440	Ala	Glu	Asp	Gln	Leu 445	Ala	Asp	Ile
Ala	Ser 450	Val	Gly	Ser	Pro	Phe 455	Ala	Arg	Ala	Ser	Ile 460	Lys	Ser	Ala	Lys
Leu 465	Glu	Asn	Ser	Thr	Phe 470	Phe	His	Lys	Lys	Glu 475	Arg	Arg	Met	Arg	Phe 480
Tyr	Ile	Arg	Arg	Met 485	Val	ГАз	Thr	Gln	Ala 490	Phe	Tyr	Trp	Thr	Val 495	Leu
Ser	Leu	Val	Ala 500	Leu	Asn	Thr	Leu	Trp 505	Leu	Ala	Ile	Val	His 510	Tyr	Asn
Gln	Pro	Glu 515	Trp	Leu	Ser	Asp	Phe 520	Leu	Tyr	Tyr	Ala	Glu 525	Phe	Ile	Phe
Leu	Gly 530	Leu	Phe	Met	Ser	Glu 535	Met	Phe	Ile	Lys	Met 540	Tyr	Gly	Leu	Gly
Thr 545	Arg	Pro	Tyr	Phe	His 550	Ser	Ser	Phe	Asn	Сув 555	Phe	Asp	Cys	Gly	Val 560
Ile	Ile	Gly	Ser	Ile 565	Phe	Glu	Val	Ile	Trp 570	Ala	Val	Ile	Lys	Pro 575	Gly
Thr	Ser	Phe	Gly 580	Ile	Ser	Val	Leu	Arg 585	Ala	Leu	Arg	Leu	Leu 590	Arg	Ile
Phe	Lys	Val 595	Thr	Lys	Tyr	Trp	Ala 600	Ser	Leu	Arg	Asn	Leu 605	Val	Val	Ser
Leu	Leu 610	Asn	Ser	Met	Lys	Ser 615	Ile	Ile	Ser	Leu	Leu 620	Phe	Leu	Leu	Phe
Leu 625	Phe	Ile	Val	Val	Phe 630	Ala	Leu	Leu	Gly	Met 635	Gln	Leu	Phe	Gly	Gly 640
Gln	Phe	Asn	Phe	Asp 645	Glu	Gly	Thr	Pro	Pro 650	Thr	Asn	Phe	Asp	Thr 655	Phe
Pro	Ala	Ala	Ile 660	Met	Thr	Val	Phe	Gln 665	Ile	Leu	Thr	Gly	Glu 670	Asp	Trp
Asn	Glu	Val 675	Met	Tyr	Asp	Glu	Ile 680	ГÀа	Ser	Gln	Gly	Gly 685	Val	Gln	Gly
Gly	Met 690	Val	Phe	Ser	Ile	Tyr 695	Phe	Ile	Val	Leu	Thr 700	Leu	Phe	Gly	Asn
Tyr 705	Thr	Leu	Leu	Asn	Val 710	Phe	Leu	Ala	Ile	Ala 715	Val	Asp	Asn	Leu	Ala 720
Asn	Ala	Gln	Glu	Leu 725	Thr	Lys	Asp	Glu	Gln 730	Glu	Glu	Glu	Glu	Ala 735	Ala
Asn	Gln	Lys	Leu 740	Ala	Leu	Gln	ГÀв	Ala 745	Lys	Glu	Val	Ala	Glu 750	Val	Ser
Pro	Leu	Ser 755	Ala	Ala	Asn	Met	Ser 760	Ile	Ala	Val	Lys	Glu 765	Gln	Gln	Lys

Asn	Gln 770	Lys	Pro	Ala	Lys	Ser 775	Val	Trp	Glu	Gln	Arg 780	Thr	Ser	Glu	Met
Arg 785	Lys	Gln	Asn		Leu 790	Ala	Ser	Arg	Glu	Ala 795	Leu	Tyr	Gly	Asp	Ala 800
Ala	Glu	Arg	Trp	Pro 805	Thr	Thr	Tyr	Ala	Arg 810	Pro	Leu	Arg	Pro	Asp 815	
Lys	Thr	His	Leu 820	Asp	Arg	Pro	Leu	Val 825	Val	Asp	Pro	Gln	Glu 830		Arg
Asn	Asn	Asn 835	Thr	Asn	Lys	Ser	Arg 840	Ala	Pro	Glu	Ala	Leu 845	Arg	Gln	Thr
Ala	Arg 850	Pro	Arg	Glu	Ser	Ala 855	Arg	Asp	Pro	Asp	Ala 860	Arg	Arg	Ala	Trp
Pro 865	Ser	Ser	Pro		Arg 870	Ala	Pro	Gly	Arg	Glu 875	Gly	Pro	Tyr	Gly	Arg 880
Glu	Ser	Glu	Pro	Gln 885	Gln	Arg	Glu	His	Ala 890	Pro	Pro	Arg	Glu	His 895	
Pro	Trp	Asp	Ala 900	Asp	Pro	Glu	Arg	Ala 905	Lys	Ala	Gly	Asp	Ala 910		Arg
Arg	His	Thr 915	His	Arg	Pro	Val	Ala 920	Glu	Gly	Glu	Pro	Arg 925	Arg	His	Arg
Ala	Arg 930	Arg	Arg	Pro	Gly	Asp 935	Glu	Pro	Asp	Asp	Arg 940	Pro	Glu	Arg	Arg
Pro 945	Arg	Pro	Arg	_	Ala 950	Thr	Arg	Pro	Ala	Arg 955	Ala	Ala	Asp	Gly	Glu 960
Gly	Asp	Asp	Gly	Glu 965	Arg	Lys	Arg	Arg	His 970	Arg	His	Gly	Pro	Pro 975	Ala
His	Asp	Asp	Arg 980	Glu	Arg	Arg	His	Arg 985	Arg	Arg	Lys	Glu	Ser 990		Gly
Ser	Gly	Val 995	Pro	Met	Ser	Gly	Pro 1000		ı Let	ı Se:	r Thi	r Th 10		rg P	ro Ile
Gln	Gln 1010	_	Leu	ı Gly	Arg	Gli 101		вр Це	eu Pi	ro Le		la 020	Glu	Asp	Leu
Asp	Asn 1025		Lys	Asn	Asr	103		eu Al	la Ti	nr G		lu 035	Pro	Ala	Ser
Pro	His 1040	_	Ser	Leu	. Gly	7 His		er G	ly Le	eu P		ro 050	Ser	Pro	Ala
Lys	Ile 1055	_	Asn	ser	Thr	106		co GI	ly Pi	ro A		eu . 065	Ala	Thr	Asn
Pro	Gln 1070		n Ala	ı Ala	. Ser	10°		g Tl	nr Pi	ro A		≅n 080	Pro	Gly	Asn
Pro	Ser 1085		Pro	Gly	Pro	Pro 109		/s Tl	nr Pi	ro G		∌n 095	Ser	Leu	Ile
Val	Thr 1100		Pro	Ser	Ser	Th:		ln Pi	ro As	sn Se		la 110	Lys	Thr	Ala
Arg	Lys 1115		Glu	. His	Met	112		al G	lu I	le P:		ro . 125	Ala	Cys	Pro
Pro	Leu 1130		His	Thr	Val	113		ln Va	al As	en Ly		en . 140	Ala	Asn	Pro
Asp	Pro 1145		Pro	. Lys	Lys	3 Glu 119		lu G	lu Ly	As ri		lu 155	Glu	Glu	Glu
Δla	Asp	Pro	Gly	Glu	Asp	Gly	y Pi	o Ly	ys Pi	ro Me	et Pi	ro	Pro	Tyr	Ser

