Office de la Propriete Canadian CA 2535878 A1 2005/03/03

Intellectuelle Intellectual Property
du Canada Office (21) 2 535 878
g,lnngaiﬁrri‘:g:na " mfs?t?yn%ya?\; " 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2004/08/17 (51) CLInt./Int.Cl. GO6T 15/00(2006.01),

GO6F 9/46 (2006.01)
(71) Demandeur/Applicant:

(87) Date publication PCT/PCT Publication Date: 2005/03/03
(85) Entree phase nationale/National Entry: 2006/02/15 NVIDIA CORPORATION. US
(86) N° demande PCT/PCT Application No.: US 2004/026656

(72) Inventeur/Inventor:

(87) N° publication PCT/PCT Publication No.: 2005/020157 DIARD. FRANCK R., US
(30) Priorité/Priority: 2003/08/18 (US10/642,905) (74) Agent: GOWLING LAFLEUR HENDERSON LLP

(54) Titre : EQUILIBRAGE DE CHARGE ADAPTATIF DANS UN SYSTEME DE TRAITEMENT GRAPHIQUE A
PROCESSEURS MULTIPLES
(54) Title: ADAPTIVE LOAD BALANCING IN A MULTI-PROCESSOR GRAPHICS PROCESSING SYSTEM

100
Disray L-110 ¥
DEVICE

GRAPHICS PROGESSING 120
BSYSTEM SCANQUT
o 112 CONTROL LOGIC
116a 116h

1142
DISPLAY BUFFER VEMORY 0 UG DISPLAY BUFFER WENORY 1 o
COMMAND BUFFER INTERFACE COMMAND BUFFER INTERFACE
1242 ~H-124b
130
BRIDGE

~pl SYSTEM | | SYSTEM USER - REMOVABLE
MEMORY| | DISK INPUT STORAGE
~102 ~104 128 108 ~129

106

(57) Abréegée/Abstract:
Systems and methods for balancing a load among multiple graphics processors that render different portions of a frame. A display
area Is partitioned into portions for each of two (or more) graphics processors. The graphics processors render their respective

B
.
'
e
R PN/ /7S]
BTN .
N T n\'{\‘ e L~
RN
e
- =

e / [/ J
QT
‘l

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2535878 A1 2005/03/03

(21) 2 535 878
(13) A1

(57) Abrege(suite)/Abstract(continued):

portions of a frame and return feedback data indicating completion of the rendering. Based on the feedback data, an imbalance
can be detected between respective loads of two of the graphics processors. In the event that an imbalance exists, the display area
IS re-partitioned to increase a size of the portion assigned to the less heavily loaded processor and to decrease a size of the portion
assigned to the more heavily loaded processor.

CA 02535878 2006-02-15

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date (10) International Publication Number
3 March 2005 (03.03.2005) PCT WO 2005/020157 Al
(51) International Patent Classification’: GO06T 15/00, (74) Agents: CRETSINGER, Cathy, E. et al.; Townsend and
GO6F 9/46 Townsend and Crew LLP, Two Embarcadero Center, 8th

Floor, San Francisco, CA 94111-3834 (US).

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/US2004/026656 kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
(22) International Filing Date: 17 August 2004 (17.08.2004) CO, CR, CU, CZ., DE, DK, DM, DZ. EC, EE, EG, ES, FI.
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
(25) Filing Language: English KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
. e . PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
(26) Publication Language: English IN. TR. TT. TZ. UA. UG. US. UZ. VC. VN. YU. ZA. ZM.

7 W.

(30) Priority Data:

10/642.905 18 August 2003 (18.08.2003) US (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant (for all designated States except US): NVIDIA Lind, B, LS, MW, MZ, NA, S, S, 84, 14, UG, 2V,
CORPORATION [US/US]; 2701 San Tomas Expressway, £W), Burasian (AM, AZ, BY, KG, K7, MD, RU, TJ, TM),
Santa Clara, CA 95050 (US). European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, B, CF, CG, CI, CM, GA, GN, GQ,

(72) Inventor; and GW, ML, MR, NE, SN, TD, TG).
(75) Inventor/Applicant (for US only): DIARD, Franck, R.

[FR/US]; 282 Monroe Drive #12, Mountain View, CA Published:
94040 (US). — with international search report

[Continued on next page]

(54) Title: ADAPTIVE LOAD BALANCING IN A MULTI-PROCESSOR GRAPHICS PROCESSING SYSTEM

100
B DsPLAY o110 X

DEVICE
GRAPHICS PROCESSING R 120)
SUBSYSTEM SCANOUT L |
112 CONTROL LOGIC |
criba ___116b y
MEMORY 0 VEMORY1 |

DISPLAY BUFFER DISPLAY BUFFER I
MEMORY 0 GPU O : MEMORY 1 GPU 1
INTERFACE

COMMAND BUFFER | | COMMAND BU’,:FER@ INTERFACE ||
ti124a | -124b j

Sl

130 |

————| BRIDGE

-- 1
il e =

| R E—
- sysem | | sysrem USER - REMOVABLE

| MEMORY DISK INPUT STORAGE
102 104 128 108 T iog

57020157 A1 A0Vt AP D A0 10 N A 00 0 0

& (57) Abstract: Systems and methods for balancing a load among multiple graphics processors that render different portions of a
& frame. A display area is partitioned into portions for each of two (or more) graphics processors. The graphics processors render
N (heir respective portions of a frame and return feedback data indicating completion of the rendering. Based on the feedback data,
an imbalance can be detected between respective loads of two of the graphics processors. In the event that an imbalance exists, the
display area is re-partitioned to increase a size of the portion assigned to the less heavily loaded processor and to decrease a size of
the portion assigned to the more heavily loaded processor.

O
=

CA 02535878 2006-02-15

WO 2005/020157 A1 {0 DAYH YA P01 0 R0 0RO

— before the expiration of the time limit for amending the For two-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations” appearing at the begin-
amendments ning of each regular issue of the PCT Gagzette.

d

10

15

20

25

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

ADAPTIVE LOAD BALANCING IN AMULTI-PROCESSOR
GRAPHICS PROCESSING SYSTEM

CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] The present disclosure is related to the following commonly-assigned co-pending
U.S. Patent Applications: No. (Attorney Docket No. 019680-006000US), filed on

the same date as the present application, entitled "Private Addressing in a Multi-Processor
(Attorney Docket No. 019680-005900US),

filed , entitled "Programming Multiple Chips from a Command Buffer," the respective

Graphics Processing System" and No.

disclosures of which are incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION
[0002] The present invention relates generally to graphics processing subsystems with
multiple processors and in patticular to adaptive load balancing for such graphics processing

subsystems.

[0003] Graphics processing subsystems are designed to render realistic animated 1mages in
real time, e.g., at 30 or more frames per second. These subsystems are most often
implemented on expansion cards that can be inserted into appropriately configured slots on a
motherboard of a computer system and generally include one or more dedicated graphics
processing units (GPUs) and dedicated graphics memory. The typical GPU is 2 highly
complex integrated circuit device optimized to perform graphics computations (e.g., matrix
transformations, scan-conversion and/or other rasterization techniques, texture blending, etc.)
and write the results to the graphics memory. The GPU is a "slave" processor that operates in
response to commands received from a driver program executing on a "master" processor,

generally the central processing unit (CPU) of the system.

[0004] To meet the demands for realism and speed, some GPUs include more transistors
than typical CPUs. In addition, graphics memories have become quite large in order to
improve speed by reducing traffic on the system bus; some graphics cards now include as
much as 256 MB of memory. But despite these advances, a demand for even greater realism

and faster rendering persists.

10

15

20

25

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

[0005] As one approach to meeting this demand, some manufacturers have begun to
develop "multi-chip" graphics processing subsystems in which two or more GPUs, usually on
the same card; operate in parallel. Parallel operation substantially increases the number of
rendering operations that can be carried out per second without requiring significant advances
in GPU design. To minimize resource conflicts between the GPUs, each GPU is generally
provided with its own dedicated memory area, inc;luding a display buffer to which the GPU

writes pixel data it renders.

