190 DANMARK (10) DK/EP 3516526 T3

(91)

(49)

(80)

(86)
(86)
(87)
(86)
(87)
(30)

(84)

(73)

(72)

(74)
(94)

(96)

(12) Overseettelse af
europeeisk patentskrift

Patent- oQ
Varemaerkestyrelsen

nt.Cl.: G 06 F 12/02 (2006.01) G 06 F 12/04 (2006.01) G 06 F 12/0815 (2016.01)
G 06 F 12/0873 (2016.01) G 06 F 12/1009 (2016.01) G 06 F 12/1027 (2016.01)
G 06 F 12/12 (2016.01)

Oversaettelsen bekendtgjort den: 2020-11-30

Dato for Den Europaeiske Patentmyndigheds
bekendtgorelse om meddelelse af patentet: 2020-10-14

Europaesisk ansggning nr.: 17761767.7

Europaeisk indleveringsdag: 2017-08-25

Den europaeiske ansggnings publiceringsdag: 2019-07-31
International ansagning nr.: US2017048663

Internationalt publikationsnr.: WO2018057235

Prioritet: 2016-09-22 US 201615273433

Designerede stater: AL AT BE BG CH CY CZ DE DK EE ES FIFR GB GR HR HU IE IS IT LI LT LU LV
MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Patenthaver: Google LLC, 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA

Opfinder: COBURN, Joel Dylan, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA
BORCHERS, Albert, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA
JOHNSON, Christopher Lyle, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA
SPRINKLE, Robert S., 1600 Amphitheatre Parkway, Mountain View, California 94043, USA

Fuldmaegtig i Danmark: ljon AB, Nordenskioldsgatan 11A, 21119 Malmo, Sverige
Benaevnelse: HUKOMMELSESSTYRING, DER UNDERSTOTTER KAEMPESTORE SIDER

Fremdragne publikationer:
WO-A1-2011/002900
US-A-6 112 285

US-A1- 2009 172 344
US-A1- 2015 127 767

US-A1- 2015 363 326

DK/EP 3516526 T3

DK/EP 3516526 T3

DESCRIPTION

FIELD

[0001] The present specification generally relates to memory systems.

BACKGROUND

[0002] A wide variety of memory devices can be used to maintain and store data and
Instructions for various computers and similar systems. In conventional computing systems,
Dynamic Random Access Memory (DRAM) technology has typically been employed to operate
the dynamic memory of the computer in order for an application to operate at high speeds.
However, DRAM used as main memory in computer systems is no longer scaling as rapidly as
In the past. As a result, DRAM storage has become a limited resource In computing

environments.

[0003] US2009172344 (A1) describes that a method, system, and apparatus may Initialize a
fixed plurality of page table entries for a fixed plurality of pages in memory, each page having a
first size, wherein a linear address for each page table entry corresponds to a physical address
and the fixed plurality of pages are aligned. A bit In each of the page table entries for the
aligned pages may be set to indicate whether or not the fixed plurality of pages is to be treated
as one combined page having a second page size larger than the first page size.

[0004] WO2011002900 (A1) describes a processor including a virtual memory paging
mechanism. The virtual memory paging mechanism enables an operating system operating on
the processor to use pages of a first size and a second size, the second size being greater
than the first size. The mechanism further enables the operating system to use superpages
Including two or more contiguous pages of the first size. The size of a superpage Is less than
the second size. The processor further includes a page table having a separate entry for each
of the pages Included In each superpage. The operating system accesses each superpage
using a single virtual address. The mechanism Interprets a single entry in a translation
lookaside buffer TLB as referring to a region of memory comprising a set of pages that
correspond to a superpage In response to detecting a superpage enable indicator associated
with the entry in the TLB Is asserted.

SUMMARY

[0005] Objects of the present application are achieved by subject matters of independent
claims. Dependent claims define further exemplary embodiments of the present application.

DK/EP 3516526 T3

[0006] A second tier of memory may be used, such as disk-based memory, NAND flash
memory, spin torque transfer magnetic memory (STT-MRAM), resistive random access
memory (ReRAM), or the like. The second tier of memory may be accessed locally over a
memory or 1O bus, or remotely over a high-speed network. However, applications need to
explicitly manage data placement or the system must provide automatic management that
transparently moves data between memory tiers. In addition, huge pages or large pages or
super pages, those terms used Iinterchangeably, have been shown to provide a significant
performance increase for most workloads and particularly for cloud-based serving applications,
where huge pages are blocks of memory that are larger In size, e.g., 8KB, 64KB, 256KB, 1MB,
2MB, 4MB, 16MB, 256MB, 512MB, or 1GB, than atypical page, which may be 4KB, depending
on processor architecture. Thus, new technigues are needed for automatic management with
minimal performance impact to overcome the inadequacies of existing techniques.

[0007] One innovative aspect of the subject matter described in this specification is embodied
In systems and methods that include receiving a request to access, from a main memory, data
contained in a first portion of a first page of data, the first page of data having a first page size
and the first portion comprising a second page size that i1s less than the first page size;
Initiating a page fault based on determining that the first page of data is not stored in the main
memory and Is stored In a secondary memory; In response to Initiating the page fault,
allocating a portion of the main memory equivalent to the first page size; transferring the first
portion of the first page of data from the secondary memory to the allocated portion of the
main memory without transferring the entire first page of data, wherein a remaining amount of
the first page of data remains stored in the secondary memory; and updating a first page table
entry associated with the first portion of the first page of data to point to a location of the
allocated portion of the main memory to which the first portion of the first page of data is
transferred.

