特許協力条約に基づいて公開された国際出願

国際特許番号: WO 2013/129466 A1

発明の名称: COMPLEX COMPOUND, RAW MATERIAL FOR FORMING SEMICONDUCTOR LAYER, METHOD FOR MANUFACTURING SEMICONDUCTOR LAYER, AND METHOD FOR MANUFACTURING PHOTOELECTRIC CONVERTING DEVICE

発明の詳細: 本発明の目的は、I または III-VI 族化合物を含む半導体層を簡易な方法で製造することである。半導体層を製造するための複合化合物は、構造式 (1) で表される。ここで、M1 は I または II 族元素を表す。M2 は III または VI 族化合物を表す。R1 または R3 は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のアリール基、または置換もしくは無置換のアルキル基を表す。ここで、R1 または R3 のうち 2 つ以上が連続して置換もしくは不飽和の環を形成してもよい。X1～3 はそれぞれ独立にカルボン基を表す。すなわち、L1, L2 および L3 はそれぞれ独立に配位子を表す。ここでは、L1 および L3 が連続して置換もしくは不飽和の環を形成してもよい。
明細書

発明の名称:
錯体化合物、半導体層形成用原料、半導体層の製造方法および光電変換装置の製造方法

技術分野

[001] 本発明は、I—B族元素、IV—B族元素およびVI—B族元素を具備する錯体化合物、I_ΠIV_VI族化合物を含む半導体層の形成に用いる半導体層形成用原料、I_ΠIV_VI族化合物を含む半導体層の製造方法、およびそれを利用した光電変換素子の製造方法に関するものである。

背景技術

[002] 太陽電池の光吸収層として、シリコンや化合物半導体が採用されている。化合物半導体としては、GaAs等のIII—V族化合物、CdSやCdTe等のII—VI族化合物、CuInGaSe₂(CIGS)等のI_ΠIII_VI族化合物、およびCu₂ZnSnS₄(CZTS)等のI_ΠII_ΠIV_VI族化合物がある。

[003] このうちカルコゲナイド系の化合物は光吸収係数が大きいために、光吸収層の薄膜化が可能であり、また高い変換効率が得られていることから、従来のシリコンに代わる次世代太陽電池として注目されている。中でも、I_ΠII_ΠIV_VI族化合物はインジウムおよびガリウム等の希少元素を含まないことから、特に注目度が高い。

[005] 非特許文献1では、電子ビーム蒸着法を用いてSLG(ソーダライムガラ
ス上のSn/Cu/ZnS積層前駆体を形成し、前駆体を5%H₂S+N₂雰囲気下で硫化させるCZTSの製造方法が開示されている。

また、非特許文献2では、金属カルコゲナイドをヒドラジンに溶解した溶液を用いたCZTSの製造方法が開示されている。

しかしながら、非特許文献1の製造方法では、真空プロセスを使用するために、製造コストが高くなるという問題があった。また、非特許文献2の製造方法では、溶媒として用いられるヒドラジンは、人体にとって極めて有毒であることや金属カルコゲナイドを溶解させる際にアノモニアなどの有害なガスが発生するおそれがあることから、製造工程に特殊な装置を設ける等の対策が必要となり、量産化が困難であるという問題があった。

発明の概要

そこで本発明は、Ⅰ─Ⅱ─Ⅳ─Ⅵ族化合物を含む半導体層を簡易な方法で製造することを目的とする。

本発明の一実施形態に係る錯体化合物は、構造式（1）で表される。

[化5]

構造式（1）

なお、構造式（1）中、MiはⅠ—Ⅵ族元素を表す。M₂はⅣ—Ⅵ族元素を表す。R₁～R₃は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のチクロアルキル基、または置換もしくは無置換の複素環基を表す。ここで、R₁～R₃のうち2つ以上が連絡して飽和もしくは不飽和の環を形成してもよい。X₁～X₃はそれぞれ独立にカルコゲン元素を表す。L₁およびL₂はそれぞれ独立に配位子を
表す。ここで、L_1およびL_2が連結して飽和もしくは不飽和の環を形成してもよい。

【0012】本発明の一実施形態に係る半導体層形成用原料は、上記錯体化合物およびI_1 B族化合物を含む。

【0013】本発明の一実施形態に係る半導体層の製造方法は、上記半導体層形成用原料を用いて皮膜を形成する工程と、該皮膜を加熱して$I_1 II IV VI$族化合物を含む半導体層にする工程とを具備する。

【0014】本発明の一実施形態に係る光電変換装置の製造方法は、上記半導体層の製造方法によって第1の半導体層を作製する工程と、該第1の半導体層に電気的に接続されるように、該第1の半導体層とは異なる導電型の第2の半導体層を作製する工程とを具備する。

【0015】本発明によれば、半導体層を容易に作製することが可能となる。

図面の簡単な説明

【0016】[図1]光電変換装置の実施の形態の一例を示す斜視図である。
[図2]図1の光電変換装置の断面図である。

発明を実施するための形態

【0017】本発明の一実施形態に係る錯体化合物、一実施形態に係る半導体層形成用原料、一実施形態に係る半導体層の製造方法、および一実施形態に係る光電変換装置の製造方法について、図面を参照しながら詳細に説明する。

【0018】（1. 錯体化合物の構成）
本発明の一実施形態に係る錯体化合物は、構造式（1）で表される（以下、構造式（1）で表わされる錯体化合物を第1錯体化合物ともいう）。

【0019】
なお、構造式（1）中、M₁はⅠ-_Β族元素（11族元素ともいう）を表す。また、M₂はⅣ—Β族元素（14族元素ともいう）を表す。R₃は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のシクロアルキル基、または置換もしくは無置換の複素環基を表す。また、R₁～R₃のうち2つ以上が連結して飽和もしくは不飽和の環を形成してもよい。R₂、R₃はそれぞれ独立にカルコン元素を表す。L₁およびL₂はそれぞれ独立に配位子を表す。また、I₁およびL₂が連結して飽和もしくは不飽和の環を形成してもよい。
もに用いられることによって、I, π, IV, VI族化合物を含む半導体層を簡易な方法で製造することができる。つまり、1つの錯体分子内で、I—II族元素、IV—B族元素およびVI—B族元素（カルコゲン元素）が互いに接近して存在しているため、これらの元素同士の反応性が高くなり、その結果、半導体層が良好に生成する。

