USOORE36989E

United States Patent [[11] E Patent Number: Re. 36,989
White [45] Reissued Date of Patent: Dec. 12, 2000
[54] VIRTUAL STORAGE SYSTEM AND 1167762 10/1969 United Kingdom .
METHOD 1353770 5/1974 United Kingdom .
1359662 7/1974 United Kingdom .
[75] Inventor: Barry B. White, Boulder, Colo. 1496779 1/1978 United Kingdom .
1496780 1/1978 United Kingdom .
[73] Assignee: Storage Technology Corporation, 1547381 6/1979 United Kingdom .
Louisville, Colo. OTHER PUBLICATIONS
[21] Appl. No.: 08/934,732 Systems Rrogramming, written by John Donovan
McGraw—Hill Book Company, 1972, pp. 407-420.
[22] Filed: Sep. 22, 1997 Verity, John, W., “Storage for the Masses”, Datamation, Oct.
1981, pp. 56, 58, and 63, Oct. 1981.

) Related U.S. Patent Documents Bock et al., “Mass—storage systems outpace extended disk
Reissue of: storage”, Electronic Design, Jan. 21, 1982; pp. 33-36.
[64] Patent No.: 4,467,421 “STC, Masstor Unveil Hardware as Two Kinds of Database

Issued: Aug. 21, 1984 Machines Hit Market”, EDP Industry Report, vol. 17, No.
Appl. No.: 06/384,381 10, Sep. 23, 1981.
Filed: Jun. 2, 1982

U.S. Applications:

(List continued on next page.)

[63] Continuation-in-part of application No. 06/261,951, May 8, Primary Examiner—Reginald G. Bragdon
1981, abandoned, which is a continuation-in-part of appli- Attorney, Agent, or Firm—Brooks & Kushman P.C.
cation No. 06/085,909, Oct. 18, 1979, abandoned.
[57] ABSTRACT
[51] Int. CL7 oo GO6F 13/00
[52] US. Cl e 711/118; 711/111; 711/113; A virtual storage system for use in conjunction with a host
711/162; 711/168; 711/137; 710/68 computer is disclosed. The system features a memory con-
[58] Tield of Search ... 711/137, 113, trol processor external to the host computer which divides
711/161, 162, 112, 114, 111, 143, 135, user-defined data sets into blocks of a size convenient for
144 storage on, e.g., magnetic media and individually assigns
these blocks to locations determined external to the host. In
[56] References Cited this way, the extent of a particular data file is not specified
by the user; nor is empty space allocated in anticipation of
U.S. PATENT DOCUMENTS future use. The virtual memory system may additionally
3,130,387 4/1964 Wright et al. .oooooorvvroren 711/113 ~ comprise a high speed cache memory for receiving data
3,699,533 10/1972 HUNLET eorveovoesoesoescsrcerceres 7117108~ Written to the memory system at high speed from the host.
)) Data anticipated to be the subject of future requests can be
(List continued on next page.) staged to the cache, so that it can be supplied to the host at
FOREIGN PATENT DOCUMENTS high speed, thus improving system performance. Data com-
pression and decompression may be incorporated in the
892798 2/1972 Canada . storage system. Numerous data back-up and automated
907211 8/1972 Canada . recovery processing operations may additionally be per-
2;;343‘(3)? 5; }gzg ;ZPZE : formed by this system without specific instruction from the
308741 81978 Japan bost.
55-153058 11/1980 Japan .
55-164958 12/1980 Japan . 24 Claims, 10 Drawing Sheets
2
HOST o«
COMPUTER

—F

L HOST
INTERFACE
STAGE

HOST
INTERFACE
STAGE

2n

- o
@ et
STAGE

CONTROL
PROCESSOR

2%n

L DISK DISK
Be INTERFACE 1| INTERFACE
STAGE STAGE
K A

Re. 36,989
Page 2

U.S. PATENT DOCUMENTS

3,806,888 4/1974 Brickman et al.cccoocereennnne 711/117
3,909,799 9/1975 Recks et al. wcoevcvreeercrenennenene 712/234
3,949.377 4/1976 O’Neill, Ir. ooevevevevvecercennee. 345/507
3,976,977 8/1976 Porter et al. 7117215
4,021,782 5/1977 Hoerningcceevuveenne. 341/51
4,035,778 7/1977 Ghanem 711/133
4,040,026 8/1977 Gernellec.coeeveeenerercrenunennne 711/137
4,054,951 10/1977 Jackson et al.cocevuverveeveruennenne 714/48
4,077,059 2/1978 Cordi et al. 7117122
4,080,651 3/1978 Cronshaw et al. ... 711/160
4,080,652 3/1978 Cronshaw et al. .. 711/151
4,084,228 4/1978 Dufond et al. 709/103
4,084,234 4/1978 Calle et al. 711/118
4,086,629 4/1978 Desyllas et al. 7117213
4,091,455 5/1978 Woods et al. .ccoovveevennenrencenncne 714/25
4,096,567 6/1978 Millard et al. ...cccoveveeveneerenceencne 707/10
4,110,823 8/1978 Cronshaw et al. 711/147
4,123,795 10/1978 Dean, Jr. et al. 709/103
4,126,894 11/1978 Cronshaw et al. .. 7117202

4158235 6/1979 Call et al. wooveoreomeereereereeeeereesree 710/56

4,189,770 2/1980 Gannon et al. .. 711/138
4,215,400 7/1980 Denko 711/4
4,228,501 10/1980 Frissell ...c..cceceevcveuerenvcneccnens 710/60
4,241,420 12/1980 Fish et al. 7117112
4,246,637 1/1981 Brown et al. ...ccceoevververeruennene 710/62
4,276,595 6/1981 Brereton et al. 712207
4,298,932 11/1981 Sams 707/202
4,310,883 1/1982 Clifton et al. ... 707/205
4,318,184 3/1982 Millett et al. ..ccoovvueveverureerencnnnene. 707/1
4,327,408 4/1982 Frissell et al. ..ocevevvenrereuennnnne 714/43
4,412,285 10/1983 Neches et al. ..c.ccoveverveerennnenne 709/252
4,414,644 11/1983 Taylerccccevvvevvvcvvnevcnennne 711/162
4,533,995 8/1985 Christian et al.ccecervereennenne 711/122

OTHER PUBLICATIONS

Porter, James N., “The Disk Drive Industry”, IEEE Trans-
action on Magnetics, vol. MAG-14, No. 4, Jul. 1978, pp.
149-153.

Puthuff, Steven H., “Technical Innovations in Information
Storage and Retrieval”, IEEE Transactions on Magnetics,
vol. MAG-14, No. 4, Jul. 1978, pp. 143-148.

Waddell, .M., Way, D.L., “Channel Scheduling by a Con-
trol Unit”, IBM Technical Disclosure Bulletin, vol. 17, No.
9, Feb. 1975, pp. 2553-2556.

Boggs, J.K., Jr., “Virtual Input/Output Channels for a Digital
Computer”, IBM Technical Disclosure Bulletin, vol. 20, No.
1, Jun. 1977, pp. 110-112.

Mitchell, M.J,, Jr., “Diskette Load/Dump Control”, IBM
Technical Disclosure Bulletin, vol. 20, No. 4, Sep. 1977, pp.
1359-1361.

Nishimukai, T., et al., “Universal 10 Device Controller by
Using Programmable Logic Arrays (PLA)”, Conference
Record, 11th Asilomar Conference on Circuits, Systems and
Computers, Nov. 1977, pp. 477-480.

Smith, Alan Jay, “Directions for Memory Hierarchies and
their Components: Research and Development”, 1978 IEEE,
pp- 704-709.

Digest of Papers, “The Gap Between MSS Products and
User Requirements”, Fourth IEEE Symposium on Mass
Storage Systems, Apr. 15-17, 1980, Regency Hotel, Denver,
Colorado, pp. 1-76.

Collins, M.W., “Mass Storage at LASL”, IEEE Proceedings
of the Mass Storage Conference, Dec. 1977, pp. 95-112.
“IBM 3850 Mass Storage System (MSS) Principles of
Operation: Theory”, GA32-0035-1, Nov. 1981.

Blood et al, “Common File System Specifications”,
LA-7065-MS, Dec. 1977.

Christman et al, “A Network File-Storage System”,
LA-8887-MS, Jul 1981.

Chorn et al, “The Standard File Transport Protocol”,
LA-7388-MS, Aug. 1978.

IBM, “Reference manual for IBM 3830 Storage Control
Model 1 and IBM 3330 Disk Storage”, GA-26-1592-5, 6th
Ed., Nov. 1976.

Masstor Systems Corporation, “Shared Virtual Storage Sys-
tem™; System Overview”, 1980.

Johnson, Clayton, “The IBM 3850: A Mass Storage System
with Disk Characteristics”, Proceedings of the IEEE, vol.
63, No. 8, pp. 1166-1170, Aug. 1975.

Harris, John P, et al., “The IBM 3850 Mass Storage System:
Design Aspects”, Proceedings of the IEEE, vol. 63, No. &,
pp. 1171-1176, Aug. 1975.

IBM, “IBM 3850 Mass Storage System (MSS) Principles of
Operation: Theory”, 2nd Ed., Nov. 1981.

IBM, “IBM 3850 Mass Storage System (MSS) Introduction
and Preinstallation Planning”, GA32-0038-1, 2nd Ed., Apr.
1980.

IBM, “IBM 3850 Mass Storage System (MSS) Principles of
Operation: Reference”, 3rd Ed., Nov. 1981.

Conti, C.J., et al., “Structural aspects of the System/360
Model 85: General organization”, IBM Systems Journal,
vol. 7, No. 1, pp. 2-14, 1968.

Liptay, J.S., “Structural aspects of the System/360 Model
85: The cache”, IBM Systems Journal, vol. 7, pp. 15-21, No.
1, 1968.

Meade, R.M., “How a cache memory enhances computer
performance”, Electronics, Jan. 17, 1972, pp. 58-63.
Masstor Systems Corporation, “Shared Virtual Storage Sys-
tem™: System Description”, Oct. 1979.

Masstor Systems Corporation, “FPEXEC: File Processor
Executive Program Logic Manual and System Maintenance
Guide”, Oct. 18, 1982.

Shell Oil Company Sales Agreement, (Masstor File Proces-
sor Design Specification), Dec. 18, 1978.

Crittenden, Willard C., “Operational Characteristics of the
NCAR Mass Storage Device,” IEEE Computer, pp. 48-50,
Aug. 1980.

Ampex Corporation, “Current Status and Outlook of MSS;
The TBM™ Memory System”, Mar. 6, 1974.

