wo 2012/168867 A1 I} I A1 000 0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/168867 Al

13 December 2012 (13.12.2012) WIPO | PCT
(51) International Patent Classification: (72) Inventors; and
GO6F 15/16 (2006.01) GO6F 9/50 (2006.01) (75) Inventors/Applicants (for US orly): SHAW, Thomas
. e) [US/US]; IBM Corporation, M/P P380, 2455 South Road,
(21) International Application Number: Poughkeepsie, New York 12601 (US). GOSS, Steven,
PCT/IB2012/052837 Neil [US/US]; TBM Corporation, M/P P340, 2455 South
(22) International Filing Date: Road, Poughkeepsie, New York 12601 (US). ELKO, Dav-
6 June 2012 (06.06.2012) id [US/US]; IBM Corporation, M/P 904-5GO11, 11501
. Burnet Road, Austin, Texas 78758 (US).
(25) Filing Language: English
L . (74) Agent: STRETTON, Peter; IBM United Kingdom Lim-
(26) Publication Language: English ited, Intellectual Property Law, Hursley Park, Winchester
(30) Priority Data: Hampshire SO21 2JN (GB).
13/157.935 10 June 2011 (10.06.2011) us (81) Designated States (uniess otherwise indicated, for every
(71) Applicant (for all designated States except US): INTER- kind of national protection available): AE, AG, AL, AM,
NATIONAL BUSINESS MACHINES CORPORA- AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
TION [US/US]; New Orchard Road, Armonk, New York CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
10504 (US). DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
(71) Applicants (for MG only): IBM UNITED KINGDOM KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,

LIMITED [GB/GB]; PO Box 41, North Harbour, Ports-
mouth Hampshire PO6 3AU (GB). IBM (CHINA) IN-
VESTMENT COMPANY LIMITED [CN/CNJ; 25/F,
Pangu Plaza, No.27, Central North 4th Ring Road, Chaoy-
ang District, Beijing 100101 (CN).

MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: TRANSMITTING OPERATOR MESSAGE COMMANDS TO A COUPLING FACILITY

360 NO

PENDING YES

(57) Abstract: A facility is provided to
enable operator message commands
from multiple, distinct sources to be
provided to a coupling facility of a com-
puting environment for processing.
These commands are used, for instance,
to perform actions on the coupling facil-
ity, and may be received from consoles
coupled to the coupling facility, as well

SEND COMMAND TO
OM PROCESSOR

CONSOLE
CmV

[™~-354

as logical partitions or other systems
coupled thereto. Responsive to perform-
ing the commands, responses are re-
turned to the initiators of the com-
mands.

SET STATE COMPLETE)

OUTPUT RESULTS FROM OM PROCESSOR
(PRINT CONSOLE, IF SMSG DRIVEN COPY
RESULTS INTO BUFFER OM RESPONSE,

356

358
NO PENDING

YES

SMSG
W

FIG. 3B

WO 2012/168867 A1 |00V 0 0O A

GW, ML, MR, NE, SN, TD, TG).

(84) Designated States (unless otherwise indicated, for every Published:
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

TRANSMITTING OPERATOR MESSAGE COMMANDS TO A
COUPLING FACILITY

BACKGROUND

One or more aspects of the present invention relate, in general, to processing within a
computing environment, and in particular, to processing operator message commands within

the computing environment.

Computing environments range from simple environments to more complex environments.
A simple environment may include one processor executing one operating system, while a
complex environment may include a plurality of processors or a plurality of isolated memory
spaces executing various kinds of systems. For instance, a complex environment may
include one or more logical partitions executing one or more operating systems and at least
one logical partition executing coupling facility control code. Regardless of whether the
computing environment is simple or complex, it is necessary to adequately test the
components of the computing environment to ensure reliability and an acceptable level of

performance.

One technique for testing components of a computing environment is by issuing operator
commands at a console connected to the components, which are then processed by the
intended components of the computing environment. Once the operator commands are

processed, results are returned to the console for verification by the operator of the console.
Operator commands may also be used for purposes other than testing. Again, these operator
commands are issued by an operator at a console and processed by the intended components
of a computing environment.

BRIEF SUMMARY

The shortcomings of the prior art are overcome and advantages are provided through the

provision of a computer program product for facilitating processing of operator message

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

commands in a computing environment. The computer program product includes a
computer readable storage medium readable by a processing circuit and storing instructions
for execution by the processing circuit for performing a method. The method includes, for
instance, executing a send message instruction by a processor image of the computing
environment, the executing including selecting a subchannel for determining a path to a
coupling facility coupled to the processor image; and sending a send message command
block to the coupling facility, the send message command block including a start operator
message command block for a start operator message command, the start operator message
command block including an operator message token uniquely associating an operator
message command with a buffer of the coupling facility, the buffer including a plurality of
fields to be populated responsive to executing the start operator message command, the
plurality of fields including a timer field, an operator message request length field, an
operator message response length field, an operator message command field, an operator
message token field to include the operator message token and a response field; and wherein
the sending of the send message command block comprises sending the start operator

message command to the coupling facility for processing at the coupling facility.

Methods and systems relating to one or more aspects of the present invention are also
described and claimed herein. Further, services relating to one or more aspects of the

present invention are also described and may be claimed herein.

Additional features and advantages are realized through the techniques of one or more
aspects of the present invention. Other embodiments and aspects of the invention are

described in detail herein and are considered a part of the claimed invention.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

One or more aspects of the present invention are particularly pointed out and distinctly
claimed as examples in the claims at the conclusion of the specification. The foregoing and
other objects, features, and advantages of one or more aspects of the invention are apparent
from the following detailed description taken in conjunction with the accompanying

drawings in which:

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

FIG. 1 depicts one example of a computing environment to incorporate and use one or more

aspects of the present invention;

FIG. 2A depicts one example of a processor of the computing environment of FIG. 1
communicating with a coupling facility of the computing environment, in accordance with

an aspect of the present invention;

FIG. 2B depicts one embodiment of details relating to a Send Message instruction used in

accordance with an aspect of the present invention;

FIG. 3A depicts one example of a multiplexor used to control processing of operator
message commands received at the coupling facility, in accordance with an aspect of the

present invention;

FIG. 3B depicts one example of the logic used by the multiplexor of FIG. 3A to control
processing of operator message commands, in accordance with an aspect of the present

invention;

FIG. 4A depicts one example of buffers used in processing operator message commands, in

accordance with an aspect of the present invention;

FIG. 4B depicts one example of further details of a buffer of FIG. 4A, in accordance with an

aspect of the present invention;

FIG. 5 depicts examples of various possible states of a buffer, in accordance with an aspect

of the present invention;

FIG. 6 depicts one embodiment of various commands used in accordance with an aspect of

the present invention;

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

FIG. 7A depicts one embodiment of details relating to using a Send Message instruction to
issue a Start Operator Message command, in accordance with an aspect of the present

invention;

FIG. 7B depicts one embodiment of the logic of a Start Operator Message command used in

accordance with an aspect of the present invention;

FIG. 8A depicts one embodiment of details relating to using a Send Message instruction to
issue a Read Operator Message command, in accordance with an aspect of the present

invention;

FIG. 8B depicts one embodiment of the logic of a Read Operator Message command used in

accordance with an aspect of the present invention;

FIG. 9A depicts one embodiment of details relating to using a Send Message command to
issue a Delete Operator Message command, in accordance with an aspect of the present

invention;

FIG. 9B depicts one embodiment of the logic of a Delete Operator Message instruction used

in accordance with an aspect of the present invention;

FIG. 10 depicts one embodiment of a computer program product incorporating one or more

aspects of the present invention;

FIG. 11 depicts one embodiment of a host computer system to incorporate and use one or

more aspects of the present invention;

FIG. 12 depicts a further example of a computer system to incorporate and use one or more

aspects of the present invention;

FIG. 13 depicts another example of a computer system comprising a computer network to

incorporate and use one or more aspects of the present invention;

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

FIG. 14 depicts one embodiment of various elements of a computer system to incorporate

and use one or more aspects of the present invention;

FIG. 15A depicts one embodiment of the execution unit of the computer system of FIG. 14

to incorporate and use one or more aspects of the present invention;

FIG. 15B depicts one embodiment of the branch unit of the computer system of FIG. 14 to

incorporate and use one or more aspects of the present invention;

FIG. 15C depicts one embodiment of the load/store unit of the computer system of FIG. 14

to incorporate and use one or more aspects of the present invention; and

FIG. 16 depicts one embodiment of an emulated host computer system to incorporate and

use one or more aspects of the present invention.

DETAILED DESCRIPTION

In accordance with one or more aspects of the present invention, a capability is provided to
facilitate processing of operator message commands received from one or more sources. In
one example, the operator message commands are received by a coupling facility from the
one or more sources, and the coupling facility processes the commands and returns
responses to the source(s). In one particular example, at least one of the sources is a

processor image coupled to, but separate from, the coupling facility. As examples:

. The processor image is a logical partition having central processor resources
associated therewith and capable of executing an operating system, and the coupling facility
is within another logical partition having central processor resources associated therewith
and capable of executing coupling facility control code, in which both logical partitions are
within the same central processing complex (i.e., the same machine);

. The processor image is a logical partition having central processor resources
associated therewith and capable of executing an operating system, and the coupling facility

is within another logical partition having central processor resources associated therewith

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

and capable of executing coupling facility control code, in which both logical partitions are
within different central processing complexes (i.e., the different machines); and

. The processor image is a stand-alone machine (not virtualized in a logical
partition) separate from a machine or logical partition capable of executing the coupling

facility.

Each processor image includes one or more processors.

Examples of coupling facility operator commands include:

Configure — take CHPID (Channel Path) on or off line; CP — take CP (Central Processor) on
or off line; Display — show resources; Help <command> - command specific help; Locate —
display SID (subchannel id) vector or SID frames; Mode — set volatility mode; PRY — turn
PRY (machine level debug tool) on or off; Retrieve — retrieve coupling facility (CF)
information; Rideout — set power failure rideout time; RType — set response type; Shutdown
— terminate CF operation; SMI — turn System Monitor Instrument on or off; Timezone — set
timezone offset; Trace — set trace control; Patch — apply concurrent patch; Dyndisp — turn
dynamic coupling facility dispatching on or off; MTO — turn MTO (message time out) for
commands table on, VMDUMP — force a coupling facility hardlong on VM; CFDUMP —
force non-disruptive dump; and NDDUMP — nddump command. These commands are
described in “Processor Resource/Systems Manager Planning Guide”, IBM Publication No.

SB10-7036-04, Fifth Edition, January 2005.

In one particular example, the commands are testing the coupling facility in that the
commands specify an action to be taken on the coupling facility, the action is performed,
results are sent back to the initiator of the command (e.g., operating system console,
coupling facility console, test program) and those results are analyzed either manually by an
operator, analyst, etc. or programmatically. By enabling operator message commands that
take action on the coupling facility to be initiated and/or sent from remote sources other than
a coupling facility console, testing that can be performed on the coupling facility is
enhanced, as well as operations that can be performed. This may result in increased

reliability and/or performance of the coupling facility.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

One embodiment of a computing environment to incorporate and/or use one or more aspects
of the present invention is described with reference to FIG. 1. In one example, a computing
environment 100 includes a central processor complex (CPC) 102, which is based on the
z/Architecture® offered by International Business Machines Corporation (IBM®). Aspects
of the z/Architecture® are described in an IBM® publication entitled “z/Architecture
Principles of Operation,” IBM Publication No. SA22-7832-08, August 2010. One system
that may include central processor complex 102 is the zEnterprise 196 (z196) system offered
by International Business Machines Corporation. IBM® and z/Architecture® are registered
trademarks, and zEnterprise 196 and z196 are trademarks of International Business
Machines Corporation, Armonk, New York, USA. Other names used herein may be
registered trademarks, trademarks or product names of International Business Machines

Corporation or other companies.

Central processor complex 102 includes, for instance, one or more partitions (processor
images) 104, a hypervisor partition106, one or more central processors 108, and one or more
components of an input/output subsystem 110. Partitions may be physical partitions or
logical partitions 104 (e.g., LPARS), and each partition includes a set of the system’s
hardware resources (physical or virtualized) as a separate system capable of running

operating system software.

Each logical partition 104 is capable of functioning as a separate system. That is, each
logical partition can be independently reset, initially loaded with an operating system or
other control code, if desired, and operate with different programs. An operating system or
application program running in a logical partition appears to have access to a full and
complete system, but in reality, only a portion of it is available. A combination of hardware
and licensed internal code (LIC), referred to as firmware, keeps a program in one logical
partition from interfering with a program in a different logical partition. This allows several
different logical partitions to operate on a single or multiple physical processors in a time-
slice manner. (As used herein, firmware includes, e.g., the microcode, millicode and/or
macrocode of the processor. It includes, for instance, the hardware-level instructions and/or
data structures used in implementation of higher level machine code. In one embodiment, it

includes, for instance, proprietary code that is typically delivered as microcode that includes

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

trusted software or microcode specific to the underlying hardware and controls operating

system access to the system hardware.)

