US 20100146396A1

a2y Patent Application Publication o) Pub. No.: US 2010/0146396 A1

a9 United States

Able et al.

43) Pub. Date: Jun. 10, 2010

(54) SYSTEMS AND METHODS FOR WEB
SERVICE FUNCTION, DEFINITION,
IMPLEMENTATION, AND/OR EXECUTION

(75) Inventors: Steve L. Able, Canton, GA (US);

Roland S. Martin, Marietta, GA

(US)

Correspondence Address:
BARNES & THORNBURG LLP
Suite 1150, 3343 Peachtree Road, N.E.
Atlanta, GA 30326-1428 (US)

(73)

Assignee: GT Software, Inc., Atlanta, GA

Us)
@

Appl. No.: 12/704,124

(22) Tiled: Feb. 11, 2010

Related U.S. Application Data

(63) Continuation of application No. 11/129,597, filed on

May 13, 2005, now Pat. No. 7,665,064.

(60) Provisional application No. 60/571,652, filed on May

14, 2004.

Publication Classification

(51) Int.CL

GOGF 15/16 (2006.01)

GOGF 3/048 (2006.01)
(CZ TR LRI & R 715/735
(57) ABSTRACT

Systems and methods for defining, implementing, deploying
and/or executing Web services. A Web service is defined
using a graphical interface that allows the application devel-
oper to specify the operation of the Web service through
inclusion and configuration of graphical nodes representing
particular operations and/or functions. The Web service defi-
nition can, in some instances, include standard functions and/
or previously defined Web services. The environment for
definition typically includes a user input device, a graphical
display device, a system data store and a system processor.
The system processor is in communication with the other
elements. The user defines the Web service using an interface
provided via the graphical display device. The user interacts
with the interface using the user input device. The system
processor receives the information from the user input device
and updates the provided interface on the graphical display
device accordingly. The graphical definition of the Web ser-
vices is stored at least ephemerally in the system data store,
but may, in some instances, be saved to the system data store.
Once defined, the graphical definition is converted into a
programmatic implementation executable by a Web services
server. This programmatic implementation can then be trans-
mitted to an appropriate Web services server accessible by an
intended user community.

@ 67 Softwere [vory Studio-occtmain3270 (Web Service) Ql
File Edit Yiew Tools Window Help
DeB o[~~~ [xB e Pos-
Toolbox X |Diugrum*ncctmnin3270 Web BrowserlSource-giismnu. HAINNNUlXML—giismmn. MMNMNUIIest-uccmuin3270. wsdtl X
Components “A i | i =
) Stort { s Toorterer
(I Web Service Operation T Aechumn toofup e }
{3 Callabie Service Operation R . 60”3 |
{77 3270 Process TR — e St el
© 3270 Point Node] T
3 Move to 3270 =< 12
© 3270 Action 2270 Pecers [Fiats Goea]

L |
O LINK Point Node (e T r.“j-[“s:w
O Move to COMMAREA Gogow | Frape] Teafie [t |
© Execute LINK (_:IE”E l It) I
O Web Service Client Point Node Z‘,’i,‘,._,u 11
3 Hove 1o Web Service Client 7
© Execute Web Service Client T i Lregfemmperer
O Move to Output '@:a::../ l
3 Move to Work Variable M Pl 50 aeid
¥ Connector L g
Q Decision T herion
O LDDP Hit[Entar leu;.un
O Operation End) __P_A
DO Sticky Note e |

e =
v
ikl l [
Toolbox | Project Explorer] Properties | Output ¥
Ready |

US 2010/0146396 Al

Jun. 10, 2010 Sheet 1 of 33

Patent Application Publication

Apuay
ol J — xon_oo; 13s01dx3 193f04y
v A]
¥ inding |13 ¢ s31143doy
| 1 [»
A F810d JpON 1U104 9pON TW1TJ UeTI3y Olce QaM 01 3A0K
—f 0LcE 0L2¢
1UNDIIYIAG
Al 2-HAA] [-HAA] AL 4313371 un020y pug 081 awwm g
0L2e 3poN U104 "~ doo B
y 0L2¢ $53204d 0126 533044 0L2€ 01 A0 103117 321135 vors123] &
O O g2M Jo13auL] A
M 31401 J0A ¥JOM O3 3A0K [
O PIVWSI19 0 1naing 01 anoy 0
hoyiag SN101$1uN02Jy13g SSIJIPPYIWONI Y msczgpc:ouufmo U3t] 831A43S QoM 31NIax3 O
bdg vo110a3dg 001 1042dg 3poN tu1og Yy 1U31)] 321AI3S QaM 01 3A0K O
aM 321A43S q3M adtAdag qamM Eomm mut.cmm nmz PoN 1010 _cm:uxuwﬂ%mumm\wm
% Y3UVYWHD] 01 3aoy)
w\ SpoN 1uted INIT O
M yo 112y mmmm)
‘var1vat |ddo SWHg QL2E 0L2E 01 3A0W O
5582044 1URODDY Buiisixa vo 1100 vayr ‘awou 4q mUomeu%M m»mmm
J3QuNy 1UNE30 UD 123]]03 uo1310J3dy 331A435 3190|10] O
12015 01 3314435 438 © 10 uo11043dy 331AJ3S QaM (O]
] $5320J41UN0J2Y 101s O
LY | 4= S1uav0du0?)
§5320441unpaoy-wouboig X & x0G]00]

® 11y as0153y oy FF

ECEGU=wET|08 P09

- €2
@

HmE 0|t S0 6 ¥ |~ [0 [F -0

diaH wopuily sjoo} M3y 11p3 33

{321A235 QaM) $5930.41Un00DY-01PRIS AJOA] JsUMIfOS |9 Amw

US 2010/0146396 Al

Jun. 10, 2010 Sheet 2 of 33

Patent Application Publication

2 by

diay

133U0)

1J0du]

A
h 4
A -, 3nva ¥04Y¥3 ON-YD 68
] X JId H0¥¥3 ON-V3 S0
-,S, 3NvA ONIHIYYIS-V) 88
-V, INWA ONIOOV-YD 68
-.X, IMVA ONI1T130-VD 68
- W, INTVA ONIAJIO0H-YD 88
-0, INWA ONIAY14SIO-YD 88
X Jld 004 SO
¥
-,S, WA 03y-4¥0S-v) 88
-0, WA INIS-NIIS-IVII0-v] 88
— - H, 3NVA INIS-AINIW-NIVA-¥D 88
X JId UVIS-NOILYSYIANDI-¥D SO
JOWSII9 40 Srwsiu0] [5]
0084403 (5]
v | ECHIE S|

3jdri|nu 123135 01 |J1] pjoy pud ssaud wod noy “rueduf ¥3110 puv wair jaaa) doy sii 10a)as *y00gAdod o 1Jodur o)

a2unoS 0807 1Jodu] @

US 2010/0146396 Al

Jun. 10, 2010 Sheet 3 of 33

Patent Application Publication

g b1y

Apoay

i

>

"3pou 1104 (/25 0 Ul

X0G]00]|

JaJ01dx3 123louy

SP]314 PAUDU 01 SIU3L3AOW VITP jO ¥011931]02 ¥ |[a]
S1U3W3A0Y 010(

(u01133110)) SIUWIAOK U10(

B DNLCTIN L O QN0 a0 angan g 1 cainaa]

boy1ag
Bd(
13M

EN

Com] [0]

BYHI19 JYNSI19)] awoN pjaty

-

NN1UN0J20 *03u]133y 's1nding 4Y0S

Ajraapiunoddy

wnding 1uar}] ad1AJES Q8M

4l

<]

HOMY30V3Y -
V13018034
NYN] 4L Y303+
OW30LYW¥034
HINLJ2Y

PH301YWYO 4

(WINLIY)

DYNSTIT "J¥WSTI9

0] SA0K

L-JVASIIO, 2pou w0ty platj asooy)

ON Aya115 [
011043dp O

doo O
vo1s123g O
101330007 A
01 30| 3
01 3n0|
EIURENS Py
01 3A0K O
1AJ3S QM O
N 213 o
) 01 aaty (3
194 N1 O
11y 0128 ©
01 3ACH]
104 0126 O
PoJd 01eE T
1quiv) O3
14135 33M O

15015 [

wt JYNSITJ,, ~F M M

010D 310317

$1uauoduo]

|

_ $5320.41un033y-woaboiq |3 4

X0q100]

ey A BB O I BT 08 £ Oa2R

O|ONRE dRo[XE & X

'(»C

di3H mopum sjoo] Maty 11p3 3y

(9214035 G3M) 55320141un022Y-0iPN1S AJ0A] 3J0M340S |q Amw

8y 214 01 HOLVA

SR AN o) U 4O W | D 4 EMD 5 S DN S S D M ¢ D S SUND § GRS I D 4 SN 4 At D § 00 3 G 3 M § S i 8 D o S © G € R ¢ W N 5 O § W WU P G WD S SR D A W 3 € VD 6 S § S § D § S AR B D B AMD sk § S S ¢ S ¥ 3 S A o o Y

US 2010/0146396 Al

<S3N|DASADS />
</,93A05,=(013A05 1 =1%3PU[133V-HI4S-V] "[11¥37714 'VIVOOHIYV3IS~V] 100y =p1at§ 3A0S>
</, F3A05, =013ADS I =1X3puT ISYIJ-HJYS-¥] (12431114 VI1YOOHINV3IS-¥] 100y =P |3t 3ADS>
</,,S3ADS, =0]aA0S | =1Xapu[1SYT-HI¥S-YI "(IEY3I T4 VIVOOHIYVIS-Y] 100y =P131 J A0S
<S53N | DAADS >
A=c>_.uusm__m=umsozxooa>aouo=0>_.UUEW__m=umsozxoonxnouﬁ==non>m=~ozmHHm=ueoLmoLm_;c_ozauu<=ua_mvoz NI J2PONIUIOd>
<s1nd1nQgy0s/>
<3dh x31dwoqy/>
</, 43QUNNIUN0J30 "0JUT 1Y = NOJ J3QUNNIUNGIID =P | 3! § adk3yduiss
</ PWONISD] '03u]122y =NO 4 BWONISD| =p|atj adh}a|duts>
</, BUON1SJ14 04U[130y = NiJ BWONISJ1 4 =p|3t § adh|a)duISs
=NO4 2d4) xmwasou=uma>hc“cc=om=~uuusn"u_w_u adA}xajdwor>
<sInd1npgvoss
<S1ndu]dy0S/>
</ ,BUON1SJI} =NDJ £3A0S =0]3A0S 3wONISJI1y =PIaty adhjajduiss
</ ,3WONISD) =NDJ 23ADS =(]3A0S 3WONIST] =Pty adA|a)dursy
<s1nduTdvos/>
as qam s1yl Aq pauwsojsad voriviado Ajuo ayr st WNN1UNGIIY139 =u011d113S30 WNNIUNODIY13g =(]3PON 3PONUO!1043d0adAISqGaM>
<5aNJTASADS />
</ ,[3ADS =(]3A0S S =3N|DAJI1DIS BADS>
<53N|0A3ATS>
q dnx007 Jaquny 1UN0EJJyY m_asom:nco:a_._nvmmo ___.__ceuuuc\mm_aecm\agm\:uE: LW1DR1DDY = 3WONSD | AIBSqIM SU0139N11SU]13AI3SAI0A] S
< <SU011INJIISUTJI3AIBS>

< adAjojuy100y = awonadA] ojuiddy

Jun. 10, 2010 Sheet 4 of 33

d)aH 1owJo§ 143SUT M3IA 11pJ 3|1y

vy biy

Patent Application Publication

US 2010/0146396 Al

Jun. 10,2010 Sheet 5 of 33

Patent Application Publication

qar

A

[[>

<SUO11ONJIISU]JSAIISAI0A] />
<3PONUC ! 1DI30Q321AIISGIM/ >
<INITISpONiUiCd/>
<3PONYIYYWWOJO L 3A0L />
<3PONNNIT21n33%3/>
<3PONINdINQ0| BA0K/>
</ ,11Ns3y puas =013PON 3poNpu3uo!10J3dD>
<UC1133]]071U3W3A0KDID]/>
<1UBWAAOKDID(/>
</ ,43GUNNIUN0JID =1J0d 1.04%x3|duo]>
</,04U[130¥ =1J0d 1J04x3}duo)>

<,93A0S, =(]3ADSIIINOS 2 =51J041010] ANJ] =dWONX3}dwo] J3GUANIUN0IID "04U1103y =P34 1UAWIACKDIOG>

<1UBWBAOKBIV(]/>
</ ,BWON1SD| =1.0d 140gxadwo]s
</,03U]122y =104 1404x3|dwo]>

<,G3A0S, =(]9ATUS2IIN0S 2 =51J0g|D10] BNJ| =3woyxa)|dwo] BWON1SD| '03U1102Y, =P|at § 1U3WIAOKDICE>

<1U3WAADKD O] />
</ BUWON1SJ14 =1J04 1J04x3)duo]s
</,04U[123y =104 140¢x3]duwo]>

<,P3ADS =(]3A0VSADINOS 2 =51404|0D10] 3nJ) =3wONX3[dw0) 3WONISIIJ 04uU11DDY =P|al{ 1UBUIAOKDITE>

<U011331}071UBUIACKTIO]>
<,UNN1UN0DJD 339 =(Q[3PON 2PONINDINQO| A0S
< NIVWLJDV O3 XNIT QISPON 3PONXNI131n3ax3»
<U011331)|07J1U3W3ADKOIT]>

</, 23805, =(]3ADS32N0S JWYNLSY] J-¥D VIVO-1[V130 100y =P 13! § 1UBW3ADKOID]>
</,23A05 =012A0S32UN0S IWYNISYT-V] V1YO0-T[¥L130 100§ =P12! § 1UIWIACHOIU]>
</ ,13A0S =(]3A0S32N0S JNOH-Y] 100y =P13! § IUIWIACHOITY>

</ ,13A0S, =([3A0S32IN0S 31¥1S-NOI 1VSHIANOI-V] 3100y =P|3! § 1U3UIAOKDID]>

<U0!1123]10J1UBW3AOKDI0(]/>

<, 3WONSJ1 §/3UDNISD] A0 =([3PON 3PONYIUVWWOIOLIA0>

WO D D MRS M ¢ W W M S} S S 0 S S S0 1 O § SN0) SN D § U WA) NS § Bt A 3 S D SN € S N SN £ MR) M @ S S — — 1 — O § SV o § i 5 T S O ¢ S £ M) i ¢ g 3 O § B ¢ § ¢]

Vv D14 01 HOLVH

US 2010/0146396 Al

Jun. 10, 2010 Sheet 6 of 33

Patent Application Publication

G b1y

240y

331y =64 PMI=84PME=/,4 1'XI=€4 d1H=1]

3344 $314Q 918765501

pasn sa1kg 9;2(9

$3140123J1pgns ||
5313 0

S3D1AJISqM
A

1531

Vil
1531doos
na3sdoos
1531 “doos
doos
doosoudf
owap
$321A13531q0) 107

105533044 dU17 PuDWLOY)

AN NN AN AN N AN

10
410
g10
410
810
410
410
410
410
410
310 >

VvV V V V V V V V V vV

— ettt et o vt et ot p— p—

<=== pUDWWO?)