														-
	1160					1165					1170			
Ser	Met 1175	Phe	Ile	Leu	Ser	Thr 1180	Thr	Asn	Pro	Leu	Arg 1185	Arg	Leu	Cys
His	Tyr 1190	Ile	Leu	Asn	Leu	Arg 1195	Tyr	Phe	Glu	Met	Cys 1200	Ile	Leu	Met
Val	Ile 1205	Ala	Met	Ser	Ser	Ile 1210	Ala	Leu	Ala	Ala	Glu 1215	Asp	Pro	Val
Gln	Pro 1220	Asn	Ala	Pro	Arg	Asn 1225	Asn	Val	Leu	Arg	Tyr 1230	Phe	Asp	Tyr
Val	Phe 1235	Thr	Gly	Val	Phe	Thr 1240	Phe	Glu	Met	Val	Ile 1245	Lys	Met	Ile
Asp	Leu 1250	Gly	Leu	Val	Leu	His 1255	Gln	Gly	Ala	Tyr	Phe 1260	Arg	Asp	Leu
Trp	Asn 1265	Ile	Leu	Asp	Phe	Ile 1270	Val	Val	Ser	Gly	Ala 1275	Leu	Val	Ala
Phe	Ala 1280	Phe	Thr	Gly	Asn	Ser 1285	ГЛа	Gly	Lys	Asp	Ile 1290	Asn	Thr	Ile
ГÀа	Ser 1295	Leu	Arg	Val	Leu	Arg 1300	Val	Leu	Arg	Pro	Leu 1305	Lys	Thr	Ile
ГÀа	Arg 1310	Leu	Pro	Lys	Leu	Lys 1315	Ala	Val	Phe	Asp	Сув 1320	Val	Val	Asn
Ser	Leu 1325	ГÀа	Asn	Val	Phe	Asn 1330	Ile	Leu	Ile	Val	Tyr 1335	Met	Leu	Phe
Met	Phe 1340	Ile	Phe	Ala	Val	Val 1345	Ala	Val	Gln	Leu	Phe 1350	ГÀа	Gly	Lys
Phe	Phe 1355	His	Cys	Thr	Asp	Glu 1360	Ser	Lys	Glu	Phe	Glu 1365	Arg	Asp	Cys
Arg	Gly 1370	ГÀз	Tyr	Leu	Leu	Tyr 1375	Glu	Lys	Asn	Glu	Val 1380	ГÀа	Ala	Arg
Asp	Arg 1385	Glu	Trp	Lys	Lys	Tyr 1390	Asp	Phe	His	Tyr	Asp 1395	Asn	Val	Leu
Trp	Ala 1400	Leu	Leu	Thr	Leu	Phe 1405	Thr	Val	Ser	Thr	Gly 1410	Glu	Gly	Trp
Pro	Gln 1415	Val	Leu	Lys	His	Ser 1420	Val	Asp	Ala	Thr	Phe 1425	Glu	Asn	Gln
Gly	Pro 1430	Ser	Pro	Gly	Tyr	Arg 1435	Met	Glu	Met	Ser	Ile 1440	Phe	Tyr	Val
Val	Tyr 1445	Phe	Val	Val	Phe	Pro 1450	Phe	Phe	Phe	Val	Asn 1455	Ile	Phe	Val
Ala	Leu 1460	Ile	Ile	Ile	Thr	Phe 1465	Gln	Glu	Gln	Gly	Asp 1470	ГÀа	Met	Met
Glu	Glu 1475	Tyr	Ser	Leu	Glu	Lys 1480	Asn	Glu	Arg	Ala	Сув 1485	Ile	Asp	Phe
Ala	Ile 1490	Ser	Ala	ГÀв	Pro	Leu 1495	Thr	Arg	His	Met	Pro 1500	Gln	Asn	Lys
Gln	Ser 1505	Phe	Gln	Tyr	Arg	Met 1510	Trp	Gln	Phe	Val	Val 1515	Ser	Pro	Pro
Phe	Glu 1520	Tyr	Thr	Ile	Met	Ala 1525	Met	Ile	Ala	Leu	Asn 1530	Thr	Ile	Val
Leu	Met 1535	Met	Lys	Phe	Tyr	Gly 1540	Ala	Ser	Val	Ala	Tyr 1545	Glu	Asn	Ala

