
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0146396 A1

(54)

(75)

(73)

(21)

(22)

(63)

(60)

Able et al.

US 20100146396A1

(43) Pub. Date: Jun. 10, 2010

SYSTEMS AND METHODS FOR WEB
SERVICE FUNCTION, DEFINITION,
IMPLEMENTATION, AND/OR EXECUTION

Inventors: Steve L. Able, Canton, GA (US);
Roland S. Martin, Marietta, GA
(US)

Correspondence Address:
BARNES & THORNBURG LLP
Suite 1150,3343 Peachtree Road, N.E.
Atlanta, GA 30326-1428 (US)

Assignee: GT Software, Inc., Atlanta, GA
(US)

Appl. No.: 12/704,124

Filed: Feb. 11, 2010

Related U.S. Application Data
Continuation of application No. 11/129,597, filed on
May 13, 2005, now Pat. No. 7,665,064.

Provisional application No. 60/571,652, filed on May
14, 2004.

(&) GT Software Ivory Studio-occt main3270 (Web Service)
Fite Edit Yiew tools Window Help

be son rx Geeloe

Publication Classification

(51) Int. Cl.
G06F 15/16 (2006.01)
G06F 3/048 (2006.01)

(52) U.S. Cl. .. 71.5/735
(57) ABSTRACT

Systems and methods for defining, implementing, deploying
and/or executing Web services. A Web service is defined
using a graphical interface that allows the application devel
oper to specify the operation of the Web service through
inclusion and configuration of graphical nodes representing
particular operations and/or functions. The Web service defi
nition can, in some instances, include standard functions and/
or previously defined Web services. The environment for
definition typically includes a user input device, a graphical
display device, a system data store and a system processor.
The system processor is in communication with the other
elements. The user defines the Web service using an interface
provided via the graphical display device. The user interacts
with the interface using the user input device. The system
processor receives the information from the user input device
and updates the provided interface on the graphical display
device accordingly. The graphical definition of the Web ser
vices is stored at least ephemerally in the system data store,
but may, in some instances, be saved to the system data store.
Once defined, the graphical definition is converted into a
programmatic implementation executable by a Web services
Server. This programmatic implementation can then be trans
mitted to an appropriate Web services server accessible by an
intended user community.

Components A
Toolbox QX Diogram-acct no in3270 Source-gi is no. MAINMNUXML-gi is inna. MAINMNUIest-occt rain3270. Wisd

als A

OStort
O Web Service Operation
OCailable Service Operation

3270 Process
{X 3270 Point Node

Move to 3270
d 3270 Action
CLINK Point Node
O Move to COMMAREA
cd Execute LINK
C Web Service Client Point Node

Move to Web Service Client
C Execute Web Service Client
O Move to Output
O Move to Work War ible
W Connector
gx Decision
O Loop
O Operation End
O Sticky Note

Project Explorer Properties Output

53! 1 Jadou?

US 2010/0146396 A1 Jun. 10, 2010 Sheet 1 of 33

33! ^JaS qaM) Ss330J.J., Uno23W-01.pngS ÁJoa? 3 JOM, JOS 19@

Patent Application Publication

z 6 J

US 2010/0146396 A1

80883 ON-W0 88
80883 ON-W3 90

Jun. 10, 2010 Sheet 2 of 33

Bounos 1080) i jodu? (?)

Patent Application Publication

Squaw3a0H 0100

US 2010/0146396 A1 Jun. 10, 2010 Sheet 3 of 33

(35 | ajaS qaM) 55300 jau unoppy-0|pnus Kuoa I a JDM) JOS 10@

Patent Application Publication

US 2010/0146396 A1 Jun. 10, 2010 Sheet 4 of 33 Patent Application Publication

US 2010/0146396 A1 Jun. 10, 2010 Sheet 5 of 33 Patent Application Publication

US 2010/O146396 A1

„J?AJÐS Á JOAI@
Ág paJaMOJ

SS300.J.B

Jun. 10, 2010 Sheet 8 of 33

u0 | 123S UOua00

Patent Application Publication

US 2010/O146396 A1

sa ! ! uado JJ

Jun. 10, 2010 Sheet 10 of 33 Patent Application Publication

US 2010/O146396 A1 Jun. 10, 2010 Sheet 14 of 33 Patent Application Publication

? JO ?S

·.g|No.|No.][E'ELLER BOEOEXEJEGIETEKER?

US 2010/01.46396 A1 Jun. 10, 2010 Sheet 15 of 33 Patent Application Publication

‘ana) duloj p? ? ng
pu3 @ C

------ » • • • • • • • •

p038

300N 30, a JaS qaM

3508 E

Sa !) JadOJE

C undung

ºu ºoksaÁCsaÁPõí CDO

Patent Application Publication Jun. 10, 2010 Sheet 16 of 33 US 2010/0146396 A1

Toolbox X

corponent, I
O Stort
O Web Service Operation
O Col lobe Service Operation
D 3270 Process
CX 3270 Point Node
O Move to 3270

C 3270 Action
{X LINK Point Node
O Move to LINK

C Execute LINK

O Move to Web Service C ient

C Execute Web Service C ient

O Move to Output
O Move to Work War iable

V Connector

C> Decision
O Loop
O Operation End
O Sticky Note

Fig. 14

Patent Application Publication Jun. 10, 2010 Sheet 17 of 33 US 2010/0146396 A1

Project Explorer

(2) (O&O)
C:\Program Files\GT Software\ Ivory\StudioVsom

--- - Cursor select, html

Cursorse lect, ivp
cursor select, ivs

cursor select, wsdi
f

giism mo, ivb
GI ISMMA, MAP

Mary Smith-10002, ivt
README, TXT

Steve Smith 1000l. ivt

G
.

t.

Patent Application Publication Jun. 10, 2010 Sheet 18 of 33 US 2010/0146396 A1

ne, on rx as 2.5De R

Web Service Description
El Advanced

Use URI Prefix During Deploy True

URI
The Uniform Resource Ident ifier for this Web service.

Toolbox Project Explorer Properties
Fig. 16

Patent Application Publication Jun. 10, 2010 Sheet 19 of 33 US 2010/0146396 A1

Diagram-acct main3270

Service
Operation

Get Account Nur, 3270

This node sill set up the name of the
Web service Ond the Ocot ion,

Web Service Operation
This node a lows for the setup of the
SOAP input and output fields for the

Troncode IWYS
-Hit Enter

to start the LINK 3270 Bridge, such as the
transaction code and in it iO processing

i 3270
Point Node A

Move to 3270
This node n tows the movement of data from
any source that was defined at a higher level
than this node, Normat y this would be data
that was sent during the SOAP request for
this Wev service, However, the SOAP request
may require execution of a CICS COMMAREA
application before processing this 3270
application. For this example, the input is
being sent by the SOAP request.

Move lost v
first nomes

3270 Process
This node defines at the in for motion needed

Patent Application Publication Jun. 10, 2010 She

Mo in Li

Move to Move to
Output Output
Closed

C

et 20 of 33

Move to
Output

O
Inactive

ector

1.
ne Conn

C

Operation
End

US 2010/0146396 A1

US 2010/0146396 A1 Jun. 10, 2010 Sheet 21 of 33 Patent Application Publication

US 2010/0146396 A1 Jun. 10, 2010 Sheet 22 of 33 Patent Application Publication

Jus: psx, = adku : ? sx jaquinNyuno000>

6
|

(unN1 uno no?mag: un

U ? OW100WI BUON 301 AJ3? U ? DU 1200-uoj6040

Patent Application Publication Jun. 10, 2010 Sheet 23 of 33 US 2010/0146396 A1

(e) SOAP Request
E-Get Account NumRequest Name irst Nome

Encoding Type Strino !--- Ost Norre Encoding Type
--firstName Target Name Spochttp://www.w3.org/20

(&)SOAP Response
--Get Account NumRequest Occount Number
E}-ns : Acct Inf Encoding Type string

nil. Acct Info Target Name Spacht tp://www.w3.org/20
--first Nane 1OOO2

as torne
- - - - - - - - - - -

account Number

US 2010/0146396 A1 Jun. 10, 2010 Sheet 24 of 33 Patent Application Publication

CONWY) : MausÁS

1 | x3 01 JO31) ‘uo? 10W 01 06 Jo qõJDBS 01 Janu3 SS3JA

pun0} (s) pu00au 10

US 2010/0146396 A1

00 0000? N08 SBÅ3 3018 22 ||HI I WS3N31S\!W |000||

1 | U | TS553JppyBUJON I SOTBul0N 1 SJ || 3 B | | | | # 100W ---- 0}U I 1 Un000\| ----

313] BU 36u0?3 ppy Áonds 10U0 , 10W

1 Uno200 UD S5300 JA

Jun. 10, 2010 Sheet 26 of 33

BUON 1 SJ ! !

HI IWS : BUON 150T , Uno200 UO q3J03S

+---3 | duos jun000; 19

Patent Application Publication

Patent Application Publication Jun. 10, 2010 Sheet 28 of 33 US 2010/0146396 A1

(e) GT Software Ivory Studio-test (Web Service) OX
File Edit View Tools Window Help

nearx exon
X

Components |A
O Start
OWeb Service Operation
O Col Obi e Service Operation

C) 3270 Point Node
O Move to 3270
O 3270 Action
CX LINK Point Node

Project Explorer
Properties

Web
Op

Service
erot idn

El AdvOnced
Initial Input Data
Initial Cursor Row
Initial Cursor Column
In it in Receive Type
Retrieve Term ID

Node IO
The unique ident ifier for this Process node,

Patent Application Publication Jun. 10, 2010 Sheet 29 of 33 US 2010/0146396 A1

3270 Field
Copybook Field

Static Text
Web Service Client Output
Work Wor iObe

Fig. 27

3270 Field
Copybook Field
SOAP Input
Stotic Text
Web Service Client Output
Work Wor iObe

Fig. 28

Patent Application Publication

Diogram-acct no in3270

Web Service
Operation

Get Account Num3270

T
3270 Process

... 3270
Point Node A

--
y r to

Troncode IWYS
-Hit Enter

star
3270Account Lookup

Jun. 10, 2010 Sheet 30 of 33

Fi 9. 2 9 A

US 2010/0146396 A1

Patent Application Publication

y S

Stotus Active

Jun. 10, 2010 Sheet 31 of 33

Move to
Output
Active

Move to
3270

Raise Credit

t
Mo inLine Connector

El
Operation

End

C
3270

Point Node

O
Move to
Output

Move Result

eroti
End

e Corn Updat

Fi 9. 2 S B

O

Update Result
O

plete

US 2010/0146396 A1

US 2010/0146396 A1 Jun. 10, 2010 Sheet 32 of 33 Patent Application Publication

09 613

US 2010/0146396 A1 Jun. 10, 2010 Sheet 33 of 33 Patent Application Publication

IC 614

SNOI IWJI Teld? SW8 01:28

èJOSS300&d || 80SS30088 || 80SS3008d
SEI&BS?W

US 2010/0146396 A1

SYSTEMS AND METHODS FOR WEB
SERVICE FUNCTION, DEFINITION,

IMPLEMENTATION, AND/OR EXECUTION

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This patent application is a continuation of copend
ing U.S. patent application Ser. No. 1 1/129,597, filed May 13,
2005, entitled SYSTEMS AND METHODS FOR WEB
SERVICE FUNCTION, DEFINITION, IMPLEMENTA
TION, AND/OR EXECUTION, which claims the benefit of
U.S. Provisional Patent Application No. 60/571,652, filed
May 14, 2004, the disclosures of which are incorporated
herein by reference in their entirety.