[0006] In a multi-chip system, the processing burden may be divided among the GPUs in
various ways. For example, each GPU may be instructed to render pixel data for a different
portion of the displayable image, such as a number of lines of a raster-based display. The
image is displayed by reading out the pixel data from each GPU's display buffer in an
appropriate sequence. As a more concrete example, a graphics processing subsystem may
use two GPUs to generate a displayable image consisting of M rows of pixel data; the first
GPU can be instructed to render rows 1 through P, while the second GPU is instructed to
render rows P+1 through M. To preserve internal consistency of the displayed image ("frame
coherence"), each GPU is prevented from rendering a subsequent frame until the other GPU
has also finished the current frame so that both portions of the displayed image are updated in

the same scanout pass.

[0007] Ideally, the display area (or screen) is partitioned in such a way that each GPU
requires an equal amount of time to render its portion of the image. If the rendering times are
unequal, a GPU that finishes its portion of the frame first will be idle, wasting valuable
computational resources. In general, simply partitioning the display area equally among the
GPUs is not an optimal solution because the rendering complexity of different parts of an
image can vary widely. For example, in a typical scene from a video game, the foreground
characters and/or vehicles — which are often complex objects rendered from a large number
of primitives — tend to appear near ﬁe bottom of the image, while the top portion of the
image is often occupied by a relatively static background that can be rendered from relatively
few primitives and texture maps. When such an image is split into top and bottom halves, the
GPU that renders the top half will generally corriplete its portion of the image, then wait for
the other GPU to finish. To avoid this idle time, it would be desirable to divide the display
area unequally, with the top portion being larger than the bottom portion. In general, the

optimal division depends on the particular scene being rendered and may vary over time even

within a single video game or other graphics application.

10

15

20

235

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

[0008] It would, therefore, be desirable to provide a mechanism whereby the processing
load on each GPU can be monitored and the division of the display area among the GPUs can

be dynamically adjusted to balance the loads.

BRIEF SUMMARY OF THE INVENTION
[0009] The present invention provides systems and methods for balancing a load among

multiple graphics processors that render different portions of a frame.

[0010] According to one aspect of the invention, a method is provided for load balancing
for graphics processors configured to operate in parallel. A display area is partitioned into at
least a first portion to be rendered by a first one of the graphics processors and a second
portion to be rendered by a second one of the graphics processors. The graphics processors
are instructed to render a frame, wherein the first and second graphics processors perform
rendering for the first and second portions of the display area, respectively. Feedback data
for the frame is received from the first and second graphics processors, the feedback data
reflecting respective rendering times for the first and second graphics processors. Based on
the feedback data, it is determined whether an imbalance exists between respective loads of
the first and second graphics processors. In the event that an imbalance exists, based on the
feedback data, the one of the first and second graphics processors that is more heavily loaded
is identified; the display area is re-partitioned to increase a size of the one of the first and
second portions of the display area that is rendered by the more heavily loaded one of the first
and second graphics processors and to decrease a size of the other of the first and second

portions of the display area.

[0011] According to another aspect of the invention, a method is provided for load
balancing for graphics processors configured to operate in parallel. A display area is
partitioned into at least a first portion to be rendered by a first graphics processor and a
second portion to be rendered by a second graphics processor. The graphics processors are
instructed to render a number of frames, wherein the first and second graphics processors
perform rendering for the first and second portions of the display area, respectively.
Feedback data for each of the frames is received from the first and second graphics
processors, the feedback data for each frame indicating which of the first and second graphics
processors was last to finish rendering the frame. Based on the feedback data, it is

determined whether an imbalance exists between respective loads of the first and second

10

15

20

25

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

graphics processors. In the event that an imbalance exists, based on the feedback data, the
one of the first and second graphics processors that is more heavily loaded is identified; the
display area is re-partitioned to increase a size of the one of the first and second portions of
the display area that is rendered by the more heavily loaded one of the first and second
graphics processors and to decrease a size of the other of the first and second portions of the

display area.

[0012] In some embodiments, a storage location is associated with each one of the frames,
and receiving the feedback data for each of the frames includes instructing the first graphics
processor to store a first processoxi identifier in the associated one of the storage locations for
each of the frames after rendering the first portion of the display area for that frame; and
instructing the second graphics processor to store a second processor identifier different from
the first processor identifier in the associated one of the storage locations for each of the
frames after rendering the second portion of the display area for that frame. Each of the first
and second identifiers may have a different numeric value and determination of whether an
imbalance exists may include computing a load coefficient from the numeric values stored in
the storage locations. The load coefficient may be, e. g., an average of the recorded numeric
values that can be compared to an arithmetic mean of the numeric values of the processor

identifiers in order to determine whether an imbalance exists.

[0013] In some embodiments, during the act of re-partitioning, an amount by which the size
of the first portion of the display area is reduced depends at least in part on a magnitude of

the difference between the load coefficient and the arithmetic mean.

[0014] In some embodiments, the plurality of graphics processors further includes a third
graphics processor. During the act of partitioning, the display area may be partitioned into at
least three bands including a first band that corresponds to the first portion of the display
area, a second band that E:orresponds to the second portion of the display area, and a third
band that corresponds to a third portion of the display area to be rendered by the third
graphics processor, wherein the first band is adjacent to the second band and the second band
is adjacent to the third band. Additional feedback data may be received for each of the
frames, the additional feedback data indicating which of the second and third graphics
processors was last to finish rendering the frame. Based on the feedback data, it may be
determined whether an imbalance exists between respective loads of the second and third

graphics processors. In the event that an imbalance exists, it may be determined which of the

10

15

20

25

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

second and third graphics processors is more heavily loaded, and the display area may be
re-partitioned to increase a size of the one of the second and third portions of the display area
that is rendered by the more heavily loaded one of the second and third graphics processors

and to decrease a size of the other of the second and third portions of the display area.

[0015] According to yet another aspect of the mnvention, a driver for a grapﬁics processing
subsystem having multiple graphics processors includes a command stream generator, an
imbalance detecting module, and a partitioning module. The command stream generator is
configured to generate a command stream for the graphics processors, the command stream
including a set of rendering commands for a frame and an instruction to each of a first one
and a second one of the graphics processors to transmit feedback data indicating that the
respective processor has executed the set of rendering commands. The imbalance detecting
module is configured to receive the feedback data transmitted by the first and second graphics
processors and to determine from the feedback data whether an imbalance exists between
respective loads of the first and second graphics processors. The partitioning module is
configured to partition a display area into a plurality of portions, each portion to be rendered
by a different one of the graphics processors, the plurality of portions inéluding a first portion
to be rendered by the first graphics processor and a second portion to be rendered by the
second graphics processor. The partitioning module is further configured such that, in
response to a determination by the imbalance detecting module that an imbalance exists, the
partitioning module increases a size of the one of the first and second portions of the display
area that is rendered by the more heavily loaded one of the first and second graphics

processors and decreases a size of the other of the first and second portions of the display

arca.

[0016] The following detailed description together with the accompanying drawings will

provide a better understanding of the nature and advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS
[0017] Fig. 1 is a simplified block diagram of a computer system according to an

embodiment of the present invention;

30 [0018] Fig. 2 is an illustration of a display area showing spatial parallelism according to an

embodiment of the present invention;

10

15

20

235

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

[0019] Fig. 3 is an illustration of a command stream according to an embodiment of the

present invention;

[0020] Fig. 4 is a flow diagram of a process for providing feedback data from a graphics

processing unit according to an embodiment of the present invention;

[0021] Fig. 5 is a flow diagram of a process for balancing a load between two graphics

processing units according to an embodiment of the present invention;

[0022] Fig. 61san illusm‘étiog of a display area showing three-way spatial parallelism

according to an embodiment of the bresent invention;

[0023] Fig. 7 is an illustration of a pair of feedback arrays for three-way spatial parallelism

according to an embodiment of the present invention;

[002;1] Fig. 8 is an illustration of a display area showing four-way spatial parallelism

according to an embodiment of the present invention;

[0025] Fig. 9 is a simplified block diagram of a multi-card graphics processing system

according to an embodiment of the present invention; and

[0026] Fig. 10 is an illustration of command streams for a multi-card graphics processing

system according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION
[0027] The present invention provides systems and methods for balancing a load among
multiple graphics processors that render different portions of a frame. In some embodiments,
load balancing is performed by determining whether one of two graphics processors finishes
rendering a frame last more often than the other. If one of the processors finishes last more
often, a portion of the processing burden (e.g., a number of lines of pixels to render) is shifted
from that processor to the other processor. The comparison can be repeated and the load
adjusted as often as desired. The technique of pairwise load comparisons and balancing can

be extended to systems with any number of graphics processors.