[0008] In certain implementations, the remaining amount of the first page of data is transferred
from the secondary memory to the main memory. Transferring the remaining amount of the
first page of data may include repeatedly transferring respective portions, corresponding to the
second page size, of the first page of data from the secondary memory to the allocated portion
of the main memory until the entire first page of data i1s stored in the main memory; and
updating a respective page table entry for each of the respective portions of the first page of
data to point to respective locations of the respective portions of the first page of data in the
main memory.

[0009] In certain implementations, once the entire first page of data is stored in the main
memory, the first page of data is reassembled from the respective portions of the first page of
data transferred from the secondary memory to the allocated portion of the main memory; and
a page table entry associated with the first page of data is updated to point to a location of the
reassembled first page of data in the main memory.

[0010] Another aspect of the subject matter described In this specification 1s embodied In
systems and methods that include, before transferring the remaining portion of the first page of

DK/EP 3516526 T3

data from the secondary memory to the main memory, indicating that the first portion of the
first page of data that was requested to be accessed has been transferred to the main
memory.

[0011] Another Innovative aspect of the subject matter described Iin this specification is
embodied In systems and methods that include determining whether an access bit is set for
each page table entry of a page table based on a scan of the page table with a page table
scanner, the access bit indicating whether a page associated with the page table entry was
accessed In a last scan period, wherein at least one of the pages having the first page size Is
divided into pages of the second page size with a page table entry for each of the pages of the
second page size In the page table being scanned; incrementing a count for each page In
response to determining that the access bit is not set for the page table entry associated with
the page; and after determining whether the access bit is set for each page table entry,
resetting the access bit.

[0012] In certain implementations, If the portion of the main memory equivalent to the first
page size cannot be allocated, one of a least used pages having the first page size iIs
determined based on the count for each page and releasing the one of the least used pages
Into the secondary memory, and a portion of the main memory equivalent to the first page size
IS allocated at the location of the released one of the least used pages; and if the portion of the
main memory equivalent to the first page size can be allocated, the first portion of the first
page of data Is transferred from the secondary memory to the allocated portion of the main
memory.

[0013] Other embodiments of these aspects include corresponding systems, apparatus, and
computer programs, configured to perform the actions of the methods, encoded on computer
storage devices.

[0014] Particular embodiments of the subject matter described in this specification can be
Implemented so as to realize one or more of the following advantages. For example, the usage
or access statistics for pages in memory may be more precise and accurate than current
methods Involving software and sampling techniques because access statistics may be
determined at the sub-page level rather than just at the page level. Further, by transferring a
particular portion of a page for which access is requested first, rather than the full page of data,
the delay caused by transferring a page In response to a request to access the page may be
reduced, which may result in faster execution of the application or process being executed.
Another advantage is that the system can take advantage of the benefits of huge pages, such
as better memory access performance due to fewer levels of page tables and better translation
lookaside buffer (TLB) coverage, and still perform paging at a small page granularity, which
provides better page fault performance due to the reduced latency of servicing a page fault
that only needs to transfer a small page. Therefore, both the memory access benefits of huge
pages and the demand paging benefits of small pages can both be achieved. Moreover, only
the data that 1s needed may be transferred according to the small page size, and as a result,
the main memory is not occupied with unnecessary data, due to better maintaining hot data In

DK/EP 3516526 T3

main memory and cold data in secondary memory as compared to paging huge pages directly.

[0015] The details of one or more embodiments of the Invention are set forth in the
accompanying drawings and the description below. Other features and advantages of the
iInvention will become apparent from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016]

FIG. 1 depicts an example of a system including a memory device according to
Implementations of the present disclosure.

FIG. 2 depicts an example of a system including a memory device according to
Implementations of the present disclosure.

FIG. 3A depicts an example of a page table for mapping virtual memory to physical memory
according to implementations of the present disclosure.

FIG. 3B depicts an example of a portion of memory allocated according to implementations of
the present disclosure.

FIG. 4 depicts a flowchart of an example of a process for memory management, according to
Implementations of the present disclosure.

[0017] Like reference numbers and designations In the various drawings Indicate like
elements.

DETAILED DESCRIPTION

[0018] Huge pages have been shown to provide a significant performance increase for most
workloads and particularly for cloud-based serving applications. While the term "huge pages”
may be used herein, the term applies to any size of page that is larger than the smallest sized
page, IL.e., small page, a particular architecture can handle or its standard page size. For
example, a smallest page size or standard page size for a particular architecture may be 4KB
and a huge page may be 2MB. In other implementations, for example, a huge page may be
8KB, 64KB, 256KB, 1MB, 2MB, 4MB, 16MB, 256MB, 512MB, or 1GB, or larger, or any size In
between. For example, a huge page may be any integer multiple, n, of 4KB, 1.e., n™4KB, and In
certain embodiments may be any power of two multiple of the standard page size.
Embodiments of the present disclosure introduce a new scheme that can use huge pages for
accessing a main memory (e.g. a DRAM cache) while using traditional small pages to page to

DK/EP 3516526 T3

a second tier of slower memory (sometimes referred to as a secondary memory). Certain
embodiments may be modified based on the type of Interconnect used to access slower
memory. For example, a software-based solution based on a customized kernel driver may be
Implemented for an |10 Interconnect. Further, for example, a hardware solution for managing
huge pages may be implemented for a cache coherent interconnect.

