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CONFUSION OF MULTIPLE FILTERS IN
ADAPTIVE LOOP FILTERING IN VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Patent Application
62/337,243, filed May 16, 2016, and U.S. Provisional Patent Application 62/440,877,
filed December 30, 2016, the entire content of each of which is incorporated herein by

reference.

TECHNICAL FIELD

[0002] This disclosure relates to computing devices that perform video coding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the ITU-T H.265,
High Efficiency Video Coding (HEVC) standard, and extensions of such standards. The
video devices may transmit, receive, encode, decode, and/or store digital video
information more efficiently by implementing such video compression techniques.
[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I)
slice of a picture are encoded using spatial prediction with respect to reference samples
in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
of a picture may use spatial prediction with respect to reference samples in neighboring
blocks in the same picture or temporal prediction with respect to reference samples in

other reference pictures. Spatial or temporal prediction results in a predictive block for
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a block to be coded. Residual data represents pixel differences between the original
block to be coded and the predictive block. An inter-coded block is encoded according
to a motion vector that points to a block of reference samples forming the predictive
block, and the residual data indicating the difference between the coded block and the
predictive block. An intra-coded block is encoded according to an intra-coding mode
and the residual data. For further compression, the residual data may be transformed
from the pixel domain to a transform domain, resulting in residual transform

coefficients, which then may be quantized.

SUMMARY

[0005] In general, this disclosure describes techniques related to computing devices that
perform adaptive loop filtering (ALF), including techniques for coding the side
information for transmitting the filters. Such techniques may be used in the context of
advanced video codecs, such as extensions of High Efficiency Video Coding (HEVC) or
the next generation of video coding standards. Such techniques may be used in other
filtering methods which signal side information for transmitting filters.

In one example, this disclosure describes a method of decoding or encoding video data,
the method comprising: reconstructing, by a computing device, one or more blocks of a
current picture of the video data, the one or more blocks of the current picture
comprising reconstructed samples of the current picture; and after reconstructing the one
or more blocks of the current picture, applying, by the computing device, a particular
function of a plurality of filters to a current block of the current picture, the current
block comprising the reconstructed samples of the current picture.

[0006] In another example, this disclosure describes an apparatus for decoding or
encoding video data, the apparatus comprising: one or more processors configured to:
reconstruct one or more blocks of a current picture of the video data, the one or more
blocks of the current picture comprising reconstructed samples of the current picture;
and after reconstructing the one or more blocks of the current picture, apply a particular
function of a plurality of filters to a current block of the current picture, the current
block comprising the reconstructed samples of the current picture.

[0007] In another example, this disclosure describes an apparatus for decoding or
encoding video data, the apparatus comprising: means for reconstructing one or more

blocks of a current picture of the video data, the one or more blocks of the current
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picture comprising reconstructed samples of the current picture; and means for
applying, after reconstructing the current picture, a particular function of a plurality of
filters to a current block of the current picture, the current block comprising the
reconstructed samples of the current picture.

[0008] In another example, this disclosure describes a computer-readable data storage
medium having instructions stored thereon that, when executed, configure a device for
decoding or encoding video data to: reconstruct one or more blocks of a current picture
of the video data, the one or more blocks of the current picture comprising reconstructed
samples of the current picture; and after reconstructing the one or more blocks of the
current picture, apply a particular function of a plurality of filters to a current block of
the current picture, the current block comprising the reconstructed samples of the
current picture.

[0009] The details of one or more aspects of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the techniques described in this disclosure will be apparent from the

description, drawings, and claims.

BRIEF DESCRIPTION OF DRAWINGS

[0010] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system that may utilize one or more techniques described in this disclosure.

[0011] FIG. 2 is a conceptual diagram illustrating example Adaptive Loop Filter (ALF)
filter supports.

[0012] FIG. 3 is a conceptual diagram illustrating an example 7x7 filter shape with
three categories for filter coefficient signaling.

[0013] FIG. 4 is a conceptual diagram illustrating an example mask for weighting
multiple filters, in accordance with a technique of this disclosure.

[0014] FIG. 5 is a block diagram illustrating an example picture that includes
overlapping blocks, in accordance with a technique of this disclosure.

[0015] FIG. 6 is a block diagram illustrating a first example in which a block of a
picture is assigned more than one class, in accordance with one or more techniques of

this disclosure.
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[0016] FIG. 7 is a block diagram illustrating a second example in which a block of a
picture is assigned more than one class, in accordance with one or more techniques of
this disclosure.

[0017] FIG. 8 is a block diagram illustrating an example video encoder that may
implement one or more techniques described in this disclosure.

[0018] FIG. 9 is a block diagram illustrating an example video decoder that may
implement one or more techniques described in this disclosure.

[0019] FIG. 10 is a flowchart illustrating an example operation for encoding or

decoding video data, in accordance with one or more techniques of this disclosure.

DETAILED DESCRIPTION
[0020] Video coding typically involves predicting a block of video data from either an
already coded block of video data in the same picture (i.e. intra prediction) or an already
coded block of video data in a different picture (i.e. inter prediction). In some instances,
the video encoder also calculates residual data by comparing the predictive block to the
original block. Thus, the residual data represents a difference between the predictive
block and the original block. The video encoder transforms and quantizes the residual
data and signals the transformed and quantized residual data in the encoded bitstream.
A video decoder adds the residual data to the predictive block to produce a
reconstructed video block that matches the original video block more closely than the
predictive block alone. To further improve the quality of decoded video, a video
decoder can perform one or more filtering operations on the reconstructed video blocks.
Examples of these filtering operations include deblocking filtering, sample adaptive
offset (SAO) filtering, and adaptive loop filtering (ALF). Parameters for these filtering
operations may either be determined by a video encoder and explicitly signaled in the
encoded video bitstream or may be implicitly determined by a video decoder.
[0021] A picture comprises one or more sample arrays. Each of the sample arrays
corresponds to a different color component, such as a luma component or a chroma
component. When a video coder (e.g., a video encoder or a video decoder) applies an
ALF, the video coder may partition a sample array of a picture into equally-sized
blocks, such as 4x4 blocks. For each respective block, the video coder assigns to the
respective block a direction value from a set of allowed direction values. Additionally,
for each respective block, the video coder assigns to the respective block an activity

value from a set of allowed activity values. In some prior proposals, the set of allowed
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direction values is limited to 3 direction values and the set of allowed activity values is
limited to S activity values. Thus, in such proposals, there may be a total of 15
combinations of direction values and activity values.

[0022] Each of the combinations may be referred to as a group (or named a class).
Thus, each of the blocks may be said to belong to one of the groups. Each of the groups
may be associated with a set of ALF coefficients (or named a set of filter coefficients).
The set of ALF coefficients associated with the groups may be signaled or predefined.
The video coder applies, to the samples of a block, a filter using the set of ALF
coefficients associated with the group to which the block belongs.

[0023] Limiting the allowed direction values to 3 and the allowed activity values to 5
may limit the performance of the ALF filter, which may decrease compression
efficiency. In contrast, increased compression efficiency may allow decoding devices to
display higher-quality video data with an equivalent amount of data, allow decoding
devices to access encoded video data faster, or potentially provide other improvements
to such decoding devices. Limiting the allowed direction values to 3 and the allowed
activity values to 5 may limit the performance of the ALF filter especially in instances
where characteristics of a block are close to a threshold at which the block is assigned a
different direction value from the set of allowed direction values or assigned a different
direction value from the set of allowed activity values. However, using more than 15
groups may result in more sets of ALF coefficients being signaled, which may also
decrease compression efficiency. Storing and signaling additional sets of ALF
coefficients may increase hardware complexity, reduce available memory, prolong
times required by a computing device to display video data in response to a request, and
SO on.

[0024] Techniques of this disclosure may address these challenges. For example,
instead of applying one filter to the samples of a block, a video coder may apply a
confusion of multiple filters to the samples of the block. In the context of this
disclosure, the term “confusion” is applied in the sense of using together or mixing.

For instance, the video coder may apply a linear function of multiple filters to the
samples of the block. Thus, the number of sets of ALF filters to be transmitted may not
need to increase, while at the same time, application of a confusion of multiple filters
may address the limitation on the number of possible filters imposed by the numbers of
allowed direction values and allowed activity values. Thus, as described in this

disclosure, a video coder (i.e., a video encoder or a video decoder) may reconstruct
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samples of a current picture of the video data. Additionally, after reconstructing the
samples of the current picture, the video coder may apply a particular function of a
plurality of filters to a current block of the current picture. In this way, the video coder
may in effect generate a new filter according to the particular function, and apply the
new filter to the current block. The current block comprises the reconstructed samples.
[0025] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize techniques of this disclosure. As shown in FIG. 1, system 10
includes a source device 12 that provides encoded video data to be decoded at a later
time by a destination device 14. In particular, source device 12 provides the video data
to destination device 14 via a computer-readable medium 16. Source device 12 and
destination device 14 may comprise any of a wide range of computing devices,
including desktop computers, notebook (i.e., laptop) computers, tablet computers, set-
top boxes, telephone handsets such as so-called “smart” phones, tablet computers,
televisions, cameras, display devices, digital media players, video gaming consoles,
video streaming device, or the like. In some cases, source device 12 and destination
device 14 may be equipped for wireless communication. Thus, source device 12 and
destination device 14 may be wireless communication devices. Source device 12 is an
example video encoding device (i.e., a device for encoding video data). Destination
device 14 is an example video decoding device (i.e., a device for decoding video data).
[0026] In the example of FIG. 1, source device 12 includes a video source 18, storage
media 19 configured to store video data, a video encoder 20, and an output interface 24.
Destination device 14 includes an input interface 26, a storage media 28 configured to
store encoded video data, a video decoder 30, and display device 32. In other examples,
source device 12 and destination device 14 include other components or arrangements.
For example, source device 12 may receive video data from an external video source,
such as an external camera. Likewise, destination device 14 may interface with an
external display device, rather than including an integrated display device.

[0027] The illustrated system 10 of FIG. 1 is merely one example. Techniques for
processing video data may be performed by any digital video encoding and/or decoding
device. Although generally the techniques of this disclosure are performed by a video
encoding device, the techniques may also be performed by a video encoder/decoder,
typically referred to as a “CODEC.” Source device 12 and destination device 14 are
merely examples of such coding devices in which source device 12 generates coded

video data for transmission to destination device 14. In some examples, source device
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12 and destination device 14 may operate in a substantially symmetrical manner such
that each of source device 12 and destination device 14 include video encoding and
decoding components. Hence, system 10 may support one-way or two-way video
transmission between source device 12 and destination device 14, e.g., for video
streaming, video playback, video broadcasting, or video telephony.

[0028] Video source 18 of source device 12 may include a video capture device, such as
a video camera, a video archive containing previously captured video, and/or a video
feed interface to receive video data from a video content provider. As a further
alternative, video source 18 may generate computer graphics-based data as the source
video, or a combination of live video, archived video, and computer-generated video.
Source device 12 may comprise one or more data storage media (e.g., storage media 19)
configured to store the video data. The techniques described in this disclosure may be
applicable to video coding in general, and may be applied to wireless and/or wired
applications. In each case, the captured, pre-captured, or computer-generated video may
be encoded by video encoder 20. Output interface 24 may output the encoded video
information to a computer-readable medium 16.

[0029] Destination device 14 may receive the encoded video data to be decoded via
computer-readable medium 16. Computer-readable medium 16 may comprise any type
of medium or device capable of moving the encoded video data from source device 12
to destination device 14. In some examples, computer-readable medium 16 comprises a
communication medium to enable source device 12 to transmit encoded video data
directly to destination device 14 in real-time. The encoded video data may be
modulated according to a communication standard, such as a wireless communication
protocol, and transmitted to destination device 14. The communication medium may
comprise any wireless or wired communication medium, such as a radio frequency (RF)
spectrum or one or more physical transmission lines. The communication medium may
form part of a packet-based network, such as a local area network, a wide-area network,
or a global network such as the Internet. The communication medium may include
routers, switches, base stations, or any other equipment that may be useful to facilitate
communication from source device 12 to destination device 14. Destination device 14
may comprise one or more data storage media configured to store encoded video data
and decoded video data.

[0030] In some examples, encoded data may be output from output interface 24 to a

storage device. Similarly, encoded data may be accessed from the storage device by
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input interface. The storage device may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, the storage device may
correspond to a file server or another intermediate storage device that may store the
encoded video generated by source device 12. Destination device 14 may access stored
video data from the storage device via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting that encoded
video data to the destination device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from the storage device may be a
streaming transmission, a download transmission, or a combination thereof.

[0031] The techniques may be applied to video coding in support of any of a variety of
multimedia applications, such as over-the-air television broadcasts, cable television
transmissions, satellite television transmissions, Internet streaming video transmissions,
such as dynamic adaptive streaming over HTTP (DASH), digital video that is encoded
onto a data storage medium, decoding of digital video stored on a data storage medium,
or other applications. In some examples, system 10 may be configured to support one-
way or two-way video transmission to support applications such as video streaming,
video playback, video broadcasting, and/or video telephony.

[0032] Computer-readable medium 16 may include transient media, such as a wireless
broadcast or wired network transmission, or storage media (that is, non-transitory
storage media), such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray
disc, or other computer-readable media. In some examples, a network server (not
shown) may receive encoded video data from source device 12 and provide the encoded
video data to destination device 14, e.g., via network transmission. Similarly, a
computing device of a medium production facility, such as a disc stamping facility, may
receive encoded video data from source device 12 and produce a disc containing the
encoded video data. Therefore, computer-readable medium 16 may be understood to

include one or more computer-readable media of various forms, in various examples.
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[0033] Input interface 26 of destination device 14 receives information from computer-
readable medium 16. The information of computer-readable medium 16 may include
syntax information defined by video encoder 20 of video encoder 20, which is also used
by video decoder 30, that includes syntax elements that describe characteristics and/or
processing of blocks and other coded units, e.g., groups of pictures (GOPs). Storage
media 28 may be configured to store encoded video data, such as encoded video data
(e.g., a bitstream) received by input interface 26. Display device 32 displays the
decoded video data to a user, and may comprise any of a variety of display devices such
as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma display, an organic
light emitting diode (OLED) display, or another type of display device.

[0034] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0035] In some examples, video encoder 20 and video decoder 30 may operate
according to a video coding standard such as an existing or future standard. Example
video coding standards include, but are not limited to, ITU-T H.261, ISO/IEC MPEG-1
Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4
Visual and ITU-T H.264 (also known as ISO/IEC MPEG-4 AVC), including its
Scalable Video Coding (SVC) and Multi-View Video Coding (MVC) extensions. In
addition, a new video coding standard, namely High Efficiency Video Coding (HEVC)
or ITU-T H.265, including its range and screen content coding extensions, 3D video
coding (3D-HEVC) and multiview extensions (MV-HEVC) and scalable extension
(SHVC), has recently been developed by the Joint Collaboration Team on Video
Coding (JCT-VC) of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC
Motion Picture Experts Group (MPEG).

[0036] Wang et al., High Efficiency Video Coding (HEVC) Defect Report,” Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC
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JTC 1/SC 29/WG 11, 14™ Meeting, Vienna, AT, 25 July — 2 Aug. 2013, is a draft
specification of HEVC, and referred to as HEVC WD hereinafter. HEVC WD is
available from http://phenix.int-

evry fr/jct/doc_end user/documents/14 Vienna/wgl1/JCTVC-N1003-v1.zip. The
HEVC standard was finalized in January 2013.