BACKGROUND

0002 The present application is directed to systems and
methods for Web Service function, definition, implementa
tion, and/or execution. The Internet is a global network of
connected computer networks. Over the last several years, the
Internet has grown in significant measure. A large number of
computers on the Internet provide information in various
forms. Anyone with a computer connected to the Internet can
potentially tap into this vast pool of information.
0003. The information available via the Internet encom
passes information available via a variety of types of appli
cation layer information servers such as SMTP (Simple Mail
Transfer Protocol), POP3 (Post Office Protocol), GOPHER
(RFC 1436), WAIS, HTTP (Hypertext Transfer Protocol,
RFC 2616) and FTP (File Transfer Protocol, RFC 1123).
0004 One of the most wide spread methods of providing
information over the Internet is via the World WideWeb (the
Web). The Web consists of a subset of the computers con
nected to the Internet; the computers in this subset run HTTP
servers (“Web servers'). Several extensions and modifica
tions to HTTP have been proposed including, for example, an
extension framework (RFC 2774) and authentication (RFC
2617). Information on the Internet can be accessed through
the use of a Uniform Resource Identifier (“URI,” RFC 2396).
AURI uniquely specifies the location of a particular piece of
information on the Internet. A URI will typically be com
posed of several components. The first component typically
designates the protocol by which the address piece of infor
mation is accessed (e.g., HTTP, GOPHER, etc.). This first
component is separated from the remainder of the URI by a
colon (:). The remainder of the URI will depend upon the
protocol component. Typically, the remainder designates a
computer on the Internet by name, or by IP number, as well as
a more specific designation of the location of the resource on
the designated computer. For instance, a typical URI for an
HTTP resource might be:
0005 http://www.server.com/dir1/dir2/resource.htm
0006. Where HTTP is the protocol, www.server.com is the
designated computer name and /dir1/dir2/resouce.htm desig
nates the location of the resource on the designated computer.
The term URI includes Uniform Resource Names (“URNs)
including URNs as defined according to RFC 2141.
0007 Web servers host information in the form of Web
pages; collectively the server and the information hosted are
referred to as a Web site. A significant number of Web pages
are encoded using the Hypertext Markup Language
(“HTML) although other encodings using Standard Gener
alized Markup Language (“SGML), eXtensible Markup

Jun. 10, 2010

Language (XML), Dynamic HTML (“DHMTL) (the
combination of HTML, style sheets and scripts that allows
documents to be animated) or Extensible HyperTextMarkup
Language (XHTML') are possible. The published specifi
cations for these languages are incorporated by reference
herein; such specifications are available from the World Wide
Web Consortium and its Web site (http://www.w3.org). Web
pages in these formatting languages may include links to
other Web pages on the same Web site or another. As will be
known to those skilled in the art, Web pages may be generated
dynamically by a server by integrating a variety of elements
into a formatted page prior to transmission to a Web client.
Web servers, and information servers of other types, await
requests for the information from Internet clients.
0008 Client software has evolved that allows users of
computers connected to the Internet to access this informa
tion. Advanced clients such as Netscape's Navigator and
Microsoft's Internet Explorer allow users to access software
provided via a variety of information servers in a unified
client environment. Typically, such client software is referred
to as browser software.

0009 Web services further facilitate access to information
on the Internet by computer users. Web services address the
need to integrate legacy mainframe applications by acting as
platform-independent interfaces that allow communication
with other applications using standards-based Internet tech
nologies, such as HTTP and XML. With traditional integra
tion techniques, there are multiple point-to-point communi
cation and data conversions that may change as new
applications are integrated or data formats change. Web Ser
vices simplify integration by reducing the number of Appli
cation Program Interfaces (API) to one, Simple Object
Access Protocol (“SOAP) and the number of data formats to
one, XML. SOAP overlays XML and transmits data in a way
that can be understood and accepted by Web browsers and
servers. The XML is also human readable. Web services
allow programmers to make databases and/or other applica
tions available across the Web for other programmers to
access them and link the applications together to provide
services.

0010 Web services using the request and response meth
ods are further described as being a Service Oriented Archi
tecture (“SOA) approach to integration of electronic busi
ness applications or processes. A service-oriented
architecture is essentially a collection of services. These ser
vices communicate with each other as described previously.
The communication can involve either simple data passing or
it could involve two or more services coordinating some
activity. The methods of connecting services to each other
involve the protocols and transport methods of SOAP.
(0011 Web Services Description Language (“WSDL) is a
format for describing a Web services interface. It is a way to
describe services and how they should be bound to specific
network addresses. The WSDL includes three parts: defini
tion, operations and service bindings.
0012 WSDL definitions are generally expressed in XML
and include both data type definitions and message defini
tions that use the data type definitions. These definitions are
usually based on some agreed upon XML vocabulary. This
agreement could be within an organization or between orga
nizations. Vocabularies within an organization could be
designed specifically for that organization. They may or may
not be based on some industry-wide vocabulary. If data type

US 2010/0146396 A1

and message definitions need to be used between organiza
tions, then most likely an industry-wide vocabulary will be
used.
0013 WSDL operations are grouped into port types. Port
types define a set of operations supported by the Web service.
0014 WSDL service bindings connect port types to a port.
A port is defined by associating a network address with a port
type. A collection of ports defines a service. This binding is
commonly created using SOAP protocols and transport meth
ods.
0015 IBM created a SOAP interface for CICS (Customer
Information Control System) which only supported a one-to
one relationship between the SOAP request and to the appli
cation code. This process does not provide automatic parsing
and processing between the SOAP XML and the application
communication areas. It also fails to provide any method for
processing 3270 BMS applications. The IBM process pro
vides neither flow processing nor graphical interface tooling
with the SOAP process.
0016. A main problem of most computer-based systems is
their lack of ability to create composite processing in a Web
service environment. A primary aspect of the Web service
software described herein is to provide composite-based
application processing using existing application Software.
Present systems lack support for a variety of functionality in
the Web service area. Present systems do not support appli
cation flow and processing multiple applications via a single
SOAP request would provide a much-needed process to the
market place. Further, programmers have a significant learn
ing curve to build the required XML and WSDL files required
for SOAP processing.

SUMMARY

0017. The present application is directed to systems and
methods for Web services function, definition, implementa
tion, and/or execution. In one aspect, Web services are
defined with respect to one or more functions available from
applications executing on one or more remote systems. In a
further aspect, Such definitions are used to generate a pro
grammatic implementation that is communicated to a Web
services server executing on, or in communication with, the
remote system(s). In yet another aspect, Web services clients
can then use the defined service by posting appropriate
requests to the Web services server and receiving back from
that server a response encoding the results of performing the
requested Web service.
0018. One application for Web service definition and/or
development may be referred to herein as the studio or mod
eling software. The modeling software can also be described
as the application flow designer for the patent application.
The modeler can preferably be implemented in software
executable on a typical computer having a system data store
(“SDS) and a system processor; however, the modeler func
tionality, or portions thereof, may be implemented in whole,
or in part, via hardware. In addition, or instead, the modeler
functionality, orportions thereof, can be embodied in instruc
tions executable by a computer, where such instructions are
stored in and/or on one or more computer readable media.
0019. An application for generating a programmatic
implementation that is communicated to a Web services
server may be referred to herein as a server or rule-based flow
engine. The manager can preferably be implemented in Soft
ware executable on a typical computer having an SDS and a
system processor, however, the server functionality, or por

Jun. 10, 2010

tions thereof, may be implemented in whole, or in part, via
hardware. In addition, or instead the server functionality or
portions thereof, can be embodied in instructions executable
by a computer, where such instructions are stored in and/or on
one or more computer readable media. In some implementa
tions the server functionality can be standalone, performed
within the studio or performed within the server.
0020. A Web services server preferably incorporates an
SDS, a system processor, and one or more interfaces to one or
more communications channels that may include one or more
interfaces to user workstations over which electronic com
munications are transmitted and received. In addition, or
instead, the server functionality, or portions thereof, can be
embodied in instructions executable by a computer, where
Such instructions are stored in and/or on one or more com
puter readable media.
0021. A Web services client (“Requestor') executing on a
computer communicates a Web service request to the Web
services server (“Provider”). The Web services server
executes the programmatic implementation of the defined
Web service to generate a response. The response is then
communicated to the Requestor. The Provider may execute
one or more applications on the system execute the server
and/or one or more remote systems in order to generate the
response.
0022. In each of the studio and server processes, the sys
tem processor is in communication with the respective SDS
via any suitable communication channel(s); system processor
may further be in communication with the one or more com
munication interfaces via the same, or differing, communica
tion channel(s). Each system processor may include one or
more processing elements that provide electronic communi
cation reception, transmission, interrogation, analysis, pro
cessing and/or other functionality. In some implementations,
the system processor can include local, central and/or peer
processing elements depending upon equipment and the con
figuration thereof. It should be noted that the modeler, man
ager, server (and client) are Summarized above as discrete
components; however, these various components all together,
or taken in any selected grouping, could be implemented
within a single execution environment where a particular
system processor and/or SDS could support one or more Such
components. Each SDS may include multiple physical and/or
logical data stores for storing the various types of informa
tion. Data storage and retrieval functionality may be provided
by either the system processor or data storage processors
associated with, or included within, the SDS.
0023 The studio provides an automated graphical process
of collection of information to define and build the Web
service process using an SOA. The studio process provides a
graphical flow of the application processes required to build a
request and response SOAP-based Web service. The graphi
cal flow or model is then used to create the rules or execution
path the server must follow to provide the requested SOAP
response. Composite application processing can be provided
via the modeling or rules-based process, the designer also
provides for external logic processing to control the logic
flow through the multiple applications.
0024. The manager may optimize its data movement pro
cessing and lower storage requirements by only holding data
or storage as long as needed. Work meta data fields can be
used to dynamically modify control settings at runtime. This
process allows the modeler and manager to communicate
changes to the flow before runtime that take place at runtime.

