发明名称
一种含烯酰吗啉的杀菌剂组合物

摘要
本发明涉及一种含烯酰吗啉的杀菌剂组合物及其制备和应用。该组合物由烯酰吗啉、霜脲氰和/或烯酰吗啉、霜脲氰、甲霜灵和/或烯酰吗啉、三乙膦酸铝、代森锌复配组成。其特征是上述各有效成分的重量百分含量为：烯酰吗啉10～90%；霜脲氰10～90%；甲霜灵10～90%；三乙膦酸铝10～90%；代森锌10～90%。组合物中加入适量助剂和载体可以配制成乳油、可湿性粉剂、可溶性粉剂、水乳剂、微乳剂、水剂、悬浮剂、微胶囊剂或水分散颗粒剂。该组合物可呈现于癌霉、假霜霉、疫霉引起的植物病害。室内试验证明该组合物具有明显增效作用，同时对延缓病原菌的抗药性有较好的作用。
1、一种含烯酰吗啉的杀菌剂组合物，其特征在于：配方中含有有效成分烯酰吗啉并和其他杀菌剂如霜脲氰、甲霜灵、进行二元或三元复配，或与三乙膦酸铝和代森锰锌进行三元复配。

2、根据权利要求1所述的杀菌剂组合物，其特征在于：配方中含有烯酰吗啉、霜脲氰和甲霜灵，各有效组分重量百分含量如下：

 烯酰吗啉：1～90%

 霜脲氰：1～90%

 甲霜灵：1～90%。

3、根据权利要求1所述的杀菌剂组合物，其特征在于：配方中含有烯酰吗啉、霜脲氰，各有效组分重量百分含量如下：

 烯酰吗啉：1～90%

 霜脲氰：1～90%。

4、根据权利要求1所述的杀菌剂组合物，其特征在于：配方中含有烯酰吗啉、三乙膦酸铝、代森锰锌，各有效组分重量百分含量如下：

 烯酰吗啉：1～90%

 三乙膦酸铝：1～90%

 代森锰锌：1～90%。

5、根据权利要求1~4所述的杀菌剂组合物，其特征在于：组合物中总有效成分重量百分含量为5%至90%。

6、根据权利要求1~4所述的杀菌剂组合物，其特征在于：该组合物可以配制成乳油、可湿性粉剂、可溶性粉剂、水乳剂、微乳剂、水剂、悬浮
剂、微胶囊剂或水分散颗粒剂。

7. 根据权利要求 1~4 所述的杀菌剂组合物，其特征在于：用于防治由霜霉属、假霜霉属、疫霉属引起的植物病害。
说明 书

一种含烯酰吗啉的杀菌剂组合物

技术领域

本发明涉及农用杀菌剂领域。具体地说是由烯酰吗啉、霜脲氰和/或烯酰吗啉、霜脲氰、甲霜灵和/或烯酰吗啉、三乙膦酸铝、代森锰锌复配成的杀菌剂。

技术背景

由霜霉属、假霜霉属、疫霉属等卵菌引起的瓜类、番茄、葡萄、荔枝、马铃薯等多种作物霜霉病、晚疫病，是威胁农业生产最严重的病害之一。目前，生产上广泛使用的防治药剂，有甲霜灵（metalaxyl）、三乙膦酸铝（fosetyl-aluminium）、霜脲氰（Cymoxanil）、烯酰吗啉（Dimethomorph）、霜霉威（Propamocarb）、恶霉灵（Oxadixyl）以及这些药剂与代森锰锌、铜制剂的混配制剂等。但是，由于这类病害具有潜伏期短、传播速度快等特点，因此当病害流行时，上述药剂的防效尚不十分令人满意。另外，由于长期使用这些药剂，病原菌在不同程度上已经产生了抗药性。氟吗啉（Flumorph）、恶唑菌酮（Famoxadone）、噁菌酯（Azoxystrobirin）等效果较好，但价格较贵，农民难以承受。