Masstor Systems Corporation, “Masstor MC Series Com-
puters: Specifications”, 1980.

IBM, “IBM System/370: Principles of Operation”, 1981.

Re. 36,989

Sheet 1 of 10

Dec. 12, 2000

U.S. Patent

R
/A/////////// 1,

S
) 8
(D

-bs 4
“ <
v v v
N ._u 8, g
, —u —u 0
|] :
X) !
1 N "
| by 7
4 i ol
Y N T
> N\
[TTRTT]

U.S. Patent Dec. 12, 2000 Sheet 2 of 10 Re. 36,989

7 20
HOST A
COMPUTER
F‘HP_K .
20~L HosT HosT |22 ST |2
INTERFACE | | INTERPACE INTERFACE
e || Snee STAGE .
28 4
- CONTROL
s O : . L PROCESSOR
| c————
o [
26n
v
~L o
BT | NTERFACE

STAGE

U.S. Patent Dec. 12, 2000 Sheet 3 of 10 Re. 36,989

HOST
COMPUTER, 20

2 M
~J ws
o NTERRCE oL

DATA || MICROPROCESSOR
40—+ BUFFER CONTROLLER | —38

MEMORY
4 INTERFACE INTERFACE +——8

#
:,)) /
n /
CONTROL
MAIN
SSOR
MEMORY C _-\\ /za ™ PROCE
| DATA 10G
le
’ !
(
X \ 4
MENORY i
A reriace [VTERACE 4
B~
DATA LOCAL -
__|- BUFFER {1 ucROPROCESSOR -4
X e CONTROLLER
_—1" INTERFACE
52 0
DISK Fig.4

DRIVE, 30

U.S. Patent Dec. 12, 2000 Sheet 4 of 10 Re. 36,989

60 6l
S/ S/
HOSTA /] HOST B
1
T8A | _up
= VCPA VeP B
N DCY TCu” ooy 7 c0°
s U | 0 2 =
-\\ / pN g

L_./L_/n —

DATA BASE A DATA BASE 8
Fig.5
T0
HOST PROCESSORS
r l‘ 80
80 | | 2
) I
CHANNEL CHANNEL
vCP ADAPTERO | ADAPTER 1 VP74
Vs CACHE BUFFER
v/ A VSS CENTRAL PROCESSOR
" [cno car Tona [ons Jone Tcs 8
Fig.7 ‘ N
BACKEND STORAGE

U.S. Patent Dec. 12, 2000 Sheet 5 of 10 Re. 36,989

//,, //, /
7 yd ,
USER | USER | VSS | 7%
D ADDRESS | ADDRESS|UTILMES) 1
SPACE | SPACE | USER :
ey HOST OPERATING SYSTEN ar
VES 1 USER|E” HOST PROCESSOR 60
HOST CONSOLE:
COMMANDS &
MESSAGES
2 S
\
CA
D VOS WCP 14
’/ /i p/)
STORAGE MANAGEMENT FUNCTIONS
VCP_CONSOLE:
COMMANDS &
MESSAGES L %
8

Fiqg. 6

U.S. Patent Dec. 12, 2000 Sheet 6 of 10 Re. 36,989

z

P’)

VCP 74
CA > SOFTWARE
L——)/"| VS5 OPERATING SYSTEN(V0S) COMPONENTS

L A A A
/,"l"’o)

VCP CONSOLE: STORAGE MANAGEMENT FUNCTIONS

COMMANDS &
MESSAGES L
i
157 OO
L — g__zv w
BACKEND STORAGE
Fig.8
USER TS0 -USER VSS UTILITY
'ADDRESS ADDRESS ADDRESS
SPACE SPACE SPACE

VSS EXECUTION SUBSYSTEM
HOST OPERATING SYSTEM

Fig-9

U.S. Patent Dec. 12, 2000 Sheet 7 of 10 Re. 36,989

rm - =" —]I)
DATA |
S [BUS e
2| | T A
[—3 L ' 7 |
= | DATA I
=R 1o SYSTEM
2 [s R S) KJ.,:
= l INTERFACE
=1 op | operatioN | _ l - |
S [TTAGS ™| TAC HANDLER ": = = l 02
/ ' ' ' | //
4 - I | ,
— 18
" | - CoNTROL A PROCESSOR 4 I
RES
Lo T i
S —,————————— |3
cA 80 l— N [
| CACHE gggmgf,_ 4<":;’
| BUFFER UNIT
I A / }
| 9 106 |
A :
A _ B
Ve | 967 appRess | 94T \SS
| RECALL CENTRAL
, MEMORY PROCESSOR |
| |
I 88 |
1/0 INTERFACES
T0 DISK, TAPE { <+—1 CHANNELS (Ir'_
OR CONSOLE | |
<+ _' -

r

U.S. Patent Dec. 12, 2000 Sheet 8 of 10 Re. 36,989

@ﬁﬁm‘eﬁmﬁrﬁr"‘: ez~ 1
=S ===t
: i |
Ll _L__L L-__.-_| :
S e e A T
I - —— —J | |
L N

TYPICAL DFG ATTRIBUTES:

DFG 1= ALL VOLUMES SHADOW RECORDED

DFG2=MAXIMUM VOLUME SIZE 100 MBYTE

OFG 3= MIGRATION THRESHOLDS 30% (UPPER)
AND 80% (LOWER)

Fig. l1
DATA IN
140 154
Or s
REGISTER)
R ! 150
U)
TESCAPE
REGISTER CHARACTER
. GENERATOR
142
~\l’
REPEATED BYTE NO. OF REPEATED BYTES || ESCAPE CHARACTRR

\is2
Fig. !4

U.S. Patent Dec. 12, 2000 Sheet 9 of 10 Re. 36,989

USER
ADDRESS 1) OPEN" BECINS
SPACE .
hosT 70{ OPEN
MVS
VES
CONSTRUCTS
@l ch)ao\ “OPEN" MESSAGES
CA CA
wip7a| VOP SOFTWARE ® T~
CACHE | CACHE P/ ”’4 ssr“snsﬁcne WITH PROPER
FRAME | FRAME /// VOLUME, OR ASSIGNS

OCATES CACHE
BACKEND L
STORAGE
——~ L_/

VSS CONTROL FLOW -"OPEN"

~—
Fig.l12

U.S. Patent Dec. 12, 2000 Sheet 10 of 10 Re. 36,989

1) "READ®

USER BEGINS “READ"
ADDRESS
ADDRE INSTRUCTION
ﬁl& READ
O,
MVS 2) *READ®
VES CHANNEL COMMAND
it
®l /ao.\ I@ IS SENT TO VCP
CA CA

VeP SOFTWARE @

)VCP FETCHES
DATA INTO CACHE FROM
DISK OR TAPE

NP W oo T oheie V7
FRAME | FRAME

./)‘

18
CXEND

VSS DATA FLOW - "READ"

RETURNED TO HOST

FORMAT BY THE CA, AND

SENT OVER INTERFACE
10 HOST

Y

Fig.13

Re. 36,989

1

VIRTUAL STORAGE SYSTEM AND
METHOD

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

This application is a continuation-in-part of Ser. No.
[261,950] 06/261,951, now abandoned, filed May 8, 1981,
and of Ser. No. [085,909] 06/085,909, now abandoned, filed
Oct. 18, 1979, both in the name of Barry B. White.

FIELD OF THE INVENTION

This invention relates to the field of data processing and
storage. More particularly, the invention relates to a data
storage system adapted to be connected to a host digital
computer for determination of where on associated magnetic
memory units individual portions of user data sets are to be
stored, and for recall of the addresses determined upon the
host’s requiring the data. In this way improved efficiency of
storage is achieved while the host computer is largely
relieved of the memory control function.

BACKGROUND OF THE INVENTION

In general, the operation of a data processing system
involves two basic functions: arithmetic and logic operations
performed on data contained within a host computer, and,
stated broadly, input and output control. That is, the data to
be processed must first be input to the computer, while the
computer output typically results in further storage of the
data together with results of the operation. While it is
possible to perform such processing in a way that the data
input is processed and the output is generated without
long-term storage of either the data or of the results of the
operation, it is far more common, particularly in large
processing systems, that the data files operated upon are
permanent files such as payroll files, employee files, cus-
tomer lists and the like, which are updated periodically as
well as being used to generate actual computer output such
as payroll checks and the like. It is therefore important that
means be provided for long-term storage of such data.

Various types of memory means for long-term storage of
digital data have been provided in the prior art. These
comprise magnetic tape memory, magnetic disk memory,
magnetic drum memory, solid state random access memory,
magnetic bubble memory, charge coupled device (CCD)
memory as well as others. The choice of which sort of
memory is to be used for a particular operation inevitably
involves a cost/speed trade-off; that is, the faster the access
time provided with respect to any given bit stored on a given
type of magnetic memory, the more expensive it is to store
the bit. There has developed in general a hierarchy of
memory according to which the central processing unit
(CPU) of the computer comprises solid state random access
memory (RAM); an intermediate high speed “cache” or
“virtual” memory used in conjunction with the host may
comprise a less expensive, less high speed form of solid state
RAM or CCD memory. The next step in the hierarchy may
be a fixed head disk rotating magnetic memory external to
the CPU of relatively lesser speed, but capable of storing a
vastly greater quantity of data at significantly lower cost;
further down the hierarchy are moving head, non-
replaceable magnetic disks of high density, user-replaceable
disks of lower density and finally tape drives.

The prior art has been extensively concerned with
improvement in methods of utilizing the various forms of

10

15

25

30

35

40

45

50

55

60

65

2

memory so as to achieve higher efficiency of use of the
various types of media available, to reduce costs, and
simultaneously to devise methods whereby the various time
limitations of the less expensive memory means can be
overcome, thus also improving efficiency. However, as yet
no ultimately satisfactory solution has appeared.

It will be understood by those skilled in the art that control
of access to a given tape or disk file has generally been
accomplished by means of a command originating in the
host central processing unit. In more basic systems, the user
of the computer must inform the host of the addresses on
storage media at which the data necessary to complete his
job is stored. Upon initiation of the job, the host then passes
the appropriate instructions on to the appropriate disk or tape
controllers. In more advanced systems the user of the
computer may need only specify the name of his data set; the
host is capable of locating the file in which the data set is
stored and, for example, instructing an operator to mount a
particular reel of tape, or instructing a disk controller to
access a given portion of a disk drive, as necessary. Some
prior art systems provide memory and intelligence external
to the host for relieving it of this command translation
function—e.g., Millard et al U.S. Pat. No. 4,096,567.
However, in both schemes, it is the host which is responsible
for causing the controller to access the appropriate storage
medium. The controller itself is passive and merely responds
to the host’s commands.