														-
Leu	Arg 1550	Val	Phe	Asn	Ile	Val 1555	Phe	Thr	Ser	Leu	Phe 1560	Ser	Leu	Glu
CAa	Val 1565	Leu	Lys	Val	Met	Ala 1570	Phe	Gly	Ile	Leu	Asn 1575	Tyr	Phe	Arg
Asp	Ala 1580	Trp	Asn	Ile	Phe	Asp 1585	Phe	Val	Thr	Val	Leu 1590	Gly	Ser	Ile
Thr	Asp 1595	Ile	Leu	Val	Thr	Glu 1600	Phe	Gly	Asn	Asn	Phe 1605	Ile	Asn	Leu
Ser	Phe 1610	Leu	Arg	Leu	Phe	Arg 1615	Ala	Ala	Arg	Leu	Ile 1620	Lys	Leu	Leu
Arg	Gln 1625	Gly	Tyr	Thr	Ile	Arg 1630	Ile	Leu	Leu	Trp	Thr 1635	Phe	Val	Gln
Ser	Phe 1640	Lys	Ala	Leu	Pro	Tyr 1645	Val	Cys	Leu	Leu	Ile 1650	Ala	Met	Leu
Phe	Phe 1655	Ile	Tyr	Ala	Ile	Ile 1660	Gly	Met	Gln	Val	Phe 1665	Gly	Asn	Ile
Gly	Ile 1670	Asp	Gly	Glu	Asp	Glu 1675	Asp	Ser	Asp	Glu	Asp 1680	Glu	Phe	Gln
Ile	Thr 1685	Glu	His	Asn	Asn	Phe 1690	Arg	Thr	Phe	Phe	Gln 1695	Ala	Leu	Met
Leu	Leu 1700	Phe	Arg	Ser	Ala	Thr 1705	Gly	Glu	Ala	Trp	His 1710	Asn	Ile	Met
Leu	Ser 1715	CAa	Leu	Ser	Gly	Lys 1720	Pro	СЛв	Asp	Lys	Asn 1725	Ser	Gly	Ile
Gln	Lys 1730	Pro	Glu	CAa	Gly	Asn 1735	Glu	Phe	Ala	Tyr	Phe 1740	Tyr	Phe	Val
Ser	Phe 1745	Ile	Phe	Leu	Cys	Ser 1750	Phe	Leu	Met	Leu	Asn 1755	Leu	Phe	Val
Ala	Val 1760	Ile	Met	Asp	Asn	Phe 1765	Glu	Tyr	Leu	Thr	Arg 1770	Asp	Ser	Ser
Ile	Leu 1775	Gly	Pro	His	His	Leu 1780	Asp	Glu	Tyr	Val	Arg 1785	Val	Trp	Ala
Glu	Tyr 1790	Asp	Pro	Ala	Ala	Сув 1795	Gly	Arg	Ile	His	Tyr 1800	Lys	Asp	Met
Tyr	Ser 1805	Leu	Leu	Arg	Val	Ile 1810	Ser	Pro	Pro	Leu	Gly 1815	Leu	Gly	Lys
Lys	Cys 1820	Pro	His	Arg	Val	Ala 1825	Cys	Lys	Arg	Leu	Leu 1830	Arg	Met	Asp
Leu	Pro 1835	Val	Ala	Asp	Asp	Asn 1840	Thr	Val	His	Phe	Asn 1845	Ser	Thr	Leu
Met	Ala 1850	Leu	Ile	Arg	Thr	Ala 1855	Leu	Asp	Ile	Lys	Ile 1860	Ala	Lys	Gly
Gly	Ala 1865	Asp	Lys	Gln	Gln	Met 1870	Asp	Ala	Glu	Leu	Arg 1875	Lys	Glu	Met
Met	Ala 1880	Ile	Trp	Pro	Asn	Leu 1885	Ser	Gln	Lys	Thr	Leu 1890	Asp	Leu	Leu
Val	Thr 1895	Pro	His	Lys	Ser	Thr 1900	Asp	Leu	Thr	Val	Gly 1905	Lys	Ile	Tyr
Ala	Ala 1910	Met	Met	Ile	Met	Glu 1915	Tyr	Tyr	Arg	Gln	Ser 1920	Lys	Ala	Lys
Lys	Leu 1925	Gln	Ala	Met	Arg	Glu 1930	Glu	Gln	Asn	Arg	Thr 1935	Pro	Leu	Met