[0019] Accordingly, embodiments of the present disclosure provide a system for high-
performance automatic management of a secondary memory available either locally over a
memory or O bus, or remotely over a network. The secondary memory may be disk-based
and may be computer memory that is non-volatile and persistent in nature. The secondary
memory may not be directly accessed by the processor and may be slower than the primary or
main memory. The main memory, also referred to as primary memory, primary storage,
Internal memory or first-tier memory, may be directly accessible to the CPU. As described In
more detail below, an optimized kernel driver, for example, may provide a fast path to the
second tier of memory and handle all communication with the memory management hardware.
That process Is advantageous compared to existing paths through the kernel for paging, which
Incur large costs for things like synchronization, memory management, and block |O transfers.

[0020] These features and additional features are described in more detail below.

[0021] FIG. 1 depicts an example of a system 100 including a memory device according to
Implementations of the present disclosure. A central processing unit (CPU) 110 may be In
communication with main memory in the form of a DRAM 170 and a memory management unit
(MMU) 150. The system 100 may further include a secondary memory in the form of a remote
memory 130, which may be accessed over a network. The MMU 150 may operate In the
management of memory. In addition, a page table walker 160 and a translation lookaside
pbuffer (TLB) 165 may be part of, or implemented with, MMU 150. The system 100 may
additionally include DRAM 170 as physical memory.

[0022] The MMU 150 is a hardware unit that may have memory references passed through i,
performing the translation of virtual memory addresses to physical addresses and handling
cache control. For example, the MMU 150 may use a page table as an in-memory table
containing one page table entry (PTE) per page, to map virtual page numbers to physical page
numbers iIn main memory. The translation lookaside buffer 165, as an associative cache of
PTEs, may be used to avoid the necessity of accessing the main memory every time a virtual
address Is mapped. When a PTE prohibits access to a virtual page, for example because no
physical random access memory has been allocated to that virtual page, the MMU 150 may
signal a page fault to the CPU 110.

[0023] The CPU 110 may have a cache, which may be a small amount of fast memory built
INto a processor that may be configured to contain temporary copies of data to reduce
processing latency. The TLB 165 may be a fixed-size array of recently used pages, which the
CPU 110 may check at each memory access. The TLB 165 may list virtual address ranges to
which physical pages in DRAM 170 are currently assigned. Thus, for example, the TLB 165

DK/EP 3516526 T3

may serve as a cache for the MMU 150. In this manner, accesses to virtual addresses listed In
the TLB 165 may go directly to the associated physical memory, e.g., DRAM 170. In addition,
accesses to virtual addresses not listed in the TLB 165, 1.e., a TLB miss, may trigger a page
table lookup, which may be performed by hardware, or by a page fault handler.

[0024] FIG. 2 depicts an example of a system 200 including a memory device according to
Implementations of the present disclosure. The system 200 may Iinclude a CPU 220 and a
Physical Address Space 240. The MMU 230 may Interpret virtual addresses to identify
corresponding physical addresses. For example, attempts to read, write, or execute memory at
virtual addresses may be either translated to corresponding physical addresses, or an
Interrupt, 1.e., a page fault, may be generated to allow software to respond to the attempted
access. The physical memory addresses may identify a specific memory cell or portion within a
piece of the storage hardware making up the physical memory associated with a given read or
write operation. The virtual memory may provide a software-controlled set of memory
addresses, e.g., Virtual Address Space, and may allow each process, e.g., Process A 205 and
Process B 210 to have its own virtual memory address range, which may include kernel space
and user space. The virtual addresses may be interpreted by the MMU 230 using page tables,
which may map virtual address ranges to associated stored content. Although the smallest
addressable unit to a processor may be a byte or a word, the MMU 230 may manage memory
In pages.

[0025] FIG. 3A depicts an example of a page table 320 for mapping virtual memory 310 to
physical memory 330 according to implementations of the present disclosure. The page tables
320 may be data structures that contain a list of memory mappings for a process and may be
used to track associated resources. For example, each process may have its own set of page
tables. The virtual address space, e.g., virtual memory 310, may be divided into pages, which
may be a contiguous span of addresses of a particular size. The pages may be structured
such that the starting address of a page is a multiple of the page size. As described above, the
MMU 230 may use the page table 320 to interpret virtual addresses of pages from virtual
memory 310 and identify corresponding physical addresses of page frames In physical
memory 330. In addition, page tables may be hierarchical or multi-level, hash-based, or the
like, which provides an advantage for huge pages, higher up the hierarchy with a faster page
table walk.

[0026] As referenced above, a secondary memory or second tier of memory, such as disk-
based memory or other second tier memory, may be slower than main memory or primary
memory, such as DRAM. According to certain implementations, a customized kernel driver may
manage the second tier of memory with huge pages. The kernel driver may reserve physical
memory In contiguous regions that are multiples of huge pages for the cache in DRAM. When
an application needs additional memory, the kernel driver may allocate space Iin huge page
multiples, 1.e., In multiples of the size of a huge page. The kernel driver may implement a page
replacement policy, and when data for replacement is selected, a huge page may be paged
out to the second tier of memory. That process may occur asynchronously to the running
application that requested access to data in memory.