[0028] Fig. 1 is a block diagram of a computer sszstem 100 according to an embodiment of
the present invention. Computer system 100 includes a central processing unit (CPU) 102
and a system memory 104 communicating via a bus 106. User input 1s received from one or

more user input devices 108 (e.g., keyboard, mouse) coupled to bus 106. Visual output is

10

15

20

25

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

provided on a pixel based display device 110 (e.g., a conventional CRT or LCD based
monitor) operating under control of a graphics processing subsystem 112 coupled to system
bus 106. A system disk 128 and other components, such as one or more removable storage
devices 129 (e.g., floppy disk drive, compact disk (CD) drive, and/or DVD drive), may also
be coupled to system bus 106. |

[0029] Graphics processing subsystem 112 is advantageously implemented using a printed
circuit card adapted to be connected to an appropriate bus slot (e.g., PCI or AGP) on a
motherboard of system 100. In this embodiment, graphics processing subsystem 112
includes two (or more) graphics processing units (GPUs) 114a, 114b, each of which is
advantageously implemented as a separate integrated circuit device (e.g., programmable
processor or application-specific integrated circuit (ASIC)). GPUs 114a, 114b are configured
to perform various rendering functions in response to instructions (commands) received via
system. bus 106. In some embodiments, the rendering functions correspond to various steps
in a graphics processing pipeline by which geometry data describing a scene is transformed to
pixel data for displaying on display device 110. These functions can include, for example,
lighting transformations, coordinate transformations, scan-conversion of geometric primitives
to rasterized data, shading computations, shadow rendering, texture blending, and so on.
Numerous implementations of rendering functions are known in the art and may be
implemented in GPUs 114a, 114b. GPUs 114a, 114b are advantageously configured |
identically so that any graphics processing instruction can be executed by either GPU with
substantially identical resulis.

[0030] Each GPU 1144, 114b has an associated graphics memory 116a, 116b, which may
be implemented using one or more integrated-circuit memory devices of generally
conventional design. Graphics memories 116a, 116b may contain various physical or logical
subdivisions, such as display buffers 122a, 122b and command buffers 124a, 124b. Display
buffers 122a, 122b store pixel data for an image (or for a part of an image) that is read by
scanout control logic 120 and transmitted to display device 110 for display. This pixel data
may be generated from scene data provided to GPUs 114a, 114b via system bus 106 or
generated by various processes executing on CPU 102 and provided to diéplay buffers 122a,
122b via system bus 106. In some embodiments, display buffers 122a, 122b can be double
buffered so that while data for a first image is being read for display from a "front" buffer,
data for a second image can be written to a "back" buffer without affecting the currently

displayed image. Command buffers 124a, 124b are used to queue commands received via

10

15

20

25

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

system bus 106 for execution by respective GPUs 114a, 114b, as described below. Othér
portions of graphics memories 116a, 116b may be used to store data required by respective
GPUs 114a, 114b (such as texture data, color lookup tables, etc.), executable program code
for GPUs 114a, 114b, and so on.

[0031] For each graphics memory 116a, 116b, a memory interface 123a, 123b is also
provided for controlling access to the respective graphics memory. Memory interfaces 123a,
123b can be integrated with respective GPUs 114a, 114b or with respective memories 116a,
116b, or they can be implemented as separate integrated circuit devices. In one embodiment,
all memory access requests originating from GPU 114a are sent to memory interface 123a. If
the target address of the request corresponds to a location in memory 116a, memory interface
123a accesses the appropriate location; if not, then memory interface 123a forwards the
request to a bridge unit 130, which is described below. Memory interface 123a also receives
all memory access requests targeting locations in memory 116a; these requests may originate
from scanout control logic 120, CPU 102, or other system components, as well as from GPU
114a or 114b. Similarly, memory interface 123b receives all memory access requests that

originate from GPU 114b or that target locations in memory 116b.

[0032] Bridge unit 130 is confi gured to manage communication between components of
graphics processing subsystem 112 (including memory interfaces 123a, 123b) and other
components of system 100. For example, bridge unit 130 may receive all incoming data
transfer requests from system bus 106 and distribute (or broadcast) the requests to one or
more of memory interfaces 123a, 123b. Bridge unit 130 may also receive data transfer
requests originating from components of graphics processing subsystem 112 (such. as GPUs
114a, 114b) that reference memory locations external to graphics processing subsystem 112
and transmit these requests via system bus 106. In addition, in some embodiments, bridge
unit 130 facilitates accessr by either of GPUs 114a, 114b to the memory 116b, 116a associated
with the other of GPUs 1144, 114b. Exami:»les of implementations of bridge unit 130 are
described in detail in the above-referenced co-pending application No. (Attorney
Docket No. 019680-006000US); a detailed description is omitted herein as not being critical

to understanding the present invention.

[0033] In operation, a graphics driver program (or other program) executing on CPU 102
delivers rendering commands and associated data for processing by GPUs 114a, 114b. In

some embodiments, CPU 102 communicates asynchronously with each of GPUs 114a, 114b

10

15

20

235

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

using a command buffer, which may be implemented in any memory accessible to both the
CPU 102 and the GPUs 114a, 114b. In one embodiment, the command buffer is stored in
system memory 104 and is accessible to GPUs 114a, 114b via direct memory access (DMA)
transfers. In another embodiment, each GPU 114a, 114b has a respective command buffer
124a, 124D in its memory 116a, 116b; these command buffers are accessible to CPU 102 via
DMA transfers. The command buffer stores a number of rendering commands and sets of
rendering data. In one embodiment, a rendering command may be associated with rendering
data, with the rendering command defining a set of rendering operations to be performed by

the GPU on the associated rendering data. In some embodiments, the rendering data is stored

in the command buffer adjacent to the associated rendering command.

[0034] CPU 102 writes a command stream including rendering commands and data sets to
the command buffer for each GPU 114a, 114b (e.g., command buffers 124a, 124b). In some
embodiments, the same rendering commands and data are written to each GPU's command
buffer (e.g., using a broadcast mode of bridge chip-130); in other embodiments, CPU 102
writes to each GPU's command buffer separately. Where the same command stream 1s
provided to both GPUs 114a, 114b, the command stream may include tags or other

parameters to indicate which of the GPUs should pracess a particular command.

[0035] Each command buffer 124a, 124b is advantageously implemented as a first-1n,
first-out buffer (FIFO) that is written by CPU 102 and read by the respective one of GPUs
114a, 114b; reading and writing can occur asynchronously. In one embodiment, CPU 102
periodically writes new commands and data to each command buffer at a location determined
by a "put" pointer, which CPU 102 increments after each write. Asynchronously, each of
GPUs 114a, 114b continuously reads and processes commands and data sets previously
stored in its command buffer 124a, 124b; each. GPU 114a, 114b maintains a "get" pointer to
identify the read location in its command buffer 124a, 124b, and the get pointer is
incremented after each read. Provided that CPU 102 stays sufficiently far ahead of GPUs
114a, 114b, the GPUs are able to render images without incurring idle time waiting for CPU
102. In some embodiments, depending on the size of the command buffer and the

complexity of a scene, CPU 102 may write commands and data sets for frames several frames
ahead of a frame being rendered by GPUs 114a, 114b.

[0036] The command buffer may be of fixed size (e.g., 5 megabytes) and may be written

and read in a wraparound fashion (e.g., after writing to the last location, CPU 102 may reset

10

15

20

235

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

the "put" pointer to the first location). A more detailed description of embodiments of
command butfers and techniques for writing commands and data to command buffers in a

multi-chip graphics processing system is provided in the above-referenced co-pending
application No. (Attorney Docket No. 019680-005900US).

[0037] Scanout control logic 120 reads pixel data for an image from frame buffers 122a,
122b and transfers the data to display device 110 to be displayed. Scanout can occur at a
constant refresh rate (e.g., 80 Hz); the refresh rate can be a user selectable parameter and need
not correspond to the rate at which new frames of image data are written to display buffers
122a, 122b. Scanout control logic 120 may also perform other operations such as adjustment
of color values, generating composite screen images by combining the pixel data in either of
the display buffers 122a, 122b with data for a video or cursor overlay image or the like
obtained from either of graphics memories 116a, 116b or another data source (not shown),

digital to analog conversion, and so on.

