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Although such a dimension reduction decreases the computational
need, it has found not to significantly impair the classification per-
formance.
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PATTERN RECOGNITION

Technical Field
The present invention relates to pattern

recognition, where a set of feature vectors is formed
from digitized incoming signals, and compared with

templates of candidate patterns.

Technical Background

In pattern recognition, incoming signals are
digitized, and a sequence of feature vectors are formed.
These feature vectors are then compared to templates of
the candidate patterns, e.g., sounds or images to be
identified in the signal. In the case of speech
recognition, the candidate patterns can represent e.g.,
names in a phonebook.

However, pattern recognition such as speech
recognition is computationally demanding. In many cases,
for example when implemented in embedded devices, due to
the limited amount of memory and computational power
there is a need to reduce the complexity of the pattern
recognition algorithm.

The computational complexity depends on several
factors: the sampling rate, the number of candidate model
templates, and the feature vector dimension. Reducing any
of these results in faster recognition that can be run in
reasonable time on a certain processor, but this can
result in poorer recognition accuracy.

Furthermore, available resources are usually shared
between different processes, and the available processing
power and memory capacity is therefore variable. If the
recognition functionality of an embedded device, having
limited processing capacity to begin with, is to work at
all times, it is even more crucial to minimize or
dynamically adjust the processing requirements, without

losing recognition accuracy.
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Conventional complexity reduction of pattern
recognizers has been addressed by at least the following
prior art techniques:

1. Feature vector down-sampling

A technique that reduces the decoding complexity by
using the state likelihood (SL) measure corresponding to
an incoming feature vector in several consecutive frames
(time instants).

2. Clustering of the model templates

This technique clusters the acoustic space off-line.
During decoding, a quick search among the clusters is
performed first, and then only the SL measures for the
members of the best matching cluster are evaluated.

3. Lowering the feature vector dimension

The number of feature vector components are reduced
to a predefined number, using advanced linear transforms,
such as PCA, LDA, etc, or neural networks.

Focusing on the third category, conventional
examples of this technique do not have the flexibility to
scale the computational complexity according to the
available CPU power. Instead, it is always considered
with the worst-case scenario. In addition, spectro-
temporal linear transforms or neural network-based
mappings may significantly increase the complexity of the
front-end, and thus the whole recognizer.

An example of feature vector dimension reduction is
given in “Should recognizers have ears”, Speech

Communication, Vol.25, pp. 3-27, 1998.

Summary Disclosure of the Invention

An objective of the present invention is to solve or
mitigate the above problems.

According to a first aspect of the invention, this
objective is achieved by a method of the kind mentioned
by way of introduction, further comprising formulating a
control signal based on at least one time-dependent

variable of the recognition process, and, for said at
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least one feature vector, computing only a subset of said
distortion measure contributions using the vector
components of said at least one feature vector, said
subset being chosen in accordance with said control
signal.

It should be emphasized that the expression “only a
subset” indicates a number less than the number of
distortion measure contributions available. In other
words, the subset includes less contributions than are
defined in the comparison of the feature vector and the
templates. This reduces the computational complexity of
the computation, as the dimensionality of the vectors
involved in the computation is effectively reduced.
Although such a dimension reduction decreases the
computational need, it has been found not to
significantly impair the performance or noise robustness
of the speech recognizer.

More specifically, the solution according to the
invention can reduce the complexity of the calculations
by reducing the number of operations in the computation
of the state likelihood, e.g. b-probability, that is a
dominant factor in the computation process.

Further, the solution according to the invention
does not need extensive amounts of memory. In fact, an
embodiment of the invention may even operate without any
additibnal memory depending on the actual implementation.

According to one embodiment, the control signal is
indicative of the processor load. The reduction of
complexity is thus adjusted according to the
instantaneous processor capacity. This is a potential
advantage of the present invention. The control signal
can alternatively be indicative of incoming signal
properties.

The inventive concept can be viewed as masking some
components of the feature vector itself, as it is the
feature vectors that contain the information to be

recognized. With this terminology, the method can
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comprise a masking process, where some components of each
feature vector are masked, by applying a mask. The mask
can omit selected components of the vectors, resulting in
a reduced number of computed distortion measure

5 contributions.

The component mask can be selected from a set of
predefined masks, including at least one non-null mask,
in accordance with said control signal. This results in
an implementation requiring very little additional

10 processing capacity to handle the masks.