DK/EP 3516526 T3

[0027] When the application faults on an access to data that resides In the second tier of
memory, a page fault handler may transfer only a single small page containing the requested
cache line from the second tier of memory to main memory, e.g. DRAM. However, according to
certain implementations, the state of each small page that makes up the huge page may be
tracked. Thus, for example, when the kernel driver faults in all or a predetermined amount of
the small pages within the huge page, a determination may be made to page-in any remaining
small pages and coalesce or reassemble the small pages back into a huge page in DRAM by
replacing the existing PTEs with a single PTE for the huge page and flushing any relevant TLB
entries from the TLB 165.

[0028] Accordingly, the benefits of huge pages for data that resides in DRAM may be
maintained while the cost of page faults may also be reduced by completing the fault handler
process after transferring the small page. For example, using huge pages may provide the
advantage of reducing resource overhead because tracking data at a larger granularity
enables a smaller page table having fewer entries. Using huge pages, however, may cause the
overall write bandwidth to increase If the system always writes out huge pages to the second
tier of memory. Also, there 1s a possibility that small pages within a huge page that are "hot,”
e.g., frequently used or recently used, may get paged out to the secondary, slower memory,
resulting In additional faults on that "hot" data. According to certain implementations, those
Issues may be mitigated by the kernel driver dynamically determining when to break up or
coalesce huge pages based on huge page and small page statistics. For example, huge pages
may be periodically broken up to gather statistics, through PTE access bits, about the small
pages within a huge page, as described in more detail below. Further, the driver may maintain
both huge pages and small pages, such that when a predetermined number of small pages
within a huge page are "hot" or frequently or recently accessed, the small pages may be
migrated to a huge page and merged. Conversely, If too many sub-pages, 1.e., small pages,
within a huge page are "cold”, the huge page may be broken up and processed as small
pages.

[0029] According to certain implementations, when an attempt iIs made to access data that is
not stored In main memory and a page fault occurs, the entire huge page may not be
transferred into main memory, but rather a smaller chunk of data, e.g. a small page, that
Includes the data for which access Is requested may be transferred from secondary memory to
main memory. Thus, the application may access the data requested and continue running.
Subsequently, the remainder of the huge page may be transferred into main memory In the
background, and the page table entry may be updated accordingly. In this way, the requested
data may be accessed more quickly and the system may still reap the benefits of managing
huge pages. In other words, the time required for reading huge pages from secondary memory
and writing huge pages to main memory Is greater than the time required for reading and
writing small pages; and thus, reading only the small page containing the data that is
requested to be accessed reduces the time the application or processing thread is suspended
or waiting for the data to be transferred from secondary memory to main memory. Thus,
reducing the latency time for transferring data into main memory I1s more important, as

DK/EP 3516526 T3

performance critical, than the time for transferring data back to secondary memory because
the data transferred out of main memory is typically a page of "cold"” data that is transferred In
the background with little or no effect on operating performance, whereas the data being
transferred into main memory may be delaying the execution of the application or processing
thread.

[0030] As described above, a page fault may occur when a thread or running program
accesses a memory page that i1Is mapped into the virtual address space, but not actually
loaded Into main memory. The MMU 150 or a page fault handler may detect the page fault,
and when the page fault is detected, a determination may be made as to whether there Is a
free page In memory. If there is a free page, page data may be copied from the secondary
storage to the free page location in memory. If there is not a free page, a page may be pulled,
for example, from a FIFO queue, which may track all the pages in memory in a queue, with the
most recent arrival at the back, and the oldest arrival in front. If that page is dirty, I.e., has been
modified, the system may write the page to the secondary memory. In transferring the page
from the main memory to the secondary memory, the page table entry associated with the
page may be invalidated, and a TLB shootdown for any entries associated with the page may
be executed, e.g., causing the TLB entries to be flushed for other processors. With that page
now free, page data may be copied from the secondary storage to the free page location. The
page tables may be updated to create a valid PTE by updating the PTE associated with the
page to point to the location in the main memory of the page. Once the page fault is handled,
the thread or running program may resume with the data it requested to access now in main
memory.

[0031] FIG. 3B depicts an example of a portion of memory 305 allocated according to
Implementations of the present disclosure. With demand paging, a page of "cold” data, e.g.,
data that is accessed at a rate that i1s less than some threshold access rate or that has not
been accessed for a particular period of time, may need to be written out to secondary
storage, and a page of data may need to be transferred back to main memory when an
application tries to access data and a page fault occurs. According to certain implementations,
the process of paging in and out of main memory occurs from the processor's perspective as If
the system is only working with huge pages. In other words, a huge page may be transferred
out of main memory when cold, 1.e., not being used frequently or recently, and when a page
needs to be transferred into main memory, a whole huge page of memory may be allocated,
even though only a portion of the huge page, e.g., a small page, may be Initially transferred.
Thus, memory allocated 305 may correspond to a huge page, and contiguous memory
corresponding to the huge page may be allocated in physical memory 325 as well as virtual
memory 3195.

[0032] For example, when a page fault occurs and a page of data needs to be transferred into
main memory, a huge page of memory may first be allocated. Then, rather than transferring
the whole huge page containing the data requested to be accessed, only the sub-page or
small page of data that contains the data requested to be accessed by the application may be
transferred into main memory Initially. For example, an application may only need to access a

DK/EP 3516526 T3

byte or a word, such that the whole huge page is not required for the application to continue,
and the system may only transfer into main memory a smaller portion of data, e.g., a small
page, that includes the data the application needs to continue running. Upon the transferring of
that small page, an indication may be made to the application that the requested data has
been transferred into main memory or Is now available to be accessed from main memory:.