The present invention is an improvement on this practice
which achieves better, more efficient use of the storage space
available on disk media by functionally mimicing a tape
drive. Inasmuch as a tape drive need only be addressed once
at the beginning of each file and thereafter records can be
written sequentially thereto without being interspersed with
uniquely identifiable address marks (unlike disk-stored
data), the amount of data stored within a given area of tape
expressed as a percentage of the total area available is
extremely high. By comparison, address marks must be
provided for each record stored in a given sector of each disk
of a magnetic disk storage unit; the address marks consume
a large proportion of the space allotted. Moreover, it had
been the prior practice to allot a particular portion or “file”
of a given disk unit to a given data set and not to use this area
of that disk for any other data set thereafter. Unless by
coincidence the capacity of the file was, in fact, equal to the
size of the data set allotted to it, which is usually not the
case, as users tend to expect data sets to grow and therefore
set up unnecessarily large files, space is wasted. The net
result is that on average disks tend to be used to something
less than 50% of their capacity.

In accordance with the first embodiment of the invention,
a virtual storage system is interposed between a host CPU
and disk drives. The virtual storage system comprises an
intelligent processor which can itself make decisions as to
where on the associated disk drives data could be stored. The
virtual storage system responds to commands nominally
issued to tape drives by the host and converts these to
commands useful for control of disk drives. In this way, the
virtual storage system allows disks to functionally mimic
tape in order to achieve the efficiency of addressing and
formatting considerations mentioned above. The original
invention thus includes the concept of a memory system
external to a host CPU having intelligence for determining
where on associated disk drives portions of a given data set
are to be stored, (as distinguished from merely converting a
data set name to host-assigned addresses, as in the Millard
et al patent referred to above) and further comprises the
concept of individually allotting space on disks to individual

Re. 36,989

3

subportions of a given user data set. In this way the prior art
practice of allotting a portion of a disk, a “file”, to a single
data set, is eliminated and the disk can accordingly be used
to far higher efficiency.

In an improved embodiment, data compression and
decompression means are included in the virtual storage
system of the invention. Data compression is a concept
which had been well known for use in host CPU’s but had
not previously been done external to the host. This distinc-
tion is subsumed under the fact that this was the first system
external to a host to provide intelligent processor means for
control of data storage functions.

In accordance with the improved embodiment of the
present invention, the virtual storage system is not simply
interposed between a host computer and disk drives. Instead,
the virtual storage system of the present invention operates
in conjunction with modifications to the operating system of
the host computer. Typically this will involve some repro-
gramming of the host. Furthermore, the virtual storage
system according to the present invention is not constrained
to cause disk drives to functionally mimic tape drives or
other defined storage devices, as in the first embodiment of
the invention, but instead presents to the host the image of
a tabula rasa; i.e., a blank sheet upon which the host, and
thus the user, can write without constraint as to the format
or disposal of the data. In a preferred embodiment, the
virtual storage system of the invention “supports” (ie., is
adapted to store) only sequential data sets, such as those
which might conventionally be stored on tape, but the
invention is not so limited.

Another source of inefficiency in data storage operations
is caused by the way in which systems operate according to
IBM-defined protocols. For example, when a given user
program causes a user file to be accessed, the host first calls
for the tape or disk on which the file is stored to be mounted,
if necessary. This operation can consume considerable time.
The host then issues a SEEK command, causing the read/
write head of a disk drive, for example, to be juxtaposed to
a particular area on a disk. Thereafter, the host issues a
“READ” command directed to a portion of the file. Neither
the SEEK, the READ, nor the mount commands indicate
whether the request is for a portion or all of a file. In the case
of a sequential file, for example, there might be literally
dozens of READ requests directed to varied portions of the
same file. Each time there would be some delay involved in
supplying the host with the subportion of the file it sought.
On disk, for example, there is an access time delay caused
by the time required for the particular portion of the disk
sought for to rotate until it is juxtaposed to the read/write
head, as well as in most cases a “latency” time required for
the head to move in or out radially with respect to the disk
to reach the particular track sought. In the case of tape, even
if the correct record is exposed to the head, the tape drive
must still be brought up to its proper speed with respect to
the read/write head before a read operation can be per-
formed.

In order to reduce these access time delays, numerous
prior art systems have been suggested in which the data
either following or in the vicinity of a particular subportion
of a file called for by a host is read into a faster access,
semi-conductor memory, referred to as a “cache”, in antici-
pation of later host READ requests directed at the same user
data set. Such solid-state or semi-conductor memory sys-
tems offer substantially instantaneous access to any given bit
stored thereon, but only at high storage cost per bit, so that
they are unsuited for long-term storage of data infrequently
accessed. Several such systems are disclosed in the prior art.

10

15

20

25

30

35

40

45

50

55

60

65

4

The difficulty with these systems is that as noted they are not
provided by the host with any indication whether a particular
READ request is of one of a series or not, so that “caching”
of data in the vicinity of all data sought can produce a
performance loss if, in fact, a significant percentage of the
requests are not for portions of sequential data sets. Com-
monly assigned copending application Ser. No. 325,346
filed Nov. 27, 1981 in the name of P. David Dodd, relates to
such a caching memory subsystem, but according to that
invention means are provided whereby the memory sub-
system itself is enabled to distinguish between sequential
and random requests, so that only those requests which are
determined to be sequential cause caching of other data. This
results in a substantial performance advantage. The neces-
sity that the Dodd system be able to distinguish between
sequential and randomly accessed files is necessitated by the
fact that, as noted above, no distinction is provided between
sequential and random data sets, according to standard IBM
protocol. It would, of course, be possible to modify the host
to provide such an indication, but for the purposes of the
Dodd application, this was deemed undesirable; “plug com-
patability” was an extremely important object of the inven-
tion.

However, according to the present invention, limited
reprogramming of the host is performed. In a preferred
embodiment, therefore, the virtual storage system of the
present invention supports only sequential data sets,
including, for example, those which might previously have
been stored on tape. As in the case of the prior art caching
subsystems referred to above, subportions of data sets once
having been accessed by a host computer can then be cached
in semi-conductor memory to provide much faster access
times. The caching system of the Dodd invention, as it has
no information describing the data set being accessed, in
particular, whether it is sequential or not, must look at each
READ request to see if it is likely to be one of a series of
requests for sequentially stored data on disk. Hence, it is
limited to prestaging portions of a data set stored together,
in one area of a disk; any shifting to a different area on disk
causes it to conclude that a particular request is not one of
a series, and therefore no staging is performed. According to
the present invention, only data sets known to be sequential
are supported; therefore this question does not arise. Accord-
ing to the present invention, because the virtual tape memory
system of the invention knows the locations of all the
subportions of the entire record, it can continue to prestage
subsequent records to the cache even though they come from
varying areas on disk. Furthermore, of course, the Dodd
invention does not include any means for assigning storage
locations on disk to data, but only responds to conventional
READ requests from the host, which include this addressing
information; the memory subsystem of the present invention
assigns storage locations to the various subportions of each
data set.

Other systems using solid-state memory external to a host
computer to reduce access times are known as well. IBM
Corporation has recently announced its Models 3880-11 and
-13 disk control units, which combine solid-state memory
with disk memory to reduce access times. The assignee of
the present invention markets a Model 4305 solid state disk,
which uses solid-state memory in a system which mimics a
disk drive. Neither of these systems provide intelligence
external to the host computer for assigning storage locations
on magnetic media to subportions of a user data set as does
the system of the invention; they merely respond to host
commands. Reference to these systems herein should not be
deemed to imply that they are prior art against the present
application.

Re. 36,989

5
OBJECTS OF THE INVENTION

Accordingly, it is so object of the invention to provide an
improved data processing and storage system.

A further object of the invention is to provide a data
processing and storage system in which decisions as to the
location for storage of data are made external to the arith-
metic and logic unit, in a data storage subsystem having
intelligence.

An important object of the invention is to provide a
memory subsystem having intelligence and memory exter-
nal to the host computer, whereby host requests can be
anticipated and data can be cached from a lower speed
magnetic memory to a high speed semi-conductor memory
in advance of a host request.

A further object of the invention is to provide a memory
system having decision making capacity with respect to
storage locations for data, which additionally comprises
means for dividing user-defined data sets into sub-blocks of
data for storage in available locations on memory means.

Afurther object of the invention is to provide methods and
means for more efficient data storage.

Yet a further object of the invention is to provide a
memory storage system in which the allocation of storage
locations to given data is made external to a host computer,
in the memory system itself, whereby data compression and
decompression can be performed upon the data stored in the
memory system.

Still a further object of the invention is to provide a
memory system for use in conjunction with a host digital
computer in which duplication of data for purposes of
reliability is performed by the memory system in accordance
with usage, exclusive of the control of the host computer.

A final object of the invention is to provide methods for
more efficient use of data storage apparatus.

Other aspects and objects of the invention will appear to
those skilled in the art.

SUMMARY OF THE INVENTION

The invention fulfills the above mentioned needs of the art
and objects of the invention by its provision of a virtual
storage system which comprises a processor for allocating
spaces on data storage means to blocks of sequential data
supplied by a host computer. The processor, after having
allocated addresses on, e.g., disk memory means to the data,
the user data set being divided into subportions by the
controller, if necessary, causes the data to flow from a
temporary storage means, termed a “cache”, through disk
interface means and onto the disks. The cache comprise a
high speed, relatively low capacity semi-conductor memory.
The disk addresses are then stored by, for example, user data
set name in an “address memory”. When the host later calls
for the same data set, the virtual storage system’s controller
refers to the address memory and determines where on the
various disks the data set is stored. The data can then be
transmitted back to the host via the cache for further
processing. When a host calls for a portion of a data set, the
remainder of the data set is “staged” to the high speed
semi-conductor cache memory in anticipation of future
requests, which can then be satisfied directly and at high
speed from the cache.

