发明名称
电解雾产生装置和使用该电解雾产生装置的洗衣机

摘要
本发明提供一种电解雾产生装置和使用该电解雾产生装置的洗衣机，所述电解雾产生装置具备：配置在电解槽内的电极部；用于产生电解水的雾的压电元件；对电解槽内供水的供水装置；将在电解槽中产生的雾从排出口排出的排出装置；以及对步骤进行控制的控制电路，在电解步骤中对压电元件施加不产生雾的低电压来产生水柱。
1．一种电解雾产生装置，其特征在于，
所述电解雾产生装置具备：电解槽；电极部，其在所述电解槽内将一对正极和负极以对置的方式平行配置；压电元件，其产生在所述电解槽内生成的电解水的雾；对所述电解槽内供水的供水装置，将所述雾从所述电解槽排出的排出装置；以及对步骤进行控制的控制电路，
在电解步骤中对所述压电元件施加不产生所述雾的电压来产生水柱。

2．根据权利要求1所述的电解雾产生装置，其特征在于，
所述控制电路执行将所述电解槽内的电解水排出的排水步骤。

3．根据权利要求2所述的电解雾产生装置，其特征在于，
所述控制电路在所述排水步骤之后执行向所述电解槽内供水的供水步骤。

4．根据权利要求2所述的电解雾产生装置，其特征在于，
所述控制电路在所述排水步骤之后执行清洗步骤，在该清洗步骤中清洗所述电解槽内。

5．根据权利要求4所述的电解雾产生装置，其特征在于，
所述控制电路在所述清洗步骤之后执行向所述电解槽内供水的供水步骤。

6．根据权利要求1所述的电解雾产生装置，其特征在于，
对所述压电元件施加的不产生雾的电压是产生雾的额定电压的1/3以上1/2以下的电压。

7．根据权利要求1所述的电解雾产生装置，其特征在于，
从所述压电元件产生的水柱由在所述电极部通过后的水流形成。

8．根据权利要求1所述的电解雾产生装置，其特征在于，
所述电解槽在底部具有预定深度的凹部，将所述压电元件倾斜配置在所述凹部内。

9．根据权利要求1所述的电解雾产生装置，其特征在于，
所述电解步骤由恒流电路控制。

10. 一种洗衣机，其特征在于，

所述洗衣机具备：权利要求1所述的电解雾产生装置；收纳洗涤物的洗涤桶；外桶，所述洗涤桶以能够转动的方式安装在所述外桶中；以及向所述外桶供给洗涤水的供水装置，

朝所述洗涤桶供给在所述电解雾产生装置中产生的电解水的雾。

11. 根据权利要求10所述的洗衣机，其特征在于，

导入部从所述电解雾产生装置通往所述洗涤桶，所述导入部的内表面实施了防水加工。

12. 根据权利要求10所述的洗衣机，其特征在于，

所述电解雾产生装置供给20ppm以上200ppm以下的Ag离子电解水的雾。

13. 根据权利要求10所述的洗衣机，其特征在于，

朝所述洗涤桶供给雾的作业在最终脱水步骤后一边使洗涤物翻滚一边实施。
电解雾产生装置和使用该电解雾产生装置的洗衣机

技术领域

本发明涉及用于进行除菌、抗菌的电解雾产生装置和使用该电解雾产生装置的洗衣机。

背景技术

近年来，提出有在洗涤时对洗涤物进行抗菌处理的技术。例如，专利文献 1 公开了一种具有离子产生设备的自动洗衣机，所述离子产生设备用于产生具有杀菌力的金属离子。专利文献 2 公开了一种具有在清洗水中添加 Ag（银）离子的 Ag 离子添加单元的洗衣机。专利文献 3 公开了一种将溶出有 Ag 离子的水呈淋浴状喷射在衣物上的洗衣机。专利文献 4 公开了一种将溶出有 Ag 离子的水的雾喷在洗涤衣物上的干衣机。