In this example, several of the logical partitions have a resident operating system (OS) 120,
which may differ for one or more logical partitions. In one embodiment, at least one logical
partition is executing the z/OS® operating system, offered by International Business
Machines Corporation, Armonk, New York. Further, at least one logical partition is
executing coupling facility control code (CFCC) 122, also offered by IBM®, and therefore,

is referred to as a coupling facility.

A coupling facility is, for instance, a non-volatile shared storage device (e.g., hardware) that
includes multiple storage structures, such as cache, list and/or lock structures, which are used
to provide unique functions for the computing environment. It is a shareable facility having
storage and processing capabilities. For instance, a coupling facility is a processor with
memory and special channels (CF Links) that executes coupling facility control code
(CFCCQ), rather than a standard operating system. Information in the coupling facility resides
in memory as CFCC, and the coupling facility does not have I/O devices, other than the CF
links. An implementation of a coupling facility (a.k.a., Structured External Storage) is
described in U.S. Patent No. 5,317,739, entitled “Method and Apparatus for Coupling Data
Processing System,” Elko et al., issued May 31, 1994.

Logical partitions 104 are managed by hypervisor 106, which is implemented by firmware
running on central processors 108. Logical partitions 104 and hypervisor 106 each
comprises one or more programs residing in respective portions of main memory associated
with the central processors. One example of hypervisor 106 is the Processor
Resource/Systems Manager (PR/SM™), offered by International Business Machines

Corporation, Armonk, New York.

Central processors 108 are physical processor resources that are allocated to the logical
partitions. For instance, a logical partition 104 includes one or more logical processors, cach
of which represents all or a share of a physical processor resource 108 allocated to the

partition. The logical processors of a particular partition 104 may be either dedicated to the

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

partition, so that the underlying processor resource is reserved for that partition; or shared
with another partition, so that the underlying processor resource is potentially available to

another partition.

Input/output subsystem 110 (of which only a portion is depicted) provides connectivity to
I/O devices. In one particular example of the z/Architecture®, the 1/0 subsystem includes a
channel subsystem, which directs the flow of information between 1/0O devices and main

storage. However, the I/O subsystem may be other than a channel subsystem.

The channel subsystem uses one or more channel paths as the communication link in
managing the flow of information to or from the I/O devices. Within the channel subsystem

are subchannels.

One subchannel is provided for and dedicated to each I/0O device accessible to the channel
subsystem. Each subchannel contains storage for information concerning the associated 1/0
device and its attachment to the channel subsystem. The subchannel also provides storage
for information concerning I/O operations and other functions involving the associated 1/O
device. Information contained in the subchannel could be accessed by CPUs using /O
instructions as well as by the channel subsystem and serves as the means of communication

between any CPU and the channel subsystem concerning the associated 1/0 device.

Although a logically partitioned environment is described herein as one computing
environment to incorporate and use one or more aspects of the present invention, other
environments may also incorporate and/or use one or more aspects of the present invention.
For instance, an environment having one or more processors coupled to a coupling facility
(not a logically partitioned environment) may also incorporate and use one or more aspects

of the present invention. Other examples are also possible.

Communication between a processor and a coupling facility, whether or not in a logically
partitioned environment, is facilitated by one or more intersystem channels, as depicted in
FIG. 2A. In the example described herein, the communication is between logical partitions.

For instance, a logical partition 200 executing an operating system 204, such as the zOS®

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

10

operating system, communicates with a logical partition 206 executing coupling facility
control code 208 via at least one intersystem channel 210. In particular, in one example,
logical partition 200 communicates with logical partition 206 over the intersystem channel(s)

via a Send Message (SMSG) protocol 220.

In one example, the Send Message protocol includes a Send Message instruction which
initiates a message operation. The message operation is controlled by information in the
Send Message instruction, as well as a message operation block indicated in the Send
Message instruction. The message operation includes executing a command specified in a
message command block (e.g., for one or more aspects of the present invention, a Start
Operator Message command, a Read Operator Message command and/or a Delete Operator
Message command, described below). Further, during performance of the operation,

response information is stored in a message response block in main storage.

Further details regarding the Send Message protocol are described with reference to FIG. 2B.
A send message instruction 250 has two operands, including a message operations block
(MOB) 252 and a designation of a subchannel 254 located in a channel subsystem 256. The
message operations block includes, for instance, a message command block address 258
pointing to a message command block 264/message response block 266 pair. These are 256-
byte buffers located in main memory. Message operations block 252 also includes a
message buffer address list (MBAL) address 260 that points to a message buffer address list
268. The MBAL list is a variable length list from, for instance, 1-16. It includes one or
more message buffer address words (MBAWSs) 268 that designate one or more message
buffers 272. The buffers may be a source for write operations to coupling facility 206 or a
target of read operations from the coupling facility. Also included in message operation
block 252 is a MBAL length 262 that indicates the length of the MBAL list. Not all
commands have to have a message buffer address list, and therefore, the length could be
zero. Message command block 264 includes the parameters that are sent to the coupling

facility, and when a response comes back it is stored directly to the MRB.

When Send Message is executed, parameters from the message operation block are passed to

the CPU or channel subsystem requesting that a send function be performed with the

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

11

coupling facility associated with a specified subchannel of the channel subsystem. The send

function is performed synchronously or asynchronously to Send Message.

The send function is performed by using information in the subchannel to find a path to the
coupling facility. Using the path, the message operation is forwarded to the coupling
facility. For instance, execution of the message operation is accomplished by passing
command information to the coupling facility, decoding and executing the command,
formulating response information indicating the result, and storing the response information

in the message response block.

Status indications summarizing conditions detected during the execution of the send function
are placed at the subchannel and made available to the operating system. Additional details
regarding Send Message are described in U.S. Patent No. 5,561,809, entitled “In A
Multiprocessing System Having A Coupling Facility, Communicating Messages Between
The Processors And The Coupling Facility In Either A Synchronous Operation Or An
Asynchronous Operation,” Elko et al., issued October 1, 1996.

Continuing with FIG. 2A, in this example, coupled to logical partition 200 are one or more
operating system consoles 230, as well as one or more test programs 232, which may be
running within the same logical partition, the same central processing complex but a
different logical partition, or another system. Similarly, coupled to logical partition 206 is at
least one coupling facility console 234. Each console enables a user to enter operator
message commands to its respective logical partition. Further, test program 232 is also able
to issue operator message commands to its respective logical partition. Operator message
commands issued to logical partition 206 (also referred to herein as the coupling facility)
from console 234 are received, in one example, by an operator message processor 240 within

the coupling facility that services the commands received from the coupling facility console.

Prior to one or more aspects of the present invention, the only remote entity that could send
coupling facility operator message commands directly to the coupling facility and receive
responses back was the coupling facility console. The testing of coupling facility operator

commands required a person to log onto the coupling facility console to issue the commands

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

12

and verify the results. Other remote entities, such as operating systems, operating system
consoles, test programs, and/or other remote systems, could not directly access the coupling
facility to have operator message commands processed and the results returned. Instead, any
such commands had to be forwarded to the coupling facility console, and since some
commands could not be forwarded, those commands could not be processed by the coupling
facility. Any results of commands processed by the coupling facility would be returned to

the coupling facility console and displayed on the console.

In accordance with one or more aspects of the present invention, operator message
commands are received at the coupling facility from console 234, as well as logical partition
200 (and/or other logical partitions, processors, systems, etc.). For instance, operator
message commands are received at logical partition 200 from consoles 230 and/or test
programs 232 (as well as other possible initiators), and then forwarded from logical partition
200 to logical partition 206. To forward an operator message command from logical
partition 200 to logical partition 206, in one example, an operator message (OM) request 222
is sent from logical partition 200 to logical partition 206 using the Send Message protocol
over the intersystem channel(s). The request includes, for instance, a command that
specifies the requested operator message command. The coupling facility processes the
request and using SMSG sends an operator message (OM) response 224 back from logical

partition 206 to logical partition 200.

Since the coupling facility is now able to receive operator message commands from
multiple, distinct sources, including, for instance, a coupling facility console and one or
more logical partitions (or other processors, systems, etc.) coupled thereto, controls are
provided within the coupling facility to manage the multiple requests to be processed. One

such control is a multiplexor, an example of which is depicted in FIG. 3A.

As shown in FIG. 3A, a multiplexor 300 receives operator message commands from multiple
sources 302, including a logical partition executing an operating system and the coupling
facility console, as examples. In particular, in one example, the multiplexor receives
operator message commands directly from the coupling facility console, and directly from

the logical partition via a Start Operator Message command sent using SMSG. The

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

13

multiplexor is located within the coupling facility and is coupled to operator message
processor 240. Thus, the operator message commands issued from the coupling facility
console are now forwarded to the multiplexor, which directs the forwarding of those
commands to the operator message processor. Similarly, operator message commands
received from the logical partition (or other remote entities) are also input to multiplexor
300. Further, other commands issued by the logical partition that are associated with the
processing of the operator message commands (e.g., Read Operator Message and Delete
Operator Message) are also input to multiplexor 300. Thus, for convenience, the commands
that include the operator message commands, as well as other operations associated
therewith, are referred to herein as SMSG commands. The multiplexor directs the received
commands (i.e., the operator message commands from the coupling facility console and the

SMSG commands) to the operator message processor.

One embodiment of the logic used by the multiplexor to control selection of commands to be
processed by the operator message processor is described with reference to FIG. 3B.
Initially, the multiplexor is idle, waiting for commands to be received, STEP 350. If there
are no commands, INQUIRY 352, then the multiplexor remains idle, STEP 350. Otherwise,
if at least one command is received, one of the commands is sent to the operator message
processor for processing, STEP 354. For example, the first command that is received is sent
or if both operator message commands and SMSG commands are received, in this example,

one of the SMSG commands is sent.

The operator message processor processes the command, as described further below, and
outputs the results, STEP 356. If the command is from the coupling facility console, the
results are output to the console. However, if the command is from a processor, then the
results are stored in a buffer, as described below, and provided to the coupling facility

console, in this example.

Thereafter, a determination is made as to whether there are any pending commands from
sources other than the coupling facility console (e.g., pending SMSG commands), INQUIRY
358. Ifthere is at least one pending SMSG command, processing continues with STEP 354

in which a command is selected and sent to the operator message processor. Otherwise, a

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

14

check is made to see if there are any pending commands from the coupling facility console,
INQUIRY 360. If there is one or more pending console commands, then processing
continues with STEP 354. However, if there are no more pending console commands, then

processing continues to STEP 350.

Multiple commands may be received from one or more logical partitions coupled to the
coupling facility (i.e., from non-CF logical partitions, which are partitions that do not include
coupling facility control code). Thus, the coupling facility includes one or more buffers
(referred to herein as operator message (OM) processing buffers) to store the incoming
commands from such partitions. Further details regarding the buffers are described with

reference to FIGs. 4A-4B.

Referring to FIG. 4A, in one example, the coupling facility includes one or more buffers
400. In this example, there are nine buffers, but this number of buffers is configurable.
Each buffer 400 has a plurality of controls associated therewith, as described with reference

to FIG. 4B.

With reference to FIG. 4B, buffer 400 includes, for instance:

Operator message state 402, which indicates the state of the buffer including idle; active and

in process; or active, response pending, as described below.

Operator message token (OMTK) 404, which is a value provided by the operating system
(e.g., the operating system console, which includes operating system code, or the portion of
the operating system running in the logical partition) when the operator message process is
started. The operator message token uniquely identifies the operator message request. When
the operator message processing buffer is idle, the operator message token contains zeros.

This token is used to identify a buffer, once it is selected.

Operator message timer (OMT) 406, which is a time-of-day value that is set when the
operator message request is started. It is set to the current value of the time-of-day clock.

The operator message timer is used to determine the length of time that the operator message

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

15

has been active. When the operator message processing buffer is idle, the operator message

timer contains zeros.

Operator message request length (OMREQL) 408, which is a value that contains the length,
in bytes, of the OM request (e.g., the operator message command). When the OM
processing buffer is idle, the value of the OMREQL object is zero.

Operator message response length (OMRESL) 410, which is a value that contains the length,
in bytes, of the OM response. When the OM processing buffer is idle or when the OM

processing buffer is active and processing, the value of the OMRESL object is zero.

Operator message request data (OMREQD) 412, which includes the contents of the OM
request passed into the coupling facility by the Start Operator Message command (described
below). When the OM processing buffer is idle, the contents of the OM request data are

undefined.

Operator message response data (OMRESD) 414, which includes the results of the operator
message command. When the operator message processing buffer is idle, or when the
operator message processing buffer is active and processing, the contents of the OM

response data are undefined.

As described above, each buffer has various states associated with it. Referring to FIG. 5,
initially, a buffer is in the idle state 500. This indicates that it is available for starting a
message. Responsive to a Start Operator Message command, the buffer transitions into an
active and in process state 502, which indicates that the operator message command is being
processed by the coupling facility. In particular, operator message processor 240 processes
the request, including the operator message command, in the background and provides a
response. Responsive to generating the response, the buffer is placed in an active, response
pending state 504. At this point, a read operation that is querying the buffers can access the

buffer and read out the response.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

16

Thereafter, the buffer may be returned to the idle state via for instance, a timeout that the
coupling facility (i.e., the operator message processor) recognizes, or explicitly by a Delete
Operator Message or Start Operator Message. Further details regarding the buffers and

processing thereof are described below.

