PANEL FOR OFFICE WORKSTATION

Inventor: Sunny SINGH, Brampton (CA)

Correspondence Address:
LANG MICHENER LLP
Brookfield Place, SUITE 2500, 181 BAY STREET TORONTO, ON M5J 2T7 (CA)

Assignee: Tayco Panelink Ltd., Toronto (CA)

Appl. No.: 12/243,391

Filed: Oct. 1, 2008

Abstract

The invention comprises a panel for mounting on a support frame of a wall assembly for a workstation, comprising: a) a substantially planar core member having a front layer and a rear layer each attached to a central lattice structure to form a plurality of closed geometric cavities with the core member, b) a sound-deadening layer, overlying the front layer, and c) a decorative layer overlying the sound deadening layer.
PANEL FOR OFFICE WORKSTATION

FIELD OF THE INVENTION

[0001] The present invention relates to office workstations. More particularly, it relates to panels for use in constructing office workstations.

BACKGROUND OF THE INVENTION

[0002] "Workstations" or "cubicles" are commonly used in modern offices to partition larger open spaces into smaller work areas or units. The term "workstation" is hereinafter used interchangeably in this specification and claims to fully encompass both the terms "cubicles" and "workstations". Such workstations may be arranged as stand-alone entities, and is common in, for example, reception areas, or may be grouped together in rows or clusters, as is common in, for example, general office areas. In either case, each such workstation is typically comprised of two or more wall sections of variable height, which do not typically reach the ceiling of the office in which they are situated, interconnected to one another, and quite often of three or more of such wall sections, which together partially enclose a work area for one or more users of the workstation. A work surface is typically mounted on one or more of the wall sections by means of cantilever arms or the like, as may be one or more office furniture accessories such as, for example, shelves, cabinets, bins, drawers and the like.

[0003] Workstations of this general type have, for a variety of reasons, including, without limitation, design flexibility, more efficient space utilization, and greater user comfort and efficiency, become very popular over the last several decades, to the extent that they have, to a significant extent, replaced free-standing desks in larger, open-area office environments.

[0004] Wall panel systems for constructing workstations can be divided into two major types as follows: those having wall sections comprised of a single monolithic wall panel; and those having wall sections comprised of a plurality of smaller wall panels stacked one above the other in substantially parallel relation to form each wall section. The latter type of stacked wall panel system evolved from the former monolithic panel type, and appears, of late, to be gaining ascendancy thereover. This is likely due to several factors. For example, stacked wall panel systems offer greater design flexibility than monolithic wall panel systems, as different types of wall panels can be used alternately and interchangeably in a single wall section (for example, a single wall section may have a lowermost solid wall panel resistant to deformation or marking by the shoes of a user, above which is positioned one or more thicker, fabric-covered sound-absorptive panels, above which is mounted a relatively thin light transmitting panel etc.). Additionally, stacked wall panel systems have individual components that are generally smaller and lighter; i.e., monolithic wall panels are by their very nature larger and heavier, as compared to stackable wall panels, which makes their handling more difficult and dangerous for moving, storage and assembly of the resulting workstations.

[0005] Although stackable wall panels are typically lighter than monolithic panels, they may still be unreasonably heavy, depending on their size and the materials used in constructions. The stackable wall panels in general usage are a structural component of the workstation and, as such, have material and strength requirements that suggest a more robust construction. Any advantage in weight and handling is restricted to that which is achieved by a reduction in size. There is a need for a stackable wall panel which is of a construction that is inherently lightweight over current designs.

[0006] Another issue that arises is the disposal process for wall panels which are damaged or otherwise no longer suitable for use. Given the structural requirements for existing wall panels, they are typically not recyclable or utilize a very low percentage of recyclable materials in their construction. There is a need for a wall panel which can be recycled and, ideally, can be made from recycled materials as well. In addition to being recyclable, the wall panels should continue to be capable of long-term use and storage.