In this way no space on any given disk is explicitly or
permanently assigned to any given user data set. Instead,
space on disk is taken up only as needed. The controller,
using the address memory, “knows” at all times what areas
of the disks are available for further storage. Similarly, it

10

15

20

25

30

35

40

45

50

55

60

65

6

“knows” which data stored on the disks has been recently
operated upon and therefore can be used to control efficient
duplication of data to other memory means for “backup”,
i.e., for use in case of loss of the main data set on a primary
memory means. In addition to the controller, in a preferred
embodiment the virtual storage system of the invention
comprises at least one channel adapter for connecting the
host computer to the cache and which may additionally
comprise data compression and decompression means so as
to achieve further efficiency of storage.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood if reference is
made to the accompanying drawings in which:

FIG. 1 shows the prior art method of storing data on
magnetic disks and on magnetic tapes;

FIG. 2 shows the comparable method according to the
invention;

FIG. 3 shows a schematic diagram of the invention as
originally conceived;

FIG. 4 shows a more detailed schematic diagram of the
originally envisioned embodiment of the invention;

FIG. 5 shows an overall view of the presently-preferred
embodiment of the virtual storage system of the invention as
connected to host computers, plural disk drives and tape
drives;

FIG. 6 shows a more detailed view of the virtual storage
system of the invention as connected to a host computer;

FIG. 7 shows the hardware comprising the control pro-
cessor of the virtual storage system of the invention;

FIG. 8 shows a schematic view of the software compo-
nents of the virtual storage system of the invention;

FIG. 9 shows the host resident components of the virtual
storage system of the invention;

FIG. 10 shows a more detailed block diagram of the
virtual storage system of the invention and the channel
adapter which serves as the host interface unit;

FIG. 11 shows how various data frame groups can be
organized on a plurality of disks according to the user
specifications;

FIG. 12 shows the flow of control signals through the
virtual storage system of the invention;

FIG. 13 shows a comparable view of the flow of data
through the system of the invention; and

FIG. 14 shows a schematic diagram of hardware which
might be used for data compression and decompression in
the channel adapter of the system according to the invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

As discussed above, the prior art practice when storing a
particular data set on, for example, a disk drive was to
allocate a portion of this drive, a “file”, permanently to that
data set and to write into that space as needed. As data sets
frequently grow in size over time, the practice would ordi-
narily be to allocate a large enough file size on disk that it
would not be filled up for some time thereafter despite
continuing use. The usual result is that the file space
allocated to the particular data set is not filled thereby and
accordingly the disk is not used to full efficiency. This
practice is shown schematically in FIG. 1 in which a
plurality of disk drives are shown schematically at 1, 2 and
3. The three disks 1-3 are shown divided into allocated files
asatA, B, C, ... H, for example, drive 2 is allotted to a data

Re. 36,989

7

set denoted as E. In each, the areca shown cross-hatched is
that which might be occupied by data. The remaining region
is therefore unused. File E is shown as comprising two areas
E,, E,. This is meant to indicate that the data set might grow
from E, to E, over a period of, say, several months and that
in accordance with the prior art practice, the later added
material E, would be added to the same file area on the same
disk drive 2 as E, previously written thereto. The file E thus
would have been largely wasted previously.

An additional prior art practice was to store more fre-
quently used data on disk and some less frequently used data
on tape, inasmuch as the access time of tape is typically
greater than that for disk while the cost of tape storage is less
than that of disk. An additional use of tape is to “backup” the
disk drive; that is, to have the same data recorded both to
disk and also to tape so that in the event of damage to the
disk or the like the data would be preserved on the tape and
the information not lost. Accordingly three tape files are
shown as at K, L and M on tape files 4, 5 and 6, schemati-
cally showing this practice. It will be noted that a single data
set is shown as resident on each reel of tape. This is a typical
prior art practice, as it is generally deemed simpler to fetch
areel of tape from storage when a new data set is sought than
to unwind another tape through a first data set in order to
reach a second one. This, of course, leads to substantial
underutilization of the total tape available.

Thus, in the prior art, when the host seeks access to one
of the previously assigned user data sets shown in FIG. 1,
typically the host will convert the user’s request for a named
data set into a command to a disk controller to read a part of
the contents of the disk, through the host interface comprised
in the disk controller, and on to the host. Thus the host is
required to know where and on what type of memory means
the particular data set sought for is stored. Where, for
example, the sought-for data set is stored in a file on a
demountable disk or on a tape, the host is required to convert
the operator’s command into a “mount disk” or “mount
tape” instruction, typically appearing on an operator console
screen, and the operator is then required to fetch the disk or
tape called for from an archive. This practice while workable
is time consuming and cuts down on the effective computing
capacity of the host computer.

FIG. 2 shows in comparison the method by which data
sets are stored according to the present invention. Instead of
allocating specific file areas of specific disks to specific user
data sets, space on disk or tape is assigned only as needed
as the data arrives in the virtual storage system of the
invention for storage. By allocating storage space only as
required, additional area is made available for the storage of
data. Moreover, the spaces assigned to a given data set are
not necessarily, or even desirably, on the same disk or tape
drive, but instead may be spread over several so that the
average utilization of each is more or less equal. The fact
that it is the external memory system and not the host which
decides where and on what sort of storage media given data
is to be stored provides considerable additional versatility in
operation as well as improved host utilization and simplifi-
cation of user programming requirements.

Thus in FIG. 2 the virtual storage system of the invention
is shown comprising a plurality of disk drives 10, 11 and 12,
each of which has given portions of various data sets
disposed thereon. It will be noted that records E; and E,
which might be in fact different portions of the same user
data set are not together on the disk drives 10 through 12.
Tape drives 13 and 14 are additionally provided. These may
be used for back-up of data, duplicated for use in case of loss
of the data on the disk, or may simply be data stored in files

10

15

20

25

30

35

40

45

50

55

60

65

8

which have been inactive for longer than a given minimum
period and has therefore been copied to the slower access but
far less expensive tape drive media. Also shown is a semi-
conductor cache memory 15 which is used to hold data files
output by the host so that the host can output data without,
e.g., waiting for the read/write head of the disk drive to be
juxtaposed to the proper point on a disk, and for containing
data files staged to the cache 15 in anticipation of further
host requests. Finally, the virtual storage system comprises
a further memory 16, also solid state, which is an address
memory store for use in recalling the locations on disk
and/or tape at which the subportions of a given data set are
stored. Upon the host’s calling for a specific data set, the
address memory store 16 is accessed and caused by the
processor to write the data from the disk or tape drive to the
host. The address memory store 16 may desirably be a RAM
(random access memory) of comparatively limited capacity.
The high speed cache memory 15 will typically be another.
RAM of relatively larger capacity for use in assembling all
of a sub-portion of a given data set prior to transmission to
the host, so that the host need not receive the data set
piecemeal from the virtual storage system according to the
invention. Use of the cache also eliminates mechanical
delays, such as the latency time inherent in performance of
second and subsequent disk access operations, and permits
high speed data transfers from the cache to the host.

FIG. 3 shows in simplified form the basic architecture of
a first embodiment of the virtual storage system of the
invention as originally conceived. The system of the inven-
tion is coupled to a host computer 20, and constitutes means
for controlling one or more extremely fast and accessible
disk memory unit(s) 30a . . . 30n to accept data and respond
in precisely the same fashion as a tape drive, while providing
much better use of available storage, thus in effect having
vastly expanded storage capability and a far more rapid
response time than either tape or disks. The host computer
20 may be of any appropriate type, although it is anticipated
that economical operation of the present invention will
dictate its use with a large mainframe host computer such as
IBM System/360, System/370 computers and IBM Models
3031, 3032 and 3033 processor complexes. The virtual
storage system of the invention can also be used with a
plurality of host computers. The storage system comprises a
bank of host interface stages 22a through 22n, the number of
interface stages being dependent upon the amount of data to
be transferred. Since the host interface stages are identical,
the actual number which is to be used is for present purposes
immaterial. The host interface stages are coupled to the host
computer 20 by means of conventional channels 24 to
receive and transmit information to the computer 20 in the
ordinary, serialized format which is associated with tape
drives.

One or more disk interface stages 26a through 26n are
provided, and are coupled to all of the host interface stages
by means of a common information bus 28. In this manner,
information may be transferred between any given host
interface stage and any disk interface stage.

The disk interface stages 26a . . . 26n are each coupled to
respective ones of disk memories 30a through 30n. As will
be discussed in further detail, each disk interface stage
comprises a memory interface, a data buffer, and a disk
interface, along with a local microprocessor controller for
operating the various elements of the interface stage.

Also connected to the main bus 28 is a main memory 32.
Memory 32 forms a repository for information flowing from
the host interface stages 22a . . . 22n to the disk interface
stages 26a . . . 26n, and may further serve as a memory for

Re. 36,989

9

control processor 34 also coupled to the main bus 28. The
control processor 34, which is the central processing unit or
CPU of the virtual storage system, is coupled to each of the
host and disk interface stages 22 and 26 respectively, and
directs the operation thereof so that information may be
received, queued, organized, and stored in the proper man-
ner. The control processor 34 further instructs the various
host interface stages 22 to cause them to respond to the host
computer 20 in a manner which simulates a tape drive.

Turning now to FIG. 4, there is shown in further detail the
structure of exemplary elements of the system. Processor 34
is coupled directly to host interface stage 22, and in par-
ticular to an internal interface 36 which simply facilitates the
transfer of signals between the control processor 34 and a
microprocessor 38 which forms the controller for the host
interface stage. Also comprising the host interface stage are
a data buffer 40, a host interface 42 which makes the data
buffer compatible with the host computer 20, and a memory
interface 44 through which the data buffer communicates to
data bus 28.

The function of the host interface stage 22 is to simulate
a tape drive system to the host computer; that is, to convert
the host computer 20’s commands to tape drives into com-
mands to the virtual storage system of the invention, and to
send the host 20 data in the form it would be sent by a tape
drive. More particularly, host interface stage 22 accepts the
signals from a host computer 20 which are of the type used
to operate the tape drives. Such signals are obtained by
coupling the host interface stage to the byte multiplex, or
block multiplex, or selector channels of the host 20. It will
be appreciated that these signals include operator commands
such as “mount tape” and “demount tape” as well as
machine commands such as “read”, “write”, and “forward
space file”. The host interface stage responds to both kinds
of signals as if it were an operator and a tape drive,
acknowledging the signals, responding that “mounting” of
an imaginary (virtual) tape reel has been accomplished, and
the like.

The data buffer 40 of each host interface stage accepts
data from the host computer 20 in serial form, usually nine
bits in parallel, in the precise manner that it would be
reapplied to a tape system for writing upon a tape. The buffer
40 in conjunction with the host interface 42 during a write
operation deserializes the information; that is, stores it in
parallel fields holding the individual bits until eight entire
bytes are available. Typically 72 bits are transmitted at a
time thus reducing transmission time. In this manner, up to
90% compression of the time required to transmit the data on
the line 28 can be achieved. When data is to be exchanged
between buffer 40 and the bus 28, the data flows through
memory interface 44, again in eight parallel bytes so that an
extremely rapid exchange of data may take place. The size
of said buffer can vary greatly, depending on system require-
ments but in a preferred embodiment is large enough, 64,000
bytes, to hold an entire record, which expedites time sharing
of bus 28.