[0037] ITU-T VCEG (Q6/16) and ISO/IEC MPEG (JTC 1/SC 29/WG 11) are now
studying the potential need for standardization of future video coding technology with a
compression capability that significantly exceeds that of the current HEVC standard,
including HEVC’s current extensions and near-term extensions for screen content
coding and high-dynamic-range coding. The groups are working together on this
exploration activity in a joint collaboration effort known as the Joint Video Exploration
Team (JVET) to evaluate compression technology designs proposed by their experts in
this area. The JVET first met during 19-21 October 2015. The latest version of
reference software, i1.e., Joint Exploration Model 2 (JEM 2) can be downloaded from:
https://jvet. hhi.fraunhofer.de/svn/svn HMJEMSoftware/tags/HM-16.6-JEM-2.0/

J. Chen et al. “Algorithm description of Joint Exploration Test Model 27, JVET-B1001,
San Diego, Mar. 2016 (hereinafter, “JVET-B10017) contains a description of the
algorithm for JEM2, which may also be referred to as JEM2.0.

[0038] In HEVC and other video coding specifications, a video sequence typically
includes a series of pictures. Pictures may also be referred to as “frames.” A picture
may include three sample arrays, denoted Si, Scb, and Scr. Sv is a two-dimensional
array (i.e., a block) of luma samples. Scv is a two-dimensional array of Cb chrominance
samples. Scris a two-dimensional array of Cr chrominance samples. Chrominance
samples may also be referred to herein as “chroma” samples. In other instances, a
picture may be monochrome and may only include an array of luma samples.

[0039] To generate an encoded representation of a picture, video encoder 20 may
generate a set of coding tree units (CTUs). Each of the CTUs may comprise a coding
tree block of luma samples, two corresponding coding tree blocks of chroma samples,
and syntax structures used to code the samples of the coding tree blocks. In
monochrome pictures or pictures having three separate color planes, a CTU may
comprise a single coding tree block and syntax structures used to code the samples of
the coding tree block. A coding tree block may be an NxN block of samples. A CTU
may also be referred to as a “tree block” or a “largest coding unit” (LCU). The CTUs of

HEVC may be broadly analogous to the macroblocks of other standards, such as
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H.264/AVC. However, a CTU is not necessarily limited to a particular size and may
include one or more coding units (CUs). A slice may include an integer number of
CTUs ordered consecutively in a raster scan order.

[0040] This disclosure may use the term “video unit” or “video block™ or “block” to
refer to one or more sample blocks and syntax structures used to code samples of the
one or more blocks of samples. Example types of video units may include CTUs, CUs,
PUs, transform units (TUs), macroblocks, macroblock partitions, and so on. In some
contexts, discussion of PUs may be interchanged with discussion of macroblocks or
macroblock partitions. Example types of video blocks may include coding tree blocks,
coding blocks, and other types of blocks of video data.

[0041] Video encoder 20 may encode blocks of a picture of the video data. Video
encoder 20 may include, in a bitstream, an encoded representation of the video block.
For instance, to generate a coded CTU of a picture, video encoder 20 may recursively
perform quad-tree partitioning on the coding tree blocks of a CTU to divide the coding
tree blocks into coding blocks, hence the name “coding tree units.” In quad-tree
partitioning, a block is divided into four equally-sized sub-blocks, any of which may be
further partitioned into four equally-sized sub-sub-blocks, and so on. A coding block is
an NxN block of samples. A CU may comprise a coding block of luma samples and
two corresponding coding blocks of chroma samples of a picture that has a luma sample
array, a Cb sample array, and a Cr sample array, and syntax structures used to code the
samples of the coding blocks. In monochrome pictures or pictures having three separate
color planes, a CU may comprise a single coding block and syntax structures used to
code the samples of the coding block.

[0042] Furthermore, video encoder 20 may encode a CU. For instance, to encode a CU,
video encoder 20 may partition a coding block of a CU into one or more prediction
blocks. A prediction block is a rectangular (i.e., square or non-square) block of samples
on which the same prediction is applied. A prediction unit (PU) of a CU may comprise
a prediction block of luma samples, two corresponding prediction blocks of chroma
samples, and syntax structures used to predict the prediction blocks. In monochrome
pictures or pictures having three separate color planes, a PU may comprise a single
prediction block and syntax structures used to predict the prediction block. Video
encoder 20 may generate predictive blocks (e.g., luma, Cb, and Cr predictive blocks) for

prediction blocks (e.g., luma, Cb, and Cr prediction blocks) of each PU of the CU.
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[0043] Video encoder 20 may use intra prediction or inter prediction to generate the
predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the
predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the
PU based on decoded samples of the picture that includes the PU.

[0044] Video encoder 20 may generate one or more residual blocks for the CU. For
instance, video encoder 20 may generate a luma residual block for the CU. Each sample
in the CU’s luma residual block indicates a difference between a luma sample in one of
the CU’s predictive luma blocks and a corresponding sample in the CU’s original luma
coding block. In addition, video encoder 20 may generate a Cb residual block for the
CU. Each sample in the Cb residual block of a CU may indicate a difference between a
Cb sample in one of the CU’s predictive Cb blocks and a corresponding sample in the
CU’s original Cb coding block. Video encoder 20 may also generate a Cr residual
block for the CU. Each sample in the CU’s Cr residual block may indicate a difference
between a Cr sample in one of the CU’s predictive Cr blocks and a corresponding
sample in the CU’s original Cr coding block.

[0045] Furthermore, video encoder 20 may use quad-tree partitioning to decompose the
residual blocks (e.g., the luma, Cb, and Cr residual blocks) of a CU into one or more
transform blocks (e.g., luma, Cb, and Cr transform blocks). In other words, video
encoder 20 may partition the residual blocks according to a residual quad-tree (RQT).
A transform block is a rectangular (e.g., square or non-square) block of samples on
which the same transform is applied. A transform unit (TU) of a CU may comprise a
transform block of luma samples, two corresponding transform blocks of chroma
samples, and syntax structures used to transform the transform block samples. Thus,
each TU of a CU may have a luma transform block, a Cb transform block, and a Cr
transform block. The luma transform block of the TU may be a sub-block of the CU’s
luma residual block. The Cb transform block may be a sub-block of the CU’s Cb
residual block. The Cr transform block may be a sub-block of the CU’s Cr residual
block. In monochrome pictures or pictures having three separate color planes, a TU
may comprise a single transform block and syntax structures used to transform the
samples of the transform block.

[0046] As mentioned above, video encoder 20 may generate data that represent a RQT
for a CU. The RQT for the CU comprises a set of nodes. Each of the nodes
corresponds to a residual sample block. A root node of the RQT corresponds to the

residual block of the CU. Leaf nodes of the RQT correspond to the transform blocks of
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TUs of the CU. Nodes of the RQT may be associated with split flags. The split flag of
a node may indicate whether the node has a plurality of child nodes of the RQT.

[0047] Furthermore, in addition to being associated with split flags, nodes of the RQT is
associated with a luma coded block flag (CBF) that indicates whether the leaf node is
associated with a significant (non-zero) luma transform block. In some examples, only
leaf nodes of the RQT are associated with luma CBFs. In addition to split flags and
luma CBFs, the nodes of the RQT may also be associated with chroma CBFs (e.g., Cb
CBFs and Cr CBFs). A Cb CBF of a node indicates whether the node, or any
descendant node of the node, is associated with a significant Cb transform block. A
first node may be a descendant node of a second node if the second node is the root
node of the RQT or there is a path through the RQT from the first node to the root node
that passes through the second node and does not pass through any node more than
once. A Cr CBF of a node indicates whether the node, or any descendant node of the
node, is associated with a significant Cr transform block.

[0048] Video encoder 20 may apply one or more transforms a transform block of a TU
to generate a coefficient block for the TU. For instance, video encoder 20 may apply
one or more transforms to a luma transform block of a TU to generate a luma coefficient
block for the TU. A coefficient block may be a two-dimensional array of transform
coefficients. A transform coefficient may be a scalar quantity. Video encoder 20 may
apply one or more transforms to a Cb transform block of a TU to generate a Cb
coefficient block for the TU. Video encoder 20 may apply one or more transforms to a
Cr transform block of a TU to generate a Cr coefficient block for the TU. In some
examples, video encoder 20 skips application of the transforms to the transform block.
[0049] After generating a coefficient block (e.g., a luma coefficient block, a Cb
coefficient block or a Cr coefficient block), video encoder 20 may quantize the
coefficient block. Quantization generally refers to a process in which transform
coefticients are quantized to possibly reduce the amount of data used to represent the
transform coefficients, providing further compression. In some examples, quantization
is skipped. After video encoder 20 quantizes a coefficient block, video encoder 20 may
entropy encode syntax elements indicating the quantized transform coefficients. For
example, video encoder 20 may perform Context-Adaptive Binary Arithmetic Coding
(CABAC) on the syntax elements indicating the quantized transform coefficients.
[0050] Video encoder 20 may output a bitstream that includes encoded video data. For

example, the bitstream may comprise a sequence of bits that forms a representation of
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coded pictures and associated data. Thus, the bitstream comprises an encoded
representation of video data. In some examples, a representation of a coded picture may
include encoded representations of blocks. Thus, video encoder 20 may signal, in the
bitstream, transform coefficients of a block in an encoded representation of the block.
In some instances, video encoder 20 may use one or more syntax elements to signal
each transform coefficient of the block.

[0051] The bitstream may comprise a sequence of network abstraction layer (NAL)
units. A NAL unit is a syntax structure containing an indication of the type of data in
the NAL unit and bytes containing that data in the form of a raw byte sequence payload
(RBSP) interspersed as necessary with emulation prevention bits. Each of the NAL
units may include a NAL unit header and encapsulates a RBSP. The NAL unit header
may include a syntax element indicating a NAL unit type code. The NAL unit type
code specified by the NAL unit header of a NAL unit indicates the type of the NAL
unit. A RBSP may be a syntax structure containing an integer number of bytes that is
encapsulated within a NAL unit. In some instances, an RBSP includes zero bits.
[0052] Video decoder 30 may receive a bitstream generated by video encoder 20. In
addition, video decoder 30 may parse the bitstream to obtain syntax elements from the
bitstream. Video decoder 30 may reconstruct the pictures of the video data based at
least in part on the syntax elements obtained from the bitstream. The process to
reconstruct the video data may be generally reciprocal to the process performed by
video encoder 20. For instance, video decoder 30 may use motion vectors of PUs to
determine predictive blocks for the PUs of a current CU. In addition, video decoder 30
may inverse quantize coefficient blocks of TUs of the current CU. Video decoder 30
may perform inverse transforms on the coefficient blocks to reconstruct transform
blocks of the TUs of the current CU. Video decoder 30 may reconstruct the coding
blocks of the current CU by adding the samples of the predictive blocks for PUs of the
current CU to corresponding samples of the transform blocks of the TUs of the current
CU. By reconstructing the coding blocks for each CU of a picture, video decoder 30
may reconstruct the picture.

[0053] In some examples, video encoder 20 may signal motion information of a block
(e.g., PU) using merge/skip mode or advanced motion vector prediction (AMVP) mode.
For instance, in HEVC, there are two modes for the prediction of motion parameters,
one being the merge/skip mode and the other being AMVP. Motion prediction may

comprise the determination of motion information of a video unit (e.g., a PU) based on
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motion information of one or more other video units. The motion information of a PU
may include motion vector(s) of the PU, reference index(s) of the PU, and one or more
prediction direction indicators.

[0054] When video encoder 20 signals the motion information of a current PU using
merge mode, video encoder 20 generates a merge candidate list. In other words, video
encoder 20 may perform a motion vector predictor list construction process. The merge
candidate list includes a set of merge candidates that indicate the motion information of
PUs that spatially or temporally neighbor the current PU. That is, in the merge mode, a
candidate list of motion parameters (e.g., reference indexes, motion vectors, etc.) is
constructed where a candidate can be from spatial and temporal neighboring blocks.
[0055] Furthermore, in merge mode, video encoder 20 may select a merge candidate
from the merge candidate list and may use the motion information indicated by the
selected merge candidate as the motion information of the current PU. Video encoder
20 may signal the position in the merge candidate list of the selected merge candidate.
For instance, video encoder 20 may signal the selected motion vector parameters by
transmitting an index (i.e., a merging candidate index) that indicates a position within
the candidate list of the selected merge candidate. Video decoder 30 may obtain, from
the bitstream, the index into the candidate list (i.e., the merging candidate index). In
addition, video decoder 30 may generate the same merge candidate list and may
determine, based on the merging candidate index, the selected merge candidate. Video
decoder 30 may then use the motion information of the selected merge candidate to
generate predictive blocks for the current PU. That is, video decoder 30 may determine,
based at least in part on the candidate list index, a selected candidate in the candidate
list, wherein the selected candidate specifies the motion vector for the current PU. In
this way, at the decoder side, once the index is decoded, all motion parameters of the
corresponding block where the index points may be inherited by the current PU.

[0056] Skip mode is similar to merge mode. In skip mode, video encoder 20 and video
decoder 30 generate and use a merge candidate list in the same way that video encoder
20 and video decoder 30 use the merge candidate list in merge mode. However, when
video encoder 20 signals the motion information of a current PU using skip mode, video
encoder 20 does not signal any residual data for the current PU. Accordingly, video
decoder 30 may determine, without use of residual data, a prediction block for the PU
based on a reference block indicated by the motion information of a selected candidate

in the merge candidate list.



WO 2017/201011 PCT/US2017/032853
16

[0057] AMVP mode is similar to merge mode in that video encoder 20 may generate a
candidate list and may select a candidate from the candidate list. However, when video
encoder 20 signals the RefPicListX (where X is O or 1) motion information of a current
PU using AMVP mode, video encoder 20 may signal a RefPicListX motion vector
difference (MVD) for the current PU and a RefPicListX reference index for the current
PU in addition to signaling a RefPicListX motion vector predictor (MVP) index (e.g.,
flag or indicator) for the current PU. The RefPicListX MVP index for the current PU
may indicate the position of a selected AMVP candidate in the AMVP candidate list.
The RefPicListX MVD for the current PU may indicate a difference between a
RefPicListX motion vector of the current PU and a motion vector of the selected AMVP
candidate. In this way, video encoder 20 may signal the RefPicListX motion
information of the current PU by signaling a RefPicListX MVP index, a RefPicListX
reference index value, and a RefPicListX MVD. In other words, the data in the
bitstream representing the motion vector for the current PU may include data
representing a reference index, an index to a candidate list, and an MVD. Thus, the
chosen motion vectors may be signaled by transmitting an index into the candidate list.
In addition, the reference index values and motion vector differences may also be
signaled.