（2. 半導体層形成用原料の構成）

半導体層形成用原料は、上記第1錯体化合物およびΠ_2族化合物を含んでいる。Π—B族化合物は、Π—B族元素を含む化合物であり、Π—B族元素の有機錯体等の種々の化合物が用いられ得る。

半導体層形成用原料は、半導体層の前躯体としての皮膜の形成を容易にするために、第1錯体化合物およびΠ_2族化合物以外に溶媒を含んでいてもよく、さらには他の添加剤を含んでいてもよい。

半導体層形成用原料に用いられる溶媒としては、上記第1錯体化合物を溶解可能なものが用いられ、例えば、トルエン、ビリジン、キシレン、アセトン等が挙げられる。このように半導体層形成用原料は、溶媒としてヒドロジンのような特殊な溶媒でなく、汎用の有機溶媒が採用され得るため、半導体層の製造工程に溶媒を処理するための特殊な設備が必要となり、製造工程が簡略化可能となる。

以上のような半導体層形成用原料の皮膜を加熱することによって、第1錯体化合物中のI, B族元素、IV, B族元素およびVI, B族元素（カルコゲン元素）と、Π—B族化合物中のΠ—B族元素とが良好に反応してI, III, IV, VI族化合物を含む半導体層が良好に生成する。

また、第1錯体化合物との反応性が高く、I, III, IV, VI族化合物をさらに良好に形成するという観点からは、Π—B族化合物は、半導体層形成用原料中に、構造式 (2) で表される第2錯体化合物として含まれていてもよい。

[0030]
なお、構造式（2）中、M_3 は Π族元素を表す。また、$R_4 \sim R_7$ は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のシクロアルキル基、または置換もしくは無置換の複素環基を表す。また、$R_4 \sim R_7$ のうち 2 つ以上が連結して飽和もしくは不飽和の環を形成してもよい。また、$X^4 \sim X^7$ はそれぞれ独立にカルコゲン元素を表す。また、Y^{n^+} は n を自然数としたときに n 倍の陽イオンを表す。

なお、カルコゲン元素 $X^4 \sim X^7$ と有機基 $R^4 \sim R^7$ とは、$R^4 X^4$、$R^5 X^5$、$R^6 X^6$ および $R^7 X^7$ で表わされる有機カルコゲン化合物を構成している。有機カルコゲン化合物 $R^4 X^4 \sim R^7 X^7$ は、有機カルコゲン化合物 $R^1 X$、$R^3 X^3$ で挙げられたような種々の化合物が用いられ得る。

また、$R_4 \sim R_7$ として表わされる有機基は、合成が容易という観点から、1 以上 8 以下の炭素数を有するものが採用されてもよい。

このような第 2 錯体化合物は、Π—B族元素と VI—B族元素（カルコゲン元素）が 1 つの錯体分子内で接近して存在するとともに、第 1 錯体化合物とは互いに高い親和力で結合する。そのため、第 2 錯体化合物内における Π—B族元素と VI—B族元素（カルコゲン元素）の反応性が高いためでなく、第 1錯体化合物と第 2 錯体化合物との間における I—B族元素、 Π—B族元素、I V—B族元素および VI—B族元素（カルコゲン元素）の反応性が高くなる。そ
の結果、\[_1 \pi _1 ^v _1 \]族化合物がさらに良好に生成しやすくなる。

また、\[_1 \beta 族元素\]と、\[_2 \beta 族元素\]と、\[_4 \beta 族元素\]と、\[_6 \beta 族元素\]
（カルコゲン元素）とのモル比を容易に制御するという観点から、半導体層
形成用原料は、\[_1 \beta 族化合物および _2 \beta 族化合物に加えて構造式（3）
で表される第3族化合物をさらに含んでいてもよい。

[0036] [化8]

\[
\begin{align*}
L^3 & \quad M^4 & \quad X^8 & \quad L^5 \\
L^4 & \quad M^5 & \quad X^9 & \quad L^6 \\
R^8 & \quad & \quad & \quad R^9
\end{align*}
\]

なお、構造式（3）中、\[M^4 \]および\[M^5 \]はそれぞれ独立に\[_1 \beta 族元素\]を表
す。また、\[R^8 \]および\[R^9 \]は、それぞれ独立に、置換もしくは無置換のアルキ
ル基、置換もしくは無置換のアリール基、置換もしくは無置換のシクロアル
ル基、または置換もしくは無置換の複素環基を表す。また、\[R^8 \]および\[R^9 \]
が連結して飽和もしくは不飽和の環を形成してもよい。また、\[X^8 \]および\[X^9 \]
はそれぞれ独立にカルコゲン元素を表す。また、\[L^3 \sim L^6 \]はそれぞれ独立に
配位子を表す。また、\[X^3 \sim L^6 \]のうち2つ以上が連結して飽和もしくは不飽
和の環を形成してもよい。

なお、カルコゲン元素除\[X^3 \sim X^9 \]と有機基\[R^8 \sim R^9 \]とは、\[R^8 X^8 \]および\[R^9 X^9 \]
で表わされる有機カルコゲン化合物を構成している。有機カルコゲン化合物
\[R^8 X^8 \]および\[R^9 X^9 \]は、有機カルコゲン化合物\[R^1 X^1 \sim R^3 X^3 \]で挙げられ
たような種々の化合物が用いられ得る。また、\[X^3 \sim L^6 \]として表わされる配
位子は、ルイス塩基として機能する化合物である。このような配位子として
は、配位子\[L^1 \]、\[L^2 \]で挙げられたような種々の化合物が用いられ得る。

