PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :

HO04L A2

(11) International Publication Number:

(43) International Publication Date:

WO 00/21233

13 April 2000 (13.04.00)

(21) International Application Number: PCT/US99/23143

(22) International Filing Date: 6 October 1999 (06.10.99)

(30) Priority Data:

09/167,882 7 October 1998 (07.10.98) Us

(71) Applicant (for all designated States except US): NOKIA IN-
TERNET COMMUNICATIONS INC. [US/US]; IPR Dept.,
313 Fairchild Drive, Mt. View, CA 94043 (US).

(71)(72) Applicants and Inventors: DIXIT, Sudhir [US/US];
Nokia, 3 Burlington Woods Drive, Burlington, MA 01803
(US). GHANI, Nasir [-/US]; Nokia, 3 Burlington Woods
Drive, Burlington, MA 01803 (US).

(74) Agent: ROLNIK, Robert; Nokia Inc., 6000 Connection Drive,
Irving, TX 75039 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, SK, SL, TJ, T™M, TR, TT, TZ, UA, UG, US,
UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: ENHANCED ACKNOWLEDGEMENT PACING DEVICE AND METHOD FOR TCP CONNECTIONS

(57) Abstract

An enhanced acknowledgement pac-
ing device (500) and method for TCP con-
nections is disclosed. The invention in-
cludes a link layer entity (528) for receiv-
ing data packets from a source and for-

Access Node Device

warding the data packets (540) to a for-
ward data link, the link layer entity (528)

.mmfa ACK Pacing Device - L34

storing the received data packets (540) in © 20
a data packet buffer (530) until the data
packets depart the link layer entity (528)
and are forwarded to the forward link and
an acknowledgement pacing device (500),
coupled to the link layer entity, for pacing Souarce ;

Aggrepsehper-lowiper-class ACK buffers

acknowledgement packets (532) to be sent - :
to the source in response to receiving the H
data packets (540) from the source (540). :
The acknowledgement pacing device (500)

further includes an acknowledgement con-

trol unit (510) for monitoring congestion Lo

at the link layer entity (528) and generat-
ing a control signal for controlling the pro-

Transenit control

[N N Y di\ s
i ey = - 5 -
Yaflic measurements / ’ el Sl

datn wanomit modily
Deta packen

Link Layer Entity 7

530

cessing of acknowledgement packets (532)
based upon whether congestion is occur-

4 }
Deuta packet (cdl) buffer

|, Forward

ring at the link layer entity (528), an ac-
knowledgement packet buffer (534), cou- /

-~ OO

T data link

pled to the acknowledgement control unit <40

(510), for storing acknowledgement packets
(532) received from the acknowledgement
control unit (510) and a scheduler (520),

coupled to the acknowledgement control unit (510) and the acknowledgement buffer (534), the scheduler (520) releasing acknowledgement
packets (532) to the source (540) based upon the control signal generated by the acknowledgement control unit (510).

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CuU
cz

DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
Kz
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
Nz
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™
TG
Ty
™
TR
T
UA
uG
us
UzZ
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

. WO 00/21233 PCT/US99/23143

10

15

20

ENHANCED ACKNOWLEDGMENT PACING DEVICE AND METHOD
FOR TCP CONNECTIONS

BACKGROUND OF THE INVENTION

1. Field of the Invention.
This invention relates in general to networks, and more particularly to an

enhanced acknowledgment pacing device and method for TCP connections.

2. Description of Related Art.

Today, an organization’s computer network has become its circulatory
system. Organizations have combined desktop work stations, servers, and hosts into
Local Area Network (LAN) communities. These Local Area Networks have been
connected to other Local Area Networks and to Wide Area Networks (WANSs). It
has become a necessity of day-to-day operation that pairs of systems must be able to
communicate when they need to, without regard to where they may be located in the
network.

During the early years of network computing, proprietary networking
protocols were the standard. However, the development of the Open Systems
Interconnection Reference Model introduced by the International Organization for
Standardization (ISO) has led to an impressive degree of interworking, which
generally allows end-user applications to work very well between systems in a
network. Implementations are based on written standards that have been made

available by volunteers from dozens of computer vendors, hardware component

vendors and independent software companies.

- WO 00/21233

10

15

20

PCT/US99/23143

During the last decade, LANs have been proliferating. This has created a
recurring problem of how 10 minimize congestioﬁ and optimize throughput that must
be solved by network managers. An early solution was to simply divide Local Area
Networks into multiple smaller networks serving smaller populations. These
segments were connected by bridges to form 2 single Local Area Network with
traffic being segregated locally to each segment.

The evolution of new network types and Wide Area Networks created a need
for routers. For example, the Intetnet is a set of networks connected by gateways,
which are sometimes referred to as routers. Routers added filtering and firewalling
capability to provide more control over broadcast domains, limit broadcast traffic
and enhance security. A router is able to chose the best path through the network
due to embedded intelligence. This added intelligence also allowed routers to build
redundant paths to destinations when possible. Nevertheléss, the added complexity
of best path selection capability accorded by the embedded intelligence increased the
port cost of routers and caused substantial latency overhead. Shared-media networks
comprising distributed client/server data traffic, expanded user populations and more
complex applications gave birth to new bandwidth bottlenecks. Such congestion
produced unpredictable network response times, the inability to support the delay-
sensitive applications and higher network failure rates.

Congestion control in modem networks is increasingly becoming an
important issue. The explosive growth of Internet applications such as the World
Wide Web (WWW) has pushed current technology to its limit, and it clear that faster
transport and improved congestion control mechanisms are required. As a result,

many equipment vendors and service providers are turning to advanced networking

10

20

- WO 00/21233

PCT/US99/23143

technology to provide adequate solutions to the complex quality of service (QoS)
management issues involved. Examples include asynchronous transfer made (ATM)
networks and emerging IP network services. Nevertheless, there is still the need to
support a host of existing legacy IP protocols within these newer paradigms. In
particular, the ubiquitous TCP transport-layer protocol has long been the workhorse
transport protocol in IP networks, widely used by web-browsers, file/email transfer
services, etc.

Transmission Control Protacol (TCP) is a part of the TCP/IP protocol family
that has gained the position as one of the world's most important data
communication protocols with the success of the Internet. TCP provides a reliable
data connection between devices using TCP/IP protocols. TCP operates on top of IP
that is used for packing the data to data packets, called datagrams, and for
transmitting across the network.

The Internet Protocol (IP) is a network layer protocol that routes data across
an Internet. The Internet Protocol was designed to accommodate the use of host and
routers built by different vendors, encompass a growing variety of growing network
types, enable the network to grow without interrupting servers, and support higher-
layer of session and message-oriented services. The IP network layer allows
integration of Local Area Network "islands".

However, IP doesn't contain any flow control or retransmission mechanisms.
That is why TCP is typically used on top of it. Especially, TCP uses
acknowledgments for detecting lost data packets. TCP/IP networks are nowadays
probably the most important of all networks, and operate on top of several (physical)

networks, such as the ATM networks mentioned above. These underlying networks

- WO 00/21233

10

15

20

PCT/US99/23143

may offer some information about the condition of network and traffic, which may
be used to provide feedback regarding congestion.

To manage congestion, TCP uses a sliding window mechanism‘couplcd with
reactive congestion control to adjust the sender's window size. The protocol adjusts
its transmission behavior contingent to returning acknowledgment (ACK) packets
sent from the remote receiver's end.

A problem with TCP, however, is that its congestion control mechanism is
relatively slow. Most TCP implerhentations use very coarse timers to measure
timeouts, i.e., roughly 200-500 ms.granularity. Further, most TCP implementations
rely on ACK delays or packet drops to detect congestion. Asa result, excessive
source window reductions can result in large amounts of bandwidth being wasted as
the TCP source is forced to restart its transmission window. Further, many studies
have shown that TCP does not perform very well over ATM networks, especially for
larger WAN-type propagation delays.

To combat the above shortcomings with TCP, it is necessary to minimize the
chances of network congestion_by somehow incorporating faster congestion
indication mechanisms in the TCP feedback loop. However, to ensure compatibility
with current versions and to expedite market acceptance, any such attempt must
preclude changes to the actual TCP protocol or its implementation.

Along these lines, a variety of ACK pacing schemes have been proposed.
These ACK pacing schemes basically modulate the spacing of TCP ACK packets to
limit source emissions during periods of congestion. ACK pacing is well-suited at
the boundary of high speed (sub)networks, such as ATM, gigabit IP (i.e., optical

WDM), or satellite. In essence this technique performs TCP traffic shaping at the

- WO 00/21233

10

15

20

PCT/US99/23143

access nodes. Such methodologies are specifically beneficial for advanced ATM
data services, i.e., undetlying ABR flow control or per-connection queuing, where
congestion tends to buildup at the periphery of the ATM network, i.e., in the access
nodes. If the forward link is congested, as indicated via some congestion metric,
ACK packets are appropriately delayed before being sent to the source.