Ultimately, data received from the host computer 20 is
written onto magnetic disks mounted on one or more disk
drive units 30a to 30n. Disk interface stage 26 couples data
bus 28 to a disk drive 30 (not shown), and is comprised of
a local microprocessor controller 46 which operates the
various elements of the interface stage in accordance with
instructions from control processor 34. As was the case with
the host interface stages 22, with disk interface stages 26
instructions from the control processor are transmitted
through an interface 48 to the local controller 46. The latter
then responds by causing a data buffer 50, disk interface 52,
and memory interface 54 to transfer data to and from the
disk drive.

10

15

20

25

30

35

40

45

50

55

60

65

10

In particular, memory interface 54 serves to receive eight
bytes of data from bus 28 and serialize the data so that it is
installed in buffer 50 in a single stream of bits. Arrangement
and queueing of buffer storage is accomplished by the local
controller 46, as is the operation of the disk interface 52
which passes data from buffer 50 to the disk drive at the
appropriate times. Still further, the disk interface stages
serve to seek and log the locations of data upon the various
disks of the disk drive associated therewith, so that the
information can be retrieved when needed.

Between the time data is in a host interface 22 and is
received in a disk interface 26, it is stored in a main memory
32. The high speed main memory 32 thus acts as a “bank”
or “cache” which holds the data until one of the disk drive
units 30 is ready to accept it. When this occurs, the disk
interface stage 52 associated with the disk drive 30 signals
control processor 34 of its availability. The control processor
34 then instructs the main memory or cache 32 to discharge
data to the disk interface stage 52 by way of bus 28.

In like manner, when the host computer 20 is seeking
data, the identity of the data sought is transferred through
host interface stage 22 to the control processor 34, which
then determines if the requested data has been previously
moved into the main memory 32. If it has not, the control
processor 34 in turn will apply a “transmitter” signal to the
disk interface stage 26, and the local controller 46 therein
will cause data to be read out of the associated buffer 50,
through the associated memory interface 54, and onto the
data bus 28, and thence to the main memory 32. At the same
time, the local controller 38 of the available host interface
stage 22 will enable the associated memory interface 44, so
that the newly-read data will be received from main memory
32 and gated into the host interface data buffer 40. By
comparison, if the data sought was located in the main
memory 32, the data will be immediately gated out of the
buffer 40, serialized by the host interface module 42, and
transmitted to the host computer 20.

In an alternative embodiment, both host buffers 40 and
disk buffers 50 may be dispensed with, their functions then
being performed by main memory 32.

In this fashion, segments of data which have been dis-
persed throughout a number of disk drives are compiled,
queued, and then re-assembled automatically into serial
form. Accordingly, the information flowing to the host
computer 20 from the various disk drives 30 appears in serial
form, precisely as if it were being read from a tape.

In the foregoing manner, the high speed main memory
provides a cache from which data can be selected and
queued for subsequent reassembly into serial form before
being directed to the host computer.

As will be recognized by those skilled in the art upon
learning the teachings of the present invention, the above
described embodiment of the virtual storage system of the
invention could be assembled from commercially-available
elements, and coupled together in any convenient fashion.
For example, the local microprocessor controllers 34 used
for operating the components of each interface stage need
only be of rather limited capability and may be comprised of
any of the various high speed microprocessors available on
the market. An example of such microprocessors is the
LSI-11 marketed by DEC Incorporated of Boston, Mass.;
alternatively, a suitable unit can be assembled from the
AMD Co.’s 2900 series of parts. In like manner, the host and
disk interfaces 22 and 26 which accomplish the serializing
and deserializing of information may be standard units, such
as the model 370 block multiplexor available from the IBM

Re. 36,989

11

Corporation of Armonk, N.Y. In like manner, an IBM block
multiplexor may be used for direct memory access the actual
connection of the various units being well understood by
those skilled in the art.

Similarly, the buffers 20 and 30 used for temporary
storage of data in the host and disk interface stages 22 and
26 may be of any appropriate type, although in a presently
preferred embodiment a memory of at least 64K bytes is
preferred. One commercially available buffer of this type is
manufactured by Fairchild Semiconductor, and comprises a
N-MOS random access memory having a speed of 200
nanoseconds.

The high speed memory 32, which serves as a data cache
should be of the type generally designated a fast access
memory, i.e., one having a cycle time of 400 nanoseconds or
less. In a preferred embodiment, the high speed cache has a
capacity of 16 megabyte. One commercially-available
memory appropriate for use with the present invention is
manufactured by Intersil Corp., Sunnyvale, Calif., and is
marketed by Storage Technology Corp. of Louisville, Colo.
assignee of the present application, and designated models
3758 and 3768.

The embodiment of the invention just described was, as
noted, the first envisioned embodiment of the invention and
was the subject of the copending application Serial No.
85,909, filed Oct. 18, 1979, of which the present application
iS a continuation-in-part. That system performed the func-
tion of dividing user data sets into subportions for storage,
and assigned storage locations to the subportions, retaining
the assignments for use later in reassembling the data set.
However, the first embodiment of the invention, as it was
designed to be plug-compatible with a tape drive, was
limited to responding only to commands directed to tape
drive units. In the presently preferred embodiment of the
invention, this limitation is not present, and the virtual
storage system of the invention can accept any data set
output by the host.

FIG. 5 shows the overall layout of a data processing and
storage system utilizing the presently-preferred embodiment
of the virtual storage system of the invention. The particular
system shown in FIG. 3 shows a pair of host computers 60
and 61 each connected to a pair of virtual control processors
(VCPs) 74A and 74B which amount to the heart of the
virtual storage system of the invention. In the preferred
embodiment the VCPs comprise Magnuson M80 computers,
the main memories of which include both the cache and the
address memory space in which is stored the “directory”
which lists the locations on disk at which the various
subportions of a user-defined sequential file are stored. The
VCPs 74A and 74B are each in turn connected to a data base,
which in the configuration shown each comprise a pair of
disk controller units 64 and 65 each operating a pair of disk
drives each 66 and 67, and 68 and 69, respectively, and to
a pair of tape controllers 70 and 71 having attached thereto
tape drives 72 and 73, respectively. The data bases may
comprise additional disk and tape units, depending on the
capacity of the VCPs 74A and 74B. The virtual control
processors 74A or 74B may each also have secondary
connections to the other’s data base, for backup purposes.
Accordingly when a host requests a specific user data set or
“virtual volume” the request need only specify which of the
two virtual control processors 74A or 74B controls the data
base within which is stored that virtual volume. The virtual
control processors 74A and 74B are each able, using their
internal address store, to convert the name of the file into the
location of the data on the disk or tape unit(s) involved and
forward it to the host without further instruction from the
host.

10

15

20

25

30

35

40

45

50

55

60

65

12

It is well known by those skilled in the art that there is at
present available an IBM Corporation computer system
which uses disk drives external to a host computer for
expansion of the CPU memory space. This is operated
according to a program contained in the host known as MVS
which is an acronym for “Multiple Virtual Storage”. The
present invention similarly relates to what might be termed
“virtual” storage, but is concerned with long-term storage,
not expansion of the CPU storage.

FIG. 6 shows a schematic view of how a virtual storage
system according to the invention could be operated in
conjunction with an IBM 370/158 or 30XX CPU having this
MVS feature. The invention in this preferred embodiment
would also function correctly with any other host having
MYVS capability, such as the Amdahl V-8 host CPU. The host
computer 60 contains software for various purposes denoted
on the drawing such as user address space, means for
accepting jobs from punch cards and orders from a console,
and the like. Adaptation of such a host operating system to
be useful with the virtual storage system of the invention
requires some reprogramming of the host computer as will
be discussed in further detail below. As noted above, it is
desirable that only sequential data sets be supported by the
virtual storage of the invention; MVS as supplied by IBM
gives no indication of whether a given request is random, or
is one of a series of requests from a sequential file. In
essence, an additional program referred to as VES, or “
Virtual Storage System Execution Subsystem” is added, as
is additional VSS host utility software to generate reports
relating to the operation of the virtual storage system of the
invention, to keep the user apprised of its status. The host 60
is connected by a bus to the virtual control processor 74 of
the invention which in turn is connected via disk controllers
(not shown) by additional buses 76 to one or more disk
storage devices 78. The bus leading from the host 60 is
connected to the virtual control processor 74 via a channel
adapter (CA) unit 80 which will be discussed further below.
Broadly, the channel adapter 80 connects the host channel
(not shown) to the virtual control processor 74 and performs
additional functions as will be discussed in further detail
below. The actual operation of the virtual control processor
is under the control of a Virtual Storage System Operating
System (VOS) which receives operator input via a VCP
console 82; additional software is contained in the virtual
control processor 74 for storage management and reporting
functions as noted.

FIG. 7 shows the hardware comprising the virtual control
processor (VCP) 74 in broad outline. As shown, the console
82 is connected to the VCP 74 through a conventional
channel. Other conventional channels, numbered CH1-CH35
and indicated generally at 88, are used to interface with
backend storage such as disk drives and tape drives. The
VCP 74 is interfaced to one or more host processors through
one or more channel adapters 80. The channel adapters 80
perform all required interfacing activities with the host 60.
To the host the channel adapter 80 appears to be a storage
device control unit which responds to channel protocol in a
conventional manner. Each channel adapter 80 responds to
two addresses in the preferred embodiment, one for data
transfer and one for exchange of control information. During
data transfer, the channel adapter 80 performs compression
and decompression on user data. Details of the channel
adapter 80 are to be found in co-pending application Ser. No.
261,950 filed May 8, 1981.

The VCP 74 additionally comprises a cache buffer
memory 92. This may be conventional solid state random
access memory (RAM). As noted in a preferred

Re. 36,989

13

embodiment, the VCP 74 is the processor of a Magnuson
MBS0 computer; in this embodiment, the cache buffer 92 is a
portion of the Magnuson’s main memory which is used to
perform storage management functions on user data. Blocks
of user formatted data are broken down into “pages” of
convenient size for storage on the backend device chosen.
For example, for use with a typical disk drive, the page
would be equal to a fraction of one disk track. The cache is
accordingly divided into a plurality of “frames” of e.g., 4
kilobyte capacity, into each of which one page can fit. When
a frame is full with a page of data it is written to the
appropriate backend storage device. A plurality of frames,
e.g., a total of 4000 frames or 16 megabytes, may be
provided in the cache so that simultaneously hosts can be
reading and writing to the cache buffer and so that there need
be no delay in host operations caused by the operation of the
backend storage device chosen.