Phe	Gln 1940	Arg	Met	Glu	Pro	Pro 1945	Ser	Pro	Thr	Gln	Glu 1950	Gly	Gly	Pro
Ser	Gln 1955	Asn	Ala	Leu	Pro	Ser 1960	Thr	Gln	Leu	Asp	Pro 1965	Gly	Gly	Gly
Leu	Met 1970	Ala	Gln	Glu	Ser	Ser 1975	Met	Lys	Glu	Ser	Pro 1980	Ser	Trp	Val
Thr	Gln 1985	Arg	Ala	Gln	Glu	Met 1990	Phe	Gln	Lys	Thr	Gly 1995	Thr	Trp	Ser
Pro	Glu 2000	Arg	Gly	Pro	Pro	Ile 2005	Asp	Met	Pro	Asn	Ser 2010	Gln	Pro	Asn
Ser	Gln 2015	Ser	Val	Glu	Met	Arg 2020	Glu	Met	Gly	Thr	Asp 2025	Gly	Tyr	Ser
Asp	Ser 2030	Glu	His	Tyr	Leu	Pro 2035	Met	Glu	Gly	Gln	Thr 2040	Arg	Ala	Ala
Ser	Met 2045	Pro	Arg	Leu	Pro	Ala 2050	Glu	Asn	Gln	Arg	Arg 2055	Arg	Gly	Arg
Pro	Arg 2060	Gly	Asn	Asn	Leu	Ser 2065	Thr	Ile	Ser	Asp	Thr 2070	Ser	Pro	Met
ГÀа	Arg 2075	Ser	Ala	Ser	Val	Leu 2080	Gly	Pro	Lys	Ala	Arg 2085	Arg	Leu	Asp
Asp	Tyr 2090	Ser	Leu	Glu	Arg	Val 2095	Pro	Pro	Glu	Glu	Asn 2100	Gln	Arg	Tyr
His	Gln 2105	Arg	Arg	Arg	Asp	Arg 2110	Gly	His	Arg	Thr	Ser 2115	Glu	Arg	Ser
Leu	Gly 2120	Arg	Tyr	Thr	Asp	Val 2125	Asp	Thr	Gly	Leu	Gly 2130	Thr	Asp	Leu
Ser	Met 2135	Thr	Thr	Gln	Ser	Gly 2140	Asp	Leu	Pro	Ser	Lys 2145	Asp	Arg	Asp
Gln	Asp 2150	Arg	Gly	Arg	Pro	Lys 2155	Asp	Arg	Lys	His	Arg 2160	Pro	His	His
His	His 2165	His	His	His	His	His 2170	His	Pro	Pro	Ala	Pro 2175	Asp	Arg	Glu
Arg	Tyr 2180	Ala	Gln	Glu	Arg	Pro 2185	Asp	Thr	Gly	Arg	Ala 2190	Arg	Ala	Arg
Glu	Gln 2195	Arg	Trp	Ser	Arg	Ser 2200	Pro	Ser	Glu	Gly	Arg 2205	Glu	His	Ala
Thr	His 2210	Arg	Gln	Gly	Ser	Ser 2215	Ser	Val	Ser	Gly	Ser 2220	Pro	Ala	Pro
Ser	Thr 2225	Ser	Gly	Thr	Ser	Thr 2230	Pro	Arg	Arg	Gly	Arg 2235	Arg	Gln	Leu
Pro	Gln 2240	Thr	Pro	Cys	Thr	Pro 2245	Arg	Pro	Leu	Val	Ser 2250	Tyr	Ser	Pro
Ala	Pro 2255	Arg	Arg	Pro	Ala	Ala 2260	Arg	Arg	Met	Ala	Gly 2265	Pro	Pro	Ala
Pro	Pro 2270	Gly	Gly	Ser	Pro	Arg 2275	Gly	Cys	Arg	Arg	Ala 2280	Pro	Arg	Trp
Pro	Ala 2285	His	Ala	Pro	Glu	Gly 2290	Pro	Arg	Pro	Arg	Gly 2295	Ala	Asp	Tyr
Thr	Glu 2300	Pro	Asp	Ser	Pro	Arg 2305	Glu	Pro	Pro	Gly	Gly 2310	Ala	His	Glu
Pro	Ala	Pro	Arg	Ser	Pro	Arg	Thr	Pro	Arg	Ala	Ala	Gly	CAa	Ala

-continued	
2315 2320 2325	
Ser Pro Arg His Gly Arg Arg Leu Pro Asn Gly Tyr Tyr Ala Gly 2330 2340	
His Gly Ala Pro Arg Pro Arg Thr Ala Arg Arg Gly Ala His Asp 2345 2350 2355	
Ala Tyr Ser Glu Ser Glu Asp Asp Trp Cys 2360 2365	
<210> SEQ ID NO 150 <211> LENGTH: 6030 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 150	
atggagcaaa cagtgcttgt accaccagga cctgacagct tcaacttctt caccagagaa	60
tctcttgcgg ctattgaaag acgcattgca gaagaaaagg caaagaatcc caaaccagac	120
aaaaaagatg acgacgaaaa tggcccaaag ccaaatagtg acttggaagc tggaaagaac	180
cttccattta tttatggaga cattcctcca gagatggtgt cagagcccct ggaggacctg	240
gacccctact atatcaataa gaaaactttt atagtattga ataaagggaa ggccatcttc	300
cggttcagtg ccacctctgc cctgtacatt ttaactccct tcaatcctct taggaaaata	360
gctattaaga ttttggtaca ttcattattc agcatgctaa ttatgtgcac tattttgaca	420
aactgtgtgt ttatgacaat gagtaaccct cctgattgga caaagaatgt agaatacacc	480
ttcacaggaa tatatacttt tgaatcactt ataaaaatta ttgcaagggg attctgttta	540
gaagatttta ctttccttcg ggatccatgg aactggctcg atttcactgt cattacattt	600
gcgtacgtca cagagtttgt ggacctgggc aatgtctcgg cattgagaac attcagagtt	660
ctccgagcat tgaagacgat ttcagtcatt ccaggcctga aaaccattgt gggagccctg	720
atccagtctg tgaagaagct ctcagatgta atgatcctga ctgtgttctg tctgagcgta	780
tttgctctaa ttgggctgca gctgttcatg ggcaacctga ggaataaatg tatacaatgg	840
cctcccacca atgcttcctt ggaggaacat agtatagaaa agaatataac tgtgaattat	900
aatggtacac ttataaatga aactgtcttt gagtttgact ggaagtcata tattcaagat	960
tcaagatatc attatttcct ggagggtttt ttagatgcac tactatgtgg aaatagctct	1020
gatgcaggcc aatgtccaga gggatatatg tgtgtgaaag ctggtagaaa tcccaattat	1080
ggctacacaa gctttgatac cttcagttgg gcttttttgt ccttgtttcg actaatgact	1140
caggacttct gggaaaatct ttatcaactg acattacgtg ctgctgggaa aacgtacatg	1200
atattttttg tattggtcat tttcttgggc tcattctacc taataaattt gatcctggct	1260
gtggtggcca tggcctacga ggaacagaat caggccacct tggaagaagc agaacagaaa	1320
gaggccgaat ttcagcagat gattgaacag cttaaaaagc aacaggaggc agctcagcag	1380
gcagcaacgg caactgcctc agaacattcc agagagccca gtgcagcagg caggctctca	1440
gacageteat etgaageete taagttgagt teeaagagtg etaaggaaag aagaaategg	1500
aggaagaaaa gaaaacagaa agagcagtct ggtggggaag agaaagatga ggatgaattc	1560
caaaaatctg aatctgagga cagcatcagg aggaaaggtt ttcgcttctc cattgaaggg	1620
aaccgattga catatgaaaa gaggtactcc tccccacacc agtctttgtt gagcatccgt	1680
J J J J J J J J J J J J J J J J J J J	