烯酰吗啉由 Shen Group 公司研制开发，1992 年获得注册登记并投放市场。是防治葡萄霜霉病和马铃薯晚疫病的优秀品种，该药对霜霉属、假霜霉属、疫霉属等致病菌引起的植物病害具有良好的保护和治疗作用。具有活性高、用量低、持效期长、对作物安全、同时具有一定的根系吸收和传导作用。而且与甲霜灵等苯甲酰胺类杀菌剂无交互抗性。因此近年来，烯酰吗啉的生产和应用迅速发展。但是烯酰吗啉单剂使用不仅成本较高，同时在抗药性风险。已商品化的烯酰吗啉与代森锰锌混配制剂，虽可降低抗药性的风险，但防效尚不十分理想。因此，如何进一步提高烯酰吗啉的防治效果，降低其抗药性风险并降低成本，是人们关注的问题。

发明内容

本发明公开了一种含有烯酰吗啉的杀菌剂组合物，以及该组合物的制备方法和应用。具体地说，将烯酰吗啉与霜脲氰和/或烯酰吗啉与霜脲氰和甲霜灵和/或烯酰吗啉与三乙膦酸铝和代森锰锌按照一定比例加工成乳油、可湿性粉剂、可溶性粉剂、水乳剂、微乳剂、水剂、悬浮剂、微胶囊剂或水分散颗粒剂，稀释一定倍数后喷施农作物，可显著增加由霜霉属、假霜
霉属、疫霉属等卵菌引起的植物病害的防治效果。具有明显的协同增效作用。

已知，这几效药剂化学结构完全不同，不存在交互抗药性。另外，它们的作用机制也不相同，一般认为，烯酰吗啉是干扰病原菌细胞壁的形成，霜脲氰具有多个作用位点，现已明确至少是抑制了病原菌尿苷的代谢过程。甲霜灵作用机制一般认为是抑制了病原菌中核酸的生物合成，主要是抑制 RNA 的生物合成。三乙膦酸铝直接杀菌作用较弱，但是具有诱导植物抗病性作用。代森锰锌具有多个作用点，抑制病原菌的呼吸。三种复配方案均有助于降低烯酰吗啉的抗药性风险。

除此之外，该组合物中烯酰吗啉的含量较低，可明显降低使用成本。

烯酰吗啉 （英文通用名：Dimethomor）化学名称：(E，Z)-4-[3-(4-氯苯基)-3-(3,4-二甲氧基苯基)丙烯酰]吗啉。

结构式：

![烯酰吗啉结构式]

中文通用名称： 烯酰吗啉
分子式： C21H22ClNO4
分子量： 387.9

霜脲氰（英文通用名称：Cymoxanil）化学名称：1-(2-氰基-2-甲氧基亚胺基)-3-乙基脲。

结构式：

![霜脲氰结构式]

中文通用名称： 霜脲氰
分子式： C7H10N4O3
分子量： 198.4

甲霜灵 （英文通用名称：metalaxyl）化学名称：N-(2-甲氧基乙酰基)-N-(2,6-二甲苯基)-D,L-丙氨酸甲酯。

结构式：

![甲霜灵结构式]

中文通用名称： 甲霜灵
分子式： C15H21NO4
分子量： 279.34

三乙膦酸铝 （英文通用名称：fosetyl-aluminium）化学名称：三(乙基膦酸)铝。

结构式：

![三乙膦酸铝结构式]
中文通用名称：乙磷铝
分子式：C6H18O9P3A
分子量：354.11

代森锰锌（英文通用名称：Mancozeb）化学名称：乙撑一1,2—(二硫代氨基甲酸)锰和锌的配位络合物。

结构式：

中文通用名称：代森锰锌
分子式：C4H6MnN2S6；C4H6ZnN2S4
分子量：265.28

本发明杀菌剂组合物产品中含有活性成分的量取决于单独使用时化合物的使用量，一种化合物与另一种化合物的比例以及增效作用的程度，同时与目标真菌有关。

本发明杀菌剂组合物中各有效成分重量百分比含量是：烯酰吗啉1—90%；霜脲氰1—90%；甲霜灵1—90%；三乙膦酸铝1—90%；代森锰锌1—90%。各有效成分优选重量百分比含量是：烯酰吗啉5—15%；霜脲氰5—20%；甲霜灵2—15%；三乙膦酸铝5—20%；代森锰锌10—60%。杀菌组合物中活性组分重量百分比含量为5%至90%。