通常，利用电解进行金属离子的溶出。当对进行电解的电极之间施加电压时，根据法拉第定律，金属离子从阳极溶出。

但是，在专利文献 1 和专利文献 2 中，由于将溶出有金属离子的水用于漂洗，因此未附着在衣物上的金属离子作为废水被废弃。因此，金属离子的大部分被浪费。并且，在专利文献 3 和专利文献 4 中，以使用来自自来水管的流水路径的流动方式进行 Ag 离子的溶出，因此只能生成低浓度 Ag 离子的电解水。因此，为了得到对洗涤衣物赋予抗菌效果的 Ag 离子而需要相当多的电解水。在该情况下，由于压电元件的单位时间内无法产生那么多的雾，因此处理时间变长。

专利文献 1：日本实开平 5-74487 号公报
专利文献 2：日本特开 2001-276484 号公报
专利文献 3：日本特开 2005-87712 号公报
专利文献 4：日本特开 2006-141579 号公报
发明内容

本发明的一个方面在于电解雾产生装置，所述电解雾产生装置具备：
电解槽；电极部，其在电解槽内将一对正极和负极以对置的方式平行配置；
压电元件，其产生在电解槽内生成的电解水的雾；向电解槽内供水的供水装置；
将所述雾从电解槽排出的排出装置；以及对电解槽的动作步骤进行控制的控制电路，在电解步骤中对压电元件施加不产生雾的电压来产生水柱。由此，通过在电解步骤中对压电元件施加不产生雾的电压来产生水柱，以间歇（batch）处理方式进行电极部的电解，因此通过
电解电流值和电解时间能够稳定且持续地得到所期望的高浓度金属离子水。通过对压电元件施加不产生雾的电压来产生水柱，能够使电解步骤中的水溶液高效地循环，能够防止溶液伴随着间歇处理方式所产生的不
均匀化等弊端。能够使压电元件兼具有雾产生功能和电解槽中的水循环功能。

优选控制电路执行将电解槽内的电解水排出的排水步骤。由此，通过将雾供给后的电解了金属离子的水溶液暂时排出，由此能够防止滞留的水溶液直到下次使用之前变质并堆积沉淀从而对装置造成弊端。

优选控制电路在排水步骤之后执行向电解槽内供水的供水步骤。由此，以供水状态结束伴随电解雾的产生的一系列的步骤，因此电解槽内部始终不会干燥，从而能够保持于难以产生固态物的状态。

优选控制电路在排水步骤之后执行清洗步骤，在该清洗步骤中清洗电解槽内。通过增加清洗步骤能够进行电极部以及电解槽内部的清洗，能够在长时间抑制堆积在电解槽内的堆积物等，从而对于电解来说能够保持稳定的状态。

优选控制电路在清洗步骤之后执行向电解槽内供水的供水步骤。由此，以供水状态结束伴随电解雾的产生的一系列的步骤，因此电解槽内部始终不会干燥，从而能够保持于难以产生固态物的状态。

优选对压电元件施加的不产生雾的电压是产生雾的额定电压的 1/3
以上 1/2 以下的电压。由此，由压电元件产生的水柱朝水面上方延伸，但
在不至于通过水破碎产生雾化状态落下。其结果是，从压电元件相对
于水柱下方向形成循环水路径，能够通过电极部使电解状态在电解槽内的水溶液整体均一化。

优选从电极元件产生的水柱由在电极部通过后的水流形成。由此，能够顺利地进行电解步骤中的水循环，能够防止溶液伴随着间歇处理方式的不均一化等弊端。

优选电极槽在底部具有预定深度的凹部，将电极元件倾斜配置在凹部内。由此，能够使为了保护电解元件而所需的压电元件表面上的积水为极小量，从而能够降低在雾处理步骤后不得不进行排水而浪费的溶出有金属离子的水溶液量。