Other authors have proposed modifying fields in the ACK packets
themselves, i.e., receiver-window size, to improve performance. However, such
schemes either require accurate round-trip delay measurements or cannot maintain
tight buffer control. Furthermore, rewriting ACK packet fields will require
expensive checksum recomputations.

Although ACK pacing is an effective way of controlling TCP source
behaviors, many of the proposed schemes are either too complex and/or overly
sensitive to network parameter settings. Since studies have shown that TCP's
throughput and fairness levels can be low in many high-speed network scenarios, it
is necessary to devise efficient, practical schemes to enhance its performance.
Although amending the protocol's functionality itself is also an option, this may not
be a feasible alternative in the short-to-medium time frame. It is along these lines
that the ACK pacing methods can provide significant benefits.

It can be seen that there is a need for a more robust, comprehensive scheme
for ACK pacing.

It can also be seen that there is a need for ACK pacing that provides high

throughput and precise levels of bandwidth fairness.

- WO 00/21233
PCT/US99/23143

6

It can also be seen that there is a need for ACK pacing that significantly

reduces TCP buffering delays and is applicable to a wide range of network

scenarios.

It can also be seen that there is a need for ACK pacing that provides faster

5 congestion indication without modifying the TCP protocol.

- WO 00/21233

10

15

20

25

PCT/US99/23143

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described above, and to
overcome other limitations that will become apparent upon reading and
understanding the present specification, the present invention discloses an enhanced
acknowledgment pacing device and method for TCP connections.

The present invention solves the above—described problems by providing a
more robust, comprehensive scheme for ACK pacing. The ACK pacing according
to the present invention provides high throughput and precise levels of bandwidth
faimess. Further, the ACK pacing significantly reduces TCP buffering delays and is
applicable to a wide range of network scenarios, Thus, the ACK pacing provides
faster congestion indication without modifying the TCP protocol.

A system in accordance with the principles of the present invention includes a
link layer entity for receiving data packets from a source and forwarding the data
packets to a forward data link, the link layer entity storing the received data packets in
a data packet buffer until the data packets depart the link layer entity and are forwarded
to the forward data link and an acknowledgment pacing device, coupled to-the link
layer entity, for pacing ACK packets to be sent to the source in response to receiving
the data packets from the source. The acknowledgment pacing device further includes
an acknowledgment control unit for monitoring congestion at the link layer entity and
generating a control signal for controlling the processing of acknowledgment packets
based upon whether congestion is occurring at the link layer entity, an
acknowledgment packet buffer, coupled to the acknowledgment control unit, for
storing acknowledgment packets received from the acknowledgment control unit and a
scheduler. coupled to the acknowledgment control unit and the acknowledgment
buffer, the scheduler releasing acknowledgment packets to the source based upon the

control signal generated by the acknowledgment control unit.

- WO 00/21233

10

15

20

PCT/US99/23143

Other embodiments of a system in accordance with the principles of the
invention may include alternative or optional additional aspects. One such aspect of
the present invention is that the scheduler chooses ACK packets to release based upon
a queuing strategy.

Another aspect of the present invention is that the queuing strategy includes
sending a head—of-line ACK packet when aggregate ACK packet buffering is used.

Another aspect of the present invention is that the queuing strategy includes a
weighted—round—robin (WRR) process for selecting an ACK packet in the ACK
packet buffer for release when per-Elass or per—flow ACK packet buffering is used.

Another aspect of the present invention is that the weighted—round—robin
(WRR) process uses weights for weighting the selection of the ACK packet for release
inversely proportionally to a TCP maximum segment size (MSS) to the lessen a bias
against smaller MSS flows.

Another aspect of the present invention is that the queuing strategy includes a
fair—queuing (FQ) process for selecting an ACK packet in the ACK packet buffer for
release when per—class or per—flow ACK packet buffering is used.

Another aspect of the present invention is that the acknowledgment control unit
further includes an ACK packét pacing processor, the ACK packet pacing processor
generating the control signal for controlling the processing of acknowledgment packets
using a ACK packet arrival processor and a data packet departure processor.

Another aspect of the present invention is that the ACK packet arrival
processor controls the processing of ACK packets to the ACK packet buffer by
checking the congestion at the link layer entity and deciding whether to hold ACK
packets in the ACK packet buffer or to send the ACK packet directly to the source

without buffering the ACK packets in the ACK packet buffer.

- WO 00/21233

10

15

20

PCT/US99/23143

9

Another aspect of the present invention is that the ACK packet arrival
processor decides whether to hold ACK packets in the ACK packet buffer or to send
the ACK packet directly to the source without buffering the ACK packets in the ACK
packet buffer by determining if the link layer entity is congested, determining if the
ACK packet buffer is empty, storing an ACK packet in the buffer if the link layer
entity is congested or the ACK packet buffer is not empty, and forwarding the ACK
packet to the source if the ACK packet buffer is empty and the link layer entity is not
congested.

Another aspect of the prcserit invention is that the ACK packet is stored in_ the
ACK packet buffer and gated out by the scheduler if the ACK packet is a first ACK
packet to be buffered in the ACK packet buffer during congestion.

Another aspect of the present invention is that the ACK control unit increases a
spacing between ACK packets gated from the ACK packet buffer if the ACK packet is
the first ACK packet to be buffered in the ACK packet buffer during congestion.

Another aspect of the present invention is that the data packet departure
processor decreases a spacing between the release of ACK packets from the ACK
packet buffer if congestion in the link layer entity has abated.

These and various other advantages and features of novelty which characterize
the invention are pointed out with particularity in the claims annexed hereto and form a
part hereof. However, for a better understanding of the invention, its advantages, and
the objects obtained by its use, reference should be made to the drawings which form a
further part hereof, and to accompanying descriptive matter, in which there are

illustrated and described specific examples of an apparatus in accordance with the

invention.

- WO 00/21233

10

15

PCT/US99/23143

10

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference numbers represent
corresponding parts throughout:

Fig. 1 illustrates the OSI model which includes seven layers;

Fig. 2 illustrates a comparison of the Internet Protocol Network Layer and the
OSI seven layer model;

Fig. 3 illustrates a packet stream and a TCP sliding window;

Fig. 4 illustrates a network system wherein a receiver provides
acknowledgments to the source as'{vell as receives data from the source;

Fig. 5 illustrates the enhanced ACK pacing device according to the present
invention,;

Fig. 6 illustrates the psuedocode for the TCP ACK arrival and data departure
660 method according to the present invention;

Fig. 7 illustrates psuedocode for a congestion status method using two
hysterisis queue thresholds, QL and QH; and

Fig. 8 illustrates the psuedocode for the enhanced TCP ACK arrival and

ATM cell departure methods according to the present invention

- WO 00/21233

10

15

20

PCT/US99/23143

11

DETAILED DESCRIPTION OF THE INVENTION

In the following description of the exemplary embodiment, reference is made
to the accompanying drawings which form a part hereof, and in which is shown by
way of illustration the specific embodiment in which the invention may be practiced.
[t is to be understood that other embodiments may be utilized as structural changes
may be made without departing from the scope of the present invention.

The present invention provides an enhanced acknowledgment pacing device
and method for TCP connections. A more robust, comprehensive scheme for ACK
pacing is provided which allows high throughput and precise levels of bandwidth
fairness. Further, the ACK pacing significantly reduces TCP buffering delays and is
applicable to a wide range of network scenarios. Thus, the ACK pacing according to
the present invention provides faster congestion indication without modifying the

TCP protocol.

Fig. 1 illustrates the OSI model 100 which includes seven layers, including
an Application Layer 110, Presentation Layer 120, Session Layer 130, Transport
Layer 140, Network Layer 150, Data Link Layer 160, and Physical Layer 170. The
OSI model 100 was developed by the International Organization for Standardization
(ISO) and is described in ISO 7498, entitled "The OSI Reference Model", and which
is incorporated by reference herein.

Each layer of the OSI model performs a specific data communications task, a
service to and for the layer that precedes it (e.g., the Network Layer provides a
service for the transport layer). The process can be likened to placing a letter in a
series of envelopes before it is sent through the postal system. Each succeeding
envelope adds another layer of processing or overhead information necessary to
process the transaction. Together, all the envelopes help make sure the letter gets to

the right address and that the message received is identical to the message sent.

10

15

20

25

- WO 00/21233

PCT/US99/23143

12

Once the entire package is received at its destination, the envelopes are opened one
by one until the letter itself emerges exactly as written.