[0033] Subsequently, because the whole huge page was not transferred into main memory,
the remaining portion of the huge page may be transferred into main memory In the
background. Alternatively, it may be determined that breaking up the huge page into small
pages Is advantageous, for example based on access statistics, and thereby change paging
data structures from a single huge page to constituent small pages. |If an application
subsequently accesses any of the remaining small pages that had not been transferred into
main memory, those small pages may be transferred at that time, 1.e., when requested to be
accessed, with a page fault occurring.

[0034] To make the determination regarding whether to transfer the remaining portion of the
huge page and coalesce or to break up the huge page into small pages, access statistics may
be gathered to identify the "temperature” of pages, e.g., "hot" pages and "cold" pages among
the pages within the huge page. Thus, according to certain implementations, memory Is
allocated and reserved Iin huge page chunks, but a huge page may be broken into small pages
to work with smaller page chunks. When a huge page Is broken into small pages, the page
table may be updated with a respective PTE for each small page; and when a huge page Is
reassembled, the page table may be updated by replacing the respective PTEs for each small
page with one entry for the full huge page.

[0035] Gathering access statistics for pages may be accomplished through any process or
means of determining access of pages, e.g., determining "cold” pages and "hot" pages. For
example, a process may Include periodically breaking up a huge page into small pages,
scanning the set of pages and reading an access bit to determine when a small page was last
accessed or the frequency or how recently a small page was accessed, and then reassembling
the small pages back into the huge page once access statistics have been gathered. In this
manner, for example, a sample of accesses to sub-pages or small pages within the huge page
may be used to obtain statistical data about access to the small pages.

[0036] In more detall, in certain implementations, page table scanning, 1.e., a scan through the
page table, may be performed via hardware, rather than software requiring CPU overhead,
which often results in slower memory access and processing and discarding some otherwise
useful cache information. In general, the frequency of access of page data, e.g., which page
data Is frequently accessed relative to other pages of data and which page data is infrequently
accessed relative to other pages of data may be determined by scanning the page table. Each
page mapped In the page table, e.g., each PTE, may have a flag or access bit that may be set
whenever the page Is accessed, and then cleared by the CPU after scanning the page table.

[0037] This hardware may be implemented by augmenting the page table walker 160 or MMU

DK/EP 3516526 T3

150, which may include one or more page table walkers, e.g., built-in hardware to read the
page table and automatically load virtual-to-physical translations into the TLB 165. Thus, the
hardware may be part of the processor architecture, using the page table scanning mechanism
In the processor. For example, the hardware may implement a routine to scan through a page
table, scanning the PTEs, to determine if an access bit has been set at each PTE since the last
scan. The access bit may be cleared after determining that the access bit has been set, and
then operations may proceed until the next scan of the page table. The scanning may occur
periodically, e.g., with a predetermined time period between scans, or the scanning may be
triggered by some external event. Each time it is determined that an access bit or flag Is set, a
count may be incremented for each page, respectively. Alternatively, each time it iIs determined
that an access bit or flag i1s not set, a count may be incremented for each page, respectively.

[0038] Over time, a profile may be created from the scanning, and the profile may indicate how
often and/or how recently each page is accessed. For example, the hardware may include one
or more counters for each page or bloom filters to maintain the usage statistics, e.g., the count
of set access bit or flag, or the results may be stored in memory, e.g., a two-level memory, to
allow sorting and filtering, e.g., most and least used pages or more frequently and less
frequently accessed pages. In more detail, the hardware may maintain a per-page counter to
determine how recently a page was accessed, and each counter may be updated when the
respective PTE Is scanned. The per-page counters may be provided in on-chip SRAM for fast
access. Alternatively, because the size of the secondary memory may be large, making the
area cost of the counters higher, counting bloom filters may be used to maintain the access
statistics about sets of pages, thereby saving area. Alternatively, the hardware may use a small
amount of private DRAM or may store the counters in system DRAM.

[0039] Accordingly, for example, based on the access statistics, the pages may be ordered
from most used to least used or vice versa. When the page fault i1s serviced, If there are no
free pages in main memory DRAM 170, a paging process may release or write back one of the
least used pages into the secondary memory and may use the location of that least used page
to transfer the new page into main memory:.

[0040] FIG. 4 depicts a flowchart of an example of a process 400 for memory management,
according to implementations of the present disclosure. The process 400 may include, at 410,
receiving a request to access, from a main memory, data contained in a first portion of a first
page of data. The first page of data may have a first page size, e.g., a huge page, and the first
portion may have a second page size, e.g., a small page, that is less than the first page size.
At 420, a page fault may be Initiated based on determining that the first page of data is not
stored In the main memory and Is stored In a secondary memory. Further, in response to
Initiating the page fault, a portion of the main memory equivalent to the first page size, e.g., a
huge page, may be allocated at 430. The first portion of the first page of data may be
transferred, at 440, from the secondary memory to the allocated portion of the main memory
without transferring the entire first page of data. Thus, a remaining amount of the first page of
data may remain stored in the secondary memory. At 450, a first page table entry associated
with the first portion of the first page of data may be updated to point to a location of the

DK/EP 3516526 T3

allocated portion of the main memory to which the first portion of the first page of data is
transferred. Subsequently, the remaining amount of the first page of data may be transferred
from the secondary memory to the main memory, for example, in the background while the
application continues running.

