woO 2007/084362 A2 | 1IN0 0 0000 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 July 2007 (26.07.2007)

PO 0 R

(10) International Publication Number

WO 2007/084362 A2

(51) International Patent Classification:

(74) Agents: GOLUB, Daniel, H. et al.; 1701 Market Street,

GOGF 3/00 (2006.01) GOGF 17/00 (2006.01) Philadelphia, PA 19103 (US).
(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/US2007/000821 kind of national protection available): AE, AG, AL, AM,
(22) International Filing Date: 12 January 2007 (12.01.2007) AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
(25) Filing Language: English CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
. GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
(26) Publication Language: Engllsh JR KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,

(30) Priority Data:
60/758,832 13 January 2006 (13.01.2006) US

(71) Applicant (for all designated States except US):
LEHMAN BROTHERS INC.; 745 Seventh Avenue,
New York, NY 10019 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US ornly): KORZENKO,
Richard, M. [US/US]; 1112 Hyman Avenue, Bay Shore,
NY 11706 (US). WONG, Johnny, J. [US/US]; 10
Mercer Avenue, Englewood Cliffs, NJ 07632 (US). MAJ-
DALANI, Elie [US/US]; 30 Constitution Way, Apt. #202,
Jersey City, NJ 07305 (US).

LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,

MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,

RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,

TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR INTEGRATING CALCULATION AND PRESENTATION TECHNOLOGIES

(57) Abstract: A presentation is generated, and

(101 (101 spreadsheets objects are embedded therein. The
FRONT FRONT presentation may be customized prior to down-
END END loading. Mark-up language technology may be
used in connection with the integration of spread-
sheet and presentation technologies.
APPLICATION
SERVER
100
(J-]OZ
A
DATABASE WEB SERVICES
DEFINITION
(— 103
\ 110
) XML TRANSLATOR/
l EPORTING ' . INTERPRETER
(104 (- 105
CALCULATION PRESENTATION
ENGINE ENGINE
(11
106 109
COMPLIANT | RCHIVE 4 C
STORAGE SPREADSHEET PRESENTATION
TEMPLATES TEMPLATES
(4 107 (108
XSLT XML/XSLT
TEMPLATES CONFIG FILES

WO 2007/084362 A2 | NI DA 0T 0000 0 0 0O

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.

WO 2007/084362 PCT/US2007/000821

METHOD AND SYSTEM FOR INTEGRATING CALCULATION AND
PRESENTATION TECHNOLOGIES

COPYRIGHTED MATERIAL

A portion of the disclosure of this patent document contains material which is
5 subject to copyright protection. The copyright owner has no objection to the facsimile
. reproduction by anyone of the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but otherwise reserves all
copyright rights whatsoever.
FIELD OF THE INVENTION
.10 The present invention relates to the integration of calculation and presentation
technologies.
BACKGROUND OF THE INVENTION
Many companies, including financial services companies, have the need to
generate presentations, either for their own internal use or for providing to their clients.
15 Presentations of this nature lend themselves to being created, and subsequently
presented, using various forms of commercially available presentation software.
Particularly in the financial services industry, the content of such reports often includes
representations of financial or other numeric data, and calculations and modeling
involving the same. Such calculations and modeling are easily manipulated using
20 commonly used and available calculation software. There exists a need for a system and
method that integrates the functionality of presentation software with that of calculation
software to allow for the generation of such presentations in an efficient and flexible

manner.

10

15

20

WO 2007/084362 PCT/US2007/000821

SUMMARY OF THE INVENTION

The present invention is directed to a system and method for generating a
presentation. A spreadsheet object is generated. The presentation is generated. In
connection with generating the presentation, the spreadsheet object is embedded in the
presentation.

The present invention is further directed to a system and method for customizing
a presentation. The presentation, comprising one or more slides, is generated. An
image of the slides is created. The images are displayed to a user. One or more requests
to customize the presentation are received. A customized presentation is created.

The present invention is further directed to a system and method for generating a
presentation. A request associated with generating a presentation is received. The
request is parsed to determine one or more calculation actions and one or more
presentation actions to be taken in connection with generating the presentation. A first
mark-up language document is created, comprising executable instructions indicating
calculation actions. The first mark-up language document is processed to create a
second mark-up language document comprising calculation data. A third mark-up
language document is created, comprising executable instructions indicating
presentation actions. The third mark-up language document and the second mark-up
language document are processed to create a fourth mark-up language document
comprising data associated with one of a draft presentation and a final presentation.

It is to be understood that both the foregoing general description and the
following detailed description are exemplary and explanatory and are intended to

provide further explanation of the invention as claimed.

WO 2007/084362 PCT/US2007/000821

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide further
understanding of the invention and are incorporated in and constitute a part of this
speciﬁcaﬁon, illustrate embodiments of the invention and, together with the description,

5 serve to explain the principles of the invention.

In the drawings:

Fig. 1 is an illustration of one embodiment of a system of the present invention;

Fig. 2 is an exemplary workflow for the XML meta-language
translator/interpreter;

10 Fig. 3 is an exemplary workflow for the calculation engine of the present
invention;

Fig. 4 is an exemplary workflow for the presentation engine of the present
invention;

Fig. 5 is a flowchart illustrating the steps that the user may undertake in using the

15 present invention; and

Figs. 6A, 6B and 6C are each a flow chart illustrating the steps of various

methods of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The system and method described herein integrate the functionality of
20 presentation technology (such as MicroSoft PowerPoint, although other presentation
technologies may be used within the scope of the present invention) with that of
calculation technology (such as MicroSoft Excel, although other calculation
technologies may be used within the scope of the present invention) to allow for the

generation of presentations. The ability to leverage calculation technology allows for

10

15

20

WO 2007/084362 PCT/US2007/000821

the inclusion of dynamic mathematical modeling (e.g., modeling of financial products)
in such presentations. In a preferred embodiment, a user can preview and edit the
presentation prior to the download of a write-protected proposal. Thus, the system
allows for centrally managed control over the elements of the model and proposal
content, while allowing selective customization options.

One way in which the described system and method are accomplished involves
abstractly marrying calculation- and presentation-based technologies for the purpose of
calculating models and building proposals. This enables rapid turn-around time for the
generation of presentations, and empowered control over the content of such
presentations. It further allows for various combinations of workflow to be achieved
through manipulation or addition of configuration files and, if desired, templates; the
products and outputs of the underlying calculation and presentation technologies may be
chained together into a workflow to create complex product models and/or
presentations. The decoupled design of this embodiment permits changes in the -
underlying calculation and presentation technology base, as well as the g,eneration and
retrieval of many different forms of output from the underlying technology bases.

A preferred embodiment of a system of the present invention includes a
workflow management and control engine that integrates calculation and presentation
technologies into a component—driented framework supporting the dynamic calculation
and presentation of mathematical models. The engine is driven by spreadsheet and
presentation templates connected through mark-up language technology (e.g., XML-
based technology) to create a highly configurable and flexible workflow. Spreadsheet-
based modeling technology serves as the engine for making the calculations (e.g.,
figures and statistics) that are to be displayed in the presentation. This eases turnaround

4

10

15

20

WO 2007/084362 PCT/US2007/000821

time for implementing updates in models. Presentation technology files may be used as
templates. This eases turnaround time for implementing updates in the look and feel of
the presentation. The engine is not specific as to its implementation, which allows for
supporting the needs of multiple applications and/or changes in implementation of the
underlying calculation and presentation technologies.