In a data communication transaction, however, each end user is unaware of
the envelopes, which perform their functions transparently. For example, an
antomatic bank teller transaction can be tracked through the muiti—layer OSI system.
One multiple layer system (Open System A) provides an application layer that is an
interface to a person attempting 2 transaction, while the other multiple layer system
(Open System B) provides an application layer that interfaces with applications
software in a bank’s host computed, The corresponding layers in Open Systems A
and B are called peer layers and communicate through peer protocols. These peer
protocols provide communication support for a user’s application, performing
transaction related tasks such as debiting an account, dispensing currency, or
crediting an account.

Actual data flow between the two open systems (Open System A and Open
System B), however, is from top 180 to bottom 182 in one open system (Open
System A, the source), across the communications line, and then from bottom 182 to
top 180 in the other open system (Open System B, the destination). Each time that
user application data passes downward from one layer to the next layer in the same
system more processing information is added. When that information is removed
and processed by the peer layer in the other system, it causes various tasks (error
correction, ﬂoW control, etc.) to be performed.

The ISO has specifically defined all seven layers, which are summarized
below in the order in which the data actually flows as they leave the source:

Layer 7, the Application Layer 110, provides for a user application (such as

getting money from an automatic bank teller machine) to interface with the OSI

10

15

20

25

- WO 00/21233

PCT/US99/23143

13

application layer. That OS] application layer 110 has a corresponding peer layer in
the other open system, the bank’s host computer.

Layer 6, the Presentation Layer 120, makes sure the user information (a
request for $50 in cash to be debited from your checking account) is in a format (i.e.,
syntax or sequence of ones and zeros) the destination open system can understand..

Layer S, the Session Layer 130, provides synchronization control of data
between the open systems (i.e., makes sure the bit configurations that pass through
layer 5 at the source are the same as those that pass through layer 5 at the
destination).

Layer 4, the Transport Layér 140, ensures that an end—to—end connection has
been established between the two open systems and is often reliable (i.e., layer 4 at
the destination confirms the request for a connection, so to speak, that it has received
from layer 4 at the source).

Layer 3, the Network Layer 150, provides routing and relaying of data
through the network (among other things, at layer 3 on the outbound side an address
gets placed on the envelope which is then read by layer 3 at the destination).

Layer 2, the Data Link Layer 160, includes flow control of data as messages
pass down through this layer in one open system and up through the peer layer in the
other open system.

Layer 1, the Physical Interface Layer 170, includes the ways in which data
communications equipment is connected mechanically and electrically, and the
means by which the data moves across those physical connections from layer 1 at the
source to layer 1 at the destination,

Fig. 2 is a comparison 200 illustrating where the Internet Protocol Network
Layer 202 fits in the 0SI seven layer model 204. In Fig. 2, the transport layers 210

provides data connection services to applications and may contains mechanisms that

10

15

20

25

- WO 00/21233

PCT/US99/23143

14

guarantee that data is delivered error—free, without omissions and in sequence. The
transport layer 210 in the TCP/IP model 212 sends segments by passing them to the
IP layer 202, which routes them to the destination. The transport layer 210 accepts
incoming segments from IP 202, determines which application is the recipient, and
passes the data to that application in the order in which it was sent.

Thus, the Internet Protocol 202 performs Network Layer functions and routes
data between systems. Data may traverse a single link or may be relayed across
several links in an Internet. Data is carried in units called datagrams, which include
an IP header that contains layer 3 120 addressing information. Routers examine the
destination address in the IP header in order to direct datagrams to their destinations.
The IP layer 202 is called connectionless because every datagram is routed
independently and the IP layer 202 does not guarantee reliable or in—sequence
delivery of datagrams. The IP layer 202 routes its traffic without caring which
application—to—application interaction a particular datagram belongs to.

The TCP layer 210 provides a reliable data connection between devices using
TCP/IP protocols. The TCP layer 210 operates on top of the IP layer 202 that is
used for packing the data to data packets, called datagrams, and for transmitting the
across the underlying network via physical layer 230.

However, the IP protocol doesn't contain any flow control or retransmission
mechanisms. That is why the TCP layer 210 is typically used on top of the IP layer
202. In contrast, TCP protocols provide acknowledgments for detecting lost data
packets.

Fig. 3 illustrates a packet stream 300 and a TCP sliding window 310. One of
the main features of a TCP source is that it uses a sliding window 310 that

determines the bytes and, consequently, the IP packets that can be sent before an

-WO 00/21233 PCT/US99/23143

10

15

20

15

acknowledgment is received from the receiver. This makes it possible to adjust the
effective transmission rate of the source.
When the TCP source increases the size of the sliding window 310, its

average transmission rate increases, too. The sliding window 310 is on top of octets

. 12-19. Octets up to 11 have been transmitted and the sliding window 3 10 has

moved past them. Inside the sliding window 310, there are two octet groups 320,
322. The first octet group 320 is the octets from 12 to 16, which have been
transmitted 330. The second group of octets 322 in the sliding window 310 are
octets 17—19, which have not yet-Heen transmitted. The second group of octets 322
can be sent immediately 340. Finally, octets 20 and upwards 350 cannot be
transmitted 360. Octet 12 has to be acknowledged and the sliding window slid
forward before octet 20 may be transmitted. Thus, TCP provides retransmission of
lost data packets and flow control using this TCP sliding window 310. The sliding
window 310 is actually the minimum of the congestion window of the window

advertisement which is sent by the receiver.

Fig. 4 illustrates a TCP network system 400 wherein a receiver 410 provides
acknowledgments 420 to the source 430 as well as receives data 440 from the source
430. The receiver 410 sends acknowledgment packets 420 that also include window
advertisement data 450 for informing the source 430 of the capacity of the receiver
410 to handle incoming data 440. Thus, the receiver 410 can advertise a suitable
window size 450 for flow control purposes. In practice, the window advertisement
450 specifies how many additional octets of data the receiver 410 is prepared to
accept. The source 430 is supposed to adjust its sliding window according to this
advertisemnent, unless the congestion window 460 maintained by the source 430 is

smaller.

10

15

20

- WO 00/21233

PCT/US99/23143

16

The second window, the congestion window 460, is used internally at the
TCP source 430 for dropping the size of the sliding window. This occurs if a timer
expires telling that a data packet has been sent, but no acknowledgment has arrived
within a certain time period. This means that the data packet has been lost which is
most probably caused by network congestion. In order not to make the congestion
worse, the TCP source 430 drops its transmission rate by reducing the size of the

sliding window. The relation of these windows can be expressed as:
Ty = MIN(window advertisement, congestion window),

where T, refers to the transmissiof window, i.e., the sliding window.

In principle, the congestion window 460 and feedback information included
in the advertisement window 450 provided by the underlying network can be used
for the same purpose, namely to adjust the transmission rate of the TCP source 430
according to the load and congestion of the network. However, one important
difference between the congestion window 460 and feedback information included
in the advertisement window 450 is that the congestion window 460 works on the
end—to—end basis and is typically quite slow to react to changes due to relatively
long timeouts. Thus, the congestion window 460 can not also give any detailed
information. The TCP source 410 simply knows that a packet has been discarded
which may not give the exact picture about the network condition. Feedback
information included in the advertisement window 450, on the other hand, may be
more accurate and may react faster to the changing conditions.

An underlying network can use the receiver's window advertisements 450
carried in acknowledgment packets 420 for controlling the transmission speed of a
TCP source 410. This may be accomplished by adding device or network

functionality, herein referred to as Feedback Information Converter (FIC).

- WO 00/21233

10

15

20

PCT/US99/23143

17

Thus, TCP uses a sliding window protocol where the source 430 adjusts its
window size based upon returning ACK packets 420 from the receiver 410. Hence
the window's 460 growth rate will be related to the rate of these returning packets
420. Therefore, it is evident that by modifying the timing of the returning ACK
stream 420, the growth of the source window 460 can be controlled. It is this
fundamental principle upon which ACK pacing methods are based. Specifically,
these methods appropriately delay retuming ACK packets 420 in congested network
elements, e.g., access nodes and IP;routers, to limit excessive emissions by the
source 430. When properly done, ACK pacing can reduce TCP timeouts, limit
queue buildups, and thereby improve overall connection goodputs.

Due to the largely asymmetric nature of TCP traffic profiles, ACK pacing, is
really only required at the TCP source side 430. This is a noteworthy point, since it
implies that the required ACK pacing functionality need only be limited to large
web-servers/file-hosts. Hence no expensive upgrades are required for a much larger,
diverse user access base. It should be mentioned, however, that ACK pacing
assumes good rate control inside the netwprk. This essentially abstracts the network
to a fairly constant bandwidth, causing congestion to occur primarily at the access
nodes.