[0007] Additionally, such wall panels should be available at a lower cost than existing prior art panels which are constructed from virgin materials. The recyclable panels also reduce associated fuel and shipping costs, as the panels are lighter than those found in the prior art. Their lighter weight also makes them easier for installers to lift and manipulate during installation.

[0008] It is an object of this invention to partially or completely fulfill one or more of the above-mentioned needs and to, more generally, overcome one or more disadvantages associated with prior art panels suitable for use with workstations.

SUMMARY OF THE INVENTION

[0009] The invention consists of a panel for mounting on a support frame for a wall assembly for a workstation, comprising: a) a substantially planar core member having a front layer and a rear layer each attached to a central lattice structure to form a plurality of closed geometric cavities within the core member, b) a sound-deadening layer, overlaying the front layer, and c) a decorative layer overlaying the sound deadening layer. The closed geometric cavities are preferably hexagonal in plan outline, but need not be.

[0010] The panel may further include an attachment means, preferably comprising a notched extrusion that extends in a parallel direction for a fraction of the full length of the vertical edge of the panel on which it is secured.

[0011] The panel may still further include a reinforcement means extending in adjacent parallel relation to at least one of the longer edges of the panel. The reinforcement means preferably comprises a U-shaped channel section mounted on the core member in surrounding relation to said at least one longer edge. The reinforcement means further preferably comprises, but need not be, a hollow tube section conjoined to the base of said U-shaped channel section in longitudinally extending parallel relation thereto.

[0012] Preferably, most, if not all, of the panel elements are recyclable, with the core member being preferably constructed of cardboard, with the attachment means being preferably constructed of polyvinyl chloride plastic material, and with the reinforcement means being preferably constructed of aluminum or other lightweight rigid metals.

[0013] Other and further advantages and features of the invention will be apparent to those skilled in the art from the following detailed description thereof, taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The invention will now be described in more detail, by way of example only, with reference to the accompanying drawings, in which like numbers refer to like elements, wherein:
FIG. 1 is a perspective view of an arrangement of multiple adjacent office workstations incorporating panels according to the invention;

FIG. 2 is a perspective view of a selected one of the office workstations of FIG. 1;

FIG. 3 is a perspective view of a selected wall section from the workstation of FIG. 1 having four panels according to the present invention, with the decorative layer and the sound deadening layer removed from the uppermost three panels, and from a first portion of the bottom-most panel to reveal certain panel components, and with a second portion of said bottom-most panel cut-away to show internal components of the core member lying therebeneath;

FIG. 4 is an enlarged view of the encircled region 4 of FIG. 3;

FIG. 5 is an exploded view of the wall section of FIG. 3, with the panels each having portions of the decorative layer and the sound deadening layer removed to reveal certain panel components lying therebeneath;

FIG. 6 is a cross-sectional view along sight line 6-6 of FIG. 3;

FIG. 7 is a cross-sectional view along sight line 7-7 of FIG. 3;

FIG. 8 is a perspective view of the reinforcement means of FIG. 6, shown in isolation;

FIG. 9 is a perspective view of the attachment means of FIG. 7, shown in isolation;

FIGS. 10A-10C are a series of cross-sectional views along sight line 10-10 of FIG. 3, showing the steps of engaging the attachment means with the support frame during assembly of a wall section; and,

FIG. 11 is a perspective view, from the rear, of an alternate embodiment of a panel according to the invention.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Within this specification, the “front” side of a panel is the side exposed to view after assembly of the workstation and the “rear” side of the panel is the side concealed from view after assembly of the workstation. Thus, in FIGS. 1 and 2, the front sides of all panels are illustrated. Similarly, “horizontal” and “vertical” in reference to a panel, or other component of a workstation, refers to its respective orientation after assembly.