[0041] To transfer the remaining amount of the first page of data, respective portions,
corresponding to the second page size, of the first page of data may be transferred from the
secondary memory to the allocated portion of the main memory until the entire first page of
data I1s stored In the main memory. Further, a respective page table entry for each of the
respective portions of the first page of data may be updated to point to respective locations of
the respective portions of the first page of data in the main memory. Moreover, once the entire
first page of data is stored in the main memory, the first page of data may be coalesced or
reassembled from the respective portions of the first page of data transferred from the
secondary memory to the allocated portion of the main memory. In accordance with the
reassembling, a page table entry associated with the first page of data may be updated to
point to a location of the reassembled first page of data in the main memory.

[0042] In certain iImplementations, before transferring the remaining portion of the first page of
data from the secondary memory to the main memory, the system may indicate that the first
portion of the first page of data that was requested to be accessed has been transferred to the
main memory, so that the application or thread that requested access may continue running by
accessing the requested data in main memory.

[0043] An example of a process for memory management may also Include determining
whether an access bit Is set for each page table entry of a page table based on a scan of the
page table with a page table scanner. In such a process, the access bit may indicate whether a
page associated with the page table entry was accessed in a last scan period. As described
above, at least one of the pages having the first page size, e.g., a huge page, may be divided
Into pages of the second page size, e.g., small pages, with a page table entry for each of the
pages of the second page size In the page table being scanned. In certain implementations, a
count for each page may be incremented in response to determining that the access bit is not
set for the page table entry associated with the page. Subsequently, the access bit may be
reset, after determining whether the access bit is set for each page table entry.

[0044] In certain implementations, If the portion of the main memory equivalent to the first
page size cannot be allocated, one of a least used pages having the first page size may be
determined based on the count for each page and the determined least used page may be
released into the secondary memory. Accordingly, a portion of the main memory equivalent to
the first page size may be allocated at the location of the released one of the least used pages.
Conversely, If the portion of the main memory equivalent to the first page size can be allocated,
the first portion of the first page of data may be transferred from the secondary memory to the
allocated portion of the main memory.

[0045] In more detall, for example, If the main memory does not have a free page and cannot

DK/EP 3516526 T3

receive the page transfer, one of the least used pages in main memory may be determined
based on the count for each page. A page fault handler or controller may manage the page
transfer and the determined one of the least used pages may be released or written back into
the secondary memory. Further, the page of data for which access Is requested may be
transferred from the secondary memory to the main memory at the location of the released
one of the least used pages. Alternatively, If the main memory does have a free page and can
receive the page transfer, the page fault handler or controller may manage transferring of the
page data from the secondary memory to the main memory.

[0046] In certain embodiments, when the page fault is Initiated, execution of the thread or
running program may be stalled while the data transfer is managed to service the page fault,
as described above. Subsequently, the thread may be released to access the page in the main
memory after the page fault is serviced.

[0047] In certain iImplementations, it may be advantageous to determine not only which pages
In the secondary memory are getting "hot", i.e., an increase In frequency of access, but also to
determine which pages in main memory DRAM are getting "cold", 1.e., a decrease In frequently
of access. In other words, determining which pages are accessed more frequently in the
secondary memory, which may be slower than the main memory, and which pages are
accessed less frequently in the main memory. One process to determine which pages are
accessed less frequently in the main memory i1s described above with reference to usage or
access statistics for the main memory, e.g., DRAM, based on, for example, a count of the
access bit being set. The system may determine when to move data from main memory to
secondary memory and when to move data from secondary memory to main memory based
on the access statistics described above for the main memory.

[0048] In addition, as described In more detall above, pages that are cooling off or being
accessed less frequently may be determined by monitoring the PTEs. For example, when the
Inter-access time for a page satisfies an inter-access time threshold, the system may Initiate
transfer of the page from main memory to the secondary memory by invalidating the PTE
assoclated with the page, executing a TLB shootdown for any entries associated with the page,
and transferring the page from main memory into the secondary memory.

[0049] According to certain implementations, with a cache coherent interconnect, the DRAM
cache and the second tier of memory may be managed by hardware, which may act both as
an owner of coherent memory and a user of coherent memory. In other words DRAM acts as a
cache, managed by the hardware, for paging at a configurable granularity for optimal
performance. The configurable granularity for optimal performance may depend on application
locality and the performance of the second tier of memory.

[0050] The customized kernel driver, as described above, may map the address space owned
by the hardware with huge pages only. In this manner, the system may achieve the benefits of
huge pages, such as improved performance due to larger TLB reach, whenever the system
accesses this region of memory. The hardware may maintain a cache lookup structure to

DK/EP 3516526 T3

check If a page Is present in main memory. WWhen a memory access Is received from the host,
this lookup structure may be queried. If the page Is present, the read or write may be
performed directly in main memory. If the page Is absent, the data may be fetched from the
secondary memory Into main memory, e.g., DRAM. In certain implementations, for
performance considerations, the cache may perform evictions asynchronously-e.g., "cold"” data
may be written back to secondary storage in the background to keep a minimum number of
pages free to service incoming pages. In general, this process may provide a caching

mechanism at the page level, such that a cache for paging may be provided with a cache
coherent interconnect.