[0058] Furthermore, when the motion information of a current PU is signaled using
AMVP mode, video decoder 30 may obtain, from the bitstream, a MVD for a current
PU and a MVP flag. Video decoder 30 may generate the same AMVP candidate list
and may determine, based on the MVP flag, the selected AMVP candidate. In other
words, in AMVP, a candidate list of motion vector predictors for each motion
hypothesis is derived based on the coded reference index. As before, this list may
include motion vectors of neighboring blocks that are associated with the same
reference index as well as a temporal motion vector predictor which is derived based on
the motion parameters of the neighboring block of the co-located block in a temporal
reference picture. Video decoder 30 may recover a motion vector of the current PU by
adding the MVD to the motion vector indicated by the selected AMVP candidate. That
is, video decoder 30 may determine, based on a motion vector indicated by the selected
AMYVP candidate and the MVD, the motion vector of the current PU. Video decoder 30
may then use the recovered motion vector or motion vectors of the current PU to

generate predictive blocks for the current PU.
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[0059] When a video coder (e.g., video encoder 20 or video decoder 30) generates an
AMVP candidate list for a current PU, the video coder may derive one or more AMVP
candidates based on the motion information of PUs (i.e., spatially-neighboring PUs) that
cover locations that spatially neighbor the current PU and one or more AMVP
candidates based on motion information of PUs that temporally neighbor the current
PU. In this disclosure, a PU (or other type of video unit) may be said to “cover” a
location if a prediction block of the PU (or other type of sample block of the video unit)
includes the location. The candidate list may include motion vectors of neighboring
blocks that are associated with the same reference index as well as a temporal motion
vector predictor which is derived based on the motion parameters (i.e., motion
information) of the neighboring block of the co-located block in a temporal reference
picture. A candidate in a merge candidate list or an AMVP candidate list that is based
on the motion information of a PU that temporally neighbors a current PU (i.e., a PU
that is in a different time instance than the current PU) may be referred to as a TMVP. A
TMVP may be used to improve the coding efficiency of HEVC and, different from other
coding tools, a TMVP may need to access a motion vector of a frame in a decoded
picture buffer, more specifically in a reference picture list.

[0060] As noted above, a bitstream may include a representation of encoded pictures of
the video data and associated data. The associated data may include parameter sets. In
HEVC and other video coding specifications, NAL units may encapsulate RBSPs for
video parameter sets (VPSs), sequence parameter sets (SPSs), and picture parameter sets
(PPSs). A VPS is a syntax structure comprising syntax elements that apply to zero or
more entire coded video sequences (CVSs). An SPS is also a syntax structure
comprising syntax elements that apply to zero or more entire CVSs. An SPS may
include a syntax element that identifies a VPS that is active when the SPS is active.
Thus, the syntax elements of a VPS may be more generally applicable than the syntax
elements of an SPS. A PPS is a syntax structure comprising syntax elements that apply
to zero or more coded pictures. A PPS may include a syntax element that identifies an
SPS that is active when the PPS is active. A slice header of a slice may include a syntax
element that indicates a PPS that is active when the slice is being coded.

[0061] In the field of video coding, it is common to apply filtering in order to enhance
the quality of a decoded video signal. The filter can be applied as a post-loop filter,
where a filtered frame is not used for prediction of future frames or as an in-loop filter,

where a filtered frame is used to predict future frame. For example, a filter can be
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designed by minimizing the error between the original signal and the decoded filtered
signal. For instance, a filter can be designed for minimizing the error (e.g., difference)
between an original picture and a reconstructed version of the same picture. The in-loop
adaptive filter (e.g., adaptive loop filter (ALF)) was evaluated during the development
stage of HEVC, but not included in the final version of HEVC.
[0062] A filter, such as an ALF, may have one or more coefficients. Similar to
transform coefficients, the coefficients of the filter h(k, ), where k = —K, ..., K and | =
—K, ... K, may be quantized as follows:
flk, )= round(normFactor - h(k, l))
and then coded and sent to video decoder 30. The normFactor is usually equal to 2™.
The larger the value of normFactor, the more precise is the quantization, and the
quantized filter coefficients f(k, ) provide better performance. On the other hand,
larger values of normFactor produce coefficients f (k, l) requiring more bits to
transmit. The value K may be an integer.
[0063] A video decoder, such as video decoder 30 or a reconstruction loop of video
encoder 20, may apply the decoded filter coefticients f (k, [) to the reconstructed image
R(i, ) as follows:
K K K K
R@p =) D fUDRG+kj+D/ > > fkD, (M
k=—Ki=—K =-k K

k=-k l=—

In equation (1), above, i and j are the coordinates of the pixels within the frame. In
equation (1), R(i, j) is an unfiltered value of a sample of the reconstructed picture at
coordinates (i, j) and R(i, /) indicates a filtered value of the sample at coordinates (i, /).
[0064] The in-loop adaptive loop filter employed in the JEM was originally proposed in
J. Chen et al., “Coding tools investigation for next generation video coding”, SG16-
Geneva-C806, Jan. 2015. The basic idea is the same as the ALF with block-based
adaptation in HM-3 (T. Wiegand et al., “WD3: Working Draft 3 of High-Efficiency
Video Coding,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16
WP3 and ISO/IEC JTC1/SC29/WG11, JCTVC-E603, 5th Meeting: Geneva, CH, 16-23
March, 2011, hereinafter, JCTVC-E603).

[0065] For the luma component, 4x4 blocks in the whole picture are classified based on
I-dimensional (1D) Laplacian direction (up to 3 directions) and 2-dimensional (2D)

Laplacian activity (up to 5 activity values). The rule for classification is also named as
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‘matrix’. The calculation of direction, denoted Dir,, and un-quantized activity, denoted
Acty,, are shown in equations (2) through (5), where [; ; indicates a reconstructed pixel
or sample with relative coordinate (i, j) to the top-left of a 4x4 block. Act, may be

further quantized to the range of 0 to 4 inclusively as described in JCTVC-E603.

Vij=[lix2 = Tijq — I jui| (2)
Hi; = [ jx2 =Ty ; = 4] 3)
Lif CloXicoHyj > 2x %0230 Vi)
Diry =42, if (BioXizoVij > 2X 20X o0 Hip) 4)
0, otherwise
ACtb = L3=0 Z?:O(Z;':L-ii—l Zi;,-:‘_l(vm,n + Hm,n)) (5)

[0066] In total, each block can be categorized into one of 15 (i.e., 5x3) groups and an
index is assigned to each 4x4 block according to the value of Dirpand Actjof the block.
The group index, denoted by C, is set equal to 5Dir}, + A, wherein A is the quantized
value of Acty,. Therefore, up to 15 sets of ALF parameters can be signalled for the luma
component of a picture.

[0067] To save the signaling cost, the groups may be merged along group index value.
That is, groups with consecutive group indices may be merged to one merged group.
For each merged group, a set of ALF coefficients is signaled. Up to three circular
symmetric filter shapes (as shown in FIG. 2) are supported. In the example of FIG. 2,
the left portion is a 5x5 diamond, the middle portion is a 7x7 diamond, and the right
portion is a truncated 9x9 diamond. For both chroma components in a picture, a single
set of ALF coefficients is applied and the 5x5 diamond shape filter is always used.
[0068] At the decoder side, each pixel sample IAL-, ; is filtered, resulting in pixel value I; ;
as shown in equation (6), where L denotes filter length, £, ,, represents filter coefficient

and o indicates filter offset.

I,i,j = (ZL =L ZLz—L fm,nXii+m,j+n + 0) > (BDF - 1); (6)

wherein (1 < (BDg —1)) = YL __, YL __, f(m,n)and (0 = (1 K (BDg — 2)) and
BDr is the bit depth. In the current JEM2, the bit-depth is set to 9, which means the
filter coefficient could be in the range of [-256, 256]. For the current design, only up to

one filter is supported for two chroma components.
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[0069] In JEM2, several syntax elements and/or methods may be used to signal filter
coefficients, including but not limited to one or more of the following:

[0070] Total number of filters: The total number of filters (or total number of merged

groups) is firstly signaled when ALF is enabled for one slice. It is applied to the luma
component. For chroma components, since only one filter may be applied, there is no
need to signal such information.

[0071] Eilter support: An index of the three filter supports is signaled.

[0072] Filter index: Classes which have non-consecutive values of C could be merged,
i.e., share the same filter. By coding one flag of each class to indicate it is merged or
not, the filter index could be derived.

[0073] forceCoeffo flag: The forceCoeff0 flag is used to indicate whether at least one of
the filters should not be coded. When this flag is equal 0, all of the filters should be

coded. When this flag is equal 1, one flag of each merged group, denoted by
CodedVarBin, 1s further signaled to indicate the filter should be signaled or not. When
a filter is not signaled, all of the filter coefficients associated with the filter are equal to
0.

[0074] Prediction method: When multiple groups of filters need to be signaled, one of

the two following techniques could be used:

- All the filters are coded directly into the filter information. In this case, for
example, the values of filter coefficients may be encoded into the bitstream
without using any predictive encoding techniques.

- The filter coefficients of the first filter are coded directly. While for the
remaining filters, they are predictively coded into the filter information. In this
case, the values of filter coefficients may be defined by residual values or
differences relative to the filter coefficients associated with a previously coded
filter. The previously coded filter is the one that is the most recent one, i.e., the
filter indices of current filter and its predictor are consecutive.

[0075] To indicate the usage of one of the above two methods, one flag is coded when
the number of merged groups is larger than 1 and froceCoeft0 is equal to 0.

[0076] Filter coefficients with Golomb coding

[0077] Based on the distance between one position and the position of the DC filter
coefficient, one filter support could be split into multiple categories. One example for a
7x7 diamond filter shape with 3 categories is depicted in FIG. 3. In other words, FIG. 3

illustrates an example 7x7 filter shape with three categories for filter coefticients



WO 2017/201011 PCT/US2017/032853
21

signaling. Each square of FIG. 3 denotes one filter coefficient and squares containing
the same number are coded with the same Golomb parameter.
[0078] The signaling of filter coefficients comprises, or in some examples consists of,
two parts:
1) Golomb parameters: one value of Golomb parameter (denoted by kMin)
is firstly signaled, followed by one-bit flag for each category. The one-
bit flag indicates whether the parameter of category i (7 from 1 to 3,
inclusive, for 7x7 diamond symmetric filter support) is the same or
increased by 1 compared to the Golomb parameter used for the previous
category (7 -1) when i is larger than 1; or compared to kMin when 7 is
equal to 1.
2) Coefficients: based on the selected Golomb parameters, the absolute
values of coefficients are coded followed by the sign flag.
https://en. wikipedia.org/wiki/Golomb coding describes details of
Golomb coding.

[0079] The ALF coefficients of reference pictures are stored and may be reused as ALF
coefficients of a current picture. A video coder (e.g., video encoder 20 and/or video
decoder 30) may choose to use ALF coefficients stored for the reference pictures as the
ALF coefficients used in the current picture, and may bypass the ALF coefficients
signalling. In this case, video encoder 20 only signals an index to one of the reference
pictures, and the stored ALF coefficients of the indicated reference picture are inherited
for the current picture. To indicate the usage of temporal prediction, one flag is coded
before sending the index.

[0080] M. Karczewicz et al., “Improvements on adaptive loop filter”, Exploration Team
(JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Doc. JVET-

B0060 r1, 2nd Meeting: San Diego, USA, 20-26 February 2016 (hereinafter JVET-
B0060 r1) proposed a Geometric transformations-based ALF (GALF). In GALF, the
classification is modified with the diagonal gradients taken into consideration and video
coders may apply geometric transformations to filter coefficients. A video coder
categorizes each 2x2 block into one of 25 classes based on a directionality and
quantized value of activity of the block. Section 2.1 of JVET-B0060 r1 provides
details. Section 2.1 of JVET-B0060 r1 is reproduced below.
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Each 2x2 block is categorized into one out of 25 classes based on its
directionality D and quantized value of activity A:
C=5D+A. (2)
Values of the horizontal, vertical and two diagonal gradients are calculated using

1-D Laplacian:

i+3 J+3
v kZZ lz}ZZ Viir Via 3)
=|2R(k,l) —R(k,l —1) —R(k, 1+ 1)|,
i+3 J+3
9n kZZ zszz Hyy, Hyy )
=|2R(k, ) —R(k—1,) —R(k+ 1,1,
i+3 Jj+3
Jar = z z D1y, D1y,
k=i-21=j-3 (5)
=|2R(k,l) —R(k—1,1—-1)
—R(k+ 1,1+ 1)
i+3  Jj+3
Gaz = z z D2y, D2y,
k=i-2 j=j-2 (6)
=|2R(k,l) —R(k—1,1+1)
—R(k+1,1-1)

Indices i and j refer to the coordinates of the upper left pixel in the 2X2 block. To assign
the directionality D, ratio of maximum and minimum of the horizontal and vertical

gradients

max min

Gy =max(gn gv), Gy = Min(gn go), (7)

and the ratio of maximum and minimum of two diagonal gradients

gavar = max(gao Ja1). gc%frclu = min(gqao0, 9a1)- (8)

are compared against each other and with set of thresholds t; and ¢t,:
Step 1. If both gl&* <t - g™ and g5, <ty - gy, D is setto 0.

Step 2. If g/'a* /gimin > gmax, /g™ continue from Step 3, otherwise continue from

Step 4.
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Step 3. If g"%* > t, - gi™", D is set to 2, otherwise D is set to 1.
Step 4. If gls%, > t, - goe%,, D is set to 4, otherwise D is set to 3.

The activity value A is calculated as:

i+3 Jj+3
A = z z (Vk,l + Hk,l)' (9)
k=i-21=j-2

A 1s further quantized to the range of 0 to 4 inclusively, and the quantized value is

denoted as A.

[0081] In addition, to improve coding efficiency when temporal prediction is not
available (e.g., for intra frames), a set of 16 fixed filters is assigned to each class. To
indicate the usage of the fixed filter, a flag for each class is signaled and if required, the
index of the chosen fixed filter. Even when the fixed filter is selected for a given class,
the coefficients of the adaptive filter f(k, [) can still be sent for this class in which case
the coefficients of the filter which will be applied to the reconstructed image are a sum
of both sets of coefficients. Number of classes can share the same coefficients f(k, )
signaled in the bitstream even if different fixed filters were chosen for them. In U.S.
Provisional Patent Applications 62/295,461, filed February 15, 2016, and 62/324,776,
filed April 19, 2016, the fixed filters could also be applied to inter-coded frames.

[0082] Filter coefficients may be signaled or determined in various ways. For example,
a prediction pattern and prediction index of fixed filters may be determined for fixed
filters. In this example, three cases of prediction patterns are defined: case 1: whether
none of the filters of the 25 classes are predicted from the fixed filter; case 2: all filters
of the classes are predicted from the fixed filter; and case 3: filters associated with some
classes are predicted from fixed filters and filters associated with the rest of the classes
are not predicted from the fixed filters. An index may be firstly coded to indicate one of
the three cases. In addition, the following applies: If the prediction pattern is case 1,
there is no need to further signal the index of fixed filter. Otherwise, if the prediction
pattern is case 2, an index of the selected fixed filter for each class is signaled.
Otherwise (the prediction pattern is case 3), one bit for each class is firstly signaled, and

if fixed filter is used, the index is further signaled.
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[0083] To reduce the number of bits required to represent the filter coefficients,
different classes can be merged. However, unlike in JCTVC-E603, any set of classes
can be merged, even classes having non-consecutive values of C. The information on
which classes are merged is provided by sending for each of the 25 classes an index ..
Classes having the same index i, share the same filter coefficients that are coded. The
index i is coded with a truncated fixed length method.