Alternatively, the mask is dynamically computed in
accordance with the control signal in each specific
instance, resulting in a slightly more memory efficient
implementation. Also, this implementation is more

15 flexible, as the masks can be computed to match changing
processing needs.

In other words, a set of masks is available, either
by being stored in the memory of a pattern recognition
device or by creating the masks dynamically, when

20 necessary. Depending on the control signal, a mask from
this set of masks is used to reduce the number of
computed distortion measure contributions. As using
different masks results in different computational
complexity, the speech recognition process can adapt to

25 e.g., varying processor capacity, while still maintaining
good recognition accuracy in low-load situations (and
instants). Switching between masks can be performed even
at a very high temporal resolution (e.g. frame-by-frame,
every 10ms). Therefore, it provides the maximum

30 performance when the CPU is idle, and gives a graceful
degradation when other load is present.

I1f deemed advantageous, the mask may, at given
intervals, mask all components in the feature vector,
i.e., eliminating the entire distortion measure relating

35 to this feature vector, and thereby causing a decimation
of the sequence of feature vectors. This offers the

possibility to combine selective reduction of vector
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dimension with time-domain complexity reduction

techniques, such as feature vector down-sampling.

According to one embodiment, specific vector
components of successive feature vectors are used with a
rate depending on their temporal characteristics. This
makes it possible to achieve a feature component specific
down-sampling, where feature components that, e.g., vary
slowly in time can be down-sampled more than feature
components varying rapidly in time. Such down-sampling
schemes can be implemented by properly adjusting the
process of calculating and/or dynamically selecting the
mask.

According to yet another embodiment, the subset of
distortion measure contributions is combined with
contributions from a previously computed distortion
measure. In other words, contributions from masked
components that were skipped in the computation, are
replaced by the contributions from the most recently
performed calculation of corresponding components.

This means that a non-computed contribution is
approximated with the most recently calculated,
corresponding contribution, improving the performance
without significantly increasing computational cost.
Also, this technique ensures that all distortion measures
are calculated based on vectors of the same dimension.
This simplifies future processing, e.g., eliminates the
need of scaling when comparing distortion measures and
the need of recalculating any constants dependent upon
the number of contributions.

The invention can preferably be implemented in a
speech recognition process, in which case the signal
represents speech and the pattern represents spoken
words. The invention can advantageously be used in speech
recognition systems implemented in embedded devices, such
as mobile phones. Further, the templates can be Gaussian

mixture densities of hidden Markov models (HMM) .
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According to a second aspect of the invention, the
above objective 1s achieved with a device for pattern
recognition, comprising means for forming a sequence of
feature vectors from a digitized incoming signal, means
for formulating a control signal based on at least one
time-dependent variable of the recognition process, and
means for comparing at least one feature vector with
templates of candidate patterns by computing a distortion
measure comprising distortion measure contributions
wherein the comparing means are arranged to compute only
a subset of the distortion measure contributions, the
subset being chosen in accordance with said control

signal.

Brief Description of the Drawings

These and other aspects of the invention will be
apparent from the preferred embodiments more clearly
described with reference to the appended drawings.

Fig 1 illustrates the block diagram of a speech
recognition engine

Fig 2a illustrates schematically computation of a
distortion measure according to prior art.

Fig 2b illustrates schematically computation of a
distortion measure according to an embodiment of the
invention.

Fig 2c illustrates different masks suitable for the
computation in fig 2b.

Fig 2d illustrates schematically computation of a
distortion measure according to a second embodiment of
the invention.

Fig 3 is a schematic flow chart of the masking
process according to an embodiment of the invention.

Fig 4 illustrates a masking process according to a
further embodiment of the invention.

Fig 5 illustrates a masking process according to a
yet another embodiment of the invention.

Fig 6 illustrates the effect of processor load.
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Detailed description of preferred embodiments

In the following description, the pattern
recognizing process is a speech recognition process, used
in e.g. voice based user interfaces. However, this should
not be regarded as a limitation to the invention, which
is directed to pattern recognition in general. The
incoming signals may be any digitized signals, and the
candidate patterns may represent sounds, images, texts,
handwritten characters, etc.

A speech recognizer 1 as illustrated in fig 1
typically comprises a front-end processing section 2,
responsible for the feature extraction, and a back-end
processing section 3, responsible for the statistical
analysis of extracted features with respect to model
templates of candidate words or parts of words. These
models can be created by on-line training (speaker-
dependent name dialing, SDND) or by off-line training
(speaker-independent name dialing, SIND).