ggctccctat tttcaccaag gcgaaatagc agaacaagcc ttttcagctt tagagggcga 1740

				0011011	1404	
gcaaaggatg	tgggatctga	gaacgacttc	gcagatgatg	agcacagcac	ctttgaggat	1800
aacgagagcc	gtagagattc	cttgtttgtg	ccccgacgac	acggagagag	acgcaacagc	1860
aacctgagtc	agaccagtag	gtcatcccgg	atgctggcag	tgtttccagc	gaatgggaag	1920
atgcacagca	ctgtggattg	caatggtgtg	gtttccttgg	ttggtggacc	ttcagttcct	1980
acatcgcctg	ttggacagct	tctgccagag	gtgataatag	ataagccagc	tactgatgac	2040
aatggaacaa	ccactgaaac	tgaaatgaga	aagagaaggt	caagttcttt	ccacgtttcc	2100
atggactttc	tagaagatcc	ttcccaaagg	caacgagcaa	tgagtatagc	cagcattcta	2160
acaaatacag	tagaagaact	tgaagaatcc	aggcagaaat	gcccaccctg	ttggtataaa	2220
ttttccaaca	tattcttaat	ctgggactgt	tctccatatt	ggttaaaagt	gaaacatgtt	2280
gtcaacctgg	ttgtgatgga	cccatttgtt	gacctggcca	tcaccatctg	tattgtctta	2340
aatactcttt	tcatggccat	ggagcactat	ccaatgacgg	accatttcaa	taatgtgctt	2400
acagtaggaa	acttggtttt	cactgggatc	tttacagcag	aaatgtttct	gaaaattatt	2460
gccatggatc	cttactatta	tttccaagaa	ggctggaata	tctttgacgg	ttttattgtg	2520
acgcttagcc	tggtagaact	tggactcgcc	aatgtggaag	gattatctgt	tctccgttca	2580
tttcgattgc	tgcgagtttt	caagttggca	aaatcttggc	caacgttaaa	tatgctaata	2640
aagatcatcg	gcaattccgt	gggggctctg	ggaaatttaa	ccctcgtctt	ggccatcatc	2700
gtcttcattt	ttgccgtggt	cggcatgcag	ctctttggta	aaagctacaa	agattgtgtc	2760
tgcaagatcg	ccagtgattg	tcaactccca	cgctggcaca	tgaatgactt	cttccactcc	2820
ttcctgattg	tgttccgcgt	gctgtgtggg	gagtggatag	agaccatgtg	ggactgtatg	2880
gaggttgctg	gtcaagccat	gtgccttact	gtcttcatga	tggtcatggt	gattggaaac	2940
ctagtggtcc	tgaatctctt	tctggccttg	cttctgagct	catttagtgc	agacaacctt	3000
gcagccactg	atgatgataa	tgaaatgaat	aatctccaaa	ttgctgtgga	taggatgcac	3060
aaaggagtag	cttatgtgaa	aagaaaaata	tatgaattta	ttcaacagtc	cttcattagg	3120
aaacaaaaga	ttttagatga	aattaaacca	cttgatgatc	taaacaacaa	gaaagacagt	3180
tgtatgtcca	atcatacaac	agaaattggg	aaagatcttg	actatcttaa	agatgtaaat	3240
ggaactacaa	gtggtatagg	aactggcagc	agtgttgaaa	aatacattat	tgatgaaagt	3300
gattacatgt	cattcataaa	caaccccagt	cttactgtga	ctgtaccaat	tgctgtagga	3360
gaatctgact	ttgaaaattt	aaacacggaa	gactttagta	gtgaatcgga	tctggaagaa	3420
agcaaagaga	aactgaatga	aagcagtagc	tcatcagaag	gtagcactgt	ggacategge	3480
gcacctgtag	aagaacagcc	cgtagtggaa	cctgaagaaa	ctcttgaacc	agaagcttgt	3540
ttcactgaag	gctgtgtaca	aagattcaag	tgttgtcaaa	tcaatgtgga	agaaggcaga	3600
ggaaaacaat	ggtggaacct	gagaaggacg	tgtttccgaa	tagttgaaca	taactggttt	3660
gagaccttca	ttgttttcat	gattctcctt	agtagtggtg	ctctggcatt	tgaagatata	3720
tatattgatc	agcgaaagac	gattaagacg	atgttggaat	atgctgacaa	ggttttcact	3780
tacattttca	ttctggaaat	gcttctaaaa	tgggtggcat	atggctatca	aacatatttc	3840
accaatgcct	ggtgttggct	ggacttctta	attgttgatg	tttcattggt	cagtttaaca	3900
gcaaatgcct	tgggttactc	agaacttgga	gccatcaaat	ctctcaggac	actaagagct	3960
ctgagacctc	taagagcctt	atctcgattt	gaagggatga	gggtggttgt	gaatgccctt	4020
ttaggagcaa	ttccatccat	catgaatgtg	cttctggttt	gtcttatatt	ctggctaatt	4080