Advanced ATM bearer capabilities, e.g., VBR-nrt, ABR and GFR, can
realistically achieve these conditions. Furthermore, it is expected that emerging rate
guarantees in high-speed IP routers will also yield conditions favorable towa_lrds
ACK pacing.

However, as stated above, many of the current ACK pacing methods are not

particularly amenable to implementation. For example, fast-TCP (F-TCP) required

- WO 00/21233

10

15

20

PCT/US99/23143

18

knowledge of the underlying data “clearing” rate in the forward direction. This can
either be the link capacity or for the case of the ATM available bit rate (ABR)
service category, the connection's allowed cell rate (ACR), etc. The computed
delays for the ACK packets 420 are based upon this rate.

Clearly, such schemes require more advanced information processing
methods and can be problematic if the underlying rate varies widely. Furthermore,
delayed emission of ACK packets 420 by the remote TCP client 410 can compound
the sensitivity issues and significantly degrade the performance of such schemes.
Also, no explicit faimess provision can be provided by these schemes since they
simply buffer returning ACK packets 420 in an aggregate manner, i.e., first-in-first-
out (FIFO). Another ACK pacing method, the ACK bucket scheme, requires too
much per-flow state, essentially “tracking" the windowing behaviors of each TCP
flow.

Fig. 5 illustrates the enhanced ACK pacing device 500 according to the
present invention. The ACK pacing device 500 relies on queue length information
to infer congestion levels and does not require any additional (expensive) timer
mechanisms. The ACK pacing device 500 illustrated in Fig. 5 is very generic and
can be tailored to fit a wide range of networks.

In Fig. 5, an ACK control unit 510 is provided. The ACK control unit 510
controls the processing of ACK packets during both overload (i.e., congestion) and
underload periods along with the operation of the ACK scheduler unit 520. The
ACK control unit 510 relies on traffic measurements and data transmit notifications
5272 from the underlying link-layer entity 528 and the data packet buffer 530.

During congestion periods, returning ACK packets 532 are stored in the ACK

- WO 00/21233 PCT/US99/23143

10

15

19

buffers 534 using appropriate classification granularities (aggregate, per-class, per-
flow) and gated out at an appropriately chosen rate. Specifically, the emission of
ACK packets 532 during congested periods are performed so as to allow the buffers
534 to empty in reasonable time. When congestion subsides, the ACK cmission. rate
is then increased to allow for improved bandwidth utilization. Note the ACK control
unit 510 activates the ACK scheduler unit 520 to emit ACK packets 532 in the
buffers 534 in all cases.

Since TCP is an expansive'protocol, it always attempts to increase it
transmission quota barring any re¢eiver window limitations. This means that for
large (bulk) file transfers, the regular TCP protocol will repeatedly increase its
window size, loose packets, and then slow down. As the volume of data in the
system increases, so does the number of ACK packets 532.

This point has a very subtle implication for ACK pacing schemes. Namely,
the data packet 540 growth in the regular TCP protocol will be “replaced" by ACK
packet 532 growth. This is referred to as the ACK buffer "drift" phenomenon. The
rate of this drift will be linear (i.e., fast) for the case of ACK pacing with TCP
connections in slow start phases, and will be sub-linear for ACK pacing with TCP
connections in congestion avoidance phases.

There are two possible methods to address this problem. The simpler
approach is to provide ACK buffers 534 with sufficient capacity for the ACK
packets 532 and employ drop-from—froht strategies in rare event of ACK buffer 534
exhaustion. Typically, ACK numbers in the front will most likely pertain to lower
sequence numbers than those for arriving packets 540. This buffering approach is

very reasonable, since ACK packets 532 are small (40 bytes), and most file transfers

10

15

20

- WO 00/21233

PCT/US99/23143
20

are not infinite. For example, an ACK buffer 534 of 64kB of RAM can hold
approximately 1,700 ACK packets 532, which is more than adequate for 155 Mb/s
WAN links.

Another approach would be to track TCP sequence numbers using two
variables, i.e., per-flow accounting for the last-in and last-out values. This approach
can yield smaller memory requirements, but requires ACK number re-writing (i.e.,
check sum recomputations). Also, if ACK packets 532 arrive out of sequence,
special considerations are necessary. Furthermore, it is likely that the other fields
present in ACK packets 532, such as receiver window sizes and URG/RST flags,
may also contain non-redundant information which can complicate matters further.

Thus, the ACK buffering approach is more feasible from an implementation
perspective. The ACK buffering approach posts minimal additional constraints and
does not tamper with any fields in the TCP packet 532.

As shown in Fig. 5, in the forward direction of data flow, the link layer entity
528 can be representative of a wide range of underlying technologies. Examples
include dedicated links or ATM VC's, or IP flow classes. Furthermore, the link
layer entity 528 can be either dedicated to a single TCP flow, e.g., ATM VC, etc,, or
be shared among a group of TCP flows (traffic aggregation). Similarly, the ACK
pacing in the reverse direction can be done on different levels. For example, if per-
flow queuing is done in the forward direction., then per-flow ACK pacing is also
necessary in the reverse direction, i.e., per flow data/per-flow ACK.

If, however. aggregate or class-based ACK pacing is done in forward
direction. then it may be desirable to do likewise in the reverse direction (aggregate

data/aggregate ACK, per-class data/per-class ACK). Others may decide to do

- WO 00/21233

10

15

20

PCT/US99/23143
21

simple, aggregate queuing in the forward direction, yet more advanced per-flow
ACK buffering in the reverse direction. This approach improves fairness amongst
flows aggregated onto the same link-layer entity 530, without requiring high speed
per-flow buffering and scheduling techniques in the forward direction. Although
per-flow ACK accounting is still required for incoming ACK packets 532, it is
restricted to the network edge where the processing rate requirements are also
significantly reduced since ACK packets 532 pertain to larger IP packet sizes. By
choosing scheduler allocations, i.e, weights, inversely proportional to a flow's TCP
maximum segment size (MSS), the bias against smaller MSS flows can be lessened
(to an extent).

With the ongoing standardization efforts for a differentiated services
architecture, the latter philosophy fits in quite nicely. Namely, per-flow
accounting/overhead is limited to the access parts of the network, i.e., where ACK
pacing is done, reducing complexity within the backbone. Since most access nodes
will carry much fewer connections than backbone devices, this appfoach is very
feasible in emerging networks.

In light of the above discussion, the ACK scheduler 520 can be specified as
being fairly generic, borrowing from a variety of packet scheduling methods to
improve faimess. For example, in the simplest form of aggregate (FIFO) ACK
buffering, the scheduler 520 merely has to send the head-of-line (HOL) ACK. For
more advanced per-class or per-flow ACK buffering strategies, a weighted-round-
robin (WRR) or fair-queuing (FQ) scheduler can be implemented to "choose" the

next suitable ACK for transmission.

- WO 00/21233 PCT/US99/23143

10

15

20

22

The ACK control unit 510 includes a ACK pacing processor 512 for
controlling the pacing of ACK packets to the sou.rce. The ACK pacing processor
includes two main components: the data packet departure processor 514 and the
ACK arrival processor. The ACK arrival processor 516 checks congestion levels
and decides whether or not to hold incoming ACK packets. The data packet
departure processor 514 monitors congestion levels via the link layer entity 528 and
data packet buffer 530 and decides when to "clock" out ACK packets 532 to the
source.

Fig. 6 illustrates the psuedacode 600 for the TCP ACK arrival 610 and data
departure 660 method according to the present invention. The TCP ACK arrival 610
and data departure 660 method are executed for all incoming TCP ACK packets.

In Fig. 6, it is assumed that queue objects exist for enqueuing/dequeuing
ACK packets, and that a running count of the number of buffered ACK packets is
kept, e.g., num_ACK 604. In case of link-layer congestion and/or a non-empty
ACK buffer 612, an incoming ACK packet is stored in the buffer 614. The buffered
ACK packets are kept in the buffer and can only be sent out appropriately by the
data packet departure method 660.

As discussed previously, the ACK buffering can be done on an aggregate
basis or more selective per-class/per-flow basis as discussed above with reference to
Fig. 5. If the ACK packet arrives at an empty buffer and there is no congestion 640,
it is simply forwarded onwards to the TCP source (i.e., transparent pass-through)
642. However, if this is the first ACK to be buffered 630, then in order to "jump-
start" the ACK emission process, this ACK packet must be gated out after an

appropriate interval 632.