The input to a speech recognizer 1 consists of a
digitally sampled waveform 4 split into consecutive,
possibly overlapping segments. For each segment three
main processing steps are performed:

S1. Feature extraction, producing a vector of features

S2. Computation of the distortion values for the
current feature vector compared to the acoustic model
templates 6 (in the example below referred to as Guassian
densities), resulting in a distortion table 7 (in the
example below referred to as a b-probability table).

S3. Viterbi “decoding”, i.e., the current best
cumulative distortion values 8 are obtained based on the
distortion table computed in step S2 and the best
cumulative distortion values for the previous speech
segment 10. The allowed transitions are constrained by

the recognition lexicon plus grammar 9.



WO 03/081574 PCT/IB02/00954

8

When the speech input ends, the current best
recognition hypothesis, as found by the Viterbi decoding
step, is typically presented to the user as the
recognition result.

5 Each acoustic model is usually represented by a
hidden Markov model (HMM). The HMMs are the building
blocks for the possible classification outcomes.

The HMM is a statistical automaton, which can
accept/generate feature vectors. It consists of a set of

10 states, and a set of allowed transitions between these
states. Each transition has an associated probability
value. Each state is described by a probability density
function (PDF) on the space of feature vectors. The
negative log-likelihood given by the state PDF and the

15 feature vector can be also viewed as a distortion
measure. Given the current state of the automaton it
accepts/generates the current feature vector according to
the likelihood given by the current state’s PDF and then
makes a transition to a new state as constrained by the

20 set of transition probabilities.

The HMM that, during time, results in the smallest
aggregate distortion is selected as the recognition
result.

One of the most demanding computations consists of

25 evaluating, for every feature vector, the distortion to
the states of the recognition models. As mentioned
before, this distortion is normally computed as a state
likelihood measure, (its value also referred to as “b-
probability”) .

30 In a typical recognition engine, the PDF of each
state is a mixture of a certain number of Gaussian
densities (e.g., 8). Each density contains a mean and an
inverse standard deviation parameter vector.

During recognition, every incoming feature vector is

35 first matched against the parameters (mean and standard
deviation) of each density, to generate a distortion

measure based on the log-likelihood value as follows,
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L=C-3(x,—p  -istd?, (1)
i=1
where L is the log-likelihood of the density,
x; is the i*® vector component of the feature vector,

t! N
" mean and inverse standard

M; and istd; denote the 1
deviation vector component,

D represents the number of feature components (the
feature vector dimension), and

C is an additive constant equal to the logarithm of
the product of inverse standard deviations times
1/sqgrt (2*pi) to the power of D, where D is the feature
vector dimension.

The state b-probability is then given as follows

M 15 (2)
b= logZexp(Wi +L,)

i=1

where W; and L; are, respectively, the log-mixture
weight and the log-likelihood for density i, M stands for
the number of densities in the state and b is the b-
probability value.

After calculating the b-probability values for all
the states, the results are stored in a so called b-
probability table, needed by the Viterbi algorithm. This
algorithm is used to determine a sequence of HMMs which
best matches, in the maximum likelihood sense, the stream
of input feature vectors. The algorithm is implemented
using a dynamic programming methodology.

The number of multiplications and additions required
to compute the b-probability table can be approximated as
follows:

# multiplications = #all densities * #feature
components *2,

# additions = #multiplications.

The computation of the log-likelihood is illustrated
in fig 2a. A density 6, comprising two vectors (g and

istd) of dimension N, and a feature vector 5, comprising
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one vector (x) of dimension N, are multiplied according
to eq.1l to form a set 20 of N log-likelihood terms 23,
which are then summed according to eqg.l to generate the
value L.

According to the invention, the number of required
operations is reduced by masking some of the vector
components, so that they are not taken into account in
eq. 1. The complexity reduction will be approximately
proportional to the relative number of masked components.
This is illustrated in fig 2b. In this case, a mask 21 is
allowed to reduce the number of computed distortion
measure contributions 23. The black sections of the mask
21 indicate terms 23 in eq. 1 that are not computed. As a
result, some terms 24 of the set 20 are masked, and only
the remaining terms 22 are computed and summed to
generate the log-likelihood value L. Note that the
vectors (u, istd, x) and sets (20) in figs 2a and 2b are
schematic, and that each marked section in reality can
comprise several components or terms.