US 2010/0146396 A1

The manager can allow for called projects, so that an appli
cation program can call other application flows at any time
based on application or business requirements. This can pro
vide a very powerful way to extend working application
flows. An application flow can call other deployed application
flows at any time during its processing.
0.025 In another aspect, a flow processing engine is dis
closed in some implementations that processes movement of
data to and from standard application meta data formats to
and from the SOAP XML meta data formats. This process
reduces the need of the application programmer having to
know or understand SOAP and XML processing and having
to code additional application program to process SOAP and
XML. This can significantly reduce the time to market and the
possibility for errors to be introduced into the process. In a
further aspect, some implementations of the modeler dis
closed herein can increase programmer productivity by
allowing a drag and drop interface for building application
flows and data movements between one or many applications.
Development time can be greatly reduced because the need to
build routines to parse and move the XML data to/from exist
ing meta data formats is eliminated.
0026. A further feature of some implementations includes
processing pure SOAP, XML and WSDL creation using a
composite application process that allows mapping and data
movements without any code to be created and executed.
Some Such implementations may provide processing via a
runtime image that processes the XML rules and instructions
for processing the application flow, external logic and data
movement processing.
0027. Additional advantages will be set forth in part in the
description which follows, and in part will be obvious from
the description, or may be learned by practice of the systems
and methods described herein. The advantages of the dis
closed systems and methods will be realized and attained by
means of the elements and combinations particularly pointed
out herein. It is to be understood that both the foregoing
general description and the following detailed description are
exemplary and explanatory only and are not restrictive of the
invention as claimed below.

BRIEF DESCRIPTION OF DRAWINGS

0028. The accompanying drawings, which are incorpo
rated in and constitute a part of this specification, illustrate
various aspects of the disclosed systems and methods and
together with the description, serve to explain and/or exem
plify their principles.
0029 FIG. 1 depicts an example graphical user interface
for a typical modeler environment.
0030 FIG. 2 depicts an exemplary import interface for an
example modeler.
0031 FIG. 3 depicts an exemplary data movement inter
face for an exemplary modeler.
0032 FIG. 4 depicts an example rule set generated in a
typical modeler environment.
0033 FIG.5 depicts a directory listing for a file repository
in an exemplary modeler.
0034 FIG. 6 provides a sample FTP interface from an
exemplary modeler.
0035 FIG. 7 is an exemplary Server Administration
screen for server configuring and managing.
0036 FIG.8 depicts an exemplary TN3270 Client access
ing a TN3270 Server (Emulator).

Jun. 10, 2010

0037 FIG. 9 depicts a potential Integrated Development
Environment (IDE) for an exemplary modeler.
0038 FIG. 10 is an exemplary FTP interface used in an
exemplary modeler.
0039 FIG. 11 is a block diagram of various components or
functions of an exemplary modeler and server.
0040 FIG. 12 is a graphic representation of a potential
architecture for an exemplary modeler or server.
0041 FIG. 13 is an example screen representing an IDE
with MDI, drag and drop and dockable windows as used in
Some potential implementations.
0042 FIG. 14 depicts a potential tool box window of an
exemplary modeler.
0043 FIG. 15 depicts a potential project explorer window
of an exemplary modeler.
0044 FIG. 16 depicts a potential property window of an
exemplary modeler.
0045 FIG. 17 provides a graphical representation of an
example graphical diagram window.
0046 FIG. 18 represents a browser window within exem
plary modeler.
0047 FIG. 19 depicts an exemplary test window.
0048 FIG. 20 depicts an exemplary SOAP request win
dow as used by the exemplary test window of FIG. 19.
0049 FIG. 21 depicts an exemplary SOAP response win
dow used by the exemplary test window of FIG. 19.
0050 FIG.22 represents an example output window.
0051 FIG. 23 depicts a screen from mainframe sample
application.
0.052 FIG.24 depicts a sample data input into the example
Screen in FIG. 23.
0053 FIG. 25 depicts an exemplary modeler project rep
resenting a Web service to operate a mainframe application
defined through graphical nodes.
0054 FIG. 26 demonstrates the relationship between a
property window and a node within an graphical diagram
window in a particular example modeler.
0055 FIG. 27 represents use of a drop-down menu for
selecting a data sources for an exemplary node.
0056 FIG. 28 represents use of a drop-down menu for
selecting a data sources for an exemplary node.
0057 FIG. 29 depicts a sample graphical Web service
definition accessing a mainframe application.
0.058 FIG. 30 demonstrates graphical definition of a com
posite Web service within an exemplary modeler.
0059 FIG. 31 depicts a typical deployment architecture
for Web services using an exemplary modeler and server.

DETAILED DESCRIPTION

0060 Exemplary systems and methods are now described
in detail. Referring to the drawings, like numbers indicate like
parts throughout the views. As used in the description herein,
the meaning of “a,” “an,” and “the includes plural reference
unless the context clearly dictates otherwise. Also, as used in
the description herein, the meaning of “in” includes “in” and
“on” unless the context clearly dictates otherwise. Finally, as
used in the description herein, the meanings of “and” and 'or'
include both the conjunctive and disjunctive and may be used
interchangeably unless the context clearly dictates otherwise;
the phrase “exclusive or may be used to indicate situation
where only the disjunctive meaning may apply.
0061 The hardware of a typical execution environment
for one or more of the components Supporting Web services
definition, implementation and/or execution include a system

US 2010/0146396 A1

processor potentially including multiple processing ele
ments, that may be distributed across the hardware compo
nents, where each processing element may be Supported via a
general purpose processor Such as Intel-compatible processor
platforms preferably using at least one PENTIUM class or
CELERON class (Intel Corp., Santa Clara, Calif.) processor;
alternative processors such as UltraSPARC (Sun Microsys
tems, Palo Alto, Calif.) and IBM zSeries class processors
could be used in other implementations. In some implemen
tations, Web services definition, implementation and/or
execution (servicing) functionality, as further described
below, may be distributed across multiple processing ele
ments. The term processing element may refer to (1) a process
running on a particular piece, or across particular pieces, of
hardware, (2) a particular piece of hardware, or either (1) or
(2) as the context allows.
0062 Some implementations can include one or more lim
ited special purpose processors such as a digital signal pro
cessor (DSP), application specific integrated circuits (ASIC)
or a field programmable gate arrays (FPGA). Further, some
implementations can use combinations of general purpose
and special purpose processors.
0063. The hardware further includes an SDS that could
include a variety of primary and secondary storage elements.
In one preferred implementation, the SDS would include
registers and RAM as part of the primary storage. The pri
mary storage may in some implementations include other
forms of memory such as cache memory, non-volatile
memory (e.g., FLASH, ROM, EPROM, etc.), etc.
0064. The SDS may also include secondary storage
including single, multiple and/or varied servers and storage
elements. For example, the SDS may use internal storage
devices connected to the system processor. In implementa
tions where a single processing element Supports all of the
server/manger functionality and/or the modeler functionality
a local hard disk drive may serve as the secondary storage of
the SDS, and a disk operating system executing on Such a
single processing element may act as a data server receiving
and servicing data requests.
0065. It will be understood by those skilled in the art that
the different information used in the systems and methods for
Web service function definition, implementation, and/or
execution as disclosed herein may be logically or physically
segregated within a single device serving as secondary stor
age for the SDS; multiple related data stores accessible
through a unified management system, which together serve
as the SDS; or multiple independent data stores individually
accessible through disparate management systems, which
may in Some implementations be collectively viewed as the
SDS. The various storage elements that comprise the physical
architecture of the SDS may be centrally located or distrib
uted across a variety of diverse locations.
0066. The architecture of the secondary storage of the
system data store may vary significantly in different imple
mentations. In several implementations, database(s) are used
to store and manipulate the data; in some such implementa
tions, one or more relational database management systems,
such as DB2 (IBM, White Plains, N.Y.), SQL Server (Mi
crosoft, Redmond, Wash.), ACCESS (Microsoft, Redmond,
Wash.), ORACLE 8i (Oracle Corp., Redwood Shores, Calif.),
Ingres (Computer Associates, Islandia, N.Y.), MySQL
(MySQL AB, Sweden) or Adaptive Server Enterprise (Sy
base Inc., Emeryville, Calif.), may be used in connection with
a variety of storage devices/file servers that may include one

Jun. 10, 2010

or more standard magnetic and/or optical disk drives using
any appropriate interface including, without limitation, IDE
and SCSI. In some implementations, a tape library Such as
Exabyte X80 (Exabyte Corporation, Boulder, Colo.), a stor
age attached network (SAN) solution such as available from
(EMC, Inc., Hopkinton, Mass.), a network attached storage
(NAS) solution such as a NetApp Filer 740 (Network Appli
ances, Sunnyvale, Calif.), or combinations thereof may be
used. In other implementations, the data store may use data
base systems with other architectures such as object-oriented,
spatial, object-relational or hierarchical.
0067. Instead of, or in addition to, those organization
approaches discussed above, certain implementations may
use other storage implementations such as hash tables or flat
files or combinations of such architectures. Such files and/or
tables could reside in a standard hierarchical file system. Such
alternative approaches may use data servers other than data
base management systems such as a hash table look-up
server, procedure and/or process and/or a flat file retrieval
server, procedure and/or process. Further, the SDS may use a
combination of any of such approaches in organizing its sec
ondary storage architecture.
0068. The hardware components may each have an appro
priate operating system such as WINDOWS/NT WINDOWS
2000 or WINDOWS/XP Server (Microsoft, Redmond,
Wash.), Solaris (Sun Microsystems, Palo Alto, Calif.), or
LINUX (or other UNIX variant).
0069. In one implementation the server or manager
executes on a z/OS or VSE/ESA platform and the modeler or
Studio executes under a WINDOWS 2000 or WINDOWS/XP
operating system. The server or manager executes as a rules
based processing application using XML based instructions
created by the modeler or studio software. The modeler or
studio is a graphical tool for building application flows to
allow processing of non-SOAP and SOAP-based applications
as SOAP-based composite applications.
0070. In some implementations, a graphical user interface

is disclosed that allows business analysts and programmers to
form a collaboration to build a new business process centered
on Web services. For example, users may be business analysts
who require a method of interfacing to a mainframe applica
tion without an in-depth knowledge of the programming and/
or application execution environment. Other users might be
application developers or technical Support personnel tasked
with building SOAP Web services for use by application
servers. This aspect can allow a developer to bridge between
the application logic and the business process needed to pro
vide a SOAP Web Service.
0071. In one implementation of the methods and systems
described herein, a client uses a graphical interface to build a
business process by defining inputs and expected outputs and
then stepping through the application using graphical icons or
nodes for each step. This graphical user interface allows the
modeling of a Web service via graphical objects. The graphi
cal objects are connected using connection points to form a
flow through the various applications or methods needed to
create the single process or composite process web service.
As seen in FIG. 1, the application flow through the various
nodes controls the logic processing for several applications
which provide the unique function of composite processing.
0072 Each of the functions, (for example, business logic
functions such as Link Point 3270 process and 3270 Point or
Web Service Client point nodes, start and stop, logic flow,
input and output movement nodes or XML/data remapping)