One mechanism for accomplishing the abstraction referred to above is to create a
generalized, interpretive wrapper around each underlying technology component that
processes instructions derived from an XML meta-language devéloped for each
component. With each language/component geared toward its responsibility within the
system and independent of the others, another XML meta-language is created that is
geared toward managing the workflow required for producing models and presentations.
The language elements contain lexicon for inducing the calculations/presentations
processing, but add a new element for bridging the gap between the components (as
each sub-component has its own independent language) by use of XSLT
transformations. The workflow language induces XSLT transformations upon input of

XML documents such that they may be manipulated into forms that each component can

process. The lexical elements can be chained together in such ways that the output of

one process can become the input into another by way of the transformation process.
This provides a high degree of flexibility with regard to how the calculation routines
may be chained together with other calculation routines, and/or presentation generating
routines. These workflows reside in a configuration file that the system loads
dynamically, and each workflow provides instruction as to how a model should be
created. A great deal of diversity in the workflows can be achieved with minimal

change to the system or meta-language.

10

15

20

WO 2007/084362 PCT/US2007/000821

The desired output of the system makes use of tables, charts rendered via the
spreadsheet and embedded into the final presentation; several methods are acceptable
for generating these, including OLE objects, including Chart Objects and Table Objects.
Each of these types of objects is specific to MicroSoft technology; however, other types
of similar technology will be known to those skilled in the art and can be used within the
scope of the present invention.

With reference to Figure 1, a preferred embodiment of the system is structured
into several components including a workflow management and control engine 100 and
one or more front ends 101, corresponding to the various types of models. The engine
100 centrally hosts the logic for calculating and rendering product models while the
front ends 101 serve as the network-based (e.g., Web-based) user interface for data entry
of model parameters and viewing outputs (e.g., slide previews, presentation files etc.).

With continued reference to Figure 1, in the preferred embodiment, the engine
100 is divided into five primary components: the web service definition tier 102 (which
is comprised of a modeling service web service definition component and a presentation
I/0 web service definition component); the workflow engine/ XML meta-language
translator/interpreter 103; the calculation engine 104; the presentation engine 105; and
configuration/template files, which are comprised of spreadsheet templates 106,
presentation templates 109, XSLT templates 107, and XML/XSLT configuration files
108). The web service definition tier 102 is responsible for defining the web service
definitions, fielding and parsing the incoming requests from the network, leveraging
authentication for security over the endpoint, loading system configuration data on
initiation of the service, handing over control of execution to the XML meta-language

translator/interpreter 103, and returning whatever requested resource is required of the

6

10

15

20

WO 2007/084362 PCT/US2007/000821

request. The XML meta-language translator/interpreter 103 is responsible for taking the
incoming request, parsing the request to determine which model is to be generated or
action is to be taken, loading the appropriate XSLT template(s) 107 to process the
request, and forwarding control to the calculation engine 104 or presentation engine 105
when required. The calculation engine 104 accompanies the presentation engine 105 in
the automation tier. It receives an XML document to process and produces a calculation
technology file based on the instructions in that document. The presentation engine 105
accompanies the calculation engine 104 in the automation tier. It receives an XML
document to process and produces a presentation technology file based on the
instructions in that document. The configuration/template files 106, 107, 108 and 109
feed the XSLT, spreadsheet, and presentation components 103, 104 and 105. XSLT
files 108 and 107 provide processing instructions for the automation tier while the
spreadsheet templates 106 and presentation templates 109 provide baseline files from
which to produce their respective final products. A more detailed explanation of each of
these components is set forth below, after a discussion of the configuration files
employed by the system.

In addition to the standard web project configuration file that specifies system
configurations such as security, access and system properties that may be used
throughout the system, the system also makes use of a configuration file 108 (referred to
herein as amlconfig.xml) that contains global XSLT configuration parameters and the
mappings of user requests to processing instructions (i.e., workflows), referred to herein
as <map> elements.

The top of this configuration file contains XSLT configuration parameters that

are loaded into every XSLT processing call, thus making them available as global XSLT

7

15

20

WO 2007/084362 PCT/US2007/000821

configuration parameters. The second major section deals with mappings. After the
<config> element, there can be one or more map elements. These <map> elements can
contain any ordering of <transform>, <calc> and <pres> elements to create any
workflow of XSLT transformation, calculation and presentation processing.

The following provides an example of a map:

<map id="MPIAnalyzeRisk" modelld="id" userld="name" organization="organization">

<transform processor="~\xsltFiles\caleXmI\MPIAnalyzeRisk.calc.xsl"
target="calcl" />

<calc name="calc1" ></calc>

<transform processor="~\xsltFiles\resXmI\MPIAnalyzeRisk.res.xsl"
target="res"/>

</map>

This map is interpreted as follows: when an XML request enters the system with
the action value named "MPIAnalyzeRisk”, the system will transform that document
with the “MPlAnalyzeRisk.calc.xsl” XSLT file into a series of processing instructions
for the calculation engine 104 and then forward that ~document to the calculation engine
104 for processing/interpretation (specified via “<calc name="calc1" ></calc>"). The
significance of the calculation engine 104’s “name” attribute is covered in the next
example. The calculation engine 104 processes the XML document as its elements
dictate, producing a resource as instructed and/or generating values that are incorporated
into the XML document that it is processing. After being processed by the calculation
engine 104, the resulting XML document is transformed by the

8

10

15

20

25

WO 2007/084362 PCT/US2007/000821

“MPIAnalyzeRisk.res.xsl" XSLT file which will produce an XML document to be sent
back to the user with the results of the calculation process.
The following provides another example of a map:
...<map id=" FamLimPar2_1" modelld="id" userld="name"
organization="organization">

<transform processor="~\xsltFiles\calcXml\ FamLimPar2_1.calc.xsl"
targét="calc " />

<calc name="calc1" ></calc>

<transform processor="~\xsltFiles\presXml\ FamLimPar2_1.pres.xsl"
target="pres1"/>

<pres name="pres | "></pres>

<transform processor="~\xsltFiles\resXml\ FamLimPar2_1.res.xsl" target="res"/>

</map>

This more advanced map is interpreted as follows. When an XML request enters
the system with the action named “FamLimPar2_17, the system will transform that
document with the “FamLimPar2_1.calc.xsl” XSLT file. into a series of processing
instructions for the calculation engine 104. The document is forwarded to the
calculation engine 104 (specified via “<calc name="calc1" ></calc>"") for
processing/interpretation. The calculation engine 104 is named calcl and will only
process those elements of the processing instructions, whereby the targeted elements
are within a block with a “name” attribute that has a value of “calcl”. This is a
manner of 1ightweight “namespacing” the actual calculation processiﬁg such that the
engine can discriminate which parts of the instructions are to be processed/interpreted.
In essence, the “namespacing” supports multiple iterations through the calculation

engine 104 each time it processes/interprets different blocks by changing the name of

10

15

20

WO 2007/084362 PCT/US2007/000821

the target of the transform element and the name of calc element, thereby avoiding
redundant processing. An example of this is described below. After being processed
by the calculation engine 104, the resulting XML document is transformed by the
“FamLimPar2_1.pres.xsl" XSLT file, and creates a new series of processing
instructions for the presentation engine 105. The‘ presentation again follows the same
“namespacing” ‘convention as applied to the calculation engine 104. The “<pres
name="pres | "></pres>" element signifies that those processing instructions in a block
with the “name” attribute equal to “pres!” may be processed. The resﬁlting document
is then transformed by the “FamLimPar2_1.res.xsl" XSLT file which will produce an
XML document to be sent back to the user 101 with the results of the request.