In many workplaces, rather than using fixed offices, individuals are often assigned to work in a modular workstation, similar to one of the four workstations 10 and 10' shown in FIG. 1. Each such workstation 10 and 10' consists of a number of individual partition wall sections 20 that are laterally joined to one another and are arranged to define a partially enclosed workspace, typically containing a desk or desktop work surface 30 and other standard office furniture (not shown). Multiple workstations 10, 10' are typically placed adjacent to each other, sharing common wall sections 20, to create a multi-office arrangement, as shown in FIG. 1. For purposes of brevity, this description will proceed further with reference to the selected wall section 20 shown in FIG. 3 and its associated smaller panels 100a, only, being understood that, regardless of the shape or dimensions of the individual panels 100a and 100b, they are each typically constructed according to the invention in the same general manner, having the same overall sub-structures and assemblies, although redundancy and/or scaling of the various components relative to one another may be necessary to achieve acceptable levels of strength and/or rigidity in panels of larger dimension, such as would be readily apparent to those skilled in the art.

The selected wall section 20 shown in FIG. 3 has four separate smaller panels 100a on the side visible in the Figures. As best seen in FIGS. 3, 4 and 5, the smaller panels 100a that are each releasably secured (in a manner more fully described below) to the support frame 200, which preferably comprises two vertical side frame rails 202, a horizontal top rail 204, and a base rail 206 which supports the support frame.
on the floor surface and can include a means (not shown) for securing the support frame 200 to the floor. An optional reinforcing mid-rail 208 connecting the two vertical side frame rails 202 is also visible in FIG. 5, and is preferred, but not essential for larger wall sections 20. A decorative baseboard 209 optionally overlies the base rail 206, and may be provided with punch out panels 207 to accommodate electrical or data outlets (not shown), or the like. The frame rails 202, 204, 206 and 208 are preferably formed as stamped components from lightweight metal or the like, and are joined to each other by spot welding, metal fasteners or any other suitable attachment means, as is known in the art.

[0033] Panels 100a and 100b are constructed according to the invention, and comprise five main components, as best seen in cut-away view in FIG. 4, and in cross-sectional view in FIGS. 6 and 7. The first of these components is a substantially planar core member 110, which itself has a tri-laminar construction comprising a central lattice structure 102, a front layer 130 and a rear layer 120. The lattice structure 102 defines, by its internal walls 103, the shape of a plurality of geometric cells 104. A hexagonal shape for these cells 104, (when seen in plan outline—see FIG. 4), is preferred for strength and ease of production; however, many alternative lattice geometries (for example, diamond shaped) may also be used, so long as they are capable of demonstrating structural qualities that meet the requirements for the intended use in office workstations. The rear layer 120 and the front layer 130 each respectively overlie and are attached to a rear and a front face of the lattice structure 102, so as to close the plurality of geometric cells 104 at each of their ends, thereby to form, with said lattice structure 102, a corresponding plurality of closed geometric cavities 105 within the core member 110.

[0034] A preferred material for the lattice structure 102 is cardboard, which is lightweight, recyclable and inexpensive, although lightweight plastics are one of many possible construction materials. The rear layer 120 and front layer 130 can similarly be constructed of cardboard, plastic, laminated plastic, wood, fiberboard, metal, metal foil, or laminated combinations of these materials. Again, the preferred materials are lightweight, recyclable and inexpensive, but the present invention is not in any way to be considered as limited to the named materials. The materials used in construction of the lattice structure 102 and in the rear 120 and front layers 130 can be made more fire- and water-resistant than their native states, if necessary for the panel 100a to comply with necessary safety codes and to reduce degradation of the panel 100a while in storage, through, for example, mould, mildew or moisture penetration. Such making can be by way of any conventional means, such as, for example, by treatment with fire-resistant chemicals, by lamination with metal foils or the like, and all operable permutations and combinations thereof are within the spirit and scope of the present invention. A particularly preferred combination has each of the front layer 130, the rear layer 120, and the lattice structure 102 constructed from cardboard material, with the rear layer 120 having its rear face laminated with a metal foil layer 107 to increase resistance to fire and moisture penetration (see FIGS. 6 and 7).