<5331AJ3SqAM/: RYOAL

61:10:81 »002/10/11
by:9¥:L0 S002/50/%0
LS:22+ 11 S002/51/20
£viGE:El S002/v1/€0
gl:1€:€1 S002/51/20
0E:pe:0l ¥002/v0/11
0€:p2:01 ¥002/91/80
61:9%:80 v002/62/v0
p1:Gp:01 5002702710
gviddi 12 S002/7€0/€0
by:2t:80 S002/51/20

S321AJ3SAIM/: AYOAT 404 Au40133u1(

J1P<SIIIAIBSAIM/ ANOA]
S321AJ35G3M PI</: AYOA]

US 2010/0146396 Al

Jun. 10,2010 Sheet 7 of 33

Patent Application Publication

9 by

A
— Aoxo puowwod 34x1 002
< I 3dAlL
dyaf _ _ Boq _ _ 132007 _ _ puj 33x3 _ _ 82“_; [a] icc_m_ — 1x3 _ _Gmccoﬁ_i la] OW3019 _
Kl [>] LIl [>]
M31A M3 A €1y 8L:€1 921080 11 "IWavN §
YO ojeTg] | L6001 9viLl g221vo ant 22us116 g
e = <-- 950y SI:81 90S0¥0 Add2WSI19
1453443y YS3J43¥ || 1211 00:21 206080 °°*A21STWNNIJIY139
a1a1aq N K 0211 00:21 2060¥0 °°*JUuy~wnN133y139 [
P suvoay || SC!l 002l 2060v0 ***1uQTunNIddyiag [
1S6¢ 80:21 ¥210S0 IPSM "u10u1dd0 §
JI0M || 10w ¥9S€ B80:21 #210S0 SA1 U10W120 f§)
J106Y) J1gbyy || 0SS6 60:21 21050 dar "urour200
: aﬂ —1| L86E 8021 ¥21050 Jw1y v1owido §
* * = * % =]
azis| a1oq | 3wON azis | a0 | JWON
> an_ _b_oz/oemﬁ_/mémsuoc Aw\BuoyA\sbur113g puo mzme:uoo/&_
w3154S 310way w3154AS 10207 —
YO Jajsund] mt@

2

b1y

1w O

(&

US 2010/0146396 Al
>

J3AI3S AJOAT @

Ag paJamoyg

Jun. 10, 2010 Sheet 8 of 33

<]

| 1252y || ss22044 |

2121200 210pdNO | /m17:ha0n1 || 410472019957V [11x3 puv anvs]|
2131300 210pdNO | 0808 | 1404 73A135

2121300 210pdN0 | L2101 JppyTIaAsS 11355 TR
213130 219PANO [WOD “I9VMLI0S1 0W3019]| 1sonsanaag v0t1935 133413y TN
011935 011y 40
2131300 21PANO| Janaas gyos Adoa]| WO TI3A IS ToT1355 X3pU]
2131390 210pdnO | /wngihsont | 100y ™I3A 3G TIREESLTR
. . u01123§ uowao()
u01303U3WNd0] J3AJ3S 4] 4 [SYFLFEFEIYES ST IEREN £10J1U0) J3AIR 3uoH

UO110J1SIUIWPY J3AJAS AJOA]

« 82.821@ | 16W3 E@ m_moaa@ Sy cwm A|pMOIYMA=] JOA; DN [SKQ/0N| /08082 W0 "3J0M) J0516 ‘owapiby/:diy @

$$3.ppy

1ES -3

hiorsi@z) sarisoany M‘AV g5 of

HUH @ -»mD

diay sy00]

S311J40AUY M3IIZ 1P Ity

J3J0)0x] 13U431U] 1405042 1H-UCIIDJISIUIRDY JAAIS AJOA] @

Patent Application Publication

US 2010/0146396 Al

01pmg Asoa] asom1jo5 15 ()

Apoay
h‘- r _ xofoo.__ J3101dx3 12304y
4]
X indang 11X ¢ sa1143dosy
o .
o ¥AO 9£0/910 s10y M5 O
o 3440607=21 buoy=g diag=| i pu3 uo1youady O
a S " ® "uy0110207] doo]
= e e e dnoug uo1s133g &
b5 * * uo11001ddy J0133uu0] A
= I1qQUII0A JOM 01 AW [
2 99 noMSSDy MaN ¢ ¢ *niomssuyg 101N 01 3A0Y O
e e e s v 1ual 9J1ALT 3M 3INJI3x
S (340901701 225h) EEWE&E __omo._;wwm_:u 1u3! “w mu_tmm mmn o“ m>om m
S VIEI-ES20500) X0 ODEI-ESZ (b00) 1131 P B o 2
S 60S0E 'vO “o1umty ‘y ;w:m“msam pIEl 3u] ‘asomiyog |9 VINYHKO] 01 2A0H O3
- 103117 [10H3 - INT'3¥vYML40S 111 '99999999 PN o190 Mg
= Jasmolg - 10/p03y 11l 99999999499 "0y an
= 0L2€ 03 3AoH O
= JBAIES - 111 29 a9 : 3pON 1ulod 028 O
19/u01 300N 19/710M 111 99999 gg 533044 0L2€ [T
m a1 uo11043dp mumimm 3jqe110) O
g 18 LA/ LLLILLLL . 9999999999 ke
J
= 01:0€:91 ¢ ° ° aul] G0/10/€0 +° @0 LLI1IT © "99999999 25U
< 62d103S : 10UILI3] ooasw1 || ¥l 51u3u00u07
2
= ¥ _>u=5_ ¥ & x0q 00}
=
D.I“.. ® 11y aJo1s3y o1ny n cﬂF mw .@ @ ﬁ 52 @.a @ @ %
g 0| BN B U|EEm|H %X S & x|
<
= d1aH mOpuIg $100] M3Ij 11p3 3|13
>
«
~—
=
o
~—
&
[~ ™

US 2010/0146396 Al

Jun. 10, 2010 Sheet 10 of 33

Patent Application Publication

S1u3iiadlunouuy § SMaN

SNOILNI0S

S13n00¥d

ANVdWO3

2061 32u1g uor30aB3ju] awosjuroy Buipoad

U] SwDJ juIOK

3JOM1JOS| WOJ4 S3D1AIIS Gam put I3z, ‘13N Ssmopuipm

Bursn ssaaoy puo uoriosbaiu] awssjuroy astudiasuy —

3JOM1 40S | @

Apoay
._.—.;_ 3 x0qj00] | JaJo1dx3 123lauy
A]
[v]
X & inding |3 & sat143douy
< [»
0 aloN Apanis O

pui verlosady O

dooy O

u01$103 O

Jo1d3uuo] A

J14UIJOA YJOM 01 AACK O
1nding 01 3A0W O3

103117 331AI3S GaM 21NIAXT O
103117 321A435 QIM 01 3A0Q O
3poN U104 1U31)] 331AIIS QIM O
NI 31n09x3 ©

VIYYWAOD 01 3noy [

apoN 1uiod IN]1 O

usi1dy ({ef ©

0L2€ 01 3r0 O

3poN 1ui0gd 0126 O

mmmuo.i QLeE It

uo110430g 321AJ3S 31Q0(0] O3

v uo11043dy 3314435 QM)
[/802 3.50m3 40515 “wan/ /G| S)

09 Buoy ysadjay doig puemioy ydog <= $10U3U00w0)

X —metoum nmz— x 4 x0q) 00}

*ny asoisay oy [VL | (- (50- B gl =

0 8 Z|A-g-I%

glonailnmalat xS & k]~ -~ [0F a0

dj3 Mopuim $|00] M3aIp 11pT 31y

XGB

(3014335 Qam) $5320341UN0IDY-01pnIS AJOA] 3JOMI 305 |7 @

US 2010/0146396 Al

Jun. 10, 2010 Sheet 11 of 33

Patent Application Publication

o1 b1y

&1 430133.1p Buissom s1 | 00ud ‘0ISIA NXSLO,, LG2
— md
v x1434d quou £1012341p Buisuom 3yy s1 | 'g0yd 0ISIA NXS19, 052
diai || boj ; | 12000] | | Pud 02x7 | _ Szuv_ _b_ ?cc_m_ _ 11x3 _ _BmE_SmS_ ?_ ZEi
<ll [>
(A 016 L0:11 p210S0 *°*231S7A31JaA1UN0330
M31A marpy |F | 606y LOF[1 p210S0 °** 40N 41 3r1un0330
YR, T, vI6b 8011 y21050 “°*00~A3143a1un0330
¢ 9ISE v0:2l $21050 1Psk ‘A3143M1un03d0 g
YsaJjay ysaJjay PEPS 021 v210S0 Sat Agruaarunoddn §
31313(31313Q 69512 S0:2l ¥210S0 dar *A31uaa1unoddo [
I 0 329008 [J ||~ — B8ES $0:21 $210S0 1wy *A1i31unoadn
0 a1reo [| G126 L[S:I1 p2lOSO °**M Ssadouqdiunoddy
110 0 arvavw [R ||| 20w || |9v922 £S:11 p210S0 SA1 ssad0agrunoddy B
J1gby) 0 8170v01 [J 106y3 9808€ (S:11 p210S0 da! $S330441un0ddy
: 0 r EG | 866L1 LS:11 ¥210SO ***y "55320441un0dy [§
* 0 8114d0J [J * v Y
[az:5] aog | ETTTY azIS| 310(| 3uWON
b » 003d 03SIA .zme__ T~ 2_moa___ou/ﬁum?i|?o>_/$a.__cm/__Smc_/fo:/".__
ua1sAS 310way - w3} sAS 10907
YO58 sa35u00) d13 (R

US 2010/0146396 Al

Jun. 10, 2010 Sheet 12 of 33

R

Patent Application Publication

11 by
WYSA
Svavay
WOIY1Y0 SNOTLYII 1ddY SNOILVII1ddY
SWOI 280 SKI YIHVHKWOI SWE 0L2€
SS322v vIvO

AY0L1S0d3d A¥OAI

n

©0900°9°

40SS3304d
Sd11H/dL1H

S3TY3SOW S31NY

dv0s

40SS3308d = 405537044 E 40SS3J0¥d

4INY3S A¥OAI

NN

}

low fo 1}

AR

NLS AYOA
_ 0IONLS AYOAI

US 2010/0146396 Al

Jun. 10, 2010 Sheet 13 of 33

Patent Application Publication

'$3NY ¥IAY3IS ONV 10SM 3HL Y04 A¥OLISOd3Y 3HL

S301A04d =_mu>mum AY0AT 3HL 'SIS3N03y 4v0S

JH1 ONIJIAY3S d04 S37NY 3HL SILVIYI JYvML40S
w03 13008 ABOAL JHL "SW4041V1d SO/Z NO
ININNNY J4VMI40S 3AN3S NOTLIVSNVL S31D

NO S31n33X3 um<3_mom.=mu>mum AYOAT 3HL

°0

z_mu>mum AY0AT 3HL

'$S3304d
NOILYIITddV 3WVYNIVW 3HL 31V3¥] 0l
SYIAYIS IWVYINIVH 3HL WOY4 O031H0dWI 38
0L NOILVWYOINI SINO3¥ L1 NOILVISHYOM
JHL NO 031V3¥] ST 7300W 3ITAY3S G3M

JHL 'SNOTLYISNYOM L3N°® NO S31n33x3
JYYMLA0S IN3ITD 431300W ANOAT 3HL

w3 1300H AHOAT uE\\\\D

SYIAY3S NOLLVIIddY ¥311-01W 404
SIIVIY3INT IN3IITT 4v0S 3HL 011N 0L
035N ST 10SM |, ¥37300W AYOAT 3HI

‘SNOI1V¥JIddY NOILVISM¥OM ¥04
SIJVIYIINT IN3ITI 4V0S 3HL 011N OL
035N ST 0SM, 4373004 ANOAT 3HI

G

'

2l by

= 'SYIAY3S NOILYIITddY IWVYINIVH ¥04
=| S3IIVIHIINI IN3IITD 4V0S IHL 01ING 0L
0350 ST 10SM 4371300W A¥OAT 3HI

=

i v}

'SNOI1YII'1ddY dOLdV1 ¥03
SJIVIHIINT INIITT YOS JHL 01INg 01
0350 ST 0SM_ 4373000 AYOAT 3H1

US 2010/0146396 Al

Jun. 10, 2010 Sheet 14 of 33

Patent Application Publication

g€1°014 01 HOLVN

Ny S € SR 5 GEEE 5 D) VM # NN MAS § S0 § M 2 M S R D U 4 VD ¢ GNP M 6 e ¥ M S o AMS £ AR SR 5 OO0 WA D G N U 3 O T D W S €

atoN Ay2115 O

pu3 uerjosadg O

doct O

uo1s133g O

J03123uUe) A

3}1q01J04 §JOM 03 3ACK [
1inding 01 30K 3

13117 3214435 QaM 31NI3X] ©
1U3113 3214435 Q3p 01 3A0K [T
3pON 1ut04 1Ud1|] 3D1AISS GIM O
INIT N3] ©

3A0K [XHV

SPJDD MOYS ow: am“>=ooz
0L2E S
01 3A0Y

[XHY

spsud

uorioiadg
321AJ3S QoM
)

M 1unoaayh 13 Y3IYYHHOD 01 2A0y OO
5 To1102500 3poN 1U104 INIT O
e 331AJ3S QaM L0113y Qi ©
o 0L2€ 01 A0 O
0 210)NUIS 0} .MWWDLNmoMmu_m“H‘_Mq o .w\ PN 1vt0d QL2E O
‘ . : $5330Jd QL2 7
BI0P |1y suotriduny AJoA] ayi Buisn)
pato|nuLs 1 u_mo_mmf _“< ‘cc300.d pJuY11pasg . u0110J3dQ 3214435 31G0[|03 O
ay1 Aq p3y10d aJu suci3odriddo <719 u011043dy 3314435 Q3M [
0u 2214435 Qam adA1o304d © st sty) 14015 s O
0 pJ0J1!pa.J] {) ﬂ_._ s1uauoduo)
% —ES, _umd-efmc_o_. X o x0q]00]

* 1y 3083y oany [@.P mmm”_..@ @ @ Yoy @.a @ m % .m@&
6PN U|E@mm| Y| X S & X~ |0 FH -0

di3H mopuiM Sjoo] maix 11p3 31J

(3314435 3} PJDJ11p343-01pMiS KJ0A] 3J0M130S | @

vel by

US 2010/0146396 Al

Jun. 10, 2010 Sheet 15 of 33

Patent Application Publication

gel biy

Apoay

‘3131dwoy pjing

3yl asn jjim vo1losado siyl :uo131d14353Q
pJ031230:UIn UCIIJY VYOS

pJ021320 :u0130Jadg

un1as 1)1 uor1023doe s1y) :uoi3diiosag
SPJO3tuJn tu013IJY YOS

SpJod :u011043d(

Aoydsip yim vorivsade sty) :uoridiaasag

"3pOU 14015 Syl JOj J31jiiuapt anbiun ay)

X0Q)00}|

4301dx3 123f0.y

01 8poN
330 Buiooy) apig Januag
anafAoydag buiang x13314 18N 3N

P3IVVADY ()

qam adA10104d 0 S1 pJoJ1IpaJ)

uot1d1J253 3314435 G3M

paddous |0J311}/1u3uniop

ajhi1g buipoouy

11p3Jd/311500603,53 | dunsdoos/

0110307 OSM

o » @

e D

JUNOWDIUIN $UO1IOY QYOS 11paJa/ayi soduod/ca |dwos/doos, Lan
Lunown :u01 10s3dg pJ0311pasd WOy 3914435 qaM
K3133n 1w vortosado s1y) :u013d1aasag PJ0]31paJ] 01 3PON
| Ay133azuan U012y 4y0S 35093
v
X 4 inding {1 ¢ §313J3douy
4 Tv
A |
usniay A138p
uJniay spJo3
Pyl
uo1101adg anog J¥SIA [VSIA
inding
01 A0y