A following provides another example of a map:

<map id="FamLimPar2_5_1" modelld="id" userld="name" organization="organization">

<transform processor="~\xsltFiles\calc)-(ml\FamLimParZS__Z__l .calc.xsl"
target="calcl" />

<calc name="calcl" ></calc>

<transform proces}sor="‘~'\xsltFiles\calcXml\FamLimPar?.S_S__l .calc.xsl"
target="calc2" />

<calc name="calc2" ></calc>

<transform processor="~\xsltFiles\presXmI\FamLimPar25_1 .pres.ksl"
target="pres1"/>

<pres name="pres] "§</pres>

<transform processor="~\xsltFiles\resXmI\FamLimPar25_ 1l.res.xsl" target="res"/>
</map>

10

10

15

20

WO 2007/084362 PCT/US2007/000821

This more advanced map is interpreted as follows. When an XML request enters
the system with the action equals “FamLimPar2_5_1", the system transforms that
document with the “FamLimPar25_2_l.calc.xsl” XSLT file into a series of processing
instructions for the calculation engine 104 and then forwards that document to the
calculation engine 104 (specified via “<calc name="calc1" ></calc>") for
processing/interpretation. As previously mentioned, the calculation engine 104 will
only process those elements whereby the targeted elements are within a block with a
“name” attribute that has a value of “calc1”. The next <transform> element
transforms the resulting XML document with the “FamLimPar25 5 1.calc.xsl” XSLT
file. This document will then again be forwarded to the calculation engine 104
(specified via “<calc name="calc2" ></calc>") for processing/interpretatioﬁ.
Howe'ver, th'is time,' ;che calculation engine 104 will only process those elements
whereby the targéted elements are within a block with a “name” attribute that has a
value of “calc2”, ignoring any elements that are in a block with a “name” attribute
that has a value of “calc1™.

After being processed by the calculation engine 104, the resulting XML
document i$ transformed by the “FamLimPar2_5_1.pres.xsl" XSLT file, thereby
creating a new series of processing instructions for the presentation engine 105. The
“<.;.)res name="pres1"></pres>" element signifies that those processing instructions in
a block wherein the “name” attribute equal to “pres1” may be 'processed. The
resulting document is then transformed by the “FamLimPar2_5_1.res.xsl" XSLT file
which will produce an XML document to be sent back to the user 101 with the results

of the fequest.

11

10

15

20

WO 2007/084362 PCT/US2007/000821

These mappings are loaded and made available to the requests at the initiation of
the system, i.e., when the first request arrives.

The illustrated embodiment of the web service definition tier 102 exposes the
underlying functionality to consumers via SOAP over HTTP protocol. This channel
of communication is virtually platform-independent, from an accessibility standpoint,
and allows for the multiplexing of the engine’s functionality through a few similar
entrance points to perform a great deal of diverse processing. Primarily, this tier is
responsible for authenticating arriving requests, as described in more detail below, and
the marshalling of the incoming requests and the outgoing responses.

Requests and responses into and out of the underlying XML meta-language
translator/interpreter 103 take the form of XML document messages. The operations
exposed through a port type define more than one format (or data type of the method
signature argument) for an incoming message from the network and are transformed
accordingly to the argument type for the underlying XML tier. The incoming
messages are passed along and validated, parsed and processed as defined in the
amlconfig.xml configuration file 108 described above. Response messages can either
return actual data represented in an XML structure or meta-data that point to files that
are the byproduct of a request. These response messages can be one of two types,
“draft” and “final”. Draft models return an XML response to the caller. Final is
characterized by the XML response containing meta-data about a single file that was
produced by the request and which should be returned to the caller. In this case, the
response from the web method will not be XML, but a Base64 encoded binary return
value, comprising the requested file. This is done to stream-line the processing of

requests in which the result is a single file. Operations that handle final responses

12

10

15

20

WO 2007/084362 PCT/US2007/000821

parse out the requisite méta—data, construct the appropriate file path and return the file
to the requesting user.

The following provides exemplary service definitions apd accompanying
exposed definitions that help to illustrate an example of how the web service definition
tier 102 operates.

WmtModelingTool.asmx: This service definition serves as the primary entry
point to the modeling functionality. The following are the exposed operations for the
WmtModelingTool portType definition:

BuildDraftAssetModelStr: This operation serves as a web-enabled proxy to the
underlying XML meta-language translator/interpreter 103 for generating, in this
example, asset models. This is an RPC method with arguments defined in SOAP
RPC-encoding, taking a single String parameter as an argument. The string parameter
is an XML message constructed by the client that is passed to the XML meta-language
translator/interpreter 103. The operation returns a String encoded, XML message in
response (i.e., returned from XML meta-language translator/interpreter 103).

BuildDraftAssetModelXml: Like the previous operation, this operation serves as
a web-enabled proxy to the underlying XML meta-language translator/interpreter 103.
This is an RPC method with arguments defined as Document Literal, taking a single
XML document as an argument. The XML message constructed by the client is
passed to the XML meta-language translator/interpreter 103. The operation returns an
XML message in response (i.e., returned from XML meta-language
translator/interpreter 103).

BuildFinalAssetModelStr: This operation serves as a web-enabled proxy to the

underlying XML meta-language translator/interpreter 103. This is an RPC method

13

10

15

20

WO 2007/084362 PCT/US2007/000821

with arguments defined in SOAP RPC-encoding, taking a single String parameter as .
an argument. The string parameter is an XML message constructed by the client that
is passed to the XML heta-language translator/interpreter 103. The operation of the
underlying XML meta-language translator/interpreter 103 returns an XML message,
which is parsed for meta-data about the resulting file produced by the request that is
returned to the caller.

BuildFinalAssetModelXml: Like the previous operation, this operation serves as
a web-enabled proxy to the underlying XML meta-language translator/interpreter 103.
This is an RPC method with arguments defined as Document Literal, taking a single
XML document as an argument. The XML message constructed by the client is
passed to the XML meta-language translator/interpreter 103. The operation of the
underlying XML meta-language translator/interpreter 103 returns an XML message,
which is parsed for meta-data about the resulting file produced by the request that is
returned to the caller.

MergeModelsStr: This operation serves as a web-enabled proxy to the
underlying XML meta-language translator/interpreter 103 for merging multiple
models. This is an RPC met'hod with arguments defined in SOAP RPC-encoding,
taking a single String parameter as an argument. The XML message constructed by
the client that is passed to the XML meta-language translator/interpreter 103. The
operation returns a String encoded, XML message in response.

MergeModelsXml: This operation serves as a web-enabled proxy to the
underlying XML meta-language translator/interpreter 103 for merging multiple
models. This is an RPC method with arguments defined as Document Literal, taking a

single XML document as an argument. The XML message constructed by the client is

14

10

15

20

WO 2007/084362 PCT/US2007/000821

passed to the XML meta-language translator/interpreter 103. The operation returns an
XML message in response.

ReloadModelingToolConfig: This is a utility method for reloading the
amlconfig.xml file. This is an RPC method with arguments defined in SOAP RPC-
encoding, taking a single String parameter as an argument. The string is the name and
location of a property file containing map definitions that are (re-)loaded by the
operation; if the string is either null or empty, the current amlconfig.xmi file is
reloaded. This is a mechanism for refreshing the system’s map entries or loading
alternative entries. The operation returns a String “Success” or “Failure” <message>
on completion.

WmtPresentationlO.asmx: This service definition provides ancillary operations
that support the modeling functionality. The following are the exposed operations for
the WmtPresentationIO portType definition:

DownloadPresentationSlidelmage: This operation allows the caller to retrieve a
binary image of a slide generated by the presentation engine 105 underlying the XML
meta-language translator/interpreter 103. The web method is RPC taking a single
String as an argument. The String argument is the meta-data path to the binary
resource being requested. The operation returns a Base64 encoded binary response.

DownloadPresentation: This operation allows the caller to retrieve a presentation
generated by the presentation engine 105 underlying the XML meta-lanéuage
translator/interpreter 103. The web method is RPC taking a single String as an
argument. The String argument is the meta-data path to the binary resource being

requested. The operation returns a Base64 encoded binary response.

15

10

15

20

WO 2007/084362 PCT/US2007/000821

UploadPresentation: This operation allows the caller to upload presentations to
be used in model merging operations by the underlying XML meta-lariguage
translator/interpreter 103. The web method is RPC taking a String argument for
organization, a String userid, a String presentation name and a Base64 encoded Binary
file (byte) that will be cached for the merge operations. The operation returns a String
XML message containing meta-data for use by the caller to reference the cached
proposal in subsequent merge operations.