また、\[R^8 \sim R^9 \]として表わされる有機基は、合成が容易という観点から、
1以上8以下の炭素数を有するものが採用されてもよい。
このような第3錯体化合物は、I _ B族元素とVI _ B族元素（カルコゲン元素）が1つの錯体分子内で接近して存在するとともに、第1錯体化合物と互いに高い親和力で結合する。そのため、第3錯体化合物内におけるI _ B族元素とVI _ B族元素（カルコゲン元素）との反応性が高いだけでなく、第1錯体化合物と第2錯体化合物との間におけるI _ B族元素、Π _ B族元素、IV _ B族元素およびVI _ B族元素（カルコゲン元素）の反応性が高くなる。その結果、1_ II、IV _ VI族化合物を良好に形成できるとともにI _ B族元素を第3錯体化合物の状態で添加することによって組成調整が容易となる。

特に、半導体層形成用原料が、上記の第1錯体化合物、第2錯体化合物および第3錯体化合物を含む場合、I _ B族元素と、Π _ B族元素と、IV _ B族元素と、VI _ B族元素（カルコゲン元素）とのモル比を任意に制御することができ、所望とする組成の半導体層を良好に作製することができる。また、このような半導体層形成用原料は、第1錯体化合物と、第2錯体化合物および第3錯体化合物が半導体層形成用原料中で互いに高い親和力で結合した状態となる。よって、この半導体層形成用原料を用いて皮膜を形成する際に相分離することなく、各原料元素が均一に分散し、かつ、互いに接近した状態の皮膜を形成することができる。その結果、この皮膜を加熱した際、各原料元素同士が良好に反応し、1_ II _ IV _ VI族化合物半導体層を良好に形成することが可能となる。

また、上記Π _ B族化合物の他の例として、構造式（4）で表される第4錯体化合物が用いられてもよい。
なお、構造式 (4) 中、M₆およびM₈はそれぞれ独立にI-B族元素を表す。また、M₇はII-B族元素を表す。また、R₁₀~R₁₃は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のシクロアルキル基、または置換もしくは無置換の複素環基を表す。また、R₁₀~R₁₃のうち2つ以上が連結して飽和もしくは不飽和の環を形成してもよい。また、X₁₀~X₁₃はそれぞれ独立にカルコゲン元素を表す。L₇~L₁₀はそれぞれ独立に配位子を表す。また、L₇~L₁₀が連結して飽和もしくは不飽和の環を形成してもよい。

なお、カルコゲン元素X₁₀~X₁₃と有機基R₁₀~R₁₃とは、R₁₀X₁₀、R₁₁X₁₁、R₁₂X₁₂およびR₁₃X₁₃で表わされる有機カルコゲン化合物を構成している。有機カルコゲン化合物R₁₀X₁₀~R₁₃X₁₃は、有機カルコゲン化合物R₁X₁~R₃X₃で挙げられたような種々の化合物が用いられ得る。

また、R₁₀~R₁₃として表わされる有機基は、合成が容易という観点から1以上2以下の炭素数を有するものが採用されてもよい。

また、L₇~L₁₀として表わされる配位子は、ルイス塩基として機能する化合物である。このような配位子としては、配位子L₁、L₂で挙げられたような種々の化合物が用いられ得る。

このような第4錯体化合物は、I-_B族元素、II-_B族元素およびVI-_B族元素（カルコゲン元素）が1つの錯体分子内で接近して存在するとともに、第1錯体化合物と互いに高い親和力で結合する。そのため、第4錯体化合物内におけるI-_B族元素、II-_B族元素およびVI-_B族元素（カルコゲン
元素）の反応性が高いだけでなく、第1錯体化合物と第4錯体化合物との間におけるI_ B族元素、Π_ B族元素、IV_ B族元素およびVI_ B族元素（カルコゲン元素）の反応性が高くなる。その結果、I_ II_ IV_VI族化合物がさらに良好に生成しやすくなる。

なお、半導体層形成用原料は、第1錯体化合物および第4錯体化合物に加えて、上記第2錯体化合物および第3錯体化合物の少なくとも一方をさらに含んでいるより。これによって、I—B族元素と、Π—B族元素と、IV—B族元素と、VI—B族元素（カルコゲン元素）とのモル比を容易に制御することができる。

以上のようない第1錯体化合物、第2錯体化合物、第3錯体化合物および第4錯体化合物の作製工程について、以下に説明する。

（3. 各錯体化合物の作製方法）

第1錯体化合物は、以下に示すようにして作製することができる。先ず、錯体Aおよび錯体Bを作製する。そして、この錯体Aおよび錯体Bを用いて、第1錯体化合物を作製する。

<錯体Aの作製>

錯体Aは、I—B族元素に任意の配位子（アセチルトリル等）が配位した金属錯体の一部の配位子を、この配位子よりも配位力の強いルイス塩基性の配位子で置換したものである。例えば、I—B族元素をMiとし、任意の配位子をQとし、任意の陰イオンをZとし、ルイス塩基性の配位子をLとしたときに、錯体Aは[L2MiQ2] +Z−を表わすことができる。

このようなルイス塩基としては、複素環式化合物、ホスフィン化合物、アミン化合物を用いることができる。

上の複素環式化合物としては、置換基を有していてもよいビリジン、キノリン、ピラゾール、イミダゾール、オキサゾール、チアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾシアゾール、トリアジン、ビリミシン、ピラジン、ピペリジン、ピベラジン、モルホリン、チオフェン、フラ
ン、トリアゾール、トリアジン、アクリジン等が挙げられる。錯体Bとの反応性を高めるという観点から、複素環式化合物として、ピリジン、キノリン、イミダゾール、ベンゾイミダゾール、またはトリアジンを用いてもよい。