US 2010/0146396 A1

may be represented by a graphical icon or node. The modeler
software is resident on the client's workstation and converts
the client's input into processing rules in a single format, for
example XML. The modeler provides the server with the
rules required to navigate or otherwise invoke a business logic
process, a transactional or conversational type application or
even Web services which exist on the same or external serv
CS

0073. The server or manager is a rules-based engine used
to process rules generated as instructions from the modeler.
The composite processing of applications provided by the
server are a direct result of building the application flow using
a graphical design tool. This process provides a simple yet
powerful process for building mainframe-based SOAP or
SOA applications. The graphical tool serves as one facet of
the overall systems and methods described herein. Use of this
tool allows no additional programming to be required once
the modeler tool has deployed the rules to the server or man
ager software. The server processes the incoming SOAP
request envelope, and then processes the business logic to
build the SOAP response envelope for the returned SOAP
packet. The server may further allow various processes of
additional functions or business logic to form a complete
response. Service requestors may communicate with the
server to discover the defined Web services and import the
WSDL that is created by the modeler to describe and define
the processing of the service. The modeler or studio tooling
builds the WSDL file automatically for the clientoruser of the
system and removes the need to have the knowledge of build
ing these interface files. The WSDL files can then be used by
other third party products such as application design tools to
build the interface modules called SOAP clients or proxies to
access the applications that are orchestrated by the modeler/
studio and server/manager.
0.074. In some implementations, existing business logic
and/or application information can be imported into the sys
tems and methods described herein. Existing business logic
and/or application information may be supported through
particular formats such as BMS or copybooks. An interface
can be provided for such importation such as depicted in FIG.
2. Imported business logic and/or application information can
then be used to build Web services.
0075. The importing process provides a way to communi
cate between various different system types, and the meta
data collected through importation allow systems designers
to communicate in a known language. Additional meta data
may be created and/or renamed, mainly SOAP input and
output metadata that is to be exposed by the Web service can
be named or described using new metadata names, which can
then hide the fact that the back-end system is not a Web
service-based application.
0076. The imported meta data is preferably normalized
into an XML format to allow it to be processed using standard
XML parsers instead of having to use a unique parser. The
imported data, and/or other metadata, can be viewed in a tree
fashion using tooling provided by some implementations of
the modeler. FIG.3 depicts such an example.
0077. The graphical building of a Web service may use
imported information to define communication with business
logic and/or application processes. Each node has a unique
function and properties that define the Web service and the
operations performed by the service. For example, in a par
ticular implementation, a Start node can describe the Web
service and can serve the anchor or parent node for all other

Jun. 10, 2010

operations. A Start node can further represent multiple opera
tions and/or configuration settings. It can, for instance,
describe the location (environmental) attributes of the Web
service that you are building.
(0078. Once the Web service operations have been defined
the user may select the correct processing or point node. Each
processing or point node defines the information required to
access the target source. For example, for 3270 interface
operations the target could be a CICS transaction code, or for
a COMMAREA application the target could be a CICS pro
gram name. Additional data sources such as DL/I, IMS, DB2,
VSAM, could also be used. As users build the diagram or
model of the Web service they may connect the nodes to form
the logic or processing flow. This flow will later be translated
into instructions for the rules-based SOAP server process.
The syntax of the diagram is verified each time a node con
nection is attempted to insure a valid logic path and that node
connection rules are correct. The logic path is traced to insure
that the connection operation is to a valid parent and is not
crossing Web service operation paths or boundaries. Each
Web Service Operation node defines the expected SOAP
input and output for the service operation path. The WSDL is
created from the properties entered for each of the nodes. This
document is an XML description of the interface methods for
the Web service being created.
007.9 The modeler build process may in some instance
provide a verification of the Web service at the same time as
it creates the server rules, WSDL and HTML to define the
service.
0080. The descriptive HTML may be static or converted to
a dynamic XSTL template that will build the HTML dynami
cally based on the XML of the WSDL. The WSDL generated
by the modeler build process can now be used, in some
implementations, by an execution test and/or debug tool.
Such a test and/or debug tool potentially provides for further
verification of the service definition and the generated Web
service interfaces. These tools can dynamically process the
service information (WSDL code) to create the user interface
required to verify the deployed Web service. In such imple
mentations, the WSDL definition may serve as the interface
point between Java J2EE and .NET processing. The WSDL
may be processed by popular Integrated Development Envi
ronment (“IDE') products that supply the capability to auto
matically build the Java, C# or other language interface code
for processing the Web service described by the WSDL.
I0081. The server side instructions (rules) contain a mix
ture of execution and data flow. These instructions can be
represented in XML as a tree structure. The XML tree is
derived from the project diagram and its associated settings
including data movements and/or properties. The diagram
itself is stored as a mostly flat entity (although it may be
represented in XML) so the resultant server instructions are
not required to have the same appearance as the diagram. The
format of rules is preferably set to provide the highest perfor
mance, as these rules will be executed for each request of the
Web service. The rules may be compressed and/or optimized
to improve performance of execution. Each execution node
within the server instructions contains children nodes, one of
which will receive control once the parent has completed its
processing. The choice of the next child to dispatch is deter
mined at runtime by the rules engine, but the rules instructions
allow all possible choices to be specified. FIG. 4 depicts a
representation of the rules generated by an exemplary mod
eler in one particular implementation.

US 2010/0146396 A1

0082. The model designer has complete control over
server processing logic flow. There are no ambiguous execu
tion flows within a Web service operation; the model designer
details completely how the server is to operate. Data flow is
completely described within the modeling diagram process.
The modeler creates the server side instructions via an
“n-pass' algorithm applied to the diagram XML based on the
number of paths created by the client in the diagram. Server
processing is a single pass of the XML server rules instruc
tions tree. The modeler pre-notifies the server, possibly via
the rules, of any data movements required to be saved for later
usage to optimize the server performance. This design places
the complexity burden upon the modeler to be highly opti
mized in its rule creation resulting in performance benefits in
the server rules engine.
I0083. The server may be a SOAP server based on the
HTTP and SOAP protocols. The particular server may sup
port processing standard HTTP and/or secure HTTPS
requests. The repository may be a Hierarchical File System
based on a CICS standard VSAM KSDS file; this unique
function provides support for a UNIX/Windows based file
system without the need for Unix System Services on CICS.
The file repository may contain a command line processor for
management of the file system via a standard CICS transac
tion. Command examples include, but are not limited to cre
ation of file systems in the repository, directories and data
files as depicted in FIG. 5. The file system repository can also
be managed from an FTP server provided such as with the
SOAP server and/or via the FTP client supplied with the
modeler. FIG. 6 provides an example of Screen of manage
ment via an FTP server. The HTTP server and FTP server can
follow the standard Internet RFCs for those protocols.
0084. The server can provide the ability to map transac
tional 3270 and program-based applications into SOAP
methods or objects. The heart of this process is the rules
engine that is used to process the output rules instructions
from the modeler. The server processes each node starting
from the initial start point of the diagram. In a preferred
implementation, each diagram contains the Web service
name and the operations or methods the service provides.
Once the method is selected from the SOAP Request enve
lope, the selected Web Service Operation node becomes the
parent node and the logic tree that results will all branch from
this common parent. For example, each node of the rule
instruction set may cause the server to dispatch the function to
handle the node operations. The node operations are opti
mized into the correct code page for the mainframe session.
I0085. In a preferred implementation, the HTTP server pro
vides the base protocol support on top of CICS Web Services.
This HTTP server provides administrative utilities to manage
the SOAP services and FTP servers. An example administra
tive Screen is seen in FIG. 7. All discoveries of WSDL files
and management of the HTML documentation can be stored
in a Hierarchical File System (as part of the SDS).
I0086. Some implementations of the described systems
and methods may incorporate a debugger or testing tool to
read in the WSDL and extract all the operations that can be
performed. The debugger lists the operations in a pull-down
list. Once the user selects an operation from the list the input
field, metadata will be used to build a tree view of the required
input fields. The debugger or test tool may be used to input
data for the SOAP Request envelope. For complex arrays the
user may first define how many occurrences will be entered,
and then the debugger will provide input area in the tree

Jun. 10, 2010

display for the occurrences of the complex type. The debug
option may be added to the client modeler application and the
server service provider. The debug operations may be a two
way communication path that will allow the client to know
what step has been executed on the mainframe. The client
notifies the server of the debug request by sending additional
headers in the HTTP request to show the debugging client
machine. The user may open a TCP/IP socket to listen for
requests. As the server starts execution of the rules the server
will send status information to the client. The modeler will
show the current step in the diagram and will provide for
breakpoints and other standard debug commands, such as
looking at storage, setting new data values.
I0087. Some implementations of the described methods
and systems incorporate an emulator. The emulator can be
written in such a way to provide .NET access to the 3270
emulation via browser object tags, the browser may be used as
the container for the emulator product. This may also extend
beyond the browser into an API that allows programmatic
control over the 3270/5250 applications. This will be a pure
.NET solution and as such will allow any .NET language on
a Microsoft platform be used to build new interfaces. The
emulator can take advantage of performance improvements
placed into the Windows .NET object used to build applica
tions.
0088. The emulator can be installed in classic windows
fashion, or via a browser interface. An exemplary emulator
screen is seen in FIG. 8.
I0089. In some preferred implementations, the modeler
process provides for building Web services by importing
Basic Mapping Support macros (“BMS) and building a data
structure in XML that matches the Application Data Structure
(ADS). For example, in one implementation the model may
provide a method for importing the CICS COMMAREA into
an XML format much like the BMS macro layout. This pro
vides a common layout and structure for the various applica
tion data structures that will be used.
0090. In some preferred implementations, a user builds a
business process by defining inputs and expected outputs and
then stepping through the application using graphical icons
for each step. Each of the functions, for example business
logic functions, starts and stop, logic flow, or XML remap, is
represented by an icon. The end result is a graphical design of
the application from the Web service inputs to the final Web
service response. The graphical models may be self-docu
menting or may also provide for process documentation to be
entered using “sticky notes”. The modeler interfaces with an
IDE, which processes the menus and windows for user selec
tions. The general design in a preferred implementation may
include dockable and movable windows and the use of Mul
tiple Document Interface (“MDI). (See FIG. 5.) Menus and
screen literals may optionally be based in resource files to
allow for support of languages other than English. FIG. 9
depicts an exemplary screen.
0091. The modeler will allow users access to multiple
applications in a single Web service by combining application
available functions, in contrast to conventional systems that
require having to make several calls. In order to improve
compatibility with other systems, all or some files created by
the modeler, including the project files, can be stored using an
XML format. The modeler may incorporate functions to
import copybooks that are converted to an easy to understand
XML format, which allows for easy expansion of the result
ing metadata dictionary. The modeler will also incorporate a