VE1 D14 01 HOLVA

Patent Application Publication Jun. 10, 2010 Sheet 16 of 33 US 2010/0146396 A1

Toolbox o X
Components A
3 Start

[J Web Service Operation

[Calloble Service Operation
{73270 Process

C 3270 Point Node

3 Move to 3270

< 3270 Action

O LINK Point Node

CJ Move to LINK

< Execute LINK

< Web Service Client Point Node
[Move to Web Service Client
< Execute Web Service Client
3 Move to Output

1 Move to Work Variable

V Connector

& Decision

O Loop

O Operation End

O Sticky Note

Fig. 14

Patent Application Publication Jun. 10, 2010 Sheet 17 of 33 US 2010/0146396 A1

Project Explorer g X
1] S =

CJC:\Program Files\GT Software\Ivory\Studio\san|

1
{

DO

cursorselect. html
cursorselect, ivp

cursorselect, ivs

--— cursorselect, wsdl
-— giismma, ivb
t---{Z) GIISMMA. MAP
Mary_Smith_10002. ivt
---12) README. TXT |
t---{Z) Steve_Smith_10001. ivt
<Yl I l 1>

Toolbox | Project Explorer

Fig. 15

Patent Application Publication Jun. 10, 2010 Sheet 18 of 33 US 2010/0146396 A1

D= E O]~ % B O X[y o=
Properties ? Xi
2 Base {
Node 1D IVYS)
Web Service Name CursorSelect 2
[URI || 7soap/samples/CursorSelect <
WSOL Location /soap/samples/CursorSelect WS (
Encoding Style document/literal wrapped S
Web Service Description The IVYS transaction is a 3270 @
=) Advanced)
Use URT Prefix During Deploy|True {
Server Side Tracing Complete }
URI
The Uniform Resource Identifier for this Web service. }
{
Toolbox | Project Explorer | Properties {

Fig. 16

Patent Application Publication Jun. 10, 2010 Sheet 19 of 33 US 2010/0146396 A1

[Diugrum-ncctmnin3270lh&b Browser |

Start

3270 Account Lookup
Fa Start

This node sill set up the name of the
Web service and the location

b

Web Service
Operation

Get Account Num 3270

Web Service Operation

This node allows for the setup of the
SOAP input and output fields for the

3270 Process | WSOL
_1_Trancode IVYS
-Hit Enter
3270 Process
3370 This node defines all the information needed %EE
Point Nod to start the LINK 3270 Bridge, such as the ~—
m oint Tode transaction code and initial processing .
Main Menu values, ffz
IT [£9
<
[
Move to S
3e70 Move to 3270 =
Move lost/ - =
This node allows the movement of data from =

First(yomes any source that was defined at a higher level

than this node Normatly this would be data
that was sent during the SOAP request for
this Wev service, However, the SOAP request
may require execution of a CICS COMMAREA

o gpplication before processing this 3270
3270 Action application, For this exampie, the input is
being sent by the SOAP request.

el it v e i L

Hit Enter
)
3270 Move to
Point Node Output
1 Moin Menu Save Account Number
| i

Fig. 17 A

Patent Application Publication Jun. 10, 2010 Sheet 20 of 33 US 2010/0146396 A1

|

P

i }

: Connector o~ .

! |

[

: Status Connector

! Q no /\ yes
! ? —
i 1 ™A

I)\ Status Active
! %<? yes

] /

o<'>yes Status Inactive

(T o

Status Closed l
O , —O
Move to | Move to Move to —{ Move to
Qutput Output Qutput Output
1 Unknown Closed Inactive Active
1 0] by o
i l J
~l
i]
-0
i 3 N
k.: Y)‘nnectﬁ
=1 NS
I Main Line Connector
=1 l
Si
f— :
!
=i i
| @ o1
! Hit Clear
| 9
Operation\
End
Complete
[
)__J

Fig. 17B

US 2010/0146396 Al

Jun. 10, 2010 Sheet 21 of 33

e—

Patent Application Publication

| gl b1y

_ $a31443S qam AJoA] y1im parsois Buriag _ Apoay

H:n:é _

131010x3 1030 5D B w1y Hu!1001ADU~0J3U1/101J03N1/D0P/01PRISAIOA]/300M1 J0ST19/53 |1 402 ¥ W0JD0I4/20///231!1 3 _

ta

‘dyay pun ‘wopuim ‘Sj00] ‘M31p ‘TTp3 ‘3714 :Su011do nuaw AJOA] 3yl 1nOGE S}IDIAP JO4 3PING S, J3SN AJOA] 3yl 01 Jaydy
“inding puo ‘5311330009 1uduodusd ‘X6q760) 1uauaduod ‘TFI010%3 1031044 ay1 3pN|ur 3say: ismopuim 21qUD0p ut Apdsip sjooy 3dalouy

“J3SM0JG GaM D Ut dj3H AJoaT e

€335M0q QaM © U1 JOSM 3Y: JO MIIA THIH Pa10JALAG e

$435M0.Q QaM JO JBM31A THX UD U1 TJSM PAl0IAUIG @

fyowsoy Wy patJodur Jo 3dunos xoaghdos so syooqAded 0§07 PaiJodu] e

‘10uJ0) ¥ ParJodul JO 33un0S Y UAAIIS (2L © SO SAUH SWE paiJodu] e

‘wosboip 133f0ud e
$57JN0S3J 353yl !SMOPUIM 1UBWRDOP [QW PaqQUl U1 Pako)dsip 30 S30un0sas 133f0Jy A11|DUOIITUNG SMOPUIM JOI|1wWDy $3SN 0!PNIS Ki0A]
uoriobiaoy Auoa]
30 300 AJOA]
3WoH 3pINg 1J01S Y2 1Nf AJ0A]

B 5311720017 @

$3)14 papn|3t] o
134010x3 123014 e
‘W0!10WJ0U1 P3)1013P 340w J0J 3PIRG S, 1351 A40A] 3Y1 01 J3Y WOPUIH, w0IBD1] o
‘wo130B1anu o1pnig Auoa] 4o s31s0q Ay suiojdxa 1wawnd0p Siyp
[151431u0]
aping 14015 21np Asoa]
W Ason] Buryobiaoy
fa

_—

0 a3woy ysasydy do1g PJOMIOS 4IDg

m m m _ 395M04g nuz_ 0L2¢u 1 ow1ddu-weabo1(

US 2010/0146396 Al

Jun. 10, 2010 Sheet 22 of 33

Patent Application Publication

6l b1y

| ___I»

I»

v .:._:

¢30013AU73:dD0S/>
<kpog:duos/y
<35U0dSAYUNNILNOIIYISGsu />
<OJUT120Y:[SU/>
J1s:psx = 3dk1:15X J3QuUNNILNODID>
< Buruis:psx = adkiz1sx auoNIsD|>
JBurais:psx, =adhi:isx uoNiISIy>
ul122y:[su, = 3dA1:1sx 0ju[3I3Y:[SU>
= w:sujwx 95u0dSIYWNNIUNODIY1BG:W>

asuodsay 4¥0S

4

il

<3d012AUT: d00S/>
<Apog:doos/s
<WNNIUN02Y139:(0S/>
we Burtays:psx = adki:isx awoNisatygs
ws¢ Bursisipsx = adAy:1sx 3wWON1ISO]>
<WNN1UNGIJY130:(S>
/7011y = 31415Bu1poaua: doos Apog:doos>
HN1UN022Y139:Udn = 0S:suux 3do|3au]:dooss
+] <i,8-31n,=6uipodua ([, = uo1ssaa Juxg> |

15anbay 4v0S

diay 300J] MIIp 153] puol 153] 3ADS
EININ ysaJyay 153)
ﬁHHHHHHHHHHHHHHu pPJOMSSO4 _ a1 43sn
ﬁ cm__.mummvpzoms_h
_ | N Axoug
— s:zE:auuﬁmoEs_ U112y gVOS
_ 531 duos /oyu00k/pQp, 1 wod 3.50m1 30516 A3p16//:d E_ 130
_ |1 dilH| vo!sJ3p JLuH
_ e:zucsouu<~mu_ ve110J3dg
_ c_czpuu<_ 3WON 3D1AJ3S

_... _ 1pSM .=_cEHa/:_azGuﬁEmmc_czpuuﬁﬂuﬂ_ uo13930) GSM

sbui13ag

1PSM ‘U10W}300-153] | JAsm0g daM urow1220-woJbo1g

Patent Application Publication

Jun. 10, 2010 Sheet 23 of 33

US 2010/0146396 Al

@) SOAP Request

[EHGetAccountNunRequest

1
r--lostNume
L--FirstName

Name

first Name

Encoding Type

Target Nome Spac

https//www. w3. org/20

Yalue

{»

Volue

Value assigned to the dota type

0K

Cancel

Fig. 20

@E)SOAP Response

HOX

[]~§etAccountNumRequeét
E}-nlsl:AcctInFo

-firstName

Name

account Number

Encoding Type

Target Name Spac

http://www, w3, org/e0

Value

I»

Name

Name of the Data Type

Fig. 21

US 2010/0146396 Al

Jun. 10, 2010 Sheet 24 of 33

Patent Application Publication

2z by

<] I»

A1Ingss323ns paia|duod Jaruag 01 Asjdag ‘uaasag Asoap o papoojdn s3j) g
** ¢ 30035 Auoa] 01 sayry Buipuojdy
sansag Asoap 03 Busydsuued “pying Jnyssadong

‘313|0uo] pying

]'M YJD 3 'p3padu S0 Painadd ag uod su11023de |DUOIIIPPY 3D1AIIS GaM S!yl Aq pauwsojiad uer1niade Ajug ay1 st wnN1UNo3dY13Q :u011d1.4353(
WNNIUN0DIY13G:UJN U011y dY(S
WNN1UNOJ2Y13g :uat10J3dQ
*** qosm Buriosauag
® o ¢ qu0i1ons150] 4ana3s Buiiosauag
,1IN53y puag :pu3 uoiinsadg
, EPN1Un0208 139 :anding 01 3Acy
o NIVHLIJJV 03 3NIT, N[91n33x3
, BUON1SJ! §/3UDNISO] A0, NI 01 3A0H
, 1UIDW120Y 23PON 1U10d NI
,UNNIUNODIY13g | :u013043d(331AJ3S GaM
,J2qunN 1UN02dy ©) BWON 1507, 1401
***133f0ug Burioprjop

Wd ¥0:91:p G002/22/b #8u!]/310Q

EONVIA sud1shg

AT "U1DW1220\U 1DK132Y\(/ ZEV 1 OH1IIY\S1930 0047A10AT\|(24 S3)duns—Auoa]\owag\s1uaundog ArGuoyh\sburiiag puo sjuaundogy:] :uorindo]
uiowiad0 :3133fousd :patsois pling

p1ing Buinssy “3aasag o) Aojdag Buiiumig

X b 1nding

. [inding |

US 2010/0146396 Al

Jun. 10, 2010 Sheet 25 of 33

Patent Application Publication

ez b1y

adA1Janp #20/500
11x7 031 403)7 ‘uvor1oy 01 of 1o youvag 01 J3IUT SS3Yd

et T
" m
m i
1]
" i
1 1
l} 1
| |
m 11w $S3JppY 3WoN 1507 3WON 1SJ14 31| #1023y !
IS 04U ac:ouu<----¢-
m : J3qunu 1unodJy

m a1ajag abuoyy ppy Aoidsig s uo1 12y “
.. 1UN0JJD UD 553304y ----- ?
i |
” ! 3WON 15414 m
| : WOy 1507 m
i 1
M ... 1UN0220 UD YaJ03s -—-—+

3]0woS 1unoddy |9

diay sjoo| sburiiag maipy 11p3 2ty

£266 = 140d w02 "3som1 0516 "Aap1b = 150y pg2g 10 A0 Amw

US 2010/0146396 Al

Jun. 10, 2010 Sheet 26 of 33

Patent Application Publication

pg by

CLATREN £20/500
11x3 01 J03]7] ‘uoridy 03 ob o youvag 01 J31U] SSAUY
punoy (s) p4odaJd [
e e e e e e e o e = o 0 o T T = o o o e e o = ~_I
| |
1 00 ‘00002 0y S3A3 3n18 e2ll HLIWS JA3LS ¥4 10001 !
BTN $53.Jppy 3uoN 1507 QWDN 15J14 3)11] #1022y !
e o e e 04Ul 1UNODDY -
m : J3Qunu 1UNDIJY m
m atajay abuoyy ppy Aoydsig uot1oy
e o e e e oo 1UN0JID UD §5330Jg ----- T
! : awoN 1541 m
m HIIWS ¢ SWwON 1507 m
h .. 1UN0330 UD YIJOIS -----

3)dwog junoddy |9

djay sjoo} sbuiilias marp 11p3 31y

XEE

£266 = 140d wod "3som3 30536 "Aap1b = 150y Q12¢ 10 AJQ Am@

US 2010/0146396 Al

(3214135 G3M) (L2EU!0WIIIV-01PNIS AJOA] 3ITM140S |G @

| Apoay
¥ 4 inding | sarisadosy _‘_anxu 193f0yy _xofoﬁ
1] _ [»]lal
A
bt e | F ¥ R0y o dad
e) L e P ajoN Apuis O
e Yo L pu3 ver1va3dy O
S o1 :01ad) Q
e /4[A 007 O
~ (o119 QLaE ug15133(AV
mu - J0123UL07 A
Y Goriw Gzl —— 31Q01JDA 440M 01 AACKH (]
2 * . v.mmﬁ.h_.n 1nding 01 2a0 O
wn ..:zsuf v Lot gron | 1U311] 331AIIS qaM 31NdaXI ©
= 103117 321AJ3S GaM 01 3A0K [
y— 101380003
m M ..H.._:_._HV 3pON 1U104 1U31]] 331A3S IM O
= { _ L1) N1 23 o
— aalioy] sanpoup paioiy _i.“.x.: YINYWAQD 01 2A0N O
o orans Mo s 2o | R apoN 18104 NI O
m t pasoi snaoug | ﬁou@& E.m\ uo!1dy Ohmm o
e ,.VoL 0L2€ 03 M0W [0
A Y ST 3poN tutog 0L28 O
= whoysmis PPN 7 2314055 o $533044 0128 T
8= TN A ! g . votioJady 33:a435 3140107)
= i sa)3mvusy Imieag oSSy oed U0 1304360 331AJ3S G5M O
m Lc.u“.:-uu _ :q—mld 14015 D
_w 2 | vl s1uauoduo?
D.In_. X __um; .o\.mmsaﬁuoc;.mmh_:zzzZz ,a,__em__mxéx_:z:zZz .aesm:m-musom_bmg?_m qam Emmscﬁuuc-e?_moi_.& X6 X0q)00]
=) — —— - - -
.m ,@ﬂmﬂmﬁu ﬂUﬂx,ﬂL,C Dnm,@
= diaf wopuif sjoo] maIp 11p3 3]
=3
=7
«
~—
=
)
~N—
S
[~ ™

Patent Application Publication Jun. 10, 2010 Sheet 28 of 33 US 2010/0146396 A1

@) 6T Software Ivory Studio-test (Web Service) Q
Fite Edit View Jools Window Help
D=8 | % B O X || D= e
Toolbox 9 X||web BrowseriDingrom-testi X
C —_—
omponents {|a —
(O Start | 2 |
[Web Service Operation
{3 Callioble Service Operation Start
|7 3270 Process
O 3270 Point Node Identify the Web Service
3 Move to 3270
< 3270 Action
O LINK Point Node v l
. web Service
Toolbox | Project Explorer Operation
Properties B X Web Service Operation |
B Base
Node [0 3270 Process |
Initiat Trans 10 3270 Process
3270 AlD Key Enter
= Advanced 3270 Pr;gcess 1
Initial Input Bata
Initial Cursor Row]
Initial Cursor Column {!
Initial Receive Type |None
Retrieve Term ID
Node 10
The unique identifier for this Process node. ||
v
< I»
Output 7 X
Ready |] i |

Fig. 20

Patent Application Publication Jun. 10, 2010 Sheet 29 of 33 US 2010/0146396 A1

3270 Field

Copybook Field

SOAP Input

Static Text

Web Service Client Qutput
Work Variable

Fig. 27

3270 Field
Copybook Field |
SOAP Input

Static Text

Web Service Client Qutput
Work Variable

Fig. 28

Patent Application Publication Jun. 10, 2010 Sheet 30 of 33 US 2010/0146396 A1

Dicgram-acctmain32?0 |

[)
Start NJConnector

3270AccountlLookup
Q)

StatusConnector

1
3 ! !
Web Service ,//x\\\\
Operation _nooﬁ\? yes
GetAccountNum3270 i

Status Inactive

no yes

~ / l Status Closed
3270 Process

| Trancode IVYS Move !o_
-Hit Enter Qutput

T Unknown

. .
3270

Point Node

MainMenu
Move to

3270

Move last/
first names
Q

Hit{Enter

|

MATCH TO FI1G.29B

Loy s oo o o e o ——— — -

T (T 3

e
3270 Web Service
Point Node Operation

—— MainMenu2 - Save [Account [Number

¢ s e . o -

Fig. 29A

Patent Application Publication

Jun. 10, 2010 Sheet 31 of 33

US 2010/0146396 Al

\

no ///><\\\\yes

?