[0084] Similarly, the forceCoefO flag is also used. When the forceCoefO flag is equal to
1, a one-bit flag, denoted by CodedVarBin, for each of the merged groups (all filters to
be coded) is further signaled to indicate whether the signaled filter coefficients are all
zero. Moreover, when this flag is equal to 1, the predictive coding, i.e., coding the
difference between current filter and previously coded filter, is disabled.

[0085] When prediction from fixed filters is allowed, the filters (e.g., filter parameters)
to be signaled/coded mentioned above are the differences between the filter applied to
the reconstructed image and the selected fixed filter. In the GALF proposal of JVET-
B0060 rl, other information, such as coefficients are coded in the same way as in
JEM2.0.

[0086] Class index derivation: The classification is still based on the 1D Laplacian

direction and 2D Laplacian activity of each NxN luma block. However, the definitions
of both direction and activity have been modified to better capture local characteristics.
First, values of two diagonal gradients, in addition to the horizontal and vertical
gradients used in the existing ALF, are calculated using 1-D Laplacian. As it can be
seen from equation (7*) to (10*), below, the sum of gradients of all pixels within a 6x6
window that covers a target pixel is employed as the represented gradient of target pixel.
According to experiments, the window size, i.e., 6x6, provides a good trade-off between
complexity and coding performance. Each pixel is associated with four gradient values,
with vertical gradient denoted by gv, horizontal gradient denoted by gr, 135-degree
diagonal gradient denoted by ga; and 45 degree diagonal gradient denoted by ga>.

i+3 J+3
9y = z z Vi » "
)

Viee = 12R(k, ) = R(k,1 = 1) — R(k,1 + 1)]

i+3 Jj+3

In = z z Hy,, (8%)

k=i-21=j-2
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Hey = 2Rk, D) — R(k — 1,1) — R(k + 1,1)|

i+3  Jj+3
= D1,
a1 z z kil 9%)
k=i—-21=j-3

D1, = 2Rk, ) —R(k—1,1—1) —R(k + 1,1 + 1)|

i+3 Jj+3
a2 = z z D2y,
k=i-2 j=j-2 (10%)

D2, =2R(k,l) —R(k—1,1+1)—R(k+1,1—1)|
Here, indices i and j refer to the coordinates of the upper left pixel in the 2x2 block.
[0087] To assign the directionality D, ratio of maximum and minimum of the horizontal
and vertical gradients, denoted by Rxv in equation (11%), below, and the ratio of
maximum and minimum of two diagonal gradients, denoted by Ra1.42 in equation (12%),

below, are compared against each other with two thresholds ¢; and ¢,.

_  ,max j, min
Rh,v - gh,v /gh,v

. (11%)
wherein gy'y* = max(gp, 9,). gy’ = Min(gn, 9v),
Rioa1 = gc%?ﬁ/ﬂc%i,% (12%)
12

. max _ min _ :
wherein gjoq1 = max(gaqo Ja1)- ddo,d1 = min(gao, Ga1)

[0088] By comparing the detected ratios of horizontal/vertical and diagonal gradients,
five direction modes, i.e., D within the range of [0, 4] inclusive, are defined in equation

(13*), below. The values of D and its physical meaning are described in Table 1.

0 Ry, <t & & Rypq1 <1y
1 Ry, >t && Ry, > Ry 41 && Ry, > 1,
D=<2 Ry, >t && Ry, > Rgog1 && Ry, < 85 (13%)
3 Ragoar > t1 && Rpy < Rgpa1 && Rgpan > 12
4 Rgoa1 >t && Rpy < Ryoa1 && Rgpa1 <t
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TABLE I. VALUES OF DIRECTION AND ITS PHYSICAL MEANING

Direction values physical meaning
0 Texture
1 Strong
horizontal/vertical
2 horizontal/vertical
3 strong diagonal
4 diagonal

[0089] The activity value A is calculated as:

i+3 Jj+3
A= z z (Vier + Hyt)- (14%)
k=12 15j~2

A is further quantized to the range of 0 to 4 inclusive, and the quantized value is denoted

~

as A.

[0090] Therefore, in the proposed GALF scheme, each NxN block is categorized
into one of 25 classes based on its directionality D and quantized value of activity A:
C=5D+A. (15%)
[0091] Current ALF and GALF designs may have the following issues: First, each
block is assigned with one specific class index by quantizing the direction/activity
values. Thus, blocks in the same class may still have some different characteristics due
to the quantization. Such information is not used in the current ALF/GALF designs.
Second, one block is assigned with only one filter, the assignment of which does not
consider the neighboring information and limits the coding performance.
[0092] Techniques of this disclosure may address these shortcomings. The following
itemized techniques may be applied individually. Alternatively, combinations of the
itemized techniques may be applied. The following examples assume that ALF
classification is based on an NxN block (wherein N is a positive value, e.g., 1, 2, 4).
[0093] For each NxN block to be filtered, a video coder (e.g., video encoder 20 and/or
video decoder 30) applies multiple filters instead of just using one filter. Thus, after

encoding a current picture of the video data, video encoder 20 may reconstruct the
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current picture. Furthermore, after reconstructing the current picture, video encoder 20
may apply a particular function of a plurality of filters to a current block of the current
picture. The current block comprises reconstructed samples of the current picture. In
some instances, video encoder 20 does not wait to fully reconstruct the current picture
before filtering blocks of the current picture. Rather, video encoder 20 may start
filtering blocks of the current picture while still reconstructing other parts of the current
picture. Thus, video encoder 20 may reconstruct one or more blocks (e.g., MxN blocks)
of the current picture, where the one or more reconstructed blocks include reconstructed
samples of the current picture. Additionally, video encoder 20 may apply a particular
function of a plurality of filters to a current block (e.g., a KxL block) that comprises the
reconstructed samples. Similarly, video decoder 30 may reconstruct a current picture
(or one or more blocks of the current picture). After reconstructing the current picture
(or one or more blocks of the current picture), video decoder 30 may apply a particular
function of a plurality of filters to a current block of the current picture.

[0094] In some examples, a video coder applies a confusion function of multiple filters,
such as a linear function, to confuse these filters. Thus, after reconstructing one or more
blocks of a current picture, a video coder (e.g., video encoder 20 or video decoder 30)
may apply, to a current block of the current picture, a linear function of a plurality of

filters. For instance, in one example, the filtering process of equation (1) is modified to:

Yoo W)« (SK__ SK ¢ frn (e DR(i+K,j+1))

(K __ 3K rkD)*CMZiw(m))

R@i,j) = (7)

In equation (7), R (i, ) indicates a filtered value of a sample at position (i, j) of a
reconstructed picture, w(m) indicates the m-th weighting factor associated with an m-th
block of a plurality of blocks, M indicates a total number of block in the plurality of
blocks, fm indicates the filter used or derived for the m-th block based on the class/group
index, K indicates Y% of the length or height of a matrix of coefficients for fin, fin(k, /) is a
quantized coefficient corresponding to a coefficient at location (£, /) of the matrix of
coefficients for fin, and R(i + &, j + /) is a sample of a reconstructed picture at location (i
+k,j+[). Avideo coder may derive the filter for the m-th block based on the
class/group index according to the techniques used in ALF or GALF for deriving the
class/group index as described elsewhere in this disclosure.

[0095] In some examples, the total number of filters used for filtering one NxN block

(i.e., a current block) is equal to a number of neighboring blocks plus 1 (i.e., M in
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equation (7)), which may be the total number of blocks defined in a template. A
template may be a geometrical pattern of blocks centered on a current block. In some
examples, a template may have a diamond shape, similar to those of FIG. 2 and FIG. 3,
but with the squares shown in FIG. 2 and FIG. 3 being NxN blocks instead of individual
samples. In other examples, templates have different shapes, such as squares,
rectangles, rhombuses, trapezoids, triangles, and so on. In some examples, the template
is predefined, such that the template is available to video encoder 20 and video decoder
30 without signaling the template.

[0096] In some examples, a video coder may determine the number of filters included
in the confusion function applied for a block. For instance, the total number of filters,
denoted by NUM;, for filtering one NxN block may be defined (e.g., pre-defined or
signaled). NUMymay be smaller than the total number of blocks defined in a template.
In the case where NUM1is smaller than the total number of blocks defined in the
template, various rules may be used to select NUMfr filters from the multiple filters (fm
with m being 0 to M-1). For example, the first NUMyneighboring blocks in the template
with the smallest group (class) indices compared to the current NxN block may be
selected. The filters associated with the first NUMy neighboring blocks are used for the
confusion.

[0097] In some examples, the multiple filters applied to a current block are defined as
the selected filters for different classes/groups and the classes/groups are defined as
those associated with the neighboring samples/blocks in a template. For example, for
each respective block defined in a template, a video coder may identify a class/group
index for the respective block. The video coder may identify the class/group index
according to the examples provided elsewhere in this disclosure. Furthermore, in this
example, the confusion function applied to the current block may include the filter
corresponding to the class/group index for the respective block.

[0098] In some examples, the template is dependent on the slice types, quantization
parameters, temporal identifier, or other information being referenced or not referenced
by other pictures. In other words, a video coder may use different templates when
applying a confusion function of multiple filters to a current block depending on a slice
type of a slice containing the current block, depending on quantization parameters used
during quantization for the current block, depending on a temporal identifier of a picture
containing the current block, or depending on other factors. Example slice types include

I-slices, P-slices, and B-slices. An I-slice may include intra predicted blocks, but not
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inter predicted blocks. A P-slice may include intra predicted block or uni-directionally
inter predicted blocks, but not bi-directionally inter predicted blocks. A B-slice may
include intra predicted blocks, uni-directionally inter predicted blocks, and bi-
directionally inter predicted blocks. For example, a video coder may use templates
defining different geometrical patterns depending on whether the current block is in an
I-slice, P-slice, or B-slice. A temporal identifier (TID) may identify a NAL unit as
belonging to a particular temporal sub-layer. For example, for sub-layers with lower
TIDs, the template may contain more neighboring blocks/samples compared to those
sub-layers with higher TIDs. That is because sub-layers with higher TIDs may be
predicted from sub-layers with lower TIDs and sub-layers with lower TIDs may have
already been filtered.

[0099] In some examples, the template is signaled in a sequence parameter header (e.g.,
a sequence parameter set), a picture parameter header (e.g., a picture parameter set), a
slice header, or another type of syntax structure in a bitstream. In the context of HEVC,
a sequence parameter header may be referred to as a sequence parameter set and a
picture parameter header may be referred to as a picture parameter set. For example,
video encoder 20 may include syntax elements in a sequence parameter header, a
picture parameter header, a slice header, or another type of syntax structure in a
bitstream. In this example, the syntax elements indicate the geometrical pattern defined
by a template. Furthermore, in this example, video decoder 30 may obtain the syntax
elements from the sequence parameter header, the picture parameter header, slice
header, or other type of syntax structure in the data stream. In this example, video
decoder 30 may use the obtained syntax elements to determine the template.

[0100] As noted above, the confusion function of multiple filters may apply weighting
factors (e.g., w(m)) to results of the filters. In one example, the signaling of weighting
factors employed by the confusion function is based on a pre-defined mask. The mask
is an assignment of values to blocks in a geometrical pattern of blocks centered on a
current block. For instance, a video coder may determine, based on a pre-defined mask,
weighting factors used in a function of multiple filters. FIG. 4 is a conceptual diagram
illustrating an example mask for weighting multiple filters, in accordance with a
technique of this disclosure. In the example of FIG. 4, each square corresponds to an
NxN block. In the example of FIG. 4, blocks containing the same values (i.e., “mask
values”) have the same weighting factor. In some examples, the weighting factors are

not equal to the mask values. Taking the template shown in FIG. 4 as an example, those
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‘blocks’ with the same mask values (from 1 to 4 in FIG. 4) indicate the same weighting
factor and only one weighting factor is signaled. For instance, in the example of FIG. 4,
a first weighting factor may be signaled for the mask value 1, a second weighting factor
may be signaled for the mask value 2, a third weighting factor may be signaled for the
mask value 3, and a fourth weighting factor may be signaled for the mask value 4. In
this instance, the first, second, third, and fourth weight factors are only signaled once (as
opposed to the first, second, and third weighting factors each being signaled four times).
[0101] Thus, in this example, video decoder 30 may obtain, from a bitstream, data
indicating weighting factors for neighboring blocks. In this example, for each
respective neighboring block of the neighboring blocks, the plurality of filters includes a
respective filter for the respective neighboring block. Furthermore, in this example,
video decoder 30 may use the weighting factors for the neighboring blocks when
applying a particular function comprising multiple filters to a current block of a
reconstructed picture.

[0102] In some examples, the weighting factors for the neighboring blocks are signaled
while the weighting factor for the current block is skipped. In other words, video
encoder 20 may indicate, in a bitstream, the weighting factors for the neighboring
blocks without indicating in the bitstream the weighting factor for the current block.
For instance, in the example of FIG. 4, video encoder 20 may signal the weighting
factors for mask values 1, 2, and 3, but not the weighting factor for mask value 4. The
weighting factor for a current block could be derived by the precision and signaled
weighting factors for neighboring blocks. In one example, denote the precision by M,
that 1s, the sum of all weighting factors is equal to (1<<M). The weighting factor for a
current block could be derived as (1<<M) minus the summation of signaled weighting
factors for neighboring blocks.

[0103] In some examples, differential coding of weighting factors may be applied. In
other words, a video coder may use differential coding to determine weighting factors
using in a function of a plurality of filters applied to a current block. For example,
rather than directly signaling the values of a first, second, and third weighting factor,
video encoder 20 may signal the value of a first weighting factor, signal the difference
between the first weighting factor and a second weighting factor, and signal the
difference between the second weighting factor and a third weighting factor.
Differential coding of weighting factors may reduce the amount of data required to

signal the weighting factors.
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[0104] Furthermore, in one example, the order of indices (e.g., the mask values shown
in FIG. 4) may further signaled. The order could be an increasing order/decreasing
order. For example, a first weighting factor may be equal to 10, a second weighting
factor may be equal to 7, and a third weighting factor equal to 2. In this example, it may
be more efficient to signal the third weighting factor first, the second weighting factor,
second, and the first weighting factor third. To illustrate why, consider that each of the
weighting factors may be represented as a unary code. Hence, if the first weighting
factor were signaled first, followed by the second weighting factor, followed by the
third weighting factor, 10 1’s would be signaled, followed by 3 1’s, followed by 5 1’s,
for a total of 18 1’s. In contrast, if the third weighting factor were signaled first,
followed by the second weighting factor, followed by the first, there would be 2 1’s,
followed by 5 1’s, followed by 5 17s, for a total of 12 1’s. Hence, in this example, the
order of indices may be signaled to use the second option instead of the first option.
[0105] In some examples, one bit may be signaled to indicate whether all weighting
factors associated with the neighbors are equal to 0. If not, then the weighting factors
are signaled, such as using fixed length coding. For example, video encoder 20 may
signal, in a bitstream, a syntax element indicating whether weighting factors for all
neighboring blocks in a template are equal to 0. If the syntax element indicates that not
all weighting factors for the neighboring blocks in the template are equal to 0, video
encoder 20 may signal, in the bitstream, weighting factors for one or more of the
neighboring blocks in the template. Similarly, video decoder 30 may obtain, from a
bitstream, a syntax element indicating whether weighting factors for all neighboring
blocks in a template are equal to 0. In response to determining that the syntax element
indicates that not all weighting factors for the neighboring blocks in the template are
equal to 0, video decoder 30 may obtain, from the bitstream, data indicating weighting
factors for one or more of the neighboring blocks of the template. In this example,
video decoder 30 may use the weighting factors associated with the neighboring blocks
to apply the particular function.