US 2010/0146396 A1

BMS macro importer to convert the BMS source into XML
format. An FTP client can be provided to pull copybooks
and/or BMS macros from the mainframe or other computer.
An exemplary interface screen is depicted in FIG. 10. The
FTP client may include a metadata import function. Such a
function Supports ease of use by clients when importing meta
data located on a remote computer system.
0092. The modeler provides the server with all the rules
engine information needed to process SOAP operations.
0093. Manager software, for example, mainframe service
routines, uses XML data collected via the modeling software
to process the business rules defined in the graphical model by
the user. Input to the manager will be the processing rules
from the modeler and the SOAP packet. The input process
will fire the manager, and it will process the business logic
building a result for the returned SOAP packet.
0094. In one preferred implementation, the server is a
rules-based engine that processes the XML server instruc
tions from the modeler. Each node is converted into a set of
rules that allow the various processes of a Web service to be
applied to information and procedures resident on a server,
for example the CICS TS server or on IMS-based server
processes.
0095. The Start node is the initial setup and logical start of
the Web service being created. The Start node defines the
name of the Web service and various WSDL options such as
the URI to invoke the Web service and the target namespace
for the SOAP input/output fields that will be defined. The
processing type of RPC (Remote Procedure Call) and Docu
ment is requested at this node.
0096. The Web Service Operation node provides the logi
cal name for the method or operation and provides the SOAP
input and output structures. Each input field and its type is
described at the Web Service Operation node. The output
structure expected from the Web service is also defined at this
node.
0097. The LINK Point Node provides the interface point
between the server and the Web service being created. The
link point defines the name of the program to execute and the
location where it should execute. CICS dynamic routing rules
may be used when processing.
0098. Some implementations may incorporate a 3270 Pro
cess node and a Point node. The Process node may cover all
the setup information for the transaction code and the infor
mation required by CICS to start the 32370 process. The Point
node is used to Supply the current BMS mapset and map name
so that data movements can be created.
0099 Data movement nodes provide a tree structure for
creation of move rules. Some examples of data movement
nodes include Move to LINK, Move to 3270, and Move to
Output. The movement process is based on a common code
base so that all movement nodes have a similar function. The
Move to LINK node, for example, may provide the method to
set the initial values for the program that will be invoked. The
Move to 3270 node may allow for moving data to the BMS
map in order to provide input for the 3270 screen operation. In
one implementation, the data that could be used for these
move operations could be from static values, SOAP input
request envelope, and any previously accessed 3270 map or
CICS COMMAREA

0100. The Decision nodes provide the ability to add logic
that will change the flow through the model. These nodes may
be processed by the server and take action on data from any
previous point node under the same Web Service Operation

Jun. 10, 2010

node. Complex operations may be defined using the Decision
nodes in conjunction with Loop nodes. Decision nodes can
target the current point node process for all comparison
operations.
0101 Logic Decision nodes may also be placed in the
flow. These nodes allow the data to be examined and the result
to modify the flow of the server rules to provide 2 paths for
each decision node, so the logic paths or flows increase 2*n
where n=the number of decision nodes. These nodes may
provide the method for the logic flow to form a tree format. In
conjunction with Decision nodes, Connector nodes may be
incorporated to allow consolidation of logic paths. The Con
nector node may provide the method for a branch of logic to
return to any logic path under the parent Web Service Opera
tion.
0102 Loop processing is also used within decision tree
processing: a Loop node provides a method for returning to a
previous node within the parent Web service operation. At
times logic of applications running in CICS will require that
they be executed using multiple iterations. The Loop node
will allow the logic flow to return to a parent node. For 3270
BMS this might be an operation that is scrolling through
several screens. For a COMMAREA application, it might be
a program that requires more than one pass to collect all the
returned data.
(0103) The Move to Output node allows for data to be
moved from any previous point node with the same parent
Web Service Operation node. The target of the movement
data will be the SOAP response envelope.
0104. The Connector nodes provide a very important pro
cess that allows several logic paths to branch out and then
return to the main line logic flow.
0105. The Operation End node is a logical placeholder to
signal that the Web service operation has completed its task.
All Web Service Operation node paths can connect to a single
Operation End node.
0106 A Calculation node will provide for mathematical
operations to be added to the logic flow of the modeler. These
nodes will process data from the application and will be used
to modify the result set returned to the client. For example, the
3270 application may have a total account balance for the
persons account. A Calculation node may provide Support for
the user who desires to process all accounts and return to a
single total.
0107 A DataSource node provides access to external file
systems and database data, for example, DL/I, IMS, DB2, and
other ISV databases. Each DataSource node will have unique
options for each of the different DataSource databases or file
systems supported. These will be added to the product on an
as needed or on demand basis.

Exemplary Manager or Server Function
0108. The following description lists some general fea
tures of an exemplary manager or server function that may be
used along with a modeler or studio function to provide
application flow processing and orchestration of applications.
The manager or server processes all SOAP requests and
handle the processing of application flow as described by the
rules created by the modeler or studio process. Application
orchestration provides a method to modify application flow
without the need to modify the existing application code. FIG.
11 shows the various functions of the manager/server in one
of the variations in which the process can exist. The studio
process is the modeler that builds the rules used by the rules

US 2010/0146396 A1

processor to orchestrate application flows. The manager/
server and modeler/studio architecture is depicted graphi
cally in FIG. 12.
0109 The server process or manager process contains a
set of code instructions to manage the various processing
engines and may in Some implementations automatically
Switch states between the various processing functions as
needed to process an application flow or to orchestrate a
composite application consisting of one or more of the appli
cation area or processes shown in the example.
0110. The SOAP clients can be any .NET, J2EE, standard
Java, third party or user created web service functions. The
manager/server can itself call another manager/server run
ning the same or different projects to complete a true distrib
uted function. Functions may further be called from user
written applications (not shown). During this process the
manager or server is acting as an agent of the application and
not that of a SOAP request. The processing may occur via API
metadata structures instead of SOAPWSDL metadata XML
files.
0111. The following is a list of functions provided by a
typical manager server for processing the application flow
rules created by the modeler or studio functions.
0112 Rules processing engine for processing execution
rules provided by the modeler/studio software for orches
tration of application processes along with handling all the
dynamic movement of data to and from SOAP XML meta
data to application specific meta data layouts. The algo
rithm used for application flow processing may work in
conjunction with the memory management algorithm to
insure that only the storage required is saved during the
execution orchestration process.

0113. HTTP or HTTPS processing of incoming SOAP
requests, optionally the requests could be dropped onto an
MQSeries queue for processing by the rules engine. This
may include the security checking and processing required
for verification that the process is valid for the passed
security information.

0114. The application metadata mapping and data trans
formation algorithm may be based on the imported meta
data information collected from the modeler or studio
execution rules instructions. This algorithm includes rou
tines for processing data transformations between the vari
ous encoding methods of ASCII to/from EBCDIC. The
server/manager may also process all the various COBOL
application data types of, but not limited to: COMP.
COMP-2 COMP-3, COMP-4 and POINTERS. String and
decimal number processing can be processed by the data
mapping functions to insure the correct decimal alignment
options are processed.

0115 Storage processing may be handled by management
modules that insure only the data needed to process the
movements in the project rules files are saved during the
execution of the SOAP or MQSeries request.

0116 AURI mapping module may control the processing
options and security used for various SOAP requests based
on any Suitable technique; in one preferred implementa
tion, a pattern matching algorithm is used.

0117 The manager may also process WSDL discovery
requests as a standard SOAP server using the 2WSDL
option, but it processes the documentation of the WSDL
into an HTML file that can be served out using the 'PINFO
request which displays the information collected by the
modeler? studio functions into a human readable form of

Jun. 10, 2010

HTML so that other application developers can read and
understand the requirements of the WSDL process. This
can be advantageous in the debugging and analysis of the
Web Service.

0118. The rules engine may be implemented a single com
mon resource. In some implementations, this rules engine
may be completely re-entrant so that it can handle multiple
inbound requests.

0119 The manager/server may also, in some implemen
tations provide trace functions which create an XML
description document that traces the functions of the last
SOAP request call. The trace can be used to debug opera
tions or look for problems.

I0120) The Callable Services Operation (CSO) module
may provide an API to an application program which com
municates with the CSO module via COMMAREA inter
face. The CSO module may operate to convert COM
MAREA input requests to SOAP requests, execute the
requested Web services, and deliver the results in COM
MAREA output area.

Exemplary Modeler or Studio Function
I0121 The following description lists some general fea
tures for an exemplary modeler or studio that may be used
along with a manager or server function to provide applica
tion flow processing and orchestration of applications. The
modeler or studio function typically includes a high quality
graphical display process to achieve the easy graphical build
ing of application flow process. Icons and images are used to
associate tasks and functions required to build or orchestrate
an application or set of application flows. FIG. 13 depicts a
sample screen of one example interface with features as more
fully described below.
I0122) Multi-document window interface for controlling

several containers of information in a single User Interface
(UI).

I0123 Drag-and-drop dockable windows allow customiza
tion of the UI to match the clients or users preferences that
Support one or more features Such as:
0.124 View or hide a window within UI
0.125 Resize a window within UI dynamically.
0.126 Place a window in different location within UI
dynamically.

0.127 Tab between windows.
0128. Each window is provided with scroll bars so that
the information within the window can be viewed using
the scroll bars if needed.