上記のホスフィン化合物としては、トリフエニルホスフィン、プロビルジフエニルホスフィン、t e r t _ブチルジフエニルホスフィン、1—ブチルジフエニルホスフィン、1—ヘキシルジフエニルホスフィン、シクロヘキシルジフエニルホスフィン、ジシクロヘキシルフェニルホスフィン、トリシクロヘキシルホスフィン、トリメチルホスフィン、トリ(2—フリル)ホスフィン、トリ(3—フリル)ホスフィン、トリ(2—ピリジル)ホスフィン、トリ(3—ピリジル)ホスフィン、トリ(4—ピリジル)ホスフィン、2_フリルジフエニルホスフィン、3_フリルジフエニルホスフィン、2_ピリジルジフエニルホスフィン、3_ピリジルジフエニルホスフィン、4_ピリジルジフエニルホスフィン等が挙げられる。錯体Bとの反応性を高めるという観点から、ホスフィン化合物として、トリフエニルホスフィン、トリシクロヘキシルホスフィン、トリメチルホスフィン、トリ(2—フリル)ホスフィン、トリ(3—フリル)ホスフィン、トリ(2—ピリジル)ホスフィン、トリ(3—ピリジル)ホスフィン、トリ(4—ピリジル)ホスフィン、2_フリルジフエニルホスフィン、3_フリルジフエニルホスフィン、2_ピリジルジフエニルホスフィン、3_ピリジルジフエニルホスフィン、4_ピリジルジフエニルホスフィンを用いてもよい。特にトリフエニルホスフィンは取扱性も良好である。なお、ここに例示したホスフィン化合物のフェニル基、シクロヘキシル基、フリル基およびピリジル基は置換基を有していてもよい。

上記のアミン化合物としては、トリフエニルアミン、ジフエニルアミン、プロビルジフエニルアミン、t e r t _ブチルジフエニルアミン、n—ブチルジフエニルアミン、n—ヘキシルジフエニルアミン、シクロヘキシルジフェニルアミン、ジシクロヘキシルフェニルアミン、トリシクロヘキシルアミン、トリメチルアミン、ジメチルアミン等が挙げられる。錯体Bとの反応性
を高めるという観点から、アミン化合物として、トリフェニルアミン、ジフェニルアミン、トリシクロヘキシルアミン、トリメチルアミン、ジメチルアミンを用いてもよい。なお、ここに示したアミン化合物のフエニル基およびシクロヘキシル基は置換基を有していてもよい。

[0057] 錯体 A は例えば反応式 (1) のようにして作製することができる。Ⅰ—B 族元素を M' とし、任意の配位子を Q とし、Z を任意の陰イオンとしたときに、I _ B 族錯体 [M' Q₄] + Z - を、例えば、アセトニトリル、アセトン、メタノール、乙タノール、イソプロパノール等の溶媒に溶解する。そして、この溶液にルイス塩基 L を溶解することによって、I _ B 族錯体の配位子の一部がルイス塩基に置換され、錯体 A として [L₂M' Q₂] + Z - が生成する。

[0058] [化 10]

\[[M' Q₄] + Z - + 2 L \rightarrow [L₂M' Q₂] + Z - + 2 Q \] 反応式 (1)

[0059] 錯体 A の作製の具体例を以下に示す。Ⅰ—B 族錯体として Cu (CΗ₃CN)₄ • PF₆ 等の金属錯体をアセトニトリル等の溶媒に溶解する。そして、この溶液にルイス塩基 L として P (C₆H₅)₃ を溶解することによって、錯体 A が \{ P (C₆H₅)₃ \}₂Cu (CΗ₃CN)₂ • PF₆ として生成する。

[0060] < 錯体 B の作製 >

錯体 B は IV _ B 族元素に有機カルコゲン化合物が配位した錯体化合物である。このような有機カルコゲン化合物としては、例えば、アクリル、アクリル、アルキル、ビニル、パーアルコロ、カルバメート等の有機化合物にカルコゲン元素が結合した、チオール、セレノール、テルロール等が挙げられる。錯体 B は、例えば、IV—B 族元素を Miv とし、有機カルコゲン化合物の塩を Y (RX) (R は有機化合物であり、X はカルコゲン元素であり、Y は任意の陽イオンである) としたときに、錯体 B は Y [Miv (X R)₃] と表わすことができる。

[0061] 錯体 B は例えば反応式 (2) のようにして作製することができる。IV—B 族元素 Miv の塩 Miv Z₂ (例えば、SnO 等の金属酸化物や SnCl₂ 等の金属
塩化物を含む）、および有機カルコゲン化合物の塩Y X R（例えば、Na (SC₆H₅)等を含む）を、メタノール、エタノール、プロパノール等の溶媒中で反応させることによって、錯体BとしてY [Miv (X R)₃]が生成する。

\[0062\] [化11]

\[M^{IV}Z₂ + 3Y(XR) \rightarrow Y[M^{IV}(XR)_3] + 2YZ \cdots \text{反応式 (2)}\]

[0063] 錯体Bの作製の具体例を以下に示す。IV—B族元素Mivの塩としてSnCl₂、および有機カルコゲン化合物の塩としてNa (SC₆H₅)をメタノール等の溶媒に溶解することによって、これらが反応して、錯体BとしてNa + [Sn (SC₆H₅)₃]⁻ が生成する。

[0064] < 錯体Aと錯体Bとを用いた第1錯体化合物の作製>

上記のようにして作製した錯体Aの溶液と錯体Bの溶液とを混合することによって、錯体Aと錯体Bとが反応し、I—B族元素、IV—B族元素、およびカルコゲン元素を含有する、構造式 (5) で示される第1錯体化合物を含む沈殿物が生じる。錯体Aと錯体Bとを反応させる時の温度は例えば0～30°Cであり、反応時間は例えば1〜5時間である。第1錯体化合物を含む沈殿物を、NaやC₁などの不純物を取り除くために、遠心分離もしくは濾過などの手法を用いて洗浄してもよい。なお、構造式 (5) 等で示されているPhはフエニル基である。

[0065] [化12]

\[
\begin{align*}
\text{Ph} & \\
\text{Ph}_3\text{P} & \quad \text{S} & \quad \text{S} & \quad \text{Ph} & \quad \cdots \text{構造式 (5)} \\
\text{Cu} & \quad \text{Sn} & \quad \text{Ph} \\
\text{Ph}_3\text{P} & \quad \text{S} & \quad \text{Ph}
\end{align*}
\]