An operator message (OM) processing buffer is an area of coupling facility storage that
contains information related to the processing of an operator message command sent via the
Start Operator Message (SOM) command. The OM processing buffer is assigned from an

area of coupling facility storage that is not available for structure allocation.

The OM processing buffer is either active or idle. When idle, it is available for selection by
the Start Operator Message (SOM) command. When active, an operator message process
has been started and has not yet been deleted. If the operator message response is available,
the buffer state is active with response pending. Otherwise, the buffer state is active and

processing.

Deleting an active operator message process with response pending resets the objects
associated with the OM processing buffer and places the buffer in the idle state (a.k.a.,

resetting an OM processing buffer).

There are three ways an active operator message process can be deleted:

1. A Delete Operator Message command is executed that specifies an OM token
that matches the OM token object and the OM processing buffer is active with response
pending.

2. The length of time that the operator message process has been active exceeds the
value of the OM timeout control and the OM processing buffer is active with response
pending. This may be detected by an internal coupling facility process or by a Start Operator

Message command.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

17

3. A Start Operator Message command is executed that specifies an OM token that
matches the OM token object and the OM processing buffer is active with response pending,

and all message buffers are busy and at least one has timed out.

A lag in time may occur between the time the OM processing buffer times out and when it is
detected as timed out and reset to the idle state. In this case, the OM processing buffer

remains active with response pending until the OM request is deleted.

Processing an OM request is performed as a background operation. The background process
is initiated when a Start Operator Message command successfully completes. The
background process generates the OM response data, stores the response data in the
OMRESD object and stores the response length in the OMRESL object. It then changes the

state of the OM processing buffer to active with response pending.

Further details regarding buffer processing, and in particular, the Operator Message
commands are described below. However, prior to that description other objects and
operands are described to facilitate understanding of one or more aspects of the present

invention.

As an example, the coupling facility includes a number of global objects used to process the

operator message commands. These objects include, for instance:

A fixed global control — e.g., an operator message processing buffer count (OMPBC), which
is a model-dependent value that specifies the number of OM processing buffers supported by

the coupling facility;

Program modifiable global controls — ¢.g., operator message processing buffers (OMPB),
and an operator message timeout control (OMTOC), which is a value that determines the
maximum length of time, in seconds, that an operator message is associated with an OM
processing buffer. If an operator message has not been explicitly deleted before the timeout
value is exceeded, the operator message is deleted by the coupling facility and the OM

processing buffer is placed in the idle state. In one example, the default value is 300; and

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

18

Facility attributes (FACA) — e.g., an operator message facility indicator, which is a value
that specifies whether or not the facility described herein for processing operator message

commands is supported by the coupling facility.

Further, the coupling facility includes a plurality of global operands used in processing

operator message commands. In one example, these operands include:

Operator Message (OM) Request (OMREQ): A variable length byte string with a maximum
length of a pre-specified number of bytes (e.g., 192 bytes) that includes the operator message
command to be processed. The length is specified by the OM request length.

Operator Message (OM) Response (OMRES): A variable length byte string with a
maximum length of a pre-defined number of bytes (e.g., 4096 bytes). The length is specified
by the OM response length.

Operator Message (OM) Timeout Control (OMTOC): A value that determines the
maximum length of time, in seconds, that an operator message is associated with an OM
processing buffer. As an example, valid values range from 5 to 300. This operand is
ignored unless the update OMTOC indicator is valid and is set to a value that indicates the

OM timeout control is to be updated.

Operator Message (OM) Token (OMTK): A value that uniquely identifies an operator

mcessage process.

Update OMTOC Indicator (UOMTCI): A value that indicates whether the operator message
timeout control should be updated. It has the following encoding, as examples: do not

update the OM timeout control; update the OM timeout control.

In accordance with one or more aspects the present invention, operator message commands
can be sent to the coupling facility from coupling facility consoles, as well as logical

partitions or other systems, processors, etc., coupled to the coupling facility. Processing

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

19

associated with sending operator message commands to the coupling facility from sources

other than coupling facility consoles is described with reference to FIG. 6.

Initially, a command is entered or generated by an initiator, such as an operating system
console or a test program, as examples, STEP 600. Responsive thereto, the operating system
(e.g., the portion executing on the console or executing the test program) generates an
operator message token, STEP 602. In one example, the token is generated by concatenating
a system identifier with a time-of-day clock value. Thereafter, the initiator issues a Start
Operator Message (SOM) request, which includes the token, as well as the requested
operator message command, STEP 604. The Start Operator Message request is sent to the

logical partition coupled to the initiator.

At the logical partition, the operating system creates the Start Operator Message command
by placing the start request, including the token and requested operator message command,
in a message command block of the Start Operator Message command. The message
command block is then sent from the operating system to the coupling facility via a SMSG
command. The multiplexor receives the SMSG command and forwards it to the operator
message processor, in due course. The operator message processor then processes the

command, as described below. As part of processing, a response is generated.

The response to the Start Operator Message command is forwarded back to the initiator of
the SOM. For instance, the response is included in a message response block forwarded to
the logical partition via SMSG. Then, from the logical partition, the response is forwarded

to the initiator.

The initiator (e.g., operating system console, test program) receives the response and checks
the value of the response code, INQUIRY 606. If the response code indicates that all the
buffers are already active, and therefore, not available, processing returns to STEP 604.
However, if the response code indicates that the operator message has been started,

processing continues with STEP 610. Otherwise, an error message is issued, STEP 608.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

20

At STEP 610, a Read Operator Message command is issued by the initiator to read the buffer
to obtain the response provided by the coupling facility responsive to processing the operator
message command in the Start Operator Message. For instance, a Read Operator Message
request issued by the initiator is received at the logical partition (e.g., operating system),
which creates the Read Operator Message command and forwards it from the operating
system to the coupling facility via SMSG. The coupling facility, and in particular, the
multiplexor receives the SMSG command and forwards it, in turn, to the operator message
processor. The operator message processor processes the read command, as described
below, and sends a response code. The response code is ultimately returned to the initiator,
as described above. The response code is checked, INQUIRY 612, and if the response
indicates that an OM response is not available, then processing returns to STEP 610.
However, if the response code indicates that an OM response is available, then the buffer is
read to obtain the results of the requested operator message command. Processing then

continues with STEP 616, in one embodiment. Otherwise, an error message is issued, STEP
614.

At STEP 616, a delete operator message request is issued by the initiator and received at the
logical partition. The operating system generates a Delete Operator Message command and
sends it to the coupling facility via SMSG, as described above. The Delete Operator
Message command is processed by the operator message processor, as described below, and
a response is returned to the initiator. The initiator checks the response code to the Delete
Operator Message command, INQUIRY 618. Ifthe response code indicates that the
operator message was deleted, then the OM response is provided to the issuer, STEP 620.

Otherwise, an error message is issued, STEP 622.

As indicated above, there are various message commands that are used in accordance with
one or more aspects of the present invention. One such command is the Start Operator

Message command, an embodiment of which is described with reference to FIG. 7A-7B.

In one example, an operator message command is initiated through, for instance, the zZOS®

console or a test program. It flows into the zZOS® logical partition and is sent across to the

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

21

coupling facility through Send Message in a Start Operator Message command. One

embodiment of this processing is described with reference to FIG. 7A.

As described above, the Send Message instruction 250 includes a message operations block
252 and a designation of a subchannel 254. In this case, however, for a Start Operator
Message command, the message operations block only includes a message command block
address 258, which points to MCB 264/MRB 266. For this operation, there are no message
blocks. The message command block presented to the coupling facility includes a Start
Operator Message MCB 780 having, for instance, Start Operator Message request
parameters 782 and an operator message request 784 that specifies the requested operator
command. The response that comes back is a Start Operator Message MRB 790 including

Start Operator Message response parameters 792, which include a response code.

In one example, Start Operator Message request parameters include a token, the request, and
a request length. The coupling facility and, in particular, the operator message processor via
the multiplexor, receives the SMSG command block and begins processing the Start

Operator Message command, as described with reference to FIG.7B.

Initially, the operator message processor scans the operating message buffers looking for an
idle buffer (e.g., OMTK has zeros), STEP 700. A determination is made as to whether there
are any idle buffers, INQUIRY 702. If there is an idle buffer, then an idle buffer (e.g., the
first) is selected, STEP 704. Thereafter, the operator message token is stored in the buffer,
STEP 706. Further, an operator message timer in the buffer is set to the current time, STEP
708. In one example, the time is obtained from a time-of-day clock. Further, the request and
request length are stored in the buffer, STEP 710, and the buffer state is set to active and in
process (a.k.a., active and processing), STEP 712. A return code is returned to the operating
system (e.g., zZZOS®) indicating the buffer is set, STEP 714, and eventually to the initiator.
This processing is performed synchronously to the z7OS® program.

Returning to INQUIRY 702, if there are no idle buffers, then the operator message buffers
are scanned once again looking for active buffers that have timed out, STEP 720. A

determination is made as to whether there are any active buffers that have timed out,

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

22

INQUIRY 722. Ifnot, then a return code is provided indicating that there are no buffers
available, STEP 724.

However, if there are any active buffers that have timed out, then a timed out buffer is
selected, STEP 726. In one example, it is the first timed out buffer that is selected. The
buffer is set to the idle state, STEP 728, and processing continues with STEP 706, in which

the buffer is initialized.

Further details regarding the Start Operator Message command are described below. As
indicated herein, this command, as well as the Read Operator Message command and the
Delete Operator message command, are communicated to the coupling facility using SMSG.
SMSG sends a message from the logical partition to the coupling facility that includes the
requested command. To send the message, the message is included in a message command
block (MCB) and any response to the message is included in a message response block

(MRB).

In one example, the message command block for the Start Operator Message includes: a
message header; the command (e.g., Start Operator Message); the OM request length; the
operator message token; and the operator message request (e.g., the operator message

command).

In operation, the value of the OM token provided in the request is compared to the OM token
object in each OM processing buffer. If the OM token is valid and does not match any OM
token object, and if at least one OM processing buffer is idle, an idle buffer is selected. Ifno
OM processing buffers are in the idle state and at least one OM processing buffer is active
with response pending and has exceeded the timeout value, a timed out buffer is selected and

reset to the idle state.

Once an idle buffer is selected, the OM token is placed in the OMTK object, the OM request
is placed in the OMREQD object, the OM request length is placed in the OMREQL object,
the OM timer object is set to the value of the time-of-day clock, the buffer is placed in the

active and processing state, and a background process is initiated to generate the OM

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

23

response (i.e., begin processing the requested operator message command and place
information (e.g., results regarding the OM command) in the buffer). A return code is

returned to the operating system indicating an operator message has started.

If the OM token matches an OM token object for an active OM processing buffer, no
processing occurs. The command is completed and a response code is returned indicating an

operator message has started.

If the OM token is valid, does not match any OM token object, and all buffers are either
active and processing or active with response pending without exceeding the timeout control,

the command is completed and a response code is returned indicating no available buffers.

The response is returned in a message response block, which includes, for instance, a

response descriptor and the response code.

Responsive to receiving a response indicating that the operator message has been started, a
Read Operator Message command is issued to obtain the response to the requested operator
message command. Referring to FIG. 8A, the Read Operator Message command is sent via
the Send Message protocol. As described above, Send Message instruction 250 includes a
message operations block 252 and a designation of a subchannel 254. For a Read Operator
Message command, message operations block 252 includes MCB address 258, MBAL
address 260, and MBAL length 262. For the Read Operator Message command, the MBAL
length is equal to one and MBAL address 260 points to MBAL 268 having one entry.
MBAL 268 points to a message buffer 272.

MCB address 258 designates an MCB 264/MRB 266 pair. The message control block 880
for the Read Operator Message command includes the Read Operator Message request
parameters 882 (e.g., message header, read command, OM token), which are forwarded to
the coupling facility for processing. Responsive to processing the Read Operator Message
command, Read Operator Message response parameters (e.g., a response code) are returned
in MRB 266. Additionally, an operator message (OM) response 875 is returned and placed

in message buffer 272.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

24

One embodiment of the logic of the Read Operator Message Command is described with
reference to FIG. 8B. Initially, the operator message buffers are scanned for a buffer with an
OM token that matches the OM token provided in the command, STEP 800. If there is no
buffer with a matching OM token, INQUIRY 802, then a response code is returned
indicating no matching token found, STEP 804.

However, if there is an OM buffer with a matching OM token, then a determination is made
as to whether there is an OM response pending in the buffer, INQUIRY 806. If there is not
an OM response pending, then a response code is returned indicating OM response not

available, STEP 808.

Returning to INQUIRY 806, if there is an OM response pending, then the OM response is
copied to a data block (e.g., located within message buffer 272) specified by SMSG, STEP
810, and the response length is copied to the message response block, STEP 812. The OM
response (i.¢., the data block) is returned, as well as a response code indicating an OM

response is available, STEP 814.

Further details regarding the Read Operator Message command are described below. In one
example, the message command block for the Read Operator Message command includes a

message header; the read command; and the operator message token.