[0106] For one block, a unique group index or class index is assigned, such as based on
the activity and direction matrix. Instead of applying one filter associated with the
group index or class index to this block, multiple filters may be applied and the multiple
filters are selected based on the results of a matrix for the current block. In one
example, given the activity of a current block, Act,, (or, after quantization, A as

described elsewhere in this disclosure), the filters associated with consecutive values of
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Acty, such as (A + 1) or (A — 1), are used to filter the current block. For example, a
video coder (e.g., video encoder 20 or video decoder 30) may determine a quantized
activity level A for a current block and a direction value Dirs for the current block. In
this example, the video coder may determine a filtered value of a sample of the current
block as an average (e.g., a weighted average) of sample values produced by applying a
filter associated with A and Dirs, a filter associated with (4 + 1) and Dirs, and a filter
associated with (A — 1) and Dirs. In this way, the video coder may determine, based on
the activity level (e.g., Acts or A) of a current block, two or more filters in the plurality
of filters.

[0107] In some examples, given the activity of one block Diry, the filters associated
with consecutive values of Diry, , such as (Dir, + 1) or (Diry, — 1) could be used to
filter current block. For example, a video coder (e.g., video encoder 20 or video
decoder 30) may determine a quantized activity level A for a current block and a
direction value Dirs for the current block. In this example, the video coder may
determine a filtered value of a sample of the current block as an average (e.g., a
weighted average) of sample values produced by applying a filter associated with A and
Dirs, a filter associated with A and (Dirs + 1), and a filter associated with 4 and (Dirs —
1).

[0108] In some examples, the two methods above are used together. For example, a
video coder (e.g., video encoder 20 or video decoder 30) may determine a quantized
activity level A for a current block and a direction value Dirs for the current block. In
this example, the video coder may determine a filtered value of a sample of the current
block as an average (e.g., a weighted average) of sample values produced by applying a
filter associated with A and Dirs, a filter associated with (4 + 1) and Dirs, a filter
associated with (A — 1) and Dir, a filter associated with A and (Dir» + 1), and a filter
associated with 4 and (Dirs — 1). In this way, the video coder may determine, based on
at least one of an activity level (e.g., A) of a current block or the direction value (e.g.,
Dirs) of the current block, two or more filters in a plurality of filters used in the
confusion function.

[0109] In some examples, a video coder may apply a particular function (i.e., the
confusion function) of multiple filters using pre-defined weighting factors for selected
filters of the plurality of filters. In some examples, the weighting factors for the selected

filters are pre-defined or signaled in a sequence parameter header, a picture parameter
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header, or a slice header. Thus, a video coder may determine, based on syntax
elements, weighting factors for selected filters of the plurality of filters, where the
syntax elements are included in one or more of: a sequence parameter header, picture
parameter header, or slice header and apply a particular function of multiple filters using
the pre-defined weighting factors for the selected filters of the plurality of filters. In one
example, the weighting factors are the same for all classes.

[0110] In some examples, the weighting factors are dependent on the group index, class
index, and/or positions of the block relative to a coding unit/prediction unit/transform
unit, and/or coding mode (e.g., intra prediction or inter prediction). For example, a
video coder may use a first set of weighting factors if the current block spans a CU, PU,
and TU boundary, may use a second, different set of weighting factors if the current
block does not span a CU, PU, or TU boundary, may use a third set of weighting factors
if the current block spans a PU boundary but not a CU boundary, and so on. In another
example, a video coder may use a first set of weighting factors if the current block
includes samples predicted using only intra prediction, a second set of weighting factors
if the current block includes samples predicted using only inter prediction, and a third
set of weighting factors if the current block includes some samples predicted using intra
prediction and some samples predicted using inter prediction. Thus, in accordance with
these examples, a video coder may determine, based on a group index, a class index, a
position of the current block relative to a coding unit, prediction unit, transform unit, or
coding mode, weighting factors for selected filters of a plurality of filters. In this
example, the video coder may use the pre-defined weighting factors for selected filters
of a plurality of filters to apply a particular function comprising the plurality of filters.
[0111] In some examples, the weighting factors are inherited when temporal prediction
of ALF filters is enabled. For instance, a video coder may determine the weighting
factors for use in filtering a current block from weighting factors used for filtering a
block in a previously coded picture, e.g., a temporal reference picture. In some
examples, one or more of the weighting factors are signaled even when temporal
prediction of ALF filters is enabled.

[0112] In one example, multiple sets of weighting factors are stored and an index of the
set may be signaled. For instance, video encoder 20 and video decoder 30 may store
multiple sets of weighting factors. In this example, video encoder 20 may use a
particular set of weighting factors with a current block and video encoder 20 may signal,

in a bitstream, an index of the set of weighting factors. Furthermore, in this example,
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video decoder 30 may obtain, from the bitstream, the index of the set of weighting
factors. Based on the index obtained from the bitstream, video decoder 30 may
determine the set of weighting factors to use with the current block. The weighting
factors may be applied to filters of neighboring blocks in a template, filters determined
based on adjacent activity levels and/or direction values, and so on.

[0113] In one example, the total number of stored sets of weighting factors is less than
a threshold, and the current derived weighting factors may be added to the sets of
weighting factors. For example, video encoder 20 and video decoder 30 may store a
particular number of weighting factor sets. Furthermore, in this example, video encoder
20 and video decoder 30 may independently derive a set of weighting factors not in the
stored sets of weighting factors. In this example, if video encoder 20 selects the derived
set of weighting factors, video encoder 20 may apply, to samples of a current block, a
function of a plurality of filters, where the filters are weighted according to the derived
set of weighting factors. Additionally, in this example, video encoder 20 may signal, in
a bitstream, a syntax element indicating a special index value. The special index value
corresponds to the derived set of weighting factors. In this example, video decoder 30
may obtain, from the bitstream, a syntax element indicating the special index value.
Accordingly, in this example, video decoder 30 may apply, to samples of the current
block, a function of a plurality of filters in which the filters are weighted according to
the derived set of weighting factors.

[0114] Furthermore, in some examples, only when at least one or more of the derived
weighting factors are different from one set of stored weighting factors, are the derived
weighting factors added as a new set of weighting factors. Furthermore, in some
examples, the differences of the derived weighting factors and the set of weighting
factors may be coded instead of always reusing the weighting factors stored. For
instance, a video coder may signal values indicating differences between a derived set
of weighting factors and a stored set of weighting factors. In some examples, the video
encoder or decoder may select one of the three methods: directly coding the weighting
factors or the set index or the differential coding for signaling the weighting factors.
[0115] In accordance with a technique of this disclosure, instead of splitting one image
or slice into multiple non-overlapped blocks and assigning one unique class index or
group index for each block, the image or slice is split into overlapped blocks. In one
example, each block is still assigned with one class index or group index. However, in

this example, for pixels which are included in more than one block (e.g., pixels in more
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than one block), multiple filters may be applied to get the final filtered results. The
filters are those signaled in the bitstream and associated with the class indices or group
indices of the blocks covering one pixel.

[0116] In this way, video encoder 20 may reconstruct samples of a current picture of the
video data. The current picture may include a first block and a second block, where the
first and second blocks are partially overlapping. Furthermore, video encoder 20 may
determine a class for the first block and a class for the second block. Video encoder 20
may determine the classes for the first block and the second block in accordance with
techniques described elsewhere in this disclosure. In this example, video encoder 20
may apply to each reconstructed sample of the first block, a filter associated with the
class for the first block. Additionally, in this example, video encoder 20 may apply to
each reconstructed sample of the second block, a filter associated with the class for the
second block, such that the filter associated with the class for the first block and the
filter associated with the class for the second block are both applied to reconstructed
samples in overlapping parts of the first and second blocks. Thus, video encoder 20
applies a function of multiple filters to a third block, which corresponds to the overlap
between the first and second blocks. A similar example uses groups instead of classes.
[0117] Similarly, video decoder 30 may receive a bitstream comprising an encoded
representation of a plurality of pictures of the video data. Additionally, in this example,
video decoder 30 may reconstruct samples of a current picture of the plurality of
pictures. The current picture includes a first block and a second block. In this example,
the first and second blocks are partially overlapping. Furthermore, in this example,
video decoder 30 may determine a class for the first block and a class for the second
block. Video decoder 30 may determine the classes for the first block and the second
block in accordance with techniques described elsewhere in this disclosure. In this
example, video decoder 30 may apply to each reconstructed sample of the first block, a
filter associated with the class for the first block. In this example, video decoder 30
may apply, to each reconstructed sample of the second block, a filter associated with the
class for the second block, such that the filter associated with the class for the first block
and the filter associated with the class for the second block are both applied to
reconstructed samples in overlapping parts of the first and second blocks. Thus, video
decoder 30 applies a function of multiple filters to a third block, which corresponds to
the overlap between the first and second blocks. A similar example uses groups instead

of classes.
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[0118] FIG. 5 is a block diagram illustrating an example picture that includes
overlapping blocks, in accordance with a technique of this disclosure. In the example of
FIG. 5, small squares correspond to samples. Furthermore, in the example of FIG. 5, a
first block 42 and a second block 44 are outlined in long dashed lines and short dashed
lines, respectively. In the example of FIG. 5, four samples 46 (shaded in gray for ease
of understanding) are shared by blocks 42 and 44. Samples 46 may be considered a
third block. Furthermore, a video coder (e.g., video encoder 20 or video decoder 30)
may determine a first group index for block 42 and a second, separate group index for
block 44. The video coder may apply a filter associated with the first group index for
samples 48 that are only in block 42 and may apply a filter associated with the second
group index for samples 50 that are only in block 44. The video coder may apply a
confusion function to each of samples 46. The confusion function is a combination of
the filter associated with the first group index and the filter associated with the second
group index.

[0119] In some examples, more than one class index may be assigned to a current
block. In such examples, each class index assigned to the current block may be
associated with a certain filter. In some examples, multiple rules of classification may
be defined. In this way, video encoder 20 may reconstruct samples of a current picture
of the video data. In this example, video encoder 20 may assign a plurality of class
indexes to a current block of the current picture. Each respective class index of the
plurality of class indexes is associated with a respective filter in a plurality of filters.
Furthermore, video encoder 20 may apply, to a reconstructed sample of the current
block, the filters associated with the plurality of class indexes assigned to the current
block. In this example, after applying the filters, video encoder 20 may use the current
picture as a reference picture in encoding another picture of the video data. Similarly,
video decoder 30 may reconstruct samples of a current picture of the video data. In this
example, video decoder 30 may assign a plurality of class indexes to a current block of
the current picture. Each respective class index of the plurality of class indexes is
associated with a respective filter in a plurality of filters. In this example, video decoder
30 may apply, to a reconstructed sample of the current block, the filters associated with
the plurality of class indexes assigned to the current block.

[0120] In one example, different window sizes (e.g., 6x6 window in equation (14*) and
3x3 window) may be used for class index calculation based on the reconstructed

samples within a current block and its neighboring blocks if needed. For instance, a
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video coder, such as video encoder 20 or video decoder 30, may assign the plurality of
class indexes to the current block based on a plurality of window sizes.

[0121] FIG. 6 is a block diagram illustrating an example in which a block 60 of a
picture 62 is assigned more than one class, in accordance with one or more techniques
of this disclosure. In the example of FIG. 6, block 60 is a 6x6 block. A video coder
(e.g., a video encoder or a video decoder) may determine an activity level and a
direction value for block 60 as a whole. The activity level and direction value for block
60 may correspond to a particular filter in a set of filters. In this way, the video coder
may determine a filter based on the activity level and direction value of block 60.
Additionally, block 60 comprises four 3x3 sub-blocks 64A, 64B, 64C, and 64D
(collectively, “sub-blocks 64”). The video coder may separately determine activity
levels and direction values for each of sub-blocks 64. For each respective sub-block of
sub-blocks 64, the determined activity level and direction value for the sub-block
corresponds to a respective filter. In this way, the video coder may determine a filter
based on the activity level and direction value of the respective sub-block. Furthermore,
for each respective sample of each respective sub-block of sub-blocks 64, the video
coder may apply a confusion function (i.e., a function of multiple filters) to the
respective sample. The confusion function applied to the respective sample is a
combination of the filter determined based on the activity level and direction value of
block 60 and the filter determined based on the activity level and direction value of the
respective sub-block.

[0122] FIG. 7 is a block diagram illustrating a second example in which a block 70 of a
picture 72 is assigned more than one class, in accordance with one or more techniques
of this disclosure. In the example of FIG. 7, block 70 is a 2x2 block. A video coder
(e.g., a video encoder or a video decoder) may determine an activity level and a
direction value for block 70 based on the 6x6 block (block 74) covering block 70. The
activity level and direction value for block 70 based on the 6x6 block may correspond to
a particular filter in a set of filters. In this way, the video coder may determine a first
filter based on the activity level and direction value of block 70. Additionally, the video
coder may determine activity levels and direction values for block 70 based on a 4x4
block covering the block 70 (block 76). In this way, the video coder may determine a
second filter based on the activity level and direction value based on block 76.
Furthermore, for each respective sample of block 70, the video coder may apply a

confusion function (i.e., a function of multiple filters) to the respective sample. The
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confusion function applied to the respective sample is a combination of the filter
determined based on the activity level and direction value of block 74 and the filter
determined based on the activity level and direction value of the block 76 that contains
the respective sample. The video coder may repeat this for each 2x2 block of the
picture.

[0123] In some examples, one class index for a current block may be inherited from a
neighboring block and the other class index may be derived based on the reconstructed
samples within the current block and its neighboring blocks if needed. For instance, a
video coder may use the class index of a neighboring block (e.g., a spatially neighboring
block or a temporally neighboring block) as a first class index of a current block and
may calculate a second class index for the current block according to one of the class
index derivation techniques described elsewhere in this disclosure (e.g., using equations
(7)-(15). Thus, in such examples, as part of assigning a plurality of class indexes to a
current block, a video coder may inherit a first class index of the plurality of class
indexes from a block that neighbors the current block. Additionally, the video decoder
may derive a second class index of the plurality of class indexes based on reconstructed
samples within the current block.

[0124] Furthermore, in some examples, filters associated with multiple derived class
indices may be used jointly to filter the block. For example, the confusion function
described elsewhere in this disclosure (e.g., in equation (7)) may be further applied. In
these examples, as part of applying the filters associated with the plurality of class
indexes, a video coder may apply, to the current block, a particular function of the filters
associated with the plurality of class indexes assigned to the current block.