- WO 00/21233

10

15

20

PCT/US99/23143

23

To avoid any dependencies on expensive timer mechanisms, the emission of
ACK packets should be associated with the underlying data packet departure process
660 in the link-layer entity. Namely, the during congestion, ACK packets are sent
after every o data packets have been emitted, where o is termed an (integral) slow-
down factor.

From an implementation perspective, the above functionality can be achieved
elegantly by using a simple counter variable, e.g., pkt_counter 644. For the first
ACK packet, the counter variable value is set to o, and then decremented per data
packet departure according to the data departure process 660. When the counter
variable value reaches zero, a buffered ACK packet is released and the counter is
reset.

Contrary to some expectations, a given value of o, does not imply a TCP
source slow-down of equivalent magnitude. Here, the issue is complicated by the
many features of the TCP protocol, such as slow-start/congestion-avoidance phases,
the “ACK-every-other property”, delayed ACK timers, etc. For example, in the
idealized case of infinite sources sending full-sized segments, with the ubiquitous
" ACK-every-other" feature enabled, it can be shown that a value of c,>3 is required
to throttle a TCP source. Alternatively, if the TCP source's end-system behaviors
are unknown, then very large values of o, can be used to “guarantee” queue length
control. In other words, such values essentially inhibit all ACK emissions until
congestion subsides (i.e., on/off type control), but usually give increased queue
oscillations.

Note that in order to present a generic, more flexible specification, the

psuedocode in Fig. 6 does not explicitly specify the congestion detection method.

- WO 00/21233

10

15

20

PCT/US99/23143

24

Specifically, the congeétion_status() routine 620 simply returns a boolean value
indicating whether or not the link layer entity is congested. Clearly a whole variety
of congestion indication mechanisms can be used here. Some examples include
queue lengths, averaged queue lengths, input rate overload measurements, and data
loss rates. However, preferably the queue length should be used to simplify
implementation complexities.

Psuedocode for a sample method 700 using two hysterisis queue thresholds,
QL 710, QH 714, is illustrated inFig. 7. In Fig. 7, the congestion status is checked
and a binary flag is returned 702. Hysterisis queue thresholds, QL 710, QH 712 are
used 720. If congestion exists and the queue length is less than QL 722, then
congestion abatement status change is stored by setting the flag to a first state 724,
i.e., congested_flag=OFF. Alternatively, if congestion does not exist and the queue
length is greater than QH 730, the congestion onset status change is stored by setting
the flag to a second state 732, 1i.e., the congested_flag=ON. The state of the binary
flag is then returned 740.

Results show that if these thresholds 710, 712 are appropriately sized based
upon the round-trip delays between the sources and access nodes (i.e., acCess
network delays), near loss-less performance can be achieved. Since such delays are
usually many times smaller than the end-to-end delays observed in WAN networks,
sizeable reductions in the buffering requirements are possible with ACK pacing
schemes according to the present.invention.

Referring again to Fig. 6, the data packet departure method 660 is executed
whenever a packet departs the link layer. The goal is to release stored ACK packets

in a timely fashion, thereby properly controlling the congestion (queue) levels at the

- WO 00/21233 PCT/US99/23143

10

15

20

25

access node's link-layer buffer, i.e., minimizing packet losses. The method first
checks to see if the there are any buffered ACK packets awaiting transmission 662
and whether the ACK emission counter, i.e., pkt_counter, has reached zero 664. If
this is the case, a buffered ACK packet is released to the source 670.

After this. if congestion still exists 680, the inter-ACK packet spacing is
maintained at one per o, data packets by resetting pk_counter to o, 682. This allows
the data buffer in the data link layer to drain further. If congestion has abated 684,
however, then the inter-ACK spacing is reduced to a, data packets 686, allowing
sources to send faster. The o, parameter is termed an integral speedup factor, and
necessarily o, >a,. If the counter is non-zero 688, then it is simply decremented
690. However, to prevent bandwidth under-utilization after congestion periods, if
the counter is larger than a,, it is simply reset to a, (i.e., especially for larger a,
values).

Again, due to complications arising from TCP specifics, an o, =1 value does
not imply that TCP source rates will (approximately) equal the underlying link
entity’s rate. More specifically, for idealized conditions with the "ACK-every-
other” feature, a value of a,=2 performs better.

Referring again to Fig. 5, note that the eligible ACK packets 532 are chosen
based upon the queuing strategy used by the ACK scheduler 520. This overall
mechanism does not require any expensive timer mechanisms to release stored ACK
packets 532 as required in prior methods.

Fig. 8 illustrates the psuedocode 800 for the enhanced TCP ACK arrival 810
and ATM cell departure 860 methods according to the present invention. In the TCP

ACK arrival process 810, a determination is made as to whether the link-layer entity

- WO 00/21233

10

15

20

PCT/US99/23143

26

is congested or whether the ACK buffer is non-empty 812. If the link layer entity is
congested and the ACK buffer is not empty 814, incoming ACK are stored in the
queue 816 (FIFO. per-class, or per-flow). ACK packets are stored at the tail of the
respective ACK queues and the ACK count is incremented 818. Next, a check is
made to determine if this ACK packet is the first ACK packet buffered 820. If this
is the first ACK packet to be buffered 822, the cell counter is set to o, *packet cells
so that the counter is set to a larger spacing 824. Otherwise 826, the ACK packet is
sent to the TCP source 828.

In the ATM Cell departure process 860, a determination is made as to
whether the ACK buffer is non-empty 862, i.e., are there ACK packets to send? If
there are ACK packets to send 864, scheduler determines the next eligible ACK
packet 870. The next eligible ACK. packet is dequeued from the head of the eligible
ACK queue 872 and is sent to the TCP source 874. The ACK count is decremented
876 and the cell counter is reset appropriately 880. If congestion exists 882, the cell
counter is set to equal o * packet cells to increase the spacing 884. Otherwise 886,
the cell counter kis set to equal o,* packet cells to reduce the spacing 888.

If the cell counter is not zero 890, a determination is made as to whether
congestion has abated 892. If congestion has abated and the cetl counter value is
greater than a, * packet cells 894, then the cell counter is set to equal o, * packet
cells 895. Otherwise 896, the cell counter is decremented 898.

Granted that the above packet handling methods are very generic, more
flexibility exists for the case of ATM networks which use smaller packet (cell) sizes.
Specifically, it is possible to perform ACK emission per data (fractional) packet

emission and at the same time circumvent the use of any expensive timer

- WO 00/21233

10

15

20

PCT/US99/23143

27

mechanisms, i.e., the counter is now in terms of cells not packets (cell counter).
Since a cell size is typically much smaller than a TCP MSS-sized packet, packets
can now be emitted with more fined-grained time granularities. Namely, the o, and
o, factors do not have to be integers anymore, as is the case in packet-based
schemes. Consider a constant value, packet_cells, namely the number of cells in

(IP) TCP MSS:

(TCP_ MSS + 40)
packet _cells=| | 28 +1}. Q)

With reference again to Fig. 5, during congestion ACK packets 532 are
emitted after every o, * packet_cells and during underload, a, « packet_cells. For
the most part, the ACK arrival and cell departure methods are identical to their
packet-based counterparts. For example, after every cell emission, the cell counter is
decremented and when it reaches zero, a ACK packet 532 in buffer 534 is released
by the ACK scheduler 520. During period when the ACK buffer 534 is empty, the
counter value is reset appropriately.

In summary, the performance of the TCP protocol over ATM networks is an
important area. Recently, various ACK pacing schemes have been proposed to
improve TCP's interaction with the more advanced underlying ATM transport
categories (i.e., ABR flow control, per-connection queuing). However, these
schemes suffer from parameter sensitivity issues and may be difficult to realize in
practice. Accordingly, an enhanced ACK pacing device has been disclosed that is
capable of performing in a wide range of network scenarios. The scheme uses (more

direct) queLxe-length congestion information to delay TCP ACK packets and can

- WO 00/21233 PCT/US99/23143

10

28

implement a wide range of fairness criterion. The method provides a robust means
of improving end-to- end TCP throughput and bandwidth fairness. The buffering
requirements in the access nodes are also significantly for a wide range of
subnetworks.

The foregoing description of the exemplary embodiment of the invention has

been presented for the purposes of illustration and description. It is not intended to
be exhaustive or to limit the invention to the precise form disclosed. Many
modifications and variations are possible in light of the above teaching. It is
intended that the scope of the invertion be limited not with this detailed description,

but rather by the claims appended hereto.