[0066] « 3 - 2. 第2錯体化合物の作製方法 > >
第2錯体化合物は例えば以下に示すようにして作製できる。先ず、有機カルコゲン化合物とルイス塩基とを溶媒に溶解する。そして、この溶液にII—B族元素を単体あるいは合金の状態で直接溶解することによって、第2錯体化合物が生成する。この生成した第2錯体化合物は、石油エーテル、ヘキサン、トルエンなどの非極性有機溶媒を上記の溶液に滴下することによって、沈殿し単離することができる。

第2錯体化合物に用いる有機カルコゲン化合物は、第1錯体化合物に用いる有機カルコゲン化合物で示したような化合物を用いることができる。なお、第1錯体化合物で用いる有機カルコゲン化合物と第2錯体化合物で用いる有機カルコゲン化合物とは、同じであってもよく、異なっていてもよい。

第2錯体化合物の作製に用いるルイス塩基は、第2錯体化合物の陽イオンとして機能するものである。このようなルイス塩基としては、アンモニアやアミン化合物等を用いることができる。

第2錯体化合物を作製する際の有機カルコゲン化合物とルイス塩基との混合比は、例えば、有機カルコゲン化合物がモル比でルイス塩基の0.01～2.5倍とすればよい。

第2錯体化合物の作製の具体例を以下に示す。先ず、有機カルコゲン化合物としてチオフェノールと、ルイス塩基としてアニリンとを混合する。そして、この混合溶液に、II—B族元素としての金属亜鉛を溶解させた後、ヘキサン等の非極性有機溶媒を添加することによって、構造式（6）で表わされる第2錯体化合物が沈殿物として生じる。
第3錯体化合物の作製方法

第3錯体化合物は、第1錯体化合物の合成と同様の方法で作製した錯体Aおよび有機カルコン化合物の塩を用いて作製できる。

第3錯体化合物に用いる有機カルコン化合物は、第1錯体化合物に用いる有機カルコン化合物で示されるような化合物を用いることができる。なお、第1錯体化合物で用いる有機カルコン化合物と第3錯体化合物で用いる有機カルコン化合物とは、同じであってもよく、異なっていてもよい。

第3錯体化合物の作製の具体例を以下に示す。上記第1錯体化合物の作製で使用した錯体Aとして{P(C₆H₅)}₃Cu(CH₃CN)₂PF₆と、有機カルコン化合物の塩としてNa(SC₆H₅)とをそれぞれ等モル量のメタノール、エタノール、プロパノール等の溶媒中で混合することによって、構造式（7）で表わされる第3錯体化合物が生成する。
第4錯体化合物は、上記錯体Aおよび第2錯体化合物を用いて作製できる。錯体Aおよび第2錯体化合物を溶媒中で混合することによって、錯体Aと第2錯体化合物が反応して、第4錯体化合物が生成する。

第4錯体化合物の作製の具体例を以下に示す。錯体Aとして \(\{ P(C_6H_5)_3 \}_2 Cu(C_6H_3CN)_2 \cdot PF_6 \) と、第2錯体化合物として構造式 (6) で示される化合物とを、第2錯体化合物が錯体Aの1/2モル量となるようにして、メタノール、エタノール、プロパノール等の溶媒中で混合することによって、構造式 (8) で表わされる第4錯体化合物が生成する。

(4. 半導体層の製造方法)

上記のような半導体層形成用原料を用いて半導体層を作製する方法を以下に示す。先ず、上記の半導体層形成用原料を用いて、半導体層の形成対象物（以下、半導体層の形成対象物を単に対象物という）の表面に半導体層の前駆体としての皮膜を形成する。皮膜は、例えば、溶媒等を用いて液状にした半導体層形成用原料を、対象物の表面に、スピンコーダ、スクリーン印刷、デイツビング、スプレーまたはダイコーダなどを用いて塗布し、乾燥することによって形成できる。この乾燥は、還元雰囲気下で行なってもよい。乾燥時の温度は、例えば、50～300℃で行なう。

そして、上記皮膜を熱処理して、1～2.5μmの厚みの半導体層を作製することができる。熱処理は、酸化を防止して良好な半導体層とするために
非酸化性ガス雰囲気下で行なってもよい。熱処理における非酸化性ガス雰囲気としては、窒素雰囲気、フォーミングガス雰囲気および水素雰囲気等がある。熱処理温度は、例えば、400℃〜600℃とする。

【0081】以上のような半導体層の作製方法によって、I_III_ IV_VI 族化合物を含む半導体層を良好に作製できる。つまり、上記半導体層形成用原料を用いて作製された皮膜は、I_ B 族元素、IV_ B 族元素およびVI_ B 族元素（カルコゲン元素）が1つの分子である第1錯体化合物内で互いに接近して存在しているため、反応性が高くなる。そのため、I_ π _ IV_VI 族化合物が良好に生成する。

【0082】なお、上記皮膜は、第1錯体化合物に含まれたVI — B 族元素（カルコゲン元素）を原料として反応し、カルコゲン元素を含む半導体層を形成可能であるが、半導体層形成用原料に別途、カルコゲン元素をカルコゲン化合物として含ませておいてもよい。また、皮膜の熱処理時の雰囲気にカルコゲン元素を含ませておいてもよい。このような方法によって、蒸発等で不足しやすくなるカルコゲン元素を十分に供給でき、所望の組成のI_ III_ IV_VI 族化合物を有する半導体層を形成することができる。

【0083】（5．光電変換装置の構成）

図1は、本発明の一実施形態に係る半導体層の製造方法および本発明の一実施形態に係る光電変換装置の製造方法を用いて作製した光電変換装置の実施の形態の一例を示す斜視図であり、図2はその断面図である。光電変換装置11は、基板1と、第1の電極層2と、第1の半導体層3と、第2の半導体層4と、第2の電極層5を含んで構成される。本実施例においては、第1の半導体層3が光吸収層であり、第2の半導体層4が第1の半導体層3に接合されたパッファ層である例を示すがこれに限定されず、第2の半導体層4が光吸収層であってもよい。