优选电解步骤由恒流电路控制。由此，即使自来水的属性在某种程度上发生变化也能够得到含有一定的 Ag 的电解水溶液，对于衣物能够得到同样的效果。

本发明的另一个方面在于提供如下的洗衣机，所述洗衣机具备：上述的电解雾产生装置；收纳洗涤物的洗涤桶；外桶，洗涤桶以能够转动的方式安装在所述外桶中；以及向有桶供给洗涤水的供水装置，朝洗涤桶供给在电解雾产生装置中产生的电解水的雾。由此，能够获得对衣物的除菌以及抗菌作用，同时能够得到对洗涤桶的防霉作用。通过将电解雾产生装置的安装位置设在横式或者斜式洗涤桶的前面侧上方部，使用者能够观察产生的平均粒径为 10μm 以下的雾与洗涤桶内部的洗涤衣物接触的情况，因此能够目视确认利用雾进行的衣物处理步骤，从而能够得到雾处理的视觉上的效果。

优选导入部从所述电解雾产生装置通往所述洗涤桶，所述导入部的内表面实施了防水加工。由此，能够极力抑制产生的雾附着在导入洗涤桶之前的壁面而引起的损耗的产生的同时使其到达洗涤衣物。

优选对洗衣机供给 20ppm 以上 200ppm 以下的 Ag 离子电解水的雾。由此，通过形成高浓度的电解离子水溶液能够减少衣物所需的液体量，其结果是能够缩短雾处理时间。

优选朝洗涤桶供给雾的作业在最终脱水步骤后一边使洗涤物翻滚一边实施。由此，高浓度的电解离子水溶液一旦附着在洗涤衣物上之后，
就利用衣物中所含有的水分进一步润湿扩散，因此即使在产生雾附着不均匀的情况下也能够对其进行补正。

附图说明
图 1 是实施方式 1 的电解雾产生装置的结构图。
图 2 是图 1 的剖视图。
图 3 是示出电解槽内的电极部和压电元件的配置的俯视图。
图 4 是搭载有电解雾产生装置的洗衣干衣机的剖视图。
图 5 是图 4 的后视图。
图 6 是实施方式 1 的电解雾产生装置的系统流程图。
图 7 是实施方式 2 的电解雾产生装置的结构图。
图 8 是实施方式 3 的电解雾产生装置的系统流程图。
图 9 是实施方式 4 的电解雾产生装置的系统流程图。

标号说明
1：电解槽；2：电极部；4：压电元件；5：凹部；6：整流体；7：
送风风扇；8：雾排出口；9：供排水口；10：主体；12：外桶；13：衣物；14：内桶；15：驱动电动机；40：电解雾产生装置；41：雾导入路径；50：供水装置；70：排出装置；80：控制电路

具体实施方式
以下，参照附图对本发明的实施方式进行说明。另外，本发明并不限于该实施方式。

（实施方式 1）
图 1 是本发明的实施方式 1 的电解雾产生装置的概要结构图，图 2 是图 1 的剖视图，图 3 是电极部和压电元件的俯视图。

两个电极部 2 相对于电解槽 1 的底面平行地配置。具体而言，电极部 2 是 Ag 板，大小为 2cm×5cm、厚度为 1.2mm，并隔开 8mm 的距离进行配置。用于施加电压的端子部 2a 经由橡胶衬垫 3 从各个电极部 2 伸出至电解槽 1 的外部。电极部 2 通过橡胶衬垫 3 固定在电解槽 1 的底面上。
压电元件 4 与利用在两个电极部 2 之间通过后的水流形成压电元件 4 产生的水柱的位置邻接配置。电解槽 1 在底部具有作为预定深度的距离电解槽 1 的底面为 15mm 的凹部 5，将压电元件 4 保持大约 10 度的倾斜来配设在该凹部 5 中。其结果是从压电元件 4 产生的水柱具有倾斜方向的角度，并由在隔开 8mm 的电极部 2 之间通过后的水流形成，能够从压电元件 4 相对于水柱落下方向形成循环水路径。具体而言，作为压电元件 4 使用 φ20mm、1.6MHz、额定交流电压为 48V 用的压电元件。