The XML meta-language translator/interpreter 103 contains the intelligence
behind processing requests. In essence, it is a workflow management engine that
processes user requests according to system configurations contained in the
amiconfig.xml configuration file 108 described above. Its responsibilities include:
parsing and validating incoming XML documents for required elements/attributes;
determining the line of execution to be taken by discriminating the incoming requested
action against the configuration file entries; managing configured XSLT
transformations that the XML request will undergo throughout the defined workflow;
managing the synchronization requirements of multiple threads accessing the
calculation engine 104 and presentation engine 105; managing and responding to error
conditions arising from improper configurations, calculation engine 104 and
presentation engine 105 processing time-outs and errors propagated up from the
calculation engine 104 and presentation engine 105; synchronizing cached resources
generated by the calculation engine 104 and presentation engine 105 locally and with
the network share 110; and returning meta-data about the results of the request.

This tier is a singleton instance that is initialized once. System properties, loaded

from the web service definition tier 102 and stored in the hosting environment,

16

10

15

20

WO 2007/084362 PCT/US2007/000821

provide a location for the amlconfig.xml configuration file 108 containing the entries
that govern all workflows that this tier will handle. The file is loaded once into an
XML document that is stored as a static member.

An incoming XML request enters this tier via an XML‘ document processing
request. The key to processing the request is the structure of the incoming XML
document; the contents of the attributes dictate the workflow to be undertaken and the
input data to be processed therein. The outer most element, referred to as
<modelRequest> for illustrative purposes, is the document root and contains several
attributes. As an illustrative example (i.e., more or less attributes may be required in
accordance with other embodiments of the invention), three attributes are required:
action, the name of the model (i.e., action, model name, workflow, <map> id are used
synonymously herein); userid, the userid for whom the products of the workflow are
being generated; and organization, the organization to which that the user belongs.

For example:

<modelRequest action="FamLimPar2_1" userld="rkorzenk" organization="LB" >

The next block of the document contains the input fields that are required of the
various models, as shown in the following example:
<inputFields>

<field name="client" value="rkorzenk" />

<field name="date" value="August 9, 2005" />

<field name="asset" value="Lehman Stock" />

<field name="shares" value="1000000" />

<field name="price" value="10" />

<field name="discount" value="" />

17

WO 2007/084362 PCT/US2007/000821

<field name="value" value="10000000.00" />
<field name="rate" value="0.048000" />
<field name="rateTerm" value="August 2005" />
<field name="term1" value="2" />
5 <field name="term2" value="-1" />
<field name="growth1" value="0.10000000" />
<field name="growth2" value="-1" />
</inputFields>
These elements are generic in structure, but become model-specific with regard
10 to the values of the attributes. This allows for the transparent processing of multiple
models at a general level. As validation can be over-bearing for this tier, it is the
calling application’s responsibility (e.g., an application on front end 101) to ensure the
validity of the data, in one embodiment. This tier processes the input data as posted
until an error condition occurs or the model completes, accurately or not.
15 The final section offers the general inclusion of options for processing the model,

as shown in the following example:

<opts>
<opt name="format" value="draft" />
20 </opts>
</modelRequest>
The format option has a system-wide meaning, as described above with in
connection with the web services definition tier. It has specific implications at both

the model-specific and workflow-processing levels.

18

10

15

20

WO 2007/084362 PCT/US2007/000821

Returning to the request processing lifecycle with a previously referenced
example, “FamLimPar2_1”, three attributes of the <modelRequest> element are
parsed upon entry into this tier and used to discriminate the amlconfig.xml file for the
appropriate <map> entry that will process the request. The value of the action
attribute must correspond to a name attribute in a map element. That map element
will contain transform, calc and pres instructions and templates that this tier will use to
handle the request. As the name attribute is DTD defined as an ID, it must be unique
among the other entries. Failure to find an appropriate <map> element will raise an
error condition and processing will terminate.

In this case, the “FamLimPar2_1" action will correspond to the map named
“FamLimPar2_1". Once the <map> node is located, two copies are be made. The
first copy of the node, the “roadmap”, will serve to govern the workflow this tier uses
to process the request. The <map> node instructions will be iterated through in
sequence and processed as the underlying elements (i.e., <transform>, <calc> and
<pres>) dictate. The second copy of the node will be used as the target of any XSLT
<transform> instructions and, in turn, a vehicle for all data that is used throughout the
<map>’s defined workflow. This, with the help of <map> namespacing, allows for
data to be passed as needed from instruction to instruction within the map and
processed as needed.

Upon locating and cloning the appropriate <map> elements, the <field> elements
are pulled from the request and placed into a Name/Value Map as the name and value
attributes dictate. This map is supplemented with the <prop> name/value pairs nested
within the <config> element of the amlconfig.xmt! configuration file 108. The

resulting name/value map is used by this tier to load external parameters to

19

10

15

20

WO 2007/084362 PCT/US2007/000821

<transform> instructed XSLT processing. The serves to allow a generic way of
providing the input fields to the model-specific XSLT processing such that the sheets
may subscribe to these parameters as needed and are pervasive throughout all
transformations. This simplifies the actual XSLT stylesheets that are used such that
they may address the greater purpose of building an XML document that can be
processed by the calculation engine 104 and/or the presentation engine 105. As
discussed previously, the output of these transformati‘ons typically will be an XML
document that will serve as a set of instructions for either the calculation engine 104 or
the pfesentation engine 105.

Continuing with the current example, after the <map> clones and the name/value
map are created, the “roadmap” clone is passed to a SAX parser which will iterate

through all the <transform>, <calc> and <pres> within the <map>.

<map id=" FamLimPar2_1" modelld="id" userIld="name" organization="organization">

<transform processor="~\xsltFiles\caleXml\ FamLimPar2_1.calc.xsl"
targer="calc1" />

<calc name="calc1" ></calc>

<transform processor="~\xsltFiles\presXmI\ FamLimPar2_1.pres.xsl"
target="pres1"/>

<pres name="pres1"></pres>

<transform processor="~\xsltFiles\resXml\ FamLimPar2_1 res.xsl" target="res"/>

</map>

20

10

15

20

WO 2007/084362 PCT/US2007/000821

<map>: A working directory is created off the root specified in the location
specified by the SYSPmodelRoot property in the amlconfig.xml configuration file
108. The structure is then ~/organization/userid/modelid where the model id is the
current system ticks value. This directory will hold (i.e., cache) all files generated by
the workflow.

Ex: ~/1b/rkorzenk/632591966329322027

<transform>: When this node is encountered, the system will pass the source
code clone into an XSLT transformation using the stylesheet named within the
processor attribute. The system will also pass in the name/value map as.mentioned
previously, making the input fields and config fields readily available to the
transformation. The output document is collected and moved to the next step. The
system will also grab and hold a reference to the value of the target attribute. In this
example, the source code document is transformed with the “FamLimPar2_1.calc.xsl”
stylesheet, which will produce a set of executable instructions for the next element,
<calc>, to process.

<calc>: This glement instructs the system to pass the executable instructions
document (i.e., the result of the previous transformation) to the calculation enginé 104
for processing. It will do so after interrogating the name attribute of the <calc>
element. If the name r'n‘atches the target captured in the previous transformation, it
will honor the request. This rule is in place to ensure that at least one transformation
occurs before a calculation occurs, as there is no other way to build a set of
instructior{s that the calculation engine 104 can understand and process successfully.
The document is passed in by reference; thus, any alterations occurring inside the
calculation engine 104 affect the executable instructions directly. It is also important

21

10

15

20

WO 2007/084362 PCT/US2007/000821

to note that only a single thread will access this functionality at a given time.
Referring again to the running example, the calculation engine 104 will take over and
process the document as instructed in the executable instructions document.

<transform>: This element is the next to be processed in this example as
previously indicated, passing the output document from the <calc> call to an XSLT
transformation using the “FamLimPar2_1.pres.xsl” XSLT stylesheet. The resulting
executable instructions document is passed to the next element, <pres> to be
processed.