™A

ALt
Status Active

A
Move to
Output

—

Active

Move to (— Move 10

Output

y

Move to
3270

Raise Credit
i 0.

Output

Closed

Inactive
o)

(3270 Acti;;5
N -

Update

7

Connector

MainLineConnector

Nt

3270
Point Node

Update Result

MATCH TO FIG.234A

i

O-
Move to
Output

-

Move Resul

3270 Actioi}

Hit Clear
Hit clear 2
J |9 |
Operation
End
Complete UpeEgéion

Update Complete

Fig. 29B

US 2010/0146396 Al

Jun. 10, 2010 Sheet 32 of 33

Patent Application Publication

og by

p-03U0] A0y

0} JA

1nding

p-1UneJIYIA0K

| Apoay
H\ﬁ:auzo |
< [»
¥-HIAT
ystut g J/558304d DiE
/N[
puj [o) Ut
wo1301adg p-J3103] 103117 3314435 Q3pm 3indax]
uel1dy Q[2E :.rmwy_ um —m:unv_mw.-uww
w o

] 1uawdacy “cm_gu AdIAI3S

W

0LeE
81 3A0K

1U31]] 3I1AI3S
q3m 01 3A0K

)

apoN 1u
0L2€

-

PO IS

104

v-JVWSTTD

apeN 1104
0LeE

AJTIIA10M003Y

apey 1uiog 1u3!]]
ERTENEIEM

e

4

_

3uoNAgaunoday1ag

&

u01102: ddo SHg 02t
Burysixa uo }102 uayl audy

J3QURU 1UN03JC UD 133] 103

01 3214435 qaM 0 | (0]

$5330J41UN0IDY

q

uo ! 30J3dg
a31AJ35 q3m

E

55320441UN032Y

101§

!

_mmmuohmgcsouu<-echmc_m=

Too| Prof Properties|

‘=@

4%

X

bll\»(

03 <-0

diaf] mopuip

sjoo] w31y 11p3 3113

(3314435 gaM) 55300141un03ay-01pmsS Kioa] 3J0M1305 |9 Amw

US 2010/0146396 Al

Jun. 10, 2010 Sheet 33 of 33

Patent Application Publication

e by
WYSA
Svavay
WOV LYO SNOITLVIIddv SNOITLYIIddY
SWAI 280 SKWI VIYYWWOD) SWE 0L2E
SS3JJv viLvO) D

AYOLISOd3Y AYOAI

mommuuomm
Sd1iH/dLIH

SITYISON

mommuuommwﬁmowmuuomm 40533044

SNy

dv0s

s

Y3IAY3S AHOAI

S31J

0I0NLS A¥OAI
_ 106N1S)

US 2010/0146396 Al

SYSTEMS AND METHODS FOR WEB
SERVICE FUNCTION, DEFINITION,
IMPLEMENTATION, AND/OR EXECUTION

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This patent application is a continuation of copend-
ing U.S. patent application Ser. No. 11/129,597, filed May 13,
2005, entitled SYSTEMS AND METHODS FOR WEB
SERVICE FUNCTION, DEFINITION, IMPLEMENTA-
TION, AND/OR EXECUTION, which claims the benefit of
U.S. Provisional Patent Application No. 60/571,652, filed
May 14, 2004, the disclosures of which are incorporated
herein by reference in their entirety.

BACKGROUND

[0002] The present application is directed to systems and
methods for Web Service function, definition, implementa-
tion, and/or execution. The Internet is a global network of
connected computer networks. Over the last several years, the
Internet has grown in significant measure. A large number of
computers on the Internet provide information in various
forms. Anyone with a computer connected to the Internet can
potentially tap into this vast pool of information.

[0003] The information available via the Internet encom-
passes information available via a variety of types of appli-
cation layer information servers such as SMTP (Simple Mail
Transfer Protocol), POP3 (Post Office Protocol), GOPHER
(RFC 1436), WAIS, HTTP (Hypertext Transfer Protocol,
RFC 2616) and FTP (File Transfer Protocol, RFC 1123).
[0004] One of the most wide spread methods of providing
information over the Internet is via the World Wide Web (the
Web). The Web consists of a subset of the computers con-
nected to the Internet; the computers in this subset run HT'TP
servers (“Web servers”). Several extensions and modifica-
tions to HTTP have been proposed including, for example, an
extension framework (RFC 2774) and authentication (RFC
2617). Information on the Internet can be accessed through
the use of a Uniform Resource Identifier (“URIL,” RFC 2396).
A URIuniquely specifies the location of a particular piece of
information on the Internet. A URI will typically be com-
posed of several components. The first component typically
designates the protocol by which the address piece of infor-
mation is accessed (e.g., HI'TP, GOPHER, etc.). This first
component is separated from the remainder of the URI by a
colon (“:”). The remainder of the URI will depend upon the
protocol component. Typically, the remainder designates a
computer on the Internet by name, or by IP number, as well as
a more specific designation of the location of the resource on
the designated computer. For instance, a typical URI for an
HTTP resource might be:

[0005] http://www.server.com/dirl/dir2/resource.htm
[0006] Where HTTP is the protocol, www.server.com is the
designated computer name and /dir1/dir2/resouce.htm desig-
nates the location of the resource on the designated computer.
The term URI includes Uniform Resource Names (“URNs”)
including URNSs as defined according to RFC 2141.

[0007] Web servers host information in the form of Web
pages; collectively the server and the information hosted are
referred to as a Web site. A significant number of Web pages
are encoded using the Hypertext Markup Language
(“HTML”) although other encodings using Standard Gener-
alized Markup Language (“SGML”), eXtensible Markup

Jun. 10, 2010

Language (“XML”), Dynamic HTML (“DHMTL”) (the
combination of HTML, style sheets and scripts that allows
documents to be animated) or Extensible HyperText Markup
Language (“XHTML”) are possible. The published specifi-
cations for these languages are incorporated by reference
herein; such specifications are available from the World Wide
Web Consortium and its Web site (http://www.w3.org). Web
pages in these formatting languages may include links to
other Web pages on the same Web site or another. As will be
known to those skilled in the art, Web pages may be generated
dynamically by a server by integrating a variety of elements
into a formatted page prior to transmission to a Web client.
Web servers, and information servers of other types, await
requests for the information from Internet clients.

[0008] Client software has evolved that allows users of
computers connected to the Internet to access this informa-
tion. Advanced clients such as Netscape’s Navigator and
Microsoft’s Internet Explorer allow users to access software
provided via a variety of information servers in a unified
client environment. Typically, such client software is referred
to as browser software.

[0009] Web services further facilitate access to information
on the Internet by computer users. Web services address the
need to integrate legacy mainframe applications by acting as
platform-independent interfaces that allow communication
with other applications using standards-based Internet tech-
nologies, such as HTTP and XML. With traditional integra-
tion techniques, there are multiple point-to-point communi-
cation and data conversions that may change as new
applications are integrated or data formats change. Web ser-
vices simplify integration by reducing the number of Appli-
cation Program Interfaces (“API”) to one, Simple Object
Access Protocol (“SOAP”) and the number of data formats to
one, XML. SOAP overlays XML and transmits data in a way
that can be understood and accepted by Web browsers and
servers. The XML is also human readable. Web services
allow programmers to make databases and/or other applica-
tions available across the Web for other programmers to
access them and link the applications together to provide
services.

[0010] Web services using the request and response meth-
ods are further described as being a Service Oriented Archi-
tecture (“SOA”) approach to integration of electronic busi-
ness applications or processes. A service-oriented
architecture is essentially a collection of services. These ser-
vices communicate with each other as described previously.
The communication can involve either simple data passing or
it could involve two or more services coordinating some
activity. The methods of connecting services to each other
involve the protocols and transport methods of SOAP.
[0011] Web Services Description Language (“WSDL”)is a
format for describing a Web services interface. It is a way to
describe services and how they should be bound to specific
network addresses. The WSDL includes three parts: defini-
tion, operations and service bindings.

[0012] WSDL definitions are generally expressed in XML
and include both data type definitions and message defini-
tions that use the data type definitions. These definitions are
usually based on some agreed upon XML vocabulary. This
agreement could be within an organization or between orga-
nizations. Vocabularies within an organization could be
designed specifically for that organization. They may or may
not be based on some industry-wide vocabulary. If data type

US 2010/0146396 Al

and message definitions need to be used between organiza-
tions, then most likely an industry-wide vocabulary will be
used.

[0013] WSDL operations are grouped into port types. Port
types define a set of operations supported by the Web service.
[0014] WSDL service bindings connect port types to a port.
A port is defined by associating a network address with a port
type. A collection of ports defines a service. This binding is
commonly created using SOAP protocols and transport meth-
ods.

[0015] IBM created a SOAP interface for CICS (Customer
Information Control System) which only supported a one-to-
one relationship between the SOAP request and to the appli-
cation code. This process does not provide automatic parsing
and processing between the SOAP XML and the application
communication areas. It also fails to provide any method for
processing 3270 BMS applications. The IBM process pro-
vides neither flow processing nor graphical interface tooling
with the SOAP process.

[0016] A main problem of most computer-based systems is
their lack of ability to create composite processing in a Web
service environment. A primary aspect of the Web service
software described herein is to provide composite-based
application processing using existing application software.
Present systems lack support for a variety of functionality in
the Web service area. Present systems do not support appli-
cation flow and processing multiple applications via a single
SOAP request would provide a much-needed process to the
market place. Further, programmers have a significant learn-
ing curve to build the required XML and WSDL files required
for SOAP processing.

SUMMARY

[0017] The present application is directed to systems and
methods for Web services function, definition, implementa-
tion, and/or execution. In one aspect, Web services are
defined with respect to one or more functions available from
applications executing on one or more remote systems. In a
further aspect, such definitions are used to generate a pro-
grammatic implementation that is communicated to a Web
services server executing on, or in communication with, the
remote system(s). In yet another aspect, Web services clients
can then use the defined service by posting appropriate
requests to the Web services server and receiving back from
that server a response encoding the results of performing the
requested Web service.

[0018] One application for Web service definition and/or
development may be referred to herein as the studio or mod-
eling software. The modeling software can also be described
as the application flow designer for the patent application.
The modeler can preferably be implemented in software
executable on a typical computer having a system data store
(“SDS”) and a system processor; however, the modeler func-
tionality, or portions thereof, may be implemented in whole,
or in part, via hardware. In addition, or instead, the modeler
functionality, or portions thereof, can be embodied in instruc-
tions executable by a computer, where such instructions are
stored in and/or on one or more computer readable media.
[0019] An application for generating a programmatic
implementation that is communicated to a Web services
server may be referred to herein as a server or rule-based flow
engine. The manager can preferably be implemented in soft-
ware executable on a typical computer having an SDS and a
system processor, however, the server functionality, or por-

Jun. 10, 2010

tions thereof, may be implemented in whole, or in part, via
hardware. In addition, or instead the server functionality or
portions thereof, can be embodied in instructions executable
by a computer, where such instructions are stored in and/or on
one or more computer readable media. In some implementa-
tions the server functionality can be standalone, performed
within the studio or performed within the server.

[0020] A Web services server preferably incorporates an
SDS, a system processor, and one or more interfaces to one or
more communications channels that may include one or more
interfaces to user workstations over which electronic com-
munications are transmitted and received. In addition, or
instead, the server functionality, or portions thereof, can be
embodied in instructions executable by a computer, where
such instructions are stored in and/or on one or more com-
puter readable media.

[0021] A Web services client (“Requestor™) executing on a
computer communicates a Web service request to the Web
services server (“Provider”). The Web services server
executes the programmatic implementation of the defined
Web service to generate a response. The response is then
communicated to the Requestor. The Provider may execute
one or more applications on the system execute the server
and/or one or more remote systems in order to generate the
response.

[0022] In each of the studio and server processes, the sys-
tem processor is in communication with the respective SDS
via any suitable communication channel(s); system processor
may further be in communication with the one or more com-
munication interfaces via the same, or differing, communica-
tion channel(s). Each system processor may include one or
more processing elements that provide electronic communi-
cation reception, transmission, interrogation, analysis, pro-
cessing and/or other functionality. In some implementations,
the system processor can include local, central and/or peer
processing elements depending upon equipment and the con-
figuration thereof. It should be noted that the modeler, man-
ager, server (and client) are summarized above as discrete
components; however, these various components all together,
or taken in any selected grouping, could be implemented
within a single execution environment where a particular
system processor and/or SDS could support one or more such
components. Each SDS may include multiple physical and/or
logical data stores for storing the various types of informa-
tion. Data storage and retrieval functionality may be provided
by either the system processor or data storage processors
associated with, or included within, the SDS.

[0023] The studio provides an automated graphical process
of collection of information to define and build the Web
service process using an SOA. The studio process provides a
graphical flow of the application processes required to build a
request and response SOAP-based Web service. The graphi-
cal flow or model is then used to create the rules or execution
path the server must follow to provide the requested SOAP
response. Composite application processing can be provided
via the modeling or rules-based process, the designer also
provides for external logic processing to control the logic
flow through the multiple applications.

[0024] The manager may optimize its data movement pro-
cessing and lower storage requirements by only holding data
or storage as long as needed. Work meta data fields can be
used to dynamically modify control settings at runtime. This
process allows the modeler and manager to communicate
changes to the flow before runtime that take place at runtime.

US 2010/0146396 Al

The manager can allow for called projects, so that an appli-
cation program can call other application flows at any time
based on application or business requirements. This can pro-
vide a very powerful way to extend working application
flows. An application flow can call other deployed application
flows at any time during its processing.

[0025] In another aspect, a flow processing engine is dis-
closed in some implementations that processes movement of
data to and from standard application meta data formats to
and from the SOAP XML meta data formats. This process
reduces the need of the application programmer having to
know or understand SOAP and XML processing and having
to code additional application program to process SOAP and
XML. This can significantly reduce the time to market and the
possibility for errors to be introduced into the process. In a
further aspect, some implementations of the modeler dis-
closed herein can increase programmer productivity by
allowing a drag and drop interface for building application
flows and data movements between one or many applications.
Development time can be greatly reduced because the need to
build routines to parse and move the XML data to/from exist-
ing meta data formats is eliminated.