- WO 00/21233

10

11

12

PCT/US99/23143
29

WHAT IS CLAIMED IS:

1. An acknowledgment pacing device for pacing acknowledgment
packets to be sent to a source in response to receiving data packets from the source,
comprising:

an acknowledgment control unit for monitoring loading of a network and
generating a control si gnal for controlling the processing of acknowledgment packets
based upon the loading of the network;

an acknowledgment packet ‘buffer, coupled to the acknowledgment control
unit, for storing acknowlcdgment‘pgckets received from the acknowledgment control
unit; and

a scheduler, coupled to the acknowledgment control unit and the
acknowledgment buffer, the scheduler releasing acknowledgment packets based

upon the control signal generated by the acknowledgment control unit.

2. The acknowledgment pacing device of claim 1 where the scheduler

chooses acknowledgment packets to release based upon a queuing strategy.

3. The acknowledgment pacing device of claim 2 wherein the queuing
strategy comprises sending a head—of-line acknowledgment packet when aggregate

acknowledgment packet buffering is used.

4. The acknowledgment pacing device of claim 2 wherein the queuing

strategy comprises a weighted-round-robin (WRR) process for selecting an
acknowledgment packet in the acknowledgment packet buffer for release when per-

class or per-flow acknowledgment packet buffering is used.

- WO 00/21233 PCT/US99/23143

30

1 5. The acknowledgment pacing device of claim 4 wherein the weighted-
2 round-robin (WRR) process uses weights for weighting the selection of the
3 acknowledgment packet for release inversely proportionally to a TCP maximum

4 segmént size (MSS) to the lessen a bias against smaller MSS flows.

1 6. The acknowledgment pacing device of claim 2 wherein the queuing
2 strategy comprises a fair-queuing (FQ) process for selecting an acknowledgment
3 packet in the acknowledgment packet buffer for release when per-class or per-flow

4 acknowledgment packet buffering is used.

1 7. The acknowledgment pacing device of claim 1 wherein the

2 acknowledgment control unit further comprises an acknowledgment packet pacing
3 processor, the acknowledgment packet pacing processor generating the control

4 signal for controlling the processing of acknowledgment packets using a

5 acknowledgment packet arrival processor and a data packet departure processor.

1 8. The acknowledgment pacing device of claim 7 wherein the

2 acknowledgment packet arrival processor controls the processing of

.3 acknowledgment packets to the acknowledgment packet buffer by checking a

4 congestion level of the network and deciding whether to hold acknowledgment

S packets in the acknowledgment packet buffer or to send the acknowledgment packet
6 directly to the source without buffering the acknowledgment packets in the

7 acknowledgment packet buffer.

© WO 00/21233 PCT/US99/23143

10

|93

31

9. The acknowledgment pacing device of claim 7 wherein the
acknowledgment packet arrival processor decides whether to hold acknowledgment
packets in the acknowledgment packet Buffer or to send the acknowledgment packet
directly to the source without buffering the acknowledgment packets in the

acknowledgment packet buffer by determining if the network is congested,
determining if the acknowledgment packet buffer is empty, storing an
acknowledgment packet in the buffer if the network is congested or the
acknowledgment packet buffer is not empty, and forwarding the acknowledgment
packet to the source if the acknowledgment packet buffer is empty and the network

is not congested.

10. The acknowledgment pacing device of claim 9 wherein the
acknowledgment packet is stored in the acknowledgment packet buffer and gated out
by the scheduler if the acknowledgment packet is a first acknowledgment packet to

be buffered in the acknowledgment packet buffer during congestion.

11. The acknowledgment pacing device of claim 10 wherein the
acknowledgment control unit increases a spacing between acknowledgment packets
gated from the acknowledgment packet buffer if the acknowledgment packét is the
first acknowledgment packet to be buffered in the acknowledgment packet buffer

during congestion.

12. The acknowledgment pacing device of claim 11 wherein the
acknowledgment control unit increases the spacing between acknowledgment

packets by setting a packet counter variable to a first predetermined value.

- WO 00/21233
PCT/US99/23143

32

1 13. The acknowledgment pacing device of claim 12 wherein the packet

5 counter variable is decremented as when a data packet departs from the network.

1 14, The acknowledgment pacing device of claim 13 wherein the
5 scheduler releases a buffered acknowledgment packet when the packet counter
3 variable is decremented to zero and the acknowledgment control unit resets the

4 packet counter variable.

1 15. The acknowledgméfxt pacing device of claim 8 wherein the
2 congestion level of the network is determined by analyzing a queue length

3 representing a capacity for a data packet buffer.

1 16. The acknowledgment pacing device of claim 15 wherein the network
2 is indicated as being non—congested when the queue length is less than a low

3 threshold.

1 17. The acknowledgment pacing device of claim 15 wherein the network

2 is indicated as being congested when the queue length is greater than a high

3 threshold.

1 18. The acknowledgment pacing device of claim 7 wherein the data
2 packet departure processor controls the release of acknowledgment packets from the
3 acknowledgment packet buffer by monitoring congestion levels of the network and

4 deciding when to gate acknowledgment packets from the acknowledgment buffer to

5 the source.

- WO 00/21233 PCT/US99/23143

33

19. The acknowledgment pacing device of claim 18 wherein the data
packet departure processor decides when to gate acknowledgment packets from the

acknowledgment buffer to the source by checking if acknowledgment packets are in
the acknowledgment packet buffer awaiting transmission and if a packet counter

variable set by the acknowledgment control unit has a value of zero, and releasing a
buffered acknowledgment packet in the acknowledgment packet buffer to the source

when the packet counter variable has a value of zero.

20. The acknowledgmeht pacing device of claim 19 wherein the data

packet departure processor increases the spacing between the release of

acknowledgment packets from the acknowledgment packet buffer if congestion still

exists in the network.

21. The acknowledgment pacing device of claim 20 wherein the spacing
between the release of acknowledgment packets is increased by resetting the packet

counter variable to a first predetermined value.

22. The acknowledgment pacing device of claim 21 wherein the data
packet departure processor decrementing the packet counter variable if the value of

the packet counter variable is non-zero.

23. The acknowledgment pacing device of claim 22 wherein the data
packet departure processor resets the packet counter variable to the second
predetermined value to prevent bandwidth under-utilization after congestion periods

4 if the packet counter variable is larger than the second predetermined value.

© WO 00/21233 PCT/US99/23143

34

1 24, The acknowledgment pacing device of claim 19 wherein the data
2 packet departure processor decreases a spacing between the release of
3 acknowledgment packets from the acknowledgment packet buffer if congestion in

4 the network has abated.

1 25. The acknowledgment pacing device of claim 24 wherein the data
2 packet departure processor decreases a spacing between the release of

3 acknowledgment packets by resetting the packet counter variable to a second

4 predetermined value, the second pt‘edetenniried value being less than the first

5 predetermined value.

1 26. The acknowledgment pacing device of claim 25 wherein the data
2 packet departure processor decrementing the packet counter variable if the value of

3 the packet counter variable is. non-zero.

1 27 The acknowledgment pacing device of claim 26 wherein the data
2 packet departure processor resets the packet counter variable to the second
3 predetermined value to prevent bandwidth under-utilization after congestion periods

4 if the packet counter variable is larger than the second predetermined value.

1 28. The acknowledgment pacing device of claim 19 wherein the
2 congestion level of the network is determined by analyzing a queue length

3 representing a capacity for a data packet buffer.

- WO 00/21233

PCT/US99/23143

35

29. The acknowledgment pacing device of claim 28 wherein the network
is indicated as being non—congested when the queue length is less than a low

threshold.

30. The acknowledgment pacing device of claim 28 wherein the network
is indicated as being congested when the queue length is greater than a high

threshold.

31. The acknowledgmept pacing device of claim 1 wherein the
acknowledgment packet buffer buffers acknowledgment packets on an aggregate

basis.

32. The acknowledgment pacing device of claim 1 wherein the
acknowledgment packet buffer buffers acknowledgment packets by flow type, and
wherein the scheduler releases the acknowledgment packets in the acknowledgment
buffer taking into account the type of flows for the buffered acknowledgment

packets.

10
11
12
13
14
15
16
17

18

- WO 00/21233

PCT/US99/23143

36

33. An access node device, comprising;

a link layer entity for receiving data packets from a source and forwarding
the data packets to a forward data link, the link layer entity storing the received data
packets in a data packet buffer until the data packets depart the link layer entity and
are forwarded to the forward data link; and

an acknowledgment pacing device, coupled to the link layer entity, for pacing
acknowledgment packets to be sent to the source in response to receiving the data
packets from the source, the acknowledgment pacing device further comprising:

an acknowledgment control unit for monitoring congestion at the link
layer entity and generating a control signal for controlling the processing of
acknowledgment packets based upon whether congestion is occurring at the link
layer entity;

an acknowledgment packet buffer, coupled to the acknowledgment
control unit, for storing acknowledgment packets received from the acknowledgment
controt unit; and

a scheduler, coupled to the acknowledgment control unit and the
acknowledgment buffer, the scheduler releasing acknowledgment packets to the

source based upon the control signal generated by the acknowledgment control unit.