[0038] GPUs 114a, 114b are advantageously operated in parallel to increase the rate at
which new frames of image data can be rendered. In one embodiment, referred to herein as
"spatial parallelism," each GPU 114a, 114b generates pixel data for a different portion (e.g., a
horizontal or vertical band) of each frame; scanout control logic 120 reads a first portion
(e.g., the top portion) of the pixel data for a frame from display buffer 122a and a second
portion (e.g., the bottom portion) from display buffer 122b. For spatial parallelism, rendering.
commands and accompanying data may be written in parallel to both command buffers 124a,
124b (e.g., using a broadcast mode of bridge unit 130), but commands and/or data can also be
selectively written to one or more of the .comniand buffers (e.g., different parameters for a
command that defines the viewable area might be written to the different command buffers so

that each GPU renders the correct portion of the image).

[0039] An example of spatial parallelism is shown in Fig. 2. A display area 200 consists of
M lines (horizontal rows) of pixel data. Lines 1 through P (corresponding to top portion 202
of display area 200) are rendered by GPU 114a of Fig. 1, while lines P+1 through M
(corresponding to bottom portion 204 of display area 200) are rendered by GPU 114b. In this
embodiment, each GPU 114a, 114b allocates a display buffer 122a, 122b in its local memory
116a, 116b that is large enough to store an entire frame (M lines) of data but only fills the
lines it renders (lines 1 through P for GPU 114a and lines P+1 through M for GPU 114b).

During each display refresh cycle, scanout control logic 120 reads the first P lines from

10

10

15

20

235

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

display buffer 122a, then switches to display buffer 122b to read lines P+1 through M. To
determine which lines each GPU renders, a "clip rectangle" is set for each GPU; for example,
GPU 114a may have a clip rectangle corresponding to top portion 202 of frame 200 while
GPU 114b has a clip rectangle corresponding to bottom portion 204 of frame 200.

[0040] In accordance with an embodiment of the present invention, each GPU provides
teedback data to the graphics driver program (or another program executing on CPU 102).
The feedback data provides information about the time taken by a pai'ticular GPU to render
its portion of the image. The graphics driver program uses this feedback to dynamically
balance the load among the GPUs by modifying the clip rectangle from time to time, e.g., by
changing the dividing line to a different line P', based on the relative loads on the two GPUs.

[0041] An example of a command stream 300 that may be written to either (or both) of
command buffers 124a, 124b is shown in Fig. 3. The stream starts with a "clip rectangle"
(CR) command 302, which defines the viewable area of the image. For example, the clip
rectangle for GPU 114a may be defined to include lines 1 through P of display area 200 (Fig.
2), while the clip rectangle for GPU 114b includes lines P+1 through M. As used herein, the
term "clip rectangle” is to be understood as including any particular command or terminology
associated with defining the visible portion of the image plane for a frame or image, or more

specifically, the portion of the image plane that a particular GPU is instructed to render.

[0042] The clip rectangle command is followed by one or moré rendering commands 304
and associated rendering data for a frame F0. These commands and data may include, for
instance, definitions of primitives and/or objects making up the scene, coordinate
transformations, lighting transformations, shading commands, texture commands, and any
other type of rendering commands and/or data, typically culminating in the writing of pixel
data to display buffers 122a, 122b (and reading of that data by scanout control logic 120).

[0043] Following the last rendering command 304 for frame FO0 is a "write notifier" (WN)
command 306. The write notifier command instructs the GPU to write feedback data to
system memory indicating that it has finished the frame FO. This feedback data can be read
by the graphics driver program and used to balance the load among the GPUs. Specific

embodiments of feedback data are described below.

[0044] Write notifier command 306 is followed by rendering commands 308 and associated
rendering data for the next frame F1, which in turn are followed by another write notifier

command 310, and so on. After some number (Q) of frames, there is a write notifier

11

10

15

20

235

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

command 322 followed by a new clip rectangle command 324. At this point, the clip
rectangles for each GPU may be modified by the graphics driver program based on the
feedback data received in response to the various write notifier commands (e.g., commands
306, 310). For example, where the display area is divided as shown in Fig. 2, the value of P
may be modified (e.g., to P') in response to feedback data: if the GPU fchat processes top
portion 202 tends to finish its frames first, the value of P is increased, and if the GPU that
processes bottom portion 204 tends to finish first, the value of P is decreased. Specific
embodiments of re-partitioning a display area in response to feedback data are described

below.

[0045] It will be appreciated that the system described herein is illustrative and that
variations and modifications are possible. For instance, while two GPUs, with respective
memories, are shown, any number of GPUs can be used, and multiple GPUs might share a
memory. The memory interfaces described herein may be inte grated with a GPU and/or a
memory in a single integrated, circuit device (chip) or 1mplemented as separate chips. The
bridge unit may be integrated with any of the memory interface and/or GPU chips, or may be
implemented on a separate chip. The various memories can be implemented using one or
more integrated circuit devices. Graphics processing subsystems can be implemented using
various expansion card formats, including PCI, PCIX (PCI Express), AGP (Accelerated
Graphics Port), and so on. Some or all of the components of a graphics processing subsystem
may be mounted directly on a motherboard; for instance, one of the GPUs can be a
motherboard-mounted graphics co-processor. Computer systems suitable for practicing the
present invention may also include various other components, such as high-speed DMA
(direct memory access) chips, and a single system may implement multiple bus protocols
(e.g., PCI and AGP buses may both be present) with appropriate components provided for
mterconnecting the buses. One or more command buffers may be implemented in the main
system memory rather than graphics subsystem memory, and commands may include an
additional parameter indicating which GPU(s) is (are) to receive or process the command.
While the present description may refer to asynchronous operation, those skilled in the art
will recognize that the invention may also be implemented in systems where the CPU

communicates synchronously with the GPUs.

[0046] Embodiments of feedback data and load balancing techniques based on the feedback
data will now be described. In one embodiment, each GPU 114a, 114b is assigned an

identifier that it stores in a designated location in its local memory 116a, 116b; the identifier

12

10

15

20

25

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

may also be stored in an on-chip register of each GPU 114a, 114b. For example, GPU 114a
can be assigned an identifier "0" while GPU 114b is assigned an identifier "1." These
1dentifiers, which advantageously have numerical values, may be assigned, e.g., at system
startup or application startup. As described below, the identifier may be used as feedback
data for purposes of load balancing.

[0047]) Fig. 4 illustrates a process 400 for recording feedback data including the identifiers
of the GPUs. At step 402, the graphics driver program creates a feedback array (referred to
herein as feedback{0:B-1}) of dimension B (e.g., 5, 10, 20, 50, etc.) in system main memory,
and at step 404, a frame counter % is initialized (e.g., to zero). In this embodiment, the write
notifier command following each frame % instructs the GPU to copy its identifier from its
local memory to the location feedback{k] in system main memory, e.g., using a DMA block
transfer operation ("Blit") or any other operation by which a GPU can write data to system
main memory. Thus, at step 400, the first GPU to finish rendering frame £ writes its
identifier to the array location feedbackl[k]. At step 408, the second GPU to finish rendering
the frame & writes its identifier to the array location feedback|k], overwriting the first GPU's
identifier. It is to be understood that either GPU 114a, 114b might finish first, and that a
GPU that 1s first to finish one frame first might be last to finish another frame.

[0048) It should be noted that in this embodiment each GPU is instructed to write to the
same location in system memory; as a result, the second GPU to finish frame & overwrites the
identifier of the first GPU in array element feedbacklk]. Thus, after both GPUs have finished
a particular frame £, the value stored in feedback[k] indicates which GPU was last to finish

the frame k.

[0049] At step 410, the frame counter is incremented to the next frame, modulo B. This
causes the feedback array to be overwritten in a circular fashion every B frames, so that the
contents of the array generally reflect the last B frames that have been rendered. In one
embodiment, the frame counter value for each frame is provided with the write notification
command to each GPU; in another embodiment, each GPU maintains its own frame counter

and updates the frame counter after writing the identifier to the appropriate location in system

memory in response fo the write notifier command.