In operation, when sufficient message buffer space (e.g., buffer 272) is provided (i.e., buffer
space equal to or greater than a pre-specified size is available), the value of the OM token is

compared to the OM token object in each OM processing buffer.

If the OM token matches an OM token object for an OM processing buffer and the buffer is
active with response pending, the OM response is placed in a data block. The data block, the
OM request, the OM request length, the OM response length, and a response code indicating
an OM response is available are returned. The response, except the data block, is returned in
a message response block, which includes, for instance, a response descriptor, the response
code, the OM request length, the OM response length, and the OM request. The data block

is returned via SMSG but separate from the response block.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

25

If the OM token matches an OM token object for an OM processing buffer that is active and
processing, no processing occurs. The command is completed and a response code is
returned to the program indicating an OM response is not available. The response is
returned in a response block, which includes, for instance, a response indicator and the

response code.

If the OM token is valid but does not match any OM token object for an active OM
processing buffer, no processing occurs. The command is completed and a response code is
returned indicating no matching token found. The response is returned in a response block,

which includes, for instance, a response indicator and the response code.

When the message buffer size is less than a pre-specified size, there is insufficient message
buffer space (e.g., buffer 272) to contain the data block. (In this case, no processing occurs,
the command is competed and a response code is returned indicating insufficient message
buffer space. The response is returned in a response block, which includes, for instance, a

response indicator and the response code.

Subsequent to receiving the response, a decision may be made to reset the buffer. Thus, a
Delete Operator Message command is issued. Referring to FIG. 9A, as with the other
operator message commands, the Delete Operator Message command is sent to the coupling
facility via the Send Message protocol. Again, Send Message instruction 250 includes a
message operation block 252 and a designation of subchannel 254. In this case, the message
operation block includes MCB address 258 pointing to MCB 264/MRB 266 pair. The MCB
980 for the Delete Operator Message includes delete operator message request parameters
982 (e.g., message header, delete command, and OM token), which are forwarded to the
coupling facility. Responsive to performing the Delete Operator Message command, a
Delete Operator Message MRB 990, including Delete Operator Message response

parameters, are returned in MRB 266.

One embodiment of the logic of the Delete Operator Message Command performed by the
operator message processor is described with reference to FIG. 9B. Initially, the OM buffers

are scanned for a buffer with a matching OM token, STEP 900. If there is not a buffer with

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

26

a matching OM token, INQUIRY 902, a response code is returned indicating operator
message deleted, STEP 904.

However, if there is a buffer with a matching OM token, INQUIRY 902, then a further
determination is made as to whether an OM response is pending, INQUIRY 906. If an OM
response is not pending, a response code is returned indicating the buffer is active and

processing, STEP 908.

If there is an OM response pending, INQUIRY 906, the OM token, the OM timer, the
request length and the response length are reset, ¢.g., set to zero, STEP 910. Further, the
OM buffer state is set to idle, STEP 912, and a response code is returned indicating operator
message deleted, STEP 914. (In a further embodiment, setting a buffer to an idle state

deletes the buffer; and setting an idle buffer to an active state, creates a new buffer.)

Further details regarding the Delete Operator Message command are described below. In
one example, the message command block for the Delete Operator Message command
includes a message header; the Delete Operator Message command; and the operator

message token.

In operation, the value of the OM token is compared to the OM token object in each OM
processing buffer. If the OM token matches the value of an OM token object in an active
OM processing buffer and the buffer is active with response pending, the objects in the OM
processing buffer are reset and the buffer is placed in the idle state. When the buffer objects
have been reset, the command is completed and a response code is returned to the operating

system indicating the operator message is deleted.

When the OM processing buffer is active and processing, no action occurs. The command is

completed and a response code is returned indicating the buffer is active and processing.

When the OM token is valid but does not match the OM token object for any active OM
processing buffer, no action occurs. The command is completed and a response code is

returned to the program indicating the operator message is deleted.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

27

The response is returned in a message response block, which includes, for instance, a

response descriptor and the response code.

Described in detail above are various commands to process operator message requests.
These commands are part of an Operator Message facility, in this example. The Operator
Message facility includes other commands, which are described herein for completeness.
These commands include a Read Facility Parameters command and Set Facility Authority

command.

For the Read Facility Parameters command, the message request block includes, for
instance, a message header and the Read Facility Parameters command. In operation, the
values of coupling facility controls are placed in the response operands, and a response code
indicating success, if true, is stored in the response code operand. This command may place
a number of controls in the response operands, however, for the Operator Message Facility,
the operator message processor buffer count is placed in the OMPBC, and the operator

message timeout control is placed in the OMTOC.

When the response code indicates that the coupling facility control values are returned, the
message response block that is returned includes, for instance, a response descriptor, the
response code, OM processor buffer count, and OM timeout control for the Operator

Message Facility. Other controls may also be returned for other facilities.

For the Set Facility Authority command, the message request block includes, for instance, a
message header, the Set Facility Authority command, an OM timeout control, an update
OMTOC indicator, a comparative authority control and an authority control, described

below.

In operation, a coupling facility authority control value is compared to a comparative
authority (CAU) operand received in the message command block. When they compare as
equal, the value of an authority (AU) operand received in the message command block is

stored in the coupling facility authority control and the coupling facility state is updated.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

28

When the coupling facility authority control is changed from zero to a nonzero value, the
coupling facility state is changed from non-managed to managed, the OM timeout control is
conditionally updated, an activate-message-path command is issued on each message path to
a remote coupling facility, and a response code indicating success is returned. If the update-
Om-timeout indicator is one, the OM timeout control operand is stored in the OMTOC
object. Otherwise, no update is made to the OMTOC object. Other processing may also

occur.

The response code is returned in a message response block that includes, for instance, a

response descriptor and the response code.

In accordance with one or more aspects of the present invention, an Operator Message
Facility is provided for processing, by a coupling facility, operator message commands from
multiple sources, including, but not limited to, coupling facility consoles and logical
partitions (or other processors, systems, etc.) coupled to the coupling facility. The facility

includes, for instance:

. A collection of operator message (OM) processing buffers. Each buffer can
process one operator message request at a time. The number of buffers is fixed (e.g., 9) and
is model dependent.
. A count of the number of supported OM processing buffers.
. An expiration timeout, called the OM timeout control, that determines the length
of time an operator message will persist in a processing buffer before it is deleted. The
default value for the expiration timeout is, for instance, 5 minutes. It may be changed by the
Set Facility Authority command.
. Global commands that allow a program to access the Operator Message Facility:
- Start Operator Message (SOM)
- Read Operator Message (ROM)
- Delete Operator Message (DOM)
. A background processing function that generates the operator message response,
places the response in the OM processing buffer, and changes the state of the buffer to

indicate the response is available for retrieval.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

29

This facility provides, in one aspect, a mechanism for remote entities, other than coupling
facility consoles, to issue operator message commands to, €.g., test the coupling facility.

This allows more in-depth testing, e.g., prior to production or even in production. The
operator message commands result in an action being performed on the coupling facility.
Examples of such commands/actions include, but are not limited to, installing a patch of
code on the coupling facility, creating a dump of a portion of the coupling facility,
configuring the coupling facility, deconfiguring the coupling facility or managing one or
more components of the coupling facility. Other actions are also possible, some of which
are described herein. An action is performed on the coupling facility, pursuant to the
requested command, and then, a determination is made as to whether the action performed as
expected, caused an error, etc. By performing the action, the coupling facility is tested to see

if the coupling behaved as expected pursuant to the action.

In one particular example, a program on the z/OS system generates a sysplex-wide unique
token using the system name and a Store Clock (STCK) value, and issues an SMSG
instruction to send the CFCC operator command to the coupling facility. The coupling
facility accepts the command and processes the command asynchronously. If that SMSG is
successful, the z/OS program polls for command completion with a buffer to contain the
command response using the unique token issued on the first SMSG. When the CFCC
processes the command, it issues messages to the coupling facility console and saves the
messages into a buffer. When the command is complete, the SMSG used to poll for
command completion will get a successful return code and return the command response
into the specified buffer. The z/OS program then processes the results and issues a SMSG to
delete the saved command responses from the coupling facility. The program could be a
testcase which processes results or a zOS command interface that displays result on a

console, as examples.

As used herein, obtaining includes, but is not limited to, receiving, having, being provided,

generating or creating, as examples.

As will be appreciated by one skilled in the art, one or more aspects of the present invention

may be embodied as a system, method or computer program product. Accordingly, one or

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

30

more aspects of the present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and hardware aspects that may all

generally be referred to herein as a "circuit," "module" or "system". Furthermore, one or
more aspects of the present invention may take the form of a computer program product
embodied in one or more computer readable medium(s) having computer readable program

code embodied thereon.

Any combination of one or more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable storage medium. A computer
readable storage medium may be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared or semiconductor system, apparatus, or device, or any
suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the
computer readable storage medium include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory
(CD-ROM), an optical storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document, a computer readable storage
medium may be any tangible medium that can contain or store a program for use by or in

connection with an instruction execution system, apparatus, or device.

Referring now to FIG. 10, in one example, a computer program product 1000 includes, for
instance, one or more non-transitory computer readable storage media 1002 to store
computer readable program code means or logic 1004 thereon to provide and facilitate one

or more aspects of the present invention.

Program code embodied on a computer readable medium may be transmitted using an
appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF,

etc., or any suitable combination of the foregoing.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

31

Computer program code for carrying out operations for one or more aspects of the present
invention may be written in any combination of one or more programming languages,
including an object oriented programming language, such as Java, Smalltalk, C++ or the
like, and conventional procedural programming languages, such as the "C" programming
language, assembler or similar programming languages. The program code may execute
entirely on the user's computer, partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote computer may be connected to
the user's computer through any type of network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made to an external computer (for

example, through the Internet using an Internet Service Provider).

One or more aspects of the present invention are described herein with reference to
flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the invention. It will be understood that
cach block of the flowchart illustrations and/or block diagrams, and combinations of blocks
in the flowchart illustrations and/or block diagrams, can be implemented by computer
program instructions. These computer program instructions may be provided to a processor
of a general purpose computer, special purpose computer, or other programmable data
processing apparatus to produce a machine, such that the instructions, which execute via the
processor of the computer or other programmable data processing apparatus, create means
for implementing the functions/acts specified in the flowchart and/or block diagram block or

blocks.

These computer program instructions may also be stored in a computer readable medium
that can direct a computer, other programmable data processing apparatus, or other devices
to function in a particular manner, such that the instructions stored in the computer readable
medium produce an article of manufacture including instructions which implement the

function/act specified in the flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded onto a computer, other

programmable data processing apparatus, or other devices to cause a series of operational

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

32

steps to be performed on the computer, other programmable apparatus or other devices to
produce a computer implemented process such that the instructions which execute on the
computer or other programmable apparatus provide processes for implementing the

functions/acts specified in the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate the architecture, functionality, and
operation of possible implementations of systems, methods and computer program products
according to various embodiments of one or more aspects of the present invention. In this
regard, each block in the flowchart or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable instructions for implementing the
specified logical function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or combinations of special purpose

hardware and computer instructions.

In addition to the above, one or more aspects of the present invention may be provided,
offered, deployed, managed, serviced, etc. by a service provider who offers management of
customer environments. For instance, the service provider can create, maintain, support, etc.
computer code and/or a computer infrastructure that performs one or more aspects of the
present invention for one or more customers. In return, the service provider may receive
payment from the customer under a subscription and/or fee agreement, as examples.
Additionally or alternatively, the service provider may receive payment from the sale of

advertising content to one or more third parties.

In one aspect of the present invention, an application may be deployed for performing one or

more aspects of the present invention. As one example, the deploying of an application

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

33

comprises providing computer infrastructure operable to perform one or more aspects of the

present invention.

As a further aspect of the present invention, a computing infrastructure may be deployed
comprising integrating computer readable code into a computing system, in which the code
in combination with the computing system is capable of performing one or more aspects of

the present invention.

As yet a further aspect of the present invention, a process for integrating computing
infrastructure comprising integrating computer readable code into a computer system may be
provided. The computer system comprises a computer readable medium, in which the
computer medium comprises one or more aspects of the present invention. The code in
combination with the computer system is capable of performing one or more aspects of the

present invention.

Although various embodiments are described above, these are only examples. For example,
computing environments of other architectures can incorporate and use one or more aspects
of the present invention. As examples, servers other than z196 servers can include, use
and/or benefit from one or more aspects of the present invention. Further, environments
other than logical partitioned environments may incorporate and use one or more aspects of
the present invention. Additionally, more, less or other operator message commands and/or
other commands may be used. Yet further, transports other than SMSG may be used.
Moreover, the multiplexor may use other logic to select the next command to be processed.

Many other variations are possible.

Further, other types of computing environments can benefit from one or more aspects of the
present invention. As an example, a data processing system suitable for storing and/or
executing program code is usable that includes at least two processors coupled directly or
indirectly to memory elements through a system bus. The memory elements include, for
instance, local memory employed during actual execution of the program code, bulk storage,
and cache memory which provide temporary storage of at least some program code in order

to reduce the number of times code must be retrieved from bulk storage during execution.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

34

Input/Output or 1/O devices (including, but not limited to, keyboards, displays, pointing
devices, DASD, tape, CDs, DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening 1/O controllers. Network
adapters may also be coupled to the system to enable the data processing system to become
coupled to other data processing systems or remote printers or storage devices through
intervening private or public networks. Modems, cable modems, and Ethernet cards are just

a few of the available types of network adapters.