[0125] In HEVC and other video coding standards, a video encoder may signal, for each
slice, a flag to indicate whether ALF is enabled for the slice. This disclosure may refer
to this flag as a slice-level ALF control flag. If ALF is enabled for the slice, the video
encoder may signal another flag to indicate whether or not some quad-tree split blocks
do not use ALF and others use ALF. This disclosure may refer to this flag as a block-
level ALF control flag. If the block-level ALF control flag is on (i.e., some blocks
within a quad-tree of an LCU use ALF and other blocks in the quad-tree of the same
LCU do not use ALF), the video encoder further signals a depth value of the quad-tree
for signaling flags for enabling/disabling ALF. The corresponding size is named as
‘ALF control size’. For example, if an LCU is 128x128, depth value 0 indicates
128x128; depth value 1 indicates 64x64; depth value 2 indicates 32x32, and so on. For
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the quad-tree split, if a CU is larger or equal to the ALF control size, the video encoder
signals a flag for enabling/disabling ALF in the CU. Otherwise, if the CU is smaller
than the ALF control size, several neighboring CUs are merged to share one signaled
flag for enabling/disabling ALF in the CUs.

[0126] In some examples, instead of signaling a flag for enabling/disabling ALF
according to the depth of quad-tree, it is proposed to further consider the depth of other
tree types supported in a coded slice. In one example, the other tree types may include
one of binary trees, symmetric center-side triple trees, asymmetric trees, and other types
of tree structures. In a binary tree, a block is partitioned vertically or horizontally into
two equal-sized sub-blocks, each of which may be partitioned in the same manner
recursively. In a symmetric center-side triple tree, a block is partitioned horizontally or
vertically into three sub-blocks with the outer sub-blocks equal in size, the sub-blocks
may be partitioned in the same manner recursively. In an asymmetric tree, a block is
partitioned into two or more sub-blocks of unequal size, which may be further
partitioned in the same manner recursively.

[0127] In this way, video encoder 20 may include, in a bitstream that comprises an
encoded representation of a current picture of the video data, a syntax element (e.g., a
flag for enabling/disabling ALF) indicating whether an ALF is enabled or disabled. In
this example, the syntax element is signaled according to a depth of a type of tree other
than a quad-tree. Furthermore, in this example, video encoder 20 may reconstruct
samples of the current picture of the video data. In this example, in response to
determining based on the syntax element that the ALF is enabled, video encoder 20 may
apply the ALF to a reconstructed sample of the current picture. After applying the
filters, video encoder 20 may use the current picture as a reference picture in encoding
another picture of the video data.

[0128] Similarly, video decoder 30 may obtain, from a bitstream that comprises an
encoded representation of a current picture of video data, a syntax element indicating
whether an ALF is enabled or disabled. In this example, the syntax element is signaled
according to a depth of a type of tree other than a quad-tree. Additionally, in this
example, video decoder 30 may reconstruct samples of the current picture of the video
data. In this example, in response to determining based on the syntax element that the
ALF is enabled, video decoder 30 may apply the ALF to a reconstructed sample of the

current picture.
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[0129] In some examples, the control of enabling/disabling ALF may further consider
the coded information (e.g., merge/AMVP mode, coded block flag (cbf), block sizes,
etc.) if a condition is satisfied, (e.g., cbf is equal to 0), there is no need to signal the
enabling/disabling flag. For example, video encoder 20 may not signal the ALF
enabling/disabling flag for a block when the block is coded using merge mode but may
signal the ALF enabling/disabling flag for the block when the block is coded using
AMVP mode. In another example, video encoder 20 may signal the ALF
enabling/disabling flag for a block when a size of the block is greater than or equal to a
particular threshold (e.g., 8x8, 16x16, etc.), but does not signal the enabling/disabling
flag for the block when the size of the block is less than the particular threshold.

[0130] In this way, video encoder 20 may determine, based on coded information,
whether to include in a bitstream a syntax element indicating whether an ALF is enabled
or disabled. Furthermore, in this example, video encoder 20 may reconstruct samples of
a current picture of the video data. In this example, in response to determining that the
ALF is enabled, video encoder 20 may apply the ALF to a reconstructed sample of the
current picture. After applying the filters, video encoder 20 may use the current picture
as a reference picture in encoding another picture of the video data. Similarly, video
decoder 30 may determine, based on coded information, whether a bitstream includes a
syntax element indicating whether an ALF is enabled or disabled. Additionally, in this
example, video decoder 30 may reconstruct samples of a current picture of the video
data. In this example, in response to determining that the ALF is enabled, video
decoder 30 may apply the ALF to a reconstructed sample of the current picture.
Applying the ALF may comprise applying a function of multiple filters to a block of a
reconstructed picture. In these examples, the coded information may include at least
one of: a merge / advanced motion vector prediction (AMVP) mode, a coded block flag
(CBF), or a block size a video coder (e.g., video encoder 20 or video decoder 30).
Furthermore, in some examples, the video coder may determine, based on the syntax
element, whether the ALF is enabled. In some examples, the video coder may
determine, based on the coded information, whether the ALF is enabled.

[0131] In some examples, the filtering process is implemented with shift, multiplication
and sum operations, without division operations. For instance, denote the bit-depth of
filters by BDp, bit-depth of weighting factors by BD,,, bit-depth of reconstructed
samples by BDs. Assume the target internal bit-depth defined by MaxBD. The

following methods may be applied to perform the filtering process:
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[0132] The weighting factor is applied to each internal sample with one of the selected
filter applied to current pixel. An internal sample indicates a value of applying the m-th
filter, that is, ( Xk _x 2k _x fm(k, DR(i + k,j + 1) ). Rounding or rounding with
offset is only invoked once at the end of filtering process. In this example, equation (7)

may be rewritten as:

RGj) = Yo wm) « (Theek TE  fu(k, DRG+k,j+ D) (®)
R(i,j) = (R(i,j) + of fset) » (BD; — 1+ BD,) (9)

In one example, offset is set equal to (1<< (BDg — 2 + BD,,)). In some
implementations, this example is only enabled when (BDy + BD,, + BDy) is not larger
than MaxBD.

[0133] In some examples, an internal filter is derived based on all the weighting factors
and the selected multiple filters. The internal filter is then applied to the current pixel to
derive the final reconstructed pixel. Rounding or rounding with offset may be invoked
twice. In one example, the rounding with/without offset is invoked when deriving an
internal filter with weighting the selected multiple filters. Another rounding
with/without offset is invoked at the end of filtering process. In this example, equation

(7) may be rewritten as:

CF(k,D) = 3 (w(m) * fin(k, 1)) (10)
CF(k, 1) = (CF(k, 1) + 05) > (So) (11)
K K
B, ) = ( 2 2 CF(k, D)« R(i + k,j + 1)) (12)
k=—KIl=—-K
R(i, ) = (R(i, ) + 0,) > (Sy) (13)

In one example, S is defined as (BDy + BD,, + BD;, — MaxBD) and S; is defined as
(BDr — 1). In one example, Oy is set equal to (S; > 1)and O, is set equal to (§; > 1).
In some examples, this example is only enabled when (BDyr + BD,,, + BDy) is larger
than MaxBD.

[0134] FIG. 8 is a block diagram illustrating an example video encoder 20 that may
implement the techniques described in this disclosure. Video encoder 20 may perform

intra- and inter-coding of video blocks within video slices. Intra-coding relies on spatial
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prediction to reduce or remove spatial redundancy in video within a given video frame
or picture. Inter-coding relies on temporal prediction to reduce or remove temporal
redundancy in video within adjacent frames or pictures of a video sequence. Intra-mode
(I mode) may refer to any of several spatial based compression modes. Inter-modes,
such as uni-directional prediction (P mode) or bi-prediction (B mode), may refer to any
of several temporal-based compression modes.

[0135] In the example of FIG. 8, video encoder 20 includes a video data memory 133,
partitioning unit 135, prediction processing unit 141, summer 150, transform processing
unit 152, quantization unit 154, entropy encoding unit 156. Prediction processing unit
141 includes motion estimation unit (MEU) 142, motion compensation unit (MCU) 144,
and intra prediction unit 146. For video block reconstruction, video encoder 20 also
includes inverse quantization unit 158, inverse transform processing unit 160, summer
162, ALF unit 164, and decoded picture buffer (DPB) 166.

[0136] As shown in FIG. 8, video encoder 20 receives video data and stores the
received video data in video data memory 133. Video data memory 133 may store
video data to be encoded by the components of video encoder 20. The video data stored
in video data memory 133 may be obtained, for example, from video source 18. DPB
166 may be a reference picture memory that stores reference video data for use in
encoding video data by video encoder 20, e.g., in intra- or inter-coding modes. Video
data memory 133 and DPB 166 may be formed by any of a variety of memory devices,
such as dynamic random access memory (DRAM), including synchronous DRAM
(SDRAM), magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of
memory devices. Video data memory 133 and DPB 166 may be provided by the same
memory device or separate memory devices. In various examples, video data memory
133 may be on-chip with other components of video encoder 20, or off-chip relative to
those components.

[0137] Partitioning unit 135 retrieves the video data from video data memory 133 and
partitions the video data into video blocks. This partitioning may also include
partitioning into slices, tiles, or other larger units, as wells as video block partitioning,
e.g., according to a quadtree structure of LCUs and CUs. Video encoder 20 generally
illustrates the components that encode video blocks within a video slice to be encoded.
The slice may be divided into multiple video blocks (and possibly into sets of video
blocks referred to as tiles). Prediction processing unit 141 may select one of a plurality

of possible coding modes, such as one of a plurality of intra coding modes or one of a
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plurality of inter coding modes, for the current video block based on error results (e.g.,
coding rate and the level of distortion). Prediction processing unit 141 may provide the
resulting intra- or inter-coded block to summer 150 to generate residual block data and
to summer 162 to reconstruct the encoded block for use as a reference picture.

[0138] Intra prediction unit 146 within prediction processing unit 141 may perform
intra-predictive coding of the current video block relative to one or more neighboring
blocks in the same frame or slice as the current block to be coded to provide spatial
compression. Motion estimation unit 142 and motion compensation unit 144 within
prediction processing unit 141 perform inter-predictive coding of the current video
block relative to one or more predictive blocks in one or more reference pictures to
provide temporal compression.

[0139] Motion estimation unit 142 may be configured to determine the inter-prediction
mode for a video slice according to a predetermined pattern for a video sequence. The
predetermined pattern may designate video slices in the sequence as P slices or B slices.
Motion estimation unit 142 and motion compensation unit 144 may be highly
integrated, but are illustrated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 142, is the process of generating motion vectors,
which estimate motion for video blocks. A motion vector, for example, may indicate
the displacement of a PU of a video block within a current video frame or picture
relative to a predictive block within a reference picture.

[0140] A predictive block is a block that is found to closely match the PU of the video
block to be coded in terms of pixel difference, which may be determined by sum of
absolute difference (SAD), sum of square difference (SSD), or other difference metrics.
In some examples, video encoder 20 may calculate values for sub-integer pixel positions
of reference pictures stored in DPB 166. For example, video encoder 20 may
interpolate values of one-quarter pixel positions, one-eighth pixel positions, or other
fractional pixel positions of the reference picture. Therefore, motion estimation unit
142 may perform a motion search relative to the full pixel positions and fractional pixel
positions and output a motion vector with fractional pixel precision.

[0141] Motion estimation unit 142 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of

which identify one or more reference pictures stored in DPB 166. Motion estimation
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unit 142 sends the calculated motion vector to entropy encoding unit 156 and motion
compensation unit 144.

[0142] Motion compensation, performed by motion compensation unit 144, may
involve fetching or generating the predictive block based on the motion vector
determined by motion estimation, possibly performing interpolations to sub-pixel
precision. Upon receiving the motion vector for the PU of the current video block,
motion compensation unit 144 may locate the predictive block to which the motion
vector points in one of the reference picture lists. Video encoder 20 forms a residual
video block by subtracting pixel values of the predictive block from the pixel values of
the current video block being coded, forming pixel difference values. The pixel
difference values form residual data for the block, and may include both luma and
chroma difference components. Summer 150 represents the component or components
that perform this subtraction operation. Motion compensation unit 144 may also
generate syntax elements associated with the video blocks and the video slice for use by
video decoder 30 in decoding the video blocks of the video slice.

[0143] After prediction processing unit 141 generates the predictive block for the
current video block, either via intra prediction or inter prediction, video encoder 20
forms a residual video block by subtracting the predictive block from the current video
block. The residual video data in the residual block may be included in one or more
TUs and applied to transform processing unit 152. Transform processing unit 152
transforms the residual video data into residual transform coefficients using a transform,
such as a discrete cosine transform (DCT) or a conceptually similar transform.
Transform processing unit 152 may convert the residual video data from a pixel domain
to a transform domain, such as a frequency domain.

[0144] Transform processing unit 152 may send the resulting transform coefticients to
quantization unit 154. Quantization unit 154 quantizes the transform coefficients to
further reduce bit rate. The quantization process may reduce the bit depth associated
with some or all of the coefficients. The degree of quantization may be modified by
adjusting a quantization parameter. In some examples, quantization unit 154 may then
perform a scan of the matrix including the quantized transform coefficients.
Alternatively, entropy encoding unit 156 may perform the scan.

[0145] Following quantization, entropy encoding unit 156 entropy encodes the
quantized transform coefficients. For example, entropy encoding unit 156 may perform

context adaptive variable length coding (CAVLC), context adaptive binary arithmetic
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coding (CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC),
probability interval partitioning entropy (PIPE) coding or another entropy encoding
methodology or technique. Following the entropy encoding by entropy encoding unit
156, the encoded bitstream may be transmitted to video decoder 30, or archived for later
transmission or retrieval by video decoder 30. Entropy encoding unit 156 may also
entropy encode the motion vectors and the other syntax elements for the current video
slice being coded.

[0146] Inverse quantization unit 158 and inverse transform processing unit 160 apply
inverse quantization and inverse transformation, respectively, to reconstruct the residual
block in the pixel domain for later use as a reference block of a reference picture.
Motion compensation unit 144 may calculate a reference block by adding the residual
block to a predictive block of one of the reference pictures within one of the reference
picture lists. Motion compensation unit 144 may also apply one or more interpolation
filters to the reconstructed residual block to calculate sub-integer pixel values for use in
motion estimation. Summer 162 adds the reconstructed residual block to the motion
compensated prediction block produced by motion compensation unit 144 to produce a
reconstructed block. In other words, summer 162 adds samples of the reconstructed
residual block to corresponding samples of the motion compensated prediction block to
reconstruct samples of a reconstructed block.

[0147] ALF unit 164 filters the reconstructed block (e.g. the output of summer 162) and
stores the filtered reconstructed block in DPB 166 for uses as a reference block. The
reference block may be used by motion estimation unit 142 and motion compensation
unit 144 as a reference block to inter-predict a block in a subsequent video frame or
picture. Although not explicitly shown in FIG. 8, video encoder 20 may include
additional filters such as of a deblock filter, a sample adaptive offset (SAO) filter, or
other type of loop filter. A deblock filter may, for example, apply deblocking filtering
to filter block boundaries to remove blockiness artifacts from reconstructed video. An
SAOQ filter may apply offsets to reconstructed pixel values in order to improve overall
coding quality. In some implementations, SAO may be a special case or special mode
of ALF filtering. Additional loop filters (in loop or post loop) may also be used.