Although the masking as described above relates to
the log-likelihood terms 23, the masking process can also
be viewed as if the feature vector, x, and the density
vectors, p and istd, were reduced, this in turn leading
to a reduced number of distortion measure contributions.
Some advantages of the invention are more clearly
understood when viewed this way, and some examples below,
for example figures 4 and 5, actually refer to masking of
the feature vectors x.

According to the invention, the masks may vary with
time, i.e., different contributions are to be masked in
different frames. The variations can be based on, e.qg.,
current processor load or properties of the input signal.
For this purpose, the recognizer 1 in fig 1 can be
provided with (or connected to) a detector 11 of such
load or properties, arranged to generate a control signal

12 used in the distortion computation S2.



WO 03/081574 PCT/IB02/00954

10

15

20

25

30

35

11

Fig 2c shows three different masks 21 that can be
applied to the computation in fig 2b. Each mask 21 has a
different scope, i.e., able to reduce the number of
distortion measure contributions 23 by a different
factor, x, y and z respectively.

In some cases it may be advantageous to preserve the
number of components or terms in the log-likelihood
computation (eqg. 1). The masked terms 24 can then be
replaced by corresponding, previously computed terms 25,
as illustrated in fig 2d.

A flow chart of the masking process implemented in a
recognition process as described above, is illustrated in
fig 3. The flow chart relates to the handling of one
feature vector.

First, in step S10, a control signal is formulated.
As mentioned, this control signal can be indicative of
the processor load, or any other time dependent variable
of the recognizing process. Then, in step S11, an
appropriate mask 21 is selected. The feature masks can be
pre-computed for certain pre-defined complexity levels
(e.g., masking factors x, y, z) and they can even be hard
coded into the front-end 3 software to minimize the
computational overhead. Alternatively, the recognizer 1
is provided with software adapted to calculate a suitable
mask for each instance, or at least at regular intervals.
Such software can be implemented in the front-end 2,
and/or in the back-end 3.

An advantage with computing the masks dynamically is
that the masking process then is more adaptive to varying
conditions. The number and scope of the optimal masking
factors may change depending on application, type of
recognition, environment, etc.

Note that step S11 can make the mask selection for
each feature vector individually, or take several feature
vectors into account in a more elaborate feature vector
reduction. Examples of such more elaborate schemes are

given in the following description.
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In step S12, a set of density vectors is loaded from
the static memory for comparison with the current feature
vector.

As described above, the constant C in Eq. 1 is
dependent on the selection of computed log-likelihood
terms 23. Therefore, for each particular feature mask a
corresponding C value is required for the loaded
densities. Such a C value is determined in step S13.

The required C constants can be pre-computed and
stored in the memory of the recognizer, so that step S13
is a simple selection from these values. The relative
memory increase resulting from this storage can be

approximated as:

delta =

dim+1

where delta is the required memory increase, N is
the number of masks, and dim is the number of feature
vector components. In a practical scenario with three
masks, e.g., for complexities of 80%, 60%, and 40%, and
with a feature vector dimension of 39, the memory
increase would be 3/(39+1)=7.5% of the size of the
acoustic models. Alternatively, the C values are not
stored, in order to save memory. Instead, they can be re-
computed in step S13 every time a density is loaded for
processing from the static memory. In such a scenario,
feature vector masking can be implemented without any
need for extra memory at all.

In step S14, the log-likelihood L according to eq.l
is calculated. The masking process has the effect to skip
some of the terms in the summation in eq. 1, thereby
reducing the calculation complexity, as shown in fig 2b.
The mask is simply a set of rules defining which terms 23
to skip and which terms 22 to compute during the

calculation of eqg.l.
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The step S14 may also include the completion of the
distortion measure contributions as was described above
with reference to fig 2d. This can eliminate the need for
step S13, as a full scale summation is performed in this
case.

After the log-likelihood L has been computed in step
S14, step S15 directs program control back to step S12
and loads the next set of density vectors in the state.
This is repeated for all densities in the state.

After all densities in a state have been compared to
the current feature vector, in step S16 the b-probability
(eq. 2) can be calculated and stored in the b-probability
table, and step S17 then directs program control back to
step S12 and loads the first set of density vectors in
the next state. This is repeated for all states.

Finally, in step S18, the Viterbi algorithm is
implemented in a manner known per se.

According to one embodiment, the masking can be
adapted to include the principle of feature down-
sampling, by “masking” the entire vector of selected
frames. While feature down-sampling removes time-domain
redundancies by decimating the features (e.g., by a
factor of 2), feature component masking according to the
above description eliminates the least useful feature
vector components in every feature sample.