Referring to FIG. 11, representative components of a Host Computer system 5000 to
implement one or more aspects of the present invention are portrayed. The representative
host computer 5000 comprises one or more CPUs 5001 in communication with computer
memory (i.c., central storage) 5002, as well as 1/O interfaces to storage media devices 5011
and networks 5010 for communicating with other computers or SANs and the like. The
CPU 5001 is compliant with an architecture having an architected instruction set and
architected functionality. The CPU 5001 may have dynamic address translation (DAT) 5003
for transforming program addresses (virtual addresses) into real addresses of memory. A
DAT typically includes a translation lookaside buffer (TLB) 5007 for caching translations so
that later accesses to the block of computer memory 5002 do not require the delay of address
translation. Typically, a cache 5009 is employed between computer memory 5002 and the
processor 5001. The cache 5009 may be hierarchical having a large cache available to more
than one CPU and smaller, faster (lower level) caches between the large cache and each
CPU. In some implementations, the lower level caches are split to provide separate low
level caches for instruction fetching and data accesses. In one embodiment, an instruction is
fetched from memory 5002 by an instruction fetch unit 5004 via a cache 5009. The
instruction is decoded in an instruction decode unit 5006 and dispatched (with other
instructions in some embodiments) to instruction execution unit or units 5008. Typically
several execution units 5008 are employed, for example an arithmetic execution unit, a
floating point execution unit and a branch instruction execution unit. The instruction is
executed by the execution unit, accessing operands from instruction specified registers or
memory as needed. If an operand is to be accessed (loaded or stored) from memory 5002, a

load/store unit 5005 typically handles the access under control of the instruction being

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

35

executed. Instructions may be executed in hardware circuits or in internal microcode

(firmware) or by a combination of both.

As noted, a computer system includes information in local (or main) storage, as well as
addressing, protection, and reference and change recording. Some aspects of addressing
include the format of addresses, the concept of address spaces, the various types of
addresses, and the manner in which one type of address is translated to another type of
address. Some of main storage includes permanently assigned storage locations. Main
storage provides the system with directly addressable fast-access storage of data. Both data
and programs are to be loaded into main storage (from input devices) before they can be

processed.

Main storage may include one or more smaller, faster-access buffer storages, sometimes
called caches. A cache is typically physically associated with a CPU or an 1/O processor.
The effects, except on performance, of the physical construction and use of distinct storage

media are generally not observable by the program.

Separate caches may be maintained for instructions and for data operands. Information
within a cache is maintained in contiguous bytes on an integral boundary called a cache
block or cache line (or line, for short). A model may provide an EXTRACT CACHE
ATTRIBUTE instruction which returns the size of a cache line in bytes. A model may also
provide PREFETCH DATA and PREFETCH DATA RELATIVE LONG instructions which
effects the prefetching of storage into the data or instruction cache or the releasing of data

from the cache.

Storage is viewed as a long horizontal string of bits. For most operations, accesses to storage
proceed in a left-to-right sequence. The string of bits is subdivided into units of eight bits.
An eight-bit unit is called a byte, which is the basic building block of all information
formats. Each byte location in storage is identified by a unique nonnegative integer, which
is the address of that byte location or, simply, the byte address. Adjacent byte locations have
consecutive addresses, starting with 0 on the left and proceeding in a left-to-right sequence.

Addresses are unsigned binary integers and are 24, 31, or 64 bits.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

36

Information is transmitted between storage and a CPU or a channel subsystem one byte, or a
group of bytes, at a time. Unless otherwise specified, in, for instance, the z/Architecture®, a
group of bytes in storage is addressed by the leftmost byte of the group. The number of
bytes in the group is either implied or explicitly specified by the operation to be performed.
When used in a CPU operation, a group of bytes is called a field. Within each group of
bytes, in, for instance, the z/Architecture®, bits are numbered in a left-to-right sequence. In
the z/Architecture®, the leftmost bits are sometimes referred to as the “high-order” bits and
the rightmost bits as the “low-order” bits. Bit numbers are not storage addresses, however.
Only bytes can be addressed. To operate on individual bits of a byte in storage, the entire
byte is accessed. The bits in a byte are numbered 0 through 7, from left to right (in, e.g., the
z/Architecture®). The bits in an address may be numbered 8-31 or 40-63 for 24-bit
addresses, or 1-31 or 33-63 for 31-bit addresses; they are numbered 0-63 for 64-bit
addresses. Within any other fixed-length format of multiple bytes, the bits making up the
format are consecutively numbered starting from 0. For purposes of error detection, and in
preferably for correction, one or more check bits may be transmitted with each byte or with a
group of bytes. Such check bits are generated automatically by the machine and cannot be
directly controlled by the program. Storage capacities are expressed in number of bytes.
When the length of a storage-operand field is implied by the operation code of an
instruction, the field is said to have a fixed length, which can be one, two, four, eight, or
sixteen bytes. Larger fields may be implied for some instructions. When the length of a
storage-operand field is not implied but is stated explicitly, the field is said to have a variable
length. Variable-length operands can vary in length by increments of one byte (or with some
instructions, in multiples of two bytes or other multiples). When information is placed in
storage, the contents of only those byte locations are replaced that are included in the
designated field, even though the width of the physical path to storage may be greater than
the length of the field being stored.

Certain units of information are to be on an integral boundary in storage. A boundary is
called integral for a unit of information when its storage address is a multiple of the length of
the unit in bytes. Special names are given to fields of 2, 4, 8, and 16 bytes on an integral
boundary. A halfword is a group of two consecutive bytes on a two-byte boundary and is

the basic building block of instructions. A word is a group of four consecutive bytes on a

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

37

four-byte boundary. A doubleword is a group of eight consecutive bytes on an eight-byte
boundary. A quadword is a group of 16 consecutive bytes on a 16-byte boundary. When
storage addresses designate halfwords, words, doublewords, and quadwords, the binary
representation of the address contains one, two, three, or four rightmost zero bits,
respectively. Instructions are to be on two-byte integral boundaries. The storage operands

of most instructions do not have boundary-alignment requirements.

On devices that implement separate caches for instructions and data operands, a significant
delay may be experienced if the program stores into a cache line from which instructions are
subsequently fetched, regardless of whether the store alters the instructions that are

subsequently fetched.

In one embodiment, the invention may be practiced by software (sometimes referred to
licensed internal code, firmware, micro-code, milli-code, pico-code and the like, any of
which would be consistent with one or more aspects the present invention). Referring to
FIG. 11, software program code which embodies one or more aspects of the present
invention may be accessed by processor 5001 of the host system 5000 from long-term
storage media devices 5011, such as a CD-ROM drive, tape drive or hard drive. The
software program code may be embodied on any of a variety of known media for use with a
data processing system, such as a diskette, hard drive, or CD-ROM. The code may be
distributed on such media, or may be distributed to users from computer memory 5002 or
storage of one computer system over a network 5010 to other computer systems for use by

users of such other systems.

The software program code includes an operating system which controls the function and
interaction of the various computer components and one or more application programs.
Program code is normally paged from storage media device 5011 to the relatively higher-
speed computer storage 5002 where it is available for processing by processor 5001. The
techniques and methods for embodying software program code in memory, on physical
media, and/or distributing software code via networks are well known and will not be further
discussed herein. Program code, when created and stored on a tangible medium (including

but not limited to electronic memory modules (RAM), flash memory, Compact Discs (CDs),

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

38

DVDs, Magnetic Tape and the like is often referred to as a “computer program product”.
The computer program product medium is typically readable by a processing circuit

preferably in a computer system for execution by the processing circuit.

FIG. 12 illustrates a representative workstation or server hardware system in which one or
more aspects of the present invention may be practiced. The system 5020 of FIG. 12
comprises a representative base computer system 5021, such as a personal computer, a
workstation or a server, including optional peripheral devices. The base computer system
5021 includes one or more processors 5026 and a bus employed to connect and enable
communication between the processor(s) 5026 and the other components of the system 5021
in accordance with known techniques. The bus connects the processor 5026 to memory
5025 and long-term storage 5027 which can include a hard drive (including any of magnetic
media, CD, DVD and Flash Memory for example) or a tape drive for example. The system
5021 might also include a user interface adapter, which connects the microprocessor 5026
via the bus to one or more interface devices, such as a keyboard 5024, a mouse 5023, a
printer/scanner 5030 and/or other interface devices, which can be any user interface device,
such as a touch sensitive screen, digitized entry pad, etc. The bus also connects a display
device 5022, such as an LCD screen or monitor, to the microprocessor 5026 via a display

adapter.

The system 5021 may communicate with other computers or networks of computers by way
of a network adapter capable of communicating 5028 with a network 5029. Example
network adapters are communications channels, token ring, Ethernet or modems.
Alternatively, the system 5021 may communicate using a wireless interface, such as a CDPD
(cellular digital packet data) card. The system 5021 may be associated with such other
computers in a Local Area Network (LAN) or a Wide Area Network (WAN), or the system
5021 can be a client in a client/server arrangement with another computer, etc. All of these
configurations, as well as the appropriate communications hardware and software, are

known 1n the art.

FIG. 13 illustrates a data processing network 5040 in which one or more aspects of the

present invention may be practiced. The data processing network 5040 may include a

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

39

plurality of individual networks, such as a wireless network and a wired network, each of
which may include a plurality of individual workstations 5041, 5042, 5043, 5044.
Additionally, as those skilled in the art will appreciate, one or more LANs may be included,
where a LAN may comprise a plurality of intelligent workstations coupled to a host

Proccssor.

Still referring to FIG. 13, the networks may also include mainframe computers or servers,
such as a gateway computer (client server 5046) or application server (remote server 5048
which may access a data repository and may also be accessed directly from a workstation
5045). A gateway computer 5046 serves as a point of entry into each individual network. A
gateway is needed when connecting one networking protocol to another. The gateway 5046
may be preferably coupled to another network (the Internet 5047 for example) by means of a
communications link. The gateway 5046 may also be directly coupled to one or more
workstations 5041, 5042, 5043, 5044 using a communications link. The gateway computer
may be implemented utilizing an IBM eServer™ System z® server available from

International Business Machines Corporation.

Referring concurrently to FIG. 12 and FIG. 13, software programming code which may
embody one or more aspects of the present invention may be accessed by the processor 5026
of the system 5020 from long-term storage media 5027, such as a CD-ROM drive or hard
drive. The software programming code may be embodied on any of a variety of known
media for use with a data processing system, such as a diskette, hard drive, or CD-ROM.

The code may be distributed on such media, or may be distributed to users 5050, 5051 from
the memory or storage of one computer system over a network to other computer systems for

use by users of such other systems.

Alternatively, the programming code may be embodied in the memory 5025, and accessed
by the processor 5026 using the processor bus. Such programming code includes an
operating system which controls the function and interaction of the various computer
components and one or more application programs 5032. Program code is normally paged
from storage media 5027 to high-speed memory 5025 where it is available for processing by

the processor 5026. The techniques and methods for embodying software programming

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

40

code in memory, on physical media, and/or distributing software code via networks are well
known and will not be further discussed herein. Program code, when created and stored on a
tangible medium (including but not limited to electronic memory modules (RAM), flash
memory, Compact Discs (CDs), DVDs, Magnetic Tape and the like is often referred to as a
“computer program product”. The computer program product medium is typically readable
by a processing circuit preferably in a computer system for execution by the processing

circuit.

The cache that is most readily available to the processor (normally faster and smaller than
other caches of the processor) is the lowest (L1 or level one) cache and main store (main
memory) is the highest level cache (L3 if there are 3 levels). The lowest level cache is often
divided into an instruction cache (I-Cache) holding machine instructions to be executed and

a data cache (D-Cache) holding data operands.

Referring to FIG. 14, an exemplary processor embodiment is depicted for processor 5026.
Typically one or more levels of cache 5053 are employed to buffer memory blocks in order
to improve processor performance. The cache 5053 is a high speed buffer holding cache
lines of memory data that are likely to be used. Typical cache lines are 64, 128 or 256 bytes
of memory data. Separate caches are often employed for caching instructions than for
caching data. Cache coherence (synchronization of copies of lines in memory and the
caches) is often provided by various “snoop” algorithms well known in the art. Main
memory storage 5025 of a processor system is often referred to as a cache. In a processor
system having 4 levels of cache 5053, main storage 5025 is sometimes referred to as the
level 5 (L5) cache since it is typically faster and only holds a portion of the non-volatile
storage (DASD, tape etc) that is available to a computer system. Main storage 5025

“caches” pages of data paged in and out of the main storage 5025 by the operating system.