【0084】図1、図2において、光電変換装置11は、複数の光電変換セル10が並べて形成されている。そして、光電変換セル10は、第1の半導体層3の基板1側に第1の電極層2と離間して設けられた第3の電極層6を具備してい
る。そして、第1の半導体層3に設けられた接続導体7によって、第2の電極層5と第3の電極層6とが電気的に接続されている。図1、図2においては、この第3の電極層6は、隣接する光電変換セル10の第1の電極層2が延伸されたものである。この構成によって、隣接する光電変換セル10同士が直列接続されている。なお、1つの光電変換セル10内において、接続導体7は第1の半導体層3および第2の半導体層4を貫通するように設けられており、第1の電極層2と第2の電極層5とで挟まれた第1の半導体層3と第2の半導体層4とで光電変換が行なわれる。

【0085】基板1は、光電変換セル10を支持するためのものである。基板1に用いられる材料としては、例えば、ガラス、セラミックス、樹脂および金属等が挙げられる。

【0086】第1の電極層2および第3の電極層6は、M0、As、Siまたは六亜等の導電体が用いられ、基板1上にスパッタリング法または蒸着法等で形成される。

【0087】第1の半導体層3はI、II、IV、VI族化合物を主に含む半導体層である。I、II、IV、VI族化合物とは、I—B族元素とII—B族元素とIV—B族元素とVI—B族元素との化合物半導体である。I、II、IV、VI族化合物としては、例えば、Cu₂ZnSnS₄（CZTSともいう）、Cu₂ZnSnS₄₋ₓSex（CZTSSeともいう。なお、xは0より大きく4より小さい数である）、およびCu₂ZnSnSe₄（CZTSeともいう）が挙げられる。このようなI、n、IV、VI族化合物は光吸収係数が大いため、10μm以下のに薄層として用いても有効な起電力を得ることができる。

【0088】第1の半導体層3は、上述した本発明の一実施形態に係る半導体層の製造方法を用いて作製できる。つまり、表面に第1の電極層2が設けられた基板1を用意し、この第1の電極層2の上に半導体層形成用原料を用いて皮膜を形成する。そして、この皮膜を熱処理することによって、I、II、IV、VI族化合物を含む第1の半導体層3を形成することができる。

【0089】光電変換セル10は、第1の半導体層3上に第1の半導体層3とは異なる
導電型の第2の半導体層4が、例えば10〜200 nmの厚みで形成されている。第1の半導体層3および第2の半導体層4は、一方がn型で他方がp型の異なる導電型を有しており、これらがp n接合している。第1の半導体層3がp型であり第2の半導体層4がn型であってもよく、逆の関係であってもよい。なお、第1の半導体層3および第2の半導体層4によるp n接合は第1の半導体層3と第2の半導体層4とが直接接合しているものに限らな
し。例えば、これらの間に第1の半導体層3と同じ導電型の他の半導体層かまたは第2の半導体層4と同じ導電型の他の半導体層をさらに有していてもよい。また、第1の半導体層3と第2の半導体層4の間に、i型の半導体層を有するp i n接合であってもよい。

第1の半導体層3と第2の半導体層4とはホモ接合であってもよく、ヘテロ接合であってもよい。ヘテロ接合である場合、第2の半導体層4としては、CdS、ZnS、ZnO、In_{2}Se_{3}、In(OH)_{2}、(Zn，In) (Se・OH)、および(Zn，Mg) 0等が挙げられ、例えばケミカルバストポジション (CBD) 法等で10〜200 nmの厚みで形成される。
なお、In(OH，S)とは、InとOHとSから主に構成された化合物をいう。(Zn，In) (Se・OH)は、ZnとInとSeとOHから主に構成された化合物をいう。(Zn，Mg) 0は、ZnとMgと0から主に構成された化合物をいう。

第2の電極層5は、ITO、ZnO等の0.05〜3 μmの透明導電膜である。第2の電極層5は、スパッタリング法、蒸着法または化学的気相成長 (CVD) 法等で形成される。第2の電極層5は、第2の半導体層4よりも抵抗率の低い層であり、第1の半導体層3で生じた電荷を取り出すためのものである。電荷を良好に取り出すという観点からは、第2の電極層5の抵抗率が1Ω・cm未満でシート抵抗が50Ω/□以下であってもよい。

光電変換装置11は、複数個の光電変換セル10が並べられてこれらが電気的に接続されて成る。隣接する光電変換セル10同士を容易に直列接続するために、図1、図2に示すように、光電変換セル10は、第1の半導体層
3 の基板 1 側に第 1 の電極層 2 と離間して設けられた第 3 の電極層 6 を具備している。そして、第 1 の半導体層 3 に設けられた接続導体 7 によって、第 2 の電極層 5 と第 3 の電極層 6 とが電気的に接続されている。

図 1 において、接続導体 7 は、第 1 の半導体層 3、第 2 の半導体層 4 および第 2 の電極層 5 を貫通する溝内に、導電性ペースト等の導体が充填されて形成されている。接続導体 7 はこれに限定されず、第 2 の電極層 5 が延長されて形成していてもよい。

また、図 1、図 2 のように、第 2 の電極層 5 上に集電電極 8 が設けられていてもよい。集電電極 8 は、第 2 の電極層 5 の電気抵抗を小さくするためのものである。第 2 の電極層 5 上に集電電極 8 が設けられることによって、第 2 の電極層 5 の厚さを薄くして光透過性を高めるとともに第 1 の半導体層 3 で発生した電流が効率よく取り出される。その結果、光電変換装置 1 1 の発電効率が高められる。

集電電極 8 は、例えば、図 1 に示すように、光電変換セル 1 0 の一端から接続導体 7 にかけて線状に形成されている。これによって、第 1 の半導体層 3 の光電変換で生じた電荷が第 2 の電極層 5 を介して集電電極 8 に集電され、接続導体 7 を介して隣接する光電変換セル 1 0 に良好に伝達される。

集電電極 8 の幅は、第 1 の半導体層 3 への光を遮るのを低減するとともに良好な導電性を有するという観点からは、5 0 ～ 4 0 0 µm とされる。また、集電電極 8 は、枝分かれした数の分岐部を有していてもよい。