34, The access node device of claim 33 where the scheduler chooses

acknowledgment packets to be released based upon a queuing strategy.

35. The access node device of claim 34 wherein the queuing strategy
comprises sending a head—of—line acknowledgment packet when aggregate

acknowledgment packet buffering is used.

- WO 00/21233 PCT/US99/23143

37

1 36. The access node device of claim 34 wherein the queuing strategy
2 comprises a weighted-round-robin (WRR) process for selecting an acknowledgment
3 packet in the acknowledgment packet buffer for release when per-class or per-flow

4 acknowledgment packet buffering is used.

37. The access node device of claim 36 wherein the weighted-round-
2 robin (WRR) process uses weights for weighting the selection of the
3 acknowledgment packet for release inversely proportionally to a TCP maximum

4 segment size (MSS) to the lessen a’bias against smaller MSS flows.

38. The access node device of claim 34 wherein the queuing strategy

2 comprises a fair-queuing (FQ) process for selecting an acknowledgment packet in
3 the acknowledgment packet buffer for release when per-class or per-flow

4 acknowledgment packet buffering is used.

39. The access node device of claim 33 wherein the acknowledgment
2 control unit further comprises an acknowledgment packet pacing processor, the
acknowledgment packet pacing processor generating the control signal for

4 controlling the processing of acknowledgment packets using a acknowledgment

5 packet arrival processor and a data packet departure processor.

40. The access node device of claim 39 wherein the acknowledgment
2 packet arrival processor controls the processing of acknowledgment packets to the
3 acknowledgment packet buffer by checking the congestion at the link layer entity
4 and deciding whether to hold acknowledgment packets in the acknowledgment |

5 packet buffer or to send the acknowledgment packet directly to the source without

6 buffering the acknowledgment packets in the acknowledgment packet buffer.

(V5

- WO 00/21233 PCT/US99/23143

38

41. The access node device of claim 39 wherein the acknowledgment
packet arrival processor decides whether to hold écknowledgment packets in the
acknowledgment packet buffer or to send the acknowledgment packet directly to the
source without buffering the acknowledgment packets in the acknowledgment

packet buffer by determining if the link layer entity is congested, determining if the
acknowledgment packet buffer is empty, storing an acknowledgment packet in the
buffer if the link layer entity is congested or the acknowledgment packet buffer is
not empty, and forwarding the acknowledgment packet to the source if the

acknowledgment packet buffer is empty and the link layer entity is not congested.

42, The access node device of claim 41 wherein the acknowledgment
packet is stored in the acknowledgment packet buffer and gated out by the scheduler
if the acknowledgment packet is a first acknowledgment packet to be buffered in the

acknowledgment packet buffer during congestion.

43. The access node device of claim 42 wherein the acknowledgment
control unit increases a spacing between acknowledgment packets gated from the
acknowledgment packet buffer if the acknowledgment packet is the first
acknowledgment packet to be buffered in the acknowledgment packet buffer during

congestion.

44. The access node device of claim 39 wherein the data packet departure
processor decreases a spacing between the release of acknowledgment packets from

the acknowledgment packet buffer if congestion in the link layer entity has abated.

- WO 00/21233 PCT/US99/23143

Ul

39

45. A method for providing acknowledgment pacing for acknowledgment
packets to be sent to a source in response to receiving data packets from the source,
comprising:

monitoring loading of a network;

generating a control signal for controlling the processing of acknowledgment
packets based upon the loading of the network;

storing acknowledgment packets received from the acknowledgment control
unit in an acknowledgment packet buffer ; and

releasing acknowledgment'packets based upon the control signal.

46. The method of claim 45 wherein the releasing further comprises

choosing acknowledgment packets to release based upon a queuing strategy.

47. The method of claim 46 wherein the queuing strategy comprises
sending a head—of-line acknowledgment packet when aggregate acknowledgment

packet buffering is used.

48. The method of claim 46 wherein the queuing strategy comprises a
weighted-round-robin (WRR) process for selécting an acknowledgment packet in the
acknowledgment packet buffer for release when per-class or per-flow

acknowledgment packet buffering is used.

49. The method of claim 48 wherein the weighted-round-robin (WRR)
process uses weights for weighting the selection of the acknowledgment packet for
release inversely proportionally to a TCP maximum segment size (MSS) to the

lessen a bias against smaller MSS flows.

- WO 00/21233 PCT/US99/23143

40

1 50. The method of claim 46 wherein the queuing strategy comprises a
2 fair-queuing (FQ) process for selecting an acknowledgment packet in the
3 acknowledgment packet buffer for release when per-class or per-flow

4 acknowledgment packet buffering is used.

1 51. The method of claim 45 wherein the generating the control signal for
2 controlling the processing of acknowledgment packets comprises a acknowledgment

3 packet arrival processes and a data packet departure process.

1 52. The method of claim 51 wherein the acknowledgment packet arrival
2 process controls the processing of acknowledgment packets to the acknowledgment
3 packet buffer by checking a congestion level of the network and deciding whether to
4 hold acknowledgment packets in the acknowledgment packet buffer or to send the

5 acknowledgment packet directly to the source without buffering the

6 acknowledgment packets in the acknowledgment packet buffer.

1 53. The method of claim 51 wherein the deciding whether to hold

2 acknowledgment packets in the acknowledgment packet buffer or to send the

3 acknowledgment packet directly to the source without buffering the

4 acknowledgment packets in the acknowledgment packet buffer further corﬁprises

5 determining if the network is congested, determining if the acknowledgment packet
6 buffer is empty, storing an acknowledgment packet in the buffer if the network is

7 congested or the acknowledgment packet is not empty, and forwarding the

8 acknowledgment packet to the source if the acknowledgment packet buffer is empty

9 and the network is not congested.

- WO 00/21233 PCT/US99/23143

I

41

54. The method of claim 53 wherein the acknowledgment packet is
stored in the acknowledgment packet buffer and gated out if the acknowledgment
packet is a first acknowledgment packet to be buffered in the acknowledgment

packet buffer.

55. The method of claim 54 further comprising increasing a spacing
between acknowledgment packets gated from the acknowledgment packet buffer if
the acknowledgment packet is the first acknowledgment packet to be buffered in the

acknowledgment packet buffer.

56. The method of claim 55 wherein increasing the spacing further

comprises setting a packet counter variable to a first predetermined value.

57. The method of claim 56 further comprising decrementing the packet

counter variable when a data packet departs from the network.

58. The method of claim 57 further comprising releasing a buffered
acknowledgment packet when the packet counter variable is decremented to zero

and resetting the packet counter variable.

S9. The method of claim 52 wherein the congestion level of the network
is determined by analyzing a queue length representing a capacity for a data packet

buffer.

60. The method of claim 59 further comprising indicating the network is

not congested when the queue length is less than a low threshold.

(93]

- WO 00/21233 PCT/US99/23143

42

61. The method of claim 59 further comprising indicating the network is

congested when the queue length is greater than a high threshold.

62. The method of claim 51 wherein the releasing further comprises
monitoring congestion levels of the network and deciding when to gate

acknowledgment packets from the acknowledgment buffer to the source.

63. The method of claim 62 wherein the deciding further comprises

checking if acknowledgment packets are in the acknowledgment packet buffer
awaiting transmission and if a packet counter variable set by the acknowledgment
control unit has a value of zero, and releasing a buffered acknowledgment packet in
the acknowledgment packet buffer to the source when the packet counter variable

has a value of zero.

64. The method of claim 63 wherein the data packet departure process

further comprises increasing the spacing between the release of acknowledgment

packets from the acknowledgment packet buffer if congestion still exists in the

network.

65. The method of claim 64 wherein the increasing further comprises

resetting the packet counter variable to a first predetermined value.

66. The method of claim 65 wherein the data packet departure process
further comprises decrementing the packet counter variable if the value of the packet

counter variable is non-zero.

© WO 00/21233 PCT/US99/23143

W

43

67. The method of claim 66 wherein the data packet departure process
further comprises resetting the packet counter variable to the second predetermined
value to prevent bandwidth under-utilization after congestion periods if the packet

counter variable is larger than the second predetermined value.

68. The method of claim 63 wherein the data packet departure process
further comprises decreasing a spacing between the release of acknowledgment
packets from the acknowledgment packet buffer if congestion in the network has

abated.

69. The method of claim 68 wherein the data packet departure process
further comprises decreasing a spacing between the release of acknowledgment
packets by resetting the packet counter variable to a second predetermined value, the

second predetermined value being less than the first predetermined value.