[0050] The information in the feedback array can be used by a graphics driver program (or
another program executing on CPU 102) for load balancing, as illustrated in Fig. 5. Process

500 is a shown as a continuous loop in which the relative load on the GPUs is estimated from

13

10

15

20

25

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

time to time by averaging values stored in the feedback array and the load is adjusted based

on the estimate. In this embodiment, there are two GPUs (e.g., GPUs 114a, 114b of Fig. 1)

operating in spatial parallelism and the display area is divided as shown in Fig. 2. The GPU
assigned to the top portion 202 of the display area has identifier "0" and is referred to herein
as GPU-0, and the GPU assigned to the bottom portion 204 has identifier "1" and is referred
to herein as GPU-1. Load balancing is done by adjusting the clip rectangle for each GPU,

determined in this example by the location of the boundary line P in Fig. 2.

10051] At step 501, a clip rectangle command is issued (e.g., placed in the command
stream) for each GPU. This initial clip rectangle command may partition the display area
equally between the GPUs (e.g., using P = M/2) or unequally. For example, a developer of
an application program may empirically determine a value of P that approximately balances
that load and provide that value to the graphics driver program via an appropriate command.
The initial size of the portion of the display area allocated to each GPU is not critical, as the
sizes will typically be changed from time to time to balance the load.

[0052] At step 502, the graphics driver determines whether it is time to balance the load
between the GPUs. Various criteria may be used in this determination; for example, the
graphics driver may balance the load after some number (Q) of frames, where Q might be,
e.g., 1,2,5, 10, 20, etc. Q advantageously does not exceed the number of entries B in the
feedback array, but Q need not be equal to B. Alternatively, load balancing may be
performed at regular time intervals (e.g., once per second) or according to any other criteria. -

If it is not time to balance the load, process 500 waits (step 504), then checks the load

balancing criteria again at step 502.

[0053] When it is time to balance the load, the graphics driver averages Q values from the
feedback array at step 506, thereby computing a load coefficient. In one embodiment Q 1s
equal to B (the' length of the feedback array), but other values may be chosen. It should be
noted that the graphics driver and the GPUs may operate asynchronously with the CPU as
described above, so that the graphics driver might not know whether the GPUs have finished
a particular frame and the GPUs may be rendering a frame that is several frames earlier in the
command stream than a current frame in the graphics driver. Where the feedback array is
written in a circular fashion, as in process 400 described above, selecting Q to be equal to B
provides an average over the B most recently rendered frames. In some embodiments, a

weighted average may be used, e.g., giving a larger weight to more recently-rendered frames.

14

10

15

20

25

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

[0054] The load coefficient is used to determine whether an adjustment to the clip
rectangles for the GPUs needs to be made. If the GPUs are equally loaded, the likelihood of
either GPU finishing a frame first is about 50%, and the average value over a suitable number
of frames (e.g., 20) will be about 0.5 if identifier values of 0 and 1 are used. An average
value in excess of 0.5 indicates that GPU-1 (which renders the bottom portion of the image)
is more heavily loaded than GPU-0, and an average value below 0.5 indicates that GPU-0
(which renders the top portion of the image) is more heavily loaded than GPU-1.

[0055] Accordingly, at step 510 it is determined whether the load coefficient exceeds a
"high" threshold. The high threshold is preselected and may be exactly 0.5 or a somewhat
higher value (e.g., 0.55 or 0.6). If the load coefficient exceeds the high threshold, then the
loads are adjusted at step 512 by moving the boundary line P in Fig. 2 down by a preset
amount (e.g., one line, five lines, ten lines). This reduces the fraction of the display area that
is rendered by GPU-1, which will tend to reduce the load on GPU-1 and increase the load on
GPU-0. Otherwise, at step 514, it is determined whether the load coefficient is less than a
"low" threshold. The low threshold is predefined and may be exactly 0.5 or a somewhat
lower value (e.g., 0.45 or 0.4). If the load coefficient is below the low threshold, then the
loads are adjusted at step 516 by moving the boundary line P in Fig. 2 up by a preset amount
(e.g., one line, five lines, ten lines). At step 518, if the load coefficient is neither above the
high threshold nor below the low threshold, the load is considered balanced, and the
boundary line P is left unchanged.

[0056] After the new boundary line P is determined, a new clip rectangle command 1s
issued for each GPU (step 522) and the process returns to step 504 to wait until it 1s time to
balance the load again. In an alternative embodiment, a new clip rectangle command 1s
issued at step 522 only if the boundary line changes. In conjunction with the new clip
rectangle command, a message may be sent to the scanout control logic so that the
appropriate display buffer is selected to provide each line of pixel data (e.g., by modifying
one or more scanout parameters related to selection of display buffers). Changes in the
parameters of the scanout control logic are advantagegusly synchronized with rendering of
the frame in which the new clip rectangle takes effect; accordingly, in some embodiments,
the clip rectangle command may also update the scanout parameters in order to display the

next rendered frame correctly.

15

10

15

20

25

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

[0057] In some embodiments, when the boundary line is shifted to balance the load, it may
be useful to transfer data from one display buffer to another. For example, in Fig. 2, suppose
that just after GPUs 114a, 114b have finished rendering a current frame, the value of P is
changed to a larger value P', increasing the number of lines that GPU 114a will render for the
next frame. GPU 114a may need access to data for some or all of lines P+1 through P' of the
current frame in order to correctly process the next frame. In one embodiment, GPU 114a
can obtain the data by a DMA transfer from the portion of display buffer 122b that has the
data for lines P+1 through P'. Examples of processes that can advantageously be used for this
(Attorney Docket No.
019680-006000US), although numerous other processes for transferring data may also be

purpose are described in the above-referenced application No.

used. It is to be understood that transferring data between display buffers is not required but
may be useful in embodiments where any overhead associated with the data transfer is
outweighed by the overhead of having one GPU repeat computations previously performed
by another GPU. Transferring data that is not displayed (e.g., texture data) between graphics
memories 116a, 116b may also be desirable in some instances and can be implemented using

any of the techniques mentioned above.

[0058] It will be appreciated that the processes described herein are illustrative and that
variations and modifications are possible. Steps described as sequential may be executed in
parallel, order of steps méy be varied, and steps may be modified or combined. Optimal
selection of the number of frames to average (Q) and/or the frequency of balancing generally
depends on various tradeoffs. For instance, a small value of Q provides faster reactions to
changes in the scene being rendered, while a larger value of Q will tend to produce more
stable results (by minimizing the effect of fluctuations) as well as reducing any effect of an
entry in the feedback array for a frame that only one GPU has finished (such an entry would
not accurately reflect the last GPU to finish that frame). More frequent balancing may reduce
GPU idle time, while less frequent balancing tends to reduce any overhead (such as data
transfers between the memories of different GPUs) associated with changing clip rectangles.
In one embodiment, checking the balance every 20 frames with Q = B =20 1s effective, but in
general, optimal values depend on various implementation details. It should be noted that
checking the balance can occur quite frequently; e.g., if 30 frames are rendered per second

and checking occurs every 20 frames, then the balance may change about every 0.67 seconds.

[0059] The identifiers for different GPUs may have any value. Correspondingly, the high
threshold and low threshold may have any values, and the two threshold values may be equal

16

10

15

20

235

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

(e.g., both equal to 0.5), so long as the high threshold is not less than the low threshold. Both
thresholds are advantageously set to values near or equal to the arithmetic mean of the two
identifiers; an optimal selection of thresholds in a particular system may be affected by
considerations such as the frequency of load rebalancing and any overhead associated with
changing the clip rectangles assigned to each GPU. The threshold comparison is
advantageously defined such that there is some condition for which the load is considered

balanced (e.g., if the average is exactly equal to the arithmetic mean).

[0060] Prior to rendering images or writing any feedback data, the feedback array may be
initialized, e.g., by randomly selecting either of the GPU identifiers for each entry or by
filling alternating entries with different identifiers. Such initialization reduces the likelihood
of a spurious imbalance being detected in the event that checking the load balance occurs
before the GPUs have written values to all of the entries that are being used to determine the

load coefficient.