集電電極 8 は、例えば、Ag 等の金属粉を樹脂バインダー等に分散させた金属ベーストがパターン状に印刷され、これが硬化されることによって形成される。

なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等差し支えない。

実施例

<第 1 錯体化合物の合成>

第 1 錯体化合物として構造式 (5) に示す \((\text{Ph}_3\text{P})_2\text{Cu}(\text{SPh})_2\text{Sn(SPh)}\) の合成を
以下の操作はすべて乾燥窒素にて十分に置換されたグロープボックス内で行なった。まず、300mIのマイヤーフラスコを用意して、これに1〜B族元素の金属錯体として10mmolのテトラキシゲネトニトリル銅（I）テトラフルオロホウ酸塩と、ルイス塩基として30mmolのトリフニルホスフィンとを秤量し、さらに100mIの脱水メタノールを加えて、マグネタックススターラーにて室温で3時間攪拌した（この溶液を反応溶液1という）。

1000mIのマイヤーフラスコを用意して、これに30mmolのナトリウムメトキシドを秤量し、500mIの脱水メタノールを加えて、完全に溶解するまでマグネタックススターラーで攪拌した。この溶液に、30mmolのフニルチオールを加え、15分攪拌した後、10mmolの塩化ムス（II）（無水）を加えて、さらに1時間攪拌した（この溶液を反応溶液2という）。

反応溶液1を反応溶液2の入ったマイヤーフラスコに滴下し、さらに2時間攪拌を行なった。生成した黄色の沈殿をろ取し、脱水メタノールで洗浄した後、減圧乾燥を行ない、目的物を得た。収率は90%であった。

<第2錯体化合物の合成>

第2錯体化合物として構造式（6）に示す(NH₄)₂Zn(SPh)₄の合成を行なった。

以下の操作はすべて乾燥窒素にて十分に置換されたグロープボックス内で行なった。還流冷却器を装着した30mIのマイヤーフラスコを用意して、ルイス塩基として50mmolのアニリンと、有機カルコゲン化合物として60mmolのフニルチオールとを混合した混合液を作製し、マグネタックススターラーにて室温で1時間攪拌した。この混合液に10mmolの亜鉛を加えて、70℃で12時間攪拌した。室温まで放冷した後、反応溶液を150mIのn-ヘキサンを入れた300mIのマイヤーフラスコに、ゆっくり滴下した。得られた沈殿物をろ取し、n-ヘキサンで洗浄した後、減圧乾
燥を行ない、目的物を得た。収率は70%であった。

<第3錯体化合物の合成>
第1錯体化合物として構造式（7）に示す(Ph₃P)₂Cu(SPh)₂Cu(PPh₃)の合成を行なった。

<光電変換装置の作製>
上記の半導体層形成用原料をドクタープレード法にて、ソーダライムガラス基板1のMoからなる第1の電極層2上に塗布膜を形成した。塗布膜は、
グローブボックス内で、キャリアガスとして窒素ガスを用いて半導体層形成用原料を第1の電極層2へ塗布して形成した。塗布の後、上記試料をホットプレートで110℃に加熱しながら、5分間乾燥させて皮膜を形成した。

皮膜形成後、水素ガス雰囲気下にて熱処理を実施した。熱処理条件は、525℃まで5分間で急熱昇温し、525℃で1時間保持することで行ない、その後、自然冷却して、厚み1.5μmの化合物半導体薄膜からなる第1の半導体層3を作製した。

この第1の半導体層3のX線回折結果から、得られた第1の半導体層3はCu$_2$ZnSnS$_2$であることがわかった。

この後、酢酸カルドミウム、チオ尿素をアンモニア水に溶解し、これに上記試料を浸漬し、第1の半導体層3上に厚み0.05μmのCdSからなる第2の半導体層4を形成した。さらに、第2の半導体層4の上に、スパッタリング法にてAlドープ酸化亜鉛膜（第2の電極層5）を形成した。最後に蒸着にしてアルミ電極（取出電極）を形成して、光電変換装置11を作製した。

<光電変換装置の評価>

この光電変換装置11の光電変換効率を、定常光ソーラーシミュレーターを用いて測定した。ここでは、光電変換装置11の受光面に対する光の照射強度が100mW/cm2であり、且つエアマス（AM）が1.5である条件下で光電変換効率を測定した。なお、光電変換効率は、光電変換装置11において太陽光のエネルギーが電気エネルギーに変換される割合を示し、ここでは、光電変換装置11から出力される電気エネルギーの値を、光電変換装置11に入射される太陽光のエネルギーの値で除して、100を乗じることで導出した。

その結果、上記のようにして作製した光電変換装置の光電変換効率は7.6%であり、良好な特性を有することを確認した。

以上より、本発明によれば、真空プロセスや有害なヒドラジンを用いることなく、I, II, IV, VI族化合物を含む半導体層を簡易な方法で製造することが可能であることがわかった。
符号の説明

[0117] 1 :基板
2 :第1の電極層
3 :第1の半導体層 (I _ II _ IV _ VI 族化合物を含む半導体層)
4 :第2の半導体層
5 :第2の電極層
6 :第3の電極層
7 :接続導体
8 :集電電極
10 :光電変換セル
11 :光電変換装置
請求の範囲

【請求項1】構造式（1）で表される錯体化合物。

【化1】

![構造式（1）](attachment:image.png)

（式中、M_iはI～B族元素を表す。M_2はIV～B族元素を表す。R_1～R_3は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のシクロアルキル基、または置換もしくは無置換の複素環基を表す。ここで、R_1～R_3のうち2つ以上が連結して飽和もしくは不飽和の環を形成してもよい。X_1～X_3はそれぞれ独立にカルコゲン元素を表す。L_1およびL_2はそれぞれ独立に配位子を表す。ここで、I_1およびL_2が連結して飽和もしくは不飽和の環を形成してもよい。）

【請求項2】請求項1に記載の錯体化合物およびΠ—B族化合物を含む半導体層形成用原料。

【請求項3】前記Π—B族化合物を構造式（2）で表される第2錯体化合物として含んでいる請求項2に記載の半導体層形成用原料。
式中、M^3は$\Pi _ _ B$族元素を表す。$R_4 \sim R_7$は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のシクロアルキル基と表す。ここで、$R_4 \sim R_7$のうち2つ以上が連続して飽和もしくは不飽和の環を形成してもよい。$X^4 \sim X^7$はそれぞれ独立にカルコゲン元素を表す。Y^{n+}はnを自然数としたときにn価の陽イオンを表す。