并且，在电极部 2 的上方，在从电解槽 1 的顶面位置隔开某种程度的部分，呈半圆筒形状的整流体 6 固定配设在电解槽 1 的顶面部位上。具体而言，该整流体 6 是由厚度为 1mm 的玻璃制成的 φ35mm×60mm 的半圆筒形状。能够以下述方式布置：供给雾时，从压电元件 4 产生的水柱一边破碎一边与呈大致半圆筒形状的整流体 6 冲击，然后水落至 2 个电极部 2 之间上部而回流。

在呈大致半圆筒形状的整流体 6 上方的大致 10mm 处，在电解槽 1 的顶面上配设有送风风扇 7，该送风风扇作为排出装置 70 用于排出在电解槽 1 内部产生的雾。送风风扇 7 由直径为 30mm 的轴流风扇构成。来自送风风扇 7 的风被呈大致半圆筒形状的整流体 6 遮挡，并通过电解槽 1 的内壁面和整流体 6 之间大约 5mm 的间隙后朝内部方向绕入，从而从侧面方向对从压电元件 4 产生的水柱供给风的结构。在电解槽 1 的侧面上方部配设有雾排出口 8。

并且，在压电元件 4 所配设的电解槽 1 的凹部 5 上设有供排出口 9。切换阀 60 在供水时将供排出口 9 连接在供水装置 50 上，而在排水时将供排出口 9 连接在排水管 61 上。自来水管 51 连接在供水装置 50 上。配置在电解槽 1 附近的控制电路 80 通过未图示的控制控制电解槽 1 的动作步骤。在电解槽 1 中设有水位传感器（未图示），进行向电解槽 1 供水时的供水上限水位管理和产生雾时的下限水位管理。

图 4 是设置有本发明的实施方式 1 的电解雾产生装置的洗衣干衣机的剖视图，图 5 是图 4 的后视图。

将利用多个悬架 11 弹性支承的圆筒状的外桶 12 设置在主体 10 的内
部，利用悬架 11 来吸收洗涤、脱水时的振动。将收纳衣物 13 的圆筒状的内桶 14 以能够旋转的方式设置在外桶 12 的内部，并利用作为驱动装置的驱动电动机 15 驱动着旋转。在洗涤步骤中，外桶 12 成为衣物 13 的洗涤室，在干燥步骤中，外桶 12 成为衣物 13 的干燥室。

在主体 10 的前表面上设有用于放入和取出衣物 13 的开口部 10a 和对该开口部 10a 进行开闭的门 16。门 16 由透明的玻璃等形成，以能够观察洗涤桶内部的衣物。在外桶 12 以及内桶 14 的前表面侧也有同样的开口部，该外桶 12 的开口部通过波纹管与主体 10 的开口部 10a 水密地连接。在外桶 12 的底部具有用于排出洗涤水的排水口 17，该排水口 17 连接在开闭排水路径的排水阀 18 上。洗涤时排水阀 18 关闭，从而能够在外桶 12 内积存预定量的洗涤水。作为送风装置的送风机 19 设置在主体 10 的上方部。

送风机 19 从设置在外桶 12 上方的外桶出口 20 吸入通过内桶 14 以及外桶 12 后的干燥用空气，并送风至被设置在外桶 12 背面的上游侧循环风路 21 内，并如箭头 a 所示从上游侧循环风路入口 22 朝上游侧循环风路出口 23 导出。并且，在外桶 12 的外面上设有下游侧循环风路 24，将从下游侧循环风路入口 25 进入的干燥用空气朝箭头 b 的方向送风并从吹出口 26 供给至外桶 12 以及内桶 14 内。