Even for a given masking percentage, it is possible
to select the most suitable components to mask at a given
moment in time, and these components may vary with time.
An example is given in fig 4, where five feature vectors,
31-35, are masked in an alternating manner, resulting in
a constant masking factor, but with no component being
masked more than every fourth frame.

Further, in many pattern recognition applications
the feature vectors may be formed by concatenating
components extracted from various sources. Due to this
the feature vector space is in fact a product of the sub-

spaces of the individual sources. For the majority of



WO 03/081574 PCT/IB02/00954

10

15

20

25

30

35

14

cases the distortion measure can be factored into several
terms by taking advantage of the decomposition of the
feature space. Since for the classification algorithm a
sequence of feature vectors needs to be processed, in
another embodiment of the invention the feature space is
first partitioned into two subspaces; one with rapidly
varying and another with slowly varying components. Since
for each density the distortion is obtained by combining,
possibly by weighting, the distortion of the two sub-
spaces, the method can effectively reduce the computation
by down-sampling the slowly varying components. This
corresponds to selecting slightly different masks for
different frames, possibly with different masking
percentages.

The number of sub-spaces is not necessarily two. A
more refined decomposition can be achieved if the degree
of variation is large. As illustrated in fig 5, each
feature vector 41-47 can be divided into 3 parts a, b, c:
a very slowly varying subspace, a, for down-sampling by
2, a slowly varying subspace, b, for down-sampling by
3/2, and a rapidly varying subspace, ¢, for no down-
sampling. This is achieved by masking different
components with different periodicity. The b subspace is
masked in every third frame, and the a subspace is masked
in every second frame. As shown in fig 5, this results in
three different masks 48-50, applied in combination with
a null mask 51 for some frames.

For the selection of the sub-space decomposition and

down-sampling rates there are the following alternatives:

1. Static selection
2. Semi-dynamic selection
3. Dynamic selection

In the static selection process, the decomposition
is done prior to the recognition process, e.g., by
analyzing the feature stream. In the simplest approach,
based on the cepstral information for each component the

components are assigned to the appropriate sub-spaces.
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The degree of variation can also be known a priori from
the front-end design (e.g. multi-resolution front-end, or
a front-end combining features of different types).

In the semi-dynamic selection, in addition to the
static sub-space separation, the decision to compute or
not a given distortion measure for a certain sub-space
can also be controlled by using a similarity measure
between successive features.

In the dynamic case the sub-space decomposition is
done entirely at run time, for pairs or groups of
features, with the help of a similarity measure. For
every feature component, a one-dimensional similarity
measure is computed. The components with the slowest
variation (as indicated by the similarity measure) are
placed in the slow varying subspace for the given group
of features.

Figure 6 describes how the pre-defined or
dynamically computed feature masks can be selected
according to the actual current load of the processor in
the recognizer 1. Thresholds Thl, Th2 and Th3 are pre-
defined, and when they are reached, the complexity of the
probability computation is altered by switching between
feature masks 1, 2, or 3, having different masking
factors. When not needed, i.e., when processor load does
not exceed threshold 1, feature masking can be completely
disabled (dis) to provide maximum accuracy. Note that
figure 6 does not include the load caused by the
recognizer engine itself.

The process of mask selection can also be adaptive,
so that the actual load resulting from a certain mask
selection is used to determine what mask to use. By
employing a learning algorithm, the impact of different
masks on the CPU load can be registered, in order to
improve future mask selections.

According to another embodiment of the invention,
the selection of feature vector masks is performed based

on input signal properties, e.g., time variation,
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signal/noise-ratio, etc. The input signal is first
analyzed, and a suitable mask is selected in accordance
with the determined properties.

Alternatively, the result of the recognition process
is analyzed, and the mask selection is performed and
adapted based on these results. For a particular mask, it
is determined if the recognition results are
satisfactory. If not, a less extensive mask is selected.
If the masking is satisfactory, the mask is maintained,
or even exchanged for a more extensive mask. In other
words, the success of recognition is maintained at a
desired level, while masking as many vector components as
possible.