70. The method of claim 69 wherein the data packet departure process
further comprises decrementing the packet counter variable if the value of the packet

counter variable is non-zero.

71. The method of claim 70 wherein the data packet departure process
further comprises resetting the packet counter variable to the second predetermined
value to prevent bandwidth under-utilization after congestion periods if the packet

counter variable is larger than the second predetermined value.

- WO 00/21233 PCT/US99/23143

44

72. The method of claim 63 wherein the determining of the congestion
level of the network further comprises analyzing a queue length representing a

capacity for a data packet buffer.

73. The method of claim 72 further comprising indicating the network is

not congested when the queue léngth is less than a low threshold.

74. The method of claim 72 further comprising indicating the network is

congested when the queue length is greater than a high threshold.

75. The method of claim 45 wherein the storing further comprises

buffering acknowledgment packets on an aggregate basis.

76. The method of claim 45 wherein the storing further comprises
buffering acknowledgment packets by flow type, and wherein the releasing further
comprises scheduling the release of acknowledgment packets in the
acknowledgment buffer by taking into account the type of flows for the buffered

acknowledgment packets.

- WO 00/21233 PCT/US99/23143

1/ 8
,DU
A 140
/
| Apphication
o
Presceatation
|
Seasion
[s0 —T
L Transpont
140
- Network
>
Jos _~1 Data Link
- Physical
i
|

PCT/US99/23143

- WO 00/21233

2/ 8

iz

leatsAyd

juii ejeq

—1

¥JOMION

jlodsuels]

uo1SSaS

uotjejueseld

S@0IAJaG pue
suoljeoijddy

./
\Qe?

3
| oﬁh
jeoisAud
yuijejegd
d 1 Jd__ ot
ddn dOl |
~—ar7
Q
S9D1A18S
pue
suoljedijddy
_
\F_‘«\

PCT/US99/23143

- WO 00/21233

3/ 8

02
c
A\ e =
premio] a /

S3pt{s mopuim 3 h—uua_noEﬂ:_ yualvﬂdv—.sqcsud 493 buryvem —
310J3q 1u3s 3q 10uUUe)) 1U9s 39 [['M pue uag . @1z
- - > ¢ >

1\2.........“.m . . RSN -. RS B . g M,M

e | 1z | oz-[TetT| 81 | LU .91 | st | vl | €0 [Tl | 1l

mopuim 3utpls

a/c

PCT/US99/23143

- WO 00/21233

4/ 8

09 1
0% 1 /

H\ Mo l. LN o)
JAIA13031 ereq N OLsS 390D
P 221n0s dDL

1USWISpI|MoIY /
mopuim \ 4 o< 4
PasNIAADE §,19A1309Y oth
7

Qoﬂ“q

PCT/US99/23143

- WO 00/21233

5/ 8

— a———
hS
pemmsesmoesmsesssoresooiissesmiseriessiiioaniiiisiziecoeiesssessneieseeed \
AR —))) -
- v
3 dD1 waiy
nYnq (1p2) wped meq
SO revoossuuy A5 FSSSSSSS S
Az 14wy yury
ass ~
N 7S
e B S "
w apvd neg
QIS —f- Aynou pusvas urp
— m S - - /] RWwunT W dijJu)
bIS Tz»J//A« e
g : = 0NV PwrvLs |
Suymory . /H.ﬂw.wmu ..ue.wawwx W
B o] [wiav| || T Ja1el
3

9SSR wz_ocn—

iiiiiiiiiiiiiiiiiiiiiii

wYnq NIV .aﬂvbeéb&xg

.
.
.
.
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn Vllnsot-l--ntn«-ouncc.tott'u-a-'nt.-lr

pe 2wmaq Jued NIV poveyuy

351A3(IpON 5220Y

005

PCT/US99/23143

- WO 00/21233

6/ 8

=,

0 17 " ((ecremei gy (LA O=Orrrep mopeaing3)) 5

al) o OV B sx3v s0upaisisg sappogsg o

{
U 490mo0 1ag20d USADIP | ~~saguned pyd)

mqa
{ Basapmes™nd |
/s PNDE® toy MoyzaBuca fi yoeyy oy

]
AR 4 0432 joit snjumoa 1yd o7 32

{
137D 7 | 1o Bopzods paopas o/ berapnes ppd)

20

(NO=Orravn"weradues) 5y Sl

Q3?2 " Ko atosdde 181um03 yaa 1sesy oy
o BR03 NI moesrnp oy YOV wmeugyy mn

Unes J3L 01 3DV puag
2000b NIV 9erlins jo peay wesj 3y ananbag

\N:

77

W2

g 7 T NDE DGO 1 XD [1PIY3 of (Beemitpienas”ppd)

Ay ey Aodics-sacu 1y 1ufliog YOV 2 f Y334 o) 7
QQA\

!
T O~V)

fo wnoR)y sasadsq 1wy sroq .

_\.S!i.alviﬁakz.\s...ﬁﬁ-axu:-a.

“tH?

TE

419

\.\.
/

oLy T

g - ngiiiﬁ.ltfl‘l‘w{_ N

U Tows) hh?
aC 7" fo Pouslfaq 31 maf sy sy sy fi yarg oy
a¥s.

o NmO3 YO NowMsLIM of 133 IY wmeny) eny
a0 MY Mgasdess go v be Wy prarwg

=)

-)ﬂil‘i.ﬁ&h&lil&.u—.-lgn!ﬂ(\Q.‘ ’

—T
(8 <X2¥) | (NO=mOomienmoj s nos))
1 2909 YOV 20 pu2aBw03 5y ltus sadog-ypuy fy o

<17

A By mawr P g A or | —— ar2

509

207

PCT/US99/23143

- WO 00/21233

71/ 8

(
(3% pais33u0l) winjax
/o STUDIS UOHIS2ZU0) Wiy o/ |

{
NO=3s11 pasaduocd
/e 30y 4 33uy> sM1D)s 13530 UOYISIZU0? MtOIS,, /

u }
((HD < yiuss ananb) @ (J10==3% parsadued)) jy a5 —

{

-

410=3ey py0ducy | _—

/o 3oy 11 381> smiv)s juIua10gD UOISIS103 OISy T
}

Tzl

((70 > ysduag ananb) 3% (NO==3sy pa1aduc)) i +—
A @u 10) sproysaiyr ananb sispiasy asn o) 1— @7/

}

—2IL Qh\
/s 30} Kiowyq winsas puv smips uoirsaSua) o/

Osrums uoysaduod usajooq |

“Tol.

N
QoL

PCT/US99/23143

"WO 00/21233

8/ 8

Q0%

S

2 5

{
{

L 8 — Teﬂ..s.ulb.lll!..-l_

L LR — /e PIOE oy wormslens i o) o/

)
ﬁ:uw .II\.EB.!;&.!GIE:\‘U

/e Bun2ads pasupsu o qps7soy

QW.V b §3m)adaside 15vma3 (13> reesy .
D LR —~ 1 1mod Yop momrssap o/ 1-yoY wmsnny sy mmu

I 3uner L)1 o3 YV peog
LB ~ b MOV wqrine Jo peay mas) 3y snonbeq
Q2R — ANIVNNRP 1524 saumusirp s3pprgx of

)
zv¢h 5o Js22 39 08 5 DV [17390 o/ (Sremiopeemn“guo)

)
(o=l ama)
h (ur s,y 3 f.v..!f&.:u.cisg{ -

A mp0R)y sinsdaq gD IV o/ |
At R, — (o ¥enoip-srod pastsluso oy o/ 3331008 AL S NIV peag |
LALT-Tle o
YR ~ Ve Bupodr saioy oy saumnas 1oe o pas smpowd Tormsspamnss™ipes |
TR — (Jemiy) g
10 PRARQ YOV naf oy o ss fl 3D of o

INES Yo W03 YO tismssrg o/ [V uewsa gy s
i\m — !Eciﬂ-?'.ll..v(j
o (noyfiad s0 wrops-nad ‘O 414} susub vy ¥ o1 Bupecsy L T4

.eé‘la-iol?i-.i::.

ho WO passy NOF 421 of

S2jmo3 i3 -
(/e N33 eoa123p o) —sapermes a0 | _ 9>

{
b v 170— -
- _ " *wmv
—\cusu&\-ﬂln!-{‘nu ibi‘u— Loy puamm
NO=Omvn"sepsabess) y —|— 2R3

| 418

(3955 s0p00d Sroc sopmenes ey yy (LiO=0wmpy souslo)) gy ——— + -2

| Bss

L 78>

— T3

N\

g

413

) L~

s siﬂﬁglgab‘.‘:&‘\w-\ L 1is

AN

0%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