A program counter (instruction counter) 5061 keeps track of the address of the current
instruction to be executed. A program counter in a z/Architecture® processor is 64 bits and
can be truncated to 31 or 24 bits to support prior addressing limits. A program counter is
typically embodied in a PSW (program status word) of a computer such that it persists

during context switching. Thus, a program in progress, having a program counter value,

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

41

may be interrupted by, for example, the operating system (context switch from the program
environment to the operating system environment). The PSW of the program maintains the
program counter value while the program is not active, and the program counter (in the
PSW) of the operating system is used while the operating system is executing. Typically,
the program counter is incremented by an amount equal to the number of bytes of the current
instruction. RISC (Reduced Instruction Set Computing) instructions are typically fixed
length while CISC (Complex Instruction Set Computing) instructions are typically variable
length. Instructions of the IBM z/Architecture® are CISC instructions having a length of 2,
4 or 6 bytes. The Program counter 5061 is modified by either a context switch operation or a
branch taken operation of a branch instruction for example. In a context switch operation,
the current program counter value is saved in the program status word along with other state
information about the program being executed (such as condition codes), and a new program
counter value is loaded pointing to an instruction of a new program module to be executed.
A branch taken operation is performed in order to permit the program to make decisions or
loop within the program by loading the result of the branch instruction into the program

counter 5061.

Typically an instruction fetch unit 5055 is employed to fetch instructions on behalf of the
processor 5026. The fetch unit either fetches “next sequential instructions”, target
instructions of branch taken instructions, or first instructions of a program following a
context switch. Modern Instruction fetch units often employ prefetch techniques to
speculatively prefetch instructions based on the likelihood that the prefetched instructions
might be used. For example, a fetch unit may fetch 16 bytes of instruction that includes the

next sequential instruction and additional bytes of further sequential instructions.

The fetched instructions are then executed by the processor 5026. In an embodiment, the
fetched instruction(s) are passed to a dispatch unit 5056 of the fetch unit. The dispatch unit
decodes the instruction(s) and forwards information about the decoded instruction(s) to
appropriate units 5057, 5058, 5060. An execution unit 5057 will typically receive
information about decoded arithmetic instructions from the instruction fetch unit 5055 and
will perform arithmetic operations on operands according to the opcode of the instruction.

Operands are provided to the execution unit 5057 preferably either from memory 5025,

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

42

architected registers 5059 or from an immediate field of the instruction being executed.
Results of the execution, when stored, are stored either in memory 5025, registers 5059 or in

other machine hardware (such as control registers, PSW registers and the like).

A processor 5026 typically has one or more units 5057, 5058, 5060 for executing the
function of the instruction. Referring to FIG. 15A, an execution unit 5057 may
communicate with architected general registers 5059, a decode/dispatch unit 5056, a load
store unit 5060, and other 5065 processor units by way of interfacing logic 5071. An
execution unit 5057 may employ several register circuits 5067, 5068, 5069 to hold
information that the arithmetic logic unit (ALU) 5066 will operate on. The ALU performs
arithmetic operations such as add, subtract, multiply and divide as well as logical function
such as and, or and exclusive-or (XOR), rotate and shift. Preferably the ALU supports
specialized operations that are design dependent. Other circuits may provide other
architected facilities 5072 including condition codes and recovery support logic for example.
Typically the result of an ALU operation is held in an output register circuit 5070 which can
forward the result to a variety of other processing functions. There are many arrangements
of processor units, the present description is only intended to provide a representative

understanding of one embodiment.

An ADD instruction for example would be executed in an execution unit 5057 having
arithmetic and logical functionality while a floating point instruction for example would be
executed in a floating point execution having specialized floating point capability.
Preferably, an execution unit operates on operands identified by an instruction by performing
an opcode defined function on the operands. For example, an ADD instruction may be
executed by an execution unit 5057 on operands found in two registers 5059 identified by

register fields of the instruction.

The execution unit 5057 performs the arithmetic addition on two operands and stores the
result in a third operand where the third operand may be a third register or one of the two
source registers. The execution unit preferably utilizes an Arithmetic Logic Unit (ALU)
5066 that is capable of performing a variety of logical functions such as Shift, Rotate, And,

Or and XOR as well as a variety of algebraic functions including any of add, subtract,

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

43

multiply, divide. Some ALUs 5066 are designed for scalar operations and some for floating
point. Data may be Big Endian (where the least significant byte is at the highest byte
address) or Little Endian (where the least significant byte is at the lowest byte address)
depending on architecture. The IBM z/Architecture® is Big Endian. Signed fields may be
sign and magnitude, 1’s complement or 2’s complement depending on architecture. A 2’s
complement number is advantageous in that the ALU does not need to design a subtract
capability since either a negative value or a positive value in 2°s complement requires only
an addition within the ALU. Numbers are commonly described in shorthand, where a 12 bit
field defines an address of a 4,096 byte block and is commonly described as a 4 Kbyte (Kilo-
byte) block, for example.

Referring to FIG. 15B, branch instruction information for executing a branch instruction is
typically sent to a branch unit 5058 which often employs a branch prediction algorithm such
as a branch history table 5082 to predict the outcome of the branch before other conditional
operations are complete. The target of the current branch instruction will be fetched and
speculatively executed before the conditional operations are complete. When the conditional
operations are completed the speculatively executed branch instructions are either completed
or discarded based on the conditions of the conditional operation and the speculated
outcome. A typical branch instruction may test condition codes and branch to a target
address if the condition codes meet the branch requirement of the branch instruction, a target
address may be calculated based on several numbers including ones found in register fields
or an immediate field of the instruction for example. The branch unit 5058 may employ an
ALU 5074 having a plurality of input register circuits 5075, 5076, 5077 and an output
register circuit 5080. The branch unit 5058 may communicate with general registers 5059,

decode dispatch unit 5056 or other circuits 5073, for example.

The execution of a group of instructions can be interrupted for a variety of reasons including
a context switch initiated by an operating system, a program exception or error causing a
context switch, an I/O interruption signal causing a context switch or multi-threading activity
of a plurality of programs (in a multi-threaded environment), for example. Preferably a
context switch action saves state information about a currently executing program and then

loads state information about another program being invoked. State information may be

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

44

saved in hardware registers or in memory for example. State information preferably
comprises a program counter value pointing to a next instruction to be executed, condition
codes, memory translation information and architected register content. A context switch
activity can be exercised by hardware circuits, application programs, operating system
programs or firmware code (microcode, pico-code or licensed internal code (LIC)) alone or

in combination.

A processor accesses operands according to instruction defined methods. The instruction
may provide an immediate operand using the value of a portion of the instruction, may
provide one or more register fields explicitly pointing to either general purpose registers or
special purpose registers (floating point registers for example). The instruction may utilize
implied registers identified by an opcode field as operands. The instruction may utilize
memory locations for operands. A memory location of an operand may be provided by a
register, an immediate field, or a combination of registers and immediate field as
exemplified by the z/Architecture® long displacement facility wherein the instruction
defines a base register, an index register and an immediate field (displacement field) that are
added together to provide the address of the operand in memory for example. Location
herein typically implies a location in main memory (main storage) unless otherwise

indicated.

Referring to FIG. 15C, a processor accesses storage using a load/store unit 5060. The
load/store unit 5060 may perform a load operation by obtaining the address of the target
operand in memory 5053 and loading the operand in a register 5059 or another memory
5053 location, or may perform a store operation by obtaining the address of the target
operand in memory 5053 and storing data obtained from a register 5059 or another memory
5053 location in the target operand location in memory 5053. The load/store unit 5060 may
be speculative and may access memory in a sequence that is out-of-order relative to
instruction sequence, however the load/store unit 5060 is to maintain the appearance to
programs that instructions were executed in order. A load/store unit 5060 may communicate
with general registers 5059, decode/dispatch unit 5056, cache/memory interface 5053 or
other elements 5083 and comprises various register circuits, ALUs 5085 and control logic

5090 to calculate storage addresses and to provide pipeline sequencing to keep operations in-

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

45

order. Some operations may be out of order but the load/store unit provides functionality to
make the out of order operations to appear to the program as having been performed in

order, as 18 well known in the art.

Preferably addresses that an application program “sees” are often referred to as virtual
addresses. Virtual addresses are sometimes referred to as “logical addresses” and “effective
addresses”. These virtual addresses are virtual in that they are redirected to physical
memory location by one of a variety of dynamic address translation (DAT) technologies
including, but not limited to, simply prefixing a virtual address with an offset value,
translating the virtual address via one or more translation tables, the translation tables
preferably comprising at least a segment table and a page table alone or in combination,
preferably, the segment table having an entry pointing to the page table. In the
z/Architecture®, a hierarchy of translation is provided including a region first table, a region
second table, a region third table, a segment table and an optional page table. The
performance of the address translation is often improved by utilizing a translation lookaside
buffer (TLB) which comprises entries mapping a virtual address to an associated physical
memory location. The entries are created when the DAT translates a virtual address using
the translation tables. Subsequent use of the virtual address can then utilize the entry of the
fast TLB rather than the slow sequential translation table accesses. TLB content may be

managed by a variety of replacement algorithms including LRU (Least Recently used).

In the case where the processor is a processor of a multi-processor system, each processor
has responsibility to keep shared resources, such as I/0, caches, TLBs and memory,
interlocked for coherency. Typically, “snoop” technologies will be utilized in maintaining
cache coherency. In a snoop environment, each cache line may be marked as being in any
one of a shared state, an exclusive state, a changed state, an invalid state and the like in order

to facilitate sharing.

I/0 units 5054 (FIG. 14) provide the processor with means for attaching to peripheral
devices including tape, disc, printers, displays, and networks for example. 1/O units are often

presented to the computer program by software drivers. In mainframes, such as the System

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

46

z® from IBM®, channel adapters and open system adapters are 1/O units of the mainframe

that provide the communications between the operating system and peripheral devices.

Further, other types of computing environments can benefit from one or more aspects of the
present invention. As an example, an environment may include an emulator (e.g., software
or other emulation mechanisms), in which a particular architecture (including, for instance,
instruction execution, architected functions, such as address translation, and architected
registers) or a subset thereof is emulated (e.g., on a native computer system having a
processor and memory). In such an environment, one or more emulation functions of the
emulator can implement one or more aspects of the present invention, even though a
computer executing the emulator may have a different architecture than the capabilities
being emulated. As one example, in emulation mode, the specific instruction or operation
being emulated is decoded, and an appropriate emulation function is built to implement the

individual instruction or operation.

In an emulation environment, a host computer includes, for instance, a memory to store
instructions and data; an instruction fetch unit to fetch instructions from memory and to
optionally, provide local buffering for the fetched instruction; an instruction decode unit to
receive the fetched instructions and to determine the type of instructions that have been
fetched; and an instruction execution unit to execute the instructions. Execution may include
loading data into a register from memory; storing data back to memory from a register; or
performing some type of arithmetic or logical operation, as determined by the decode unit.
In one example, each unit is implemented in software. For instance, the operations being
performed by the units are implemented as one or more subroutines within emulator

software.

More particularly, in a mainframe, architected machine instructions are used by
programmers, usually today “C” programmers, often by way of a compiler application.
These instructions stored in the storage medium may be executed natively in a
z/Architecture® IBM® Server, or alternatively in machines executing other architectures.
They can be emulated in the existing and in future IBM® mainframe servers and on other

machines of IBM® (e.g., Power Systems servers and System x® Servers). They can be

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

47

executed in machines running Linux on a wide variety of machines using hardware
manufactured by IBM®, Intel®, AMD™, and others. Besides execution on that hardware
under a z/Architecture®, Linux can be used as well as machines which use emulation by
Hercules, UMX, or FSI (Fundamental Software, Inc), where generally execution is in an
emulation mode. In emulation mode, emulation software is executed by a native processor to

emulate the architecture of an emulated processor.

The native processor typically executes emulation software comprising either firmware or a
native operating system to perform emulation of the emulated processor. The emulation
software is responsible for fetching and executing instructions of the emulated processor
architecture. The emulation software maintains an emulated program counter to keep track
of instruction boundaries. The emulation software may fetch one or more emulated machine
instructions at a time and convert the one or more emulated machine instructions to a
corresponding group of native machine instructions for execution by the native processor.
These converted instructions may be cached such that a faster conversion can be
accomplished. Notwithstanding, the emulation software is to maintain the architecture rules
of the emulated processor architecture so as to assure operating systems and applications
written for the emulated processor operate correctly. Furthermore, the emulation software is
to provide resources identified by the emulated processor architecture including, but not
limited to, control registers, general purpose registers, floating point registers, dynamic
address translation function including segment tables and page tables for example, interrupt
mechanisms, context switch mechanisms, Time of Day (TOD) clocks and architected
interfaces to 1/0 subsystems such that an operating system or an application program
designed to run on the emulated processor, can be run on the native processor having the

emulation software.