[0051] In certain iImplementations cache optimizations may be applied. For example, when a
page fault occurs and a page Is transferred from secondary storage to main memory, the
system may determine whether to keep the page in main memory, or If the page I1s non-
temporal, to stream the page and read it once for the given access, or perform pre-fetching by
determining to fetch the next page in response to the currently fetched page being accessed.
In certain implementations, flags may be set regarding how an application I1s using memory,
and the determination for pre-fetching may be made based on those flags.

[0052] A number of implementations have been described. Nevertheless, it will be understood
that various modifications may be made without departing from the scope of the appended
claims. For example, various forms of the flows shown above may be used, with steps re-
ordered, added, or removed.

[0053] Implementations of the Invention and all of the functional operations described In this
specification can be implemented In digital electronic circuitry, firmware, or hardware, including
the structures disclosed In this specification Implementations of the Invention can be
Implemented as one or more computer program products, 1.e., one or more modules of
computer program instructions encoded on a computer readable medium for execution by, or
to control the operation of, data processing apparatus. The computer readable medium can be
a machine-readable storage device, a machine-readable storage substrate, a memory device,
or a combination of one or more of them. The term "data processing apparatus” encompasses
all apparatus, devices, and machines for processing data, including by way of example a
programmable processor, a computer, or multiple processors or computers. The apparatus
can Include, in addition to hardware, code that creates an execution environment for the
computer program in question, e.g., code that constitutes processor firmware, a protocol stack,
a database management system, an operating system, or a combination of one or more of
them.

[0054] VWhile this disclosure contains many specifics, these should not be construed as
limitations on the scope of the invention or of what may be claimed, but rather as descriptions
of features specific to particular implementations of the invention. Certain features that are
described In this specification In the context of separate implementations can also be
Implemented in combination In a single implementation. Conversely, various features that are
described In the context of a single implementation can also be implemented in multiple

DK/EP 3516526 T3

Implementations separately or in any suitable subcombination. Moreover, although features
may be described above as acting in certain combinations and even Initially claimed as such,
one or more features from a claimed combination can iIn some cases be excised from the
combination, and the claimed combination may be directed to a subcombination or variation of
a subcombination.

[0055] Similarly, while operations are depicted in the drawings In a particular order, this should
not be understood as requiring that such operations be performed In the particular order
shown or In sequential order, or that all illustrated operations be performed, to achieve
desirable results. In certain circumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system components In the
Implementations described above should not be understood as requiring such separation in all
Implementations, and it should be understood that the described program components and
systems can generally be integrated together in a single software product or packaged into
multiple software products.

[0056] Thus, particular mplementations of the present disclosure have been described. Other
Implementations are within the scope of the following claims. For example, the actions recited
INn the claims can be performed In a different order and still achieve desirable results. A number
of iImplementations have been described. Nevertheless, it will be understood that various
modifications may be made without departing from the and-scope of the appended claims. For
example, various forms of the flows shown above may be used, with steps re-ordered, added,
or removed. Accordingly, other implementations are within the scope of the following claims.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. |t does not
form part of the European patent document. Even though great care has been taken In
compiling the references, errors or omissions cannot be excluded and the EPO disclaims all
llability in this regard.

Patent documents cited in the description

o UiLZ0001 7234441 (8003
o VWOIUI0UZ900AT [BRU4]

10

15

20

235

30

DK/EP 3516526 T3

Patentkrav

1. Computerimplementeret fremgangsmade, der omfatter:

modtagelse (410) af en anmodning om adgang, fra en hovedhukommelse (170), til
data, der er indeholdt 1 en forste del af en forste side aft data, 1det den forste side af data
har en forste sidestorrelse og den forste del omfatter en anden sidestorrelse, der er
mindre end den forste sidestorrelse,

initiering (420) af en sidefejl pa grundlag af en bestemmelse af, at den forste side af
data 1kke er gemt 1 hovedhukommelsen og er gemt 1 en sekundar hukommelse (130),
som svar pa initiering af sidefejlen, allokering (430) af en del af hovedhukommelsen,
der svarer til den forste sidestorrelse,

overforsel (440) at den forste del af den forste side af data fra den sekundaere
hukommelse til den allokerede del at hovedhukommelsen uden at overfere hele den
forste side at data, hvor en resterende mangde af den forste side af data forbliver gemt
1 den sekundaere hukommelse,

opdatering (450) af en forste sidetabelpost, der er knyttet til den forste del af den forste
side af data, sa den peger pa en placering 1 den allokerede del af hovedhukommelsen,
som den forste del af den forste side af dataene overtores til, og

overforsel af den resterende mangde af den forste side af data fra den sekundaere
hukommelse til hovedhukommelse, i1det fremgangsmaden er kendetegnet ved, at den
indbefatter

gentaget overforsel af respektive dele, der svarer til den anden sidestorrelse, af den
forste side af data fra den sekundare hukommelse til den allokerede del af
hovedhukommelsen, indtil hele den forste side af data er gemt 1 hovedhukommelsen,
0g

opdatering af en respektive sidetabelpost for hver af de respektive dele af den forste
side af data til at pege pa respektive placeringer af de respektive dele af den forste side
af data 1 hovedhukommelsen.