[0035] A layer of sound-deadening material 140, such as, for example, a non-woven fibreglass batt material, is placed over the front layer 130 and the entire assembly is covered with a decorative layer 150, preferably being a textile layer, to assist in securing the sound-deadening layer 140 in place and to provide an esthetically pleasing visual appearance to the front side of the finished panel 100a. The sound-deadening layer 140 may, but need not, be additionally glued to the front face of the front layer 130. The combination of the sound-deadening layer 140 and the decorative layer 150 additionally provides a more pleasant surface feel than the front layer 130. The decorative layer 150 can be chosen from a long list of flexible materials, both textile and non-textile, for its various properties, including, without limitation, its appearance, its ease of cleaning, its durability, its sound absorptive properties, its fire resistance, its resistance to mildew penetration, etc., etc.

[0036] It will be appreciated that the perimeter of the core member 110 defines the overall size and shape of the respective panel 100a, which, as shown in the Figures, is preferably of quadrilateral, and most preferably, of rectangular outline in shape, having its two longer edges 111, 111 horizontally aligned when installed, and having its two shorter edges 115, 115 vertically aligned as two opposed vertical edges, when the panel 100a is installed. The front 130 and rear 120 layers can be secured to the core member 110 by gluing, by mechanical means (e.g., heat bonding, tape or staples), or any other suitable fastening means or techniques, or may all be formed together in one operation to create the core member 110.

[0037] The panel 100a may additionally and advantageously, but not necessarily, include a reinforcement means 160 longitudinally extending in parallel relation to at least one of said longer edges 111 which reinforcement means 160 assists in preventing buckling and deformation of the panel 100a, particularly for larger panels, such as the monolithic panel 100b shown in FIGS. 1 and 2 and gives a smoother, more finished appearance to the longer edges of the panel. The reinforcement means 160, as best shown in FIGS. 6 and 8, may advantageously comprise a rigid U-shaped channel section 162, having side arms 163 and a base portion 165, for mounting on the core member 110 in surrounding relation to said vertically upper edge 111 of each panel 100a to, assist in preventing flexing or buckling of the panel 100a. Suitable adhesives or other fastening means (not shown) may optionally be applied to the inside of the U-shaped channel section 162 prior to assembly of the panel 100a to assist in retention of the reinforcement means 160 on the vertically upper edge 111. Preferably, the reinforcement means additionally comprise a rigid tube section 164 conjoined to the base portion 165 of the U-shaped channel section 162 in coincident longitudinally extending parallel relation thereto to provide additional strength. The use of a curved tube section of this general type not only adds strength to the reinforcement means 160, but provides for visual interest and an esthetically pleasing and functionally efficient interface with vertically adjacent panels 100a. The reinforcement means 160 is preferably made as a unitary structure of a rigid, lightweight material, such as, for example, extruded aluminum or plastic, although these materials are not limiting. As with the other components of the panel 100a, the reinforcement means 160 is, in any event, preferably also made of a recyclable material.

[0038] After the reinforcement means 160 is secured to the panel 100a as described above, it is preferably covered, for aesthetic and durability reasons, by an extension of the decorative layer 150 around the rear side of each panel 100a, as can be seen in FIG. 6.

[0039] Each panel 100a further preferably comprises at least one attachment means 170 mountable on the core mem-
ber 110 for releasable engagement with the support frame 200. In the preferred embodiment illustrated in the Figures, each panel 100a has two attachment means 170, secured one each to the core member 110 adjacent the opposed vertical edges 115 of each panel 100a, as best seen in FIGS. 3, 7 and 10A through 10C, so as to allow the panel 100a to be releasably engageable with the side frame rails 202 of the support frame 200 to together create the wall segment 20a, as described more fully below.