[0061] In one alternative embodiment, the amount by which the partition changes (e.g., the
number of lines by which the boundary line P is shifted) may depend on the magnitude of the
difference between the load coefficient and the arithmetic mean. For example, if the load

coefficient is greater than 0.5 but less than 0.6, a downward shift of four lines might be used,

‘while for a load coefficient greater than 0.6, a shift of eight lines might be used; similar shifts

in the opposite direction can be implemented for load coefficients below the arithmetic mean.
In some embodiments, the difference in size of the two clip rectangles 1s limited to ensure
that each GPU is always rendering at least a minimum portion (e.g., 10% or 25%) of the

diéplay area.

[0062] Instead of averaging, a load coefficient may be defined in other ways. For instance,
the sum of the recorded identifier values may be used as the load coefficient. In the
embodiment described above, with Q=20, the stored identifier values (0 or 1) would sum to
10 if the load is balanced; high and low thresholds may be set accordingly. Other arithmetic
operations that may be substituted for those described herein will also be apparent to those of

ordinary skill in the art and are within the scope of the present invention.

[0063] In another alternative embodiment, different feedback data may be used instead of

or in addition to the GPU identifiers described above. For example, instead of providing one

feedback array in system memory, with both GPUs writing feedback data to the same

location for a given frame, each GPU may write to a corresponding entry of a different

17

10

15

20

25

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

feedback array, and the feedback data may include timing information, e.g., a timestamp
indicating when each GPU finished a particular frame. In this embodiment, the graphics
driver is configured to use the timing information to determine whether one GPU is
consistently using more time per frame than another and adjust the clip rectangles
accordingly to balance the load. It should be noted that, in some system implementations,
timestamps might not accurately reflect the performance of the GPUs; in addition,
determining relative loads from sequences of timestamps for each GPU generally requires
more computational steps than simply computing a load coefficient as described above.
Nevertheless, it is to be understood that embodiments of the invention may include timing

information in the feedback data instead of or in addition to GPU identifiers.

[0064] Multi-processor graphics processing systems may include more than two GPUs, and
processes 400 and 500 may be adapted for use in such systems. For example, one
embodiment of the present invention provides three GPUs, with each GPU being assigned a
different horizontal band of the display area, as shown in Fig. 6. An M-line display area 600
is partitioned into a top portion 602 that includes lines 1 through K, a middle portion 604 that
includes lines K-+1 through L, and a bottom portion 606 that includes lines L+1 through M.
Data for top portion 602 is generated by a GPU 614a having an identifier value of "Q"
(referred to herein as GPU-0); data for middle portion 604 is generated by a GPU 614b
having an identifier value of "1" (referred to herein as GPU-1); and data for bottom portion
606 1s generated by a GPU 614c having an identifier value of "2" (referred to herein as
GPU-2). Load balancing is achieved by adjusting the values of K and L.

[0065] More specifically, in one embodiment, the command stream for each GPU is similar

to that of Fig. 3, but two feedback arrays of dimension B (referred to herein as

feedback01{0 :B-;l] and feedbackl2[0:B-1]) are provided, as shown in Fig. 7. In response to

the write notifier command 306, GPU-0Q writes its identifier value to a location in the

Jfeedback01 array 702 (writing is indicated by arrows in Fig. 7), GPU-1 writes its identifier

value to respective locations in both the feedback(! and feedbackl2 arrays 702, 704, and
GPU-2 writes its 1dentifier value to a location in the feedbackl 2 array 704. As a result, an
average value of the feedback01 array reflects the relative loads on GPU-0 and GPU-1, while
an average value of the feedbackl 2 array reflects the relative loads on GPU-1 and GPU-2.

[0066] To balance the loads, the graphics driver adjusts the value of K based on a load

coefficient determined from the feedback0lI array, e.g., in accordance with process 500 of

18

10

15

20

235

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

Fig. 5 described above (with balance occurring when the load coefficient is 0.5), and adjusts
the value of L, based on a load coefficient determined from the feedbackli 2 array, e.g., in
accordance with process 500 (with balance occurring when the load coefficient is 1.5). While

the relative loads of GPU-0 and GPU-2 are not directly compared, over time all three loads

“will tend to become approximately equal. For example, if the load on GPU-1 exceeds the

load on GPU-0, the average value of entries in the feedback(01 array will exceed (.5; as a
result the value of K will be increased, thereby reducing the load on GPU-1 If the reduced
load on GPU-1 becomes less than the load on GPU-2, this disparity will be reflected in the
average value of entries in the feedback(2 array, which will exceed 1.5; in response, the value
of L will be increased, thereby increasing the load on GPU-1 again. This change may lead to
a further adjustment in the value of K, and so on. Those of skill in the art will appreciate that
over time, this load-balancing process will tend to equalize all three loads. Some instability
may persist, but this is acceptable as long as any overhead associated with modifying the clip

rectangles in response to new values of K and/or L is sufficiently small.

[0067] It will be appreciated that this load-balancing technique may be further extended to
systems with any number of GPUs. For instance, the display area can be divided into any
number of horizontal bands, with each band being assigned to a different GPU. In such
embodiments, the number of feedback arrays 1s generally one less than the number of GPUs.

Alternatively, vertical bands may be used.

[0068] It should also be noted that the identifier of a particular GPU need not be unique
across all GPUEs, as long as the two GPUs that write to each feedback array have identifiers
that are different from each other. For example, in the embodiment shown in Fig. 6, GPUs
614a and 614c might both be assigned identifier "0." This would not create ambiguity

because, as Fig. 7 shows, these GPUs do not write their identifiers to the same feedback

array.

[0069] In another alternative embodiment, a combination of horizontal and vertical
partitions of the display area may be used to assign portions of the display area to GPUs. For
example, Fig. 8 shows a display area 800 consisting of M lines, each containing N pixels, that
is divided into four sections 801-804. Sections 801-804 are rendered, respectively, by four
GPUs 814a-814d as indicated by arrows. Each GPU 814a-814d is assigned a different
identifier value (0, 1, 2, 3). In this embodiment, it may be assumed that complexity of an

image is generally about equal between the left and right sides, in which case the vertical

19

10

15

20

25

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

boundary line J may remain fixed (e.g., at J =N/2). Two feedback arrays are provided;
GPU-0 (814a) and GPU-1 (814b) write their identifiers to a first feedback array feedback01
while GPU-2 (814c¢) and GPU-3 (814d) write their identifiers to a second feedback array
feedback23. The boundary line K that divides sections 801 and 802 is adjusted based on the
average value of entries in the feedback(0l array, while the boundary line L that divides
sections 803 and 804 is adjusted based on the average value of entries in the feedback23

array.

[0070] In yet another alternative embodiment, the vertical boundary line J might also be
adjustable. For instance, GPU-0 and GPU-1 could each be assigned a secondary (column)
identifier value of "0" while G?U-?. and GPU-3 are each assigned a secondary identifier with
a value of "1." A third feedback array feedbackC may be provided, with each GPU writing
its secondary identifier to the feedbackC array in addition to writing its primary identifier to
the appropriate one of the feedback01 and feedback23 arrays. The vertical boundary line J
can then be adjusted based on the average value of entries in the feedbackC array.
Altemativély, the primary identifier (which has values 0-3) can be associated with the vertical

division while the secondary identifier (which has values 0 and 1) is associated with the

~ horizontal division.

[0071] The techniques described herein may also be emplojed in a "multi-card" graphics
processing subsystem in which different GPUs reside on different expansion cards connected
by a high-speed bus, such as a PCIX (64-bit PCI Express) bus or a 3GIO (third-generation
input/output) bus presently being developed. An example of a multi-card system 900 is
shown in Fig. 9. Two graphics cards 912a, 912b are interconnected by a high-speed bus 908;
it is to be understood that any number of cards may be included and that high-speed bus 908
generally also connects to other elements of a computer system (e.g., various components of
system 100 as shown in Fig. 1). Each graphics card has a respective GPU 914a, 914b and a
respective graphics memory 916a, 916b that includes a display buffer 922a, 922b. Card 912a
has scanout control logic 920 that provides pixel data from display buffer 922a to a display
device 910. Card 912b may also include scanout control logic circuitry, but in this example,
card 912b is not connected to a display device and any scanout control logic present 1n card

912b may be disabled.