The final component of the VCP 74 is a processor 94
which, as noted, in a presently preferred embodiment may
comprise a Magnuson M8O0 under the control of which the
above operations are effected. This processor 94 comprises
memory means for storing the addresses of available space
on the backend storage devices used. Those addresses at
which data is already stored are cross-referenced in this
memory together with means for identifying the specific
records stored at the addresses. In this way, when the host
calls for a specific file the VSS central processor (VCP) 94
can consult this memory and determine where in backend
storage the data is stored. If the particular storage medium
is mounted on a disk or tape drive, the first page of data can
then be read directly into the cache buffer 92. If, for
example, the file called for is stored on a reel of tape not
presently mounted, the processor can cause an operator
instruction to appear on the VCP console 82 or on a host
console, e.g., to mount the appropriate reel of tape, where-
upon the data can be read into the cache 92 a page at a time
for forwarding to the host. On the other hand, if the READ
request is for a second or subsequent portion of a data set
already accessed, the data can be supplied directly from the
cache to the host, without delay.

It will be appreciated by those skilled in the art that the
concept of using the controller 94, working in conjunction
with the cache 92 to divide user formatted data which may
be of any block size and of any total length into “pages™ of
size convenient for storage on predetermined backend stor-
age devices, thus treating the allocation of storage space for
each page separately, is new to the art. The host thus does not
enter into the process of data management and control, to the
extent that the virtual control processor even reformats the
data. By comparison, the prior art practice required the user
to define each file to be the maximum length envisioned for
future use and to select the type and location of the magnetic
storage medium on which the file was to be permanently
kept. Not only is this practice inefficient in that almost
inevitably the file would be made bigger than necessary, but
it requires that the user (or, in more advanced systems, the
host) make decisions as to the storage utilization. By
comparison, according to the present invention, no storage
space is wasted, as locations are only allocated as necessary.
Furthermore, the virtual storage system of the invention
divides each and every file into blocks of a size convenient
for storage from the storage system’s point of view, thus
ensuring far higher efficiency of storage, without interfering
with the user’s configuration of his data set. The provision
of an intelligent memory subsystem is essential to achieving
this high efficiency, as the time required by a user to divide
each data set into blocks of sizes fitting the available storage

5

10

15

20

25

30

35

40

45

50

55

60

65

14

devices would be prohibitive. Thus, the fact that the storage
location is assigned by the storage system relieves both user
and host of this task. In certain embodiments of the present
invention discussed below, even the choice of the type of
magnetic storage medium on which a given data set is stored
is made by the virtual storage system of the invention, based
on usage history.

FIG. 8 shows a block diagram of the software comprised
by the virtual storage system of the invention. Again, the
VCP console 82 is shown as it has, of course, input to the
operation of the system, as does the channel adapter 80. The
VCP processor (94 in FIG. 7) operates according to the VSS
Operating System (VOS) and on functional software which
performs storage management and backup/recovery func-
tions. VOS performs typical operating system functions for
the VCP processor 94, including I/O services, main storage
allocation and console communication. Functional software
performs the following storage management functions: con-
trol of host/VSS data flow; backend device management;
disk drive space management; recovery management; and
diagnostic/service report. Additionally, the functional soft-
ware is used to control backup writing of records stored on
disk to tape so as to free more disk space. Furthermore, the
virtual storage system of the present invention comprises
means for adaptively changing the class of device on which
a given data set is stored if it turns out to be used more or
less frequently than originally thought likely. It will be
understood, of course, that these functions may be per-
formed in interaction with the operator by means of the
console 82.

As discussed above, the utility of the virtual storage
system (VSS) of the invention is maximized if certain
judicious modifications are made to the operating system
software of the host. In a preferred embodiment, the host
must now distinguish between randomly and sequentially-
accessed data sets and direct only sequential data sets to the
virtual storage system of the invention for storage. The
modifications required to the IBM 370/158 MVS program
are shown schematically in FIG. 9 and in greater detail
below. Those skilled in the art will readily recognize the
various components of the MVS program. The changes
involve addition of the VSS Execution Sub-system (VES)
and the VSS utility function. The VSS Execution Sub-
system, VES, is the VSS address space which functions as
a secondary sub-system in the host MVS environment. VES
provides an interface between user jobs running on the host
and VSS itself. Major functions performed by VES include
initialization of jobs, job management, data management,
interface with the console and interface with the job control
language cards used to detail a particular job to the host. In
order to support VES, VSS maintains a number of table
entries and queues in the common area of the MVS address
space.

The host resident VSS utility functions provide system
support and management personnel with the tools requisite
to install, manage and maintain VSS. These functions pro-
vide reports on VSS status and performance and provide
assistance in data and system recovery. Typically the utilities
can include a report formatter to produce VSS formatted
report output, user exits to interface with existing security
and accounting systems and to monitor activity, transaction
enable and disable capability, and means to permit control of
VSS from the host computer console. Those skilled in the art
will readily understand how MVS may be modified to yield
these results.

FIG. 10 shows a more detailed block diagram of the
virtual storage system of the invention. As noted, its chief

Re. 36,989

15

components are the channel adapter 80 indicated by dotted
outline, a system bus 102 and the virtual control processor
(VCP) 74 also indicated by a dotted outline. As noted, in a
preferred embodiment the virtual control processor 74 com-
prises what might in other circumstances be considered an
independent computer itself; in a presently preferred
embodiment, a Magnuson Co. model M80/40 is used. As
noted above, this virtual control processor 74 contains a
storage control unit 106 connected to a memory which forms
a cache buffer 92 for temporary storage, or “cacheing”, of
data while assignment is being completed by the VSS central
processor 94 and for staging of data in anticipation of a host
request. Central processor 94 is connected to a memory 96
for recall of the addresses on backend disk and tape storage
at which various portions of particular user files are stored.
The system bus 102 connects the channel adapter 80, the
cache 92 and the channels 88, over which data is written to
disk or tape storage media as well known in the prior art,
under the control of the processor 94.

The function of the channel adapter 80 is to connect the
input/output interface 114, to which a host computer is
connected, with the system bus interface 116. In the interim
between the two, various operations may be performed on
the data under the control of a channel adapter processor
118, which may chiefly comprise a microprocessor, such as
a Zilog Co. ZB8000 unit. In a presently preferred configu-
ration as shown in FIG. 10 the channel adapter processor
operates on operation tags and data in parallel.

Perhaps the most important single function performed in
the channel adapter in a presently preferred embodiment is
that of data compression upon writing and decompression
upon reading of data to or from backend storage, respec-
tively. It will be understood by those skilled in the art that
data compression can in many cases significantly reduce the
actual amount of data which is required to be stored thus
yielding further storage efficiency. It will also be appreciated
by those skilled in the art that data compression has been
performed in the prior art but only in a host environment and
not by an externally operated memory system having intel-
ligence of its own. Data compression is performed prior to
dividing the data into pages to further maximize storage
efficiency. Details of the preferred embodiment of the chan-
nel adapter as mentioned above are discussed in co-pending
application Ser. No. 261,950 filed May 8, 1981, referred to
above and incorporated herein by reference.

As noted above, in the prior art typical large data pro-
cessing and storage systems (i.¢., ones having the computing
power of at least one IBM 370/158 class processor) would
typically employ a complete heirarchy of storage devices.
Large sequentially organized data sets would be stored on
tape. Smaller and more active sequential data sets would be
stored on disk thus allowing on-line availability. Moving the
small and/or active data sets to disk offers the user the
advantage of fewer tape drives required and improved
system through-put. However, additional requirements for
management of these disk resident data sets arise. Data set
placement and backup for reliability and migration become
critical and time-consuming tasks. The present invention
addresses and solves these problems by automating routine
storage management functions and by providing migration
and backup capabilities which are independent of the host
processor. The system of the invention thus provides on-line
data availability comparable to permanently mounted direct
access devices such as disk drives; the access time advan-
tages of semiconductor storage by virtue of provision of a
cache memory, relative cost-savings by increased utilization
of disk storage, and ease of use and control to the programer
of a device independent data set.

10

15

20

25

30

35

40

45

50

55

60

65

16

This may be termed a “storage system” (VSS) in that this
language suggests a certain independence from physical
constraints and limitation. As virtual storage operating sys-
tems (such as the IBM MVS system referred to above) freed
programmers from the constraints imposed by relatively
small areas of real CPU storage, VSS frees the user from the
limitations imposed by storage device requirements. By
automatically performing space management functions and
storage allocation, VSS offers the user true storage device
independence. In a presently preferred embodiment, these
goals are achieved by storing the user data in units called
virtual volumes. Each virtual volume contains one user data
set and can be whatever size is necessary to contain that data
set.

Those skilled in the art will recognize that in the prior art
data sets were conventionally stored in files—preassigned
portions of tape or disk media—of fixed storage capacity. A
large data set might thus be stored on two tape drives.
Conversely five different data sets might reside on a single
disk. The virtual storage system of the invention minimizes
storage management problems by introducing the concept of
variable size “volumes”. Once a user creates a variable
volume for a particular data set, it may be expanded or
contracted to whatever size is necessary to contain the actual
data. The allocation of space on whatever storage device is
chosen is performed automatically. Moreover, the virtual
storage system central processor 94 maintains a table which
keeps track of the volume activity and of the location of each
of the portions of each volume.

Each volume is comprised of an integral number of
“pages”. From the user’s viewpoint, each volume consists of
a number of data blocks of whatever block size is convenient
to the user. The virtual storage system of the invention
assembles the data blocks into pages conveniently sized for
its own purposes. In the presently preferred embodiment
each page is equivalent in size to one disk track. Thus a
virtual volume consists of a number of pages, each the size
of a full track. The track-sized storage areas in various
locations throughout disk storage in which the pages are
stored are referred to as “frames” in both the cache and in the
disk drive. The analogy may be made that the frame is the
bucket and the page is the water. For each page of data that
is transferred to on-line storage during a write operation a
frame must be allocated both in cache and in disk storage.
Plural frames are provided in the cache to allow simulta-
neous reading and writing.