A specific instruction being emulated is decoded, and a subroutine is called to perform the
function of the individual instruction. An emulation software function emulating a function
of an emulated processor is implemented, for example, in a “C” subroutine or driver, or
some other method of providing a driver for the specific hardware as will be within the skill
of those in the art after understanding the description of the preferred embodiment. Various

software and hardware emulation patents including, but not limited to U.S. Letters Patent

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

48

No. 5,551,013, entitled “Multiprocessor for Hardware Emulation”, by Beausoleil et al.; and
U.S. Letters Patent No. 6,009,261, entitled “Preprocessing of Stored Target Routines for
Emulating Incompatible Instructions on a Target Processor”, by Scalzi et al; and U.S. Letters
Patent No. 5,574,873, entitled “Decoding Guest Instruction to Directly Access Emulation
Routines that Emulate the Guest Instructions”, by Davidian et al; and U.S. Letters Patent No.
6,308,253, entitled “Symmetrical Multiprocessing Bus and Chipset Used for Coprocessor
Support Allowing Non-Native Code to Run in a System”, by Gorishek et al; and U.S. Letters
Patent No. 6,463,582, entitled “Dynamic Optimizing Object Code Translator for
Architecture Emulation and Dynamic Optimizing Object Code Translation Method”, by
Lethin et al; and U.S. Letters Patent No. 5,790,825, entitled “Method for Emulating Guest
Instructions on a Host Computer Through Dynamic Recompilation of Host Instructions”, by
Eric Traut; and many others, illustrate a variety of known ways to achieve emulation of an
instruction format architected for a different machine for a target machine available to those

skilled in the art.

In FIG. 16, an example of an emulated host computer system 5092 is provided that emulates
a host computer system 5000' of a host architecture. In the emulated host computer system
5092, the host processor (CPU) 5091 is an emulated host processor (or virtual host
processor) and comprises an emulation processor 5093 having a different native instruction
set architecture than that of the processor 5091 of the host computer 5000". The emulated
host computer system 5092 has memory 5094 accessible to the emulation processor 5093.
In the example embodiment, the memory 5094 is partitioned into a host computer memory
5096 portion and an emulation routines 5097 portion. The host computer memory 5096 is
available to programs of the emulated host computer 5092 according to host computer
architecture. The emulation processor 5093 executes native instructions of an architected
instruction set of an architecture other than that of the emulated processor 5091, the native
instructions obtained from emulation routines memory 5097, and may access a host
instruction for execution from a program in host computer memory 5096 by employing one
or more instruction(s) obtained in a sequence & access/decode routine which may decode the
host instruction(s) accessed to determine a native instruction execution routine for emulating
the function of the host instruction accessed. Other facilities that are defined for the host

computer system 5000 architecture may be emulated by architected facilities routines,

10

15

WO 2012/168867 PCT/IB2012/052837

49

including such facilities as general purpose registers, control registers, dynamic address
translation and 1/O subsystem support and processor cache, for example. The emulation
routines may also take advantage of functions available in the emulation processor 5093
(such as general registers and dynamic translation of virtual addresses) to improve
performance of the emulation routines. Special hardware and off-load engines may also be

provided to assist the processor 5093 in emulating the function of the host computer 5000'.

The terminology used herein is for the purpose of describing particular embodiments only
and is not intended to be limiting of the invention. As used herein, the singular forms “a”,
“an” and “the” are intended to include the plural forms as well, unless the context clearly
indicates otherwise. It will be further understood that the terms “comprises’ and/or
“comprising”, when used in this specification, specify the presence of stated features,
integers, steps, operations, elements, and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps, operations, elements, components

and/or groups thereof.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

50

CLAIMS

1. A computer program product for facilitating processing of operator message
commands in a computing environment, said computer program product comprising:

a computer readable storage medium readable by a processing circuit and storing
instructions for execution by the processing circuit for performing a method comprising:

executing a send message instruction by a processor image of the computing
environment, the executing comprising:

selecting a subchannel for determining a path to a coupling facility coupled to the
processor image; and

sending a send message command block to the coupling facility, the send
message command block comprising a start operator message command block for a start
operator message command, the start operator message command block including an
operator message token uniquely associating an operator message command with a buffer of
the coupling facility, the buffer including a plurality of fields to be populated responsive to
executing the start operator message command, the plurality of fields including a timer field,
an operator message request length field, an operator message response length field, an
operator message command field, an operator message token field to include the operator
message token and a response field; and

wherein the sending of the send message command block comprises sending the
start operator message command to the coupling facility for processing at the coupling

facility.

2. The computer program product of claim 1, wherein the method further comprises
storing by the processor image a response code in a message response block storage area in a
main storage location identified by the send message instruction, the response code
associated with processing the start operator message command, the response code

indicating whether an operator message has been started.

3. The computer program product of claim 2, wherein the response code indicates
an operator message has been started, and wherein the method further includes sending by

the processor image to the coupling facility a read operator message command, the read

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

51

operator message command to read a buffer to obtain a response to the operator message

command.

4. The computer program product of claim 3, wherein the read operator message
command comprises a message command block comprising a message header, the operator
message token used to select the buffer to be read, and a command specifying the read

operator message command.

5. The computer program product of claim 4, wherein the method further
comprises:

executing another send message instruction by the processor image of the
computing environment, the executing comprising:

sending to the coupling facility another send message command block
comprising the read operator message command and the operator message token identifying
the buffer; and

storing by the processor image another response code and contents of the buffer,
wherein the another response code indicates that a response is returned, wherein the another
response code is stored in a message response block in a main storage location identified by
a message operations block (MOB) of the send message instruction, wherein the contents of
the buffer is stored in a message buffer in main storage identified by the MOB of the send

message instruction.

6. The computer program product of claim 1, wherein the method further comprises
sending by the processor image to the coupling facility a delete operator message command,

the delete operator message command to delete contents of the buffer.

7. The computer program product of claim 6, wherein the delete operator message
command comprises a message command block comprising a message header, a command
specifying the delete operator message command, and the operator message token used to

select the buffer.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

52

8. The computer program product of claim 7, wherein the send message command

block comprises the message command block for the delete operator message command.

9. A computer system for facilitating processing of operator message commands in
a computing environment, said computer system comprising:

a memory; and

a processor in communications with the memory, wherein the computer system is
configured to perform a method, said method comprising:

executing a send message instruction by a processor image of the computing
environment, the executing comprising:

selecting a subchannel for determining a path to a coupling facility coupled to the
processor image; and

sending a send message command block to the coupling facility, the send
message command block comprising a start operator message command block for a start
operator message command, the start operator message command block including an
operator message token uniquely associating an operator message command with a buffer of
the coupling facility, the buffer including a plurality of fields to be populated responsive to
executing the start operator message command, the plurality of fields including a timer field,
an operator message request length field, an operator message response length field, an
operator message command field, an operator message token field to include the operator
message token and a response field; and

wherein the sending of the send message command block comprises sending the
start operator message command to the coupling facility for processing at the coupling

facility.

10. The computer system of claim 9, wherein the method further comprises storing
by the processor image a response code in a message response block storage area in a main
storage location identified by the send message instruction, the response code associated
with processing the start operator message command, the response code indicating whether

an operator message has been started.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

53

11. The computer system of claim 10, wherein the response code indicates an
operator message has been started, and wherein the method further includes sending by the
processor image to the coupling facility a read operator message command, the read operator

message command to read a buffer to obtain a response to the operator message command.

12. The computer system of claim 11, wherein the read operator message command
comprises a message command block comprising a message header, the operator message
token used to select the buffer to be read, and a command specifying the read operator

message command.

13. The computer system of claim 12, wherein the method further comprises:

executing another send message instruction by the processor image of the
computing environment, the executing comprising:

sending to the coupling facility another send message command block
comprising the read operator message command and the operator message token identifying
the buffer; and

storing by the processor image another response code and contents of the buffer,
wherein the another response code indicates that a response is returned, wherein the another
response code is stored in a message response block in a main storage location identified by
a message operations block (MOB) of the send message instruction, wherein the contents of
the buffer is stored in a message buffer in main storage identified by the MOB of the send

message instruction.

14. The computer system of claim 9, wherein the method further comprises sending
by the processor image to the coupling facility a delete operator message command, the

delete operator message command to delete contents of the buffer.

15. The computer system of claim 14, wherein the delete operator message command
comprises a message command block comprising a message header, a command specifying
the delete operator message command, and the operator message token used to select the

buffer.

10

15

20

25

30

WO 2012/168867 PCT/IB2012/052837

54

16. The computer system of claim 15, wherein the send message command block

comprises the message command block for the delete operator message command.

17. A method of facilitating processing of operator message commands in a
computing environment, said method comprising:

executing a send message instruction by a processor image of the computing
environment, the executing comprising:

selecting a subchannel for determining a path to a coupling facility coupled to the
processor image; and

sending a send message command block to the coupling facility, the send
message command block comprising a start operator message command block for a start
operator message command, the start operator message command block including an
operator message token uniquely associating an operator message command with a buffer of
the coupling facility, the buffer including a plurality of fields to be populated responsive to
executing the start operator message command, the plurality of fields including a timer field,
an operator message request length field, an operator message response length field, an
operator message command field, an operator message token field to include the operator
message token and a response field; and

wherein the sending of the send message command block comprises sending the
start operator message command to the coupling facility for processing at the coupling

facility.

18. The method of claim 17, further comprising storing by the processor image a
response code in a message response block storage area in a main storage location identified
by the send message instruction, the response code associated with processing the start
operator message command, the response code indicating whether an operator message has

been started.

19. The method of claim 18, wherein the response code indicates an operator
message has been started, and wherein the method further includes sending by the processor
image to the coupling facility a read operator message command, the read operator message

command to read a buffer to obtain a response to the operator message command.

10

15

WO 2012/168867 PCT/IB2012/052837

55

20. The method of claim 19, wherein the read operator message command comprises
a message command block comprising a message header, the operator message token used to
select the buffer to be read, and a command specifying the read operator message command,
and wherein the method further comprises:

executing another send message instruction by the processor image of the
computing environment, the executing comprising:

sending to the coupling facility another send message command block
comprising the read operator message command and the operator message token identifying
the buffer; and

storing by the processor image another response code and contents of the buffer,
wherein the another response code indicates that a response is returned, wherein the another
response code is stored in a message response block in a main storage location identified by
a message operations block (MOB) of the send message instruction, wherein the contents of
the buffer is stored in a message buffer in main storage identified by the MOB of the send

message instruction.

WO 2012/168867

N

PCT/IB2012/052837

N

/sz

PARTITION PARTITION PARTITION PARTITION
1 2 3 4
120 120 122 120
OPERATING OPERATING COUPLING OPERATING
SYSTEM SYSTEM FACILITY SYSTEM
HYPERVISOR 1106
CENTRAL PROCESSOR(S) +—108
INPUT/OUTPUT SUBSYSTEM +~110

FIG. 1

PCT/IB2012/052837

WO 2012/168867

2/23

FTOSNOD
40

N

vee

V¢ 9Old

TINNVHO WILSASHILNI |—0lL¢

1) 7ANS

\

0
Y
:
3 802
2 x
=
m 0240
0
n
>
0
| 1s3anoadwo
g N
o zee
m
0
192]
e
A
902

—————

— —— -

¥0c

{

SO/<
0ce

M

JOVSS3N AN3S
dSNOdS3H NO

w

vee

[A%4

)

NWVHO0Hd
15831

[\

3T0SNOD
SO/z

00¢

(

0ce

PCT/IB2012/052837

WO 2012/168867

3/23

(ONVININOD TVHANTD) OSINS

d¢ ©Old
95C ~
N MYEIN
| I
| |
—- _ !
NOLLYN3dO vy e VN
2 MYEIN
NOLLY¥3dO / ¥34dng | MVEN [a——
ALMM ¥ FOVSSIW van
¢ g9z
N cle
=] 9N 9oz
s0c~] ¢
] 800N $9¢

W3.LSASENS TANNVHO MH

¥GC ~ 1aNNVHOaNS | (=—

792 HLONI1TvaW

09¢ SS3yaav vaw

8GZ SSI”AAV 8N

(aow)
D078 SNOLLYYIJO I9VSSIAN

252 |

JOVSSIW AN3S

¢

0G¢

PCT/IB2012/052837

WO 2012/168867

4/23

Ve Old

0v¢ ——

¥OSS3I0O0Hd
JOVSS3aN
dO1Vd3dO

I <

00€ —
S11NS3d

HOXI1dILTNA

3TOSNOQ 49 |

S11Ns3d

W31SAS

ANVINWOD BswudQ

| S0/Z NOYd Bswsg

i

c0€e

ANVINWOD BswudQ

d€ Old

;
OSINS

PCT/IB2012/052837

5/23

S3A ONIAN3d ON

8G¢E

(3131dWOD 3LVlS 13S

gge-_] ‘ISNOLSIY WO H344Ng OLNI SLINSIH
AdOD NIAILA 9SIAS A1 ‘TTOSNOD LNI¥d)

HOSSIAD0Hd INO WO¥4 S11NS3IY LNd1NO

!

pee-_| ¥0OSS300¥d WO
OL ONVWWOO aN3S

¢ Spw)

WO 2012/168867

3T0SNOD
STA S3A ONION3d
09€

ON ON
ALY

09€~13170| {=

WO 2012/168867 PCT/IB2012/052837

6/23
206

COUPLING FACILITY
BUFFER 1
BUFFER2 1400
BUFFER 3

BUFFER 8
BUFFER 9

FIG. 4A

| BUFFER WITH CONTROLS

|
|

402 OM STATE :
404+T OM TOKEN |
T |

406 —" OM TIMER |
408 ——1 OM REQUEST LENGTH |
410-+—TOM RESPONSE LENGTH :
| OM RESPONSE :
|

|

|

|

|

|

|

|

I
N
N

!