[請求項4] 構造式（3）で表される第3錯体化合物をさらに含んでいる請求項2または3に記載の半導体層形成用原料。

式中、M^4およびM^5はそれぞれ独立に$1 _ _ B$族元素を表す。R^8およびR^9は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のシクロアルキル基を表す。
ル基、または置換もしくは無置換の複素環基を表す。ここで、\(R^8\)および\(R^9\)が連結して飽和もしくは不飽和の環を形成してもよい。\(X^8\)および\(X^9\)はそれぞれ独立にカルコン元素を表す。\(L^3\)～\(L^6\)はそれぞれ独立に配位子を表す。ここで、\(L^3\)～\(L^6\)のうち2つ以上が連結して飽和もしくは不飽和の環を形成してもよい。)

[請求項5] 前記II～B族化合物を構造式 (4) で表される第4錯体化合物とし
て含んでいる請求項2乃至4のいずれかに記載の半導体層形成用原料。

[化4]

![構造式 (4)]

(式中、\(M^6\)および\(M^8\)はそれぞれ独立にI_族元素を表す。\(M^7\)はII～B族元素を表す。\(R^{10}\)～\(R^{13}\)は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリル基、置換もしくは無置換のシクロアルキル基、または置換もしくは無置換の複素環基を表す。ここで、\(R^{10}\)～\(R^{13}\)のうち2つ以上が連結して飽和もしくは不飽和の環を形成してもよい。\(X^{10}\)～\(X^{13}\)はそれぞれ独立にカルコン元素を表す。\(L^7\)～\(L^{10}\)はそれぞれ独立に配位子を表す。ここで、\(L^7\)～\(L^{10}\)が連結して飽和もしくは不飽和の環を形成してもよい。)

[請求項6] 請求項2乃至5のいずれかに記載の半導体層形成用原料を用いて皮
膜を形成する工程と、
該皮膜を加熱してI_π_Ⅲ_Ⅵ族化合物を含む半導体層にする工程と
を具備することを特徴とする半導体層の製造方法。
[請求項7] 請求項6に記載の半導体層の製造方法によって第1の半導体層を作製する工程と、
該第1の半導体層に電気的に接続されるように、該第1の半導体層とは異なる導電型の第2の半導体層を作製する工程と
を具備することを特徴とする光電変換装置の製造方法。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C07F19/00, C01G19/00, H01L21/368 (2006.01), H01L31/04 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07F19/00, C01G19/00, H01L21/368, H01L31/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2013
Kokai Jitsuyo Shinan Koho 1971-2013 Toroku Jitsuyo Shinan Koho 1994-2013

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CAlplus, REGISTRY (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 9-148597 A (Matsushita Electric Industrial Co., Ltd.), 06 June 1997 (06.06.1997), entire text (Family: none)</td>
<td>1-7</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. See patent family annex.

*”A” document defining the general state of the art which is not considered to be of particular relevance

“E” earlier application or patent but published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search
05 April 1, 2013 (05.04.13)

Date of mailing of the international search report
23 April 1, 2013 (23.04.13)

Name and mailing address of the ISA/
Japanese Patent Office
Authorized officer

Facsimile No. Telephone No.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Family: none)</td>
<td></td>
</tr>
</tbody>
</table>
国際調査報告

国際出願番号 PCT/JP2013/055109

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. C07F19/00 (2006. 01) i., C01G19/00 (2006. 01) i., H01L21/368 (2006. 01) i., H01L31/04 (2006. 01) i.

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. C07F19/00, C01G19/00, H01L21/368, H01L31/04

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-
日本国公開実用新案公報 1971-2
日本国実用新案登録公報 1996-
日本国登録実用新案公報 1994-2

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

CAplus (STN) , REGISTRY (STN)

C. 関連すると認められる文脈

引用文献のカテゴリ

<table>
<thead>
<tr>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wo 2011/016283 Al (三井金属鉱業株式会社) 2011. 02. 10, 全文 & US 2012/0219797 Al</td>
<td>1-7</td>
</tr>
<tr>
<td>Wo 2010/098369 Al (国立大学法人名古屋大学) 2010. 09. 02, 全文 & US 2012/0074361 Al</td>
<td>1-7</td>
</tr>
<tr>
<td>JP 9-148597 A (松下電器産業株式会社) 1997-06-06, 全文 (ファミリーなし)</td>
<td>1-7</td>
</tr>
</tbody>
</table>

\(\checkmark \) カラの続きにも文献が列挙されている。

\(\checkmark \) パラメータファミリーに関する別紙を参照。

* 引用文献のカテゴリ

IA 特に関連のある文献ではなく、一般的の技術水準を示すもの

IE 国際出願日後の出願または特許であるが、国際出願日以後に公表されたもの

II 特に関連のある文献であるが、国際出願日の出願と矛盾するものではないが、発明の原理又は理論の理解のために引用するもの

IB 口頭による開示、使用、展示等に営及する文献

IP 国際出願日後で、かつ優先権の主張の基礎となる出願の日の後に公表された文献

IT 国際出願日又は優先日後に公表された文献であって、発明の原理又は理論の理解のために引用するもの

IX 特に関連のある文献であって、当該文脈のみで発明の新規性又は進歩性がないと考えられるもの

IY 特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

Iz 同一パラメータファミリー文献

国際調査を完了した日 05. 04. 2013

国際調査報告の発送日 23. 04. 2013

国際調査機関の名称及び住所等

日本国特許庁（ISA／JP）
郵便符号100－8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）4H 3968
水島英一郎
電話番号 03-3581-1101 内線 3443

様式 PCT／ISA／210（第2ページ）（2009年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, A</td>
<td>JP 2013-26541 A (京セラ株式会社) 2013. 02. 04, 全文 (ファミリーなし)</td>
<td>1-7</td>
</tr>
</tbody>
</table>