<pres>: This element instructs the system to pass the executable instructions
document (j.e., the result of the previous transformation) to the presentation engine
105 for processing. It will do so after interrogating the name attribute of the <pres>
element. If the name matches the target captured in the previous transformation, it
will honor the request. This rule is in place to ensure that at least one transformation
occurs before a presentation occurs. The document is passed in by reference; thus,
any alterations occurring inside the présentation engine 105 affect the executable
instructions directly. ‘It is also important to note that only a single thread will access
this functionality at a given time.

<transform>: This element is the last to be processed in this example, as
previously indicated, passing the output document from the <pres> call to an XSLT
transformation using the “FamLimPar2_1.res.xsl” XSLT stylesheet. The resulting
document is the last in the workflow chain and is now returned as the response XML
document to the web service definition tier 102 and, ultimately, to the caller.

The foregoing example provides a typical workflow for illustrative purposes;

simpler or more advanced workflows can be configured within the scope of the

22

10

15

20

WO 2007/084362 PCT/US2007/000821

present invention. Within the rules that are set is a great deal of flexibility to
manipulate any form of office or non-office document as configurable via this tier.

Figure 2 illustrates the exemplary process described above. The <Map> XML
docuﬁent is input into the XSLT transformation (supplemented by the input fields) in
a manner that is analogous to the way in which source code is input into a compiler.
Here, it is transformed into executable instructions that the calculation engine 104 or
presentation engine 105 can perform. The instructions are then executed by the
calculation engine 104 or presentation engine 105 (in some embodiments,
supplemented by the spreadsheet templates 106 and presentation templates 109). The
output is comprised of whatever products the instructions demand be created and/or
manipulated by adding new data/values to its elements. Upon completion of
execution, the instructions (i.e., the XML document) may then be used as input into
another transformation or returned to the caller.

The calculation engine 104 is an XML interpreter wrapping around a calculation
technology base for the purpose of providing a generalized abstraction to generate all
means of outputs available from the underlying spreadsheet base. XML documents
are passed by reference to the engine whereby they are executed like instructions. A
SAX parser is employed to sequentially iterate through the input XML document (i.e.,
executable instructions) and process the elements it understands.

The premise of the calculation engine 104 is that the underlying calculation
technology base’s template file is a component that carries out the actual modeling,
thereby allowing a decoupled structure whereby the model may be updated merely by
replacing the template with an updated template. The engine is non-specific in its

processing of financial models and may be leveraged for any type of

23

10

15

20

WO 2007/084362 PCT/US2007/000821

modeling/calculation routine or data transformation that can be implemented by the
underlying calculation technology. The engine will require little, if any, changes in
order to accommodate new models/service/product offerings, given that the only
requirement will be to add new templates and new XSLT files for preparing the
instructions for processing them.

Figure 3 illustrates an exemplary calculation engine 104 workflow. A set of
executable instructions in the form of an XML document enters the system with the
name of the target for the calculation routine. The document is then passed to a SAX
parser that, based on the elements inside the XML document, will perform specific
functions. These functions will only be executed when the parser comes across a
<calc> element in which the name attribute of the element matches the target that was
passed into the engine. When the SAX parser executes, it will process the elements as
in the following example.

<calc>: The name attribute provides a “namespace” for its underlying data. The
input attribute names the spreadsheet template file that should be used. The output
attribute provides the name that the spreadsheet file should be saved as upon
completion. When this element is encountered, the system will check to see if the
target is the same as the name attribute. Ifit is, it will set a flag that tells the system to
process the nodes to come until the </calc> tag is encountered. The template file
named in the input attribute will be opened and used for processing and saved as the
value of the output attribute when the </calc> tag is encountered. For example:
<calc name="calc1"

input="D:\Documents\XamlIConfi g\Templates_S\FamLimPar2_1.calc.xls"

24

10

15

20

WO 2007/084362 PCT/US2007/000821

output="D:\Documents\XamlConfig\Models\L B\rkorzenk\632591966329322027\Fam
LimPar2_1.xls"
error="false">

<cell>: This element is the only child node under a <calc> node that will be
processed. This cell can either place a value into a cell in a given worksheet or extract
a value from a given worksheet. The sheet attribute tells the engine upon which
worksheet to execute this instruction. The cell attribute names the cell that is the
target of the instruction on the given sheet. The value attribute provides the actual
value that should be placed in the cell, in cases of inserting data, and serves as a
placeholder when extracting data. The type attribute can hold a value of either “in” or
“out”, which tells if the instruction is either inserting or extracting. When a type is
extracting (i.e., “out”), the value of the cell on the sheet named will be placed into a
name/value map using the name attribute of the <cell> element as a key. The name
attribute provides a name for the field (i.e., cell) being processed and must be kept
unique across all the sub-children of a given <calc> element. The names can overlap
provided that the <cell> elements reside under different <calc> elements with different
name attributes. For example:
<cell type="in" name="asset" sheet="FLP2ASM" value="Lehman Stock”
cell="B6"></cell>
<cell type="out" name="grantorValue" sheet="FLP2" value="" cell="D7">

On completion, the spreadsheet file is saved in the working direcfory that was
created by the XML meta-language translator/interpreter 103, which is the directory
named in the <calc> element’s input attribute. The engine will then take any/all

output fields gathered into the name/value map during the SAX cycle and merge them

25

10

15

20

WO 2007/084362 PCT/US2007/000821

into an XML document by locating the <cell> element (where the name attribute
matches the key from the name/value map and the <calc> element’s name attribute is
that of the target being processed) and placing the value into the <cell> elements’s
value attribute. The document is then returned to the XML meta-language
translator/interpreter 103.

The presentation engine 105 is an XML interpreter wrapping around a
presentation technology base for the purpose of providing a generalized abstraction to
the generation outputs available from the underlying presentation technology. XML
documents are passed by reference to the engine where they are executed like
instructions. A SAX parser is employed to sequentially iterate through the input XML
document (i.e., executable instructions) and process the elements that it understands.

The premise of this engine is that the underlying presentation technology base’s
template fileisa component that carries out the actual rendering, thereby allowing a
decoupled structure pursuant to which presentations may be updated merely by
replacing the template with an updated template. The engine is non-specific in its
production of presentations and may be leveraged for any type of presentation output
that can be rendered by the underlying presentation technology. The engine will need
little, if any, changes in order to accommodate new presentations given that the only
requirement will be to add new templates and new XSLT files for preparing the
instructions for processing them.

Figure 4 illustrates an exemplary workflow for the presentation engine 105. A
set of executable instructions in the form of an XML document enters the system with
the name of the target for the presentation routine. The document is then passed to a

SAX parser which, based on the elements inside the XML document, will perform

26

10

15

20

WO 2007/084362 PCT/US2007/000821

specific functions. These functions will only be executed when the parser comes
across a <pres> element in which the name attribute of the element matches the target
that was passed into the engine. When the SAX parser executes, it will process the
elements as follows:

<pres>: The name attribute provides a namespace for its underlying data. The
input attribute names the PowerPoint template file that should be used. The output
attribute provides the name that the PowerPoint file should be saved as upon
completion. When this element is encountered, the system will check to see if the
target is the same as the name attribute. If it is, it will set a flag that tells the system to
process the nodes to come until the </pres> tag is encountered. The template file
named in the input attribute will be opened and used for processing and saved as the
value of the output attribute when the </pres> is encountered.

The format attribute, as referenced by the XML meta-language
translator/interpreter 103, denotes whether the presentation is a draft or a final
presentation. This tier translates as to whether the presentation file will be saved a
series of slide images, in the case of a draft, or a presentation file, in the case of a final
format. The image format corresponds to an image type supported by the underlying
presentation technology and will be used only in the case of a draft presentation (e.g.,
.gif, .jpg, .png). Drafts offer the option of caching the slide images to a network share
110 for availability in a clustered environment. The simple inclusion of a noCache
attribute, regardless of value, may be included to alert the engine that slide images are
not to be cached to the network share. Alternate formats may be included in this
attribute, such as .pps and .ppt (even though it is primarily for image formats) and they

will be honored, thus not creating images.