[0148] ALF unit 164, alone or in conjunction with other components of video encoder
20, may be configured to perform the various techniques described in this disclosure
including the techniques described in the claims section as well as elsewhere. For

example, video encoder 20 may reconstruct samples of a current picture of the video
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data, as described elsewhere in this disclosure. Furthermore, ALF unit 164 may apply,
to a current block of the current picture, a particular function of the plurality of filters.
The current block comprises reconstructed samples of the current picture. Applying the
particular function to the current block may comprise applying the particular function to
each reconstructed sample of the current block. In some examples, ALF unit 164
assigns a plurality of class indexes to a current block of the current picture, each
respective class index of the plurality of class indexes associated with a respective filter
in a plurality of filters. Additionally, as part of applying the particular function to the
current block, ALF unit 164 may apply, to a reconstructed sample of the current block,
the filters associated with the plurality of class indexes assigned to the current block.
After applying the filters, prediction processing unit 141 may use the current picture as a
reference picture in encoding another picture of the video data.

[0149] In some examples, video encoder 20 may include, in a bitstream that comprises
an encoded representation of a current picture of the video data, a syntax element
indicating whether an ALF is enabled or disabled, wherein the syntax element is
signaled according to a depth of a type of tree other than a quad-tree. The ALF may be
a function of multiple filters. In this example, video encoder 20 may reconstruct
samples of the current picture of the video data, as described elsewhere in this
disclosure. Furthermore, in response to determining (e.g., based on the syntax element)
that the ALF is enabled, ALF unit 164 may apply the ALF to a reconstructed sample of
the current picture. After applying the filters, prediction processing unit 141 may use
the current picture as a reference picture in encoding another picture of the video data.
[0150] In some examples, video encoder 20 may determine, based on coded
information, whether to include in a bitstream a syntax element indicating whether an
ALF is enabled or disabled. Video encoder 20 may reconstruct samples of a current
picture of the video data, as described elsewhere in this disclosure. In response to
determining that the ALF is enabled, ALF unit 164 may apply the ALF to a
reconstructed sample of the current picture. After applying the filters, prediction
processing unit 141 may use the current picture as a reference picture in encoding
another picture of the video data.

[0151] FIG. 9 is a block diagram illustrating an example video decoder 30 that may
implement the techniques described in this disclosure. In the example of FIG. 9, video
decoder 30 includes video data memory 178, entropy decoding unit 180, prediction

processing unit 181, inverse quantization unit 186, inverse transform processing unit
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188, summer 190, and DPB 194. Prediction processing unit 181 includes motion
compensation unit 182 and intra prediction unit 184. Video decoder 30 may, in some
examples, perform a decoding pass generally reciprocal to the encoding pass described
with respect to video encoder 20 from FIG. 8.

[0152] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Video decoder 30 stores the received encoded video
bitstream in video data memory 178. Video data memory 178 may store video data,
such as an encoded video bitstream, to be decoded by the components of video decoder
30. The video data stored in video data memory 178 may be obtained, for example, via
link 16, from storage media 28, or from a local video source, such as a camera, or by
accessing physical data storage media. Video data memory 178 may form a coded
picture buffer (CPB) that stores encoded video data from an encoded video

bitstream. DPB 194 may be a reference picture memory that stores reference video data
for use in decoding video data by video decoder 30, e.g., in intra- or inter-coding
modes. Video data memory 178 and DPB 194 may be formed by any of a variety of
memory devices, such as DRAM, SDRAM, MRAM, RRAM, or other types of memory
devices. Video data memory 178 and DPB 194 may be provided by the same memory
device or separate memory devices. In various examples, video data memory 178 may
be on-chip with other components of video decoder 30, or off-chip relative to those
components.

[0153] Entropy decoding unit 180 of video decoder 30 entropy decodes the video data
stored in video data memory 178 to generate quantized coefficients, motion vectors, and
other syntax elements. Entropy decoding unit 180 forwards the motion vectors and
other syntax elements to prediction processing unit 181. Video decoder 30 may receive
the syntax elements at the video slice level and/or the video block level.

[0154] When the video slice is coded as an intra-coded (I) slice, intra prediction unit
184 of prediction processing unit 181 may generate prediction data for a video block of
the current video slice based on a signaled intra prediction mode and data from
previously decoded blocks of the current frame or picture. When the video frame is
coded as an inter-coded slice (e.g., B slice or P slice), motion compensation unit 182 of
prediction processing unit 181 produces predictive blocks for a video block of the
current video slice based on the motion vectors and other syntax elements received from

entropy decoding unit 180. The predictive blocks may be produced from one of the



WO 2017/201011 PCT/US2017/032853
48

reference pictures within one of the reference picture lists. Video decoder 30 may
construct the reference frame lists, List O and List 1, using default construction
techniques based on reference pictures stored in DPB 194,

[0155] Motion compensation unit 182 determines prediction information for a video
block of the current video slice by parsing the motion vectors and other syntax elements,
and uses the prediction information to produce the predictive blocks for the current
video block being decoded. For example, motion compensation unit 182 uses some of
the received syntax elements to determine a prediction mode (e.g., intra- or inter-
prediction) used to code the video blocks of the video slice, an inter-prediction slice
type (e.g., B slice or P slice), construction information for one or more of the reference
picture lists for the slice, motion vectors for each inter-encoded video block of the slice,
inter-prediction status for each inter-coded video block of the slice, and other
information to decode the video blocks in the current video slice.

[0156] Motion compensation unit 182 may also perform interpolation based on
interpolation filters. Motion compensation unit 182 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values
for sub-integer pixels of reference blocks. In this case, motion compensation unit 182
may determine the interpolation filters used by video encoder 20 from the received
syntax elements and use the interpolation filters to produce predictive blocks.

[0157] Inverse quantization unit 186 inverse quantizes, i.e., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
180. The inverse quantization process may include use of a quantization parameter
calculated by video encoder 20 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be
applied. Inverse transform processing unit 188 applies an inverse transform, e.g., an
inverse DCT, an inverse integer transform, or a conceptually similar inverse transform
process, to the transform coefficients in order to produce residual blocks in the pixel
domain.

[0158] After prediction processing unit 181 generates the predictive block for the
current video block using, for example, intra or inter prediction, video decoder 30 may
form a reconstructed video block by summing the residual blocks from inverse
transform processing unit 188 with the corresponding predictive blocks generated by
motion compensation unit 182. In other words, video decoder 30 may add samples of

the residual blocks to corresponding samples of the predictive blocks to reconstruct
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samples of a video block of the picture. Summer 190 represents the component or
components that perform this summation operation. ALF unit 192 filters the
reconstructed video block using, for example, one or more of the ALF techniques
described in this disclosure.

[0159] Although not explicitly shown in FIG. 9, video decoder 30 may also include one
or more of a deblocking filter, an SAO filter, or other types of filters. Other loop filters
(either in the coding loop or after the coding loop) may also be used to smooth pixel
transitions or otherwise improve the video quality. The decoded video blocks in a given
frame or picture are then stored in DPB 194, which stores reference pictures used for
subsequent motion compensation. DPB 194 may be part of or separate from additional
memory that stores decoded video for later presentation on a display device, such as
display device 32 of FIG. 1.

[0160] ALF unit 192, alone or in conjunction with other components of video decoder
30, may be configured to perform the various techniques described in this disclosure
including the techniques described in the claims section as well as elsewhere.

[0161] For example, video decoder 30 may reconstruct samples of a current picture of
the video data, as described elsewhere in this disclosure. Furthermore, in this example,
after reconstructing samples of the current picture, video decoder 30 may apply a
particular function of a plurality of filters to a current block of the current picture. For
instance, ALF unit 192 may assign a plurality of class indexes to a current block of the
current picture, each respective class index of the plurality of class indexes associated
with a respective filter in the plurality of filters. Additionally, in this example, ALF unit
192 may apply, to a reconstructed sample of the current block, the filters associated with
the plurality of class indexes assigned to the current block.

[0162] In some examples, video decoder 30 may obtain, from a bitstream that
comprises an encoded representation of a current picture of the video data, a syntax
element indicating whether an ALF is enabled or disabled, wherein the syntax element
is signaled according to a depth of a type of tree other than a quad-tree. The ALF may
be the particular function of the plurality of filters. Furthermore, video decoder 30 may
reconstruct samples of the current picture of the video data, as described elsewhere in
this disclosure. In response to determining based on the syntax element that the ALF is
enabled, ALF unit 192 may apply the ALF to a reconstructed sample of the current

picture.
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[0163] In some examples, ALF unit 192 may determine, based on coded information,
whether a bitstream includes a syntax element indicating whether an Adaptive Loop
Filter (ALF) is enabled or disabled. Additionally, video decoder 30 may reconstruct a
current picture of the video data, as described elsewhere in this disclosure. In response
to determining that the ALF is enabled, ALF unit 192 may apply the ALF to a
reconstructed sample of the current picture.

[0164] FIG. 10 is a flowchart illustrating an example operation of a video coder, in
accordance with one or more techniques of this disclosure. The flowcharts of this
disclosure are provided as examples. In other examples, operations may include more,
fewer or different actions. Moreover, actions may be performed in different orders.
[0165] In the example of FIG. 10, a computing device that comprises a video coder
(e.g., video encoder 20 or video decoder 30) may reconstruct one or more blocks of a
current picture of the video data (250). For instance, the video coder may reconstruct
one or more CTBs of the current picture. The one or more blocks of the current picture
comprise reconstructed samples of the current picture. Thus, reconstructing the one or
more blocks comprises reconstructing samples of the current picture. For instance, in
examples where the video coder is the video encoder shown in FIG. 8, inverse
quantization unit 158, inverse transform processing unit 160, and summer 162 may
reconstruct the one or more blocks of the current picture of the video data. In examples
where the video coder is the video decoder shown in FIG. 9, prediction processing unit
181, inverse quantization unit 187, inverse transform processing unit 188, and summer
190 may reconstruct the one or more blocks of the current picture of the video data.
[0166] After reconstructing the one or more blocks of the current picture, the video
coder may apply a particular function of a plurality of filters to a current block of the
current picture (252). The current block does not necessarily correspond in size or
shape to the one or more blocks used in the process of reconstructing the current picture.
Rather, the current block as used here simply comprises reconstructed samples that are
in the one or more blocks used in the process of reconstructing the current picture. In
some examples where the video coder is the video encoder shown in FIG. 8, ALF unit
164 may apply the particular function of the plurality of filters to the current block.
Furthermore, in instances where the video coder is a video encoder, the video encoder
may use the filtered picture as a reference picture for encoding other pictures. In
examples where the video coder is the video decoder shown in FIG. 9, ALF unit 192

may apply the particular function of the plurality of filters to the current block.
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Furthermore, in examples where the video coder is a video decoder, the video decoder
may output the filtered picture. The video coder may apply the particular function of
the plurality of filters in accordance with any of the examples provided elsewhere in this
disclosure. For instance, the video coder may apply a linear function of the plurality of
filters. In some examples, the plurality of filters includes, for each respective
neighboring block of a plurality of neighboring blocks defined by a template, a
respective filter associated with the respective neighboring block.

[0167] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0168] By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, cache memory, or any
other medium that can be used to store desired program code in the form of instructions
or data structures and that can be accessed by a computer. Also, any connection is
properly termed a computer-readable medium. For example, if instructions are
transmitted from a website, server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as
infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies such as infrared, radio, and microwave are included in
the definition of medium. It should be understood, however, that computer-readable
storage media and data storage media do not include connections, carrier waves, signals,

or other transient media, but are instead directed to non-transient, tangible storage
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media. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical
disc, digital versatile disc (DVD), floppy disk and Blu-ray disc, where disks usually
reproduce data magnetically, while discs reproduce data optically with lasers.
Combinations of the above should also be included within the scope of computer-
readable media.

[0169] Instructions may be executed by fixed function and/or programmable processing
circuitry, including one or more processors, such as one or more digital signal
processors (DSPs), general purpose microprocessors, application specific integrated
circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent
integrated or discrete logic circuitry. Accordingly, the term “processor,” as used herein
may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. Thus, a “processor” comprises
processing circuitry. In addition, in some aspects, the functionality described herein
may be provided within dedicated hardware and/or software modules configured for
encoding and decoding, or incorporated in a combined codec. Also, the techniques
could be fully implemented in one or more circuits or logic elements.

[0170] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0171] Various examples have been described. These and other examples are within the

scope of the following claims.
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WHAT IS CLAIMED IS:

1. A method of decoding or encoding video data, the method comprising:
reconstructing, by a computing device, one or more blocks of a current picture of
the video data, the one or more blocks of the current picture comprising reconstructed
samples of the current picture; and
after reconstructing the one or more blocks of the current picture, applying, by
the computing device, a particular function of a plurality of filters to a current block of
the current picture, the current block comprising the reconstructed samples of the

current picture.

2. The method of claim 1, wherein the particular function is a linear function of the

plurality of filters.

3. The method of claim 1, wherein:

a template defines a plurality of neighboring blocks of the current picture that
neighbor the current block, and

for each respective neighboring block of the plurality of neighboring blocks, the
plurality of filters includes a respective filter associated with the respective neighboring
block

4. The method of claim 1, wherein the plurality of filters consists of a number of
filters, the method further comprising determining, by the computing device, based on a

syntax element in a bitstream, the number of filters for the current block.

5. The method of claim 1, further comprising:
determining, by the computing device, the plurality of filters based on filters
used by neighboring blocks in a template, the template being a geometrical pattern of

blocks centered on the current block.

6. The method of claim 5, further comprising:
determining, by the computing device, the template based on one or more of: a

slice type, a quantization parameter, a temporal identifier, whether the template is or is
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not referenced by another picture, or information signaled in one or more of: a

sequence parameter header, a picture parameter header, or a slice header.

7. The method of claim 1, further comprising:

determining, by the computing device, based on a pre-defined mask, weighting
factors used in the particular function, the pre-defined mask specifying mask values for
block in a template, the template being a geometrical pattern of blocks centered on the

current block.

8. The method of claim 1, wherein:

the method further comprises obtaining, by the computing device, from a
bitstream, data indicating weighting factors for a plurality of neighboring blocks,

for each respective neighboring block of the plurality of neighboring blocks, the
plurality of filters includes a respective filter for the respective neighboring block, and

applying the particular function comprises using, by the computing device, the

weighting factors for the neighboring blocks when applying the particular function.

9. The method of claim 1, wherein:
the method further comprises:
obtaining, by the computing device, from a bitstream, a syntax element
indicating whether all weighting factors associated with neighboring blocks are
equal to 0; and
based on the syntax element indicating not all weighting factors
associated with the neighboring blocks are equal to 0, obtaining, by the
computing device, from the bitstream, data indicating the weighting factors
associated with the neighboring blocks, and
applying the particular function comprises using, by the computing device, the
weighting factors associated with the neighboring blocks to apply the particular

function.

10. The method of claim 1, further comprising determining two or more filters in the
plurality of filters based on at least one of:
an activity level of the current block, or

a direction classification of the current block.
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11. The method of claim 1, wherein:
applying the particular function comprises using, by the computing device, pre-
defined weighting factors for selected filters of the plurality of filters to apply the

particular function.