[0026] A further feature of some implementations includes
processing pure SOAP, XML and WSDL creation using a
composite application process that allows mapping and data
movements without any code to be created and executed.
Some such implementations may provide processing via a
runtime image that processes the XML rules and instructions
for processing the application flow, external logic and data
movement processing.

[0027] Additional advantages will be set forth in part in the
description which follows, and in part will be obvious from
the description, or may be learned by practice of the systems
and methods described herein. The advantages of the dis-
closed systems and methods will be realized and attained by
means of the elements and combinations particularly pointed
out herein. It is to be understood that both the foregoing
general description and the following detailed description are
exemplary and explanatory only and are not restrictive of the
invention as claimed below.

BRIEF DESCRIPTION OF DRAWINGS

[0028] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate
various aspects of the disclosed systems and methods and
together with the description, serve to explain and/or exem-
plify their principles.

[0029] FIG. 1 depicts an example graphical user interface
for a typical modeler environment.

[0030] FIG. 2 depicts an exemplary import interface for an
example modeler.

[0031] FIG. 3 depicts an exemplary data movement inter-
face for an exemplary modeler.

[0032] FIG. 4 depicts an example rule set generated in a
typical modeler environment.

[0033] FIG. 5 depicts a directory listing for a file repository
in an exemplary modeler.

[0034] FIG. 6 provides a sample FTP interface from an
exemplary modeler.

[0035] FIG. 7 is an exemplary Server Administration
screen for server configuring and managing.

[0036] FIG. 8 depicts an exemplary TN3270 Client access-
ing a TN3270 Server (Emulator).

Jun. 10, 2010

[0037] FIG. 9 depicts a potential Integrated Development
Environment (IDE) for an exemplary modeler.

[0038] FIG. 10 is an exemplary FTP interface used in an
exemplary modeler.

[0039] FIG. 11 is a block diagram of various components or
functions of an exemplary modeler and server.

[0040] FIG. 12 is a graphic representation of a potential
architecture for an exemplary modeler or server.

[0041] FIG. 13 is an example screen representing an IDE
with MDI, drag and drop and dockable windows as used in
some potential implementations.

[0042] FIG. 14 depicts a potential tool box window of an
exemplary modeler.

[0043] FIG. 15 depicts a potential project explorer window
of'an exemplary modeler.

[0044] FIG. 16 depicts a potential property window of an
exemplary modeler.

[0045] FIG. 17 provides a graphical representation of an
example graphical diagram window.

[0046] FIG. 18 represents a browser window within exem-
plary modeler.

[0047] FIG. 19 depicts an exemplary test window.

[0048] FIG. 20 depicts an exemplary SOAP request win-

dow as used by the exemplary test window of FIG. 19.
[0049] FIG. 21 depicts an exemplary SOAP response win-
dow used by the exemplary test window of FIG. 19.

[0050] FIG. 22 represents an example output window.
[0051] FIG. 23 depicts a screen from mainframe sample
application.

[0052] FIG. 24 depicts a sample data input into the example

screen in FIG. 23.

[0053] FIG. 25 depicts an exemplary modeler project rep-
resenting a Web service to operate a mainframe application
defined through graphical nodes.

[0054] FIG. 26 demonstrates the relationship between a
property window and a node within an graphical diagram
window in a particular example modeler.

[0055] FIG. 27 represents use of a drop-down menu for
selecting a data sources for an exemplary node.

[0056] FIG. 28 represents use of a drop-down menu for
selecting a data sources for an exemplary node.

[0057] FIG. 29 depicts a sample graphical Web service
definition accessing a mainframe application.

[0058] FIG. 30 demonstrates graphical definition of a com-
posite Web service within an exemplary modeler.

[0059] FIG. 31 depicts a typical deployment architecture
for Web services using an exemplary modeler and server.

DETAILED DESCRIPTION

[0060] Exemplary systems and methods are now described
in detail. Referring to the drawings, like numbers indicate like
parts throughout the views. As used in the description herein,
the meaning of “a,” “an,” and “the” includes plural reference
unless the context clearly dictates otherwise. Also, as used in
the description herein, the meaning of “in” includes “in”” and
“on” unless the context clearly dictates otherwise. Finally, as
used in the description herein, the meanings of “and” and “or”
include both the conjunctive and disjunctive and may be used
interchangeably unless the context clearly dictates otherwise;
the phrase “exclusive or” may be used to indicate situation
where only the disjunctive meaning may apply.

[0061] The hardware of a typical execution environment
for one or more of the components supporting Web services
definition, implementation and/or execution include a system

US 2010/0146396 Al

processor potentially including multiple processing ele-
ments, that may be distributed across the hardware compo-
nents, where each processing element may be supported via a
general purpose processor such as Intel-compatible processor
platforms preferably using at least one PENTIUM class or
CELERON class (Intel Corp., Santa Clara, Calif.) processor;
alternative processors such as UltraSPARC (Sun Microsys-
tems, Palo Alto, Calif)) and IBM zSeries class processors
could be used in other implementations. In some implemen-
tations, Web services definition, implementation and/or
execution (servicing) functionality, as further described
below, may be distributed across multiple processing ele-
ments. The term processing element may referto (1) aprocess
running on a particular piece, or across particular pieces, of
hardware, (2) a particular piece of hardware, or either (1) or
(2) as the context allows.

[0062] Someimplementations caninclude one or more lim-
ited special purpose processors such as a digital signal pro-
cessor (DSP), application specific integrated circuits (ASIC)
or a field programmable gate arrays (FPGA). Further, some
implementations can use combinations of general purpose
and special purpose processors.

[0063] The hardware further includes an SDS that could
include a variety of primary and secondary storage elements.
In one preferred implementation, the SDS would include
registers and RAM as part of the primary storage. The pri-
mary storage may in some implementations include other
forms of memory such as cache memory, non-volatile
memory (e.g., FLASH, ROM, EPROM, etc.), etc.

[0064] The SDS may also include secondary storage
including single, multiple and/or varied servers and storage
elements. For example, the SDS may use internal storage
devices connected to the system processor. In implementa-
tions where a single processing element supports all of the
server/manger functionality and/or the modeler functionality
a local hard disk drive may serve as the secondary storage of
the SDS, and a disk operating system executing on such a
single processing element may act as a data server receiving
and servicing data requests.

[0065] It will be understood by those skilled in the art that
the different information used in the systems and methods for
Web service function definition, implementation, and/or
execution as disclosed herein may be logically or physically
segregated within a single device serving as secondary stor-
age for the SDS; multiple related data stores accessible
through a unified management system, which together serve
as the SDS; or multiple independent data stores individually
accessible through disparate management systems, which
may in some implementations be collectively viewed as the
SDS. The various storage elements that comprise the physical
architecture of the SDS may be centrally located or distrib-
uted across a variety of diverse locations.

[0066] The architecture of the secondary storage of the
system data store may vary significantly in different imple-
mentations. In several implementations, database(s) are used
to store and manipulate the data; in some such implementa-
tions, one or more relational database management systems,
such as DB2 (IBM, White Plains, N.Y.), SQL Server (Mi-
crosoft, Redmond, Wash.), ACCESS (Microsoft, Redmond,
Wash.), ORACLE 8i (Oracle Corp., Redwood Shores, Calif.),
Ingres (Computer Associates, Islandia, N.Y.), MySQL
(MySQL AB, Sweden) or Adaptive Server Enterprise (Sy-
base Inc., Emeryville, Calif.), may be used in connection with
a variety of storage devices/file servers that may include one

Jun. 10, 2010

or more standard magnetic and/or optical disk drives using
any appropriate interface including, without limitation, IDE
and SCSI. In some implementations, a tape library such as
Exabyte X80 (Exabyte Corporation, Boulder, Colo.), a stor-
age attached network (SAN) solution such as available from
(EMC, Inc., Hopkinton, Mass.), a network attached storage
(NAS) solution such as a NetApp Filer 740 (Network Appli-
ances, Sunnyvale, Calif.), or combinations thereof may be
used. In other implementations, the data store may use data-
base systems with other architectures such as object-oriented,
spatial, object-relational or hierarchical.

[0067] Instead of, or in addition to, those organization
approaches discussed above, certain implementations may
use other storage implementations such as hash tables or flat
files or combinations of such architectures. Such files and/or
tables could reside in a standard hierarchical file system. Such
alternative approaches may use data servers other than data-
base management systems such as a hash table look-up
server, procedure and/or process and/or a flat file retrieval
server, procedure and/or process. Further, the SDS may use a
combination of any of such approaches in organizing its sec-
ondary storage architecture.

[0068] Thehardware components may each have an appro-
priate operating system such as WINDOWS/NT, WINDOWS
2000 or WINDOWS/XP Server (Microsoft, Redmond,
Wash.), Solaris (Sun Microsystems, Palo Alto, Calif.), or
LINUX (or other UNIX variant).

[0069] In one implementation the server or manager
executes on a z/OS or VSE/ESA platform and the modeler or
studio executes under a WINDOWS 2000 or WINDOWS/XP
operating system. The server or manager executes as a rules-
based processing application using XML based instructions
created by the modeler or studio software. The modeler or
studio is a graphical tool for building application flows to
allow processing of non-SOAP and SOAP-based applications
as SOAP-based composite applications.

[0070] Insome implementations, a graphical user interface
is disclosed that allows business analysts and programmers to
form a collaboration to build a new business process centered
on Web services. For example, users may be business analysts
who require a method of interfacing to a mainframe applica-
tion without an in-depth knowledge of the programming and/
or application execution environment. Other users might be
application developers or technical support personnel tasked
with building SOAP Web services for use by application
servers. This aspect can allow a developer to bridge between
the application logic and the business process needed to pro-
vide a SOAP Web service.

[0071] In one implementation of the methods and systems
described herein, a client uses a graphical interface to build a
business process by defining inputs and expected outputs and
then stepping through the application using graphical icons or
nodes for each step. This graphical user interface allows the
modeling of a Web service via graphical objects. The graphi-
cal objects are connected using connection points to form a
flow through the various applications or methods needed to
create the single process or composite process web service.
As seen in FIG. 1, the application flow through the various
nodes controls the logic processing for several applications
which provide the unique function of composite processing.
[0072] Each of the functions, (for example, business logic
functions such as Link Point 3270 process and 3270 Point or
Web Service Client point nodes, start and stop, logic flow,
input and output movement nodes or XML /data remapping)

US 2010/0146396 Al

may be represented by a graphical icon or node. The modeler
software is resident on the client’s workstation and converts
the client’s input into processing rules in a single format, for
example XML. The modeler provides the server with the
rules required to navigate or otherwise invoke a business logic
process, a transactional or conversational type application or
even Web services which exist on the same or external serv-
ers.

[0073] The server or manager is a rules-based engine used
to process rules generated as instructions from the modeler.
The composite processing of applications provided by the
server are a direct result of building the application flow using
a graphical design tool. This process provides a simple yet
powerful process for building mainframe-based SOAP or
SOA applications. The graphical tool serves as one facet of
the overall systems and methods described herein. Use of this
tool allows no additional programming to be required once
the modeler tool has deployed the rules to the server or man-
ager software. The server processes the incoming SOAP
request envelope, and then processes the business logic to
build the SOAP response envelope for the returned SOAP
packet. The server may further allow various processes of
additional functions or business logic to form a complete
response. Service requestors may communicate with the
server to discover the defined Web services and import the
WSDL that is created by the modeler to describe and define
the processing of the service. The modeler or studio tooling
builds the WSDL file automatically for the client or user of the
system and removes the need to have the knowledge of build-
ing these interface files. The WSDL files can then be used by
other third party products such as application design tools to
build the interface modules called SOAP clients or proxies to
access the applications that are orchestrated by the modeler/
studio and server/manager.

[0074] In some implementations, existing business logic
and/or application information can be imported into the sys-
tems and methods described herein. Existing business logic
and/or application information may be supported through
particular formats such as BMS or copybooks. An interface
can be provided for such importation such as depicted in FIG.
2. Imported business logic and/or application information can
then be used to build Web services.

[0075] The importing process provides a way to communi-
cate between various different system types, and the meta
data collected through importation allow systems designers
to communicate in a known language. Additional meta data
may be created and/or renamed, mainly SOAP input and
output meta data that is to be exposed by the Web service can
be named or described using new meta data names, which can
then hide the fact that the back-end system is not a Web
service-based application.

[0076] The imported meta data is preferably normalized
into an XML format to allow it to be processed using standard
XML parsers instead of having to use a unique parser. The
imported data, and/or other meta data, can be viewed in a tree
fashion using tooling provided by some implementations of
the modeler. FIG. 3 depicts such an example.

[0077] The graphical building of a Web service may use
imported information to define communication with business
logic and/or application processes. Each node has a unique
function and properties that define the Web service and the
operations performed by the service. For example, in a par-
ticular implementation, a Start node can describe the Web
service and can serve the anchor or parent node for all other

Jun. 10, 2010

operations. A Start node can further represent multiple opera-
tions and/or configuration settings. It can, for instance,
describe the location (environmental) attributes of the Web
service that you are building.

[0078] Once the Web service operations have been defined
the user may select the correct processing or point node. Each
processing or point node defines the information required to
access the target source. For example, for 3270 interface
operations the target could be a CICS transaction code, or for
a COMMAREA application the target could be a CICS pro-
gram name. Additional data sources such as DL/I, IMS, DB2,
VSAM, could also be used. As users build the diagram or
model of the Web service they may connect the nodes to form
the logic or processing flow. This flow will later be translated
into instructions for the rules-based SOAP server process.
The syntax of the diagram is verified each time a node con-
nection is attempted to insure a valid logic path and that node
connection rules are correct. The logic path is traced to insure
that the connection operation is to a valid parent and is not
crossing Web service operation paths or boundaries. Each
Web Service Operation node defines the expected SOAP
input and output for the service operation path. The WSDL is
created from the properties entered for each of the nodes. This
document is an XML description of the interface methods for
the Web service being created.

[0079] The modeler build process may in some instance
provide a verification of the Web service at the same time as
it creates the server rules, WSDL and HTML to define the
service.

[0080] The descriptive HTML may be static or converted to
a dynamic XSTL template that will build the HTML dynami-
cally based on the XML of the WSDL. The WSDL generated
by the modeler build process can now be used, in some
implementations, by an execution test and/or debug tool.
Such a test and/or debug tool potentially provides for further
verification of the service definition and the generated Web
service interfaces. These tools can dynamically process the
service information (WSDL code) to create the user interface
required to verify the deployed Web service. In such imple-
mentations, the WSDL definition may serve as the interface
point between Java J2EE and .NET processing. The WSDL
may be processed by popular Integrated Development Envi-
ronment (“IDE”) products that supply the capability to auto-
matically build the Java, C# or other language interface code
for processing the Web service described by the WSDL.
[0081] The server side instructions (rules) contain a mix-
ture of execution and data flow. These instructions can be
represented in XML as a tree structure. The XML tree is
derived from the project diagram and its associated settings
including data movements and/or properties. The diagram
itself is stored as a mostly flat entity (although it may be
represented in XML) so the resultant server instructions are
not required to have the same appearance as the diagram. The
format of rules is preferably set to provide the highest perfor-
mance, as these rules will be executed for each request of the
Web service. The rules may be compressed and/or optimized
to improve performance of execution. Each execution node
within the server instructions contains children nodes, one of
which will receive control once the parent has completed its
processing. The choice of the next child to dispatch is deter-
mined at runtime by the rules engine, but the rules instructions
allow all possible choices to be specified. FIG. 4 depicts a
representation of the rules generated by an exemplary mod-
eler in one particular implementation.