27

10

15

20

WO 2007/084362 PCT/US2007/000821

By default, final presentations are password protected with a system configurable
password. Final presentations are stored in compliant storage 111. This feature may
be toggled off by the inclusion of a lockFile attribute, regardless of value. This
element will have one or more <slide> elements. For example:
<pres name="pres1"
input="D:\Documents\XamlConfig\Templates_P\FamLimPar2_1.pres.pot"
output="D:\Documents\XamlConfig\Models\LB\rkorzenk\632591966329322027\Fam
LimPar2_1.ppt" format="draft" imageFormat="PNG" error="false">

<slide>: This element references the slide within the presentation that is going to
be processed. The number attribute must correspond to the index of the slide in
relation to the other slides; thus, it is unique. The showMe attribute is optional and
denotes whether the slide should be included in the final presentation (the default is
true). The showSlideNum attribute is optional and denotes whether a slide number
should be placed on the current slide (the default is false). The number will be the
slide’s number in the new presentation (calculated as all slides less removed slides).
This element may contain any of the remaining elements, by way of example:
<slide number="1" showMe="true" showSlideNum="false">

<swap>: This is tag is a child element of the <slide> element and effects only
the slide indexed in that element. It is the most common operation available. This tag
instructs that the text in an existing textbox element located at the attribute index be
replaced with the value attribute’s value. The name attribute does not need to be
unique and serves as a reference to assist in visually associating an existing textbox
element with the instruction beyond the index. When creating a presentation, it is

more efficient and accurate to lay out the attributes visually and reference them by

28

10

15

20

WO 2007/084362 PCT/US2007/000821

index to swap in replacement text as opposed to adding more overhead with creating it
and setting the text. The name can be a temporary placeholder that assists greatly in
positioning the elements and associating the instruction with the element. For
example:
<swap index="1" name="@@@CLIENT NAME@@@" value="rkorzenk"></swap>
<ole>: ’I;his tag instructs that an ole object residing at the path attributes value
positioned at the top and left attributes values (must be integer > 0), have a size of the
height and width attributes values (must be integer > 0), .and may be cropped on ay
side by any of the cropTop, cropLeft, cropRight and cropBottom attributes values

(must be integer > 0). Positioning is absolute from the top left corner by pixel. The

size is in pixels and will vary with the ole object being embedded. The size may also

be subject to holding aspects constant to which only the height or width will need to
be set, as the other is a ratio of the value. The crop functions will also vary with the
actual ole object as well. The order of honoring the setting is first crop image from
original size then size the image followed by position the object. For example:
<ole
path="D:\Documents\XamlConﬁ 2\Models\LB\rkorzenk\6325919663293220\FamLim
Par2_1.xls" top="105" left="55" height="270" cropTop="700" cropLeft="50"
cropRight="30" cropBottom="11" > </ole>

<textBox>: This tag adds a text box to the current slide having an orientation
equal to the orientation attribute [“Down”, “Horizontal”, “Mixed”, “Vertical”,
“Upward”] and constructed at the top and left attributes values (must be integer,
default 0), having a size of the height and width attributes values (must be integer,

default 1) and having a text value of the text attribute. For example:

29

10

15

20

WO 2007/084362 PCT/US2007/000821

<textBox orientation="Down” top="105" left="55" height="270" width="100"
text="Some text” ></textBox> -

<emptyPresentation>: This tag will load a blank presentation if no template is to
be used. For example:
<emptyPresentation/>

<template>: This tag will apply a template located in the path attribute’s value to
current presentation. For example:
<template path=""template”/>

<blankSlide>: This tag will add a Blank slide at the index specified in the
number attribute. For example:
<blankSlide number ="3” />

<titleSlide>: This tag will add a Title slide at the index specified in the number
attribute. For example:
<titleSlide number ="3” />

<label>: This tag will add a label to the current slide having an orientation equal
to the orientation attribute [“Down”, “Horizontal”, “Mixed”, “Vertical”, “Upward”]
and constructed at the top and left attributes values (must be integer, default 0); having
a size of the height and width attributes values (must be integer, default 1); and having
a text value of the text attribute. For example:
<label orientation="Down” top="105" left="55" height="270" width="100"
text="Some text”></label>

<line>: This tag will add a line to current slide e with a starting point at startX
attribute by the startY attribute and ending point at endX attribute by the endY

attribute. For example:

30

10

15

20

WO 2007/084362 PCT/US2007/000821

<line beginX="105" beginY="55" endX="270" endY="100" ></line>

<title>: This tag will add a title to the current slide and a text value of the text
attribute. For example:
<title text="Some text”>%/title>

<shape>: This tag will add a shape to the current slide having an shape type
equal to the shapeType attribute [“Rectangle”, “Oval”, “rtTriangle”, “isTriangle”,
“Upward”] and constructed at the top and left attributes values (must be integer,
default 0) and having a size of the height and width attributes values (must be integer,
default 1). For example:
<shape shapeType="Rectangle” top="105" left="55" height="270" width="100"
></shape>

On completion, the presentation file is saved in the working directory that was
created by the XML meta-language translator/interpreter 103, which is the directory
named in the <pres> element’s input attribute. For draft presentations, the slide
images generated will be cached locally in the working directory and replicated out to
a network share 110 if the noCache attribute of the target <pres> element is not
present. The same meta-data used to create the working directory will Se employed to
create a working directory on the share 110. For final presentations, the file is saved
as .ppt in the working directory and, ultimately 111, if desired. The document is then
returned to the XML meta-language translator/interpreter 103.

The key to the decoupled structure of the application is its reliance on XSLT for
transforming requests and dynamically creating application-specific instructions for

the calculation engine 104 and presentation engine 105 to process. Use of templates

31

WO 2007/084362 PCT/US2007/000821

expedite the generation of models and presentations. These template files may reside
on the local file structure of the server, as follows:
~/XamlConfig/

Templates_S/

5 Templates_P/
xsltFiles/
calcXml/
presXml/
resXml/
10 The template files fall into three categories:

.calc.: templates or XSLT files for generating calculation engine 104
executable instructions; *.pres.*: templates or XSLT files for generating presentation
engine 105 executable instructions; and *.res.*: XSLT files for generating responses to
be returned to the caller.

15 At least three files are required in order to use the calculation engine 104 and
presentation engine 105, in the preferred embodiment — one master file 108 and two
files 107. The first XSLT file 108 generates the instructions to be processed and the
second XSLT file transforms the XML document into a response suitable for the
caller. The two files 107 inform what is to be done from the calculation and

20 presentation perspectives, respectively. Spreadsheet templates 106 and presentation
templates 109 may also be employed, but are not necessary, to build the desired output
product.

However, it is an efficient use of the described system to use one or more

templates in the calculation engine 104 or presentation engine 105 tier to expedite the

32

10

15

20

WO 2007/084362 PCT/US2007/000821

processing of the request. To this end, there is a referential structure and set of
standards employed to simplify the configuration and support of a configured
workflow.

A unique name for the model is used. From the previous example,
“FamLimPar2_1" is a unique name for the model. It is used to identify uniquely all
resources employed in generating this model. The map entry is identified by the
name, and the associated XSLT files are named accordingly, as follows:
<map id=" FamLimPar2_1" modelld="id" userld="name"
organization="organization">
<transform processor="~\xsltFiles\calcXml\ FamLimPar2_1.calc.xsl" target="calc1"
/>
<calc name="calc1" ></calc>
<transform processor="~\xsltFiles\presXml\ FamLimPar2_1.pres.xsl"
target="pres1"/>
<pres name="pres1"></pres>

<transform processor="-\xsltFiles\resXml\ FamLimPar2_1.res.xsl" target="res"/>

</map>

Following the naming convention, ~\xsltFiles\calcXmI\ FamLimPar2_I.calc.xsl"
will generate instructions for the calculation engine 104, ~\xsltFiles\calcXmli\
FamLimPar2_1.pres.xsl" will generate instructions for the presentation engine 105 and
~\xsltFiles\calcXml\ FamLimPar2_1.res.xsl" will produce the response XML
document for the caller.