0.129 Remember the current user preference and con
figure the windows the same way next application start
up.

0.130 Graphical toolbox of icons used to manage the vari
ous nodes required for building application flows and com
posite application processes.
0131 Under certain conditions, the particular nodes
made inactive depending on the application types that a
developer builds.

0.132. The nodes will be placed in a logical order that a
developer might be using. For an example, all COM
MAREA related nodes are grouped together, placed in
the order that they are typically used. All 3270 related
nodes are grouped and placed in the order that they are
typically used. All Web services related nodes are
grouped and placed in the order that they are typically
used.

US 2010/0146396 A1

0133. The toolbar may be fully customizable to allow
clients to place important or high use items on toolbars for
easy access.

0134) Action bar menus may be provided to allow process
ing of all functions, important or higher usage functions
will be represented by icons to allow placement on the
toolbar.

0135 Import functions may be supported for the follow
ing:
0.136 Copybooks and/or source code to pull in COM
MAREA or IMS application layouts

I0137) BMS macro importer to pull in 3270 metadata
information. This may include other 3270 sources in
the future.

0.138 Pull copybooks and/or source code from input
Source including local computer file system and remote
computer file system.

0139 Profile dialogs for manager server deployment,
UDDI client, FTP client and 3270 client application pro
cessing. Profiles include information needed to create and
maintain a connection to a host process.

0140 Profile dialogs for management of internal/external
tooling, namely access to applications created outside the
product. For UDDI processing the dialogs may describe
the various methods for importing WSDL files created by
other functions or by the tool itself.

0141 Project Explorer or file management process to
show files associated with the project or file member to
store all the execution flow processing XML information,
may allow double clicking to process options, or right
click to show menu of processing options.

0142. The application flow window or diagram window
may be part of an MDI interface that provides a customi
Zable grid layout process to allow nodes to be dragged to
the diagram processing area and dropped. The dropping or
Selection process may activate a property window (part of
a customizable dockable window interface). Once acti
vated the property window can display the default or saved
options for each node depending on the state of activation.

0143 Certain nodes may provide collections of informa
tion about meta data or data movements. The collections
may be accessible via a mouse click or keyboard selection
of the collection expansion process. The collections may
be presented in tree processing dialogs to allow for ease of
processing when selecting or building metadata informa
tion.

0144. The graphical Diagram window may contain rule
processing to allow the flow engine to process correctly. A
rigid and expansive set of ruling and Verification may take
place each time a node or tool is connected or disconnected
to reduce errors. The flow processing may require valida
tion in Some implementations before a connection is
allowed; this provides the client with immediate feedback
as to the validity of the diagram, model or application flow.
When meta data items are renamed or moved in the col
lection properties the change should be propagated through
all nodes attached to the project.

0145 The Properties window may display the required
metadata information when a node is selected. When it is
required, each metadata may cause additional windows to
gather information. As an example, Web Service Client
Point Node needs the WSDL location of the Web Service.
When the WSDL location is clicked, WSDL Discovery

Jun. 10, 2010

window is displayed so that it can gather information about
the WSDL and populate the required information on the
property window.

0146 When the project is deployed to the manager or
server, the status of build, Verification or processing rules,
and the status of upload process of processing rules of
application and generated WSDL may be displayed.

0.147. In addition, some implementations include a build
or verification process that can provide a secondary check
of the properties and connections between the nodes to
insure the flow processing rules are complete and valid
before being deployed (uploaded) to the manager/server
process.

0.148. After the completion of the build process, the gen
erated files (e.g., WSDL files, rules processing files,
HTML files) describing the application flow are stored. In
Some implementations, they are stored in the same direc
tory structure of the computer system's file system.

0149. A test utility window may contain areas to view and
change WSDL location, operation name, URI location,
HTTP version, timeout value, user ID, password, SOAP
Request parameters, execution of the request, and/or dis
play of the test result (SOAP Response. The interface in
Some implementations may include one or more of the
following features:
0.150 Remember the current project information from
the graphical Diagram window and pre-fill the informa
tion including WSDL and URI locations, operation
name, and HTTP version.

0151. Understand the current project information
including the list of operations, the SOAP request and
SOAP response parameters.

0152 Allow test data to be entered
0153 Save test data and reuse the saved test data.
0154) View host-generated traces in a window.

0.155. A full help processing system may be provided in
Some implementations with the system to provide details
on usage and processing of the various functions.

0156 The following is a list of potential nodes in this
exemplary implementation and a short description of its
function:
0157 Start project or flow starting point: contains
URI, WSDL location, descriptions and encoding styles
and various other information for the rules processing
engine. It also defines the name of the Web service.

0158 Web Service Operation (WSO)—contains the
collections for SOAP input/output and work field pro
cessing, defines the operation name for the web service
defined in the start node. Allowing multi-operations is a
significant feature for the mainframe application based
version of the described systems and methods.

0159 Callable Service Operation (CSO)—contains the
collections for building an API layout to allow client
applications to call the server/manager for processing
rules based functions via application code instead of via
SOAP based calls to activate composite SOAP applica
tions.

0.160 3270 Process—defines the 3270 BMS transac
tion codes and parameters needed to execute a transac
tion; this may contain processing of any 3270 applica
tion screen and need not be restricted to BMS only. After
a process node there is normally a 3270 Point node as
there is an implied 3270 action after the rules processing
of the manager flows through a 3270 Process node.

US 2010/0146396 A1 Jun. 10, 2010
10

0.161 3270 Point—defines the map information for the 0170 Move to Output—this node may be executed as
3270 process so that the correct metadata information is many times as needed to move the entire SOAP packet to
used for the following movement processing. the requestor. The client has control over when and

(0162 Move to 3270 collections of movements of data where these are placed in the diagram flow, as stated only
using metadata information from any previously access one is needed, but as many as required may be coded.
information. Any application data collected in the application flow

(0163. 3270 Action the action node defines the 3270 (continuous connection points) is available to be moved
AID or key that should be pressed at the current time. to the SOAP Output, or API COmmun1cat1On area
After an action, another 3270 action or a collection of depending on the type of SW1C created.
3270 Point nodes are typically seen. The rules engine (0171 Move to WorkVariable as discussed, work vari
internally processes logic flow decisions to select the ables are meta data fields used to store information that
correct3270 Point node based on the 3270 image or map can be used in the product runtime options or as storage
that is currently active for the process. After each 3270 for data that may or may not be needed for processing the
action, any number of different screen display options application, for example switches to modify logic flow
may be provided. in a set of rules in a diagram.

0172 Connector—connectors do just what the name
(0164 LINK Point Node contains information to pro- implies, as decisions are used to create branches in the

cess a direct application call via CICS, IMS or other logic flow the connector can be used to bring many
application platforms accessed via call or flat metadata nodes into a single logic flow again. There are fewer
layouts. Another feature is the ability to process several rules about the placement of Connector nodes than any
referenced storage areas in addition to just the single flat other node. In a preferred implementation, the connector
storage data area. This referenced storage process pro- cannot be used to join different operations in a project; it
vides a method to pass very large data areas based on can only connect branches of an operation back to the
pointer or address reference points, similar to container same operation.
or channel processing used by CICSTS 3.1. The meta 0173 Decision the logic flow modifier, clients can
data API area can be one single area or several areas. check work fields, SOAP input, application data from

0.165 Move to LINK this is used as the collection any of the various point nodes or for checking the ranges
point for movements of meta data from all previously of boundary of arrays. The systems and methods
referenced storage to the API area used to communicate described herein may support an array processor
to the application. Previous storage could be SOAP approach that allows for dynamic array processing for
input, other applications called via LINK Point, 3270 SOAP operations. Application arrays are normally static
Point or Web Service Client Point Nodes. The processes in nature, but can be processed using the same array
described herein may optimize the processing of storage boundary checking as for SOAP fields.
based in part on the rules processor's knowledge at 0.174 Loop the rule execution flow processor may
design time of all the data that may be moved or modi- have the ability to loop through applications (calling
fied. repetitively) to process large amounts of information.

0166 Execute Link Point Node this node is mainly a The node has controls to limit loop processing to a
marker in the logic flow of the diagram to show when the defined amount or allow for decision processing to con
process is actually called. It allows for easy identifica- trol the loop functions. Loops can also be used to process
tion of the application flow being processed. arrays of data in SOAP or application metadata.

(0167 Web Service Client Point Node identifies the 0.175 Operation End—signals to the rules engine that
processing of external Web service functions, they could all the processing that has taken place to this point is
be other Web services created by the present systems and complete and the response should be returned. If the
methods or Web services created by other automated or SOAP Fault option is turned on, the Operation End will
manual methods. The process may provide an import create a SOAP fault that will be returned to the calling
function at this node to collect WSDL files for building SOAP client; this is normally used for error processing,
the SOAP client needed to access the process. The pro- but could also signal to the calling application the pro
cess may build this dynamically via the modeler and cess completed
creates a static call in the rules engine on the manager/ 0176 Sticky Note—used to add documentation to the
server that will process the dynamic input and output for logic flow diagram, this is only informational data and is
the referenced Web service operation. Special usage not used by the rules engine.
work variables can be processed as any object property,
for example using the (a)(afieldname; option. This pro- Tool Box Window of One Exemplary Modeler or
cess allows any static option to be modified at runtime by Studio Function
the contents of the named work field. 0177. A graphical toolbox of icons may be used to manage

(0168 Move to Web Service Client this movement is
like all other movement nodes with the exception that a
WSDL is used to define the field names required for the
operation.

(0169 Execute Web Service Client this node marks
when the requested call is placed by the manager/server
rules processing engine. The SOAP client is dynami
cally built at runtime to process the Web service opera
tion.

the various nodes for building application flows and compos
ite application processes. Such an exemplary interface is
depicted in FIG. 14.
0.178 When a node is depressed or selected, it can be
dragged and dropped on a Diagram window.

0179. In some implementations, the graphical toolbox can
be context sensitive. Particular node types can be made
inactive depending on the application type that a developer
builds. As an example, FIG. 14 shows that Callable Service

US 2010/0146396 A1
11

Operation node is made inactive because the developer is
not building a Callable service application.

0180. The nodes are preferably placed in a logical order.
0181 All applications typically start with a Start node
followed by one or more Web Services Operation nodes,
and end with one or more Stop nodes. Therefore, the
Toolbox window may start with the Start node followed
by various operational nodes including the Web Services
Operation node and Callable Service Operation node.