US 2010/0146396 Al

[0082] The model designer has complete control over
server processing logic flow. There are no ambiguous execu-
tion flows within a Web service operation; the model designer
details completely how the server is to operate. Data flow is
completely described within the modeling diagram process.
The modeler creates the server side instructions via an
“n-pass” algorithm applied to the diagram XML based on the
number of paths created by the client in the diagram. Server
processing is a single pass of the XML server rules instruc-
tions tree. The modeler pre-notifies the server, possibly via
the rules, of any data movements required to be saved for later
usage to optimize the server performance. This design places
the complexity burden upon the modeler to be highly opti-
mized in its rule creation resulting in performance benefits in
the server rules engine.

[0083] The server may be a SOAP server based on the
HTTP and SOAP protocols. The particular server may sup-
port processing standard HTTP and/or secure HTTPS
requests. The repository may be a Hierarchical File System
based on a CICS standard VSAM KSDS file; this unique
function provides support for a UNIX/Windows based file
system without the need for Unix System Services on CICS.
The file repository may contain a command line processor for
management of the file system via a standard CICS transac-
tion. Command examples include, but are not limited to cre-
ation of file systems in the repository, directories and data
files as depicted in FIG. 5. The file system repository can also
be managed from an FTP server provided such as with the
SOAP server and/or via the FTP client supplied with the
modeler. FIG. 6 provides an example of screen of manage-
ment via an FTP server. The HT'TP server and FTP server can
follow the standard Internet RFCs for those protocols.
[0084] The server can provide the ability to map transac-
tional 3270 and program-based applications into SOAP
methods or objects. The heart of this process is the rules
engine that is used to process the output rules instructions
from the modeler. The server processes each node starting
from the initial start point of the diagram. In a preferred
implementation, each diagram contains the Web service
name and the operations or methods the service provides.
Once the method is selected from the SOAP Request enve-
lope, the selected Web Service Operation node becomes the
parent node and the logic tree that results will all branch from
this common parent. For example, each node of the rule
instruction set may cause the server to dispatch the functionto
handle the node operations. The node operations are opti-
mized into the correct code page for the mainframe session.
[0085] Inapreferred implementation, the HTTP server pro-
vides the base protocol support on top of CICS Web Services.
This HTTP server provides administrative utilities to manage
the SOAP services and FTP servers. An example administra-
tive screen is seen in FIG. 7. All discoveries of WSDL files
and management of the HTML documentation can be stored
in a Hierarchical File System (as part of the SDS).

[0086] Some implementations of the described systems
and methods may incorporate a debugger or testing tool to
read in the WSDL and extract all the operations that can be
performed. The debugger lists the operations in a pull-down
list. Once the user selects an operation from the list the input
field, meta data will be used to build a tree view of the required
input fields. The debugger or test tool may be used to input
data for the SOAP Request envelope. For complex arrays the
user may first define how many occurrences will be entered,
and then the debugger will provide input area in the tree

Jun. 10, 2010

display for the occurrences of the complex type. The debug
option may be added to the client modeler application and the
server service provider. The debug operations may be a two-
way communication path that will allow the client to know
what step has been executed on the mainframe. The client
notifies the server of the debug request by sending additional
headers in the HTTP request to show the debugging client
machine. The user may open a TCP/IP socket to listen for
requests. As the server starts execution of the rules the server
will send status information to the client. The modeler will
show the current step in the diagram and will provide for
breakpoints and other standard debug commands, such as
looking at storage, setting new data values.

[0087] Some implementations of the described methods
and systems incorporate an emulator. The emulator can be
written in such a way to provide .NET access to the 3270
emulation via browser object tags, the browser may be used as
the container for the emulator product. This may also extend
beyond the browser into an API that allows programmatic
control over the 3270/5250 applications. This will be a pure
.NET solution and as such will allow any .NET language on
a Microsoft platform be used to build new interfaces. The
emulator can take advantage of performance improvements
placed into the Windows .NET object used to build applica-
tions.

[0088] The emulator can be installed in classic windows
fashion, or via a browser interface. An exemplary emulator
screen is seen in FIG. 8.

[0089] In some preferred implementations, the modeler
process provides for building Web services by importing
Basic Mapping Support macros (“BMS”) and building a data
structure in XML that matches the Application Data Structure
(“ADS”). For example, in one implementation the model may
provide a method for importing the CICS COMMAREA into
an XML format much like the BMS macro layout. This pro-
vides a common layout and structure for the various applica-
tion data structures that will be used.

[0090] In some preferred implementations, a user builds a
business process by defining inputs and expected outputs and
then stepping through the application using graphical icons
for each step. Each of the functions, for example business
logic functions, starts and stop, logic flow, or XML remap, is
represented by an icon. The end result is a graphical design of
the application from the Web service inputs to the final Web
service response. The graphical models may be self-docu-
menting or may also provide for process documentation to be
entered using “sticky notes”. The modeler interfaces with an
IDE, which processes the menus and windows for user selec-
tions. The general design in a preferred implementation may
include dockable and movable windows and the use of Mul-
tiple Document Interface (“MDI”). (See FIG. 5.) Menus and
screen literals may optionally be based in resource files to
allow for support of languages other than English. FIG. 9
depicts an exemplary screen.

[0091] The modeler will allow users access to multiple
applications in a single Web service by combining application
available functions, in contrast to conventional systems that
require having to make several calls. In order to improve
compatibility with other systems, all or some files created by
the modeler, including the project files, can be stored using an
XML format. The modeler may incorporate functions to
import copybooks that are converted to an easy to understand
XML format, which allows for easy expansion of the result-
ing meta data dictionary. The modeler will also incorporate a

US 2010/0146396 Al

BMS macro importer to convert the BMS source into XML
format. An FTP client can be provided to pull copybooks
and/or BMS macros from the mainframe or other computer.
An exemplary interface screen is depicted in FIG. 10. The
FTP client may include a meta data import function. Such a
function supports ease of use by clients when importing meta
data located on a remote computer system.

[0092] The modeler provides the server with all the rules
engine information needed to process SOAP operations.
[0093] Manager software, for example, mainframe service
routines, uses XML data collected via the modeling software
to process the business rules defined in the graphical model by
the user. Input to the manager will be the processing rules
from the modeler and the SOAP packet. The input process
will fire the manager, and it will process the business logic
building a result for the returned SOAP packet.

[0094] In one preferred implementation, the server is a
rules-based engine that processes the XML server instruc-
tions from the modeler. Each node is converted into a set of
rules that allow the various processes of a Web service to be
applied to information and procedures resident on a server,
for example the CICS TS server or on IMS-based server
processes.

[0095] The Start node is the initial setup and logical start of
the Web service being created. The Start node defines the
name of the Web service and various WSDL options such as
the URI to invoke the Web service and the target namespace
for the SOAP input/output fields that will be defined. The
processing type of RPC (Remote Procedure Call) and Docu-
ment is requested at this node.

[0096] The Web Service Operation node provides the logi-
cal name for the method or operation and provides the SOAP
input and output structures. Each input field and its type is
described at the Web Service Operation node. The output
structure expected from the Web service is also defined at this
node.

[0097] The LINK Point Node provides the interface point
between the server and the Web service being created. The
link point defines the name of the program to execute and the
location where it should execute. CICS dynamic routing rules
may be used when processing.

[0098] Someimplementations may incorporate a 3270 Pro-
cess node and a Point node. The Process node may cover all
the setup information for the transaction code and the infor-
mation required by CICS to start the 32370 process. The Point
node is used to supply the current BMS mapset and map name
so that data movements can be created.

[0099] Data movement nodes provide a tree structure for
creation of move rules. Some examples of data movement
nodes include Move to LINK, Move to 3270, and Move to
Output. The movement process is based on a common code
base so that all movement nodes have a similar function. The
Move to LINK node, for example, may provide the method to
set the initial values for the program that will be invoked. The
Move to 3270 node may allow for moving data to the BMS
map in order to provide input for the 3270 screen operation. In
one implementation, the data that could be used for these
move operations could be from static values, SOAP input
request envelope, and any previously accessed 3270 map or
CICS COMMAREA.

[0100] The Decision nodes provide the ability to add logic
that will change the flow through the model. These nodes may
be processed by the server and take action on data from any
previous point node under the same Web Service Operation

Jun. 10, 2010

node. Complex operations may be defined using the Decision
nodes in conjunction with Loop nodes. Decision nodes can
target the current point node process for all comparison
operations.

[0101] Logic Decision nodes may also be placed in the
flow. These nodes allow the data to be examined and the result
to modity the flow of the server rules to provide 2 paths for
each decision node, so the logic paths or flows increase 2*n
where n=the number of decision nodes. These nodes may
provide the method for the logic flow to form a tree format. In
conjunction with Decision nodes, Connector nodes may be
incorporated to allow consolidation of logic paths. The Con-
nector node may provide the method for a branch of logic to
return to any logic path under the parent Web Service Opera-
tion.

[0102] Loop processing is also used within decision tree
processing; a Loop node provides a method for returning to a
previous node within the parent Web service operation. At
times logic of applications running in CICS will require that
they be executed using multiple iterations. The Loop node
will allow the logic flow to return to a parent node. For 3270
BMS this might be an operation that is scrolling through
several screens. Fora COMMAREA application, it might be
a program that requires more than one pass to collect all the
returned data.

[0103] The Move to Output node allows for data to be
moved from any previous point node with the same parent
Web Service Operation node. The target of the movement
data will be the SOAP response envelope.

[0104] The Connector nodes provide a very important pro-
cess that allows several logic paths to branch out and then
return to the main line logic flow.

[0105] The Operation End node is a logical placeholder to
signal that the Web service operation has completed its task.
All Web Service Operation node paths can connect to a single
Operation End node.

[0106] A Calculation node will provide for mathematical
operations to be added to the logic flow of the modeler. These
nodes will process data from the application and will be used
to modify the result set returned to the client. For example, the
3270 application may have a total account balance for the
persons account. A Calculation node may provide support for
the user who desires to process all accounts and return to a
single total.

[0107] A Data Source node provides access to external file
systems and database data, for example, DL/I, IMS, DB2, and
other ISV databases. Each Data Source node will have unique
options for each of the different Data Source databases or file
systems supported. These will be added to the product on an
as needed or on demand basis.

Exemplary Manager or Server Function

[0108] The following description lists some general fea-
tures of an exemplary manager or server function that may be
used along with a modeler or studio function to provide
application flow processing and orchestration of applications.
The manager or server processes all SOAP requests and
handle the processing of application flow as described by the
rules created by the modeler or studio process. Application
orchestration provides a method to modify application flow
without the need to modify the existing application code. F1G.
11 shows the various functions of the manager/server in one
of the variations in which the process can exist. The studio
process is the modeler that builds the rules used by the rules

US 2010/0146396 Al

processor to orchestrate application flows. The manager/

server and modeler/studio architecture is depicted graphi-

cally in FIG. 12.

[0109] The server process or manager process contains a

set of code instructions to manage the various processing

engines and may in some implementations automatically
switch states between the various processing functions as

needed to process an application flow or to orchestrate a

composite application consisting of one or more of the appli-

cation area or processes shown in the example.

[0110] The SOAP clients can be any .NET, J2EE, standard

Java, third party or user created web service functions. The

manager/server can itself call another manager/server run-

ning the same or different projects to complete a true distrib-
uted function. Functions may further be called from user
written applications (not shown). During this process the
manager or server is acting as an agent of the application and
notthat ofa SOAP request. The processing may occur via API

meta data structures instead of SOAP WSDL meta data XML

files.

[0111] The following is a list of functions provided by a

typical manager server for processing the application flow

rules created by the modeler or studio functions.

[0112] Rules processing engine for processing execution
rules provided by the modeler/studio software for orches-
tration of application processes along with handling all the
dynamic movement of data to and from SOAP XML meta
data to application specific meta data layouts. The algo-
rithm used for application flow processing may work in
conjunction with the memory management algorithm to
insure that only the storage required is saved during the
execution orchestration process.

[0113] HTTP or HTTPS processing of incoming SOAP
requests, optionally the requests could be dropped onto an
MQSeries queue for processing by the rules engine. This
may include the security checking and processing required
for verification that the process is valid for the passed
security information.

[0114] The application meta data mapping and data trans-
formation algorithm may be based on the imported meta
data information collected from the modeler or studio
execution rules instructions. This algorithm includes rou-
tines for processing data transformations between the vari-
ous encoding methods of ASCII to/from EBCDIC. The
server/manager may also process all the various COBOL
application data types of, but not limited to: COMP,
COMP-2 COMP-3, COMP-4 and POINTERS. String and
decimal number processing can be processed by the data
mapping functions to insure the correct decimal alignment
options are processed.

[0115] Storage processing may be handled by management
modules that insure only the data needed to process the
movements in the project rules files are saved during the
execution of the SOAP or MQSeries request.

[0116] A URImapping module may control the processing
options and security used for various SOAP requests based
on any suitable technique; in one preferred implementa-
tion, a pattern matching algorithm is used.

[0117] The manager may also process WSDL discovery
requests as a standard SOAP server using the ?WSDL
option, but it processes the documentation of the WSDL
into an HTML file that can be served out using the 2INFO
request which displays the information collected by the
modeler/studio functions into a human readable form of

Jun. 10, 2010

HTML so that other application developers can read and
understand the requirements of the WSDL process. This
can be advantageous in the debugging and analysis of the
Web service.

[0118] The rules engine may be implemented a single com-
mon resource. In some implementations, this rules engine
may be completely re-entrant so that it can handle multiple
inbound requests.

[0119] The manager/server may also, in some implemen-
tations provide trace functions which create an XML
description document that traces the functions of the last
SOAP request call. The trace can be used to debug opera-
tions or look for problems.

[0120] The Callable Services Operation (CSO) module
may provide an API to an application program which com-
municates with the CSO module via COMMAREA inter-
face. The CSO module may operate to convert COM-
MAREA input requests to SOAP requests, execute the
requested Web services, and deliver the results in COM-
MAREA output area.

Exemplary Modeler or Studio Function

[0121] The following description lists some general fea-
tures for an exemplary modeler or studio that may be used
along with a manager or server function to provide applica-
tion flow processing and orchestration of applications. The
modeler or studio function typically includes a high quality
graphical display process to achieve the easy graphical build-
ing of application flow process. Icons and images are used to
associate tasks and functions required to build or orchestrate
an application or set of application flows. FIG. 13 depicts a
sample screen of one example interface with features as more
fully described below.

[0122] Multi-document window interface for controlling
several containers of information in a single User Interface
(UD.

[0123] Drag-and-drop dockable windows allow customiza-
tion of the Ul to match the clients or users preferences that
support one or more features such as:

[0124] View or hide a window within Ul

[0125] Resize a window within UI dynamically.

[0126] Place a window in different location within UI
dynamically.

[0127] Tab between windows.

[0128] FEach window is provided with scroll bars so that
the information within the window can be viewed using
the scroll bars if needed.

[0129] Remember the current user preference and con-
figure the windows the same way next application start
up.

[0130] Graphical toolbox oficons used to manage the vari-
ous nodes required for building application flows and com-
posite application processes.

[0131] Under certain conditions, the particular nodes
made inactive depending on the application types that a
developer builds.

[0132] The nodes will be placed in a logical order that a
developer might be using. For an example, all COM-
MAREA related nodes are grouped together, placed in
the order that they are typically used. All 3270 related
nodes are grouped and placed in the order that they are
typically used. All Web services related nodes are
grouped and placed in the order that they are typically
used.

US 2010/0146396 Al

[0133] The toolbar may be fully customizable to allow
clients to place important or high use items on toolbars for
easy access.