本发明组合物可以制备成乳油、可湿性粉剂、可溶性粉剂、水乳剂、微乳剂、水剂、悬浮剂、微胶囊剂或水分散颗粒剂。

本发明组合物中含有至少两种载体，其中至少一种是表面活性剂。适合的载体可以是固体或液体，并且是本领域技术人员公知的物质如天然或再生的矿物质、有机溶剂、增溶剂、表面活性剂（乳化剂、分散剂、润湿剂）、增稠剂、黏合剂、崩解剂、防冻剂。

具体地说，适合的有机溶剂可以是，甲苯、二甲苯、烷基苯、异丙醇、丁醇、乙二醇、二甘醇、三甘醇、丙二醇、丙三醇、山梨醇、苯甲醇、环己醇，以及丙酮、甲基异丁基酮、环己酮、二甲基甲酰胺、吡咯烷酮、二氯甲烷、氯仿、四氯化碳。同时，还有植物油。可单独使用，也可两种以上混合使用。如果用水作稀释剂，有机溶剂也能用作增溶剂、防冻剂。

适合的表面活性剂可以使用非离子型的或离子型的。例如，十二烷基硫酸钠、仲烷基硫酸钠、十二烷基苯磺酸钠、十二烷基苯磺酸钙、聚氧乙烯脂肪酸酯、聚氧乙烯脂肪醇醚、聚氧乙烯脂肪胺，或直接使用市售的乳化剂，如农乳0201B、农乳0203B等。用作分散剂和湿润剂的物质有木质素磺酸钠、拉开粉、木质素磺酸钙以及月桂酸硫酸钠、烷基醇聚氧乙烯基
醚硫酸钠，辛基酚聚氧乙烯基醚硫酸盐，烷基酚聚氧乙烯基醚甲酸缩合物
硫酸盐，烷基磺酸钠，十二烷基苯磺酸钠，渗透剂 JFC 渗透剂 T，吐温 80。
可单独使用，也可两种以上混合使用。

本发明适合的粘合剂或增稠剂可以是，羧甲基纤维素、甲基纤维素、
聚乙烯醇，硅酸，硅酸镁铝，淀粉衍生物，糊精，大豆蛋白，骨胶，硫酸
钠，石膏，松香，黄原胶，明胶，阿拉伯胶，聚乙烯吡咯烷酮，聚乙烯醇、
海藻酸钠。可单独使用，也可两种以上混合使用。

适合的崩解剂可以是，硫酸铵，氯化钙，氯化镁，氯化铝，膨润土、
尿素。可单独使用，也可两种以上混合使用。

适合的固体载体包括天然形成的岩石粉末，石英，粘土，蒙脱土，二
氧化硅，硅藻土，浮石，石膏，滑石，膨润土，高岭土，陶土，白炭黑及
合成的磨碎的矿物质，例如微分散的硅酸或氧化铝。适合的颗粒载体包括
粉碎的和分级的天然岩石，例如方解石，大理石，浮石，海泡石，白云石
及由有机物与无机物的粉末制成的合成颗粒等。

上述物质均是已知的物质并且是本领域技术人员公知的物质。

本发明组合物可用于防治由霜霉属，假霜霉属，疫霉属等卵菌引起的
植物病病，如黄瓜霜霉病，番茄晚疫病，葡萄霜霉病，辣椒疫病等。在作物
感病之前或之后，对于作物叶片或果实及其生长的场所使用本发明的组合物。
可以按普通的方法施用，如喷雾，喷粉及灌浇。本发明的施用量随天气条
件和作物发病状况而变化。保护作物的持续期通常与组合物中单个化合物
的含量有关，也与组合物的施用量有关。

本发明组合物的特点是，一是组合物在一定配方范围内表现出极好的
增效作用。二是由于本组合物的各个单剂化学结构差异很大，作用机理完
全不同，不存在交互抗药性，可延缓烯酰吗啉单独使用所产生的抗药性问
题。此外，本组合物中烯酰吗啉的含量较低，可明显降低生产成本。