[0040] Each attachment means 170 may be permanently or semi-permanently attached or secured to the core member 110 of the panel 100a as a step in the assembly process for the panel 100a, as with the preferred attachment means shown in the Figures, or can be a separate element (not shown) that selectively interacts with the panel 100a and one or more frame rails 202, 204 of the support frame 200 (as in the nature of a clamp, clip or other similar attachment mechanism), or may be in the nature of a threaded fastener, or the like, which passes through the core member 110 of a panel 110a for releasable securement of the panel 100a to one or more the frame rails 202, 204 of the support frame 200. All such embodiments and modalities of attachment means are expressly envisioned by the inventor as being within the scope of the present invention. As with the other components of the panel 100a, the attachment means 170 is preferably recyclable, and preferable materials include plastics, including PVC plastic, and metals, including mild steel and aluminum.

[0041] A preferred attachment means 170 is illustrated in FIGS. 3, 5, 7, 9 and 10A through 10C. Each such attachment means 170 preferably comprises a U-shaped channel section 171, having side arms 173 and a base portion 175, for mounting on the core member 110 in surrounding relation to each said vertical side edge 115 of each panel 100a. Suitable adhesives or other fastening means (not shown) may optionally be applied to the inside of the U-shaped channel section 171 prior to assembly of the panel 100a to assist in retention of the attachment means 170 on the respective vertical side edge 115.

[0042] After the attachment means 170 is secured to the panel 100a, it is preferably covered, for aesthetic and durability reasons, by an extension of the decorative layer 150 to the rear side of each panel, as can be seen in FIG. 7.

[0043] Each preferred attachment means 170 further preferably comprises one or more spring clip members 180 extending in a parallel direction along a portion of the length of the adjacent vertical edge 115, with each clip member 180 being formed by one or more longitudinal tab sections 184 projecting outwardly, rearwardly from one of the side arms 173 of the U-shaped channel section 171. In the preferred embodiment illustrated, three tab sections 184 are used in each clip member 180 (see FIG. 9). Each tab section 184 of a respective spring clip member 180 is joined to said side arm 173 by means of a bent channel section 182, which channel section 182 extends coincidently in said parallel direction, and is constructed of a semi-resilient material (such as PVC plastic, mild steel spring or aluminum strip material), so as to allow for bending of the tab 184, with memory, about a longitudinal axis situated within the base of the channel section 182 in extending parallel relation to said vertical edge 115, thereby to permit releasable engagement of the spring clip member 180 (and the panel 100a or 100b to which it is attached) with the support frame 200, in a manner that will now be described in more detail with specific reference to FIGS. 10A through 10C.

[0044] In FIG. 10A, we see an exploded sectional view along sight line 10-10 of FIG. 3. Front 100a and rear 100b panels are both shown as detached from the vertical side frame rails 202 of a previously assembled support frame 200 of the wall section 20a of FIG. 3. Each vertical side frame rail 202 is generally U-shaped in cross-section, and has a base portion 202a which is transversely joined at its opposite ends to opposed side arm portions 202b and 202c, each of which terminates in a respective free edge 212b and 212c. Turning to FIG. 10B, we see panel 100b has been moved by an installer (not shown) from the position depicted in FIG. 10A, in the direction of arrow A. Such movement causes the tab section 184 of the spring clip member 180 to come into contact with the free edge 212b of the side arm portion 202b of the vertical member 202 of the support frame 200. Continued movement of the panel 100b in this direction causes the free edge 212b to push against the tab section 184. This, in turn, causes temporary bending of the tab 184 (in the direction of arrow C of FIG. 10B) about the aforesaid longitudinal axis situated within the base of the channel section 182, thereby allowing the tab section 184 to clear the free edge 212b, after which the tab section returns, in the reverse direction of arrow C, to its starting configuration, as shown in FIG. 10C, with the free edge 212b held in close fitting frictional contact against the channel section 182, thereby holding the panel 100b against the side arm portion 202b of the vertical side frame rail 202.