Within ~\xsltFiles\calcXml\ FamLimPar2_1.calc.xsl"

33

10

15

20

WO 2007/084362 PCT/US2007/000821

<xsl:param name="SY SPmodelRoot" />

<xsl:param name="SY SPxIsTmplts" />

<xsl:param name="client" />
<xsl:variable name="input" ><xsl:value-of select="$SYSPxIsTmplts" /><xsl:value-of

select="//map/@id" />.calc.xls</xsl:variable>

<xsl:template match="//calc[@name='calcl']" >
<calc>

<xsl:attribute name="name">calc1</xsl:attribute>

<xsl:attribute name="input"><xsl:value-of select="3$input"
[></xsl:attribute>

The head of the files defines the xsl:param elements that are used to subscribe to

the externally loaded input fields and system constants as described in the XML meta-
language translator/interpreter 103. The SYSPxIsTmplts refers to the amlconfig.xml
defined root for the calculation engine 104 template root. Thus, the input attribute that
will be used to locate the template points to the appropriate directory. The next
xsl:value element identifies the <map> element’s id attribute, id="FamLimPar2_1", as
the name of the template file appended to .calc.xls. Thus, when the entire statement is
evaluated, the input attribute of the calc element will evaluate to
“~/XamlConfig/Templates_S/FamLimPar2_1..calc.xls”. This same line of logic is
followed through the FamLimPar2_1.pres.xsl file, which uses the same syntax to
identify the “~/XamlConfig/Templates_S/FamLimPar2_1..pres.pot” file for the

presentation engine 105.

34

10

15

20

WO 2007/084362 PCT/US2007/000821

The form of the response document conformis to the response desired for return
to the caller. The only rule to be held constant is that all documents are stored locally
and, in some cases, cached on a network share in a file path. When returning meta-
data for retrieving resources produced by the system, this is the format of the path that
will prec;ede all resources.

The following provides a summary of the manner in which new models can be
configured. A new <map> entry is created that defines at least two <transforms>
elements and one <pres> or <calc> element. The files follow the referential structure
named to maintain flexibility and convention. All templates/XSLT files are placed in
the appropriate directories. The last <transform> element references a *.res.xsl file for
returning the result to the caller.

With reference to Figure 5, a flow chart is presented, illustrating the steps
undertaken by a user in employing the system of the present invention. In step 500, .
the user chooses a model of interest and, in step 501, the user enters the assumptions
required for the model. In step 502, the system allows the user to preview the draft
presentation generated based on the model chosen and the assumptions entered. In
this step, the user may delete slides that are not required, or provide other '
customizations. When the user is satisfied with the form of the presentation, he may
download the final version of the presentation in step 503.

With reference to Figures 6A, 6B and 6C, several methods of the present
invention are illustrated.

With reference to Figure 6A, a method for generating a presentation is illustrated.
A spreadsheet object is generated in step 601. The presentation is generated in step

602. In step 603, the spreadsheet object is embedded in the presentation.

35

10

15

20

WO 2007/084362 PCT/US2007/000821

With reference to Figure 6B, a method for customizing a presentation is
illustrated. The presentation is generated in step 610. The presentation comprises one
or more slides. An image of each of one or more of the slides is generated 611. One
or more of the images is displayed in step 612. One or more requests to customize the
presentation are received in step 613. The customized presentation is created in step
614.

With reference to Figure 6C, a method for generating a presentation is illustrated.
A request associated with generating a presentation is received in step 620. The
request is parsed, in step 621, to determine one or more calculation actions and one or
more presentation actions to be taken in connection with generating the presentation.
A first mark-up language document is created, in step 622, comprising executable
instructions indicating calculation actions. The first mark-up language document is
processed, in step 623, to create a second mark-up language document comprising
calculation data. A third mark-up language document comprising executable
instructions indicating presentation actions is created in step 624. The third mark-up
language document and the second mark-up language document are processed, in step
625, to create a fourth mark-up language document comprising data associated with
one of a draft presentation and a final presentation. One or more spreadsheet
templates may be employed in connection with creating the second mark-up language
document. One or more presentation templates may be employed in connection
creating the fourth mark-up language document.

One or more of the foregoing steps may be executed by software running on a

data-processing apparatus.

36

10

15

20

WO 2007/084362 PCT/US2007/000821

What is claimed is:
I. A method for generating a presentation comprising;:

generating a spreadsheet object; .

generating the presentation; and

embedding the spreadsheet object in the presentation in connection with
generating the presentation.
2. A method for customizing a presentation comprising:

generating the presentation, wherein the presentation comprises one or more
slides;

generating an image of one or more of the slides;

displaying one or more of the images;

receiving one or more requests to customize the presentation; and

creating a customized presentation.
3. The method of claim 2 wherein one or more spreadsheet objects are embedded in
the presentation.
4. The method of claim 2 wherein said requests comprise one or more of: a request
to remove one or more of the slides from the presentation, a request to add text elements, a
request to add one or more additional slides to the presentation, and a request to change a
numbering convention associated with the slides.
5. A method for generating a presentation comprising:

receiving a request associated with generating a presentation;

parsing the request to determine one or more calculation actions and one or more

presentation actions to be taken in connection with generating the presentation;

37

10

15

20

WO 2007/084362 PCT/US2007/000821

creating a first mark-up language document comprising executable instructions
indicating calculation actions;

processing the first mark-up language document to create a second mark-up
language document comprising calculation data;

creating a third mark-up language document comprising executable instructions
indicating presentation actions; and

processing the third mark-up language document and the second mark-up language
document to create a fourth mark-up language document comprising data associated with
one of a draft presentation and a final presentation.
6. The method of claim 5 further comprising;:

employing one or more spreadsheet templates in connection with creating the
second mark-up language document.
7. The method of claim 5 further comprising:

employing one or more presentation templates in connection with creating the
fourth mark-up language document.
8. A system for generating a presentation comprising:

a calculation engine for generating a spreadsheet object; and

a presentation engine for generating the presentation,

wherein, in connection with generating the presentation, the spreadsheet

object is embedded in the presentation.
9. A system for customizing a presentation comprising:

a presentation engine for generating the presentation, wherein the presentation

comprises one or more slides;

38

10

15

20

WO 2007/084362 PCT/US2007/000821

wherein an image of one or more of the slides is generated; one or more of
the images are displayed; one or more requests to customize the presentation are received;
and a customized presentation is created.
10. The system of claim 9 wherein one or more spreadsheet objects are embedded in
the presentation.
11. The system of claim 9 wherein said requests comprise one or more of: a request to
remove one or more of the slides from the presentation, a request to add text elements, a
request to add one or more additional slides to the presentation, and a request to change a
numbering convention associated with the slides.
12. A system for generating a presentation comprising:

a workflow engine for receiving a request associated with generating a
presentation; parsing the request to determine one or more calculation actions and one or
more presentation actions to be taken in connection with generating the presentation; and
creating a first mark-up language document comprising executable instructions indicating
calculation actions;

a calculation engine for receiving the first mark-up language document and
processing the first mark-up language document to create a second mark-up language
document comprising calculation data; the workflow engine further for receiving the
second mark-up language document, processing the second mark-up language document,
and creating a third mark-up language document comprising executable instructions
indicating presentation actions; and

a presentation engine for receiving the third mark-up language document and

processing the third mark—upA language document to create a fourth mark-up language