ttcaccatca	taaaaataaa	tttatttaat	aacaaattat	accactotat	taacaccaca	4140
	tgggcgtaaa					
	ggtttgacat					4200
gaaagaaatg	agactgctcg	atggaaaaat	gtgaaagtaa	actttgatca	tgtaggattt	4260
gggtatctct	ctttgcttca	agttgccaca	ttcaaaggat	ggatggatat	aatgtatgca	4320
gcagttgatt	ccagaaatgt	ggaactccag	cctaagtatg	aagaaagtct	gtacatgtat	4380
ctttactttg	ttattttcat	catctttggg	tccttcttca	ccttgaacct	gtttattggt	4440
gtcatcatag	ataatttcaa	ccagcagaaa	aagaagtttg	gaggtcaaga	catctttatg	4500
acagaagaac	agaagaaata	ctataatgca	atgaaaaaat	taggatcgaa	aaaaccgcaa	4560
aagcctatac	ctcgaccagg	aaacaaattt	caaggaatgg	tctttgactt	cgtaaccaga	4620
caagtttttg	acataagcat	catgattctc	atctgtctta	acatggtcac	aatgatggtg	4680
gaaacagatg	accagagtga	atatgtgact	accattttgt	cacgcatcaa	tctggtgttc	4740
attgtgctat	ttactggaga	gtgtgtactg	aaactcatct	ctctacgcca	ttattatttt	4800
accattggat	ggaatatttt	tgattttgtg	gttgtcattc	tctccattgt	aggtatgttt	4860
cttgccgagc	tgatagaaaa	gtatttcgtg	tcccctaccc	tgttccgagt	gatccgtctt	4920
gctaggattg	gccgaatcct	acgtctgatc	aaaggagcaa	aggggatccg	cacgctgctc	4980
tttgctttga	tgatgtccct	tcctgcgttg	tttaacatcg	gcctcctact	cttcctagtc	5040
atgttcatct	acgccatctt	tgggatgtcc	aactttgcct	atgttaagag	ggaagttggg	5100
atcgatgaca	tgttcaactt	tgagaccttt	ggcaacagca	tgatctgcct	attccaaatt	5160
acaacctctg	ctggctggga	tggattgcta	gcacccattc	tcaacagtaa	gccacccgac	5220
tgtgacccta	ataaagttaa	ccctggaagc	tcagttaagg	gagactgtgg	gaacccatct	5280
gttggaattt	tcttttttgt	cagttacatc	atcatatcct	tcctggttgt	ggtgaacatg	5340
tacatcgcgg	tcatcctgga	gaacttcagt	gttgctactg	aagaaagtgc	agageetetg	5400
agtgaggatg	actttgagat	gttctatgag	gtttgggaga	agtttgatcc	cgatgcaact	5460
cagttcatgg	aatttgaaaa	attatctcag	tttgcagctg	cgcttgaacc	gcctctcaat	5520
ctgccacaac	caaacaaact	ccagctcatt	gccatggatt	tgcccatggt	gagtggtgac	5580
cggatccact	gtcttgatat	cttatttgct	tttacaaagc	gggttctagg	agagagtgga	5640
gagatggatg	ctctacgaat	acagatggaa	gagcgattca	tggcttccaa	tccttccaag	5700
gtctcctatc	agccaatcac	tactacttta	aaacgaaaac	aagaggaagt	atctgctgtc	5760
attattcagc	gtgcttacag	acgccacctt	ttaaagcgaa	ctgtaaaaca	agcttccttt	5820
acgtacaata	aaaacaaaat	caaaggtggg	gctaatcttc	ttataaaaga	agacatgata	5880
attgacagaa	taaatgaaaa	ctctattaca	gaaaaaactg	atctgaccat	gtccactgca	5940
gcttgtccac	cttcctatga	ccgggtgaca	aagccaattg	tggaaaaaca	tgagcaagaa	6000
ggcaaagatg	aaaaagccaa	agggaaataa				6030

<210> SEQ ID NO 151 <211> LENGTH: 1563 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 151