将热泵装置 30 配置在外桶 12 的背面下部并有效利用主体 10 内的空余空间进行收纳，该热泵装置 30 利用管路连接来使制冷剂在如下部分中循环：压缩机 27、用于将压缩后的制冷剂的热发散的散热器 28、用于对高压制冷剂的压力进行减压的减压装置 (未图示)、以及被减压而成为低压的制冷剂向周围吸热的吸热器 29。热交换风路 31 用于使利用送风机 19 送风的空气在箭头 c 的方向上从吸热器 29 朝散热器 28 流动，将压缩机 27 在主体 10 的左右方向上与吸热器 29 及散热器 28 并列收纳在热交换风路 31 的内部。热交换风路 31 的入口侧与上游侧循环风路出口 23 连通，出口侧与下游侧循环风路入口 25 连通。

在从外桶 12 直到吸热器 29 为止的上游侧循环风路 21 中，用于将在此流动的空气朝主体 10 外部排气的排气口 32 设置在主体 10 的上表面上。
在排气口 32 上设有开闭自如的通气窗 33，从而能够进行是否从排气口 32 进行排气的选择以及排气方向的调整。

并且，在上游侧循环风路 21 的排气口 32 的下游设有用于吸入外部气体的吸气口 34。吸气口 34 位于排气口 32 和送风机 19 之间，且利用由电磁阀等开闭阀构成的吸气阀 35 构成吸气口 34 的开闭装置，能够进行是否进行吸气的选择。

下游侧循环风路入口 25 和热交换风路出口 31a 经由波纹状的供给软管 36 连通，该供给软管 36 是由能够伸缩的挠性材料形成的，外桶出口 20 和上游侧循环风路入口 22 同样也经由波纹状的排气软管 37 连通，该排气软管 37 是由能够伸缩的挠性材料形成的，以此防止外桶 12 的振动传递至热泵装置 30。并且，在热交换风路 31 的下部设有用于贮存来自吸热器 29 的除湿水的排水容器 38，贮存在排水容器 38 中的水从排水泵 39 向机体外排出。

热泵装置 30 利用管路连接来使制冷剂在如下部分中循环以实现热泵循环：压缩机 27、用于将压缩后的制冷剂的热散发的散热器 28、用于对高压的制冷剂的压力进行减压的由节气门和毛细管等构成的减压装置、以及被减压而成为低压的制冷剂从周围吸收热的吸热器 29。

电解雾产生装置 40 配置在主体 10 的前方上部。雾导入路径 41 连接电解雾产生装置 40 和外桶 12，形成能够将产生的雾导入内桶 14 对衣物 13 进行雾处理的结构。并且，雾导入路径 41 进行防水处理加工，以尽量抑制雾附着在路径壁面上。具体而言，实施氟树脂涂布。

接下来，对电解雾产生装置的动作进行说明。图 6 是示出电解雾产生装置的动作的系统流程图。

首先，进行供给自来水的供水步骤直到在电解槽 1 内达到预定的水位。供水装置 50 通过切换阀 60 和供水口 9 向电解槽 1 内部供水，并在利用水位传感器检测到预定的水位后停止供水。例如供给大约 100ml 的硬度大约为 40、电导率为 150μS/cm 的自来水，电解槽 1 中的水位为距离底面 30mm。

随后，作为电解步骤，对压电元件 4 施加交流 24V 的电压以使电解
槽 1 内部的水能够循环。几乎与此同时利用恒流电路对电极部 2 施加电压使电极部 2 上流过直流 30mA 的电流。从压电元件 4 产生的水柱在电极部 2 之间通过的水的水流形成，朝斜下方向形成水柱之后的回流水也落下至电极部 2 之间上部，提高了使电解水成为均一状态的效果。每隔大约 20 秒使施加的电极的正负掉转并进行总计 200 秒的电解。此时施加大约 15V 的直流电压。其结果是得到含有大约 50ppm 的 Ag 离子和 AgCl 的水溶液，呈某种程度的白色混浊。