[0072] In this arrangement, spatial parallelism can be implemented, with each GPU 9 14a,
914b rendering a portion of each frame to its display buffer 922a, 922b. In order to display

20

10

15

20

25

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

the frame, pixel data from display buffer 922b is transferred (e.g., using a conventional block
transfer, or Blit, operation) via bus 908 to display buffer 922a, from which it is read by

scanout control logic 920.

[0073] Load balancing as described above can be implemented in this system and
advantageously takes into consideration time consumed by the data transfers. For example,
Fig. 10 shows respective command streams 1000a, 1000b for GPUs 914a, 914b, which are
generally similar to command stream 300 of Fig. 3. Each command stream begins with a clip
rectangle command (CR) 1002a, 1002b, followed by rendering commands 1004a, 1004b for a
frame FO. As in the single-card embodiments described above, different clip rectangle
boundaries are provided for each GPU 914a, 914b so that each renders a different portion of
the frame; the rendering commands to each GPU may be identical or different as appropriate

for a particular embodiment.

[0074] In this embodiment, pixel data from display buffer 922b 1s transferred to display
buffer 922a prior to scanout. Accordingly, for GPU 914b, the rendering commands 1004b
are followed by a Blit command 1006 that instructs GPU 914b to transfer pixel data from
local display buffer 922b to display buffer 922a on card 912a so that it can be scanned out.
Since GPU 914a writes pixel data directly to display buffer 922a, a Blit command is not
required in command stream 1000a, so the rendering commands 1004a for GPU 914a are
followed by a “no-op" 1005. The no-op may be, e.g., a command that simply delays
execution of a following command (such commands are known in the art), no command, or a
command instructing GPU 914a to ignore a Blit command that appears in its command

stream.

- [0075] A write notifier command 1008a for frame FO follows the no-op command 1005 in

command stream 1000a, and a corresponding write notifier.command 1008b follows Blit
command 1006. The write notifier commands 1008a, 1008b may be implemented similarly
to the write notifier commands described above with reference to process 400 of Fig. 4. A

load balancing process such as process 500 of Fig. S may be used to balance the load.

[0076] 1t should be noted that the time required for the Blit operations 1s accounted for in

the load balancing process because the write notifier command 1008b for a frame FO is not
executed by GPU 914b until after the Blit operation for the frame F0 is executed. Thus, the

rendering time for GPU 914a is balanced against the rendering time plus the Blit time for

- GPU 914b.

21

10

15

20

235

30

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

[0077] In some multi-card embodiments used to render scenes in which foreground regions
(most often but not always at the bottom of the display area) are consistently more complex
than background regions, a performance advantage can be gained by assigning GPU 914a to
process the background region of the scene and assigning GPU 914b to process the
foreground region. For example, in Fig. 2, suppose that the foreground appears toward the
bottom of display area 200. In that case, GPU 914a would be assigned to render top region
202 while GPU 914b would be assigned to render bottom region 204. The higher complexity
of the foreground (bottom) region tends to increase the rendering time of GPU 914b. In
response, the load-balancing processes described herein will tend to move the boundary line
P toward the bottom of the display area. This decreases the number of lines of data included
in bottom region 204, which reduces the amount of data that needs to be transterred to
display buffer 922a by the Blit command 1006. As a result, more of the processing capacity
of GPU 914b may be used for computations rather than data transfers, resulting in a net

efficiency gain.

[0078] Those of ordinary skill in the art will recognize that a similar implementation might
also be used in embodiments of a single-card multi-processor system in which pixel data
from all GPUs is transferred to a single display buffer prior to scanout. For example, 1n
system 112 of Fig. 1; data from display buffer 122b might be transferred to display buffer
122a to be scanned out, so that scanout control logic 120 can simply access display butfer
122a to obtain all of the pixel data for a frame. In this embodiment, GPU 114b can be
instructed to perform a Blit operation before the write notifier instruction, while GPU 114a 1s

given a no-op.

[0079] While the invention has been described with respect to specific embodiments, one
skilled in the art will recognize that numerous modifications are possible. For instance, in a
multi-processor graphics processing system, any number of GPUs may be included on a
graphics card, and any number of cards may be provided; e.g., a four-GPU subsystem might
be implemented using two cards with two GPUs each, or a three-GPU subsystem might

include a first card with one GPU and a second card with two GPUs. One or more of the

GPUs may be a motherboard-mounted graphics co-processor.

[0080] Rendering of a display frame may be divided among the GPUs in horizontal bands
and/or vertical bands. Those of skill in the art will recognize that use of vertical bands may

result in more uniform sizes of the regions rendered by different GPUs (since image

22

10

15

20

25

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

complexity usually varies less from left to right than from top to bottom), while use of
horizontal bands may simplify the scanout operation in a horizontal row-oriented display
device (since only one GPU's display buffer would be accessed to read a particular row of
pixels). In addition, a frame may be partitioned among the GPUs along both horizontal and
vertical boundaries, and load balancing may be performed along either or both boundaries as

described above.

[0081] Embodiments of the invention may be implemented using special-purpose
hardware, software executing on general-purpose or special-purpose processors, or any
combination thereof. The embodiments have been described in terms of functional blocks
that might or might not correspond to separate integrated circuit devices in a particular
implementation. Although the present disclosure may refer to a general-purpose computing
system, those of ordinary skill in the art with access to the present disclosure will recognize
that the invention may be employed in a variety of other embodiments, including
special-purpose computing systems such as video game consoles or any other computing

system that provides graphics processing capability with multiple graphics processors.

[0082] Computer programs embodying various features of the present invention may be
encoded on computer-readable media for storage and/or transmission; suitable media include
magnetic disk or tape, optical storage media such as compact disk (CD) or DVD (digital
video disk), flash memory, and carrier signals for transmission via wired, optical, and/or
wireless networks conforming to a variety of protocols, including the Internet.
Computer-readable media encoded with the program code may be packaged with a
compatible device such as a multi-processor graphics card or provided separately from other

devices (e.g., via Internet download).

[0083] Thus, although the invention has been described with respect to specific
embodiments, it will be appreciated that the invention is intended to cover all modifications

and equivalents within the scope of the following claims.

23

O 0 3 O »n = W N e

DO ek ek ek ek ek ek ek el e el
S OO0 N Y U BN e O

IS

Juh W N

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

WHAT IS CLAIMED IS:

1. A method for load balancing for a plurality of graphics processors
configured to operate in parallél, the method comprising:

partitioning a display area into at least a first portion to be rendered by a first
one of the plurality of graphics processors and a second portion to be rendered by a second
one of the plurality of graphics processors; r

instructing the plurality of graphics processors to render a frame, wherein the
first and second graphics processors perform rendering for the first and second portions of the
display area, respectively; |

receiving feedback data for the frame from the first and second graphics
processors, the feedback data reflecting respective rendering times for the first and second
graphics processors;

determining, based on the feedback data, whether an imbalance exists between
respective loads of the first and second graphics processors; and

in the event that an imbalance exists:

identifying, based on the feedback data, which of the first and second

graphics processors is more heavily loaded; and

re-partitioning the display area to increase a size of the one of the first
and second portions of the display area that is rendered by the more heavily loaded

one of the first and second graphics processors and to decrease a size of the other of

the first and second portions of the display area.

2. The method of claim 1, wherein the first portion of the display area
comprises a first number of contiguous lines of pixels and the second portion of the display

area comprises a second number of contiguous lines of pixels.

- 3. The method of claim 2, wherein the act of re-partitioning the display
area includes shifting a third number of contiguous lines of pixels from the first portion of the
display area to the second portion of the display area, the third number being smaller than the

first number.

4, The method of claim 2, wherein the lines of pixels are oriented

horizontally.

24

..

h S W DN e

W 0 3 A W b W N e

10

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

5. The method of claim 2, wherein the lines of pixels are oriented
vertically.

6. - The method of claim 1, further comprising:
assigning a different processor identifier to each of the first and second

graphics processors,
wherein the feedback data received from each of the first and second graphics

processors includes the respective processor identifier.

7. The method of claim 6, wherein each of the processor identifiers has a

numerical value.

8. The method of claim 1, wherein the feedback data includes a
timestamp.

0. The method of claim 1, wherein the feedback data includes data
indicating which of the first and second graphics processots is last to finish rendering the

frame.

10. The method of claim 9, wherein the feedback data from the one of the
first and second graphics processors that is last to finish overwrites feedback data from the

other of the first and second graphics processors.