2. Fremgangsmaden ifglge krav 1, der yderligere omfatter:

nar hele den forste side af data er gemt 1 hovedhukommelsen, gensamling af den forste
side af data fra de respektive dele af den forste side af data, der er overfort fra den

sekundaere hukommelse til den allokerede del at hovedhukommelsen, og

10

15

20

235

30

DK/EP 3516526 T3

21 -

opdatering af en sidetabelpost, der er knyttet til den forste side af data til en placering
af den gensamlede forste side af data 1 hovedhukommelsen.

3. Fremgangsmaden 1felge krav 1 eller krav 2, der yderligere omfatter:

inden overforsel af den resterende del af den forste side af data fra den sekundare
hukommelse til hovedhukommelsen, angivelse af, at den forste del at den forste
side af data, der blev anmodet om adgang til, er blevet overfort til
hovedhukommelsen.

4. Fremgangsmaden ifglge et hvilket som helst af de foregaende krav, der
yderligere omfatter:

bestemmelse af, om der er angivet en adgangsbit for hver sidetabelpost for en sidetabel
pa grundlag af en scanning af sidetabellen med en sidebordscanner, 1det adgangsbitten
angiver, om der var adgang til en side, der er knyttet til sidetabelposten, 1 en seneste
scanningsperiode, hvor mindst €n side, der har den forste sidestorrelse, er opdelt 1 sider
af den anden sidestorrelse med en sidetabelpost for hver af siderne 1 den anden
sidestorrelse 1 den sidetabel, der scannes,

foregelse af et teller for hver side som svar pa bestemmelsen af, at adgangsbitten ikke
er angivet for den sidetabelpost, der er knyttet t1l siden,

efter bestemmelse af, om adgangsbitten er angivet for hver sidetabelpost, nulstilling af
adgangsbitten, og

gensamling af siderne af den anden sidestorrelse til den side, der har den forste
sidestorrelse, som blev opdelt.

5. Fremgangsmaden ifelge krav 4, der yderligere omfatter:

hvis den del at hovedhukommelsen, der svarer til den forste sidestorrelse, 1tkke kan
allokeres, bestemmelse af en mindst anvendt side, der har den forste sidestorrelse, pa
orundlag af antallet for hver side og frigerelse af den mindst anvendte side 1 den
sekundaere hukommelse, samt allokering af en del at hovedhukommelsen, der svarer til
den forste sidestorrelse ved placeringen af den frigjorte mindst anvendte side, og

hvis den del at hovedhukommelsen, der svarer til den forste sidestorrelse, kan
allokeres, overtorsel at den forste del af den forste side af data fra den sekundeere
hukommelse til den allokerede del atf hovedhukommelsen.

6. Fremgangsmaden ifglge et hvilket som helst af de foregaende krav, der

yderligere omfatter:

10

DK/EP 3516526 T3

21 -

endring af en hukommelsesstruktur for den forste side af data, der har den forste
sidestorrelse, 1 en flerhed af sider at data, der har den anden sidestorrelse, der er
mindre end den forste sidestorrelse.

7. System (100), der omfatter:

en eller flere processorer (110), og

en hukommelse, der omfatter en hovedhukommelse (170) og en sekunder
hukommelse (130), idet hukommelsen lagrer instruktioner, der, nar de eksekveres, kan
anvendes til at forarsage den ene eller flere processorer til at udfere fremgangsmaden
1folge et hvilket som helst af kravene 1 til 6.

8. Computerlesbart lagermedie, der lagrer instruktioner, som kan eksekveres af
systemet 1felge krav 7, som efter en sadan eksekvering forarsager systemet til at

udfore fremgangsmaden 1fglge et hvilket som helst af kravene 1 t1l 6.

DK/EP 3516526 T3

DRAWINGS

l "Old

}y abed

NVa(d

1743

SSalppy
leo1sAyd

g9l 9l

Jayng apIsedo0 JOY|epA
uolle|suel | a|ge| abed

061

Hun uswebeue Alows|n

Aows|A
510WaY

CogL

SSaIpPPY
1221007

C o1l

Nc&

DK/EP 3516526 T3

¢ Old

ooedg
SSalppy

|eoIsAyd

ove .

(NAIN)
jun

juswsbeue |

AJOUIBIN

aoedg
|2UISY

20edg
EIVIE)Y

Soeds

SSaIpPY [eNUIA

1] 74

q ss800.d

G0¢

Y $S300.d

DK/EP 3516526 T3

ATOWSN

|IBOISAUJ

AOWS

[ENJIA

§0¢

PoTEo0(Y
ATOWBH

0ee

Ve OId

0ct

0i€

ERn

4002

Receive request to access data contained in a
first portion of a first page of data
410

Initiate a page fault based on determining that
the first page of data is not stored in the main
memaory 420

Allocate a portion of the main memory
equivalent to the first page size

430

Transfer the first portion of the first page of
data from the secondary memory to the
allocated portion of the main memory

440

Update a first page table entry associated with
the first portion of the first page of data

450

FIG. 4

DK/EP 3516526 T3

	Page 1 - ABSTRACT/BIBLIOGRAPHY
	Page 2 - ABSTRACT/BIBLIOGRAPHY
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - CLAIMS
	Page 18 - CLAIMS
	Page 19 - CLAIMS
	Page 20 - DRAWINGS
	Page 21 - DRAWINGS
	Page 22 - DRAWINGS
	Page 23 - DRAWINGS