-continued						
caggtggccc gaggcaccac aacceggagg agcaggttga aaagateega tggcagcace	120					
acttcgacca gcttcatcct cagacagggt tcagcggatt cctacacaag caggccgtct	180					
gactccgatg tctctttgga agaggaccgg gaagcaattc gacaggagag agaacagcaa	240					
gcagctatcc agcttgagag agcaaagtcc aaacctgtag catttgccgt gaagacaaat	300					
gtgagctact gcggcgccct ggacgaggat gtgcctgttc caagcacagc tatctccttt	360					
gatgctaaag actttctaca tattaaagag aaatataaca atgattggtg gataggaagg	420					
ctggtgaaag agggctgtga aattggcttc attccaagtc cactcagatt ggagaacata	480					
cggatccagc aagaacaaaa aagaggacgt tttcacggag ggaaatcaag tggaaattct	540					
tetteaagte ttggagaaat ggtatetggg acatteegag caacteecae atcaacagea	600					
aaacagaagc aaaaagtgac ggagcacatt cctccttacg atgttgtacc gtcaatgcgt	660					
ccggtggtgt tagtggggcc gtcactgaaa ggttacgagg taacagacat gatgcagaaa	720					
gccctctttg attccctgaa gcacaggttt gatgggagga tttcaataac gagagtgaca	780					
gctgacattt ctcttgctaa gaggtctgtc ctaaataatc ccagcaagag agcaataatt	840					
gaacgttcga acacccggtc cagcttagcg gaagtacaaa gtgaaattga aagaatcttt	900					
gagttggcaa gatctttgca actggttgtt cttgatgcag acaccatcaa tcacccagca	960					
caacttataa agacttoott agcaccaatt attgttoatg taaaagtoto atotocaaag	1020					
gttttacagc ggttgattaa atctagagga aagtcacaaa gtaaacactt gaatgttcaa	1080					
ctggtggcag ctgataaact tgcacaatgc cccccagaaa tgtttgatgt tatattggat	1140					
gaaaatcagc ttgaggatgc atgtgaacat ctaggggagt acctggaggc gtactggcgt	1200					
gccacccaca caaccagtag cacacccatg accccgctgc tgggaaggaa tttgggctcc	1260					
acggcactct caccatatcc cacagcaatt tctgggttac agagtcagcg aatgaggcac	1320					
agcaaccact ccacagagaa ctctccaatt gaaagacgaa gtctaatgac ctctgatgaa	1380					
aattatcaca atgaaagggc tcggaagagt aggaaccgct tgtcttccag ttctcagcat	1440					
agccgagate attaccetet tgtggaagaa gattaccetg actcatacca ggacacttac	1500					
aaaccccata ggaaccgagg atcacctggg ggatatagcc atgactcccg acataggctt	1560					
tga	1563					
<210> SEQ ID NO 152 <211> LENGTH: 3321 <212> TYPE: DNA <213> ORGANISM: Oryctolagus cuniculus						
<400> SEQUENCE: 152						
atggctgcgg gccgcccgct ggcctggacg ctgacacttt ggcaggcgtg gctgatcctg	60					
ategggeeet egteggagga geegtteeet teageegtea etateaagte atgggtggat	120					
aagatgcaag aagacctggt cacactggca aaaacagcaa gtggagtcca tcagcttgtt	180					
gatatttatg agaaatatca agatttgtat actgtggaac caaataatgc acgtcagctg	240					
gtggaaattg cagccagaga cattgagaag cttctcagca acagatctaa agccctggtg	300					
cgcctggctt tggaagcaga gaaagttcaa gcagcccacc aatggaggga agattttgca	360					
agcaatgaag ttgtctacta taacgcgaag gatgatcttg atcctgaaaa aaatgacagt	420					

480

540

gaaccaggca gccagaggat caaacctgtt ttcattgacg atgctaactt tagaagacaa

gtatectate ageacgeage tgtecatate eccaetgaca tetatgaagg ategacaate

gtgttaaacg	aactcaactg	gacaagtgcc	ttagatgacg	ttttcaaaaa	aaatcgagag	600
gaagaccctt	cactgttgtg	gcaggtgttt	ggcagtgcca	etggeetgge	ccggtattac	660
ccagcttctc	catgggttga	taatagccga	accccaaaca	agattgatct	ttatgatgta	720
cgcagaagac	catggtacat	ccaaggtgct	gcatccccta	aagatatgct	tattctggtg	780
gatgtgagtg	gaagcgttag	tggactgaca	ctcaaactca	teeggaeate	cgtctccgaa	840
atgttggaaa	ccctctcaga	tgatgatttt	gtgaacgtgg	cttcatttaa	cagcaatgct	900
caggatgtaa	gctgctttca	gcaccttgtc	caagcaaatg	taagaaataa	gaaagtgttg	960
aaagatgcag	tgaataatat	cacagcaaaa	ggaatcacag	attataagaa	gggctttagt	1020
tttgcttttg	agcagctgct	taattataat	gtatccagag	ccaactgcaa	taagattatc	1080
atgttgttca	cggacggagg	agaagagaga	gcccaggaga	tatttgccaa	atacaataaa	1140
gacaagaaag	tacgtgtatt	cacattctca	gttggccaac	ataattacga	cagaggacct	1200
attcagtgga	tggcttgcga	aaataaaggt	tattattatg	aaattccatc	cattggagcc	1260
ataagaatta	atactcagga	atacctagat	gttctgggaa	gaccgatggt	tttagcagga	1320
gacaaagcta	agcaagtcca	atggacaaat	gtgtacctgg	atgcactgga	actgggactt	1380
gtcattactg	gaactettee	ggtcttcaac	ataactggcc	aatttgaaaa	taagacaaac	1440
ttaaagaacc	agctgattct	tggagtgatg	ggagttgatg	tgtctttgga	agatattaaa	1500
agactgacac	cacgttttac	actetgeece	aatggctact	attttgcaat	tgatcctaat	1560
ggttatgtgt	tattacatcc	aaatcttcag	ccaaagccta	ttggtgtagg	tataccaaca	1620
attaatttga	gaaaaaggag	acccaatgtt	cagaacccca	aatctcagga	gccagtgaca	1680
ttggatttcc	tcgatgcaga	gttggagaat	gacattaaag	tggagattcg	aaataaaatg	1740
atcgatggag	aaagtggaga	aaaaacattc	agaactctgg	ttaaatctca	agatgagaga	1800
tatattgaca	aaggaaacag	gacatacacg	tggactcctg	tcaacggcac	agattatagc	1860
agtttggcct	tggtattacc	aacctacagt	ttttactata	taaaagccaa	aatagaagag	1920
acaataactc	aggccagata	ttcagaaaca	ctgaaaccgg	ataattttga	agaatctggc	1980
tacacattcc	tagcaccaag	agattactgc	agtgacctta	aaccttcaga	taataacact	2040
gaatttcttt	taaatttcaa	tgagtttatt	gatagaaaaa	ctccaaacaa	cccatcctgt	2100
aatacagact	tgattaatag	agtcttgctg	gatgcaggct	ttacaaatga	acttgttcaa	2160
aattactgga	gtaagcagaa	gaatatcaag	ggagtgaaag	cacggtttgt	tgtgactgat	2220
ggtgggatta	ccagagttta	tcccaaagag	gctggagaaa	attggcagga	aaacccagag	2280
acatatgaag	acagetteta	taaaaggagc	ctcgataatg	ataactacgt	tttcactgct	2340
ccctacttta	acaaaagtgg	acctggggcc	tatgagtcag	gcattatggt	aagcaaagct	2400
gtagaaatat	atatccaagg	aaaacttctt	aaacctgcag	ttgttggaat	taaaattgat	2460
gtaaattctt	ggatagagaa	tttcaccaaa	acttcaatca	gggatccgtg	tgctggtcca	2520
gtttgtgact	gcaaacgaaa	cagtgatgta	atggattgtg	tgattctaga	tgacggtggg	2580
tttcttttga	tggccaacca	tgatgattat	accaatcaga	ttggaagatt	ctttggagag	2640
attgatccaa	gcttgatgag	acacctggtc	aatatatcag	tttatgcctt	taacaaatct	2700
tatgattatc	agteggtgtg	tgaacctggt	gctgcgccaa	agcagggagc	agggcaccgc	2760
tcggcttatg	tgccatcaat	agcagacata	ctgcagattg	gatggtgggc	cactgctgct	2820