[0134] Action bar menus may be provided to allow process-
ing of all functions, important or higher usage functions
will be represented by icons to allow placement on the
toolbar.

[0135] Import functions may be supported for the follow-
ing:

[0136] Copybooks and/or source code to pull in COM-
MAREA or IMS application layouts

[0137] BMS macro importer to pull in 3270 meta data
information—This may include other 3270 sources in
the future.

[0138] Pull copybooks and/or source code from input
source including local computer file system and remote
computer file system.

[0139] Profile dialogs for manager server deployment,
UDDI client, FTP client and 3270 client application pro-
cessing. Profiles include information needed to create and
maintain a connection to a host process.

[0140] Profile dialogs for management of internal/external
tooling, namely access to applications created outside the
product. For UDDI processing the dialogs may describe
the various methods for importing WSDL files created by
other functions or by the tool itself.

[0141] Project Explorer or file management process to
show files associated with the project or file member to
store all the execution flow processing XML information,
may allow double clicking to process options, or right-
click to show menu of processing options.

[0142] The application flow window or diagram window
may be part of an MDI interface that provides a customi-
zable grid layout process to allow nodes to be dragged to
the diagram processing area and dropped. The dropping or
selection process may activate a property window (part of
a customizable dockable window interface). Once acti-
vated the property window can display the default or saved
options for each node depending on the state of activation.

[0143] Certain nodes may provide collections of informa-
tion about meta data or data movements. The collections
may be accessible via a mouse click or keyboard selection
of the collection expansion process. The collections may
be presented in tree processing dialogs to allow for ease of
processing when selecting or building meta data informa-
tion.

[0144] The graphical Diagram window may contain rule
processing to allow the flow engine to process correctly. A
rigid and expansive set of ruling and verification may take
place each time a node or tool is connected or disconnected
to reduce errors. The flow processing may require valida-
tion in some implementations before a connection is
allowed; this provides the client with immediate feedback
as to the validity of the diagram, model or application flow.
When meta data items are renamed or moved in the col-
lection properties the change should be propagated through
all nodes attached to the project.

[0145] The Properties window may display the required
meta data information when a node is selected. When it is
required, each meta data may cause additional windows to
gather information. As an example, Web Service Client
Point Node needs the WSDL location of the Web service.
When the WSDL location is clicked, WSDL Discovery

Jun. 10, 2010

window is displayed so that it can gather information about

the WSDL and populate the required information on the

property window.

[0146] When the project is deployed to the manager or
server, the status of build, verification or processing rules,
and the status of upload process of processing rules of
application and generated WSDL may be displayed.

[0147] In addition, some implementations include a build
or verification process that can provide a secondary check
of the properties and connections between the nodes to
insure the flow processing rules are complete and valid
before being deployed (uploaded) to the manager/server
process.

[0148] After the completion of the build process, the gen-
erated files (e.g., WSDL files, rules processing files,
HTML files) describing the application flow are stored. In
some implementations, they are stored in the same direc-
tory structure of the computer system’s file system.

[0149] A test utility window may contain areas to view and
change WSDL location, operation name, URI location,
HTTP version, timeout value, user 1D, password, SOAP
Request parameters, execution of the request, and/or dis-
play of the test result /SOAP Response. The interface in
some implementations may include one or more of the
following features:

[0150] Remember the current project information from
the graphical Diagram window and pre-fill the informa-
tion including WSDL and URI locations, operation
name, and HTTP version.

[0151] Understand the current project information
including the list of operations, the SOAP request and
SOAP response parameters.

[0152] Allow test data to be entered

[0153] Save test data and reuse the saved test data.

[0154] View host-generated traces in a window.

[0155] A full help processing system may be provided in
some implementations with the system to provide details
on usage and processing of the various functions.

[0156] The following is a list of potential nodes in this
exemplary implementation and a short description of its
function:

[0157] Start—project or flow starting point: contains
URI, WSDL location, descriptions and encoding styles
and various other information for the rules processing
engine. It also defines the name of the Web service.

[0158] Web Service Operation (WSO)—contains the
collections for SOAP input/output and work field pro-
cessing, defines the operation name for the web service
defined in the start node. Allowing multi-operations is a
significant feature for the mainframe application based
version of the described systems and methods.

[0159] Callable Service Operation (CSO)—contains the
collections for building an API layout to allow client
applications to call the server/manager for processing
rules based functions via application code instead of via
SOAP based calls to activate composite SOAP applica-
tions.

[0160] 3270 Process—defines the 3270 BMS transac-
tion codes and parameters needed to execute a transac-
tion; this may contain processing of any 3270 applica-
tion screen and need not be restricted to BMS only. After
a process node there is normally a 3270 Point node as
there is an implied 3270 action after the rules processing
of the manager flows through a 3270 Process node.

US 2010/0146396 Al

[0161] 3270 Point—defines the map information for the
3270 process so that the correct meta data information is
used for the following movement processing.

[0162] Moveto 3270—collections of movements of data
using meta data information from any previously access
information.

[0163] 3270 Action—the action node defines the 3270
AID or key that should be pressed at the current time.
After an action, another 3270 action or a collection of
3270 Point nodes are typically seen. The rules engine
internally processes logic flow decisions to select the
correct 3270 Point node based on the 3270 image or map
that is currently active for the process. After each 3270
action, any number of different screen display options
may be provided.

[0164] LINK Point Node—contains information to pro-
cess a direct application call via CICS, IMS or other
application platforms accessed via call or flat meta data
layouts. Another feature is the ability to process several
referenced storage areas in addition to just the single flat
storage data area. This referenced storage process pro-
vides a method to pass very large data areas based on
pointer or address reference points, similar to container
or channel processing used by CICS TS 3.1. The meta
data API area can be one single area or several areas.

[0165] Move to LINK—this is used as the collection
point for movements of meta data from all previously
referenced storage to the API area used to communicate
to the application. Previous storage could be SOAP
input, other applications called via LINK Point, 3270
Point or Web Service Client Point Nodes. The processes
described herein may optimize the processing of storage
based in part on the rules processor’s knowledge at
design time of all the data that may be moved or modi-
fied.

[0166] Execute Link Point Node—this node is mainly a
marker in the logic flow of the diagram to show when the
process is actually called. It allows for easy identifica-
tion of the application flow being processed.

[0167] Web Service Client Point Node—identifies the
processing of external Web service functions, they could
be other Web services created by the present systems and
methods or Web services created by other automated or
manual methods. The process may provide an import
function at this node to collect WSDL files for building
the SOAP client needed to access the process. The pro-
cess may build this dynamically via the modeler and
creates a static call in the rules engine on the manager/
server that will process the dynamic input and output for
the referenced Web service operation. Special usage
work variables can be processed as any object property,
for example using the @@fieldname; option. This pro-
cess allows any static option to be modified at runtime by
the contents of the named work field.

[0168] Move to Web Service Client—this movement is
like all other movement nodes with the exception that a
WSDL is used to define the field names required for the
operation.

[0169] Execute Web Service Client—this node marks
when the requested call is placed by the manager/server
rules processing engine. The SOAP client is dynami-
cally built at runtime to process the Web service opera-
tion.

10

Jun. 10, 2010

[0170] Move to Output—this node may be executed as
many times as needed to move the entire SOAP packet to
the requestor. The client has control over when and
where these are placed in the diagram flow, as stated only
one is needed, but as many as required may be coded.
Any application data collected in the application flow
(continuous connection points) is available to be moved
to the SOAP Output, or APl communication area
depending on the type of service created.

[0171] Move to Work Variable—as discussed, work vari-
ables are meta data fields used to store information that
can be used in the product runtime options or as storage
for data that may or may not be needed for processing the
application, for example switches to modity logic flow
in a set of rules in a diagram.

[0172] Connector—connectors do just what the name
implies, as decisions are used to create branches in the
logic flow the connector can be used to bring many
nodes into a single logic flow again. There are fewer
rules about the placement of Connector nodes than any
other node. In a preferred implementation, the connector
cannot be used to join different operations in a project; it
can only connect branches of an operation back to the
same operation.

[0173] Decision—the logic flow modifier, clients can
check work fields, SOAP input, application data from
any of the various point nodes or for checking the ranges
of boundary of arrays. The systems and methods
described herein may support an array processor
approach that allows for dynamic array processing for
SOAP operations. Application arrays are normally static
in nature, but can be processed using the same array
boundary checking as for SOAP fields.

[0174] Loop—the rule execution flow processor may
have the ability to loop through applications (calling
repetitively) to process large amounts of information.
The node has controls to limit loop processing to a
defined amount or allow for decision processing to con-
trol the loop functions. Loops can also beused to process
arrays of data in SOAP or application meta data.

[0175] Operation End—signals to the rules engine that
all the processing that has taken place to this point is
complete and the response should be returned. If the
SOAP Fault option is turned on, the Operation End will
create a SOAP fault that will be returned to the calling
SOAP client; this is normally used for error processing,
but could also signal to the calling application the pro-
cess completed

[0176] Sticky Note—used to add documentation to the
logic flow diagram, this is only informational data and is
not used by the rules engine.

Tool Box Window of One Exemplary Modeler or
Studio Function

[0177] A graphical toolbox of icons may be used to manage
the various nodes for building application flows and compos-
ite application processes. Such an exemplary interface is
depicted in FIG. 14.

[0178] When a node is depressed or selected, it can be
dragged and dropped on a Diagram window.

[0179] Insome implementations, the graphical toolbox can
be context sensitive. Particular node types can be made
inactive depending on the application type that a developer
builds. As an example, FIG. 14 shows that Callable Service

US 2010/0146396 Al Jun. 10, 2010
11

Operation node is made inactive because the developer is Web Service Client Point Node, Move to Web Service
not building a Callable service application. Client, and Execute Web Service Client nodes are
[0180] The nodes are preferably placed in a logical order. ordered and grouped accordingly.

[0181] All applications typically start with a Start node
followed by one or more Web Services Operation nodes,
and end with one or more Stop nodes. Therefore, the
Toolbox window may start with the Start node followed
by various operational nodes including the Web Services
Operation node and Callable Service Operation node.

[0185] After executing an operation node (3270 Action,
Execute LINK, or Execute Web Service Client), the
resultant data from the operation is available. Using the
available data, the data can be moved, checked and/or a
decision is made to loop or connect to other logical

[0182] All 3270 related nodes may be placed in a logical %aci, il]nd./og lloog. Therefor %Mpye fo Ol(litpﬁn’ MOVZtO
order and grouped together. For example, the 3270 Pro- ork Variable, Connector, Decision, and Loop nodes
cess, 3270 Point Node, Move to 3270, 3270 Action are may be placed after the last execute node and grouped
ordered and grouped accordingly. together:) o)

[0183] All LINK related nodes may be ordered logically [0186] Since the last logical operation is typically the
and grouped together. For example, the LINK Point Operation End node, it may be listed as the last item of
Node, Move to LINK, and Execute LINK nodes are the logical operation node.
ordered and grouped accordingly. [0187] Since the Sticky Note is typically used as a docu-

[0184] All Web Services related nodes may be placed in mentation tool, it may also be placed after the last logical
a logical order and grouped together. For example, the operation node Operation End node.

Component Description
3270 Action Defines the AID operation that is required to continue (move to the

next screen).
3270 Point Node Identifies the BMS mapset and map name available to lower level nodes.
3270 Process Defines the data and operations required for a 3270 Bridge process.
Server will process the data collected by this node to invoke the
3270 transaction and start the data collection or processing actions

that follow.
Callable Service Identifies inputs, outputs and work variables for the Callable
Operation service.
Connector Provides the means to return to the main flow path after branching

into multiple paths. The connector eliminates the need for complex
or redundant tree structures.
Note: Every connection into a Connector must originate from the
same nearest parent point node.

Decision Allows you to make comparisons between data values from point
nodes, SOAP inputs, work variables, or static text.

Execute LINK Performs the LINK to the program defined in the previous LINK
Point Node, using the data that has been passed in the
COMMAREA with one or more Move to LINK nodes.

Execute Web Calls the Web service operation defined in the Web Service Client

Service Client Point Node.
Following this node, you can use the SOAP outputs of the Web
Service Client Point Node as data sources for any subsequent
movements or decisions.

LINK Point Node Defines the CICS application program, as well as the input and
output copybooks for the current operation.

Loop Defines a point in the Web service operation where a loop must
occur to collect all the required information.
Move to 3270 Defines the movement of data to the nearest parent 3270 point node

(BMS map) from valid data sources, including 3270 field, copybook
field, SOAP input, work variable, or static text.

Move to Defines the movement of data to the COMMAREA associated with

COMMAREA the input copybook in the nearest parent LINK Point Node from
valid data sources, including 3270 field, copybook field, SOAP
input, work variable, or static text.

Move to Output Defines the movement of data to a SOAP output (defined in the
parent Web Service Operation node) from valid data sources,
including the nearest parent point node, work variable, or static text.

Move to Web Defines the movement of data (defined in the parent Web Service

Service Client Operation node) to the SOAP inputs of the Web Service Client
Point Node.

Move to Work Provides the ability to assign values to work variables that

Variable have been defined in the parent Web Service Operation node. This

allows you to store information for later use in a Decision node or
other movement node.

Operation End Signals the end of the Web service operation.

Start Marks the beginning of the diagram and identifies the URI of the
Web service operation.

Sticky Note Allows you to add comments to the diagram to make it more

understandable; it does not perform any processing or data
collection.

US 2010/0146396 Al

-continued

Jun. 10, 2010

Component Description

Web Service

Allows you to browse the Web for a WSDL document, which

Client Point Node defines the available services and operations as well as the SOAP
inputs and outputs for each operation. After you select a WSDL,
you select the Web service and Web service operation you want to

call.
Web Services

Defines a single operation within the Web service. There can be

one or more Web service operations connected to the Start node in
each Ivory project. This node also defines the SOAP inputs, SOAP

outputs, and work variables for this operation.

Project Explorer Window of One Exemplary
Modeler or Studio Function

[0188] Some implementations may include a project
explorer window that may be dockable within an MDI envi-
ronment. An exemplary project explorer window is depicted
in FIG. 15. Project Explorer may display the contents of the
project folder. When a project is created, a folder is specified
where the project will reside. This folder may contain files
that are not included in the studio project as explained below.

[0189] In some implementations such as depicted in FIG.
15, files that are included in the project appear in bold type,
and files that are not included appear in normal type.

[0190] When afileis “included” in a studio project, the file
is available to be associated with a point node in the dia-
gram. Being included in the project does not necessarily
mean that the file is (or will be) used by the project.

[0191] “Included” files may be used to define project infor-
mation that is external to modeler or studio, such as BMS
mapsets and/or COBOL copybooks. When a developer
imports a mapset or copybook, it can be automatically
included in the currently open project.

[0192] Various features of preferred implementations are

outlined as follows:

[0193] Allow manual inclusion of mapset and copybook
files that have been copied into the project folder. In some
implementations, the interface supports inclusion of a file
through a right-click context menu.

[0194] View the file content by double-clicking in a sepa-
rate modeler or studio display window.

[0195] Allow view of the 3270 map image if a map is
clicked in a separate modeler or studio 3270 Emulator
window.

Properties Window of One Exemplary Modeler or
Studio Function

[0196] Various implementations may further provide a
Property interface. One exemplary interface is depicted in
FIG. 16 and described further below.

[0197] The Properties window in such implementations

may display the required meta data information for a selected

node. The operation of this exemplary interface is outlined as
follows:

[0198] Once a node is activated, such as from a Diagram
window as detailed below, the property window will dis-
play the default or saved options for each node depending
on the state of activation.