0182 All 3270 related nodes may be placed in a logical
order and grouped together. For example, the 3270 Pro
cess, 3270 Point Node, Move to 3270, 3270 Action are
ordered and grouped accordingly.

0183 All LINK related nodes may be ordered logically
and grouped together. For example, the LINK Point
Node, Move to LINK, and Execute LINK nodes are
ordered and grouped accordingly.

0.184 All Web Services related nodes may be placed in
a logical order and grouped together. For example, the

Component

3270 Action

3270 PointNode
3270 Process

Callable Service
Operation
Connector

Decision

Execute LINK

Execute Web
Service Client

LINK Point Node

Loop

Move to 3270

Move to
COMMAREA

Move to Output

Move to Web
Service Client

Move to Work
Variable

Operation End
Start

Sticky Note

Jun. 10, 2010

Web Service Client Point Node. Move to Web Service
Client, and Execute Web Service Client nodes are
ordered and grouped accordingly.

0185. After executing an operation node (3270 Action,
Execute LINK, or Execute Web Service Client), the
resultant data from the operation is available. Using the
available data, the data can be moved, checked and/or a
decision is made to loop or connect to other logical
place, and/or loop. Therefore, Move to Output, Move to
Work Variable, Connector, Decision, and Loop nodes
may be placed after the last execute node and grouped
together.

0186. Since the last logical operation is typically the
Operation End node, it may be listed as the last item of
the logical operation node.

0187. Since the Sticky Note is typically used as a docu
mentation tool, it may also be placed after the last logical
operation node Operation End node.

Description

Defines the AID operation that is required to continue (move to the
next screen).
Identifies the BMS mapset and map name available to lower level nodes.
Defines the data and operations required for a 3270 Bridge process.
Server will process the data collected by this node to invoke the
3270 transaction and start the data collection or processing actions
that follow.
Identifies inputs, outputs and work variables for the Callable
Service.
Provides the means to return to the main flow path after branching
into multiple paths. The connector eliminates the need for complex
or redundant tree structures.
Note: Every connection into a Connector must originate from the
same nearest parent point node.
Allows you to make comparisons between data values from point
nodes, SOAP inputs, work variables, or static text.
Performs the LINK to the program defined in the previous LINK
Point Node, using the data that has been passed in the
COMMAREA with one or more Move to LINKnodes.
Calls the Web service operation defined in the Web Service Client
Point Node.
Following this node, you can use the SOAP outputs of the Web
Service Client Point Node as data sources for any Subsequent
movements or decisions.
Defines the CICS application program, as well as the input and
output copybooks for the current operation.
Defines a point in the Web service operation where a loop must
occur to collect all the required information.
Defines the movement of data to the nearest parent 3270 point node
(BMS map) from valid data sources, including 3270 field, copybook
field, SOAP input, work variable, or static text.
Defines the movement of data to the COMMAREA associated with
he input copybook in the nearest parent LINK Point Node from

valid data sources, including 3270 field, copybook field, SOAP
input, work variable, or static text.
Defines the movement of data to a SOAP output (defined in the
parent Web Service Operation node) from valid data sources,
including the nearest parent point node, work variable, or static text.
Defines the movement of data (defined in the parent Web Service
Operation node) to the SOAP inputs of the Web Service Client
Point Node.
Provides the ability to assign values to work variables that
have been defined in the parent Web Service Operation node. This
allows you to store information for later use in a Decision node or
other movement node.
Signals the end of the Web service operation.
Marks the beginning of the diagram and identifies the URI of the
Web service operation.
Allows you to add comments to the diagram to make it more
understandable; it does not perform any processing or data
collection.

US 2010/0146396 A1

-continued

Component Description

Web Service Allows you to browse the Web for a WSDL document, which

Jun. 10, 2010

Client Point Node defines the available services and operations as well as the SOAP
inputs and outputs for each operation. After you select a WSDL,
you select the Web service and Web service operation you want to
call.

Web Services Defines a single operation within the Web service. There can be
one or more Web service operations connected to the Start node in
each Ivory project. This node also defines the SOAP inputs, SOAP
outputs, and work variables for this operation.

Project Explorer Window of One Exemplary
Modeler or Studio Function

0188 Some implementations may include a project
explorer window that may be dockable within an MDI envi
ronment. An exemplary project explorer window is depicted
in FIG. 15. Project Explorer may display the contents of the
project folder. When a project is created, a folder is specified
where the project will reside. This folder may contain files
that are not included in the studio project as explained below.
0189 In some implementations such as depicted in FIG.
15, files that are included in the project appear in boldtype,
and files that are not included appear in normal type.

(0190. When a file is “included in a studio project, the file
is available to be associated with a point node in the dia
gram. Being included in the project does not necessarily
mean that the file is (or will be) used by the project.

0191) “Included files may be used to define project infor
mation that is external to modeler or studio, such as BMS
map.sets and/or COBOL copybooks. When a developer
imports a mapset or copybook, it can be automatically
included in the currently open project.

0.192 Various features of preferred implementations are
outlined as follows:
0193 Allow manual inclusion of mapset and copybook

files that have been copied into the project folder. In some
implementations, the interface Supports inclusion of a file
through a right-click context menu.

0194 View the file content by double-clicking in a sepa
rate modeler or studio display window.

0.195 Allow view of the 3270 map image if a map is
clicked in a separate modeler or studio 3270 Emulator
window.

Properties Window of One Exemplary Modeler or
Studio Function

0196. Various implementations may further provide a
Property interface. One exemplary interface is depicted in
FIG. 16 and described further below.
0197) The Properties window in such implementations
may display the required metadata information for a selected
node. The operation of this exemplary interface is outlined as
follows:
0198 Once a node is activated, such as from a Diagram
window as detailed below, the property window will dis
play the default or saved options for each node depending
on the State of activation.

0199 The metadata required for the node is displayed. For
an example, the Start node will require the node ID. Web

services name, URI, WSDL location, encoding style,
description, use URI prefix option, and server side tracing
option.

0200 When a particular meta data item is selected, the
help information is displayed so that a developer knows
what to do.

0201 When required, each meta data may cause addi
tional windows to be displayed to aid gather information.
As an example, Web Service Client Point Node needs the
WSDL location of the Web Service. When the WSDL loca
tion is clicked, WSDL Discovery window is displayed so
that it can gather information about the WSDL and popu
late the required information on the property window.

0202. When required, each metadata may list the options
that a developer can choose from. Foran example, in a Start
node, the Use URI Prefix During Deploy will list True or
False options when selected.

Diagram Window of One Exemplary Modeler or
Studio

0203 Some implementations may include a Diagram win
dow that may also be referred to as an application flow win
dow. Such a Diagram window may be included as part of an
MDI interface. An exemplary diagram window is depicted in
FIG. 17. Such an exemplary interface may include one or
more of the following features.
0204. A customizable grid layout process to allow nodes
to be dragged to the diagram processing area and dropped
from the Toolbox window.

0205 The dropping or selection process will activate a
Properties window. Once activated the properties window
will display the default or saved options for each node
depending on the state of activation.

0206. A grid to allow proper alignment of diagram or
graphical representation of a application.

0207. A Zooming capability to be able to resize the dia
grams in 25, 50, 75, 100, and 200% of normal diagram size.

0208. A copy and paste function to be able to duplicate the
area of logic in other locations in the application flow or to
be able to duplicate in other application flow or project.

0209. An ability to move a diagram node or group of
diagrams to anywhere in a canvas area.

0210. An ability to flip connection points when right
mouse is clicked on a node and select on the option. For an
example, the typical Decision node connections are to have
the YES connector on right side of the Decision node and
NO connector on the left side of the Decision node. When
a decision node is selected and right mouse is clicked, it

US 2010/0146396 A1

will display an option to flip nodes. If the flip node is
activated, the YES and NO will be reversed.

0211 When an application flow or project is saved
reopened, the diagrams on the window should displayed as
it was when it was saved.

Browser Window of One Exemplary Modeler or
Studio

0212. Some implementations may include a Browser win
dow. An example of which is presented in FIG. 18. The
Browser window may be included as part of the MDI or be
launched separately. The Browser window can display any
documents including Internet site and text document. Such an
interface may provide one or more of the following features:
0213 Go back to display the previously displayed infor
mation.

0214 Go forward to display the next information (previ
ously displayed information).

0215. The same functionality as the commercially avail
able Internet browsers like Microsoft Internet Explor
erBrowser including ability to display any Internet docu
mentS.

0216. When View Trace is selected from the Test Utility
window, display the trace information by downloading
trace information from the manager or server.

Exemplary Test Utility Window

0217. Some implementations may provide a Test Utility
that can allow the unit testing of Web Services which are to be
deployed to the manager or server. An exemplary interface is
provided in FIG. 19. Such a test utility window may support
one or more of the following features:
0218 View and change WSDL location, service name,
service operation, HTTP version, URI, and SOAP Action.
0219 Remember the current project information from
the graphical Diagram window and pre-fill the informa
tion including URI.

0220 Access the WSDL specified in the WSDL location
and populate the information like service name, service
operation, HTTP version, URI, and SOAP Action.

0221 Select a service operation from list of operations
that the WSDL supports.

0222 Select an HTTP version from the list of HTTP ver
sions that the WSDL supports.

0223 Set Proxy URI.
0224 Set Timeout value so that the execution will stop
after a certain time.

0225 Set user ID and password for security checking if
security is activated on the server or manger.

0226 Execution of test by sending SOAP request param
eters.

0227
time.

0228 Loading of test data from a local or remote files
system to be used in the test.

Save test data and reuse saved test data at a later

0229. View host generated traces in Browser window.
0230 View generated SOAP Request parameters.

0231. Access the WSDL and parse the WSDL to find
required SOAP Request parameters.

0232 Generate and display the SOAP request param
eters so that the tester can enter data. An example of
these parameters is depicted in FIG. 20.

Jun. 10, 2010

0233. View received SOAP response from the server or
manager
0234 Parse the WSDL to determine the SOAP
Response parameters.

0235 Generate and display the SOAP response param
eters so that the tester can view returned data. An
example of these parameters is depicted in FIG. 21.

Exemplary Modeler Output Window
0236. Some implementations may supportan Output win
dow. The Output window may be a dockable window Sup
ported in an overall MDI. FIG.22 depicts an example Output
window. An output window may support one or more of the
following features:
0237 When the project or application flow is built, the
status of the build process is displayed. If there is any error
during the build process, the error is displayed on this
window to allow the debugging of the logic.

0238 When the project or application flow is deployed to
the manager or server, the status of build, Verification or
processing rules, and the status of upload process of pro
cessing rules of application and generated WSDL to be
displayed.