11. The method of claim 9, wherein the act of receiving includes receiving

the feedback data for each of a plurality of frames.

12. The method of claim 11, further comprising:

providing a plurality of storage locations, each storage location associated
with a different one of the plurality of frames, |

Whérein the act of receiving the feedback data for each of the plurality of
frames includes: :

~ instructing the first graphics processor to store a first processor
identifier in the associated one of the storage locations for each of the plurality of frames after
rendering the first portion of the display area for the frame; and
instructing the second graphics processor to store a second processor

identifier different from the first processor identifier in the associated one of the storage

25

11
12

CER VS B\ -n-ri—*-

o W N e

I

3 AN W B W N

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

locations for each of the plurality of frames after rendering the second portion of the display

area for the frame.

13. The method of claim 12, wherein the processor identifier of the one of
the of the first and second graphics processors that was last to finish rendering the frame
overwrites the processor identifier of the other of the first and second graphics processors in

the storage location.

14. The method of claim 11, wherein the act of determining includes
computing a load coefficient from the feedback data for the plurality of frames, the load
coefficient indicating a frequency of one of the first and second graphics processors being last
to finish. .

15. The method of claim 14, wherein a numeric identifier is associated
with each of the first and second graphics processors and the load coefficient is an average
over the plurality of frames of the numeric identifier of the processor that was last to finish

each frame.

16. The method of claim 15, wherein the act of determming further

includes comparing the load coefficient to an arithmetic mean of the numeric identifiers.

17. The method of claim 15, wherein during the act of re-partitioning, an
amount by which the size of the first portion of the display area is reduced depends at least in

part on a magnitude of the difference between the load coefficient and the arithmetic mean.

18. The method of claim 1, further comprising:

generating a command stream for each of the first and second graphics
processors, the command stream including a set of rendering commands for the frame; and

inserting a write notifier command into a command stream for each of the first
and second graphics processors following the set of rendering commands, wherein each of

the first and second graphics processors responds to the write notifier command by

transmitting the feedback data to a storage location.

19. A graphics processing system comprising:

a graphics driver module; and

26

O 0 N A W L W

10
11

e WD e

b K W N e

2

I W N

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

a plurality of graphics processors configured to operate in parallel to render
respective portions of a display area and to provide feedback data to the graphics driver
module,

the graphics driver module being further configured to detect, based on the
feedback data, an imbalance between respective loads of two of the plurality of graphics a
processors and, in response to detecting an imbalance, to decrease a size of a first portion of
the display area that is rendered by a more heavily loaded one of the two graphics processors
and to increase a size of a second portion of the display area that is rendered by the other one

of the two graphics processors.

20. The graphics processing system of claim 19, further comprising a
plurality of graphics memories, each graphics memory coupled to a respective one of the
graphics processors and storing pixel data for the portion of the display area rendered by the

graphics processor coupled thereto.

21. The graphics processing system of claim 20, further comprising
scanout control logic coupled to the plurality of graphics memories and configured to read

pixel data for the display area from the graphics memories.

22. The graphics processing system of claim 19, wherein the graphics
driver module is further configured to generate a command stream for the plurality of
graphics processors, the command stream including a set of rendering commands for a frame
and an instruction to each of the two graphics processors to transmit feedback data indicating

that the transmitting processor has executed the set of rendering commands.

23. The graphics processing system of claim 19, wherein the feedback data
includes an indication of which of the two graphics processors was last to finish rendering a

frame.

24. The graphics processing system of claim 23, wherein the feedback data
includes a numeric identifier of the one of the two graphics processors that was last to finish
and the graphics driver module is further configured to compute a load coefficient from the

numetic identifiers over a plurality of frames.

27

L WON e

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

25. The graphics processing system of claim 24, wherein the graphics
driver module is further configured to detect an imbalance in the event that the load
coefficient is greater than a high threshold or less than a low threshold.

26. The graphics processing system of claim 19, wherein each portion of
the display area comprises a number of contiguous lines of pixels and wherein the two

graphics processors are configured to render adjacent portions.

27. The graphics processing system of claim 26, wherein the graphics
driver is further configured to decrease the size of the first portion and increase the size of the

second portion by shifting a number of lines of pixels from the first portion to the second

portion.

28

CA 02535878 2006-02-15

PCT/US2004/026656

1/6

WO 2005/020157

{ N1dI

aril

901

6~

FIVHOLS

7 19YA0N3Y

FOVHHIINI

gezi

L AJOWIN

qrvcl

décl

801 ~
1NdNI
- 44511

0¢!

d744/1d GNYIWN0D

4344N8 AV IdSId

L AHOWFN
G911

} 9

821~ h0L ~ 201 ~
wsia | lAbowan | | oo
WIISAS | | WALSAS

19a14g
AR
pr— 434418 GNYINOD
01d9 0 AYOWIN
434409 AV1dSI
ade et becl 0 AHOWIW
291}
2907 T04INO? AT
1NONYIS WILSASENS
ONISSTIOYd SIHAYHD

SUBSTITUTE SHEET (RULE 26)

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

2/6

300 ~

S I) B] R] C R

306 310 322 ~324

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 2005/020157

400\\

CA 02535878 2006-02-15

3/6

~402
CREATE FEEDBACK ARRAY IN
SYSTEM MEMORY

. ~404
INITIALIZE FRAME COUNTER K

~406

FIRST GPU TO FINISH FRAME K
WRITES ITS IDENTIFIERTO |-
ARRAY ELEMENT FEEDBACK [K] |

408

SECOND GPU TO FINISH FRAME K
WRITES ITS IDENTIFIER TQ

ARRAY ELEMENT FEEDBACK [K],
OVERWRITING FIRST IDENTIFIER

~410

INCREMENT FRAME COUNTER:
K=(K+1) MOD B

FlIG. 4

SUBSTITUTE SHEET (RULE 26)

PCT/US2004/026656

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

)

500\ i 4/6
507
ISSUE INITIAL
CLIP RECTANGLE
COMMAND

t
{

BALANCE
LOA D?NO W

YES

~504
WAIT
506 - 522
AVERAGE LAST Q VALUES ISSUE NEW CLIP
IN FEEDBACK ARRAY RECTANGLE COMMANDS

~510 512
AVERAGE EXCEED™_YES MOVE BOUNDARY LINE
.. DOWN BY PRESELECTED
HIGH THRESHOLD Y PALSE
NO
PN 516
“WE VES MOVE BOUNDARY LINE
O TSN UP BY PRESELECTED
> O AMOUNT

NO
. ~518
LEAVE BOUNDARY LINE
UNCHANGED
FIG. 5

SUBSTITUTE SHEET (RULE 26)

CA 02535878 2006-02-15

WO 2005/020157 PCT/US2004/026656

6748 GPUO | —>
T4~ gpy1 | => }604

702

9/6

600

d,

} 602
K

‘: L
|
¥

614C . 605
| M
FlG. &
FEEDBACK 01 FEEDBACK 12
o
0
P e
FiG. 7

SUBSTITUTE SHEET (RULE 26)

CA 02535878 2006-02-15
WO 2005/020157 PCT/US2004/026656

~908

— 910
. MEMORY 0\ 916a| scanour DISPLAY
GPUO — [DISPLAY CONTI DEVICE
L BUFFER [~9223 LO
d

920
FIG. 9

~1002a 1004a 1005 ~1008a ,1000a

] Jwlw]

1002b *~1004b 1006 “1008b 10000
FIG. 10

SUBSTITUTE SHEET (RULE 26)

GRAPHICS PROGESSING
S UB?‘ ;’g TEM

116a
MEMORY O

DISPLAY BUFFER
COMMAND BUFFER

122a

CONTROL LOGIC

123a

SCANOUT

114a

MEMORY 0
INTERFACE GPU O

1244

DISPLAY |~ 110
DEVIGE

120

1166
| MEMORY 1

DISPLAY BUFFER
; COMMAND BUFFER

130
BRIDGE

coy | | SYSTEM | | SYSTEM
MEMORY | | DISK
~102 ~104 128

USER -
INPUT
108

10
1

122b

1230

114b

MEMORY T
| INTERFACE GPUT

124b

REMOVABLE
STORAGE
~129

106

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - abstract drawing