具体实施方式

本发明用以下非限定性实施例作进一步说明，实施例中的百分比均为
重量百分比，生物活性的处理剂量均为有效成分含量。

乳油的配制

实施例 1：（20%烯酰吗啉，霜脲氰，甲霜灵乳油）
烯酰吗啉 7.5%
霜脲氰 7.5%
甲霜灵 5.0%
农乳 500 # 5.0%
二甲基甲酰胺 5.0%
二甲苯补至 100%

按配方要求，分别加入溶剂、原药、乳化剂、混合均匀，必要时可稍加热溶解，即得到透明状乳油。

实施例 2：（15%烯酰吗啉、霜脲氰乳油）
烯酰吗啉 5.0%
霜脲氰 10.0%
二甲基甲酰胺 5.0%
农乳 500# 5.0%
二甲苯补足至 100%

按配方要求，分别加入溶剂、原药、乳化剂、混合均匀，必要时可稍加热溶解，即得到透明状乳油。

可湿性粉剂配制
实施例 3：（50%烯酰吗啉、三乙膦酸铝、代森锰锌可湿性粉剂）
烯酰吗啉 5.0%
三乙膦酸铝 5.0%
代森锰锌 40.0%
十二烷基硫酸钠 2.0%
木素磺酸钠 8.0%
白炭黑 5.0%
高岭土补足至 100%

按配方要求，将原药、各种助剂及填料等充分混合，经气流粉碎机粉碎，直到颗粒细度达到标准值（5μm 以下）。

水乳剂配制
实施例 4：（15%烯酰吗啉、霜脲氰、甲霜灵水乳剂）
烯酰吗啉 5.0%
霜脲氰 5.0%
甲霜灵 5.0%
二甲基甲酰胺 10.0%
壬基酚聚氧乙烯醚 8.0%
农乳 0203B 13.0%
黄原胶 0.3%
乙二醇 4.0%
水补足至 100%。

将原药、溶剂、乳化剂加在一起，使溶解成均匀油相，将水、抗冻剂等混合一起，成为均一水相。在高速搅拌下，将水相加入到油相或将油相加入到水相，形成分散性良好的水乳剂。

水分分散颗粒剂的配制
实施例 5: (40%烯酰吗啉、霜脲氰水分散颗粒剂)
烯酰吗啉 10.0%
霜脲氰 30.0%
月桂醇聚氧乙烯醚硫酸钠 4.0%
索伯 SOPA 3.0%
木质素磺酸钠 5.0%
羧甲基纤维素 4.0%
氯化铝 3.0%
高岭土补足至 100%。

将原药和粉状载体、润湿剂、展着剂、粘结剂及崩解剂等按比例进行混合，经气流粉碎机粉碎，再加入一定量水份捏合，在造粒机中造粒，再经干燥、筛分（按筛网范围）即得颗粒状产品。

悬浮剂的配制
实施例 6: (25%烯酰吗啉、霜脲氰、甲霜灵悬浮剂)
烯酰吗啉 5.0%
霜脲氰 12.5%
甲霜灵 7.5%
十二烷基硫酸钠 5.0%
农乳 0201B 5.0%
可溶性淀粉 0.5%
乙二醇 10.0%
水补足至 100%。

按配方要求，以水为介质，将原药、分散剂、助悬剂和防冻剂等加入砂磨釜中，进行研细，制成悬浮剂。
生物活性实施例

实施例7：烯酰吗啉、霜脲氰、甲霜灵对马铃薯晚疫病的增效作用——离体生物活性试验。

采用菌体生长速率法（mycelium growth rate test），测定烯酰吗啉、霜脲氰、甲霜灵及实施例1（20%烯酰吗啉、霜脲氰、甲霜灵乳油）对马铃薯晚疫病菌的联合毒力。将供试药剂稀释至设计浓度，取1毫升注入培养皿内，再加入9毫升PSA培养基，摇匀后制成最终浓度为5.0、2.5、1.25、0.625、0.3125（μg·ml-1）的含药平板。以加入1毫升灭菌水作空白对照。用直径4毫米打孔器沿供试菌丛外缘打取菌盘，置于含药平板内，24±1℃黑暗培养72小时，计算各处理菌盘扩展直径，计算菌体生长抑制百分率，按浓度对数-抑制率几数值法计算药剂有效中浓度（EC50），进一步采用孙云沛法计算共毒系数。结果表明实施例1共毒系数明显大于100，表示该混剂具有增效作用。试验结果见表1。