Example Web Service Development Using One
Exemplary Modeler or Studio

0239. As an example, the development of a 3270 CICS
application that searches for a name (first and last name) and
displays information about the account including the account
number, address, status, and account limit is described. Using
this information, the 3270 operator, a helpdesk, could raise
the account limit if the account status is active,or reopen the
account if it is closed.
0240 Similar programs have existed for decades in the
mainframe environment. Those mainframe programs devel
oped over many years cannot be replaced overnight, even
though they may be cumbersome to use. For example, the
following procedure outlines what a 3270 operator would
typically do to find account information using a mainframe
application:
0241. From a 3270 terminal, the 3270 operator types the
transaction code “IVYS' on a blank 3270 screen and
presses the Enter key.

0242. The program called by the IVYS transaction runs
and displays a blank screen such as depicted in FIG. 23.

0243 Then the 3270 operator types the last name and first
name of an account holder on the screen and presses the
Enter key.

0244. The program runs and displays account informa
tion, such as presented in FIG. 24.

0245. The3270 operator reads the displayed information
and saves it by either writing notes or printing the screen.

0246 The3270 operator studies the displayed informa
tion, for example to determine the account status. Based on
that information, the 3270 operator performs a different
task.

0247 This is an example of a simple task, but it requires
multiple 3270 operations to accomplish the task. In order to
save this information, or to share it with other computer
platforms, such as a PC, the saving or sharing must be per
formed manually. However, if this operation is converted to a
Web service, this information can be shared with other plat
form computers and other applications.

US 2010/0146396 A1

0248. In many cases, the people who wrote the decades
old mainframe applications are no longer available. Conse
quently, it is not easy or cost-effective to alter the original
application program.
0249. Using the modeler or server, the existing program
and business process can be converted to a Web service
through a graphical definition, and no changes to the original
program are required. An exemplary graphical flow for this
process is depicted in FIG. 25.
0250. The graphical diagram defines a Web service which
represents the application or business process that the 3270
operator had to perform manually:
0251 Typing the “IVYS' transaction ID and pressing the
Enter key.

0252. When a 3270 map is displayed, typing the account
holders last name and first name, and pressing the Enter
key.

0253) When the response is displayed, reviewing the infor
mation to determine the next action.

In order to convert the sample application into a Web service,
a developer drags a node from the Toolbox window and drops
the node on the Diagram window. When the node is selected
on the Diagram window, the Properties window displays cur
rent and default information about the node, which is modi
fied by the developer to provide the information needed by the
application. An exemplary interface is depicted in FIG. 26.
0254. First, describe the Web service environment.
0255. The Start node provides the name of the Web ser
vice, the location of the WSDL, URI, encoding style and its
description.

0256 The Web Service Operation node provides the name
of the operation, SOAP input and output parameters—and
describes the operation or business process that it will
perform below this node. It is possible for a single Web
service to have multiple Web service operations. Using our
example, the SOAP input parameters will be the last name
and first name of the account holder. The SOAP output
parameters will be the account number and the account
status (Active, Closed, Inactive, or unknown).

Next, the developer begins to diagram the flow of the opera
tion.
0257 With the old mainframe application, the 3270 opera
tortyped the “IVYS' transaction code on a 3270 screen and
pressed the Enter key to begin. To mimic this action in the
Web service, the developer drags a 3270 Process node to
the Diagram window. In the Properties window for the
node, the developer enters the IVYS initial transaction
code and defines “Enter” as the 3270 AID key. This
replaces the user action of typing the transaction code and
pressing Enter.

0258 As a result of pressing the Enter key on the main
frame application, a 3270 screen was displayed. To pro
duce this result, the developer drags a 3270 Point node onto
the Diagram window. In the Properties window, the devel
oper identifies the name of the mapset and map that it
should expect to receive.

0259. When the 3270 mainframe screen was displayed,
the 3270 operator would type the last name and first name
of the account holder. The developer now drags a Move to
3270 node onto the Diagram window. The Move to 3270
node allows the movement of data from any source that was
defined at a higher level than this node. The possible data
source is described below. In the example, the developer
will use the SOAP input to move the account number, and

Jun. 10, 2010

Static Text to set the “demographic' option. A drop-down
menu such as seen in FIG. 27 could be used to specify this.

0260. After entering the name, the 3270 operator pressed
the Enter key. To duplicate this manual operation, the
developer drags a 3270 Action node to the Diagram win
dow.

0261. After the 3270 operator pressed the Enter key, the
3270 map with the account number information was dis
played. To provide the same function, the developer drags
a 3270 Point Node to the Diagram window. The node
properties in the Properties window describe the expected
3270 mapset, and map name to receive.

0262. When the information was displayed, the 3270
operator had to read the information on the 3270 screen and
validate the account number. In the Web service diagram,
the developer does the same by dragging a Move to Output
node to the Diagram window, saving the account number
information. The Move to Output node allows the data
movement to SOAP output parameters from any data
source that was referenced prior to this node. In this
example, the developer will pull the information from the
3270 field and save or move the account number to the
SOAP output field. The use of the 3270 field can be
selected via a pull-down menu Such as presented in FIG.
28.

0263. Next, the 3270 operator determines whether the
account is Active, Inactive, Closed, or Unknown (error).
Based on the status of the account, the 3270 operator will
perform different operations. The Web service uses a series
of Decision nodes to check the account status. Each Deci
sion node allows checking a value against a data source.
Based on the result of the check, it will generate a YES or
NO answer. The first Decision node will check whether the
account is Active. If the answer is YES, it will move infor
mation to the SOAP output area indicating that this account
is an active account. If the answer is NO, then the next
Decision node is checked for Inactive status, and so on.
Typical use of a Decision node is to direct flow of Web
service logic and to find errors, end a process, or select the
next operation. The Decision node can check whether any
data was returned from the name look-up function. Then,
based on the reply, it will build a different reply buffer. A
Move to Output node is used to define data fields that will
be returned in the SOAP response. Any data previously
collected can be marked as information to be included in
the SOAP reply.

0264. The WSDL output fields are the typical method to
return data to the requesting application. Notice that not all of
the information available on the 3270 screen was of interest to
the 3270 operator. Therefore, Web service developer pro
vided only the data required by the operation. This reduces the
storage requirement during processing and data transfer
between machines reducing the network traffic requirements.
0265. The series of manual operations that were required
to gather simple account information was automated without
writing a single line of code. The automation was done using
the graphical representation of the 3270 operator's opera
tions.

0266 What if the 3270 operator needed to raise the credit
limit, perform other tasks based on the account information.
The 3270 operator would have to go through another series of
manual operations. This process can also be automated
through a Web service developed using the modeler or studio.

US 2010/0146396 A1

0267 Continuing with the prior example, logic can be
added to update or raise the credit limit based on the credit
limit by executing additional 3270 BMS transactions. For
example, FIG. 29 depicts such an enhanced graphical defini
tion. This new task can reuse the original Web service in a new
Web Service.
0268. In another example depicted in FIG.30, the original
Web service, account look-up by name, was called as a Web
Service Client Point Node and new logic was added to update
the credit limit. The ability to consume an internal or external
Web Services allows:
0269. Simplification of logic.
0270 Reuse of an existing Web services.
0271 Interaction with a business partner with a different
computer system.

0272 Reuse of an external machines and programs, such
as Windows NT and Unix.

0273) If, for example, there is a need to validate a driver's
license number, this Web service can consume a Web service
published by a state agency to validate the driver's license
number.
0274 Going back to the original example, if the 3270
operator needs to execute a transaction on a Microsoft Win
dows application which publishes a new credit card after
updating a credit limit, it can be automated by adding a Web
Service Client Point Node to execute the Microsoft Windows
based Web service from the mainframe. Combining the 3270
operator's tasks to run as a single task can save time and
money. This can all be done without writing a single line of
mainframe program.
0275 A mainframe Web service can be generated through
diagraming a business process, such as getting insurance
policy information for a user. A mainframe, for example, may
have a separate application or business process for each type
of insurance policy: home, car, and health. The described
systems and methods can provide the ability to combine these
separate business processes into a single business process
implemented as one or more Web services.
0276. The described systems and methods can include
design and runtime functions. The design component can
include a modeler and/or an interface to a mainframe appli
cation.
0277. The modeler may provide the ability to change logic
flow and the path of the original mainframe application. The
runtime function component can include a mainframe Web
service. The Web service interface is built around mainframe
applications that reside on the mainframe. The described
systems and methods can verify that the original mainframe
application and Web service are in Sync.
0278. To summarize the functions, FIG. 30 provides an
overview of the modeler and server in some of the systems
and methods described herein. These systems and methods

Jun. 10, 2010

improve Web service development along several axis includ
ing one or more of the following:
Design Time:
0279. Using the modeler/graphical IDE, the application
flow and process is defined by dragging components to the
Diagram window.

Deploy Time:
(0280. After building the Web services with the modeler/

studio, instructions for the processing the Web services and
the WSDL are uploaded to the server repository.

Run Time:

0281. During the execution time, the server takes in SOAP
request from applications written in .NET, J2EE, JAVA, or
other programming languages, processes the Web services
processing instructions, and returns the results to the appli
cation in a SOAP Response.

0282. Throughout this application, various publications
may have been referenced. The disclosures of these publica
tions in their entireties are hereby incorporated by reference
into this application in order to more fully describe the state of
the art to which this application pertains.
0283. The examples described above are given as illustra
tive only. It will be readily appreciated by those skilled in the
art that many deviations may be made from the specific
examples disclosed above without departing from the scope
of the inventions set forth in this application and in the claims
below.
0284. The indentations and/or enumeration of limitations
and/or steps in the claims that follow are provided purely for
convenience and ease of reading and/or reference. Their
usage is not intended to convey any Substantive inference as to
parsing of limitations and/or steps and/or to convey any Sub
stantive ordering of, or relationship between or among, the so
indented and/or enumerated limitations and/or steps.
What is claimed is:
1. A system to facilitate the definition of web services, the

system comprising:
a) a modeler which is operable to interface with a user to

enable the user to generate an execution flow via a
graphical interface for building one or more flow rules to
build composite or single use web services; and

b) a manager that parses the flow rules to generate a pro
grammatic implementation of the web services.

2. A method for graphically defining a web service, the
method comprising the steps of

a) providing an interface with the graphical display device
via which the user can graphically define a web service
using the user input device;

b) displaying on the graphical display device a graphical
representation of at least a portion of a web service
definition; and

c) storing in the system data store a digital representation of
a graphically defined web service.

c c c c c