[0199] The meta data required for the node is displayed. For
an example, the Start node will require the node 1D, Web

services name, URI, WSDL location, encoding style,
description, use URI prefix option, and server side tracing
option.

[0200] When a particular meta data item is selected, the
help information is displayed so that a developer knows
what to do.

[0201] When required, each meta data may cause addi-
tional windows to be displayed to aid gather information.
As an example, Web Service Client Point Node needs the
WSDL location of the Web service. When the WSDL loca-
tion is clicked, WSDL Discovery window is displayed so
that it can gather information about the WSDL and popu-
late the required information on the property window.

[0202] When required, each meta data may list the options
that a developer can choose from. For an example, in a Start
node, the Use URI Prefix During Deploy will list True or
False options when selected.

Diagram Window of One Exemplary Modeler or
Studio

[0203] Someimplementations may include a Diagram win-
dow that may also be referred to as an application flow win-
dow. Such a Diagram window may be included as part of an
MDI interface. An exemplary diagram window is depicted in
FIG. 17. Such an exemplary interface may include one or
more of the following features.

[0204] A customizable grid layout process to allow nodes
to be dragged to the diagram processing area and dropped
from the Toolbox window.

[0205] The dropping or selection process will activate a
Properties window. Once activated the properties window
will display the default or saved options for each node
depending on the state of activation.

[0206] A grid to allow proper alignment of diagram or
graphical representation of a application.

[0207] A zooming capability to be able to resize the dia-
grams in 25, 50, 75, 100, and 200% of normal diagram size.

[0208] A copy and paste function to be able to duplicate the
area of logic in other locations in the application flow or to
be able to duplicate in other application flow or project.

[0209] An ability to move a diagram node or group of
diagrams to anywhere in a canvas area.

[0210] An ability to flip connection points when right
mouse is clicked on a node and select on the option. For an
example, the typical Decision node connections are to have
the YES connector on right side of the Decision node and
NO connector on the left side of the Decision node. When
a decision node is selected and right mouse is clicked, it

US 2010/0146396 Al

will display an option to flip nodes. If the flip node is
activated, the YES and NO will be reversed.

[0211] When an application flow or project is saved
reopened, the diagrams on the window should displayed as
it was when it was saved.

Browser Window of One Exemplary Modeler or
Studio

[0212] Someimplementations may include a Browser win-
dow. An example of which is presented in FIG. 18. The
Browser window may be included as part of the MDI or be
launched separately. The Browser window can display any
documents including Internet site and text document. Such an
interface may provide one or more of the following features:

[0213] Go back to display the previously displayed infor-
mation.
[0214] Go forward to display the next information (previ-

ously displayed information).

[0215] The same functionality as the commercially avail-
able Internet browsers like Microsoft Internet Explor-
erBrowser including ability to display any Internet docu-
ments.

[0216] When View Trace is selected from the Test Utility
window, display the trace information by downloading
trace information from the manager or server.

Exemplary Test Utility Window

[0217] Some implementations may provide a Test Utility
that can allow the unit testing of Web Services which are to be
deployed to the manager or server. An exemplary interface is
provided in FIG. 19. Such a test utility window may support
one or more of the following features:

[0218] View and change WSDL location, service name,
service operation, HTTP version, URI, and SOAP Action.
[0219] Remember the current project information from

the graphical Diagram window and pre-fill the informa-
tion including URI.

[0220] Access the WSDL specified in the WSDL location
and populate the information like service name, service
operation, HTTP version, URL, and SOAP Action.

[0221] Select a service operation from list of operations
that the WSDL supports.

[0222] Select an HTTP version from the list of HTTP ver-
sions that the WSDL supports.

[0223] Set Proxy URI.

[0224] Set Timeout value so that the execution will stop
after a certain time.

[0225] Set user ID and password for security checking if
security is activated on the server or manger.

[0226] Execution of test by sending SOAP request param-
eters.

[0227]
time.

[0228] Loading of test data from a local or remote files
system to be used in the test.

Save test data and reuse saved test data at a later

[0229] View host generated traces in Browser window.
[0230] View generated SOAP Request parameters.
[0231] Access the WSDL and parse the WSDL to find

required SOAP Request parameters.

[0232] Generate and display the SOAP request param-
eters so that the tester can enter data. An example of
these parameters is depicted in FIG. 20.

Jun. 10, 2010

[0233] View received SOAP response from the server or
manager
[0234] Parse the WSDL to determine the SOAP

Response parameters.

[0235] Generate and display the SOAP response param-
eters so that the tester can view returned data. An
example of these parameters is depicted in FIG. 21.

Exemplary Modeler Output Window

[0236] Someimplementations may support an Output win-
dow. The Output window may be a dockable window sup-
ported in an overall MDI. FIG. 22 depicts an example Output
window. An output window may support one or more of the
following features:

[0237] When the project or application flow is built, the
status of the build process is displayed. If there is any error
during the build process, the error is displayed on this
window to allow the debugging of the logic.

[0238] When the project or application flow is deployed to
the manager or server, the status of build, verification or
processing rules, and the status of upload process of pro-
cessing rules of application and generated WSDL to be
displayed.

Example Web Service Development Using One
Exemplary Modeler or Studio

[0239] As an example, the development of a 3270 CICS
application that searches for a name (first and last name) and
displays information about the account including the account
number, address, status, and account limit is described. Using
this information, the 3270 operator, a helpdesk, could raise
the account limit if the account status is active,or reopen the
account if it is closed.
[0240] Similar programs have existed for decades in the
mainframe environment. Those mainframe programs devel-
oped over many years cannot be replaced overnight, even
though they may be cumbersome to use. For example, the
following procedure outlines what a 3270 operator would
typically do to find account information using a mainframe
application:

[0241] From a 3270 terminal, the 3270 operator types the
transaction code “IVYS” on a blank 3270 screen and
presses the Enter key.

[0242] The program called by the IVYS transaction runs
and displays a blank screen such as depicted in FIG. 23.
[0243] Then the 3270 operator types the last name and first
name of an account holder on the screen and presses the

Enter key.

[0244] The program runs and displays account informa-
tion, such as presented in FIG. 24.

[0245] The3270 operator reads the displayed information
and saves it by either writing notes or printing the screen.

[0246] The3270 operator studies the displayed informa-
tion, for example to determine the account status. Based on
that information, the 3270 operator performs a different
task.

[0247] This is an example of a simple task, but it requires

multiple 3270 operations to accomplish the task. In order to

save this information, or to share it with other computer
platforms, such as a PC, the saving or sharing must be per-

formed manually. However, if this operation is converted to a

Web service, this information can be shared with other plat-

form computers and other applications.

US 2010/0146396 Al

[0248] In many cases, the people who wrote the decades-
old mainframe applications are no longer available. Conse-
quently, it is not easy or cost-effective to alter the original
application program.

[0249] Using the modeler or server, the existing program
and business process can be converted to a Web service
through a graphical definition, and no changes to the original
program are required. An exemplary graphical flow for this
process is depicted in FIG. 25.

[0250] The graphical diagram defines a Web service which
represents the application or business process that the 3270
operator had to perform manually:

[0251] Typing the “IVYS” transaction ID and pressing the
Enter key.
[0252] When a 3270 map is displayed, typing the account

holders last name and first name, and pressing the Enter
key.

[0253] Whenthe responseis displayed, reviewing the infor-
mation to determine the next action.

In order to convert the sample application into a Web service,

adeveloper drags a node from the Toolbox window and drops

the node on the Diagram window. When the node is selected
on the Diagram window, the Properties window displays cur-
rent and default information about the node, which is modi-
fied by the developer to provide the information needed by the

application. An exemplary interface is depicted in FIG. 26.

[0254] First, describe the Web service environment.

[0255] The Start node provides the name of the Web ser-
vice, the location of the WSDL, UR], encoding style and its
description.

[0256] The Web Service Operation node provides the name
of the operation, SOAP input and output parameters—and
describes the operation or business process that it will
perform below this node. It is possible for a single Web
service to have multiple Web service operations. Using our
example, the SOAP input parameters will be the last name
and first name of the account holder. The SOAP output
parameters will be the account number and the account
status (Active, Closed, Inactive, or unknown).

Next, the developer begins to diagram the flow of the opera-

tion.

[0257] Withthe old mainframe application, the 3270 opera-
tortyped the “IVYS” transaction code on a 3270 screen and
pressed the Enter key to begin. To mimic this action in the
Web service, the developer drags a 3270 Process node to
the Diagram window. In the Properties window for the
node, the developer enters the IVYS initial transaction
code and defines “Enter” as the 3270 AID key. This
replaces the user action of typing the transaction code and
pressing Enter.

[0258] As a result of pressing the Enter key on the main-
frame application, a 3270 screen was displayed. To pro-
duce this result, the developer drags a 3270 Point node onto
the Diagram window. In the Properties window, the devel-
oper identifies the name of the mapset and map that it
should expect to receive.

[0259] When the 3270 mainframe screen was displayed,
the 3270 operator would type the last name and first name
of the account holder. The developer now drags a Move to
3270 node onto the Diagram window. The Move to 3270
node allows the movement of data from any source that was
defined at a higher level than this node. The possible data
source is described below. In the example, the developer
will use the SOAP input to move the account number, and

Jun. 10, 2010

Static Text to set the “demographic™ option. A drop-down
menu such as seen in FIG. 27 could be used to specify this.

[0260] After entering the name, the 3270 operator pressed
the Enter key. To duplicate this manual operation, the
developer drags a 3270 Action node to the Diagram win-
dow.

[0261] After the 3270 operator pressed the Enter key, the
3270 map with the account number information was dis-
played. To provide the same function, the developer drags
a 3270 Point Node to the Diagram window. The node
properties in the Properties window describe the expected
3270 mapset, and map name to receive.

[0262] When the information was displayed, the 3270
operator had to read the information on the 3270 screen and
validate the account number. In the Web service diagram,
the developer does the same by dragging a Move to Output
node to the Diagram window, saving the account number
information. The Move to Output node allows the data
movement to SOAP output parameters from any data
source that was referenced prior to this node. In this
example, the developer will pull the information from the
3270 field and save or move the account number to the
SOAP output field. The use of the 3270 field can be
selected via a pull-down menu such as presented in FIG.
28.

[0263] Next, the 3270 operator determines whether the
account is Active, Inactive, Closed, or Unknown (error).
Based on the status of the account, the 3270 operator will
perform different operations. The Web service uses a series
of Decision nodes to check the account status. Each Deci-
sion node allows checking a value against a data source.
Based on the result of the check, it will generate a YES or
NO answer. The first Decision node will check whether the
account is Active. If the answer is YES, it will move infor-
mation to the SOAP output area indicating that this account
is an active account. If the answer is NO, then the next
Decision node is checked for Inactive status, and so on.
Typical use of a Decision node is to direct flow of Web
service logic and to find errors, end a process, or select the
next operation. The Decision node can check whether any
data was returned from the name look-up function. Then,
based on the reply, it will build a different reply buffer. A
Move to Output node is used to define data fields that will
be returned in the SOAP response. Any data previously
collected can be marked as information to be included in
the SOAP reply.

[0264] The WSDL output fields are the typical method to
return data to the requesting application. Notice that not all of
the information available on the 3270 screen was of interest to
the 3270 operator. Therefore, Web service developer pro-
vided only the data required by the operation. This reduces the
storage requirement during processing and data transfer
between machines reducing the network traffic requirements.
[0265] The series of manual operations that were required
to gather simple account information was automated without
writing a single line of code. The automation was done using
the graphical representation of the 3270 operator’s opera-
tions.

[0266] What if the 3270 operator needed to raise the credit
limit, perform other tasks based on the account information.
The 3270 operator would have to go through another series of
manual operations. This process can also be automated
through a Web service developed using the modeler or studio.

US 2010/0146396 Al

[0267] Continuing with the prior example, logic can be
added to update or raise the credit limit based on the credit
limit by executing additional 3270 BMS transactions. For
example, FIG. 29 depicts such an enhanced graphical defini-
tion. This new task can reuse the original Web service in a new
Web service.

[0268] Inanother example depicted in FIG. 30, the original
Web service, account look-up by name, was called as a Web
Service Client Point Node and new logic was added to update
the credit limit. The ability to consume an internal or external
Web Services allows:

[0269] Simplification of logic.
[0270] Reuse of an existing Web services.
[0271] Interaction with a business partner with a different

computer system.
[0272] Reuse of an external machines and programs, such

as Windows NT and Unix.
[0273] If, for example, there is a need to validate a driver’s
license number, this Web service can consume a Web service
published by a state agency to validate the driver’s license
number.
[0274] Going back to the original example, if the 3270
operator needs to execute a transaction on a Microsoft Win-
dows application which publishes a new credit card after
updating a credit limit, it can be automated by adding a Web
Service Client Point Node to execute the Microsoft Windows-
based Web service from the mainframe. Combining the 3270
operator’s tasks to run as a single task can save time and
money. This can all be done without writing a single line of
mainframe program.
[0275] A mainframe Web service can be generated through
diagraming a business process, such as getting insurance
policy information for a user. A mainframe, for example, may
have a separate application or business process for each type
of insurance policy: home, car, and health. The described
systems and methods can provide the ability to combine these
separate business processes into a single business process
implemented as one or more Web services.
[0276] The described systems and methods can include
design and runtime functions. The design component can
include a modeler and/or an interface to a mainframe appli-
cation.
[0277] The modeler may provide the ability to change logic
flow and the path of the original mainframe application. The
runtime function component can include a mainframe Web
service. The Web service interface is built around mainframe
applications that reside on the mainframe. The described
systems and methods can verify that the original mainframe
application and Web service are in sync.
[0278] To summarize the functions, FIG. 30 provides an
overview of the modeler and server in some of the systems
and methods described herein. These systems and methods

Jun. 10, 2010

improve Web service development along several axis includ-
ing one or more of the following:

Design Time:
[0279] Using the modeler/graphical IDE, the application

flow and process is defined by dragging components to the
Diagram window.

Deploy Time:
[0280] After building the Web services with the modeler/

studio, instructions for the processing the Web services and
the WSDL are uploaded to the server repository.

Run Time:

[0281] During the execution time, the server takes in SOAP
request from applications written in NET, J2EE, JAVA, or
other programming languages, processes the Web services
processing instructions, and returns the results to the appli-
cation in a SOAP Response.

[0282] Throughout this application, various publications
may have been referenced. The disclosures of these publica-
tions in their entireties are hereby incorporated by reference
into this application in order to more fully describe the state of
the art to which this application pertains.
[0283] The examples described above are given as illustra-
tive only. It will be readily appreciated by those skilled in the
art that many deviations may be made from the specific
examples disclosed above without departing from the scope
of'the inventions set forth in this application and in the claims
below.
[0284] The indentations and/or enumeration of limitations
and/or steps in the claims that follow are provided purely for
convenience and ease of reading and/or reference. Their
usage is not intended to convey any substantive inference as to
parsing of limitations and/or steps and/or to convey any sub-
stantive ordering of, or relationship between or among, the so
indented and/or enumerated limitations and/or steps.

What is claimed is:

1. A system to facilitate the definition of web services, the

system comprising:

a) a modeler which is operable to interface with a user to
enable the user to generate an execution flow via a
graphical interface for building one or more flow rules to
build composite or single use web services; and

b) a manager that parses the flow rules to generate a pro-
grammatic implementation of the web services.

2. A method for graphically defining a web service, the

method comprising the steps of:

a) providing an interface with the graphical display device
via which the user can graphically define a web service
using the user input device;

b) displaying on the graphical display device a graphical
representation of at least a portion of a web service
definition; and

¢) storing in the system data store a digital representation of
a graphically defined web service.

sk sk sk sk sk