12. The method of claim 1, wherein:

the method further comprises: determining, by the computing device, based on
syntax elements, weighting factors for selected filters of the plurality of filters, the
syntax elements included in one or more of: a sequence parameter header, picture
parameter header, or slice header; and

applying the particular function comprises using, by the computing device, the
pre-defined weighting factors for selected filters of the plurality of filters to apply the

particular function.

13. The method of claim 1, wherein:

the method further comprises: determining, by the computing device, based on a
group index, a class index, a position of the current block relative to a coding unit,
prediction unit, or transform unit, or coding mode, weighting factors for selected filters
of the plurality of filters; and

applying the particular function comprises using, by the computing device, the
weighting factors for selected filters of the plurality of filters to apply the particular

function.

14. The method of claim 1, wherein:
the method further comprises:
receiving, by the computing device, a bitstream comprising an encoded
representation of a plurality of pictures of the video data, the plurality of pictures
including the current picture, the current picture including a first block and a
second block, the first block and the second block partially overlapping; and
determining, by the computing device, a class for the first block and a
class for the second block, and

applying the particular function of the plurality of filters comprises:
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applying, by the computing device, to each reconstructed sample of the
first block, a filter associated with the class for the first block; and

applying, by the computing device, to each reconstructed sample of the
second block, a filter associated with the class for the second block, such that the
filter associated with the class for the first block and the filter associated with the
class for the second block are both applied to reconstructed samples in

overlapping parts of the first and second blocks.

15. The method of claim 1, wherein:

the method further comprises assigning, by the computing device, a plurality of
class indexes to the current block of the current picture, each respective class index of
the plurality of class indexes associated with a respective filter in the plurality of filters,
and

applying the particular function of the plurality of filters comprises applying, by
the computing device, to a reconstructed sample of the current block, the filters

associated with the plurality of class indexes assigned to the current block.

16. The method of claim 15, wherein assigning the plurality of class indexes to the
current block comprises:
assigning, by the computing device, the plurality of class indexes to the current

block based on a plurality of window sizes.

17. The method of claim 15, wherein assigning the plurality of class indexes to the
current block comprises:

inheriting, by the computing device, a first class index of the plurality of class
indexes from a block that neighbors the current block; and

deriving, by the computing device, a second class index of the plurality of class

indexes based on reconstructed samples within the current block.

18. The method of claim 1, wherein:
the plurality of filters includes an Adaptive Loop Filter (ALF),
the method further comprises obtaining, by the computing device, from a

bitstream that comprises an encoded representation of the current picture, a syntax
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element indicating whether the ALF is enabled or disabled, wherein the syntax element
is signaled according to a depth of a type of tree other than a quad-tree; and
in response to determining based on the syntax element that the ALF is enabled,

applying, by the computing device, the ALF to a reconstructed sample of the current

picture.

19. The method of claim 1, wherein:

the plurality of filters includes an Adaptive Loop Filter (ALF),

the method further comprises determining, by the computing device, based on a
merge / advanced motion vector prediction (AMVP) mode, a coded block flag (CBF), or
a block size, whether a bitstream includes a syntax element indicating whether an
Adaptive Loop Filter (ALF) is enabled or disabled,

applying the particular function of the plurality of filters comprises, in response
to determining that the ALF is enabled, applying, by the computing device, the ALF to a

reconstructed sample of the current picture.

20. The method of claim 1, further comprising:
receiving, by the computing device, a bitstream comprising an encoded

representation of a plurality of pictures of the video data.

21. The method of claim 1,
after applying the particular function of the plurality of filters to the current

block, outputting, by the computing device, the current picture.

22. The method of claim 1, wherein:

reconstructing the one or more blocks of the current picture comprises, after
encoding the one or more blocks of the current picture of the video data, reconstructing,
by the computing device, the one or more blocks of the current picture, and

the method further comprises using, by the computing device, the current picture

as a reference picture in encoding another picture of the video data

23. The method of claim 22, wherein:
the method further comprises including, by the computing device, in a bitstream,

data indicating weighting factors for neighboring blocks,
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for each respective neighboring block of the neighboring blocks, the plurality of
filters includes a respective filter for the respective neighboring block, and
applying the particular function comprises using, by the computing device, the

weighting factors for the neighboring blocks when applying the particular function.

24. The method of claim 22, wherein:
the method further comprises:
including, by the computing device, in a bitstream, a syntax element
indicating whether all weighting factors associated with neighboring blocks are
equal to 0; and
based on the syntax element indicating not all weighting factors
associated with the neighboring blocks are equal to 0, obtaining, by the
computing device, from the bitstream, data indicating the weighting factors
associated with the neighboring blocks, and
applying the particular function comprises using, by the computing device, the
weighting factors associated with the neighboring blocks to apply the particular

function.

25. The method of claim 22, wherein:

the plurality of filters includes an Adaptive Loop Filter (ALF), and

the method further comprises including, by the computing device, in a bitstream
that comprises an encoded representation of a current picture of the video data, a syntax
element indicating whether the ALF is enabled or disabled, wherein the syntax element

is signaled according to a depth of a type of tree other than a quad-tree.

26. The method of claim 22, wherein:

the method further comprises determining, by the computing device, based on a
merge / advanced motion vector prediction (AMVP) mode, a coded block flag (CBF), or
a block size, whether to include in a bitstream a syntax element indicating whether an
Adaptive Loop Filter (ALF) is enabled or disabled, and

applying the particular function of the plurality of filters comprises, in response
to determining that the ALF is enabled, applying, by the computing device, the ALF to a

reconstructed sample of the current picture.
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27. An apparatus for decoding or encoding video data, the apparatus comprising:

one or more storage media configured to store video data; and
one or more processors configured to:

reconstruct one or more blocks of a current picture of the video data, the
one or more blocks of the current picture comprising reconstructed samples of
the current picture; and

after reconstructing the one or more blocks of the current picture, apply a
particular function of a plurality of filters to a current block of the current
picture, the current block comprising the reconstructed samples of the current

picture.

28. The apparatus of claim 27, wherein the particular function is a linear function of

the plurality of filters.

29.  The apparatus of claim 27, wherein:

a template defines a plurality of neighboring blocks of the current picture that
neighbor the current block, and

for each respective neighboring block of the plurality of neighboring blocks, the
plurality of filters includes a respective filter associated with the respective neighboring
block

30.  The apparatus of claim 27, wherein the plurality of filters consists of a number
of filters, the one or more processors further configured to determine, based on a syntax

element in a bitstream, the number of filters for the current block.

31.  The apparatus of claim 27, wherein the one or more processors are further
configured to:
determine the plurality of filters based on filters used by neighboring blocks in a

template, the template being a geometrical pattern of blocks centered on the current
block.

32.  The apparatus of claim 31, wherein the one or more processors are further
configured to determine the template based on one or more of: a slice type, a

quantization parameter, a temporal identifier, whether the template is or is not
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referenced by another picture, or information signaled in one or more of: a sequence

parameter header, a picture parameter header, or a slice header.

33.  The apparatus of claim 27, wherein the one or more processors are further
configured to determine, based on a pre-defined mask, weighting factors used in the
particular function, the pre-defined mask specifying mask values for block in a
template, the template being a geometrical pattern of blocks centered on the current

block.

34. The apparatus of claim 27, wherein:

the one or more processors are further configured to obtain, from a bitstream,
data indicating weighting factors for a plurality of neighboring blocks,

for each respective neighboring block of the plurality of neighboring blocks, the
plurality of filters includes a respective filter for the respective neighboring block, and

the one or more processors are configured such that, as part of applying the
particular function, the one or more processors use the weighting factors for the

neighboring blocks when applying the particular function.

35. The apparatus of claim 27, wherein:
the one or more processors are further configured to:
obtain, from a bitstream, a syntax element indicating whether all
weighting factors associated with neighboring blocks are equal to 0; and
based on the syntax element indicating not all weighting factors
associated with the neighboring blocks are equal to 0, obtain, from the bitstream,
data indicating the weighting factors associated with the neighboring blocks, and
the one or more processors are configured such that, as part of applying the
particular function, the one or more processors use the weighting factors associated with

the neighboring blocks to apply the particular function.

36.  The apparatus of claim 27, wherein the one or more processors are further
configured to determine two or more filters in the plurality of filters based on at least
one of:

an activity level of the current block, or

a direction classification of the current block.
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37. The apparatus of claim 27, wherein:
the one or more processors are configured such that, as part of applying the
particular function, the one or more processors use pre-defined weighting factors for

selected filters of the plurality of filters to apply the particular function.

38.  The apparatus of claim 27, wherein:

the one or more processors are further configured to determine, based on syntax
elements, weighting factors for selected filters of the plurality of filters, the syntax
elements included in one or more of: a sequence parameter header, picture parameter
header, or slice header; and

the one or more processors are configured such that, as part of applying the
particular function, the one or more processors use the pre-defined weighting factors for

selected filters of the plurality of filters to apply the particular function.

39.  The apparatus of claim 27, wherein:

the one or more processors are further configured to determine, based on a group
index, a class index, a position of the current block relative to a coding unit, prediction
unit, or transform unit, or coding mode, weighting factors for selected filters of the
plurality of filters; and

the one or more processors are configured such that, as part of applying the
particular function, the one or more processors use the weighting factors for selected

filters of the plurality of filters to apply the particular function.

40. The apparatus of claim 27, wherein:

the one or more processors are further configured to:

receive a bitstream comprising an encoded representation of a plurality
of pictures of the video data, the plurality of pictures including the current
picture, the current picture including a first block and a second block, wherein
the first block and the second block are partially overlapping; and

determine a class for the first block and a class for the second block, and
the one or more processors are configured such that, as part of applying the

particular function of the plurality of filters, the one or more processors:
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apply to each reconstructed sample of the first block, a filter associated
with the class for the first block; and

apply to each reconstructed sample of the second block, a filter
associated with the class for the second block, such that the filter associated with
the class for the first block and the filter associated with the class for the second
block are both applied to reconstructed samples in overlapping parts of the first

and second blocks.

41. The apparatus of claim 27, wherein:
the one or more processors are further configured to assign a plurality of class
indexes to the current block of the current picture, each respective class index of the
plurality of class indexes associated with a respective filter in the plurality of filters, and
the one or more processors are configured such that, as part of applying the
particular function of the plurality of filters, the one or more processors apply, to a
reconstructed sample of the current block, the filters associated with the plurality of

class indexes assigned to the current block.

42.  The apparatus of claim 41, wherein the one or more processors are configured
such that, as part of assigning the plurality of class indexes to the current block, the one
Of MOre Processors:

assign the plurality of class indexes to the current block based on a plurality of

window sizes.

43.  The apparatus of claim 41, wherein the one or more processors are configured
such that, as part of assigning the plurality of class indexes to the current block, the one
Of MOre Processors:

inherit a first class index of the plurality of class indexes from a block that
neighbors the current block; and

derive a second class index of the plurality of class indexes based on

reconstructed samples within the current block.

44, The apparatus of claim 27, wherein:
the plurality of filters includes an Adaptive Loop Filter (ALF),

the one or more processors are further configured to:
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obtain, from a bitstream that comprises an encoded representation of the
current picture, a syntax element indicating whether the ALF is enabled or
disabled, wherein the syntax element is signaled according to a depth of a type
of tree other than a quad-tree; and

in response to determining based on the syntax element that the ALF is

enabled, apply the ALF to a reconstructed sample of the current picture.

45. The apparatus of claim 27, wherein:

the plurality of filters includes an Adaptive Loop Filter (ALF),

the one or more processors are further configured to determine, based on a
merge / advanced motion vector prediction (AMVP) mode, a coded block flag (CBF), or
a block size, whether a bitstream includes a syntax element indicating whether an
Adaptive Loop Filter (ALF) is enabled or disabled, and

the one or more processors are configured such that, as part of applying the
particular function of the plurality of filters, the one or more processors, in response to
determining that the ALF is enabled, apply the ALF to a reconstructed sample of the

current picture.

46.  The apparatus of claim 27, wherein the one or more processors are further
configured to:
receive a bitstream comprising an encoded representation of a plurality of

pictures of the video data.

47.  The apparatus of claim 27, wherein the one or more processors are further
configured to output, after applying the particular function of the plurality of filters to

the current block, the current picture.

48. The apparatus of claim 27, wherein:

the one or more processors are configured such that, as part of reconstructing the
current picture, the one or more processors, after encoding the current picture of the
video data, reconstruct the current picture, and

the one or more processors are further configured to use the current picture as a

reference picture in encoding another picture of the video data.



WO 2017/201011 PCT/US2017/032853
64

49. The apparatus of claim 48, wherein:

the one or more processors are further configured to include, in a bitstream, data
indicating weighting factors for neighboring blocks,

for each respective neighboring block of the neighboring blocks, the plurality of
filters includes a respective filter for the respective neighboring block, and

the one or more processors are configured such that, as part of applying the
particular function, the one or more processors use the weighting factors for the

neighboring blocks when applying the particular function.

50. The apparatus of claim 48, wherein:
the one or more processors are further configured to:
include, in a bitstream, a syntax element indicating whether all weighting
factors associated with neighboring blocks are equal to 0; and
based on the syntax element indicating not all weighting factors
associated with the neighboring blocks are equal to 0, obtain, from the bitstream,
data indicating the weighting factors associated with the neighboring blocks, and
the one or more processors are configured such that, as part of applying the
particular function, the one or more processors use the weighting factors associated with

the neighboring blocks to apply the particular function.

51.  The apparatus of claim 48, wherein:

the plurality of filters includes an Adaptive Loop Filter (ALF), and

the one or more processors are further configured to include, in a bitstream that
comprises an encoded representation of a current picture of the video data, a syntax
element indicating whether the ALF is enabled or disabled, wherein the syntax element

is signaled according to a depth of a type of tree other than a quad-tree.

52. The apparatus of claim 48, wherein:

the one or more processors are further configured to determine, based on a
merge / advanced motion vector prediction (AMVP) mode, a coded block flag (CBF), or
a block size, whether to include in a bitstream a syntax element indicating whether an
Adaptive Loop Filter (ALF) is enabled or disabled, and

the one or more processors are configured such that, as part of applying the

particular function of the plurality of filters, the one or more processors, in response to
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determining that the ALF is enabled, apply the ALF to a reconstructed sample of the

current picture.

53. The apparatus of claim 27, wherein the apparatus comprises at least one of:
an integrated circuit;
a microprocessor; or

a wireless communication device.

54. The apparatus of claim 27, further comprising a display configured to display

decoded video data.

55. The apparatus of claim 27, further comprising a camera configured to capture

the video data.

56. An apparatus for decoding or encoding video data, the apparatus comprising:
means for reconstructing one or more blocks of a current picture of the video
data, the one or more blocks of the current picture comprising reconstructed samples of
the current picture; and
means for applying, after reconstructing the current picture, a particular function
of a plurality of filters to a current block of the current picture, the current block

comprising the reconstructed samples of the current picture.

57. A computer-readable data storage medium having instructions stored thereon
that, when executed, configure a device for decoding or encoding video data to:
reconstruct one or more blocks of a current picture of the video data, the one or
more blocks of the current picture comprising reconstructed samples of the current
picture; and
after reconstructing the one or more blocks of the current picture, apply a
particular function of a plurality of filters to a current block of the current picture, the

current block comprising the reconstructed samples of the current picture.
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