随后，作为雾供给步骤，对压电元件 4 施加交流 48V 的电压从而形成能够产生雾的雾的状态。与此同时还起动送风风扇 7 和驱动电动机 15。从压电元件 4 产生的水柱一边水破碎一边冲击整流体 6。在与整流体 6 冲击后也几乎不损失其所保有的能量，然后利用送风风扇 7 将水剥离。其结果是由压电元件 4 产生的雾通过送风风扇 7 从雾排出口 8 排出，并经过雾导入路径 41 到达位于内槽 14 中的洗涤后的衣物 13。

通过送风风扇 7 朝内槽 14 导入大约 50L/分钟的风。此时衣物 13 的干燥重量大约为 4kg，在含水的状态下大约为 5.6kg。能够通过压电元件 4 以大约 12ml/分钟的水平产生电解雾。雾产生量根据水位的水平会发生某种程度的偏差。雾供给步骤一直继续保持到水位传感器检测到预定的水位，在检测到预定的水位后停止压电元件 4 和送风风扇 7。例如如果检测水位从电解槽 1 的底面到达凹部 5 的时刻，则能够减少随后排水的电解离子水量。

一边利用驱动电动机 15 使衣物 13 在内槽 14 内部翻滚，一边用大约 10 分钟使雾附着在所有衣物上。电解离子水的 Ag 浓度在某种程度上是高的，但在附着在衣物上之后还会透过衣物所具有的水分湿润来扩散至未附着的部分，因此如果翻滚 10 分钟左右则达到电解离子水大致均一地附着在 4kg 的所有衣物上的状态。

由于利用压电元件产生的雾是平均粒径 10μm 以下的非常小的粒子因此是像白烟那样的状态，使用者能够透过洗衣干衣机的门观察雾处理过程。并且由于雾也进入内槽 14 和外槽 12 之间并某种程度上附着在该处，因此也能够有效地进行内槽 14 和外侧 12 的除菌以及抗菌，通过利
用电解雾产生装置能够继续将洗涤桶维持在无霉的状态。

并且，在提高热泵式洗衣机的附加价值、对设置洗衣机的房间里进行除湿的情况下，也能够通过雾处理功能来保持洗衣机内部的除菌以及无霉，因此即使将洗衣机内部用作送风回路，也能够抑制产生异味的情况。

随后，作为排水步骤，使残留在凹部 5 中的电解离子水通过供排水口 9 和切换阀 60 从排水管 61 排出，这样一系列的操作完毕。

对衣物 13 供给雾的雾供给步骤在洗衣干衣机的脱水操作之后实施，因此在此之前进行供水步骤、电解步骤。

此处，对雾处理后的衣物进行抗菌效果的评价。关于评价，参考基于 JIS、L1902 的定量试验法。在 10 个部位用线将脱浆后的试验布缝在 4kg 的衣物上。其结果是在所有的布中都能够得到 2 以上的静菌活性值。

（实施方式 2）

在本发明的实施方式 2 中，作为电解雾产生装置与实施方式 1 相似，因此省略对装置整体的详细说明。图 7 示出本发明的实施方式 2 的电解雾产生装置的概要结构图。

本实施方式中，在排出装置 70 中未设置送风风扇，而是设有吸气口 42。产生的雾将电解槽 1 内部形成负压，因而从吸气口 42 吸入空气，并将产生的雾从电解槽 1 朝外部排出。如果利用图 4 所示的洗衣机进行说明，通过使送风机 19 运转而在电解雾产生装置 40 的雾排出口 8 侧作用有负压的力，将在电解槽 1 内部产生的雾朝内桶 14 侧引导。