39

10

15

20

WO 2007/084362 PCT/US2007/000821

document comprising data associated with one of a draft presentation and a final
presentation.
13. The system of claim 12 wherein one or more spreadsheet templates are employed
in connection with creating the second mark-up language document.
14. The system of claim 12 further wherein one or more presentation templates are
employed in connection with creating the fourth mark-up language document.
15. A computer-readable medium comprising instructions which, when executed on a
data processing apparatus, perform a method for generating a presentation comprising:
generating a spreadsheet object;
generating the presentation; and
embedding the spreadsheet object in the presentation in connection with
generating the presentation.
16. A computer-readable medium comprising instructions which, when executed on a
data processing apparatus, perform a method for customizing a presentation comprising:
generating the presentation, wherein the presentation comprises one or more
slides;
generating an image of one or more of the slides;
displaying one or more of the images;
receiving one or more requests to customize the presentation; and
creating a customized presentation.
17. The computer-readable medium of claim 16 wherein one or more spreadsheet
objects are embedded in the presentation.
18. The computer-readable medium of claim 16 wherein said requests comprise one or

more of: a request to remove one or more of the slides from the presentation, a request to

40

10

15

20

WO 2007/084362 PCT/US2007/000821

add text elements, a request to add one or more additional slides to the presentation, and a
request to change a numbering convention associated with the slides.
19. A computer-readable medium comprising instructions which, when executed on a
data processing apparatus, perform a method for processing a request associated with
generating a presentation comprising: |

parsing the request to determine one or more calculation actions and one or more
presentation actions to be taken in connection with generating the presentation;

creating a first mark-up language document comprising executable instructions
indicating calculation actions;

processing the first mark-up language document to create a second mark-up
language document comprising calculation data;

creating a third mark-up language document comprising executable instructions
indicating presentation actions; and

processing the third mark-up language document and the second mark-up language
document to create a fourth mark-up language document comprising data associated with
one of a draft presentation and a final presentation.
20. The method of claim 19 further comprising:

employing one or more spreadsheet templates in connection with creating the
second mark-up language document.
21. The method of claim 19 further comprising:

employing one or more presentation templates in connection with creating the
fourth mark-up language document.
22, A presentation created by a method comprising the steps of:

generating a spreadsheet object;

41

WO 2007/084362 PCT/US2007/000821

generating the presentation; and

embedding the spreadsheet object in the presentation in connection with
generating the presentation.
23. A customized presentation created by a method comprising the steps of:

5 generating the presentation, wherein the presentation comprises one or more

slides;

generating an image of one or more of the slides;

displaying one or more of the images;

receiving one or more requests to customize the presentation; and

10 creating a customized presentation.

24. The customized presentation of claim 23 wherein one or more spreadsheet objects

are embedded in the presentation.

25. The customized presentation of claim 23 wherein said requests comprise one or

more of: a request to remove one or more of the slides from the presentation, a request to

15 add text elements, a request to add one or more additional slides to the presentation, and a

request to change a numbering convention associated with the slides.
26. A presentation created by a method comprising the steps of:

receiving a request associated with generating the presentation;

parsing the request to determine one or more calculation actions and one or more

20 presentation actions to be taken in connection with generating the presentation;
creating a first mark-up language document comprising executable instructions

indicating calculation actions;
processing the first mark-up language document to create a second mark-up

language document comprising calculation data;

42

10

WO 2007/084362 PCT/US2007/000821

creating a third mark-up language document ¢omprising executable instructions
indicating presentation actibns; and

processing the third mark-up language document and the second mark-up language
document to create a fourth mark-up language documeﬁt comprising data associated with
one of a draft presentation and a final presentation.
27. The presentation of claim 26 wherein the method further comprises:

employing one or more spreadsheet templates in connection with creating the
second mark-up language document.
28. The presentation of claim 26 wherein the method further comprises:

employing one or more presentation templates in connection with creating the

fourth mark-up language document.

43

WO 2007/084362 PCT/US2007/000821

17

101 7

FRONT FRONT
END END
) b
APPLICATION
SERVER
3 Y A
100
102
Y (! (
WEB SERVICES
DEFINITION
)
103
| C
‘} XML TRANSLATOR/
REPORTING ‘ INTERPRETER
‘ wos b 1 1 105
Y (— Y (—
CALCULATION PRESENTATION
ENGINE ENGINE
(111 'y } -l
I (- 106 (
COMPLIANT | ARCHIVE
STORAGE SPREADSHEET PRESENTATION
TEMPLATES TEMPLATES
(107 (108
XSLT XML/XSLT
TEMPLATES CONFIG FILES

FIG. 1

SUBSTITUTE SHEET (RULE 26)

PCT/US2007/000821

WO 2007/084362

217

¢ 9Old
SNOLLDNYLSNI
318VLND3X3
1NdNI
INFWND0a
WX
saaid O
1NdNi S1NdLNO INLVHALS
133HSTIALS
1SX NOLLYWHOISNVYL
115X
LNdNI
NOILY IdWOD

SAIVIdWEL S3Td
six 1od s|x 1dd

T

31N03X3

=

SINdino

INIWND0QA
INX

3002 324N0S

SUBSTITUTE SHEET (RULE 26)

PCT/US2007/000821

WO 2007/084362

3/7

vivd
1Ndino

s

S3id
)

€ "Olid

viva i1ndLno
3OYIN

7

SALVIdWIL
'S|X

P

3LND3X3 m

XVS

=,

sindino

LNdNI

330D IDYN0S

1N3IWND20Ad

TNX

SNOILDNYLSNI
I19vYLND3X3

1N3WND0CJ
WX

SUBSTITUTE SHEET (RULE 26)

PCT/US2007/000821

WO 2007/084362

417

VNI HO4 3dd" aNY
S14vHd HO4 SIOVWI
3Aars S3Lv3yd

¥ 9Old

SIOVINI 3AIS

JHVYHS HHOMLIIN
OL SIOVWI
3IaS IHOVO

S3d /
ndd

OT

S31VidW3L
10d

O

3LND3axXd 9

XvS

=

Sindino

1NdNI

3A05 324N0S

INIWNDO0Aa
TAX

SNOILDNYLSNI
318v1iNd03xX3

INIWNO0J
WX

SUBSTITUTE SHEET (RULE 26)

WO 2007/084362

517

500

CHOQSE
MODEL

| (- 501

ENTER ASSUMPTIONS
FOR MODEL

PREVIEW DRAFT
PRESENTATION
-EDIT
-CUSTOMIZE

! (-503

DOWNLOAD FINAL
PRESENTATION

FIG. 5

SUBSTITUTE SHEET (RULE 26)

,L (- 502

PCT/US2007/000821

WO 2007/084362

PCT/US2007/000821

6/7

GENERATE | ~601
SPREADSHEET OBJECT

'

GENERATE | —~~602
PRESENTATION

\

EMBED SPREADSHEET OBJECTIN ||~ 403
CONNECTION WITH GENERATING

FIG. 6A

GENERATE |_—~610
PRESENTATION

Y

GENERATE IMAGES
OF SLIDES - 617

Y

IMAGES

v

RECEIVED REQUEST | ~613
TO CUSTOMIZE

A

CREATE CUSTOMIZED
PRESENTATION

LT~614

FIG. 6B

SUBSTITUTE SHEET (RULE 26)

WO 2007/084362 PCT/US2007/000821

717

RECEIVE REQUEST ASSOCIATED |~ 4,0
WITH GENERATING PRESENTATION

\

PARSE REQUEST TO DETERMINE | ~621
CALCULATION/PRESENTATION ACTIONS

[

CREATE FIRST MARK-UP | —~_ 4
LANGUAGE DOCUMENT

y
PROCESS FIRST MARK-UP LANGUAGE
DOCUMENT TO CREATE SECOND 623
MARK-UP LANGUAGE DOCUMENT

(

CREATE THIRD MARK-UP
LANGUAGE DOCUMENT

L T624

\
PROCESS SECOND AND THIRD MARK-UP
LANGUAGE DOCUMENTS TO CREATE — 625
FOURTH MARK-UP LANGUAGE DOCUMENT

FIG. 6C

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings

