(54) Title: ROTARY CUTTING TOOL

(57) Abstract: A rotary cutting tool (10) having a cutting insert (34) slidably supported therein. The cutting insert (34) is moveable from a retracted position to an extended position by means of a pressurized fluid which bears directly against the cutting insert.
ROTARY CUTTING TOOL

FIELD OF THE INVENTION

The present invention relates to a rotary cutting tool having a cutting insert for deburring of bores.

BACKGROUND OF THE INVENTION

Such rotary cutting tools are known either in the form of stand alone tools for deburring ready made holes or in the form of drills having incorporated deburring capability. In both cases the deburring is generally performed by a spring-loaded cutting insert. However, there are situations in which there is not enough room for a spring. This can be the case for very small diameter cutting tools or in drills where it is required to locate the deburring insert in the vicinity of the drill's flutes.

US Patent 6,270,295 describes a cutting tool which utilizes pressurized fluid for indirectly loading a blade. A piston 118 resides in a side conduit 112 and pressurized fluid, flowing in the side conduit 112, assists in pushing the piston 118 against a cartridge 122 which holds a blade 126.

It is an object of the present invention to provide an improved deburring mechanism for a rotary cutting tool.

The objects of the invention are attained with the subject matter in accordance with the respective claims.
SUMMARY OF THE INVENTION

In accordance with the present invention there is preferably provided a rotary cutting tool having a longitudinal axis of rotation and comprising:

a conduit, for passage of fluid, formed in the cutting tool and extending generally axially,

an insert pocket opening out to a peripheral surface of the cutting tool via an aperture, the insert pocket communicating with the conduit, and

a cutting insert slidably retained in the insert pocket, the cutting insert being slidable from a retracted position to an extended position by means of fluid pressure applied by the fluid which bears against and biases the cutting insert towards the extended position, wherein in the extended position at least a portion of the cutting insert protrudes from the aperture beyond the peripheral surface of the cutting tool.

Preferably, a holding bore opens out to the peripheral surface and communicates with the insert pocket.

Typically, the cutting insert has an insert axis defining a back to front direction and a plane including the insert axis passes there through, the cutting insert comprising:

a body portion having a back surface at a back end of the body portion, and

a cutting portion at a front end of the body portion, the cutting portion having two cutting edges being reflection symmetric with respect to the plane.

Generally, the pressurized fluid bears directly against the back surface of the cutting insert.

Preferably, a holding member is located in the holding bore and abuts the cutting insert when the cutting insert is in the extended position.
If desired, the rotary cutting tool is a drill.

The present invention provides the following preferred advantages. No complex mechanisms or springs are required to bias the deburring cutting insert. It enables the incorporation of the deburring insert in a drill in the vicinity of the drill's flutes. The deburring insert can be incorporated in small diameter tools in which there is insufficient room for springs, or the like. Its implementation is simple and inexpensive. The deburring insert may be loaded at the forward end of a drill, enabling the drill to drill through holes and deburr both sides of the hole.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention and to show how the same may be carried out in practice, reference will now be made to the accompanying drawings, in which:

Fig. 1 is a partial first side view of a drill having a deburring mechanism in accordance with the present invention;

Fig. 2 is a partial second side view of the drill with its conduit and deburring mechanism shown in hidden lines;

Fig. 3 is a cross sectional view of the deburring mechanism taken along the line III-III in Fig 1;

Fig. 4 is similar to Fig. 3 but with a cutting insert and holding member removed;

Fig. 5 is a perspective view the cutting insert in accordance with the present invention; and

Fig. 6 is a top view of the cutting insert shown in Fig. 5.

DETAILED DESCRIPTION OF THE INVENTION

Attention is first drawn to Fig. 1. The present invention will be described from herein with reference to a drill 10 however it will be clear to
the skilled person in the art that it can be applicable to a variety of rotary cutting tools where deburring is required. The drill 10 has a longitudinal axis of rotation A defining a forward to rear direction and a cutting tip 12 located at a forward end thereof. Two flutes 14, extending rearwardly from the cutting tip 12 along a peripheral surface 16 of the drill 10, form two identical lands 18 therebetween. A deburring mechanism 20 in accordance with the present invention is formed on one of the lands 18 adjacent the cutting tip 12. It should be noted that directional terms appearing throughout the specification and claims, e.g. "forward", "rear", "front", "back", etc., are used as terms of convenience to distinguish various surfaces relative to each other. Although these terms may be meaningful with reference to particular component orientations, they are used for illustrative purposes only, and are not intended to limit the scope of the appended claims.

Attention is additionally drawn to Fig. 2. A conduit 22 for the passage of fluid, having a main portion 24 and two minor portions 26, is formed in the drill 10. The main portion 24 extends forwardly along the axis of rotation A to a forward ending 28 adjacent the cutting tip 12. Each minor portion 26 diverges forwardly and outwardly from the forward ending 28 to a respective land 18. The deburring mechanism 20 includes a holding bore 30, a holding member 32 and a cutting insert 34 that is capable of lateral movement between a retracted position and an extended position in a generally cylindrical insert pocket 36. As will be described in greater detail below, the cutting insert 34 is prevented from exiting the insert pocket 36 by means of the holding member 32, and is loaded in the insert pocket 36 by means of fluid pressure which bears directly against the cutting insert 34 at one of its ends.

Attention is drawn to Figs. 4 to 6. The insert pocket 36 communicates with the main portion 24 of the conduit 22 and opens out to the land 18 via
an aperture 38. The holding bore 30 is formed in the land 18 adjacent the insert pocket 36 and has a threaded portion 40 and a socket 42. The socket 42 extends outwardly from the threaded portion 40 and opens out to the land 18. The cutting insert 34 has an insert axis B defining a front to back direction and comprises a generally cylindrical body portion 44 and a cutting portion 46. The body portion 44 has a back surface 48 at a back end, a front surface 50 at a front end and a peripheral body surface 52 therebetween. A plane P which includes the insert axis B divides the cutting insert 34 into two sides. A holding recess 54 having a recess face 56 and a back face 58 is formed on the peripheral body surface 52, on one side of the cutting insert 34, and opens out to the front surface 50. The recess face 56 has a concave arc shape in a cross section perpendicular to insert axis B and the back face 58 is located at a back end of the holding recess 54 and is perpendicular to the insert axis B. The cutting portion 46 has opposing flank surfaces 60 and a top surface 62 which all extend forwardly from the front surface 50 of the body portion 44 to an insert nose 64. The flank surfaces 60 are located on opposing sides of the plane P. The top surface 62 bridges between the flank surfaces 60, is generally perpendicular to the plane P and proximate to the insert axis B. The cutting portion 46 has two cutting edges 66 located each between the top surface 62 and a respective flank surface 60. The cutting edges 66 are reflection symmetric with respect to the plane P and have each a rake surface 68 associated with the top surface 62 and a relief surface 70 associated with the respective flank surface 60.

Attention is additionally drawn to Fig. 3. The cutting insert 34 is located in the insert pocket 36 with its back surface 48 facing inwardly. The holding member 32 has a screw portion 72 and a head 74 which are, respectively, threadingly received in the threaded portion 40 and located in the socket 42 of the holding bore 30. The head 74 of the holding member
32 protrudes into the insert pocket 36 and, when the cutting insert 34 is in the extended position, abuts at least a portion of the back face 58 of the holding recess 54. Rotation of the cutting insert 34 in a given direction around the insert axis B is limited in the insert pocket 36 by the head 74 of the holding member 32 abutting against the recess face 56 of the holding recess 54. Loading of the cutting insert 34 in the insert pocket 36 is provided by fluid that flows through the conduit 22 and into the insert pocket 36. The fluid pressure that is formed in the insert pocket 36 bears against the back surface 48 of the cutting insert 34 forming a force which biases and urges the cutting insert 34 radially outwardly.

Although the present invention has been described to a certain degree of particularity, it should be understood that various alterations and modifications could be made without departing from the scope of the invention as hereinafter claimed.
CLAIMS:

1. A rotary cutting tool (10) having a longitudinal axis of rotation (A) and comprising:
 a conduit (22), for passage of fluid, formed in the cutting tool (10) and extending generally axially,
 an insert pocket (36) opening out to a peripheral surface of the cutting tool (16) via an aperture (38), the insert pocket (36) communicating with the conduit (22), and
 a cutting insert (34) slidably retained in the insert pocket (36), the cutting insert (34) being slidable from a retracted position to an extended position by means of fluid pressure applied by the fluid which bears against and biases the cutting insert (34) towards the extended position, wherein in the extended position at least a portion of the cutting insert (34) protrudes from the aperture (38) beyond the peripheral surface (16) of the cutting tool (10).

2. The rotary cutting tool (10) according to claim 1, wherein a holding bore (30) opens out to the peripheral surface (16) and communicates with the insert pocket (36).

3. The rotary cutting tool (10) according to claim 1, wherein the cutting insert (34) has an insert axis (B) defining a back to front direction and a plane (P) including the insert axis (B) passes there through, the cutting insert (34) comprising:
 a body portion (44) having a back surface (48) at a back end of the body portion (44), and
 a cutting portion (46) at a front end of the body portion (44), the cutting portion (46) having two cutting edges (66) being reflection symmetric with respect to the plane (P).
4. The rotary cutting tool (10) according to claim 3, wherein the pressurized fluid bears directly against the back surface (48) of the cutting insert (34).

5. The rotary cutting tool (10) according to claim 2, wherein a holding member (32) is located in the holding bore (30) and abuts the cutting insert (34) when the cutting insert (34) is in the extended position.

6. The rotary cutting tool (10) according to claim 1, wherein the rotary cutting tool is a drill.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. B23B51/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B23B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 03/084702 A (BEIER ENTGRATTECHNIK SPEZIAL - ENTGRAT WERKZEUGE; BEIER, HANS-Michael) 16 October 2003 (2003-10-16) claim 1 page 15, lines 10-33 figures 9,10</td>
<td>1,3,4</td>
</tr>
<tr>
<td>Y</td>
<td>US 6 270 295 B1 (HYATT GREGORY AARON ET AL) 7 August 2001 (2001-08-07) cited in the application column 11, line 50 - column 12, line 9 column 13, lines 33-37 figure 7</td>
<td>2,5</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance.

E earlier document published on or after the international filing date.

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).

O document relating to an oral disclosure, use, exhibition or other means.

P document published prior to the international filing date but later than the priority data claimed.

P later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family.

Date of the actual completion of the international search

14 July 2006

Date of mailing of the international search report

25/07/2006

Name and mailing address of the ISSV

European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HT Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Authorized officer

Lorence, X
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>PATENT ABSTRACTS OF JAPAN
vol. 1999, no. 11
30 September 1999 (1999-09-30)
-& JP 11 156612 A (ASKA TRADING KK),
15 June 1999 (1999-06-15)
abstract
figures 3,6-8,12,13</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>US 3 940 214 A (WASCHEK ET AL)
24 February 1976 (1976-02-24)</td>
<td>2,5</td>
</tr>
<tr>
<td>A</td>
<td>column 3, lines 1-7
figures 2-4</td>
<td>1,6</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 1497064 A1</td>
<td>19-01-2005</td>
<td></td>
</tr>
<tr>
<td>JP 2005529755 T</td>
<td>06-10-2005</td>
<td></td>
</tr>
<tr>
<td>US 2005220550 A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6270295 B1</td>
<td>07-08-2001</td>
<td>NONE</td>
</tr>
<tr>
<td>JP 11156612 A</td>
<td>15-06-1999</td>
<td>NONE</td>
</tr>
<tr>
<td>US 3940214 A</td>
<td>24-02-1976</td>
<td>CA 1039540 A1</td>
</tr>
</tbody>
</table>