A further subdivision of the storage system according to
the presently preferred embodiment is shown in FIG. 11.
There groups of disk frames are organized into “disk frame
groups” for storage management purposes. Certain attributes
of control can be assigned to each fram of a given group.
Each virtual volume, i.e., each data set, will be allocated
frames from only one disk frame group. This enables these
attributes to be assigned to each virtual volume so as to
readily perform the appropriate management functions pro-
vided by the storage system of the invention with respect to
each user data set. For example, one might put a maximum
size limit on each virtual volume within a given frame
group, so that the user would be alerted when his data set had
grown beyond a predetermined size. One might care to
employ alternate recording modes, for example, shadow
recording, in which the data is simultaneously written to two
different disk tracks for reliability purposes, or data
journaling, in which data is written simultaneously to a disk
track and to a tape drive, again for reliability improvement,
with respect to each virtual volume in a given frame group.
Another control possibility is definition of a data migration

Re. 36,989

17

threshold; that is, writing all the data in a given volume to
tape when a certain percentage of the disk frame group has
been filled. For example, the data migration threshold—that
point at which the disk fame group is deemed full—might be
so controlled. These data frame group attributes are typically
established at the time of installation of the VSS system of
the invention but might be altered by means of console
commands or overridden by job control language parameters
submitted with respect to a particular job. As indicated in
FIG. 11 the VSS may control the data frame group assign-
ment to extend over plural disk drives. This may be done, for
example, to allow no two identical pages of a shadow-
recorded data set to be written to the same disk drive, again
for additional reliability.

Having thus defined the system configuration, examples
of control and data flow are given in connection with FIGS.
12 and 13, respectively. Each figure comprises on the left a
schematic depiction of the system and on the right shows a
flow chart of the steps involved. Numbers showing each of
the steps in the flow chart correspond to numbers shown on
the block diagram to show the location of performance of the
step in the flow chart. The control flow of an “OPEN”
message, i.e., an order requiring preparation of a VSS data
set for processing, is shown in connection with FIG. 12. If
the user program contains the instruction OPEN, the virtual
storage system execution subsystem software VES), which
in a preferred embodiment is added as noted to the IBM
MVS operating system option, constructs an OPEN message
for transferring over what appears to the host 70 to be a
console interface; that is, the channel adapter 80 appears to
the host 70 as if it were a console device, so that commands
which would ordinarily appear on a console, are instead used
by the channel adapter 80 and by the virtual control pro-
cessor (VCP) 74 of the invention to take over these data
management functions from the host.

If the host’s request is for a new data set, the VCP 74 will
assign a new virtual volume to this name. If the request is for
access to an existing data set, the virtual control processor 74
will consult the address memory store 96 (FIG. 10) to locate
the address of the various portions of the selected virtual
volume. If the OPEN instruction is for a read operation, the
virtual storage system of the invention will allocate several
cache frames to the virtual volume to allow the first few
pages of data to be written into the cache for transmission to
the host. If the “OPEN” is instead for a write operation, one
cache frame is allocated to the volume, as are a plurality of
disk drive frames. This having been done, a response is
generated and transmitted to indicate to the host that the
virtual storage system of the invention is ready to actually
receive the data. The response will comprise a volume serial
number, indicating which volume has been identified as
associated with the user data set name given, and a data
stream identification, used to identify the channel adapter
address to be used for the data transfer. This operation
having been completed, data flow is possible.

The flow of data in a read operation is shown in FIG. 13.
The data stream address which was passed back to the host
70 in the OPEN sequence described above is used to identify
the channel adapter address. This permits any channel
adapter 80 connected to the virtual control processor 74 with
which is associated the requested virtual volume to be used
for the transfer. The virtual control processor 74 then causes
the requested data to be read into the cache one page at a
time from the disk drive, or tape if the data has been
migrated to tape, as the host requests the subsequent portions
of the data sets. In this way the actual read requests are
satisfied directly from the cache, permitting very high speed

10

15

20

25

30

35

40

45

50

55

60

65

18

transfer and reduced access times on second and subsequent
requests directed at a given data set. If the data had been
compressed prior to storage, the channel adapter 80 decom-
presses the data and puts it into the host format while
transferring the data over the interface to the host’s buffers.

FIG. 14 shows a schematic diagram of hardware which
could be used to perform the data compression function.
Data is shown being brought in at the left side of the diagram
and read into a first register 140. Typically an eight-bit byte
will be read into the register 140 upon each cycle of
operation of the compression circuit. The eight bits are
compared with eight bits stored in a second register 142 in
a comparator 144. The comparator 144 is shown as an
ordinary AND gate; it will be understood that the eight bits
in register 142 are compared with corresponding ones of the
eight bits in register 142. If the comparator 144 outputs a
high signal, indicating that the data in register 140 is
identical to that in register 142, a flip-flop 146 is set and a
counter 148 is incremented. Upon the first setting of the
flip-flop 146 the value stored in counter 148 is set to one. At
the same time the first setting of the flip-flop 146 causes a
so-called “escape character” generator 150 to output a
predetermined “escape character” to the output bus of the
circuit, indicated generally at 152. If the byte contained in
register 140 is then moved to register 142, that in register
140 becomes the repeated byte, the number of repetitions of
which is being counted by the counter. If the next byte read
into register 140 is the same as the last, therefore, the
flip-flop 146 being already set and the escape character
having already been generated means that only the counter
148 will be incremented. The bytes contained in registers
140 and 142 are also compared in a second comparator 154
which is shown as a NAND gate, so that it has a high output
whenever the contents of the two registers are not identical.
This is passed to the reset input of flip-flop 146 which causes
the counter contents to be output to the output bus 152
indicative of the number of times the repeated byte was
repeated. This number together with an example of the
repeated byte and the escape character is all that need be
provided to perform data compression. It will be understood,
of course, that if the escape character and the number of
repeated byes are equal in size to the byte, it will only be
economical to perform such operations upon four or more
identical repeated bytes. This object could readily be
achieved by using four registers instead of the two shown,
140 and 142; for simplicity they are not shown. Those
skilled in the art will also recognize that it is important to
provide a method whereby the escape character can be
distinguished from the same byte occurring “naturally” in
the data. This may be done by repeating the escape character
wherever it appears as natural data and detecting such
repetition of this byte during the decompression routine,
which is essentially the inverse of the compression methods
just described.

Those skilled in the art will recognize that there has been
described a virtual storage system adapted for connection
between a host computer and a plurality of magnetic storage
media which provides substantial improvements in systems
operation characteristics. By providing the memory control
intelligence external to the host, both the host and the user
are relieved from the chore of determining where on mag-
netic storage media individual records are to be stored.
Moreover, utilization of this external intelligence together
with the concept of the virtual volume of undefined size
allows data to be stored in block sizes determined by the
memory system at the time of storage, rather than by the user
in advance of actual data writing. This allows much higher
utilization of data storage capacity.

Re. 36,989

19

Still another advantage provided by the invention is that
it may be operated to store individual pages of data in frames
within a data cache thus providing the advantage of solid
state access time to the host, without storing all data in this
very expensive form of memory. In this connection, the host
software modification by which only sequential data sets are
supported by (and directed to) the virtual storage system of
the invention is of importance; randomly accessed data sets
are not profitably cached, as they are not the subject of
repeated READ commands. Similarly, randomly accessed
data sets usually are relatively short, so that they do not need
to be divided into subportions and stored in plural disk
track-sized frames to enable efficient use of memory, as in
the case of sequential data sets.

An additional advantage provided by the utilization of
external intelligence in a memory system is great versatility
in the recording modes used with respect to given types of
data records, particularly as regards duplication for improve-
ment of reliability. For example, provision of memory for
storage of addresses at which data is stored external to the
host allows back-up or duplicative storage of this data on
different media if desired without intervention by the host or
by the user. Furthermore, only those portions of records
which are changed during processing during a given oper-
ating cycle, such as an eight-hour shift, need be backed up,
in contravention of the prior art practice wherein if any part
of a file was altered, the entire file had to be copied. Another
advantage is that such back-up may be performed on tape
such that entire reels of tape are written with the active
portions of differing files; this yields complete utilization of
the storage space available on tape.

Provision of intelligence in the memory subsystem also
enables additional versatility in error correction and recov-
ery operations. If an error occurs in reading or writing of a
tape, for example, from the long-term storage into the cache,
the system of the invention can automatically retrieve the
back-up or shadow recorded copy without specific instruc-
tions from the host or operator. Similarly, simultaneous
writing of one data file to two locations on disk which may
be performed in the system according to the invention with
respect to all records written without operator or host
intervention, the disk frame groups having been defined.
Finally, it will be appreciated that all the above improve-
ments made in data processing systems by incorporation of
the concepts of the invention are achieved at no cost to the
host and will indeed be accompanied in some cases by an
improvement in overall system performance due to the
advantages of staging portions of data sets to the semi-
conductor cache in advance of a read request, as well as
improvements in the efficiency of storage usage with con-
comitant increase in either storage available or reduction in
system size required to perform a specified function.

Filed herewith and incorporated by reference herein are
the following documents:

“VSS Central Processor to Channel Adapter Interface
Specification”;

“Chapter 5: ‘Firmware Implementation’”;

“Z8000-A Processor Flowcharts”;

“8X300 Channel Sequencer Flowcharts”; and

“DFGM Procedure Descriptions”.

These documents are intended to further detail and make
clear certain important aspects of the invention herein.

The document entitled VSS Central Processor to Channel
Adapter Interface Specification describes in detail the nature
of the interface between the Magnuson central processor, as

10

20

25

30

35

40

45

50

55

60

65

20

used in the presently preferred embodiment of the invention
described above, and the channel adapter, which, as
described above is a specially designed and manufactured
hardware device comprising the Z8000 microprocessor and
8X300 channel sequencer units. It will be appreciated by
those skilled in the art that the interface specification is very
useful as it details the communications facilities required
between the various intelligent subunits of the virtual stor-
age system of the invention.

Chapter 5 “Firmware Implementation” describes in verbal
terms the functions of the various subportions of the micro-
codes which execute on the Z8000 microprocessor and the
8X300 channel sequencer. This document describes the
interplay between these two intelligent units, and taken
together with the Z8000 CA Processor Flowcharts and the
8X300 Channel Sequencer Flowcharts also provided, fully
details the microcode requirements and the detailed micro-
code implementation of the channel adapter.

Finally, the DFGM Procedure Description document
describes a portion of the software which runs on the
Magnuson central processor, or VCP, in the virtual storage
system of the invention. The document provided describes
the software which performs the function of DASD (for
Direct Access Storage Device, ie., disk drives) Frame
Group Management, hence the indication DFGM. The
DASD Frame Group concept is described in this application
in the discussion referring to FIG. 11. Chapter 1 of the
DFGM Procedure Description describes the data structure,
detailing the variables which are used by the software to
implement the data frame group management function.
Chapter 2 of the document comprises verbal descriptions of
the functions of the various subportions of this software.
Those skilled in the art will recognize that this software is
written in the programming language PASCAL. In the
preferred embodiment, it runs on the Magnuson CPU using
IBM’s DOS/VS, Release 34 operating system.