（实施方式 3）

在本实施方式中，作为电解雾产生装置也与实施方式 1 相似，因此省略对装置整体的详细说明。作为与实施方式 1 不同的部分对电解雾产生装置的动作进行说明。图 8 是示出电解雾产生装置的动作的系统流程图。

在本实施方式中，在排水步骤之后追加清洗步骤。具体而言，在排水步骤之后，从供排水口 9 提供自来水直到预定的水位。在利用水位传感器检测到预定的水位后，将切换阀切换至排水方向从而不停地将积存的水排出。由此，在电解中使用的电极部 2 的表面和电解槽 1 的内表面
或者压电元件 4 的表面每次都已被清洗。因此，即使是在电解雾产生装置的利用间隔被隔开的情况下，由于对电解雾产生装置内部进行清洗，因此即使长期利用也能够抑制堆积物的蓄积。在暂时产生堆积物时也能够利用清洗步骤排出至外部。

（实施方式 4）

在此实施方式中，作为电解雾产生装置也与实施方式 1 相似，因此省略对装置整体的详细说明。作为与实施方式 1 不同的部分对电解雾产生装置的动作进行说明。图 9 是示出电解雾产生装置的动作的系统流程图。

在此一系列的电解雾产生动作结束时，使电解槽 1 成为积水状态来准备下次使用。因此，首先在最初的步骤中，从供给到预定水位的水量的辅助供水步骤开始。然后，以与实施方式 2 相同的步骤进行动作，并在清洗步骤后追加供水步骤。由此在电解中使用的电极端 2 的表面或电解槽 1 的内表面或者压电元件 4 的表面都已被清洗。

进一步，最后使电解槽 1 成为积水状态来准备下次使用，因此，即使是在电解雾产生装置的利用间隔被隔开的情况下，由于电解雾产生装置内部不会干燥，因此即使长期利用也能够保持难以产生固态物的状态。在暂时产生堆积物时也能够利用清洗步骤排出至外部。

在本实施方式中，在清洗步骤后进行供水步骤，但即使是在排水步骤后追加供水步骤的系统流程，在电解雾产生装置的利用间隔被隔开的情况下，由于电解雾产生装置内部不会干燥，因此即使长期利用也能够保持难以产生固态物的状态。

在本发明的实施方式中作为压电元件使用 1.6MHz 的压电元件，但是能够用于本发明的压电元件当然并不限于此。1.6MHz 通常在加湿器等中使用，能够得到平均约 4μm 的雾粒径。此外，还能够使用 2.4MHz、1MHz。但是利用 2.4MHz 所能够雾化的水位的幅度比 1.6MHz 的窄，并且在 1MHz 的情况下为了保护压电元件不因空转而损坏所需的水位变大，因此需要进一步加深凹部。

在本发明的实施方式中，设置距离电解雾产生槽的底面为 15mm 的凹部来配置压电元件，但是能够用于本发明的结构当然并不限于此。作
为释放元件与雾的产生应注意的方面有，在运转时不能使压电元件上表面成为空烧状态。因此必须具有能够利用的表面水位，其结果是每次使用电解雾产生装置时电解水都会残留。优选废弃残留的电解水而不是留到下次。因此，通过在电解雾产生槽的压电元件部分设置凹部能够极力降低被废弃的电解水量。并且通过使凹部的深度处在 10mm 以上 30mm 以下的范围内而实现最优化，从而直到电解雾产生槽的底面和凹部的边界线都能够产生雾。

在本发明的实施方式中，使压电元件相对于电解雾产生槽底面保持 10 度的倾斜，但是能够用于本发明的结构当然并不限于此。为了能够有效地将从压电元件产生的水柱与雾相剥离，考虑优选至少具有 5 度以上的倾斜。并且为了将循环水引导至与压电元件邻接的电极部分向上，则在某种程度上倾斜越大越好，但是如果过大则能够雾化的有效水位幅度变窄，因此考虑优选在约 30 度。