As apparent to the skilled person, a number of
modifications and variations of the above described
embodiments are possible within the scope of the appended
claims. For example, other types of control signals may
be employed, in order to optimize the masking process.
Other types of criteria for selecting masks and the scope
of the masks can also be envisaged. Also, the described
computation of distortion measures can be employed in
pattern recognition processes different from the one
described herein. Finally, the described methods can
equally well be applied with other types of distortion
measures as long as they can be formed by using partial

distortion values from the component subspaces.
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CLAIMS

1. A method for pattern recognition, wherein a
sequence of feature vectors (5) is formed from a
digitized incoming signal (4), said feature vectors (5)
comprising feature vector components, and at least one
feature vector is compared with templates (6) of
candidate patterns by computing a distortion measure (L)
including distortion measure contributions (23), said
method being characterized by

formulating (S10) a control signal (12) based on at
least one time-dependent variable of the recognition
process, and

for said at least one feature vector, computing
(S14) only a subset (22) of said distortion measure (L)
contributions (23) using the vector components of said at
least one feature vector, said subset (22) being chosen
in accordance with said control signal (12).

2. A method according to claim 1, wherein said
time-dependent variable belongs to the group of processor
load and incoming signal (4) properties.

3. A method according to claim 1 or 2, wherein the
vector components of said at least one feature vector are
masked, by applying a mask (21), thereby reducing the
number of computed distortion measure contributions in
the subset (22).

4. A method according to claim 3, wherein said
mask is dynamically computed (S11) in accordance with
said control signal (12).

5. A method according to claim 3, wherein said
mask (21) is selected (S11) from a set of predefined
masks in accordance with said control signal (12).

6. A method according to claim 5, wherein said
predefined masks represent different reductions of the
number of computed distortion measure contributions in
the subset (22).
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7. A method according to claim 3 - 6, wherein said
mask at given time instances comprises all vector
components in the feature vector, causing a decimation of
the sequence of feature vectors.

8. A method according to any one of the preceding
claims, wherein specific vector components of successive
feature vectors are used with a rate depending on their
temporal characteristics.

9. A method according to any one of the preceding
claims, wherein said subset (22) of distortion measure
(L) contributions (23) is combined with contributions
(25) from a previously computed distortion measure.

10. A method according to any one of the preceding
claims, wherein said signal (4) represents speech and the
candidate patterns represent spoken utterances.

11. A method according to any one of the preceding
claims, wherein said templates (6) are Gaussian mixture
densities of Hidden Markov Models (HMMs) .

12. A method according to claim 11, wherein said

distortion measure is based on a log-likelihood (L) .

13. A device (1) for pattern recognition,
comprising means (2) for forming a sequence of feature
vectors (5) from a digitized incoming signal,
characterized by

means (11) for formulating a control signal (12)
based on at least one time-dependent variable of the
recognition process, and

means (3) for comparing at least one feature vector
with templates (6) of candidate patterns by computing a
distortion measure (L) comprising distortion measure
contributions (23),

wherein said comparing means are arranged to compute
only a subset (22) of the distortion measure
contributions (23), said subset being chosen in

accordance with said control signal (12).
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14. A device according to claim 13, wherein said
means (11) for formulating a control signal (12) is
arranged to detect a processor load of the device (1).

15. A device according to claim 13 or 14, further
including means (3) for applying a mask (21) to the
components of said at least one feature vector, thereby
reducing the number of distortion measure contributions
in the subset (22).

16. A device according to claim 13 - 15, further
including means (3) for selecting said mask from a set of
predefined masks in accordance with said control signal
(12) .

17. A device according to claim 13 - 15, further
including means (3) for dynamically computing said mask
in accordance with said control signal (12).

18. A device according to claims 13 - 17,
implemented as an embedded processing device, comprising

a front-end section (2) for forming said sequence of
feature vectors, and

a back-end section (3) for providing said set of

distortion measures (L).

19. A speech recognizer (1) including a device

according to claim 13 - 18.

20. A communication device comprising a speech

recognizer according to claim 19.

21. A system for pattern recognition comprising
means (2) for forming a sequence of feature vectors (5)
from a digitized incoming signal, characterized
by

means (11) for formulating a control signal (12)
based on at least one time-dependent variable of the
recognition process, and

means (3) for comparing at least one feature vector

with templates (6) of candidate patterns by computing a
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contributions (23),

wherein said comparing means are arranged to compute
only a subset (22) of the distortion measure
contributions (23), said subset being chosen in

accordance with said control signal (12).

22. A computer program product, directly loadable
into the memory of a computer, comprising computer
program code means for performing the steps of the method

of claims 1-12 when executed on the computer.

23. A computer program product according to claim

22, stored on a computer readable medium.
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