It will be appreciated that a similar action is simultaneously occurring adjacent the opposite vertical edge 115 of the panel 100b, such that the panel 100b is held fast, adjacent both of its vertical edges 115, by the respective spring clip members 180 releasably engaging the side frame rails 202 of the support frame 200.

[0045] Panel 110a is similarly assembled in releasable engagement with the support frame 200, with analogous reference to FIGS. 10A through 10C, and to arrows B and D, respectively, in place of the above references to arrows A and C.

[0046] The panel 100a is to be secured strongly enough (by calibration of the spring clip member 180) to the adjacent vertical side rail 202 of the support frame 200 to prevent it from becoming dislodged during movement or through incidental contact; however, is should be removable under reasonable force to enable replacement of individual panels 100a.

[0047] The reinforcement means 160 and the attachment means 170 may be separate structures, or may be joined to one another during manufacture of a panel 100a, 100b, as by gluing, welding, tapping, riveting, screwing or the like, or any combination thereof to form a unitary, rigid panel frame. Alternatively, such unitary, rigid panel frame may be initially formed by, for example, stamping or roll forming of metal components, with the core member 110 thereafter being mounted as a finished sub-assembly within the panel frame, prior to being covered by the decorative layer 150.

[0048] The use of ‘horizontal’ and ‘vertical’ is meant to illustrate the relative disposition of the reinforcement means 160 and attachment means 170 to each other and not necessarily to the orientation of the panel 100 when installed, although the conventional meaning reflects the preferred disposition.
This concludes the description of a presently preferred embodiment of the invention. The foregoing description has been presented for the purpose of illustration only, and is not intended to be exhaustive or to limit the invention to the precise form disclosed. Various other modifications and alterations may be used in the design and manufacture of panels for workstations according to the present invention without departing from the spirit and scope of the invention, which is limited only by the accompanying claims. For example, another alternate attachment means within the scope of the present invention takes the form of one or more key hole slots or T-slots (not shown) formed in the rear side arm 173 of each U-shaped channel section 171, with each such slot dimensioned and otherwise adapted to accept in mating relation a corresponding plurality of flat-headed machine screw heads (not shown) mounted in projecting relation on the opposed side arm portions 202b and 202c of the side frame rails 202. With this arrangement, the panels 100a and 100b can be easily lifted, at will, onto or off of the machine head screws by a user. In yet another alternative arrangement, the key hole or T-slots could be formed in the opposed side arm portions 202b and 202c of the side frame rails 202 and the plurality of flat-headed machine screw heads could be mounted in projecting relation on the rear side arm 173 of each U-shaped channel section 171.

By way of another example of possible modification, and with reference to an alternate embodiment of panel 100a illustrated in FIG. 11, the rear layer 120 of the panel 100a may be perforated in a pattern of holes 109 (which pattern may be substantially random), such that in a random fraction of the geometric cavities 105 defined by the lattice structure 102 are overlap by at least one of said holes 109. In the embodiment shown, each and every one of the geometric cavities 105 is overlain by at least one of the holes 109. The purpose of the holes is 109 to assist in the absorption of sound waves which enter a hole, so as to be attenuated within the respective geometric cavity 105 lying therebelow. Optionally, (not shown) the front layer 130 of a panel could also be perforated in a pattern of holes (not shown) overlying the geometric cavities 105 in a analogous manner to the holes 109 perforating the rear layer 120 of the panel 100, as shown in FIG. 11, thereby to assist in attenuating sound waves impinging on the front layer 130 of the panel 100.

I claim:

1. A panel for mounting on a support frame for a partition wall section for a workstation, comprising:
 a) a substantially planar core member having a front layer and a rear layer each attached to a central lattice structure to form a plurality of closed geometric cavities within the core member,
 b) a sound-deadening layer, overlying the front layer, and
 c) a decorative layer overlying the sound deadening layer.