gcctggtcta	ttcttcagca	gtttctgttg	agtttgactt	ttccacggct	ccttgaggca	2880
gctgatatgg	aggatgacga	cttcactgcc	tccatgtcaa	agcagagctg	catcactgag	2940
caaacccagt	atttcttcga	taatgacagc	aaatcgttca	gtggggtatt	agactgtggg	3000
aattgttcca	gaatctttca	tgtagaaaag	ctcatgaaca	ccaatttaat	attcataatg	3060
gtagagagca	aggggacatg	tccctgtgac	acacggctgc	tcatacaagc	agagcaaact	3120
tctgatggac	cagatccttg	tgatatggtt	aagcaaccca	gatatcgaaa	agggccagat	3180
gtctgctttg	acaacaatgt	cctggaggat	tatactgact	gcggtggggt	ctctggatta	3240
aatccttccc	tgtggtccat	catcgggata	cagtttgtac	tgctttggct	ggtttctggc	3300
agcagacact	gcctgttatg	a				3321

- 1. A method of obtaining data for assessing potential for development of Dravet syndrome, the method comprising: with use of a sample taken from a subject,
 - detecting whether or not a mutation exists on α -subunit type 1 of voltage-gated sodium ion channel Na $_{\nu}1.1;$ and
 - detecting whether or not a mutation is on α -subunit type 1 of voltage-gated calcium ion channel Ca_{ν}2.1.
 - 2. The method according to claim 1, wherein
 - the mutation on the α -subunit type 1 of the voltage-gated sodium ion channel Na $_{\nu}1.1$ is at least one of mutations recited in Table 1, and
 - the mutation on the α -subunit type 1 of the voltage-gated calcium ion channel $\text{Ca}_{\nu}2.1$ is at least one of mutations recited in Table 2.
 - The method according to claim 1, further comprising: detecting a change in activity of the voltage-gated sodium ion channel Na_ν1.1; and
 - detecting a change in activity of the voltage-gated calcium ion channel $\text{Ca}_{\nu}2.1$.
- **4**. A kit for assessing a potential for development of Dravet syndrome, the kit comprising:
 - a polynucleotide being used for determining a mutation on α -subunit type 1 of voltage-gated sodium ion channel Na_{ν}1.1; and
 - a polynucleotide being used for determining a mutation on α -subunit type 1 of voltage-gated calcium ion channel Ca₁2.1.
- **5**. A model animal of Dravet syndrome, having a mutation on both α -subunit type 1 of voltage-gated sodium ion channel Na_{ν}1.1 and α -subunit type 1 of voltage-gated calcium ion channel Ca_{ν}2.1.

- **6**. A method of producing a model animal of Dravet syndrome as set forth in claim **5**, the method comprising:
 - introducing a mutation on a α -subunit type 1 of the voltagegated sodium ion channel Na $_{\nu}$ 1.1; and
 - introducing a mutation on a α -subunit type 1 of the voltagegated calcium ion channel Ca_r2.1.
- 7. A cell, having a mutation on both α -subunit type 1 of voltage-gated sodium ion channel Na_v1.1 and α -subunit type 1 of voltage-gated calcium ion channel Ca_v2.1.
- **8**. A method of producing a cell as set forth in claim **7**, the method comprising:
 - introducing a mutation on a α -subunit type 1 of the voltagegated sodium ion channel Na $_V$ 1.1; and
 - introducing a mutation on a α -subunit type 1 of the voltagegated calcium ion channel $Ca_{\nu}2.1$.
- **9**. A screening method of a drug for treating Dravet syndrome, the method comprising:
 - administering a candidate agent to the model animal of Dravet syndrome as set forth in claim 5; and
 - assessing whether or not the administering of the candidate agent has made Dravet syndrome improve or cure in the model animal of Dravet syndrome.
- 10. A screening method of a drug for treating Dravet syndrome, the method comprising:
 - administering a candidate agent to the cell as set forth in claim 7; and
 - assessing whether or not the administering of the candidate agent has made activity of the voltage-gated sodium ion channel Na_v1.1 and/or activity of the voltage-gated calcium ion channel Ca_v2.1 change in the cell.
 - 11. The method according to claim 2, further comprising: detecting a change in activity of the voltage-gated sodium ion channel Na_v1.1; and
 - detecting a change in activity of the voltage-gated calcium ion channel $\text{Ca}_{\nu}2.1$.

* * * * *