表1 烯酰吗啉、霜脲氰、甲霜灵及其混剂对马铃薯晚疫病菌
（Phytophthora infestans）的联合毒力测定结果

<table>
<thead>
<tr>
<th>供试药剂</th>
<th>毒力回归方程</th>
<th>有效中浓度（EC50）（μg·ml-1）</th>
<th>共毒系数</th>
</tr>
</thead>
<tbody>
<tr>
<td>烯酰吗啉原药</td>
<td>Y=4.4191+0.7397X</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>霜脲氰原药</td>
<td>Y=3.8807+0.9626X</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>甲霜灵原药</td>
<td>Y=3.8027+0.5534X</td>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>实施例1</td>
<td>Y=4.0183+1.0234X</td>
<td>0.91</td>
<td>123.2</td>
</tr>
</tbody>
</table>

实施例8：烯酰吗啉、霜脲氰对黄瓜霜霉病的增效作用——温室盆栽试验

试验作物为天津密刺黄瓜品种。在温室中将幼苗培养至3片真叶充分展开期备用。将烯酰吗啉原药、霜脲氰原药及实施例2（15%烯酰吗啉、霜脲氰乳油）分别配制成50.0、25.0、12.5、6.25、3.125（μg·ml-1）浓度药液，对黄瓜叶片进行喷雾处理，药剂处理24小时后接种黄瓜霜霉病病菌。然后将幼苗移至培养室在22±1℃下进行保湿培养，在不施药的空白对照充分发病后进行结果调查，按农业部农药检定所编写的“农药田间药效试验准则”标准进行病害分級，计算防治效果。按浓度对数-防效机率值法求出该药剂毒力回归方程，计算有效中浓度（EC50）。进一步采用孙云沛法计算混剂的共毒系数。结果表明，实施例2共毒系数明显大于100，表示该混剂有增效作用。试验结果见表2。
表 2 稀酰吗啉、霜脲氰及其混剂对黄瓜霜霉病
(Pseudoperonospora cubensis) 联合毒力测定结果

<table>
<thead>
<tr>
<th>供试药剂</th>
<th>毒力回归方程</th>
<th>有效浓度（EC50，μg·ml⁻¹）</th>
<th>共毒系数</th>
</tr>
</thead>
<tbody>
<tr>
<td>稀酰吗啉原药</td>
<td>Y=206257+20007X</td>
<td>15.37</td>
<td>-</td>
</tr>
<tr>
<td>霜脲氰原药</td>
<td>Y=2.9639+1.6271X</td>
<td>17.84</td>
<td>-</td>
</tr>
<tr>
<td>实施例 2</td>
<td>Y=2.5743+2.0760X</td>
<td>14.74</td>
<td>116.0</td>
</tr>
</tbody>
</table>

实施例 9 稀酰吗啉、三乙膦酸铝、代森锰锌对葡萄霜霉病的防治效果 — 田间试验

供试药剂为实施例 3（50%稀酰吗啉、三乙膦酸铝、代森锰锌可湿性粉剂）、50%稀酰吗啉可湿性粉剂、40%三乙膦酸铝可湿性粉剂、50%代森锰锌可湿性粉剂。品种为巨丰葡萄，于田间葡萄霜霉病发病初期进行药剂喷雾处理，试验浓度均为 750、500、250μg·ml⁻¹，施药 4 次，间隔期 7 天，第 4 次施药后 10 天调查防治效果，试验结果如表 3。

表 3 稀酰吗啉、三乙膦酸铝、代森锰锌及其混剂对葡萄霜霉病的防治效果

<table>
<thead>
<tr>
<th>供试药剂</th>
<th>试验浓度（μg·ml⁻¹）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250</td>
</tr>
<tr>
<td>实施例 3</td>
<td>97.8</td>
</tr>
<tr>
<td>50%稀酰吗啉可湿性粉剂</td>
<td>97.4</td>
</tr>
<tr>
<td>40%三乙膦酸铝可湿性粉剂</td>
<td>96.5</td>
</tr>
<tr>
<td>50%代森锰锌可湿性粉剂</td>
<td>78.6</td>
</tr>
</tbody>
</table>