2. The panel of claim 1, wherein the closed geometric cavities are hexagonally shaped.

3. The panel of claim 1, wherein the panel has a quadrilateral shape.

4. The panel of claim 3, further comprising at least one attachment means mounted on the core member for releasable engagement with the support frame.

5. The panel of claim 4, wherein the attachment means comprises two attachment means secured one each to the core member adjacent opposed vertical edges of the panel.

6. The panel of claim 5, wherein each attachment means comprises one or more spring clip members extending in a parallel direction along a portion of the length of the adjacent vertical edge.

7. The panel of claim 6, wherein each attachment means is an elongated spring clip member extending in a parallel direction for substantially the entire length of the adjacent vertical edge.

8. The panel of claim 7, wherein the decorative layer is a textile layer.

9. The panel of claim 8, wherein the decorative layer additionally extends over a portion of the attachment means and the rear layer.

10. The panel of claim 1, wherein the core member is made of a recyclable material.

11. The panel of claim 10, wherein the recyclable material is cardboard.

12. The panel of claim 10, wherein the front layer and rear layer are additionally made of a recyclable material.

13. The panel of claim 12, wherein the recyclable material is cardboard.

14. The panel of claim 1, wherein the rear layer is perforated in a pattern of holes such that a fraction of the geometric cavities defined by the lattice structure are overlain by at least one of said holes.

15. The panel of claim 14, wherein all of the geometric cavities defined by the lattice structure are overlain by at least one of said holes.

16. The panel of claim 1, wherein at least one of the front layer and the rear layer is water-resistant.

17. The panel of claim 1, wherein at least one of the front layer and the rear layer is fire-resistant.

18. The panel of claim 5, wherein the core member is of rectangular shape, with its two longer edges being horizontally aligned, and with its two shorter edges being said opposed vertical edges.

19. The panel of claim 18, having a reinforcement means longitudinally extending in adjacent parallel relation to at least one of said longer edges.

20. The panel of claim 19, wherein the reinforcement means comprises a U-shaped channel section mounted on the core member in surrounding relation to said at least one longer edge.

21. The panel of claim 20, wherein the reinforcement means further comprises a hollow tube section conjoined to the base of said U-shaped channel section in longitudinally extending parallel relation thereto.

22. The panel of claim 19, wherein the reinforcement means is made of a recyclable material.

23. The panel of claim 22, wherein the reinforcement means is made of aluminum.

24. The panel of claim 19, wherein the decorative layer additionally extends over at least a portion of the reinforcement means and the rear layer.

25. The panel of claim 1, wherein the reinforcement means and the attachment means are formed as components of a unitary, rigid panel frame.

26. A system for creating an office workstation, comprising:
 a) one or more panels, each panel comprising i) a substantially planar core member having a front layer and a rear layer each attached to a central lattice structure to form a plurality of closed geometric cavities within the core member,
 ii) a substantially planar core member having a front layer and a rear layer each attached to a central lattice structure to form a plurality of closed geometric cavities within the core member,
member, ii) a sound-deadening layer, overlying the front layer, and iii) a decorative layer overlying the sound deadening layer; and,
b) a support frame structure adapted to engage and support the panels, the support frame and the panels combining to form a partition wall section for the workstation.
27. The system of claim 26, further comprising a work surface that is secured to the support frame.
28. A partition wall assembly for use in constructing a workstation, comprising:
a) one or more panels, each panel comprising: i) a substantially planar core member having a front layer and a rear layer each attached to a central lattice structure to form a plurality of closed geometric cavities within the core member; ii) a sound-deadening layer, overlying the front layer; iii) a decorative layer overlying the sound deadening layer; and,
b) a support frame structure to engage and support the panels, the support frame and the panels combining to form the partition wall assembly.
29. The partition wall assembly of claim 28, further comprising a work surface secured to the support frame.