OM REQUEST 414

PCT/IB2012/052837

WO 2012/168867

7/23

ove

)

d40SS300dd
WO

SS300¥d NI ANV 3AILOV

N

c0S

JOVSS3IN
H01vd3do
1dV1S

G Old

ONIANId ISNOJSTIY ‘IALLOV P05

a1di

00§

JOVSSIN HO1VH3dO 1dVLS
=[0)
‘FOVSSIN HOLvH3dO 31313a
WOSSIO0Ud ANNOHDHIVE WO

PCT/IB2012/052837

WO 2012/168867

8/23

JOVSS3IN

€€~ youu3 anssl

43IHIO =0y

¥3NSS ;
¢ 3009
OL 3SNOdS3Y 3SNOdSTY WOd
aNVININOD MO3HO
30IAONd

a3L313d os
HOLVH3d0 =2y

029 gL9

9 "Old

“1IVAV 10N
‘dSIH N0 =D

ONVINNOO | oS~ 3005 ONVAROY 010
NOG 3SNOASTY WON oy
m L9 ¥OLV¥3d0 =Y
olg MIHLO =0
39VSSIN
NONNT INSSI

¢ 3000

39vSSIN
vio [oy O S HONY3 3NS5
Su34dnd ¥IHLO =Y
TIV =¥ a9
909
09 ~| ONYWWOD WOS 3NsSI |
z09—1NOL m_ﬂ&m_zmo _
009~_] ¥3nssiwoyd
ONYINOO L4300V

PCT/IB2012/052837

WO 2012/168867

9/23

(39VSSIN HOLYHIMO LHVLS) ODSWS

W3.LSASANS TANNVHO MH

YSC—~ TaNNVHOENS | [—

VY. ©Id
18303y 787
SHILINVHV J9VYSSIN HOLVHIdO
ASNOdSTY
WOS 262 SWavd DIY NOS 281
g4I NOS » g0IN NOS \
m \ m \
06. N 08. \
\
\
\
- \
~< _
/// - “
»| 9oz QU I
ooz —oon !
T

8GZ SSIMAAV EON

(aon)
M2018 SNOLLYYIJO I9VSSIN

25 }

JOVSSIN ANIS ——

¢

0G¢

PCT/IB2012/052837

WO 2012/168867

10/23

J1aVIIVAV
d344N9=0d NdN13y

g/ 'Old

ONISS3O0dd ANV 3AILOV

N

1474

ez, | 3LV1s 310l

d344ng 13S

!

9¢/.~

¥344n9 1NO
aanIL gl 10313S

J1aVIIVAY SH344Nd
ON =04 NdN13y

N

vel

ac

¢ 1NO A3NWIL 1VHL
Sd344N49 IAILDV

L

Ol 3lviS ¥3ddng1as [—¢k

!

H1ON317 1S3NOD3Y oLl
ANV 1S3N03Y 3J0LS [~

!

IWIL INTHEND
OL ¥IWIL WO 13s [~ 804

!

NIXOL WO 3HOLS 901

0CL~_~

Sd344Nd WO NVOS

+

-

¥3d4ng 31ail gl 1o313s - ¥0L

AS-EEEl

ON 317dl ANV

c0.

S¥344N9 NO NvOS 004

!

((29vssan yoLvyado LavLs)

PCT/IB2012/052837

WO 2012/168867

11/23

(39VSSIN ¥OLYHILO avad) OSNS

W31SASENS TINNVHO MH

¥SC~1 TaNNvHOEaNS | Fe—

V8 9Ol
962 ~
—-
NOILYH3d0 avay
T -
ooz g | imven je—
G/8 Av JIVSSIN van
¢ ¢ g9z
— |\ AKX
E—— YA
JISNOJS3Y 40 pr = %
JFOVSSIAN - -~ 1 90N $927
¥O1V¥3dO AL
’ s
/ \\
< |\
SH3I1INVHYd \ SY31INVHYC
JASNOdS3N / 1S3N03
m_m__\,_xs_om m_o_>_«_>_om
068 088

Z9z } =HLONI1vaw

09¢ SS3daav van

gGZ SSIMaav gow

(aon)
2018 SNOLLYYIJO I9VSSIAN

NMN +

JOVSSIN AN3S

¢

0G¢

PCT/IB2012/052837

WO 2012/168867

12/23

Y18~ J1aV1IVAV 3SNOdS3H INO = Od
ANV 3SNOJS3FH WO NdN13d

208—_| J1GV1IVAY LON
3SNOJST WO = OY NHNLIY

508 -] ANNOA NIYOL ONIHOLVIA
ON = O NuN.L3

g8 'Old

a— | SHN FHL O1L HION3T

dSNOdS3IH AdOO

——¢l8

!

Y0019 viva Ol
dSNOdS3H WO AdOD

~—018

¢ ONION3d
m_wZOn_mm_m_m_ WO

9

& NIMOLINO
ONIHOLVIA HLIM
N_m_n_n_Dm_w/“ JH3IHL

08

c08

Sy344N9 WO NVOS

~- 008

!

(39vssan yoLvyado avay)

PCT/IB2012/052837

WO 2012/168867

13/23

(39VSSIN HO1YHI4O0 3L3130) OSINS

W3.LSASANS TANNVHO MH

¥SC ~ 1aNNVHOENS | r=—

8GZ SSIHaav gow

V6 ©Old
96¢ ~|
QMN
9 =] SN 9oz
] oon v
e —
Af
SY313ANVHVd ’ SY3LINVEVd
ISNOJS3Y 1S3N03d
mm__>_x_>_0n_ mO_>_x_>_On_
066 086

(aon)
D018 SNOILLYHIdO I9VSSIAN

252 |

JOVSSIW AN3S

¢

0G¢

PCT/IB2012/052837

WO 2012/168867

14/23

p16—] 0313130 3DVSSIN

HO1VH3dO = Od NHN13d

806 —

ONISS3O0¥d ANV JALLOV
SIH344Ng = 0" NdN1L3Y

706

d313173d 3OVSS3IN
HOL1Vd3d0 = O Nan.13d

g6 Old

-« | J374ALOLEIVIS 7L

d¥344N9 NO 13S

!

6

Od3Z O1 H19NT1 'dS3d 3HL ANV
HLON3T O3d 3HL
. “YINLL WO IHL
N3Ix¥OL WO 3HL 13S

¢ ONIAON3d
m_wZOn_ww_m_m_ WO

906

& NIMOLNO
ONIHOLVIA HLIM
d344N9 V 3H3HL

Si 206

Sy344N49 NO NVOS - 006

!

(39vssan yoLvyado 313130)

WO 2012/168867 PCT/IB2012/052837

15/23

COMPUTER
PROGRAM
PRODUCT

1000

1004

PROGRAM
CODE LOGIC

3

COMPUTER /
READABLE
STORAGE
N MEDIUM
1002

~—

FIG. 10

WO 2012/168867

16/23

PCT/IB2012/052837

5011

FIG. 11

HOST COMPUTER 5000
5001
| [
PROCESSOR (CPU)
5003 DAT ADDRESS
TLB i
5007 — |
i
LOAD/STORE l
UNIT - |
|
5005 5004 + Y
[C
R [
C CENTRAL
E STORAGE
INSTRUCTION |
DECODE UNIT [~ 9006 R
5009
5008
L Cs002
INSTRUCTION |
EXECUTION UNIT
yi N\
MEDIA %/
— NETWORK

5010

WO 2012/168867 PCT/IB2012/052837

17/23
OPERATING SYSTEM
5020 APPLICATION 1 "_\\5032

APPLICATION 2
APPLICATION 3

5022 D) /// / L__ 5031

/
/ /// ll
/7
// P BASE COMPUTER ,* /
// /' L
/ 5021
MEMORY |/~ 2922
DISPLAY | s007
STORAGE |
PROCESSOR praevs
5023
MOUSE 5028
_J/ = 5030
5004 KEYBOARD —

PRINTER/SCANNER

NETWORK
5029

FIG. 12

WO 2012/168867 PCT/IB2012/052837

18/23

5040
REMOTE SERVER

=
/‘;::::::ﬂ:;;::?"'::== —~5048

INTERNET
5047
5046
5050
)
% 5041
o T
ﬂ' B
0O0Od
USER e g
CLIENT 1 = k< CLIENT 4

CLIENT 2 5042

FIG. 13

WO 2012/168867

19/23

PCT/IB2012/052837

5026
A

5025—~ MEMORY
\ (5053
PROCESSOR CACHES
5055
PROGRAM COUNTER X /
5061—)
INSTRUCTION FETCH
5056 — {5060
DECODE/DISPATCH so5g | LOAD/STORE UNIT
BRANCH (—5062
EXECUTION UNIT
UNIT DAT
\ | REGISTERS | —~5059

\

5057 —)

FIG. 14

5054 —" VO UNITS

WO 2012/168867 PCT/IB2012/052837

20/23

5057
EXECUTION UNIT

5072

-~ 5071
/ / A\ N\
OTHER
5065 /5056
DECODE/DISPATCH
5059~ REGISTERS
5060
LOAD/STORE UNIT

FIG. 15A

WO 2012/168867 PCT/IB2012/052837

21/23

5058
BRANCH UNIT

BHT

5081

5056
f_

DECODE/DISPATCH

5059 REGISTERS

FIG. 15B

WO 2012/168867 PCT/IB2012/052837

22/23

5060
LOAD/STORE UNIT

5090
Ra

CTL

. 5087

I "] |
A (5088

NI .

JE—

5084

A\ N\
OTHER
5083 /5056
DECODE/DISPATCH
5059~ REGISTERS

CACHE/MEMORY | ~_
INTERFACE 5053

FIG. 15C

WO 2012/168867 PCT/IB2012/052837

23/23

5092

EMULATED (VIRTUAL)
HOST COMPUTER
MEMORY 5094
5000' 5096
COMPUTER
MEMORY
(HOST)

5?891
o B
| EMULATED (VIRTUAL) |
| PROCESSOR (CPU) |
l 5097 l
| |
| |

5093
: EMULATION |
| ROUTINES |
! PROCESSOR !
| NATIVE |
| | INSTRUCTION SET [:
| ACHITECTURE 'B' i
| |
| |
| |
| |
| |
| |
| |
| |
| |
T ————_——————_ J
/ N
MEDIA %/
5010

FIG. 16

International application No.

PCT/1B2012/052837

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: GO6F;HO4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

(CNPAT, CNKI, WPI, EPODOC, IEEE: virtual, part, partition, processor, operat+, central, path, channel, link, storage, buffer, field, frame,)

manage, coupl+, message, send, information, console, command, instruction, share, image, token, server

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US5394542A(INTERNATIONAL BUSINESS MACHINES CORPORATION) 1-20
P8 Feb. 1995(28.02.1995)description, column 1 line 9- column 5 line 32, figure 2
A [US2009/0006537A1(MICROSOFT CORPORATION) 01 Jan. 2009(01.01.2009) 1-20
the whole document
A (CN101276293A(INTERNATIONAL BUSINESS MACHINES CORPORATION) 1-20
1 Oct. 2008 (01.10.2008) the whole document
A CN1655123A(INTERNATIONAL BUSINESS MACHINES CORPORATION) 1-20

17 Aug. 2005 (17.08.2005) the whole document

[Further documents are listed in the continuation of Box C. X See patent family annex.

* Special categories of cited documents: “T” later document published after the international filing date
or priority date and not in conflict with the application but

“A” document defining the general state of the art which is not cited to understand the principle or theory underlying the

considered to be of particular relevance invention
“E” earlier application or patent but published on or after the “X” document of particular relevance; the claimed invention
international filing date cannot be considered novel or cannot be considered to involve

) o) an inventive step when the document is taken alone
“L” document which may throw doubts on priority claim (S) or))))
“Y” document of particular relevance; the claimed invention

cannot be considered to involve an inventive step when the
document is combined with one or more other such

“0” document referring to an oral disclosure, use, exhibition or documents, such combination being obvious to a person
skilled in the art

which is cited to establish the publication date of another
citation or other special reason (as specified)

other means

“P” document published prior to the international filing date &"document member of the same patent family

but later than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

20 Sep. 2012(20.09.2012) 18 Oct. 2012 (18.10.2012)

[Name and mailing address of the ISA/CN
[The State Intellectual Property Office, the P.R.China .
6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China LU,Xia

100088
Facsimile No. 86-10-62019451 Telephone No. (86-10)62413397

Authorized officer

Form PCT/ISA /210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/1B2012/052837
Patent Documents referred Publication Date Patent Family Publication Date
in the Report
US5394542A 28.02.1995 None
US2009006537A1 01.01.2009 WO2009005966A2 08.01.2009
CN101276293A 01.10.2008 US2008244213A1 02.10.2008
TW200905470A 01.02.2009
CN1655123A 17.08.2005 US2005182788A1 18.08.2005
TW200602901A 16.01.2006

Form PCT/ISA /210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/1B2012/052837

CLASSIFICATION OF SUBJECT MATTER

GO6F 15/16 (2006.01)i
GO6F 9/50 (2006.01)i

Form PCT/ISA /210 (extra sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - wo-search-report
	Page 82 - wo-search-report
	Page 83 - wo-search-report