在本发明的实施方式中，对于雾供给步骤，预定的表面水位是电解槽与设置在电解槽底面上的凹部之间的边界，但是并不限于此。然而，在雾产生后废弃残留的电解水而不是留到下次，因此不会发生故障，从而是优选的。因此期望预定的表面水位设定在电解槽的底面以下，溶出的金属离子水的浪费也少，从而是优选的。

在本发明的实施方式中，使用玻璃制作的整流体作为呈大致半圆筒形状的整流体，但是能够用于本发明的整流体当然并不限于此。只要是几乎不衰减水柱所具有的能量的材料即可。树脂材料由于显著吸收水柱所具有的能量使其衰减因此不是优选的。除了玻璃之外还可以使用陶瓷、不锈钢等。

在本发明的实施方式中，对压电元件使用了为产生雾所用的额定电压的 1/2 的不产生雾的电压，但是当然并不限于此。由于如果超过 1/2 则雾产生量逐渐变多，因此根据情况不同而需要限制产生的雾不流出至外部。并且如果不足 1/3 则不会从水面产生水柱，因此水的循环状态也显著恶化。因此优选使用额定电压的 1/3 以上且 1/2 以下的电压作为不在于产生雾的电压。
在本发明的实施方式中利用恒流电路控制电解步骤，但是当然并不限于此。在日本这样的自来水是软水且自来水的特性能在某种程度恒定的情况下，恒流电路能够使进行 Ag 处理的效果也均一化。但是，在日本以外的国家中自来水的硬度高的情况下，以恒定的电压实施电解更能够使基于 Ag 处理的效果均一化。

在本发明的实施方式中，将电解雾产生装置配置在斜式洗涤桶的前部侧上方部，但是当然并不限于此。然而，通过配置在前面侧上方部，使用者能够观察平均粒径为 10μm 以下的雾与洗涤桶内部的洗涤衣物接触的情况，因此能够目视确认利用雾进行的衣物处理步骤。

在本发明的实施方式中，使用 50ppm 的 Ag 离子水进行电解步骤，但是当然并不限于此。为了稳定地得到衣物中的抗菌效果，需要每 1kg 衣物负担 1mg 的 Ag，因此对于 4kg 标准衣物需要 4mg 的 Ag，并且利用压电元件所能够产生的雾量为大约 15g/分钟以下。为了使衣物上均匀地担载有 Ag，Ag 离子水越稀越好，但是导致处理时间变长。并且如果使 Ag 离子水过浓则从白色混浊变至褐色，因此担心对衣物带来不好影响。因此鉴于雾产生量、处理时间和对衣物的不好影响，考虑优选为，对于 4kg 标准衣物来说，将 Ag 离子浓度为 20ppm 以上 200ppm 以下的 Ag 离子水使用 250ml 以下 25ml 以上的水平。

在本发明的实施方式中，雾供给步骤在最终脱水步骤之后一边翻滚一边实施，但是当然并不限于此。然而，一旦电解离子水溶液附着在洗涤衣物上之后就利用衣物中含有的水分进一步润湿扩散，即使是在产生雾附着不均匀的情况下也能够对其进行补正，因此能够利用高浓度的 Ag 离子水。

产业上的可利用性

如上所述，本发明的电解雾产生装置能够利用必要最小限度的部件紧凑地提供能够得到高浓度的金属离子水的装置，因此能够适用于需要除菌的空气清洁机或空调和设备或者与水回（水回り）设备等广泛的用途。
图3
图5
图6
图8

供水步骤
- 供给自来水
- 检测上限水位
- 停止供给自来水

Ag电解步骤
- Ag电解开始+压电元件运转
- Ag电解

雾供给步骤
- 压电元件运转+送风风扇运转（排出部）
- 检测下限水位
- 压电元件停止+送风风扇停止（排出部）

排水步骤
- 排出电解水

清洗步骤
- 供给自来水
- 检测上限水位
- 排出自来水

（电压 1/2）
图9