It is believed that given the above description of the
invention, together with the concurrently filed documents
just described, those skilled in the art would have no
difficulty in implementing the apparatus and method of the
invention as claimed below.

While a preferred embodiment of the invention has been
disclosed and described above, it will be understood by
those skilled in the art that there are numerous modifications
and improvements which can be made to the system of the
invention without departing from its essential spirit and
scope which is to be limited only only by the following
claims.

I claim:

1. Apparatus for the storage of digital data organized into
records comprising:

host interface means for receiving data from a host

computer;

cache means connected to said host interface means for

temporary storage of said data;

storage device interface means for connecting said cache

means to one or more memory storage devices of one

or more classes of storage devices for comparatively
long-term storage of said data; ad

controller means including address recall means, for:

(a) determining where said data is to be stored on said
one or more storage devices;

(b) controlling flow of said data from said host interface
means through said cache means and said storage
device interface means onto said one or more storage
devices; and

Re. 36,989

21

(c) storing the addresses at which said data has been
stored on said one or more storage devices;

whereby a given user-defined data set may be stored on a

plurality of storage devices, selected from one or more
classes of storage devices by said controller means.

2. The apparatus of claim 1 wherein each said data set is
divided into pages of length convenient for storage on
devices of said one or more classes by said controller, which
operates individually on each of said pages to determine
where and on what class of storage devices said page shall
be stored.

3. The apparatus of claim 1 wherein said host interface
means comprises channel adapter means for compression of
said data by replacing successive identical bytes of data by
a compressed data word comprised of one of said identical
bytes together with a character indicative of the number of
times said one or more identical [byte] byres was repeated in
the uncompressed data.

4. The apparatus of claim 3 wherein said compressed data
word additionally comprises a character for identification of
said compressed data word as such.

5. A data processing and storage system comprising:

at least one host computer for performing arithmetic and

logic operations on digital data, an extremely high
speed, relatively low capacity memory means in said
computer, and interface means for transmitting and
receiving data from external memory means; and

a virtual storage system, comprising:

relatively low high capacity storage devices;
host interface means for receiving data from and trans-
mitting data to said at least one host;

a high speed, relatively low capacity cache memory mean

connected to said host interface means; and

a controller for allocating appropriate storage locations on

said relatively low speed, high capacity storage devices
for data received from said ar least one host and stored
in said cache memory means, for accordingly control-
ling the flow of data from said cache memory means to
said relatively low speed, high capacity storage device,
and for storing said storage locations.

6. The system of claim 5 wherein said relatively low
speed, high capacity storage devices include devices of
plural classes.

7. The system of either of [claims 5 or 6] claim 6, in which
said at least one host computer does not control the location
of storage of said data on said relatively low speed, high
capacity storage devices, nor [the] @ choice of class of
device on which said data is stored.

8. The system of claim § wherein said data is divided by
said controller into pages of convenient length for storage on
said relatively low speed, high capacity storage devices and
the location for storage of each said page is determined
individually by said controller.

9. The system of claim § wherein said controller operates
to store a single user-define data set over plural storage
devices as required, whereby a user of said system is not
required to define [the] an extent of storage locations for the
containment of data sets operated on by said ar least one
host.

10. The system of claim 5 wherein a single user identified
data set may be divided into pages by said controller and
stored on differing ones of said relatively low speed storage
devices.

11. The method of operation of a data processing and
storage system, said system comprising data processing
means for outputting results of said processing for storage,
and a data storage unit, said data storage unit comprising:

10

15

20

25

30

35

40

45

50

55

60

65

22

plural types of addressable storage devices for long-term

storage of said data; and

controller means for allocating long-term storage loca-

tions within said long-term storage devices to said data
and for controlling flow of data from said data process-
ing means to said long-term storage devices;

wherein the improvement comprises

performing the step of determining where and on what
type of addressable [data] storage device(s) the data
is to be stored in said controller means, exclusive of
the function of said data processing [unit] means.

12. The method of claim 11, wherein data is stored on
relatively higher speed storage devices, and is periodically
copied to relatively lower speed storage devices.

13. The method of claim 12 wherein only that data stored
on said relatively higher speed storage [device] devices in
the interim following [the] & last previous copying operation
is copied.

14. The method of claim 11 wherein said data is simul-
taneously stored on differing ones of storage devices of the
same type upon receipt in said data storage unit.

15. The method of claim 11 wherein said data is supplied
by said data processing [unit] means to said data storage
unit in user-defined data sets, and said data sets are divided
into pages by said controller means for storage in said data
storage unit.

16. The method of claim 15 wherein the length of each
[said] page is determined in accordance with the character-
istics of the type of storage device on which storage loca-
tions for said pages are allocated.

17. The method of claim 11, further comprising the step
of temporarily storing said data in [said] @ short-term
memory means within said data storage unit during said step
of determining [at what long-term storage location] where
and on what type of addressable storage device(s) said data
is to be stored.

18. The method of claim 11 further comprising the step of
compressing said data prior to said step of determining [at
what long-term storage location] where and on what type of
addressable storage device(s) said data is to be stored.

19. The method of claim 18 wherein said data is divided
into pages for storage assignment after said compressing
step is performed.

20. A magnetic data storage system comprising means for
receiving data from a host computer, means for temporary
storage of said data means for allocating locations on
long-term storage media for said data, and for controlling
flow of said data through said system, memory means for
recall of said locations for long-term storage of said data,
and means for periodically duplicating data stored in a first
long-term storage location by copying it to a second long-
term storage means, wherein said means for periodically
duplicating data is controlled such that said copying [step] is
performed with respect to only that data which has been
operated upon in the interim since [the] a last preceding
copying[step], as indicated by said memory means for recall.

[21. A data storage and recall system, comprising means
for receiving data from means for processing data, means for
long-term storage of said data, means for temporary storage
of said data, means for allocating locations on long-term
storage media for said data, means for controlling flow of
said data through said system, memory means for recall of
said locations for long-term storage of said data, and means
for outputting said data upon instruction.]

22. A data storage system for connection to a host
computer, said host computer being adapted to indicate to
said storage system that a particular data access request is

Re. 36,989

23

one of a sequence of such requests to be directed to a
particular user data set during execution of a particular user
program, wherein, said data storage system comprises:

long-term, lower speed data storage means and shorter
term higher speed data storage means, [where upon
receipt from said] wherein the data storage system is
responsive fo the host computer [by said data storage
system of] indicating that a first data access command
request is directed to a portion of a user data set[, said
data storage system transfers] ro transfer a larger por-
tion of said user data set than that requested from said
large capacity, slower speed memory means into said
smaller capacity, higher speed memory means in antici-
pation of further host access requests directed to said
user data set.

23. The system of claim 22 wherein said user data set is
divided into pages by controller means comprised in said
storage system, said pages being stored on plural ones of
said long-term, lower speed data storage [devices] means,
the locations of storage of said pages being retained in
address memory means, said controller means arranged to
determine the location of the larger portion of the user data
set in response to the host indication, and transfer the larger
portion into the smaller capacity, higher speed memory
means.

24. [Method of operation of a] A data processing and
storage system comprising a host computer system and a
data storage system, said data storage system comprising:

long-term magnetic storage media of relatively high
capacity and relatively low speed, and

short-term semi-conductor memory means of relatively
low capacity and relatively high speed,

wherein said host computer system indicates to said
storage system that a particular data access request is
one of a series of access requests directed to a particular
user-defined data set in execution of a user program,

wherein said data storage system comprises processor
means for responding to said indication by transferring
portions of said user defined data set not called for by
said host from said [large capacity, slow speed] mag-
netic storage [means] media to said [low capacity, high
speed] semi-conductor memory means in anticipation
of further requests directed to said data set by said host
computer system in execution of said program.

25. The [method] data processing and storage system of
claim 24 wherein said user-defined data set is divided into
pages, said pages being individually assigned to storage
locations on plural ones of said [long-term magnetic
memory devices] magnetic storage media by said processor
means, said processor means determining the location of the

10

15

20

25

30

35

40

45

50

24

user-defined data set not called for by the host, and trans-
ferring the portions of the user defined data set not called for
by the host into the smaller capacity, higher speed memory
means.
[26. A data storage subsystem for connection to a host
computer by way of a channel comprising:
magnetic disk data storage means;
magnetic tape data storage means;
solid-state cache data storage means;
data bus means for transmission of data from said channel
to said disk means, from said disk means to said cache
means and from said cache means to said tape means;
and

controller means for directing the flow of data along said
data bus means connecting said cache means, said
channel means and said tape means unit, whereby a
data set can be copied from a disk memory means into
said cache and thence to said tape means.]

[27. The subsystem of claim 26 further comprising means
for determining where and on what type of magnetic storage
media said data is to be stored.]

[28. The subsystem of claim 26 wherein said means for
determining further comprises means for division of a user
data set into subportions sized in accordance with the
physical characteristics of the media on which said subpor-
tions are to be stored.]

[29. The subsystem of claim 28 further comprising means
for recall of the location at which said subportions are
stored, and for reassembly of said subportions into a com-
plete data set.]

[30. In a data storage subsystem adapted to be connected
to a channel interfacing a host computer system with a data
storage subsystem, the improvement which comprises:

said data storage subsystem comprising:

controller means;

disk storage means;

tape storage means; and

solid state cache memory means, said cache means
being effectively connected to said magnetic disk
storage means and to said magnetic tape storage
means, said controller means controlling flow of data
between said disk means and said cache means and
between said cache means and said tape means,
whereby upon indication that a given data set or
portion of a data set should be copied to tape media
for backup purposes, said data set or portion of a data
set may be copied from said disk to said cache and
thence to said tape.]

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :RE 36,989 Page 1 of 1
DATED : December 12, 2000
INVENTOR(S) : Barry B. White

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 20, claim 1,
Line 60, delete “ad” and insert -- and --.

Column 21, claim 2,
Line 6, delete “each” and insert -- [each] --.

Column 21, claim 3,
Line 17, delete “or more” and insert -- of said --.

Column 21, claim 5,

Line 29, after “low” insert -- speed, --.

Line 32, delete “mean” and insert -- means --.
Line 39, delete “device” and insert -- devices --.

Column 21, claim 9,
Line 55, delete “user-define” and insert -- user-defined --.

Signed and Sealed this

Twelfth Day of March, 2002

Artest:

JAMES E. ROGAN
Antesting Officer Director of the United States Patent and Trademark Office

